
Drosophila Stage Annotation using Sparse Learning Method

by

Cheng Pan

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2012 by the
Graduate Supervisory Committee:

Jieping Ye, Chair
Baoxin Li

Gerald Farin

ARIZONA STATE UNIVERSITY

December 2012

ABSTRACT

Drosophila melanogaster, as an important model organism, is used to ex-

plore the mechanism which governs cell differentiation and embryonic develop-

ment. Understanding the mechanism will help to reveal the effects of genes on

other species or even human beings. Currently, digital camera techniques make

high quality Drosophila gene expression imaging possible. On the other hand, due

to the advances in biology, gene expression images which can reveal spatiotemporal

patterns are generated in a high-throughput pace. Thus, an automated and efficient

system that can analyze gene expression will become a necessary tool for investigat-

ing the gene functions, interactions and developmental processes. One investigation

method is to compare the expression patterns of different developmental stages. Re-

cently, however, the expression patterns are manually annotated with rough stage

ranges. The work of annotation requires professional knowledge from experienced

biologists. Hence, how to transfer the domain knowledge in biology into an auto-

mated system which can automatically annotate the patterns provides a challenging

problem for computer scientists. In this thesis, the problem of stage annotation for

Drosophila embryo is modeled in the machine learning framework. Three sparse

learning algorithms and one ensemble algorithm are used to attack the problem.

The sparse algorithms are Lasso, group Lasso and sparse group Lasso. The ensem-

ble algorithm is based on a voting method. Besides that the proposed algorithms

can annotate the patterns to stages instead of stage ranges with high accuracy; the

decimal stage annotation algorithm presents a novel way to annotate the patterns to

decimal stages. In addition, some analysis on the algorithm performance are made

and corresponding explanations are given. Finally, with the proposed system, all

the lateral view BDGP and FlyFish images are annotated and several interesting

applications of decimal stage value are revealed.

i

ACKNOWLEDGEMENTS

I would like to thank all the students and professors who helped or taught

me during my two and a half years of graduate study at Arizona State University.

I would like to thank Dr. Jieping Ye for his help in academia and research and

for providing such an interesting and challenging problem to me. I would like to

thank Dr. Baoxin Li and Dr. Gerald Farin for being a part of my thesis committee

and giving me instructions on my thesis. I would like to thank Lei for giving me a

lot of helpful suggestions during the process of algorithm design and performance

evaluation. I would like to thank Qian for her review and helpful suggestions to my

thesis. Last but not least, I would like to thank my parents, my aunt and my uncle.

It is you who supported my study at ASU and gave me the courage to pursue my

master’s degree.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

LIST OF SYMBOLS/NOMENCLATURE xi

CHAPTER

1 INTRODUCTION . 1

1.1 Background . 1

1.2 Challenges . 2

Large Data Size Challenge . 3

High Feature Dimension Challenge 3

Application Specific Challenges 4

1.3 Problem Definition . 4

1.4 Thesis Organization . 5

2 RELATED WORKS . 6

2.1 LdaPath . 6

2.2 Bag of Words . 7

3 OVERVIEW OF LINEAR CLASSIFIERS 8

3.1 Support Vector Machine . 8

3.2 Logistic Regression . 8

3.3 Ridge Regression . 9

3.4 Lasso . 10

4 DATA SETS AND PREPROCESSING 12

4.1 Two Data Sets . 12

4.2 Gabor Feature Extraction . 13

4.3 Training Data Sets Generation . 14

iii

CHAPTER Page

4.4 Genomewide-Expression-Map . 14

5 ANNOTATION BY LEARNING SPARSE STRUCTURE 17

5.1 Algorithms . 17

Lasso . 18

Group Lasso . 18

Sparse Group Lasso . 19

5.2 Annotation System . 20

5.3 Evaluation Setup . 23

5.4 Results and Analysis . 23

Evaluation on Accuracy . 23

Evaluation on Sparsity . 24

6 ANNOTATION BY ENSEMBLE . 27

6.1 Algorithm . 27

Model Pool Construction . 28

Stage Annotation by Majority Voting 29

6.2 Ensemble Annotation System . 30

6.3 Results and Analysis . 30

7 ANNOTATION AS DECIMAL STAGE 32

7.1 Expression Pattern Transition as a Continuous Process 33

7.2 Without-range Problem . 34

7.3 Algorithm . 36

7.4 Decimal Stage Annotation System 37

7.5 Applications of Decimal Stage . 38

Image Sorting . 38

Sub-stage Annotation . 39

iv

CHAPTER Page

Improving Similar Expression Pattern Retrieval 42

7.6 Results and Analysis . 43

With-range Problem vs. Without-range Problem 44

Independent Evaluation . 45

8 CONCLUSIONS . 48

REFERENCES . 51

APPENDIX

A FLYFISH GEMS OVERLAID WITH ATLAS 54

B SUB-STAGE GEMS FOR FLYFISH . 56

v

LIST OF TABLES

Table Page

4.1 Number of BDGP images within the same stage range. 16

4.2 Number of FlyFish images within the same stage range. 16

5.1 λ values used in cross validation for Lasso and group Lasso. 22

5.2 λ value pairs used in cross validation for sparse group Lasso. 22

5.3 Algorithm accuracies evaluated on BDGP data set. glasso stands for

group Lasso. sglasso stands for sparse group Lasso. least stands for

least square loss. log stands for logistic loss. The first row is the split

ratios. 24

5.4 Algorithm accuracies evaluated on FlyFish data set. glasso stands for

group Lasso. sglasso stands for sparse group Lasso. least stands for

least square loss. log stands for logistic loss. The first row is the split

ratios. 24

7.1 Number of images in each stage for the BDGP data set. All the 36802

images are annotated by solving the with-range problem. 38

7.2 Number of images in each stage for the FlyFish data set. All the 33572

images are annotated by solving the with-range problem. 39

7.3 Without-range algorithm accuracies evaluated on the BDGP data set.

glasso stands for group Lasso. sglasso stands for sparse group Lasso.

least stands for least square loss. log stands for logistic loss. The first

row is the split ratios. 44

7.4 Without-range algorithm accuracies evaluated on the FlyFish data set.

glasso stands for group Lasso. sglasso stands for sparse group Lasso.

least stands for least square loss. log stands for logistic loss. The first

row is the split ratios. 44

vi

Table Page

7.5 Independent performance evaluation results of the annotation system

(stage-range information is used). 46

7.6 Independent performance evaluation results of the annotation system

(stage-range information is not used). 46

7.7 Independent performance evaluation results of our annotation system

(stage-range information is used). Only SVM models are used in en-

semble method. 47

7.8 Independent performance evaluation results of our annotation system

(stage-range information is not used). Only SVM models are used in

ensemble method. 47

7.9 Independent performance evaluation results of our annotation system

(stage-range information is used). 6 sparse models are used in ensemble

method. 47

7.10 Independent performance evaluation results of our annotation system

(stage-range information is not used). 6 sparse models are used in en-

semble method. 47

vii

LIST OF FIGURES

Figure Page

1.1 Sample images for BDGP data sets. There are 6 stage ranges for BDGP

data. Each image is a representative for the corresponding stage range. . 2

1.2 Sample images for FlyFish data sets. There are 4 stage ranges for Fly-

Fish data. Each image is a representative for the corresponding stage

range. 2

4.1 Data preprocessing flow. The original image insitu5449 is fetched from

FlyExpress database. The binary image is generated by thresholding

the original image. The feature vector is extracted from original image

by Gabor filters. 13

4.2 GEMs for BDGP. The numbers below the images are stage values. Each

GEM is generated by overlapping the binary expression images of the

same stage. 15

4.3 GEMs for FlyFish. The numbers below the images are stage values.

Each GEM is generated by overlapping the binary expression images

of the same stage. 15

5.1 Annotation algorithm flow for BDGP data set. 21

5.2 Sparsity for each proposed algorithms on BDGP data set. 25

5.3 Sparsity for each proposed algorithms on FlyFish data set. 25

6.1 Model pool high-level illustration. The left side shows the split ratios

and algorithms which are used to construct the model pool. Each bin

contains 30 models. Hence, there are 1050 models in the model pool. . . 28

viii

Figure Page

6.2 Ensemble annotation system overview. The upper component is con-

sisted of a set of stage annotation algorithms. The lower component

uses the voting method to combine the results of the annotation algo-

rithms. 30

6.3 Generated BDGP GEMs overlapped with Atlas. 31

7.1 Without-range stage annotation algorithm flow. 35

7.2 Final version of stage annotation system overview. Each module is an

algorithm that are posed in previous chapters. 37

7.3 Stage 4 - 6 BDGP GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 40

7.4 Stage 7 - 12 BDGP GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 41

7.5 Stage 13 - 16 BDGP GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 42

ix

Figure Page

7.6 BDGP GEMs generated using 3 sub-stages. The left column shows

GEMs overlapped by stages. The middle column shows GEMs over-

lapped by 1 sub-stage. The right column shows GEMs overlapped by 3

sub-stages. Here stage 7 and 8 are used as illustrative examples. 43

A.1 Generated FlyFish GEMs overlapped with Atlas. 55

B.1 Stage 4 - 5 FlyFish GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 57

B.2 Stage 6 - 7 FlyFish GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 57

B.3 Stage 8 - 9 FlyFish GEMs generated by using only the stage range in-

formation (left column), using the predicted stage information (middle

column) and using the sub-stage information (right column, sub-stage

is 1). The total numbers of images used for creating each individual

GEM are shown in blue rectangles. 57

B.4 FlyFish GEMs generated using 3 sub-stages. The left column shows

GEMs overlapped by stages. The middle column shows GEMs over-

lapped by 1 sub-stage. The right column shows GEMs overlapped by 3

sub-stages. Here stage 6 and 7 are used as illustrative example. 58

x

LIST OF SYMBOLS

n Data size . 11

d Feature vector size . 4

x Feature vector . 4

y Label for x . 5

ℓ Loss function .5

Reg Regularization function . 5

R Real number set . 4

Z Integer number set . 5

T Training data set . 5

X Data matrix . 17

Y Label vector . 17

xi

Chapter 1

INTRODUCTION

1.1 Background

Drosophila melanogaster (the fruit fly), as one of the model organisms of

invertebrates, is widely used for biological research in studies of genetics, physiol-

ogy, microbial pathogenesis and life evolution. It is typically used because it is a

species that is easy to care for, breeds quickly, and lays many eggs [20]. A large

number of the key genes involved in fruit fly development are found in the genomes

of species in diverse animal phyla and their proteins show extensive sequence sim-

ilarities [14, 21, 24].

Hence, study of interactions and functions of fruit fly genes is quite mean-

ingful to decipher the mechanisms which govern cell differentiation and embryonic

development. The genetic analysis of spatiotemporal information of fruit fly genes

involves visualization of the presence of certain gene products (mRNA) at given

stage. One way of visualization is the RNA in situ hybridization (ISH) technique.

It is a gene-specific probe which can illuminate the spatiotemporal pattern of gene

expression precisely. The raw data produced from ISH is in the form of digital

documented images which reveal certain Drosophila gene expression in a specific

color.

Recently, BDGP [23] and FlyFish [13] are two popular datasets for Drosophi-

la embryos. For the high-throughput characteristic of these two datasets, each im-

age is assigned to a range of stages, according to Drosophila embryonic devel-

opment process, rather than to a specific stage. Thus, the interplay of genes in

different stages of development can be studied through comparative analysis of the

spatial overlap of gene expression patterns (images).

1

1-3 4-6 7-8 9-10 11-12 13-17

Figure 1.1: Sample images for BDGP data sets. There are 6 stage ranges for BDGP
data. Each image is a representative for the corresponding stage range.

1-3 4-5 6-7 8-9

Figure 1.2: Sample images for FlyFish data sets. There are 4 stage ranges for
FlyFish data. Each image is a representative for the corresponding stage range.

Advances in ISH technique results in a high-throughput pace of generat-

ing images; however, it is a waste of time and resources or even impossible for

biologists to do the comparison and stage annotation manually. Moreover, integer

stage value is sometimes not enough in the embryonic development stage analysis.

A decimal stage value can give more detailed information on embryos’ develop-

mental stage. Hence, how to analyze the spatiotemporal pattern automatically and

comprehensively and how to annotate the stages as decimal values with only stage

range information pose challenging problems to computer scientists. The analytical

results will give novel insight into the mechanism of genes. Hence, an automated

and efficient system that can analyze the gene expression will become a necessary

tool for investigating gene functions, interactions and developmental processes.

1.2 Challenges

The specific biological application background and data attributes determine

the challenging nature of the stage annotation problem. In the following two sec-

tions, the large data size challenge, high feature dimension challenge and applica-

tion specific challenges are discussed separately. The first two challenges are about

the image data which are provided in the two data sets. The last one is about the

2

challenges that are caused by different requirements of specific applications such as

high-resolved stage annotation or binary gene expression image retrieval.

Large Data Size Challenge

As described in the Background section, because of the advances in biological tech-

niques, fruit fly embryo gene expression image are generated at a high-throughput

pace. The data amount to process or annotate is very large. For the example of

our application, there are 36,802 images in the BDGP data set as well as 33,572

images in the FlyFish data set. The total data size is about 10GB on a hard drive.

On the other hand, due to the fact that embryogenesis is a stochastic process and no

two embryos develop in the same morphological pattern, the problem is embedded

with more uncertain factors. Hence, how to annotate all the images efficiently and

accurately is a challenging problem to our system.

High Feature Dimension Challenge

Since the data to be annotated is image data, the feature extracted from this kind

of data is commonly in the form of high dimension vectors. The dimension size of

the vector depends on the algorithm which is used to extract the feature, and feature

dimension size is large most of the time, which causes the curse of dimensionality

problem. To deal with this problem, algorithms are required to be more efficient in

order to process the large amount of features. It can be even worse when the feature

size is larger than the sample size, which is our case. Also, a lot of traditional ma-

chine learning classifiers such as Gaussian Mixture Model (GMM) and K Nearest

Neighbor (KNN) are not applicable to our problem. Therefore, efficient and state-

of-the-art models are critical in solving the problem. I will discuss the techniques

that we used in the following chapters.

3

Application Specific Challenges

With different levels of stage granularity posed in the stage annotation problem, the

application specific challenges vary accordingly. For the discrete stage annotation

problem, in which the annotated stage values are required to be integers, there are

only a small portion (about 3K) of data that are manually annotated and about 30K+

data do not have stage information, which makes it hard for us to evaluate the

algorithm performance. Also, with more and more new data generated and stored

in database in the future, a general model that can annotate unseen data is essential

to our system. For the decimal stage annotation problem, according to the previous

requirement on annotation granularity, our system should further refine the discrete

stage value to be decimal one. If the decimal stage value can be calculated, the

analytical comparison of the images will no longer be limited in stage ranges or

stages. Biologists will be able to be compare those images in stage level, or even

further in any high-resolved level that they can imagine. Hence, how to design

a stable and decimal-stage-annotating system poses another two challenges to our

system.

1.3 Problem Definition

Generally, in machine learning framework, Drosophila embryo stage an-

notation problem is defined as: given a feature vector x ∈ Rd which is extracted

from the original image data, find a function f that maps x to y, in which y is the

annotated stage value. The choice of the function should be an optimal function

which achieves optimal classification performance. Mathematically, the problem is

formulated as follows:

arg min
f∈F

∑
x∈T

ℓ(f (x),y),

4

in which y is the true stage value for x, ℓ is the loss function, T is the training data

set and F is the function set.

Specifically, with different requirements, the problem formulation varies s-

lightly. For discrete stage annotation problem, function f is required to be a map-

ping from Rd to Z. But for decimal stage annotation problem, function f should be

a mapping from Rd to R.

1.4 Thesis Organization

In the following chapters, some related works are discussed in chapter RE-

LATED WORKS, a high-level illustration of linear classifier and some well-known

classifiers are presented in chapter OVERVIEW OF LINEAR CLASSIFIERS and

some introductions to the data sets that our application focuses on and how data are

pre-processed are described in chapter DATA SETS AND PREPROCESSING. Next,

detailed descriptions on the algorithms design and the annotation system design are

discussed. How to exploit the underlying sparse structure to solve the problem is re-

vealed in chapter ANNOTATION BY LEARNING SPARSE STRUCTURE, on which

chapter ANNOTATION BY ENSEMBLE is based to provide a stable model that can

annotate unseen data in high accuracy. With the results in previous two chapter-

s, decimal stage annotation algorithm is illustrated in chapter ANNOTATION AS

DECIMAL STAGE. Finally, a brief conclusion and some vision to the future works

is discussed in chapter CONCLUSIONS.

5

Chapter 2

RELATED WORKS

In this chapter, two recent related works are discussed. I will introduce what kind of

stage annotation problems are posed and how are they solved. Followed by these,

brief summaries are given to each work separately.

2.1 LdaPath

In LdaPath paper [25], the stage annotation problem is modeled as a classifi-

cation problem with 3 classes involved. The 3 classes include the early stages (1-3,

4-6 and 7-8) of embryo development from BDGP data set. For each image from

the stage range, Gabor filters [5] are applied to extract textural feature at sub-block

level. After the problem is modeled as multi-class classification problem. Multi-

class Linear Discriminant Analysis (LDA) is used to do the classification as well as

feature extraction at the same time. LDA is a well-known technique that projects

high-dimensional feature into low-dimension space where data achieves maximum

class separability [2].

Following LDA, in the paper, Ye. et al [25] proved the generalized equiva-

lence relationship between LDA and least square for multi-class case under a mild

condition. Based on the equivalence relationship, ℓ1 regularization term is added to

the least square formulation to force sparsity on the selected feature. And simulta-

neous feature selection and feature extraction is achieved by solving the optimiza-

tion problem in LdaPath. The advantages of LdaPath include its high efficiency in

computing the entire solution path with the same cost as fitting one LDA model,

and its feature sparsity is enforced by ℓ1 norm regularization. But the algorithm

is still modeled on small data size of 3 stage ranges. The rest of the data remain

untouched. And the stage can only be annotated to stage ranges, which is in coarse

6

granularity. On the other hand, even through the sparsity is enforced on the selected

feature, the sparse structure underlies the image data needs further exploring.

2.2 Bag of Words

S.Ji et al [8] handled the problem by the approach of bag-of-words. In

their approach, invariant features are first extracted through scale-invariant feature

transform (SIFT)[19]. And a visual codebook is constructed by applying k-means

clustering on SIFT features. After each image is represented as a group of bag-

of-words, multi-label classification method [9] is used. The advantages are that

images from different views (eg., lateral and dorsal) are used to construct the bag-

of-words and control vocabulary [23] is used. The proposed algorithm can annotate

images to the level of stages instead of stage range, which is one step further than

the previous work of LdaPath [25]. However, the drawback of the approach is that

only local descriptive feature, SIFT, is used and global spatial information in the

original image is not exploited thoroughly. And the constructed bag-of-word is a

global description to the image which can hardly express local differences. Also,

the algorithm only focuses on small part (about 3K+ images) of the BDGP data set,

the large scale annotation problem is not mentioned and decimal stage annotation

is still untouched.

7

Chapter 3

OVERVIEW OF LINEAR CLASSIFIERS

In order to attack the large data size challenge, we used linear classifier as the

building block of our algorithms. For multi-classification problem, one-against-

rest method [1] is used to convert the original problem into a series of binary-

classification problems. Linear models are widely used for its simplicity and high

efficiency in data prediction. The general idea for linear model is that it models

the decision boundary as a hyperplane in the feature space (Euclidean space). For

instance, in 2-D space, the hyperplane is a line; and in 3-D space, the hyperplane is

a planar. Upon the linear classifier, other complex classifiers such as AdaBoost and

Ensemble can be constructed. Some well-known linear classifiers are introduced as

follow.

3.1 Support Vector Machine

SVM is short for Support Vector Machine and is inspired from statistical

learning theory from Vladimir Vapnik’s work in 1996. In SVM, the hyperplane is

modeled as the one that represents the largest separation (geometric margin) be-

tween the two classes. So the hyperplane is constructed so that the distance from it

to the nearest data point on each side is maximized. Hence, the hyperplane is known

as the maximum-margin hyperplane and the linear classifier it defines is known as a

maximum margin classifier. Also, SVM is considered as a special case of Tikhonov

regularization [7].

3.2 Logistic Regression

Logistic regression, as a generalized linear model, is used for prediction

of the probability of occurrence of an event by fitting data to a logistic sigmoid

8

function σ(a) [1]:

σ(a) =
1

1+ exp(−a)
(3.1)

For two-class classification problem, σ(a) models the posterior probability of class

C1, and a is a linear function of the feature vector x so that [1]

p(C1|x) = y(x) = σ(wT x) (3.2)

Maximum likelihood is used to determine the parameters of the logistic re-

gression model. The likelihood function is as follows:

p(t|w) =
N

∏
n=1

ytn
n (1− yn)

1−tn, (3.3)

in which

tn =

 1, i f n ∈C1

0, i f n ∈C2

, (3.4)

t = (t1, t2, ..., tn)T , (3.5)

yn = p(C1|x) = σ(wT x). (3.6)

Then the parameters are obtained by minimizing the cross-entropy function [1]

E(w) =−lnp(t|w) =−
N

∑
n=1
{tnln(yn)+(1− tn)ln(1− yn)}, (3.7)

which provides a new kind of loss function called logistic loss and a general way to

look at linear classifier.

3.3 Ridge Regression

Ridge regression is also known as Tikhonov regularization which is one of

the commonly used methods of regularization of ill-posed problem. In the area of

regression, regression problem is formulated as follows:

Ax = b

9

But when that problem is not well posed (either because of non-existence or non-

uniqueness of data matrix X), standard approaches such as least square may not be

able to address the problem well. So, in order to give preference to a particular so-

lution with desirable properties, a regularization term is included in the formulation

of least square as follows:

minx1/2∥Ax−b∥2
2 +λ/2∥x∥2

q, (3.8)

in which ∥ · ∥q is the q norm of vector x and λ is the parameter to control the

importance of the regularization term. When q = 2, the problem (3.8) becomes

ridge regression problem.

3.4 Lasso

As another kind of regularization, Lasso is becoming more and more pop-

ular for these years. For the problem (3.8), if q = 1, then the original becomes

Lasso problem. One appealing property of the result hyperplane x of Lasso is that,

if λ is sufficiently large, most of the entries of x will be driven to zero, which is

called sparsity. Exploiting the sparse structure is quite useful to address problem in

which feature dimension is much larger than the number of data sample. The main

applications include data mining and biological data analysis.

As a summary to the four linear classifiers, there are three commonly used

loss functions, which are square loss, hinge loss and logistic loss. Hinge loss is

inspired from the loss function in SVM formulation. It is shown in Equation (3.9):

ℓ(w,X,Y) =
n

∑
i=1

max{0,1− yiwT xi} (3.9)

Used in ridge regression and Lasso, least squares loss is shown in Equation (3.10):

ℓ(w,X,Y) =
1
2

n

∑
i=1

(wT xi− yi)
2 (3.10)

10

Logistic loss is inspired from logistic regression, and it is shown in Equation (3.11)

which can be proved to be equivalent to Equation (3.7).

ℓ(w,X,Y) =
n

∑
i=1

log(1+ exp(yiwT xi)) (3.11)

In the three formulations, xi is the feature vector, yi is the label value and w is the

weight vector which is supposed to be estimated.

11

Chapter 4

DATA SETS AND PREPROCESSING

This chapter mainly describes the data set that our stage annotation system orients

on and how these data images are preprocessed to be fed into the machine learn-

ing framework properly. First, Berkeley Drosophila Genome project (BDGP) and

FlyFish data sets are introduced in detail. Then, the methods that used to generate

binary expression patterns and feature vectors are illustrated. Finally, how the train-

ing data sets are obtained is revealed. And the calculated training data are used in

model training in following chapters.

4.1 Two Data Sets

BDGP and FlyFish are two databases that store fruit fly gene expression

images. Since BDGP was created earlier than FlyFish, the image resolution of Fly-

Fish is higher than BDGP. Due to advanced ISH technique [13] used to generate

FlyFish data, the expression pattern in FlyFish database is more clear than those

in BDGP database and the color is quite different between the two. Though image

data was provided in these previous works, it is not ready to be fed into the sys-

tem, because the embryos in images are different in sizes and orientations. Each

image contains a lot of embryos, which makes it hard to compare images with each

other directly. Kumar et al. [12] applied the image standardization procedure to

segment each single embryo as an image and align the images into the same size

(128pixels×320pixels) and orientation. The standardized images are stored in the

FlyExpress database [11].

In Figure 4.1, the left original BDGP gene expression in situ5449 is an

example of a standardized image. The right above binary image is generated by

thresholding. There are three thresholds (from low to high) which are used to gen-

12

Figure 4.1: Data preprocessing flow. The original image insitu5449 is fetched from
FlyExpress database. The binary image is generated by thresholding the original
image. The feature vector is extracted from original image by Gabor filters.

erate the binary images. When the lowest threshold is used, the most pixels are

reserved in the binary expression image. In the system, the middle threshold is

used to extract binary expressions. The right bottom figure is the feature vector

which is extracted by a series of Gabor filters.

4.2 Gabor Feature Extraction

In order to build an efficient and effective automated annotation system,

extracting effective features that contain discriminative information is the first step.

In this thesis, we use Log Gabor filter to extract features from original images.

Log Gabor filters [5] have been shown to offer the best simultaneous localization

of spatial and frequency information with arbitrary bandwidth. In the frequency

domain, the Log Gabor function can be described as:

G(f) = exp{−[log(f/ f0)]
2/2[log(σ/ f0)]

2}, (4.1)

in which f0 is the filter’s center frequency.

With the Gabor filter, the procedures to generate feature vector are as fol-

lows. First, the RGB image is converted to a gray scale image. Then Log Gabor

filters with 4 different wavelet scales and 6 different filter orientations are used to
13

extract the texture information. As a result, a combination of 24 images of size

128pixels×320pixels are obtained. Next, each image is down-sampled by a block

of 8pixels×8pixels. Finally, the down-sampled images are converted into vectors

in the same order and the vectors are concatenated to form the feature vector of

which the size is 15360.

4.3 Training Data Sets Generation

After Log Gabor features were extracted, we built databases for the BDGP

and FlyFish images separately with stage information and feature vectors for lateral

view images. The stage information is manually annotated by biologists with their

domain knowledge. Thus, the databases (training data sets) can provide critical

knowledge information for us to transfer into the stage annotation system. The

training data size for the BDGP and FlyFish data set are 3721 and 1166 separately,

which is almost 10 percent of the original data size. In the databases, the stage

value for the BDGP data set ranges from 3 to 17; the stage value for the FlyFish

data set ranges from 3 to 10. The difference is because the images in the BDGP data

set extend a longer time period than those in the FlyFish data set. The difference

between stages 1-3 is just different number of nuclei in each stage, which is not

quite morphologically different. Hence, stages 1-3 are considered as one stage

(stage 3) in the system.

4.4 Genomewide-Expression-Map

Genomewide-Expression-Map (GEM) is a color map that can be used to

visualize overlapped binary expression images. When binary expression images

with the same stage range, stage or even high-resolved stage are overlapped, the

gene expression can be enforced to show the expression pattern of that specific stage

resolution. Moreover, within the same stage resolution, binary images of the same

gene can be overlapped to show how different genes interact with each other. Along

14

with manually annotated stage information in the training data sets, the GEMs for

the BDGP and FlyFish data set are generated and shown in Figure 4.2 and 4.3.

1-3 4 5 6 7

8 9 10 11 12

13 14 15 16 17

Figure 4.2: GEMs for BDGP. The numbers below the images are stage values. Each
GEM is generated by overlapping the binary expression images of the same stage.

1-3 4 5 6

7 8 9 10

Figure 4.3: GEMs for FlyFish. The numbers below the images are stage values.
Each GEM is generated by overlapping the binary expression images of the same
stage.

In the two figures, Figure 4.2 shows GEMs for BDGP and Figure 4.3 shows

the ones for FlyFish. We can see that the expression patterns are highlighted and

quite smooth after the images are overlapped and colored. However, in the data

set, the number of images of the same stage range is still large. As shown in Table

4.1 and Table 4.2, the image number is greater than several thousands or even ten

thousands, which means the number of images of the same stage is at least over a

thousand if the images are evenly distributed. Hence, the GEMs which are shown

in Figure 4.2 and 4.3 are still a coarse view of the gene expressions. Also it should

be noted that the images which are used to generate the GEMs are just manually

15

Table 4.1: Number of BDGP images within the same stage range.

Range 1 2 3 4 5 6
Stage 1-3 4-6 7-8 9-10 11-12 13-17

Image number 4204 7341 3663 3765 9244 8585

Table 4.2: Number of FlyFish images within the same stage range.

Range 1 2 3 4 5
Stage 1-3 4-5 6-7 8-9 10

Image number 9759 13175 4355 5280 1003

annotated images in the training data sets. The number of these images is just about

10% of the original size. These facts, again, show the importance of our stage

annotation system. It will enable biologists to generate GEMs for all the expression

images not only at stage level but also at further refined stages (eg., stage 3.5-4 or

stage 4.25-4.5). The details will be discussed in the following chapters.

16

Chapter 5

ANNOTATION BY LEARNING SPARSE STRUCTURE

The idea of sparse learning is to exploit the embedded sparse structure underly-

ing the problem. It is one of techniques that are used to attack the high feature

dimension challenge. Instead of projecting all the features into lower dimension

space where data are maximum separable, sparse learning assumes that only part

of the features affect the classification/regression results and other features should

be ignored. One example of a machine learning algorithm that exploits the sparse

structure is Lasso. Other state-of-the-art algorithms include group Lasso [26], fused

Lasso [18] and overlapping group Lasso [16].

In this chapter, I mainly describe three sparse learning algorithms that are

used to exploit the sparse structure underlying the gene expression image data. The

algorithms are arranged from the traditional (Lasso) to the state-of-the-art (sparse

group Lasso). Each algorithm has different way of modeling the sparse structure.

Following the algorithms, model training process, regularization parameters setup,

and annotation system construction are illustrated. Finally, the performance of each

algorithm is evaluated and compared with the others.

5.1 Algorithms

Before we proceed to the details of this chapter, I will give some introduc-

tions to the notations that are used in the formulations. We define X ∈ Rn×d as

the data matrix and X = [x1,x2, ...,xn]
T , in which xi ∈ Rd (1 ≤ i ≤ n) and de-

fine Y ∈ Zn as the label vector (annotated stages) and Y = [y1,y2, ...,yn]
T , in which

yi ∈ {3,4, ...,17} (1 ≤ i ≤ n) for BDGP data set or yi ∈ {3,4, ...,10} (1 ≤ i ≤ n)

for FlyFish data set. In the definition, n is the number of training data and d is the

feature size (15360 in our case). The following algorithm models are based on the

17

general form of the optimization problem as follows:

w∗ = argmin
w

ℓ(w,X,Y)+Reg(w), (5.1)

in which ℓ(w,X,Y) is the loss function and Reg(w) is the regularization func-

tion. For the following algorithms, different Reg(w) functions are used. In high-

dimensional but small size data (e.g., n < d in our case), Reg(w) plays an important

role in preventing over-fitting and improving algorithm generalization performance.

For each Reg(w) function, we use two kinds of loss functions ℓ(w,X,Y) which are

least squares loss (3.10) and logistic loss (3.11).

Lasso

The intuitive way to exploit the sparse structure and to do feature selection is to

assume that some entries of the feature vector can be ignored in the process of

prediction. The optimization problem should be formulated such that the selected

features are decided by the optimal solution to the problem. This inspired us to use

ℓ1 regularization [22]:

Reg(w) = λ
d

∑
j=1
|w j|= λ∥w∥1 (5.2)

The ℓ1 regularization can enforce some entries of the weight vector w∗ to be ze-

ro. In the regularization term, λ , is a trade-off parameter to control the balance

between the loss function and the Reg(w) function. In the weight vector w, the

corresponding non-zero entries are the selected features.

Group Lasso

Simply letting the solution to decide the selected features may not fully exploit the

sparse structure of the image data. Since the feature vector is constructed by con-

catenating 24 vectors of the Gabor images, the same entry of Gabor image vectors

comes from the same 8×8 block of the original image. As a result, all the features
18

which come from the same 8×8 block in the original image should be selected or

ignored at the same time. This motivated us to use group Lasso [26]. In group Las-

so, features are divided into S disjoint sets. We define the index set of the feature

vector as Gi(1≤ i≤ S). Then, the following equation is satisfied:

G1
∪

G2
∪

...
∪

GS = {1,2, ...,d}, (5.3)

in which d is the size of the feature vector. The Reg(w) function for group Lasso is

formulated as

Reg(w) = λ
S

∑
i=1
∥wGi∥2, (5.4)

in which wGi is the weight vector for the features of i-th group. Similar to Lasso, λ

is the trade-off parameter to control the balance between the loss function and the

Reg(w) function. In the formulation, we define the index set for each group as

Gi =
23∪
j=0

{i+S∗ j},(1≤ i≤ S) (5.5)

Since each Gabor image is down-sampled to 16pixel × 40pixle image, the fea-

ture vector is partitioned into 640 groups. Hence, the group number S = 640 and

|Gi|= 24. Then, in the optimal weight vector w∗, entries of the same group will be

enforced to be either zeros (ignored) or non-zeros (selected) at the same time.

Sparse Group Lasso

Even if the group structure is enforced on the solution to the problem, we need more

flexibility with feature selection. Instead of selecting the whole group of features,

we formulated sparse group Lasso [17, 4] as a combined solution based on previous

two algorithms to attack the stage annotation problem. The Reg(w) function for

sparse group Lasso is formulated as

Reg(w) = λ1∥w∥1 +λ2

S

∑
i=1
∥wGi∥2, (5.6)

19

in which λ1 and λ2 are regularization parameters. However, it should be noted

that there are two parameters in sparse group Lasso formulation and they are used

together to control the trade-off between the loss function, the ℓ1 regularization

term and the ℓ2,1 regularization term. Index sets Gi(1 ≤ i ≤ S) for each group are

set the same as the ones in Equation (5.5). In the formulation, we can see that

sparse group Lasso is a combination of Lasso and group Lasso. Hence, it can

enforce “between group” sparsity and “within group” sparsity on the weight vector

w∗ simultaneously. This means the weight vector w∗ not only has entries which

are selected in groups but also has within-group entries which are selected sparsely.

Thus, the sparse group Lasso algorithm can provide more flexibility with feature

selection.

5.2 Annotation System

As are shown in Table 4.1 and 4.2, each image from the two databases is

annotated in the form of stage range ahead of time. What our system is going to do

is give a high-resolution annotation. Hence, in order to take the advantages of the

available information, we design the annotation as a stage-range-wise annotation

process. The algorithm flow for the system is shown in Figure 5.1.

In Figure 5.1, the stage-range-wise annotation process for the BDGP data

set is illustrated. The process for the FlyFish data set is similar. We name the prob-

lem with regard to stage-range-wise annotation as the with-range problem. This is

named in comparison to without-range problem which I will discuss in chapter 7.

As shown in Figure 5.1, the images of different stage ranges are annotated separate-

ly. Therefore, our system is constructed by a series of models which perform the

annotation on images of some certain stage ranges.

During the training phase, two kinds of classification problems (two-class

problem and multi-class problem) are considered according to the specific stage

20

Figure 5.1: Annotation algorithm flow for BDGP data set.

range that is being annotated. In Table 4.1 and 4.2, we can see that different stage

ranges have different numbers of stages. For instance, in the BDGP data set, there

are 3 stages in range 2 and 2 stages in range 3. In the case of 2 stages, the bi-

nary classification model is trained upon the training data. In the case of more

than 2 stages within a range, the multi-classification model is trained. For multi-

classification model, the one-against-rest method [1] is used to construct the model

by a series of binary-classification models. The binary-classification model is ob-

tained by solving the optimization problem which was formulated in previous sec-

tions. For each of the proposed sparse formulations, least squares loss (3.10) and

logistic loss (3.11) are used.

Before solving the optimization problem, the data matrix X is obtained by

normalizing the feature vectors to be satisfied to N (0,1) Gaussian distribution.

21

Table 5.1: λ values used in cross validation for Lasso and group Lasso.

Algorithm λ
Lasso 0.005 0.01 0.02 0.05 0.1

Group Lasso 0.005 0.01 0.02 0.05 0.1

Table 5.2: λ value pairs used in cross validation for sparse group Lasso.

Algorithm [λ1,λ2]

Sparse Group Lasso [0.01,0.02] [0.02,0.02] [0.05,0.02]
[0.01,0.05] [0.02,0.05] [0.05,0.05]

The trade-off parameter λ (or λ1 and λ2 in sparse group Lasso) is obtained by

a 3 fold cross validation [7], in which F1 is used as the criteria to evaluate the

performance of the models. The λ values that are cross validated are shown in

Table 5.1 and 5.2. When both the data matrix and trade-off parameter are ready, the

Sparse Learning with Efficient Projections (SLEP) package [15] is used to solve the

optimization problem.

The solution w to the optimization problem is the model parameter that we

store for later use in the annotation period. During the annotation period, after the

weight vector w is fetched, two kinds of classification problems are considered.

When the problem is a binary-classification problem, the stage of value the image

to be annotated is decided by

y = sgn(wT x), (5.7)

in which x is the normalized feature vector for the given image, y ∈ {1,−1} and

sgn(·) is the sign function. When the problem is a multi-classification problem, the

stage value is decided by

y = argmax
i
{wT

i x}, (1≤ i≤ R), (5.8)

in which R is the number of stages in the stage range, y ∈ {1,2, ...,R} and x is the

normalized feature vector for the given image.
22

5.3 Evaluation Setup

In order to evaluate the performance of our algorithms, the training data set

is randomly split to model training set T and model validation set V. The model

training set is used to train the model and model validation set is used to evaluate

the performance of the trained model. In our evaluation setup, 5 split ratios are

used: 0.5, 0.6, 0.7, 0.8, 0.9. The split ratio is calculated by

ratio =
|T |

|T |+ |V |
, (5.9)

in which | · | is the size of the set. For each split ratio, the model training set and the

model validation set T are randomly sampled 30 times. Hence, there are 30 (T, V)

pairs. The algorithm performance for some certain split ratio is given by averaging

through the 30 models’ performance, which gives a more stable estimation of the

algorithm performance.

5.4 Results and Analysis
Evaluation on Accuracy

The proposed 6 (3 Reg functions × 2 loss functions) algorithms are evaluated on

the model validation sets. Also, SVM is used as the reference algorithm. In our

evaluation, SVM with linear kernel from the LIBLINEAR [3] package is used. The

algorithm performance is evaluated in terms of accuracy. The accuracy is obtained

by comparing the annotated stage values with the manually annotated ones and

calculating the percentage of correctly annotated data. Table 5.3 and 5.4 show the

evaluated accuracies of the 6 proposed algorithms against 5 split ratios.

From both tables, we can see that all the proposed algorithms perform al-

most the same accuracy as SVM while our algorithms can achieve feature selection

simultaneously. For the same algorithm with different split ratios, we can see that,

with the increase of split ratio, accuracies also increase. This is in accordance with
23

Table 5.3: Algorithm accuracies evaluated on BDGP data set. glasso stands for
group Lasso. sglasso stands for sparse group Lasso. least stands for least square
loss. log stands for logistic loss. The first row is the split ratios.
XXXXXXXXRatios

Alg.
lasso(least) glasso(least) sglasso(least) lasso(log) glasso(log) sglasso(log) SVM

0.5 0.84778 0.85552 0.85531 0.85335 0.85437 0.85462 0.86265
0.6 0.85179 0.85846 0.85901 0.85601 0.85851 0.85716 0.86331
0.7 0.85818 0.86058 0.8601 0.85719 0.85991 0.85972 0.86494
0.8 0.86336 0.86494 0.86609 0.86293 0.86053 0.86317 0.86882
0.9 0.86407 0.86474 0.86879 0.8657 0.86455 0.86869 0.8683

Table 5.4: Algorithm accuracies evaluated on FlyFish data set. glasso stands for
group Lasso. sglasso stands for sparse group Lasso. least stands for least square
loss. log stands for logistic loss. The first row is the split ratios.
XXXXXXXXRatios

Alg.
lasso(least) glasso(least) sglasso(least) lasso(log) glasso(log) sglasso(log) SVM

0.5 0.94608 0.95055 0.94909 0.94708 0.9416 0.93705 0.96127
0.6 0.94682 0.95039 0.95193 0.94615 0.94547 0.93873 0.9631
0.7 0.94713 0.94995 0.95457 0.95149 0.94931 0.94674 0.96265
0.8 0.94008 0.94566 0.94836 0.94913 0.94412 0.93892 0.95954
0.9 0.94393 0.9639 0.96006 0.95661 0.95392 0.947 0.96659

our common sense that more training samples will provide more information to the

algorithm, thus increasing the algorithm performance.

Comparing the accuracies between two data sets, we can see that all the

algorithms achieve accuracy over 94% on FlyFish data set, which is much higher

than the ones (around 85%) on BDGP data set. This may be caused by the fact that

FlyFish data set has a higher image resolution than BDGP data set.

Evaluation on Sparsity

In sparse learning algorithm evaluation methods, except for accuracy, another way

of evaluation is to calculate the sparsity of the weight vector w which is obtained

by solving the optimization problem. The formula to calculate the sparsity of the

trained model is as follows:

sparsity =
|{argi wi ̸= 0}|

d
, (5.10)

in which d is the size of feature vector. The sparsity stands for the percentage of

non-zero entries in the weight vector. On the other hand, it means the percentage of
24

selected features in the feature vector. Similarly, in order to get a stable performance

evaluation on the sparsity of the algorithms, the algorithm sparsity is calculated by

averaging through all the 30 sparsity values under the same split ratio. The sparsities

for the proposed algorithms are shown in Figure 5.2 and 5.3.

Figure 5.2: Sparsity for each proposed algorithms on BDGP data set.

Figure 5.3: Sparsity for each proposed algorithms on FlyFish data set.

From the two figures, we can see that Lasso has the lowest sparsity, group

Lasso has the second lowest sparsity and sparse group Lasso sparsity is the third.

This explained the differences between sparse structures which are exploited by

the three Reg(w) functions. Since Lasso selects features freely, it has the lowest
25

sparsity. On the other hand, group Lasso selects features under the group restriction,

its sparsity is the highest. Therefore, as a combination of Lasso and group Lasso,

sparse group Lasso has the sparsity laying between. Also, comparing the sparsity

difference between different loss functions, we can see that loss function does not

have much effect on sparsity (at most 2% difference). Similarly, comparing the

sparsity between different split ratios, we can see that split ratio does not have much

effect on sparsity too.

26

Chapter 6

ANNOTATION BY ENSEMBLE

Even though sparse structures are exploited to attack the high feature dimension

challenge, the large data size challenge still remain unsolved. Perviously, the algo-

rithm performances are all evaluated on the training data set which only has about

3K data. However, the total data size (about 30K) is 10 times larger than the train-

ing data set. Hence, how to generalize our algorithm performance to annotate the

remaining data and how to evaluate the proposed algorithm based on the whole data

set are the focuses of my next step.

In this chapter, I will introduce how the previously trained models are used

to construct the ensemble model which is used as the solution in annotating the w-

hole data sets (both the BDGP and FlyFish data set). The idea of ensemble learning

is to build a prediction model by combining the strengths of a collection of simpler

base models [7]. In the following sections, first, the ensemble learning algorithm

is introduced. Then, the proposed algorithm is used to construct a new ensemble

annotation system. By using our system, all 36802 lateral images in the BDGP

data set and 33572 lateral images in the FlyFish data set are automatically annotat-

ed. Finally, since there are no ground truth for images out of the training set, the

algorithm performance is evaluated in a general way by visualizing GEMs.

6.1 Algorithm

In order to annotate the images in a stable performance, firstly, a pool of

models is constructed. Then, following the algorithm in Figure 5.1, each model

in the model pool is used to annotate the fetched image. Next, a vote histogram

is calculated by majority voting. At last, the fetch image is annotated as the stage

value with the highest votes. In the majority voting method, two ways of calculating

27

the voting number is proposed. One is increasing the votes by 1 according to the

output of each model. The other one is increasing the votes by the model accuracy

according to both the model output and the specific model being used.

Model Pool Construction

An essential factor to build a annotation system by ensemble method is to contain

various models in the model pool. In the previous chapter, we have proposed 6

sparse algorithms. Plus SVM for reference, we totally have 7 algorithms. And

for each algorithm, there are 5 split ratios; and for each split ratio, there are 30

randomly sampled model training data. As a result, 1050 (7× 5× 30) models are

obtained. All those models are used to build the model pool in our study. Figure

6.1 shows the high-level illustration of our model pool.

Figure 6.1: Model pool high-level illustration. The left side shows the split ratios
and algorithms which are used to construct the model pool. Each bin contains 30
models. Hence, there are 1050 models in the model pool.

In the left side of Figure 6.1, each row represents the models of the same

algorithm and each column represents the models which are trained by the same

split ratio on the training data. Each bin contains 30 models which are trained

under 30 different model training sets.

28

Stage Annotation by Majority Voting

In the model pool, every model in the pool can give an annotation with the informa-

tion it learned from the training data. Then, majority voting is used to annotate the

stage value for each image. Majority voting considers the model pool as a voting

committee. It counts the annotation (vote) of each model (committee member) for

the fetched image. Then the image is annotated as the stage value with the highest

votes. Define M as the model pool. Then ∀ f ∈M , f : Rd → Z. The algorithm is

shown in algorithm 1.

Algorithm 1 Stage Annotation Algorithm by Majority Voting
Require: Feature vector x ∈ Rd ∧M ̸= /0

function STAGE-ANNOTATION-ENSEMBLE(x)
Set voting vector v = 0 ∈ Rs, in which s is the total number of stage.
for all model f ∈M do

y = f (x)
v[y]← v[y]+1

end for
Find index y∗ with the highest votes in v.
Return y∗

end function

In algorithm 1, the vote v[y] is increase by 1 when a model annotates the

image as in stage y. However, this does not take the creditability of each mod-

el into account. For those models which have a high accuracies, their annotation

results should be given more credits than those with lower accuracies. Given this

assumption, we proposed an improved version of majority voting which takes the

accuracy of each model into the calculation of the voting table. The updating func-

tion v[y]← v[y]+1 in algorithm 1 is modified as v[y]← v[y]+Acc f , in which Acc f

is the accuracy of each model. The accuracy is calculated in the evaluation part of

chapter 5. The improved version of ensemble algorithm is shown in algorithm 2.

29

Algorithm 2 Stage Annotation Algorithm by Majority Voting with Accuracy
Require: Feature vector x ∈ Rd ∧M ̸= /0

function STAGE-ANNOTATION-ENSEMBLE(x)
Set voting vector v = 0 ∈ Rs, in which s is the total number of stage.
for all model f ∈M do

y = f (x)
v[y]← v[y]+Acc f

end for
Find index y∗ with the highest votes in v.
Return y∗

end function

6.2 Ensemble Annotation System

Since all the models in model pool follows the same annotation process

as Figure 5.1, our ensemble annotation system is built upon the previous system.

In this case, system in Figure 5.1 is considered as a sub-system to this ensemble

system. The overview of our ensemble annotation system is shown in Figure 6.2.

Figure 6.2: Ensemble annotation system overview. The upper component is con-
sisted of a set of stage annotation algorithms. The lower component uses the voting
method to combine the results of the annotation algorithms.

6.3 Results and Analysis

With the ensemble annotation system, we annotated all the images in the

BDGP and FlyFish data set. The GEMs of each stage is generated by overlapping
30

Figure 6.3: Generated BDGP GEMs overlapped with Atlas.

the binary expression images of the same stage value. Then we overlay the GEMs

with the stage overview images by Hartenstein [6]. The results for the BDGP data

set are shown in Figure 6.3. For the results of the FlyFish data set, please refer to

APPENDIX A.

From Figure 6.3, we can see that the GEMs match perfectly with the atlas

of Drosophila development. The expression patterns (brown part) develop morpho-

logically all most the same as the ones by Hartenstein. From this observation, we

believe that our automatic annotation system can generate very reasonable results

in general.

31

Chapter 7

ANNOTATION AS DECIMAL STAGE

In the previous two chapters, sparse structures are exploited in our algorithms to

attack the large data size challenge and an ensemble method is used to attack the

high feature dimension challenge. Up to now, the system can annotate Drosophila

gene expression images not only efficiently with linear sparse learning models but

also accurately with the ensemble method. The system has successfully applied

machine learning techniques to handle discrete stage annotation problem. Howev-

er, the annotated stage value by the system is still coarse-grained (discrete stage

value). Therefore, how to enhance the ability of the system to annotate the images

as decimal stage values remains an application specific challenge. The automated

decimal stage annotation system will be an essential tool for biologists to explore

the gene interactions in a finer resolution.

In this chapter, I will mainly introduce a fine-grained stage annotation algo-

rithm that can annotate expression images as decimal stage values. The algorithm

is based on the key observation that the Drosophila gene expression development

process is continuous. First, under the observation, without-range stage annotation

problem is posed. Similar sparse algorithm and ensemble method in previous chap-

ters are applied to this problem. Then the voting table of without-range problem is

constructed to give a whole-stage voting distribution which is used to calculate the

decimal stage value. The idea of calculating the decimal stage value is giving a dis-

placement to the annotated discrete stage value. The magnitude of the displacement

is based on the votes of the voting distribution. With the decimal stage annotation

algorithm, the annotation system has a new enhancement based on the system in

chapter 6. Next, several applications of the decimal stage value are posed. Those

32

are just limited to our imagination from the point of computer science. The real

biological extension is still waiting for biologists to explore. Finally, I will show

some of the results generated by our system and give some analysis to them.

7.1 Expression Pattern Transition as a Continuous Process

Although the annotation by ensemble algorithm can annotate all the BDGP

and FlyFish gene expression images as discrete stage values with precise accuracy.

It is still coarse-grained to express the embryo development process in the term of

stages (eg., stage 3 or stage 4). From Figure 4.2 and 4.3, we can see that the tran-

sition of gene expression in GEMs is smooth. The patterns are changed from one

stage to the next in a continuous manner. Based on this key observation, we assume

that the binary gene expression pattern images are all subjected to a continuous tran-

sition process. Hence, moreover, we assume the original images which are used to

generate binary expression images are also subjected to the same process. Even

though it is intuitive to think about the embryogenesis as a continuous process, it

is interesting to notice that genes which control the embryo development still func-

tion continuously on different part of the embryo. Based on this assumption, our

decimal stage annotation algorithm is constructed and several exciting applications

of the decimal stage value are illustrated in the follow sections.

Given the previous assumption, it will be more useful and reasonable to

annotate the expression images as some stage value that is between two integer

stage values. Since it is more likely that some of them are in the early state of that

stage and the rest of them are in the late state, we used decimal stage value to model

the extent of early state and the late state. Also, this is in correspondence with the

requirement that the annotated stage values should be decimal values.

However, in the with-range problem, the annotation results fall in the values

that are restricted by the stage ranges. For the images which are in the early state

33

of the first stage or in the late state of the last stage of some stage range, the votes

for previous stage of the first stage or the votes for the next stage of the last stage

cannot be obtained. For example, if a voting table is obtained for an BDGP image

of range 2 (stage 4 - 6) by using the ensemble method in chapter 6. The votes will

be limited in the stage 4 - 6. The votes for stage 3 or stage 7 are zeros. Hence, if

an image falls in the boundary (early stage 4 or late stage 6) of range 2, it is hard to

infer how early or late that image is by using the nearby votes of that stage.

Therefore, in order to annotate the image as decimal stage values and let the

system to be tolerant to images which fall in in the boundary of the stage ranges (in

the early period of the first stage of that range or in the late period of the last stage

of that range), we defined without-range stage annotation problem. The definition

and our solution are shown in the next section.

7.2 Without-range Problem

Even though the stage ranges are provided in the original data sets, it is im-

portant to define a kind of problem that is lack of stage range information and find

out a way of generalizing our system to handle the problem. For the stage annota-

tion problem in which stage range information is not provided as a prior knowledge,

we name it as without-range stage annotation problem which is short for without-

range problem. Without range problem assumes the stage range information of

each image is not given ahead of time. For each image, the system is supposed to

generate the annotation only with the given feature vector.

Following the idea in chapter 5 and chapter 6, we designed a new system

component to fulfill the without-range annotation task. The component consists

of a set of algorithms and an ensemble method. The algorithms exploit the sparse

structure to generate annotation in the case of lacking stage range information. The

algorithm flow is shown in the following figure. The ensemble method is the same

34

as the one in chapter 6.Since stage range information is not provided in without-

range problem, the annotation algorithm is slightly different from the one in with-

range problem (Figure 5.1). The modified algorithm flow is shown in Figure 7.1.

Figure 7.1: Without-range stage annotation algorithm flow.

In Figure 7.1, we can see that the algorithm fetches the image and then

annotate it with the trained model. The model can annotate images as any discrete

stage value of the data set. During the model training phase, we follow the same

setup in chapter 5. The same training data set is used. However, the difference

is that there are only one model for the same split with some certain split ratio.

In the with-range problem, the number of models is equal to the number of stage

ranges of the given data set. For algorithm performance evaluation, the same model

training sets and model validation sets as chapter 7 are used. The detailed results

and analysis are shown in the next Results and Analysis section. We applied the

same ensemble method which is shown in chapter 6 to annotate all the data in the

two data sets. What is different is that the models used in ensemble method are the

without-range models which are used in the algorithm flow in Figure 7.1.

35

7.3 Algorithm

From the voting distribution obtained from without-range problem, we no-

ticed that, in most of the cases, the votes for stages which are beside the stage of the

highest votes (annotated stage) are the second and third highest. Hence, the votes

indicate the trend of that image to be in early stage or late stage. The votes ratios

of the highest and the second highest votes between different images of the same

stage indicate the relative order of those images. This motivated us to designed the

decimal stage annotation algorithm.

Algorithm 3 Decimal Stage Annotation Algorithm
Require: Voting vector V ∈ RS

function DECIMAL-STAGE-ANNOTATION(x)
y = Stage-Annotation-Ensemble(x)
if 2≤ y≤ S−1 then

if V[y−1]> V[y+1] then
status = -1
vote = V[y−1]

else
status = 1
vote = V[y+1]

end if
else if y == 1 then

status = 1
vote = V[2]

else if y == S then
status = -1
vote = V[S−1]

end if
Return y∗ = y+0.49∗ status∗ vote

vote+V[y]
end function

We define y as the annotated integer stage value obtained by solving with-

range problem; and V as the voting vector obtained from without-range problem,

in which V ∈ RS and S is the number of stages in the given data set.

36

In algorithm 3, status stands for the status of the image with regard to the

annotated stage value. 1 stands for that the image is in the early status and -1 stands

for that the image is in the late status. vote is the value of second highest votes. The

vote ratio vote/(vote+V[y]) is used to describe how early or late the image is with

regard to the annotated stage value y. The ratio increases with the increasing of the

vote. Hence, the higher the ratio, the later or earlier the stage is. Here coefficient

0.49 is used to scale the ratio to the range [0,0.49], so that the late stage value of

stage y will not be overlapped with the early status value of stage y+1 or with the

late status value of stage y−1. Then y∗ is the annotated decimal stage value.

7.4 Decimal Stage Annotation System

Figure 7.2: Final version of stage annotation system overview. Each module is an
algorithm that are posed in previous chapters.

With decimal stage annotation algorithm, the final version of our system is

constructed as shown in Figure 7.2. Each module is consisted of one or several

proposed algorithms. The left side handles the with-range problem and the right

side handles the without-range problem. Both subsystems share the same ensemble
37

algorithm. The outputs of them are used as the inputs to decimal stage annotation

algorithm.

7.5 Applications of Decimal Stage

Decimal stage value provides a further refined resolution to categorize the

gene expression images. It broadens our imagination of analytically comparing

of those expression images. In the following, I will mainly introduce three main

applications of the decimal stage value. These are just limited to our understanding

to the problem of stage annotation. The wider range of its applications are waiting

biologists to explore.

Image Sorting

Previously, even though the ensemble algorithm can give an annotation to each im-

ages, the annotated stage values are just discrete values. As a result, there are still

a lot of images being annotated to the same stages. Using the results obtained by

solving the with-range problem, we count the numbers of images in each stages

for the BDGP and FlyFish data set. The results are shown in the following tables.

Compared to Table 4.1 and 4.2, they are finer-grained statistics of image stage dis-

tribution.

Table 7.1: Number of images in each stage for the BDGP data set. All the 36802
images are annotated by solving the with-range problem.

Stage 3 4 5 6 7
Image # 4204 2544 3373 1424 1683

Stage 8 9 10 11 12
Image # 1980 2588 1177 5673 3571

Stage 13 14 15 16 17
Image # 2319 1604 1211 1780 1671

In Table 7.1 and 7.2, we can see that there are thousands of images in each

stages. Hence, even though we can annotate the images with high accuracy, it is still

38

Table 7.2: Number of images in each stage for the FlyFish data set. All the 33572
images are annotated by solving the with-range problem.

Stage 3 4 5 6
Image # 9759 4927 8248 3076

Stage 7 8 9 10
Image # 1279 2415 2865 1003

hard to compare so many images of the same stage. However, with decimal stage

value, we get an order for each image. Moreover, we can use this order information

(decimal stage value) to sort all images in an increasing order. With the sorted

images, each image can be easily compared to the others under any give ranges.

For instance, each image can be compared to the most nearest image or the nearest

10 images. For the decimal value, it should be noted that only the relation between

two values matters and the exact value do not have any meanings. For instance,

we have 4 images A, B, C and D with decimal values as 5.0, 5.5, 6.0 and 6.7. We

can say that image B is in later stage than image A. So as image C and D. But it is

incorrect to say that, D developed more against C than B against A.

Sub-stage Annotation

In the original data sets, the stage range gives a rough categorization to the devel-

opmental process of each embryo. The annotated discrete stage value gives a finer

categorization. With decimal stage value, we further refined the stage categoriza-

tion into sub-stage. We named the process of this further refinement as sub-stage

annotation which gives a high-resolved stage categorization. The resolution gran-

ularity can be adjusted by sub-stage number. Define S as the number of stages for

each data set, and n as the number of sub-stages. The sub-stage is annotated in the

following procedures:

1. Calculate the decimal stage value for all the image in the data sets.

2. For some given stage y(1 ≤ y ≤ S), fetch all the images within its early
39

and late state.

3. Sort all the fetched images by their decimal stage values in ascending

order.

4. For the given sub-stage number n(n ≤ 1), evenly divide the sorted early

and late state images into n disjoint groups.

5. For each group i(1 ≤ i ≤ n), the annotated stage is calculated by the

following formula.

yi =

 (y+ i−1−n
2n ,y+ i−n

2n), i is in early state

(y+ i−1
2n ,y+ i

2n), i is in late state
(7.1)

In equation 7.1, we can see that the sub-stage yi is annotated as an interval.

The concept of interval is more precise to express our idea that the embryogenesis

is a continuous process and it is more reasonable to annotate the development of

each embryo to some certain range instead of some specific value.

Figure 7.3: Stage 4 - 6 BDGP GEMs generated by using only the stage range infor-
mation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

With the annotated sub-stage, we overlapped the binary gene expression

images of the same sub-stage by weighting the number of different genes. The
40

GEMs are shown as follows. Since there are a lot of generated GEMs. Only GEMs

for the BDGP data set is shown here. For the ones of the FlyFish data set, please

refer to APPENDIX B.

Figure 7.4: Stage 7 - 12 BDGP GEMs generated by using only the stage range in-
formation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

Figure 7.3, 7.4 and 7.5 show the GEMs generated by setting sub-stage num-

ber to 1. Figure 7.6 shows the GEMs generated by setting sub-stage number to 3.

In Figure 7.6, image number of the right column is not shown, because the images

are evenly grouped from sorted late or early state images. Comparing the GEMs of

different stage resolution, we can see that the continuous gene development process

is revealed in more fine-grained detail using the results of sub-stage annotation. The

41

Figure 7.5: Stage 13 - 16 BDGP GEMs generated by using only the stage range in-
formation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

transition from one stage to the next turns out to be more smooth then the GEMs

generated by using stage values.

Improving Similar Expression Pattern Retrieval

The FlyExpress [11] system previously uses the similarity measurement [10] of the

two binary expression images to do the image retrieving. The images are returned

by the system in the order from highest similarity to the lowest. The similarity

measurement SQD is calculated by the following equation:

SQD =
|Q

∩
D|

|Q
∪

D|
, (7.2)

where |Q
∩

D| is the size of the intersection of expression between image Q and D

and |Q
∪

D| is the size of the union between image Q and D [10]. However, this

way of measurement can not capture the developmental similarities. For example,

two images have high SQD, but they are actually in different stages or even different

42

Figure 7.6: BDGP GEMs generated using 3 sub-stages. The left column shows
GEMs overlapped by stages. The middle column shows GEMs overlapped by 1
sub-stage. The right column shows GEMs overlapped by 3 sub-stages. Here stage
7 and 8 are used as illustrative examples.

stage ranges. So it is necessary to figure out a way of restricting the search domain

within the same stage or sub-stage.

Here comes another application of our sub-stage annotation. With the help

of annotated stage or sub-stage information, we can further refine the retrieving

within some certain stage or sub-stage. Therefore, the images which are not in the

same stage or sub-stage will not be retrieved.

7.6 Results and Analysis

We evaluated the performance of sparse learning algorithms in solving the

without-range problem. Then the performance under the with-range and without-

range problem is compared with each other.

43

With-range Problem vs. Without-range Problem

In order to evaluate how do the 6 sparse algorithms perform on the without-range

problem, we use the same setup as in chapter 5. The obtained accuracies are shown

in Figure 7.3 and 7.4.

Table 7.3: Without-range algorithm accuracies evaluated on the BDGP data set.
glasso stands for group Lasso. sglasso stands for sparse group Lasso. least stands
for least square loss. log stands for logistic loss. The first row is the split ratios.
XXXXXXXXRatios

Alg.
lasso(least) glasso(least) sglasso(least) lasso(log) glasso(log) sglasso(log) SVM

0.5 0.73639 0.74724 0.75295 0.7834 0.78609 0.78363 0.79122
0.6 0.74891 0.7508 0.76328 0.78932 0.78927 0.78814 0.79105
0.7 0.75853 0.76222 0.77019 0.79273 0.79401 0.79177 0.7889
0.8 0.77333 0.77775 0.77947 0.79549 0.79683 0.79492 0.78795
0.9 0.78189 0.77948 0.77697 0.79788 0.79875 0.79817 0.7707

Table 7.4: Without-range algorithm accuracies evaluated on the FlyFish data set.
glasso stands for group Lasso. sglasso stands for sparse group Lasso. least stands
for least square loss. log stands for logistic loss. The first row is the split ratios.
XXXXXXXXRatios

Alg.
lasso(least) glasso(least) sglasso(least) lasso(log) glasso(log) sglasso(log) SVM

0.5 0.8569 0.87591 0.87683 0.90162 0.90488 0.89532 0.91771
0.6 0.86931 0.87804 0.88469 0.90966 0.90916 0.90637 0.9176
0.7 0.87924 0.8821 0.88896 0.9086 0.91365 0.9065 0.9187
0.8 0.8887 0.89127 0.89814 0.91302 0.91803 0.9133 0.92132
0.9 0.89726 0.88784 0.89384 0.91039 0.91981 0.91467 0.91781

Comparing the accuracies of the same data set between different problems,

we can see that, in the BDGP data set, the algorithms have a better performance

in with-range problem (about 85%) than in without-range problem (about 77%).

Similar results can be observed in the FlyFish data set. This is in consistent with

our intuition that, the more information (stage-range information) provided, the

better the algorithms perform. However, it should be noted that, even through the

problem is harder in the case of without-range, the algorithms just perform at most

6% lower than SVM while achieving feature selection.

44

Independent Evaluation

Since, for the images which are not in the training set, we do not have stage infor-

mation. In order to evaluate the performance of our annotation system, we setup

an independent evaluation experiment in which 140 stage 4 - 17 BDGP images are

randomly selected from the data set. During the selection, 10 images are selected

for each stage. Within each stage, 5 images are in early state and late state sep-

arately. Then we ask a domain expert to annotate these images in the term of 1

sub-stage (e.g. 7 early as 6.5 ∼ 7, 7 late as 7 ∼ 7.5). The results are considered

as the ground truth in independent evaluation. Among the 140 images, the ones

which are improper to manually annotate are eliminated first. The improper images

includes images that are mis-labeled as lateral view image or the images that are

out of focus. For the proper images, the following three criteria are used in our

evaluation.

1. Sub-stage Accuracy. The annotation result is considered as correct if the

sub-stage annotation result is the same as the ground truth. For example, a manually

annotated ”stage 6.5 ∼ 7” image is considered accurate only if it is annotated as

”stage 6.5∼ 7” by the system.

2. Stage Accuracy. The annotation result is considered as correct if the

stage annotation result is in either early or late state of stage in the ground truth.

For example, a manually annotated ”stage 6.5∼ 7” image is considered accurate if

it is annotated as ”stage 6.5∼ 7” or ”stage 7∼ 7.5” by the system.

3. Plus-Minus-Half Accuracy. The images that are annotated at most ”half

stage away” from the manually annotated side-stage are considered accurate. For

example, a manually annotated ”stage 6.5∼ 7” image is considered accurate if it is

annotated as ”stage 6∼ 6.5”, ”stage 6.5∼ 7” or ”stage 7∼ 7.5” by the system.

45

We evaluated the system performance on both with-range and without-range

problem. The results are shown in table 7.5 and 7.6.

Table 7.5: Independent performance evaluation results of the annotation system
(stage-range information is used).

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 76.07% 86.32% 94.87%

Table 7.6: Independent performance evaluation results of the annotation system
(stage-range information is not used).

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 75.21% 81.20% 93.16%

From the tables, we can see that, for the system performance in with-range

problem, 76.7% accuracy is achieved in sub-stage accuracy while 86.32% accuracy

is achieved in stage accuracy. It should be noted that, during the training phase,

only the stage information is provided to the algorithms. The system generalized

the ability to do sub-stage annotation only in a reduction of 10% accuracy. Also the

achieved 86.02% accuracy is almost the same as the accuracies evaluated in chapter

5. This indicates that our system can potentially annotate the unseen images in a

high accuracy. This, on the other hand, shows the high accuracy of our ensemble

system in chapter 6. Last but not least, our system achieves an amazing accuracies

of 94.87% in plus-minus-half accuracy. The means that even if our system fails to

annotate the image to the correct sub-stage, it is quite likely that the annotation is

very close to the ground truth.

For the evaluation on the without-range problem, we obtained the same re-

sults as in with-range problem. This again indicates that our system has a very well

generalization performance. However, what is interesting is that, even if range in-

formation is not provided, the drops of accuracies are very small. This shows that

our system has robust performance in the case where stage range information is not

available.
46

We also evaluated the system performance when difference algorithms are

used in ensemble algorithm. In the evaluation, two setups are evaluated. The first

one is only using SVM models in the ensemble algorithm while the second one

is using the 6 sparse algorithms. The results are shown in table 7.7, 7.8, 7.9 and

7.10. In the results, both with-range performance and without-range performance

are listed.

Table 7.7: Independent performance evaluation results of our annotation system
(stage-range information is used). Only SVM models are used in ensemble method.

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 54.70% 80.34% 92.31%

Table 7.8: Independent performance evaluation results of our annotation system
(stage-range information is not used). Only SVM models are used in ensemble
method.

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 50.43% 76.07% 91.45%

Table 7.9: Independent performance evaluation results of our annotation system
(stage-range information is used). 6 sparse models are used in ensemble method.

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 67.52% 85.47% 94.87%

Table 7.10: Independent performance evaluation results of our annotation sys-
tem (stage-range information is not used). 6 sparse models are used in ensemble
method.

Total Images Proper Images Sub-stage Accuracy Stage Accuracy Plus-Minus-Half Accuracy
140 117 65.81% 82.05% 94.02%

From the evaluated results, we can see that most accuracies in both of the

two setups are lower than the ones obtained by using all the models. Only the

accuracies where the 6 sparse models are used have similar values to the results

obtained by using all the models. This, on the other hand, shows the reasonableness

of our system which uses all the models in the ensemble algorithm.

47

Chapter 8

CONCLUSIONS

In this thesis, a stage annotation system is constructed to solve the stage annotation

problem by transferring the domain knowledge in biology into a machine learning

framework. During the construction of the automatic stage annotation system, d-

ifferent algorithms are used to annotate the Drosophila gene expression images in

a granularity from coarse to fine. Using the sparse learning algorithms, the system

succeeds to annotate the high dimensional data with high accuracy and efficiency.

Using the ensemble algorithm, the system annotates all the images in two data sets

to attack the large data size challenge. An independent evaluation shows that the

system can still achieve a high accuracy when unseen images are provided. Using

the decimal stage annotation algorithm, the system fulfills the task to annotate the

images as decimal values. With annotated decimal stages, we illustrate a series of

interesting applications such as image sorting, sub-stage annotation and improving

similar expression pattern retrieval. The final version of the stage annotation system

is constructed from bottom to up by combining the three algorithms as three system

components.

In the part of algorithm results analysis, different evaluation methods are

used. In evaluation of the sparse learning algorithms, accuracy and sparsity are

used. In the analysis of the ensemble algorithm, a way of visual evaluation is posed

by showing GEMs. On the other hand, due to the lack of ground truth of the whole

data set, independent evaluation is used to analysis the performance of the proposed

ensemble annotation algorithm and decimal annotation algorithm.

As a summary, sparse learning algorithm is a efficient way to attack large

data size challenge, ensemble algorithm can provide robust performance in pre-

48

dicting large amount of unseen data with just a small percentage of training data

(about 10% in our case) and voting table is a useful statistical result to derive dec-

imal prediction value. Moreover, the process of decimal stage annotation can be

generalized. In the decimal stage annotation algorithm, we solve the with-range

and without-range problem separately. The output of the with-range problem gives

a tight stage bound in annotation results while the one of without-range problem

gives a loose bound in annotation results. However, the loose bound in the without-

range annotation problem may results in some votes to be far from the actual stage

range. For example, if we are annotating the image of stages 4 to 6, some without-

range votes may in stage 10. These votes will not be used in the calculation of

decimal stage. Hence, when annotating the image of stages 4 to 6, we just need to

train another model that can annotate the image to stage 3 to 7 instead of stage 3

to 17. By doing this, the system will must provide a more accurate estimation on

decimal stage value. Also, the application domain of the proposed system can be

extended to other decimal value prediction problem. Only if the data are subject to

some continuous transition process, the system framework can be applied to give a

decimal value prediction with only a few training samples.

Future works can be divided into three parts. The first part is about system

robustness and accurateness which include designing an aforementioned general-

ized decimal stage annotation algorithm and improving the accuracy of basic learn-

ing algorithm. The second part is about system extensibility which includes extend-

ing our system to annotate image of other views such as dorsal view and extending

our system to be able to process unstandardized or our-of-focus images. The third

part may be system applications which include exploring more applications of the

decimal stage value or extending our system framework to the prediction of other

continuous signals.

49

REFERENCES

[1] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
1st ed. 2006. corr. 2nd printing edition, October 2006.

[2] Richard O. Duda, David G. Stork, and Peter E. Hart. Pattern classification.
John Wiley, 2 edition, November 2000.

[3] Rong E. Fan, Kai W. Chang, Cho J. Hsieh, Xiang R. Wang, and Chih J. Lin.
LIBLINEAR: A Library for Large Linear Classification. J. Mach. Learn. Res.,
9:1871–1874, June 2008.

[4] J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a
sparse group lasso. Arxiv preprint arXiv:10010736, 2010.

[5] DAUGMAN J. G. Complete discrete 2-d gabor transform by neural networks
for image analysis and compression. IEEE Trans. Acoust. Speech & Signal
Process, 36:1169–1179, 1988.

[6] Volker Hartenstein. Atlas of Drosophila Development. Cold Spring Harbor,
NY: Cold Spring Harbor Laboratory Press, 1993.

[7] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction. Springer, corrected
edition, August 2003.

[8] Shuiwang Ji, Ying-Xin Li, Zhi-Hua Zhou, and Sudhir Kumar. A bag-of-words
approach for drosophila gene expression pattern annotation. BMC Bioinfor-
matics, 10(119), April 2008=9.

[9] Shuiwang Ji, Lei Tang, Shipeng Yu, and Jieping Ye. Extracting shared sub-
space for multi-label classification. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’08,
pages 381–389, New York, NY, USA, 2008. ACM.

[10] Charlotte E. Konikoff, Timothy L. Karr, Michael McCutchan, Stuart J.
Newfeld, and Sudhir Kumar. Comparison of embryonic expression within
multigene families using the flyexpress discovery platform reveals more spa-
tial than temporal divergence. Developmental dynamics : an official publica-
tion of the American Association of Anatomists, September 2011.

50

[11] Sudhir Kumar. Fly express database. http://www.flyexpress.net.

[12] Sudhir Kumar, Karthik Jayaraman, Sethuraman Panchanathan, Rajalakshmi
Gurunathan, Ana Marti-Subirana, and Stuart J. Newfeld. BEST: A Novel
Computational Approach for Comparing Gene Expression Patterns From Ear-
ly Stages of Drosophila melanogaster Development. Genetics, 162(4):2037–
2047, December 2002.

[13] Eric Lécuyer, Hideki Yoshida, Neela Parthasarathy, Christina Alm, Tomas
Babak, Tanja Cerovina, Timothy R. Hughes, Pavel Tomancak, and Henry M.
Krause. Global analysis of mRNA localization reveals a prominent role in
organizing cellular architecture and function. Cell, 131(1):174–187, October
2007.

[14] Michael Levine and Eric H. Davidson. Gene regulatory networks for develop-
ment. Proceedings of the National Academy of Sciences of the United States
of America, 102(14):4936–4942, April 2005.

[15] Jun Liu, Shuiwang Ji, and Jieping Ye. SLEP: Sparse Learning with Efficient
Projections., 2009.

[16] Jun Liu and Jieping Ye. Fast overlapping group lasso. arXiv:1009.0306v1,
2010.

[17] Jun Liu and Jieping Ye. Moreau-yosida regularization for grouped tree struc-
ture learning. Advances in Neural Information Processing Systems, 23:1459–
1467, 2010.

[18] Jun Liu, Lei Yuan, and Jieping Ye. An efficient algorithm for a class of fused
lasso problems. ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2010.

[19] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60:91–110, 2004.
10.1023/B:VISI.0000029664.99615.94.

[20] E. Reeve. Encyclopedia of Genetics. Taylor & Francis, 2001.

[21] P. Simpson. Evolution of development in closely related species of flies and
worms. Nat Rev Genet, 3(12):907–917, December 2002.

51

[22] Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267–288,
1996.

[23] Pavel Tomancak, Amy Beaton, Richard Weiszmann, Elaine Kwan,
ShengQiang Shu, Suzanna Lewis, Stephen Richards, Michael Ashburner,
Volker Hartenstein, Susan Celniker, and Gerald Rubin. Systematic determina-
tion of patterns of gene expression during Drosophila embryogenesis. Genome
Biology, 3(12), 2002.

[24] K. M. Weiss. The phenogenetic logic of life. Nat. Rev. Genet., 6(1):36–45,
2005.

[25] Jieping Ye, Jianhui Chen, Ravi Janardan, and Sudhir Kumar. Developmental
Stage Annotation of Drosophila Gene Expression Pattern Images via an Entire
Solution Path for LDA. ACM transactions on knowledge discovery from data,
2(1), March 2008.

[26] Ming Yuan and Yi Lin. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 68(1):49–67, February 2006.

52

APPENDIX A

FLYFISH GEMS OVERLAID WITH ATLAS

53

Since, for the FlyFish data set, the developmental stage starts from stage 3

to stage 10, and stages overview in Atlas start from stage 5, there are only GEMs of

stage 5 through stage 10 are shown here.

Figure A.1: Generated FlyFish GEMs overlapped with Atlas.

54

APPENDIX B

SUB-STAGE GEMS FOR FLYFISH

55

Figure B.1: Stage 4 - 5 FlyFish GEMs generated by using only the stage range in-
formation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

Figure B.2: Stage 6 - 7 FlyFish GEMs generated by using only the stage range in-
formation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

Figure B.3: Stage 8 - 9 FlyFish GEMs generated by using only the stage range in-
formation (left column), using the predicted stage information (middle column) and
using the sub-stage information (right column, sub-stage is 1). The total numbers
of images used for creating each individual GEM are shown in blue rectangles.

56

Figure B.4: FlyFish GEMs generated using 3 sub-stages. The left column shows
GEMs overlapped by stages. The middle column shows GEMs overlapped by 1
sub-stage. The right column shows GEMs overlapped by 3 sub-stages. Here stage
6 and 7 are used as illustrative example.

57

