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ABSTRACT

This thesis addresses certain quantum aspects of the event horizon using the

AdS/CFT correspondence. This correspondence is profound since it describes a

quantum theory of gravity in d+ 1 dimensions from the perspective of a dual quan-

tum field theory living in d dimensions. We begin by considering Rindler space

which is the part of Minkowski space seen by an observer with a constant proper

acceleration. Because it has an event horizon, Rindler space has been studied in

great detail within the context of quantum field theory. However, a quantum gravita-

tional treatment of Rindler space is handicapped by the fact that quantum gravity in

flat space is poorly understood. By contrast, quantum gravity in anti-de Sitter space

(AdS), is relatively well understood via the AdS/CFT correspondence.

Taking this cue, we construct Rindler coordinates for AdS (RAdS) space in d + 1

spacetime dimensions. In three spacetime dimensions, we find novel one-parameter

families of stationary vacua labeled by a rotation parameter β. The interesting

thing about these rotating Rindler-AdS spaces is that they possess an observer-

dependent ergoregion in addition to having an event horizon.

Turning next to the application of AdS/CFT correspondence to Rindler-AdS space,

we posit that the two Rindler wedges in AdSd+1 are dual to an entangled conformal

field theory (CFT) that lives on two boundaries with geometry R×Hd−1. Specializ-

ing to three spacetime dimensions, we derive the thermodynamics of Rindler-AdS

space using the boundary CFT. We then probe the causal structure of the space-

time by sending in a time-like source and observe that the CFT “knows" when the

source has fallen past the Rindler horizon. We conclude by proposing an alternate

foliation of Rindler-AdS which is dual to a CFT living in de Sitter space.

Towards the end of this thesis, we consider the concept of weak measurements in

quantum mechanics, wherein the measuring instrument is weakly coupled to the
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system being measured. We consider such measurements in the context of two

examples, viz. the decay of an excited atom, and the tunneling of a particle trapped

in a well, and discuss the salient features of such measurements.
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CHAPTER 1

INTRODUCTION

It has been thirty seven years since Hawking, in his historic paper [1], proved that

black holes are not really black because they emit particles. This discovery, known

as Hawking radiation, had a quantum origin and was the first succesful “partial"

union between the two leading physical theories of our universe, viz. the gen-

eral theory of relativity and quantum field theory. Using semi-classical techniques,

Hawking confirmed Bekenstein’s previous results [2, 3, 4] that black holes have en-

tropy, and he also showed that black holes radiate with a pure black body spectrum

dependent upon their charge, mass, and angular momentum. The entropy of the

black hole is related to the area of its event horizon as

SBH =
A

4G
. (1.1)

The fact that black holes radiate and that the spectrum is purely thermal immedi-

ately leads to a serious paradox. Imagine forming a hypothetical black hole in the

following two ways:

1) By radially collapsing a large number of cats.

2) By radially collapsing a large number of mice.

We of course can adjust the numbers such that the black holes formed have the

same mass i.e. Mcats = Mmice. If left to evolve, both black holes would evaporate

away via Hawking radiation having an identical thermal spectrum. This is along

expected lines since black holes have no “hair". In other words, black holes are

uniquely characterized by their total mass, charge, and angular momentum and not

by the microscopic details of the infalling matter which make the hole. However, if

all that is left after evaporation is just thermal radiation, then what happened to the

initial information which contained cats and mice? Stated technically, a pure state

of cats (or mice) has evolved to a mixed thermal state [5]. Such an evolution is
1



manifestly non-unitary since no unitary operator in quantum mechanics can evolve

a pure state into a mixed state. Thus, the upshot of Hawking’s result is that the exis-

tence of black holes causes loss of information, leading to a breakdown of quantum

mechanics. For more than two decades, physicists have tried to understand the

implications of such a result. If information is indeed lost, then the universe would

be a chaotic and noisy place without any coherence or conservation of energy.

This would spell doom for all existing theories based on quantum mechanics, and

therefore is extremely unsatisfactory from the viewpoint of physics. On the other

hand, if information is not destroyed by the black holes, then how do we retrieve it?

The current general consensus is that a complete quantum gravitational treatment,

starting from the formation of a black hole until its final moments of evaporation,

will solve the information loss paradox. Currently, string theory is the most promis-

ing candidate for a quantum theory of gravity that has been used to calculate the

entropy of certain class of extremal black holes [6]. A glance at the expression

(1.1) indicates that the entropy in any gravitational theory should scale as the area

rather than the volume of space. This fact highly suggests that a true theory of

quantum gravity should have holography as one of its fundamental ingredients. In

1997, Maldacena [7] conjectured a duality between a certain type IIB string theory

in anti de Sitter space (AdS) in 4+1 dimensions and a N = 4 super Yang-Mills

conformal field theory (CFT) living on its boundary. This AdS/CFT correspondence

is remarkable as it is holographic in nature, i.e. we can study quantum gravity in

d+1 dimensions using quantum field theory without gravity in d dimensions. Black

holes have been modeled using the AdS/CFT correspondence previously, where

the black hole in the bulk appears as a thermal state in the boundary CFT. The cor-

respondence makes the Hawking process manifestly unitary, since the dual CFT

is by definition unitary. However, to better understand the information loss puzzle,

we need to have a quantum gravitational description for the process of black hole
2



formation itself. A conceptually related toy model is to study the infalling matter into

the black hole, from the dual CFT perspective. This requires sending probes past

the event horizon of AdS-Schwarzschild black holes, and to date such calculations

have not been easy. A major reason is that the singularity inside the black hole

renders such calculations intractable and conceptually difficult to set up.

In this thesis, we aim to circumvent this roadblock by considering quantum gravity

in Rindler space, which is the spacetime seen by an observer with constant proper

acceleration. We currently understand quantum gravity in anti de Sitter (AdS) space

via the AdS/CFT correspondence. Hence in order to describe quantum gravity in

Rindler space, we consider a constantly accelerating observer not in flat space, but

in AdS space. We refer to such a space as Rindler-AdS space. Rindler-AdS space

has a Rindler horizon and does not have a singularity. The physical processes in it

can be given a quantum gravitational description via the AdS/CFT correpondence.

This provides us with a concrete and tractable handle to probe the event horizon.

The organisation of this thesis is as follows. In chapter 2, we essentially give a brief

pedagogic review of some standard calculations of quantum fields in Rindler space.

In chapter 3, we construct Rindler-AdS spaces in three space-time dimensions by

considering the conjugacy class of the Lorentz group. We find novel one-parameter

families of rotating Rindler vacua, which are related to the usual Rindler vacuum

by non-trivial Bogolubov transformations. In particular, we observer that rotating

Rindler-AdS space possesses an observer-dependent ergosphere. We also find

rotating vacua in three-dimensional global AdS space as well as in de Sitter space,

provided a certain region of spacetime is excluded.

In chapter 4, we review the celebrated AdS/CFT correspondence, and develop

the necessary machinary to understand the application of this correspondence to

Rindler-AdS spacetimes.

chapter 5, uses the results discussed in the preceeding chapters to synthesize a
3



novel approach to probe the event horizon. We study the geometry and thermody-

namics of Rindler-AdS space. Applying the AdS/CFT correspondence, we rederive

these themodynamical properties, and find the response of the dual boundary CFT

as a test source falls into the Rindler horizon.

We conclude the thesis by considering quantum weak measurements in the con-

text of 1) decay of an excited atom, and 2) a particle trapped in a potential barrier.

Implications are discussed.

4



CHAPTER 2

QUANTUM FIELDS IN RINDLER SPACE

In 1975, Paul Davies realized that since, by the equivalence principle, the effects of

a uniform gravitational field are equivalent to the effects observed in a non-inertial

uniformly accelerated frame, there could be quantum effects in flat space simi-

lar to what Hawking derived in 1974 by studying black holes [8]. The following

year, William Unruh [9] placed this correspondence on a more physical foundation

by considering an accelerating model particle detector responding to the quantum

vacuum. In this chapter we present a simple demonstration of the effect of acceler-

ation on the quantum vacuum by closely following the references [10, 11]. In order

to obtain the line element of a uniformly accelerating observer, consider uniform

acceleration λ along the x-axis. The equation for such an observer with c = 1 is

d

dt

(
v√

1− v2

)
= λ (2.1)

where v(t) = dx(t)
dt

. Solving the above equation with the initial conditions

x(0) = λ−1 ; v(0) = 0, (2.2)

we obtain,

x(t) = λ−1
(
1 + λ2t2

)
(2.3)

Using the above solution, the proper time s as measured by a clock carried by the

observer is related to the Minkowski time t as

s(t) =

∫ t

0

dt
√
1− v2 = λ−1

arcsinh(λt) (2.4)

Using this relation and the equation (2.3), we can express the trajectory of a uni-

formly accelerating observer as

t = λ−1 sinh(λs) and x = λ−1 cosh(λs) (2.5)

5



If we now choose λ = ge−gξ and s = τegξ and substitute into the standard Cartesian

Minkowski line element, we get the so-called Rindler line element as

ds2 = e2gξ
(
−dτ 2 + dξ2

)
+ dy2 + dz2 (2.6)

The above line element also appears as the near-horizon limit of black holes. Con-

X = T

X = -T

Ξ = const

1 2 3 4 5
X

-4

-2

2

4

T

Figure 2.1: ξ = const worldline describes an accelerating observer in 1+1
Minkowski space

sider the Schwarzschild metric in 3+1 dimensions (c = G = ~ = 1)

ds2 = −
(
1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2
2 (2.7)

The horizon is at r = 2M . Expanding in Taylor series near the horizon, we get

ds2 ≈ −
(
r − 2M

2M

)
dt2 +

dr2(
r−2M
2M

) + 4M2dΩ2
2

Furthermore, we are interested in a small angular region of the horizon centered

around θ = 0, we set

r = 2M +
x2

8M

y = 2Mθ cosϕ

z = 2Mθ sinϕ (2.8)

6



and get the Rindler line element in the form

ds2 = −g2x2dt2 + dx2 + dy2 + dz2 where g =
1

4M
(2.9)

Doing a further transformation x = 1
g
egξ, we get the line element (2.6). Thus study-

ing the behavior of quantum fields near the horizon of black holes is equivalent to

studying quantum fields in Rindler space.

2.1 Quantum field theory in Minkowski and Rindler coordinates

In this section, we show that the concept of particles is observer dependent. The

essential idea is that in a theory with diffeomorphism invariance, any globally hy-

perbolic spacetime including Minkowski space, admits infinitely many choices of the

time coordinate. These different time coordinates in turn are generated by different

Hamiltonians and correspondingly the minimum energy state - the vacuum state

can also be different. Thus a state that appears empty to an observer whose world-

line traces one time coordinate need not appear so to a different observer following

a different time coordinate. We consider a massless scalar field in 1+1 dimensions

for mathematical simplicity. The action for a massless scalar field is

I[ϕ] =
1

2

∫
d2x

√
−ggµν∂µϕ∂νϕ (2.10)

The equation of motion for the scalar field ϕ is

∂2ϕ =
1√
−g

∂µ
(√

−ggµν∂ν
)
ϕ = 0 (2.11)

We define a scalar product for any two solutions ϕ1 and ϕ2 for the scalar field ϕ as

(ϕ1, ϕ2) = −i
∫

dΣµ
√
−gΣ (ϕ1∂µϕ

∗
2 − ϕ∗

2∂µϕ1) (2.12)

where dΣµ is the volume of the hypersurface Σ and is directed normal to the unit

vector nµ. This scalar product is called the Klein-Gordon inner product and it is

motivated by the fact that it is independent of the surface Σ.
7



2.2 Minkowski coordinates

The line element for Minkowski space in 1+1 dimensions is

ds2 = −dt2 + dx2 (2.13)

The equation of motion for ϕ from (2.11) is(
−∂2t + ∂2x

)
ϕ(t, x) = 0 (2.14)

The solutions to the above equation are plane waves. We write the solutions as

uk(t, x) =
1√
4πω

e−i(ωt−kx) (2.15)

where ω = |k| and −∞ < k <∞. Since the metric is independent of the coordinate

t, we can define positive frequency modes with respect to the time coordinate t. In

this coordinate system, we can choose the hypersurface dΣµ to be a constant-t

surface while evaluating the scalar product (2.12). We see that the modes uk and

their complex conjugate u∗k satisfy the following orthonormality relations with respect

to the scalar product (2.12)

(uk, uk′) = δ (k − k′) ; (u∗k, u
∗
k′) = −δ (k − k′) and (uk, u

∗
k′) = 0 (2.16)

The quantization of the scalar field proceeds in the usual manner by treating ϕ as

an operator and defining the equal time commutation relations (ETCR)

[ϕ(t, x), ϕ(t, x′)] = 0

[Π(t, x),Π(t, x′)] = 0

[ϕ(t, x),Π(t, x′)] = iδ (x− x′) (2.17)

where Π is the conjugate momentum of the field defined as

Π =
∂L

∂(∂0ϕ)
= ∂0ϕ (2.18)

8



Since the normalized modes uk and u∗k satisfy the relations (2.16), they form a

complete basis so that the quantum field ϕ can be expanded as

ϕ(t, x) =

∫ ∞

−∞
dk

(
âkuk + â†ku

∗
k

)
(2.19)

where âk and â†k are the annihilation and creation operators for the mode k respec-

tively. In terms of these operators the ETCR (2.17) become

[âk, âk′ ] = 0[
â†k, â

†
k′

]
= 0[

âk, â
†
k′

]
= δ (k − k′) (2.20)

The Minkowski vacuum |0M⟩ is then defined as the state annhilated by âk

âk|0M⟩ = 0 ∀k (2.21)

We can form multi-particle states by acting repeatedly with the creation operator

â†k on the Minkowski vacuum. One can also consider the usual number operator

N̂k =
(
â†kâk

)
for the mode k which has the property that for a state |nk⟩, it satisfies

N̂k|nk⟩ = nk|nk⟩ (2.22)

where nk is the number of quanta for mode k. Thus for the Minkowski vacuum |0M⟩,

we have

⟨0M |N̂k|0M⟩ = ⟨0M |â†kâk|0M⟩ = 0 ∀k. (2.23)

This state is distinguished by the fact that it is invariant under Poincare transforma-

tions, Hence all inertial observers perceive this state to have no particles i.e. as the

vacuum state.
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2.3 Rindler coordinates

We consider the following transformations of the Minkowski coordinates (t, x) as

t = g−1egξ sinh(gτ) and x = g−1egξ cosh(gτ) (2.24)

where g is a constant. We call (τ, ξ) Rindler coordinates. These cover only the

x > |t| in the (t, x) plane. In terms of Rindler coordinates (2.24), the Minkowski line

(2.13) element becomes

ds2 = e2gξ
(
−dτ 2 + dξ2

)
(2.25)

From equation(2.24), it is obvious that

x2 − t2 = g−2e2gξ and tanh(gτ) =
t

x
(2.26)

These relations imply that curves of constant ξ are hyperbolae, while the curves

of constant τ are straight lines through the origin in the (t, x) plane. As expected,

each of these hyperbolae is the spacetime trajectory of a uniformly accelerating

observer with a proper acceleration of ge−gξ. Different hyperbolae correspond to

different uniform accelerations, with the acceleration decreasing as the Minkowski

coordinate x increases. The null-lines x = ±t are the asymptotes to these hyper-

bolae and therefore act as horizons for the uniformly accelerating observers.

In order to quantize the scalar field ϕ in Rindler coordinates, we observe that the

action (2.10) is conformally invariant as we are working in 1+1 dimensions and the

transformations (2.24) are a class of conformal transformations of the Minkowski

line element. Exploiting this symmetry, the equation of motion for ϕ in the Rindler

coordinates becomes (
−∂2τ + ∂2ξ

)
ϕ(τ, ξ) = 0 (2.27)
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and just as in the case of Minkowski coordinates, we write the solution to the above

equation as

vl(τ, ξ) =
1√
4πν

e−i(νt−lξ) (2.28)

where ν = |l| and −∞ < l < ∞. Since the metric (2.6) is independent of the

coordinate τ , we can define positive frequency modes with respect to the Rindler

time coordinate τ . In the Rindler case, we can choose the hypersurface dΣµ to be

a constant-τ surface while evaluating the scalar product (2.12). Again, we see that

the modes vl and its complex conjugate v∗l satisfy the orthonormality relations with

respect to the scalar product (2.12)

(vl, vl′) = δ (l − l′) ; (v∗l , v
∗
l′) = −δ (l − l′) and (vl, v

∗
l′) = 0 (2.29)

and hence the quantized field ϕ(τ, ξ) can be expanded just like in the Minkowski

coordinates as

ϕ(τ, ξ) =

∫ ∞

−∞
dl
(
b̂lvl + b̂†l v

∗
l

)
(2.30)

where b̂l and b̂†l are the annihilation and creation operators for the Rindler mode l.

These operators follow the same commutation relations as the operators âk and â†k

in (2.20). The vacuum state can analogously be defined as

b̂l|0R⟩ = 0 ∀l. (2.31)

In the next sub-section we will see that the Rindler observer perceives the Minkowski

vacuum as a teeming thermal bath of particles unlike in (2.23).

2.4 The Bogolubov transformations

We carried out the program of quantizing the scalar field ϕ in two different coordi-

nate systems. We found that the field ϕ can be expanded in terms of two different

modes which are complete and orthornormal. These two decompositions lead to

11



two vacuum states |0M⟩ and |0R⟩. The question is : are these two vacua equivalent

?

Since both sets of the normal modes uk and vl are complete, one set of mode can

be expanded in terms of the other

vl(τ, ξ) =

∫ ∞

−∞
dk (α(l, k)uk + β(l, k)u∗k) (2.32)

The inverse transformation is

uk(t, x) =

∫ ∞

−∞
dl (α∗(l, k)uk − β(l, k)v∗l ) (2.33)

These relations are known as the Bogolubov transformations. Using (2.32) and the

orthonormality relation (2.16), the Bogolubov coefficients α and β can be expressed

as

α(l, k) = (vl, uk) and β(l, k) = − (vl, u
∗
k) (2.34)

Making use of the orthonormality relations (2.16) and (2.29) for the modes uk and

vl, it can be shown that

âk =

∫ ∞

−∞
dl

(
α(l, k)b̂l + β∗(l, k)b̂†l

)
(2.35)

and

b̂l =

∫ ∞

−∞
dk

(
α∗(l, k)âk − β∗(l, k)â†k

)
(2.36)

It can be seen from equations (2.32), (2.33) and (2.36) that unless the coefficient β

is zero, the Minkowski vacuum |0M⟩ will not be annhilated by the Rindler annihilation

operator bl. Thus the vacua |0M⟩ and |0R⟩ are inequivalent if the coefficient β is non-

zero. The Bogolubov coefficients can be evaluated using the relations (2.34) and

choosing the hypersurface τ = 0 for convenience. The coefficients turn out to be

α(l, k) =
1

4π
√
ων

∫ ∞

−∞
dξ

(
ωegξ + ν

)
eilξ exp−i(kg−1egξ)

12



and

β(l, k) =
1

4π
√
ων

∫ ∞

−∞
dξ

(
ωegξ − ν

)
eilξ exp i(kg−1egξ)

Setting z = egξ, these integrals become

α(l, k) =
g−1

4π
√
ων

∫ ∞

0

dz

z
(ωz + ν) zilg

−1

e−ikzg−1

(2.37)

β(l, k) =
g−1

4π
√
ων

∫ ∞

0

dz

z
(ωz − ν) zilg

−1

eikzg
−1

(2.38)

One can recognize that the above integrals are related to the Gamma function

Γ(z) =
∫∞
0

tz−1 e−t. Evaluating these integrals (see reference [12]) by noting that

Γ(z + 1) = zΓ(z), we get

α(l, k) =

(
g−1

4π
√
ων

)
(ωl + kν)

(
kg−1

)−ilg−1

Γ(ilg−1) eπl/2g (2.39)

β(l, k) = −α(l, k) e−πl/g (2.40)

The expectation value of the number operator defined in terms of (b̂, b̂†) operators

in the vacuum |0M⟩ is given by

⟨0M |Nl|0M⟩ = ⟨0M |b̂†l b̂l|0M⟩

=

∫ ∞

−∞
dk |β(l, k)|2 (2.41)

This is a general result. The Bogolubov transformations relate the operators (both

annihilation and creation) of the quantum field in two different coordinate systems

in terms of a linear expansion involving the Bogolubov coefficients α and β. As

previously mentioned, the vacuum defined by the time coordinate in one coordi-

nate system will not in general be equivalent to the vacuum defined in the other

coordinate system. In fact the vacuum in one coordinate system would appear as

a state full of particles from the perspective of the other coordinate system. The

mean number of such particles is given by (2.41).

Using (2.36), (2.39), (2.40) and (2.41), we see that the expectation value of the
13



Rindler number operator in the Minkowski vacuum state turns out to be thermal in

nature i.e.

⟨0M |Nl|0M⟩ = ⟨0M |b̂†l b̂l|0M⟩

=

∫ ∞

0

dk

2πk

(
g−1

e(2πνg−1) − 1

)
(2.42)

Hence the Rindler observer perceives the Minkowski vacuum as a thermal bath of

massless particles obeying a Bose-Einstein distribution with the Unruh temperature

T =
g

2π
(2.43)

Therefore a uniformly accelerating observer perceiving thermality due to his or her

acceleration. A physical interpretation for the effect is that the accelerated detector

is coupled to the quantum vacuum fluctuations and these fluctuations act on the

“detector" (a theoretical instrument to detect the particles) and excite it as if the

detector were in a thermal bath with the Unruh temperature (2.43). For a more

comprehensive review on the theory of detectors and the Unruh effect, the reader

is urged to look up [11, 13, 8] and the references therein.

As mentioned previously, the Rindler spacetime gives the local properties of black

holes and cosmological horizons. The Davies-Unruh effect would then be the near-

horizon form of the Hawking radiation. This is one of the major reasons why this

effect and Rindler space have been studied extensively [14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25].
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CHAPTER 3

STATIONARY VACUA IN ANTI DE SITTER SPACE

This chapter is based on my work [27], and [26] done with M. Parikh, and E. Ver-

linde.

3.1 Introduction

Previously, we derived Rindler space in two dimensional spacetime as a solution

describing a uniformly accelerated observer in Minkowski space. Alternatively, we

can also construct Rindler space in two spacetime dimensions by looking at the

isometries of Minkowski space ds2 = −dT 2 + dX2 as follows. Poincaré invari-

ance dictates that there are three isometries, viz. the translations ∂T , ∂X , and the

Lorentz boost T∂X + X∂T . If we naively demand that the desired spacetime be

stationary with its “time" translation generator ∂t given by the Lorentz boost, then

the resulting spacetime unambiguously turns out to be Rindler space. The unique

parameterization which makes these conditions manifest is

X = ξ cosh gt, T = ξ sinh gt

where g is just a parameter with mass dimension one. The generator ∂t = T∂X +

X∂T is time-like everywhere since its norm |∂t|2 = −X2+T 2 < 0 in the given metric

signature. Therefore, ∂t is a valid Hamiltonian. With the above parameterization,

the metric becomes

ds2 = −g2ξ2dt2 + dξ2 , (3.1)

which is the usual Rindler space. Therefore, the study of symmetries provides a

powerful tool to construct novel spacetimes. Concretely, the choice of time and the

time-evolution operator, in a diffeomorphism invariant theory, is essentially arbitrary

[11], and the Hamiltonian which is the generator of time translations depends on the

definition of the time coordinate. Certain preferred class of Hamiltonions are those
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that are the generators of time-like isometries. These Hamiltonions are special

since conservation of energy is ensured and a quantum field can be decomposed

in terms of positive and negative energy modes in such a spacetime. The definition

of a particle in such a spacetime is therefore unambiguous. Minkowski space is an

obvious example of such a spacetime. It has a timelike killing vector ∂T generating

the time evolution. One can now define a new time coordinate T ′ = T−βX√
1−β2

and ask

the following question: is the vacuum defined by the new Hamiltonian ∂T ′ different

from the one defined by ∂T? The answer, of course is no since the Hamiltonia in

this case are related by an isometry transformation of the Minkowski space, viz.

the Lorentz transformation. Thus the Hamiltonia are said to be “group equivalent".

Formally, vacua defined by different Hamiltonia are said to be inequivalent if there

exists non-zero Bogolubov transformations between the two. In this case the cor-

responding Hamiltonia are said to be “particle inequivalent". Now, Group inequiv-

alence does not necessarily imply particle inequivalence, but the converse always

holds. Therefore, the Minkowski Hamiltonian HM = ∂T , and the Rindler Hamilto-

nian HR = T∂X+X∂T are not related to each other by any isometry transformation

since there is a non-zero Bogolubov transformation between the respective vacua.

However, since group inequivalence is a necessary condition, it serves as a starting

point to classify all the probable inequivalent Hamiltonia of a space based on their

conjugacy classes.

In oder to find the possible stationary vacua of a given spacetime, we require three

conditions to hold:

• the candidate Hamiltonian should be a continuous isometry,

• there must exist a region of spacetime that admits a Cauchy surface such

that the Hamiltonian is future-directed and timelike at the (possibly asymptotic) spa-

tial boundary of the region, and
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• the orbits of the Hamiltonian must not exit that region.

The motivation for these conditions is the following. The candidate Hamiltonian

describes the time-evolution, and hence, in order to be able to do quantum field

theory, one needs to be able to define energy as positive frequency modes with

respect to the time coordinate. If the Hamiltonian is not an isometry, then particle

number is not conserved, and therefore the definition of energy becomes ambigu-

ous in such spacetimes. The Hamiltonian may also not be globally timelike, so that

we may have to restrict our quantum field theory to some region of spacetime, such

as the static patch of de Sitter space or the Rindler wedge in Minkowski space. That

region of spacetime should be globally hyperbolic (i.e. admit a Cauchy surface) so

that time evolution of quantum states can be defined. For the same reason, the or-

bits of the candidate Hamiltonian should not exit the region. Finally, for the isometry

to even be considered a Hamiltonian, it must be timelike at least at the asymptotic

boundary of the region; we do not require the stronger condition that the Hamilto-

nian be timelike everywhere within our region so as not to preclude the existence of

an ergosphere.

There may be multiple Hamiltonians that satisfy the above conditions. If the dif-

ferent possible Hamiltonians are isometrically equivalent i.e. if they can be related

by isometries (so that they are both elements of the same conjugacy class of the

isometry group), then they lead to the same vacuum state. However, if the Hamil-

tonians are isometrically inequivalent (being part of different conjugacy classes),

then, given some quantum field theory, they could correspond to different vacuum

states.

In order to illustrate these ideas, let us list all the stationary vacua [28] of Minkowski

space ds2 = −dX2
0 +

∑
i dX

2
i . The most general continuous isometry of Minkowski
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space is generated by a linear combination of translations, boosts, and rotations:

αµPµ + βiKi + ωijJij . (3.2)

This must be timelike, at least in some suitable region, for the generator to be a

candidate Hamiltonian. Choosing the Hamiltonian to be P0 = ∂X0 yields the usual

Poincaré-invariant vacuum. Next, we note that the boost generator, Ki = X0∂i +

Xi∂0, squares toX2
0−X2

i , which is timelike when restricted to the wedgesX2
i > X2

0

and is future-directed when further restricted to Xi > 0. This is of course the right

Rindler wedge. Moreover, the orbit of Ki starting from a point in the right Rindler

wedge remains in the wedge. Hence, Ki is a candidate Hamiltonian for a stationary

vacuum; indeed, choosing the Hamiltonian to be Ki yields the Rindler vacuum

for the right Rindler wedge, while choosing the Hamiltonian to be −Ki gives the

Rindler vacuum for the left Rindler wedge. It is straightforward to check that there

are no other inequivalent isometric Hamiltonians. For example, the combination

P0+ωJ12, which generates the worldlines of observers rotating in theX1−X2 plane

with angular velocity ω, becomes spacelike outside the sphere X2
1 + X2

2 = 1/ω2

[29]. Restriction to the world-volume of the inside of the sphere fails because such

a region does not admit a Cauchy surface. Another possibility, the combination

P0 + βKi, generates the worldlines of Rindler observers in a translated Rindler

wedge. Also, the combination P0+α
iPi is timelike for αiαi < 1 but this is obviously

isometrically-equivalent to the Poincaré Hamiltonian via a Lorentz boost. It is easy

to check that there are no other inequivalent isometries that could be used as the

Hamiltonian.

Thus, in Minkowski space, the only stationary vacua corresponding to isometric

Hamiltonians are the Poincaré-invariant vacuum and the Rindler vacuum.
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3.2 Conjugacy Classes of the Lorentz Group

The Lorentz group has an interesting structure. There are five types of Lorentz

transformations; that is, group elements of SO(1, 3) fall into five conjugacy classes.

One conjugacy class consists of the elliptic transformations. This is the set of

Lorentz transformations conjugate to the pure rotations i.e. the elliptic transforma-

tions consist of all Lorentz transformations, ΛJiΛ−1, that can be obtained from pure

rotations via Lorentz transformations. Another conjugacy class is that of the hyper-

bolic transformations; these consist of pure boosts and their conjugates, ΛKiΛ
−1.

There is also the class of parabolic transformations, whose representative elements

are the so-called null rotations, generated by Ji + Kj for i ̸= j. Most interesting

for our purposes is the class of loxodromic transformations.1 These are Lorentz

transformations generated by a commuting pair of a rotation and a boost, such as

Kz + βJz. These “rota-boosts" cannot be reduced to either pure rotations or pure

boosts by Lorentz transformations because obviously those lie in different conju-

gacy classes. Indeed, strictly speaking, the number of conjugacy classes is infinite,

with each class labeled by a different value of the rotation parameter β. These are

all the nontrivial conjugacy classes of SO(1, 3). (There is also the trivial conjugacy

class containing the identity transformation.)

There is also an electromagnetic analogy to the rota-boosts. The Lorentz gen-

erators Mµν , which are anti-symmetric, can be thought of as the electromagnetic

field strength, Fµν ; the boosts are then like the electric field and the rotations like

the magnetic field. Then we know that there are Lorentz invariants of the type

F ∧ ∗F ∼ E2−B2 but also of the type F ∧F ∼ E ·B. If E ·B ̸= 0, no Lorentz trans-

1The peculiar names of the conjugacy classes are derived from types of curves on a sphere,
as named by maritime navigators. Because Lorentz transformations leave light cones invariant, the
celestial sphere of an observer’s night sky is mapped to itself. The orbits of the Lorentz transfor-
mations are curves on the sphere; a loxodrome (also known as a rhumb line) is a curve that spirals
from one pole to the other while intersecting all longitudinal meridians at the same angle.
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formation can transform the field into a configuration that is either a pure electric

field (E2 − B2 > 0), a pure magnetic field (E2 − B2 < 0), or pure electromag-

netic “radiation" (E2 − B2 = 0), since these all have E · B = 0. Correspondingly,

rota-boosts are generated by generators that have J ·K ̸= 0.

Specifically, a generator of a rota-boost takes the form

M01 − βM23 (3.3)

in Cartesian coordinates. The key property is that rota-boosts are linear combina-

tions of the usual Lorentz generators with no shared indices. In higher dimensions,

there are additional parameters. For example, in six spacetime dimensions, there

are two-parameter generators of the form

M01 − β1M23 − β2M45 (3.4)

The Lorentz-invariant Casimir which generalizes J ·K is

ϵi1...idω
i1i2 . . . ωid−1id , (3.5)

where ω is the parameter for the most general generator 1
2
ωijM

ij . For example, the

invariant of the generator (3.3) is 2β. In odd dimensions no invariant can be formed

using the Levi-Civita tensor but it is nevertheless possible to argue that linear com-

binations of Lorentz generators with no shared indices cannot be reduced to elliptic,

hyperbolic, or parabolic transformations. We will see that taking the Hamiltonian to

be a generator of rota-boosts leads to novel stationary vacua in three-dimensional

anti-de Sitter space.

3.3 Anti-de Sitter β-Vacua and Rotating Rindler-AdS Space

As we shall show, anti-de Sitter space permits a richer set of possibilities for sta-

tionary vacua. AdS space can be viewed as a hyperboloid embedded in a flat
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embedding space; the isometry group is therefore a higher-dimensional Lorentz

group. In embedding coordinates, AdSd+1 is the hypersurface

−X2
0 +X2

1 + ...+X2
d −X2

d+1 = −L2 , (3.6)

embedded in flat (d + 2)-dimensional Minkowski space with two time directions.

The AdS isometry group O(2, d) is the Lorentz group of the embedding space and

contains spatial rotations Mij , two types of boosts, M0i and Mi(d+1), as well as a

rotation M0(d+1) in the time-time plane. Consider irreducible rota-boosts of the form

M01−β1M23+ .... There are two types of such boosts: those in which X0 and Xd+1

are paired with Xi’s, and those in which X0 and Xd+1 are paired with each other. In

general a rota-boost of the first type with nonzero Casimir (3.5) can be written as

M01 − β1M23 − β2M45 − ... . (3.7)

Its norm is

−X2
1 +X2

0 + β2
1

(
X2

2 +X2
3

)
+ ...+ β2

d/2

(
X2

d −X2
d+1

)
. (3.8)

Using the embedding equation (3.6), this is not, for d > 2, time-like at the AdS

boundary. Therefore, in higher dimensions, the above rota-boost cannot be consid-

ered as a candidate Hamiltonian.

Now consider the isometry generated byM01−βM23 in three spacetime dimensions

(d = 2). This generator belongs to the loxodromic conjugacy class of rota-boosts.

Technically, because we are dealing with the AdS3 isometry group SO(2, 2), it is a

combination not of a rotation and a boost but of two boosts in the embedding space:

∂

∂t
= (X1∂0 +X0∂1)− β (X3∂2 +X2∂3) . (3.9)

From the flat metric of the embedding space this has norm

−(X2
1 −X2

0 )(1− β2) + β2 , (3.10)
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using the embedding equation. Restricted to the right Rindler wedgeX1, X
2
1−X2

0 >

0 we see that our candidate loxodromic generator is future-directed and timelike

for X2
1 ≫ X2

0 and has orbits that stay within the wedge. By construction, it is

group-inequivalent to the usual (non-rotating) Rindler Hamiltonian X1∂0+X0∂1, the

invariant (3.5) for its conjugacy class being

ϵ0123ω
01ω23 = 2β . (3.11)

The wedge admits a Cauchy surface on which one can define quantum states.

In 2+1 dimensions, rotating Rindler-AdS space can be coordinatized by

X0 = ξ sinh

(
t

L
− β

χ

L

)
X1 = ξ cosh

(
t

L
− β

χ

L

)
X2 =

√
L2 + ξ2 sinh

(
χ

L
− β

t

L

)
X3 =

√
L2 + ξ2 cosh

(
χ

L
− β

t

L

)
, (3.12)

where β is the rotation parameter. Here −∞ < t, χ < +∞ and ξ > 0. The rotating

Rindler metric is given by

ds2 = −
(
(ξ/L)2(1− β2)− β2

)
dt2−2βdt dχ+

dξ2

1 + (ξ/L)2
+
(
1 + (ξ/L)2(1− β2)

)
dχ2 .

(3.13)

The event horizon is at ξ = 0; the determinant of the metric vanishes there. Notice

also that at ξ = βL√
1−β2

, the t-t component of the metric vanishes. This indicates the

presence of an ergosphere. Presumably this means that there are super-radiance

effects in this space.

For β = 0, we recover the metric for non-rotating Rindler-AdS space:

ds2 = −(ξ/L)2dt2 +
dξ2

1 + (ξ/L)2
+
(
1 + (ξ/L)2

)
dχ2 . (3.14)
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Note that in the limit that the AdS radius, L, goes to infinity, so that ξ/L ≪ 1, the

non-rotating metric gives ordinary (flat) Rindler space, where now 1
L

is re-interpreted

as the acceleration parameter of Rindler space instead of as the AdS scale. As a

check we note that this limit is singular for the β ̸= 0 metric, confirming that there is

no rotating Rindler metric in flat space.

Both rotating and non-rotating Rindler-AdS space are of course a portion of anti-

de Sitter space just as ordinary Rindler space is a piece of Minkowski space. In

fact, even globally the portion of the spacetime covered by the coordinates above is

identical to that covered by non-rotating Rindler coordinates. The diffeomorphism

t⇒ t− βχ χ⇒ χ− βt (3.15)

maps one spacetime to the other. In that sense, rotating Rindler space is classically

the same spacetime as non-rotating Rindler space. However, the Hamiltonians

for non-rotating and rotating Rindler space are isometrically-inequivalent and, as

we shall see shortly, the corresponding vacuum states of scalar field theory are

particle-inequivalent.

That rotating and non-rotating Rindler space describe the same part of spacetime

may seem puzzling at first because one of them has an ergosphere and the other

does not. This is because rotating Rindler-AdS space possesses an observer-

dependent ergosphere, in addition to an observer-dependent event horizon. The

existence of an observer-dependent ergosphere can be understood as follows. Re-

call the origin of the ergosphere for the Kerr black hole. In the two-dimensional sub-

space spanned by its time-translation and azimuthal Killing symmetries, the Kerr

metric at large values of r along the equator (θ = π/2) approaches −dt2 + r2dϕ2,

because the Kerr spacetime is asymptotically flat. Therefore, for the Kerr black hole

there is a unique choice of Killing vector that is timelike at infinity, namely (d/dt)a;

any other linear combination of (d/dt)a and (d/dϕ)a is spacelike at infinity. The
23



Killing vector corresponding to time translations is therefore fixed, and hence so is

the place where it becomes null i.e. the ergosphere. The geometry ensures that

the location of the ergosphere is unambiguous. Contrast this with the situation in

AdS. The metric for the two-space spanned by the time-translation and azimuthal

Killing vectors in Rindler-AdS approaches (ξ/L)2(−dt2 + dχ2). The boundary met-

ric is simply a re-scaled two-dimensional Minkowski metric. Any observer moving

along a timelike linear combination of (d/dt)a and (d/dχ)a can choose his or her

worldline as the time-translation direction. Each such linear combination of Killing

vectors becomes null in a different place. Consequently, the existence and location

of the ergosphere are both observer-dependent.

For each of the different possible time choices labeled by β, there is a correspond-

ing stationary vacuum state annihilated by the Hamiltonian that generates that time

evolution. We shall call this one-parameter family of vacuum states “β-vacua." Like

the α-vacua of de Sitter space [30], these vacuum states are particle-inequivalent.

The particle-inequivalence of the β-vacua to the usual Rindler vacuum (and to each

other) can be verified explicitly by a Bogolubov transformation. Consider a positive-

frequency (ω > 0) mode of the Klein-Gordon equation:

uk,ω(t, χ, ξ) = e−iωt+ikχfω,k(ξ) . (3.16)

Demanding normalizability with respect to the Klein-Gordon inner product, one can

show [31] that the value of ω does not constrain k. Now, under the transformation

t→ t− βχ and χ→ χ− βt, the mode transforms as

uk,ω → e−i(ω+βk)tei(k+βω)χfω,k(ξ) . (3.17)

We see that for k < −ω
β

, the mode has negative frequency. Hence there is a mixing

between the negative and positive frequency modes under transformation from ro-

tating to a non-rotating Rindler-AdS space. This fact can be formally demonstrated
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in terms of the Bogolubov coefficients. Consider a positive frequency mode with

respect to one of the β rota-boosts:

vl,ν = e−iνt′+ilχ′
gl,ν(ξ) . (3.18)

Since t = t′ − βχ′ and χ = χ′ − βt′, (3.18) can be re-expressed in terms of the

modes of the nonrotating vacuum:

uk′,ω′ = e−iω′t+ik′χfk′,ω′(ξ) , (3.19)

where ω′ = ν−βl
1−β2 and k′ = l−βν

1−β2 . If ω′ < 0, then the beta Bogolubov coefficient is

nonzero between (3.16) and (3.18) and can be easily calculated as [11]

β(k, ω; l, ν) = iΘ(−ν + βl)δ

(
ω +

ν − βl

1− β2

)
δ

(
k +

l − βν

1− β2

)
, (3.20)

while the Bogolubov alpha coefficient vanishes.

The expression for the beta coefficient implies that the nonrotating Rindler observer

perceives any β-vacuum as filled with an infinite sea of particles for each positive

frequency ω. Of course the global AdS vacuum appears thermal with a different

temperature for each β-vacuum observer. Indeed, already from the metric it is clear

that the temperature depends on the rotation parameter, β:

T =
1− β2

2πL
. (3.21)

Interestingly, the limit β ⇒ 1 appears to correspond to an extremal vacuum state in

Rindler-AdS space, with vanishing temperature.

3.4 Rotating Rindler-AdS and the BTZ black hole

When the cosmological constant is zero, it can be shown that there exists no black

hole solution in three spacetime dimensions. However, a black hole solution can

be shown to exist in three spacetime dimensions, in the presence of a negative
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cosmological constant, as shown by Maximo Banados, Claudio Teitelboim, and

Jorge Zanelli [88]. The BTZ metric is given by

ds2 = −
(r2 − r2+)(r

2 − r2−)

L2r2
dt2 +

L2r2

(r2 − r2+)(r
2 − r2−)

dr2 + r2
(
dϕ− r+r−

Lr2
dt
)2

(3.22)

where r+, r− are the outer and inner radii, and L the AdS3 scale. The mass and

angular momentum is

M =
r2+ + r2−
L2

, J =
2r+r−
L

(3.23)

The existence of an ergosphere in Rotating Rindler-AdS space recalls the BTZ black

hole, and in fact it turns out that Rindler-AdS space is related to the BTZ black hole

[88] via

χ ∼ χ+ 2π . (3.24)

A change of coordinates

ξ =

√
r2 − 1

1− β2
(3.25)

puts the metric in the familiar BTZ form:

ds2 = −(r2 − 1)(r2 − β2)

r2
dt2 +

r2

(r2 − 1)(r2 − β2)
dr2 + r2

(
dχ− β

r2
dt

)2

where r is dimensionless in this case with r+ = 1 and r− = β. Therefore, Rindler-

AdS (3.14) is the universal cover for the BTZ black hole [76, 77, 78, 79, 80]. The

black hole solution is obtained by making an identification in a direction perpen-

dicuar to ∂t at the boundary. However, there is an important difference between

Rindler-AdS space and the BTZ black hole. The identification breaks the symme-

try group down from SL(2, R) × SL(2, R) to SL(2, R) × U(1). Consequently, the

freedom of picking out the time direction is lost; neither the event horizon nor the

ergosphere of the BTZ black hole is observer-dependent. Put another way, the

identification χ ∼ χ + 2π gives the two-dimensional boundary Minkowski space a
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cylinder topology. But special relativity on a cylinder has a preferred frame, singled

out by the identification [89, 90]. Hence there is a preferred direction of time.

3.5 Rotating Global Vacua

Another type of loxodromic generator in AdS is

∂

∂t
= (X0∂3 −X3∂0)− β (X1∂2 −X2∂1) . (3.26)

This is a combination of a temporal and a spatial rotation. For comparison, the

generator of global time, τ , is just the temporal rotation (X0∂3 −X3∂0).

The embedding coordinates can be parameterized by

X0 =

√
r2 + 1

1− β2
cos(t− βθ)

X3 =

√
r2 + 1

1− β2
sin(t− βθ)

X1 =

√
r2 + β2

1− β2
cos(θ − βt)

X2 =

√
r2 + β2

1− β2
sin(θ − βt) . (3.27)

Then, with the AdS scale set to unity, the line element reads

ds2 = −
(
r2 + 1 + β2

)
dt2 +

r2dr2

(1 + r2)(β2 + r2)
+ r2dθ2 + 2βdtdθ . (3.28)

Here we have 0 ≤ β < 1, 0 ≤ r < ∞, and θ ∼ θ + 2π. Clearly when β = 0 this

reduces to the AdS metric in global coordinates, as it should.

For β ̸= 0, there is however a subtlety with this solution. The generator of

rotations ∂
∂θ

in embedding coordinates is

∂

∂θ
= −β (X0∂3 −X3∂0) + (X1∂2 −X2∂1) . (3.29)

This has norm −β2 + (X2
1 +X2

2 )(1− β2), which, however, becomes timelike for

X2
1 +X2

2 =
r2 + β2

1− β2
≤ β2

1− β2
. (3.30)
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So that region cannot be covered by this coordinate system. To see where that

region is, we note that the relation between the radius in global coordinates, ρ, and

r is

ρ2 =
r2 + β2

1− β2
. (3.31)

For β ̸= 0, r = 0 no longer corresponds to the center ρ = 0 of the AdS cylinder but

is instead a surface of non-zero ρ. That is, we have effectively removed a concentric

cylinder from within the AdS cylinder for the purposes of this coordinate system.

At AdS infinity, however, nothing has changed and so we can calculate the con-

served charges of this space. The mass and angular momentum of rotating global

AdS space can be evaluated using the prescription of [40, 41]. The result is

M = − 1

8πG

∫ 2π

0

r4

2

(
1 + β2

r4

)
dθ = −1 + β2

8G

|J | =
1

8πG

∫ 2π

0

βdθ =
β

4G
.

Of course, excising the inner region leaves the resulting spacetime geodesically

incomplete. However, we can still do quantum field theory in the region outside

the inner cylinder using (3.26) for time evolution. The fact that the coordinates

break down outside the inner region can be circumvented by defining the angular

generator to be ∂
∂θ

= (X1∂2 −X2∂1). Unlike (3.13), the Killing vectors ∂θ and ∂t

would then not be orthogonal to each other at the conformal boundary. The line

element can be written as

−
(
1 + r2(1− β2)

)
dt2 +

dr2

1 + r2
+ r2dθ2 − 2βr2dt dθ . (3.32)

To show that the β-vacua corresponding to the time choice (3.26) are distinct from

the global AdS vacuum, we need to again show that positive and negative fre-

quency modes mix. Normalizability conditions for fields in global AdS space were
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investigated in [42]. Using the Ansatz Φ(r, t, θ) = e−iωteimθf(r) (where m ∈ Z) in

global coordinates, Klein-Gordon normalizability implies that

ω = ± |2h+ +m+ 2n| , n = 0, 1, 2, ... , (3.33)

where h+ = 1 +
√
1 +M2 with M the mass of the scalar field. Under the transfor-

mation θ → θ− βt, which takes the global coordinates metric into (3.32), the mode

solutions become

Φ → e−i(ω+βm)teimθf(r) . (3.34)

Given any value of n, we see from (3.33) that we can always find sufficiently large

values of negative m such that ω < |βm|. A positive frequency mode can therefore

become a negative frequency mode, and hence the rotating global AdS β-vacua are

different from the global AdS vacuum. This can also be confirmed by calculating

the Bogolubov coefficients directly as we did for rotating Rindler space. In higher

dimensions, the quantization condition becomes [42]

ω = ± |2h+ + l + 2n| ; l, n = 0, 1, 2, ... . (3.35)

By the semi-positiveness of l, we always have ω > l and hence the positive fre-

quency and negative frequency modes cannot mix under a transformation to rotat-

ing coordinates. β-vacua therefore do not exist in higher-dimensional global AdS

space.

3.6 Rotating vacua in de Sitter space

The analysis in the previus section(s) suggest the existence of similar interesting

vacua in de Sitter space as well. The fact that de Sitter space does not have a

spatial boundary is a conceptual departure from AdS space, and therefore in order

to obtain novel vacua for de Sitter space, we need to impose different conditions,

which are the following:
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• the candidate Hamiltonian should be a continuous isometry,

• the orbits of the Hamiltonian must not exit that region, and

• the Hamiltonian be space-like at future and null infinity I±.

The first two conditions are the same that were imposed on the AdS Hamil-

tonia, and have the same justification here. The last condition is justified as follows.

De Sitter space has no global timelike Killing vector. Since we seek stationary

vacua, the solutions will only cover a certain patch of the entire de Sitter space.

Such a patch would admit a timelike vector, like in the case of the static patch.

However, lack of any global timelike symmetry implies that this vector fails to re-

main timelike outside this patch. Since all stationary de Sitter vacua would be dif-

feomorphic to the vacuum of the static patch, it is natural to expect along the lines of

the static patch that any timelike vector would become spacelike past the de Sitter

horizon i.e. at future and null infinity. The last condition is also consistent with the

holographic principle in de Sitter space [43]. The time translation generator of the

boundary conformal field theory (living on I±) is dual to the Hamiltonian generator

in the bulk de Sitter space which becomes spacelike at the future and null infinity.

As in the case of AdS, de Sitter (dS) space also admits interesting solutions which

describe non-trivial vacua. In d + 1 dimensions, de Sitter space is described by a

hyperboloid of constant positive curvature in d+ 2 dimensions

−X2
0 +X2

1 + ...+X2
d +X2

d+1 = 1 (3.36)

embedded in Minkowski Md+2

ds2 = −dX2
0 + dX2

1 + ...+ dX2
d + dX2

d+1 (3.37)

As discussed in previous sections, the Hamiltonian which is the generator of time

translations, defines the vacuum. Global de Sitter space has no time like killing
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symmetry. Therefore in order to define a Hamiltonian, we restrict ourselves to a

patch of the spacetime which enjoys this symmetry. Focussing on dS3, a candidate

Hamiltonian which satisfies all the necessary conditions is given by

H =M01 =
∂

∂t
= (X1∂0 +X0∂1) (3.38)

This choice of Hamiltonian covers the static patch of the spacetime having time

translation symmetry. The condition that the Hamiltonion be space-like at I± yields

the condition −X2
0 + X2

1 > 0. Therefore, the static patch essentially describes

Rindler observers in global de Sitter and covers the causal diamond in the Penrose

diagram [44]. Since the symmetry group of dS3 is O(1,3), we can also consider

Hamiltonia which belong to the loxodromic conjugacy class of the Lorentz group in

M4. Such a generator can be written as

H =M01 − βM23 =
∂

∂t
= (X1∂0 +X0∂1)− β (X2∂3 −X3∂2) (3.39)

where β is a parameter. The requirement that this generator be timelike yields

|H|2 = −X2
1 +X2

0 + β2
(
X2

2 +X2
3

)
< 0 (3.40)

One can also see that |H|2 becomes positive, i.e. the generator becomes spacelike

for large values of X0, which is one of the assumptions. The above generator

cannot be reduced to (3.38) by any isometry transformation. This is gauranteed

by the existence of a non-zero Casimir ϵijklωijωkl = 2β, where ωij = −ωji are

the usual parameters of the Lorentz generators in 3+1 dimensions. Therefore, the

Hamiltonia (3.38) and (3.39) are group inequivalent. But for the vacua described

by (3.38) and (3.39) to be inequivalent, there has to be a non-zero Bogolubov beta

coefficient between the two, or in other words they have to be particle inequivalent.

In order to calculate the Bogolubov coeficients, we coordinatize dS3 described by
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(3.39) as

X0 =

√
1− r2

1 + β2
sinh(t− βϕ)

X1 =

√
1− r2

1 + β2
cosh(t− βϕ)

X2 =

√
r2 + β2

1 + β2
cos(ϕ+ βt)

X3 =

√
r2 + β2

1 + β2
sin(ϕ+ βt) (3.41)

The metric then reads

ds2 = −(r2 + β2)(1− r2)

r2
dt2 +

r2dr2

(r2 + β2)(1− r2)
+ r2(dϕ+

β

r2
dt)2 (3.42)

where ϕ ∼ ϕ + 2π. The above metric describes the Kerr de Sitter spacetime in

2+1 dimensions, without any point defect. [40] studied the above spacetime from a

dS/CFT point of view, [45] derived it as a solution to the three dimensional Einstein’s

equation for a positive cosmological constant. The mass and angular momentum

for the above metric is calculated as

M =
1− β2

8G
(3.43)

L =
β

4G
(3.44)

Is the Kerr-de Sitter vacua labeled by the parameter β, the same as the vac-

uum described by the static coordinates for de Sitter space? Consider a positive-

frequency (ω > 0) mode of the Klein-Gordon equation in the usual static de Sitter

spacetime:

un,ω(t, ϕ, r) = e−iωt+inϕfn,ω(r) , (3.45)

where n is any integer. The transformation t→ t− βϕ and ϕ→ ϕ+ βt, the

spacetime becomes Kerr de Sitter. Consider a positive energy mode (ν > 0) in Kerr
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de Sitter

vl,ν(t
′, ϕ′, r) = e−iνt′+ilϕ′

gl,ν(r) , (3.46)

The Bogolubov beta coefficient between the two modes can be easily calculated as

β(n, ω; l, ν) = iΘ(−ν − βl)δ

(
ω +

ν + βl

1 + β2

)
δ

(
n+

l − βν

1 + β2

)
, (3.47)

while the Bogolubov alpha coefficient vanishes. This implies that the observer de-

fined by the static vacua perceives any β-vacuum of Kerr-de Sitter as filled with an

infinite sea of particles for each positive frequency ω.

At the boundaries I±, one can define another Killing vector which can be made

orthogonal to (3.39) and is given by

J =
∂

∂ϕ
= β (X1∂0 +X0∂1) + (X2∂3 −X3∂2) (3.48)

as can be seen from the coordinatization (3.41). While the region covered by these

coordinates demand that killing vector J be positive. This implies that

|J |2 = X2
2 +X2

3 ≥ β2

1 + β2
(3.49)

From conditions (3.40), (3.49) and the embedding equation, the region of validity

for Kerr-de Sitter coordinates is given by

β2

1 + β2
< X2

2 +X2
3 <

1

1 + β2
(3.50)

This region is best visualized when expressed in terms of familiar coordinates which

describe the entire static patch, i.e.

X0 =
√
1−R2 sinh (T ) (3.51)

X1 =
√
1−R2 cosh (T ) (3.52)

X2 = R cos (ϕ) (3.53)

X3 = R sin (ϕ) (3.54)
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The metric is

ds2 = −
(
1−R2

)
dT 2 +

dR2

1−R2
+R2dϕ2 (3.55)

The condition (3.50) expressed in terms of coordinates (3.54) reads

β2

1 + β2
< R2 <

1

1 + β2
(3.56)

Therefore, we observe that the Kerr-de Sitter coordinates cover a region of con-

centric annulus. Another noteworthy point is that Kerr-de Sitter spacetime has an

ergoregion where the norm of ∂t goes null i.e. at R =
√

1
1+β2 . The horizon is at

R = 1. Kerr de Sitter has been in studied in great detail, and recently there has

been a renewed interest in this spacetime owing to the proposed dS/CFT corre-

spondence [40], [45] since it serves as an excellent toy model to test the dS/CFT

conjecture.

What about de Sitter vacua in higher dimensions? Can we construct inequivalent

vacua using this group theoretic method for general dSd+1? Consider dS4, which

has an embedding equation

−X2
0 +X2

1 +X2
2 +X2

3 +X2
4 = +1 (3.57)

The O(1,4) symmetry is manifest here. Taking the cue from previous analysis, we

consider a candidate loxodromic Hamiltonian as

H =M01 − βM34 =
∂

∂t
= (X1∂0 +X0∂1)− β (X3∂2 −X2∂3) (3.58)

Since the embedding space has odd dimensionality, we note that the above Hamil-

tonian generator doesn’t include one of the coordinates (X2 in this case). It is not

at all obvious that the above generator and (3.38) belong to different conjugacy

classes of the O(1,4) group since the Casimir ϵabcd..ωabωcdω..ω.. in odd dimensions

does not exist. In the absence of a Casimir, proving the group inequivalence of the

Hamiltonia (3.38) and (3.58) is non-trivial. The question is - do (3.38) and (3.58)
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belong to different conjugacy classes of O(1,4)? To answer this question, it would

therefore suffice to prove the particle inequivalence between the two Hamiltonia.

We consider a massive scalar field operating in the static patch of dSd+1, noting

that this spacetime is described by the Hamiltonian (3.38).

Separating variables using spherical harmonics Yl(Ω), we seek the solution for

massive Klein-Gordon equation in the static coordinates as [46]

Φ(t, r,Ω) = φ(r)e−iωtYl(Ω) , (3.59)

The general solution to the radial part of the wave equation has the form

φ = Bφn + Aφn.n (3.60)

where

∗φn =

(
1− r2

ℓ2

)−iω/2 (r
ℓ

)l

2F1

(
a+ h−, a+ h+;

d

2
+ l;

r2

ℓ2

)
, (3.61)

φn.n =

(
1− r2

ℓ2

)−iω/2 (r
ℓ

)2−d−l

2F1

(
b+ h−, b+ h+;

4− d

2
− l;

r2

ℓ2

)
(3.62)

*

Here a = (l − iℓω)/2, b = (2− d− l − iℓω)/2 and the weights

h± =
d

4
± x

2
. (3.63)

where

ℓ2m2 =
d2

4
− x2 . (3.64)

Based on the falloff behavior near the origin, we observe that φn is normaliz-

able and φn.n non-normalizable. Expanding the hypergeometric functions in the

solutions (3.62) near the horizon, as r ⇒ ℓ, one finds the two behaviors: φ ∼

(1− r2/ℓ2)
±iℓω/2. These are again a superposition of ingoing and out going plane

waves if one defines a tortoise coordinate. These means that value of ω is in-

dependent of l. The spacetime described by the Hamiltonian (3.39) is related to
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the spacetime of the usual static patch by the simple transformation ϕ → ϕ + βt,

where ϕ is the azimuthal angle in Ω. In other words, for ω > 0 and n ∈ Z where

−l ≤ n ≤ +l, we can have in (3.59)

e−iωteinϕ → e−i(ω−βn)teinϕ (3.65)

This, coupled with the fact that ω is not constrained by l implies that a positive

energy mode in the vacuum described by the Hamiltonian (3.38) is not necessarily

a positive energy mode in the vacuum described by the Hamiltonian (3.39), i.e ω −

βn < 0 for certain values of ω and n. Therefore the vacua are particle inequivalent,

as there exists a non-zero Bogolubov coefficient β between the two spacetimes.

This is a general argument and holds for all spacetime dimensions. This result also

ensures that the corresponding Hamiltonia, (3.38) and (3.58) belong to different

conjugacy classes of the O(1,4) group and are therefore group inequivalent.

A suitable coordinatization which describes this vacua is

X0 =
√
1− r2 sinh (t− βϕ) (3.66)

X1 =
√
1− r2 cosh (t− βϕ) (3.67)

X2 = r sin (θ) cos (ϕ− βt) (3.68)

X3 = r sin (θ) sin (ϕ− βt) (3.69)

X4 = r cos (θ) (3.70)

The corresponding metric is

ds2 = −
[
1− r2 − r2β2 sin2 θ

]
dt2 +

dr2

1− r2
+
[
r2 sin2 θ − β2

(
1− r2

)]
dϕ2

+ 2βdtdϕ
[
1− r2

(
1 + sin2 θ

)]
(3.71)

The horizon is at r = 1 as expected, and the ergosphere is given by the surface

r2 = 1
1+β2 sin2 θ

. This is essentially a four dimensional analogue of Kerr-de Sitter
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solution in three spacetime dimensions. In principle, one can also construct higher

dimensional rotating de Sitter spaces using Hamiltonia of the form

H = M01 − β1M34 − β2M56

= (X1∂0 +X0∂1)− β1 (X3∂4 −X4∂3)− β2 (X5∂6 −X6∂5) .. (3.72)

These solutions are analogous to the topological black holes in anti-de Sitter space

[76], even though they are not black hole solutions by themselves. It would be

interesting to study the thermodynamics properties of such rotating vacuum solu-

tions which we reserve for future investigations. These solutions can potentially

serve as the testing ground for the dS/CFT correspondence in general spacetime

dimensions.
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CHAPTER 4

HOLOGRAPHY AND THE ADS/CFT CORRESPONDENCE

4.1 Introduction

Ever since Einstein made space and time dynamical in his general theory of rela-

tivity, it is widely believed that quantization of gravity will necessitate an even more

radical departure in our view of spacetime. Currently superstring theory appears

to be the most appealing and consistent candidate for a quantum theory of gravity.

What makes superstring theory unique is that the basic ingredients of this theory

are one dimensional objects called strings. This is in contrast with the other the-

ories of physics which have the point particle as their basic component. These

strings have tension and therefore the theory has a fundamental length scale given

by the string length ls. Unlike point particles, strings possess internal degrees of

freedom or vibrations which not only gives the entire spectrum of particles but also

fixes the dimensionality (D) of spacetime. In the bosonic theory D turns out to be

26 and in the superstring version to be 10. Of course, the extra dimensions have

to compactified in order to make contact with our usual four dimensional universe.

Upon quantization, the free relativistic string yields an infinite tower of excitations,

which can be interpreted as different particles of which the massless excitations

correspond to the photon field Aµ for an open string, and the graviton field gµν

for the closed string. This is remarkable as it shows that string theory naturally

incorporates general relativity. Particle interactions can be understood as joining

and splitting of strings, and the strength of these interactions is governed by a di-

mensionless coupling constant gs in the superstring theory. In fact, even Newton’s

constant G is given by G ∼ g2s l
8
s in the ten dimensional superstring theory.

In the last couple of decades it has become clear that superstring theory has even

more structure to it than previously thought. In addition to strings, the theory also

contains exotic objects called branes. These are extended (generally p dimen-
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sional) dynamical objects floating in space, which, like strings, have tension built

into them. Open strings can have their endpoints attached to such branes, in which

case they are called D-branes [47], where the D stands for “Dirichlet". Branes

are non-perturbative objects in the sense that their tension scales inversely as the

coupling constant gs, and therefore these objects do not show up in the string per-

turbative series when gs << 1. As gs → 0, these branes appear heavy. However,

their gravitational field is proportional to GTb ∼ gs, where Tb is the brane tension,

and therefore these objects have a flat space description in this limit.

Even though string theory is poorly understood at a non-perturbative level, it has

indicated a radical new view of spacetime called holography. Pedagogically stated,

holography imples that the physics in a region of spacetime can be described by

the degrees of freedom residing on the boundary of such a region. This idea dates

back to the work of ’t Hooft [48] and Susskind [49] who were in turn motivated by

the result that the entropy of a black hole scaled as the horizon area. The most

concrete realization of holography came up in 1997 when Maldacena, by looking at

certain class of D-branes, conjectured that the type IIB string theory (one of the five

versions of the existing superstring theories) on AdS5×S5 space is dual to N=4 su-

persymmetric Yang-Mills conformal field theory on the 3+1 dimensional boundary of

AdS5 [7]. In this chapter, we shall introduce this correspondence and demonstrate

its applicability using a toy example. For introduction to string theory, the reader is

directed to the references [50, 51, 52, 53]. However, as a precursor let us first have

a brief look at the preliminaries which will be useful in stating and understanding

the correspondence.
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4.2 Anti-de Sitter Space

Anti de Sitter was very briefly introduced in Chapter 3. It is space of d + 1 dimen-

sions, AdSd+1, is a space of constant negative curvature that can be taken as a

hyperboloid in a larger d + 2 dimensional flat embedding space with coordinates

(X0, X1, ..., Xd, Xd+1) and satisfying

−X2
0 +X2

1 + ...+X2
d −X2

d+1 = −L2 (4.1)

where L is the AdS curvature scale. Anti-de Sitter space is maximally symmet-

ric, and naturally appears as a solution to Einstein’s field equation with a negative

cosmological constant. The global coordinate system is constructed by defining

X0 = L sec ρ cos τ

Xi = L tan ρ Ωi

Xd+1 = L sec ρ sin τ

where the ranges of the coordinates are
∑d

i=1Ω
2
i = 1 , 0 ≤ ρ < π/2 , 0 ≤ τ < 2π

The time variable τ is compact as seen from the above parameterization. We must

“unwrap" the time coordinate by actually considering the AdS covering space and

let −∞ < τ < ∞. This represents the global coordinate system for AdS as it

covers the entire manifold. For our purposes though, the global coordinate system

isn’t very useful. The AdS/CFT correspondence is usually demonstrated using the

so-called Poincare coordinate system which can be constructed by defining coordi-

nates (z , xi , t ) ( with z ≥ 0)

In order to satisfy the embedding equation (4.1), we define
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X0 =
1

2z

(
z2 + L2 + x⃗ 2 − t2

)
Xi =

Lxi

z

Xd = − 1

2z

(
z2 − L2 + x⃗ 2 − t2

)
Xd+1 =

Lt

z

and the metric becomes

ds2 =
L2

z2

(
dz2 + dx⃗2 − dt2

)

The AdS boundary in this coordinate system is at z → 0. Since the Poincare co-

ordinate system suffices for our purpose in this chapter, we now briefly turn to a

discussion of conformal field theory which is the other critical component required

to understand the AdS/CFT correspondence.

4.3 Conformal Field Theory

This section essentially follows the excellent review by Ginsparg [54]. We consider

a space with metric gµν = ηµν on Rd. The line element is given by ds2 = gµνdx
µdxν .

The conformal group is defined as the set of transformations which leave the metric

invariant upto a scale change. Under such a coordinate transformation x→ x′, the

metric tensor transforms under the tensor transformation law as

gµν(x) → g′µν(x
′) = Ω(x)gµν(x) (4.2)

These transformations can be regarded as angle preserving. It is obvious that the

usual Poincare and Lorentz groups(with Ω(x) = 1) are subgroups of the much

larger conformal group.
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In order to determine the infinitesimal generators of the conformal group, we write

xµ → xµ + ϵµ. The metric under such a transformation becomes

ds2 → ds2 + (∂µϵν + ∂νϵµ)dx
µdxν (4.3)

In order to satisfy (4.2), it is required that

∂µϵν + ∂νϵµ ∝ ηµν (4.4)

or by tracing both sides with ηµν ,

∂µϵν + ∂νϵµ =
2

d
(∂.ϵ)ηµν (4.5)

From (4.2), we deduce that Ω(x) = 1 + 2
d
(∂.ϵ). We also note from (4.5) that

(ηµν∂
2 + (d− 2)∂µ∂ν)∂.ϵ = 0 (4.6)

For d ≥ 2, we observe from (4.5) and (4.6) that ϵ is at most quadratic in x. We have

1) ϵµ = aµ which are the ordinary translations.

2) ϵµ = ωµ
νx

ν (ω antisymmetric) are the rotations.

3) ϵµ = λxµ are scale transformations.

and finally,

4) ϵµ = bµx2 − 2xµ(b.x) the so called special conformal transformations.

We integrate to obtain the finite form of the transformations as

1) x→ x′ = x+ a

2) x→ x′ = Λx i.e. Lorentz transformations where (Λµ
ν belongs to SO(1, d− 1))

3) x→ x′ = λx , the dilatations where λ is a scalar

4) x→ x′ = x+bx2

1+2b.x+b2x2 are the special conformal transformations.

We remark that for the special case where d = 2, (4.5) becomes the Cauchy-

Riemann equation

∂1ϵ1 = ∂2ϵ2, ∂1ϵ2 = −∂2ϵ1 (4.7)
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We can then form the complex coordinates z, z̄ = x1 ± ix2 and write ϵ(z), ϵ̄(z̄) =

ϵ1 ± iϵ2. Hence for d = 2, the conformal transformations become the analytic

coordinate transformations

z → f(z), z̄ → f̄(z̄) (4.8)

for which the local algebra is infinite-dimensional. The two-dimensional conformal

field theory has been studied extensively owing to its relevance in mathematics and

theoretical physics. For a more exhaustive review on two-dimensional conformal

field theory, the reader can consult [55].

We shall now consider the form of the two-point functions in a conformal field theory

constrained by the conformal group. Under global conformal transformation,x →

x′, we define the “quasi-primary fields" or “conformal fields" in any conformal field

theory to transform as

ϕi(x) →
∣∣∣∣∂x′∂x

∣∣∣∣∆ ϕi(x
′) (4.9)

where ∆ is the conformal dimension of ϕi. We then have a covariant theory under

(4.9) in the sense that the correlation functions satisfy

⟨ϕ1(x1)...ϕn(xn)⟩ =
∣∣∣∣∂x′∂x

∣∣∣∣∆
x=x1

....

∣∣∣∣∂x′∂x

∣∣∣∣∆
x=xn

⟨ϕ1(x
′
1)...ϕn(x

′
n)⟩ (4.10)

We also demand that there is a vacuum |0⟩, invariant under the global conformal

group.

The condition (4.10) is very restrictive on the form of two-point functions of pri-

mary/conformal fields. It can be shown (refer to [55]) that under the global confor-

mal group and the condition (4.10), the two-point function is of the form

⟨ϕ(x1)ϕ(x2)⟩ ∝
1

|x1 − x2|2∆
(4.11)

This is precisely the form of the two-point function we will obtain when we demon-

strate the AdS/CFT correspondence later.
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4.4 Maldacena’s Conjecture and the AdS/CFT Correspondence

As mentioned previously, superstring theory contains non-perturbative objects called

branes. A Dp-brane, for example is a Dirichlet brane extending along p spatial di-

mensions on which the end points of an open string can end. If there are two such

branes, the string end points can attach itself to these branes in 2 × 2 ways. Con-

sider a stack of N such Dp-branes. In this case, there are N ×N possible configu-

rations for the end points of an open string. The lowest order quantum excitations of

such a string-brane system, when the N branes become coincident, is shown to be

a gauge theory with the symmetry group U(N) [56]. Since superstring theory has

supersymmetry built into it, the resulting gauge theory on the brane world volume

turns out to be the supersymmetric version of Yang Mills (SYM) theory. Maldacena

considered a stack of N D3-branes, described by the solution

ds2 = H−1/2(r)ηνµdx
µdxν +H1/2(r)dxidxi , µ, ν = 0, 1, 2, 3, i = 4, .., 9

H = 1 +
4πgsNα

′2

r4
, r2 = xixi (4.12)

where α′ is the square of the fundamental string length i.e. α′ = l2s . Clearly the

function H is singular as r → 0, but the metric behaves nicely in the small r limit,

ds2 → r2

L2
ηνµdx

µdxν +
L2

r2
dr2 + L2dΩ2

5 (4.13)

The first couple of terms represent AdS5 spacetime with a curvature radius L given

by L4 = 4πgsNα
′2. The last term describes S5. When gsN >> 1, The AdS curva-

ture scale is large compared to the string length ls. In this regime, general relativity

(or supergravity) is a valid effective description. However, in the complementary

regime i.e. gsN << 1, string perturbation series is a valid description where D-

branes act as boundary conditions for strings. Therefore by varying the parameter

λ = gsN , one can adiabatically go between different descriptions.
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Now consider the limit α′ → 0 in the D-brane picture. This is called the decoupling

limit, since the SYM theory on the branes decouples from the supergravity theory

in the bulk. Maldacena [7] conjectured that these two decoupled theories are in fact

the same. Thus technically stated, the AdS/CFT correspondence is that (type IIB)

superstring theory on AdS5×S5 is dual to N=4 SYM theory in 3+1 dimensions with

gauge group U(N). This particular SYM theory is conformally invariant (CFT) and

lives on the boundary of AdS. The coupling constants of the SYM theory and the

string theory are related by g2YM = gs. The parameter λ = gsN = g2YMN is called

the ’t Hooft coupling. It should be noted that when λ >> 1, the field theory side is

strongly coupled whereas the string theory side in the bulk is weakly coupled, and

hence supergravity is an effective description. When λ << 1, the field theory side

is weakly coupled (hence perturbation series can be performed). However, in this

regime the quantum string corrections become important and supergravity ceases

to be a valid description. Therefore, in a certain sense this correspondence can be

interpreted as a “weak/strong" duality. The unique feature about this duality is that

it is manifestly holographic and it implies that quantum gravity in higher dimensions

could be described by quantum field theories without gravity in lower dimensions.

In the initial days of the AdS/CFT correspondence, it was widely believed that the

correspondence was heavily dependent on the tools of string theory. However, now

the AdS/CFT correspondence is studied in its own right and is considered part of

the more general principle viz. the gauge/gravity duality (see the references towards

the end of the chapter). The correspondence has now been put on a more concrete

mathematical footing by the work of Witten, Gubser, Polyakov et al in [84, 58] in

which computational tools were developed. The correspondence formally reads

ZAdS(ϕ) = ZCFT (ϕ0) (4.14)
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Figure 4.2: A schematic description of the AdS/CFT correspondence. The bound-
ary CFT lives on the surface defined by large r in the metric (4.13)

where ϕ is the bulk field living in the AdS spacetime with d + 1 dimensions and ϕ0

is the boundary value of the bulk field at the d dimensional boundary of the AdS

spacetime. Therefore, the correspondence equates the partition functions of the

two dual theories. For our purpose, we consider the saddle-point approximation of

the correspondence which reads

e−IAdS(ϕ) =
⟨
e
∫
∂B ϕ0O

⟩
(4.15)

where ϕ(z , xi , t) → ϕ0(x
i , t) as z → 0 and the expectation value on the

field theory side is taken with respect to the path integral in the CFT vacuum, living

on the boundary ∂B. IAdS(ϕ) is euclidean action in the bulk AdSd+1. The saddle-

point approximation is justified as long as we assume that the ’t Hooft coupling

λ >> 1 so that quantum corrections in the bulk are supressed. Taking ϕ0 as the

boundary value of the field which acts as a source for the conformal operator O

on the boundary, the two-point function of the CFT is computed using the standard

field theory result i.e.

δ

δϕ0(x1 )

δ

δϕ0(x2 )
ZCFT (ϕ0 ) = ⟨O( x1 )O(x2 ) ⟩ (4.16)
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We illustrate this fact by considering a massive scalar field propagating in AdSd+1

and employ the Poincare coordinate system (4.2) for convenience. The bulk side

calculation proceeds by trying to find the so called bulk-boundary propagatorK(z, xi, t; x′i, t′),

a function that satisfies the equations of motion for a massive scalar field with the

property that K(z, xi, t) → δ(xi − x′i, t − t′) as z → 0. Witten in his classic paper

[58], found such a solution given by

K(z, xi, t; x′i, t′) =

(
z

z2 + |x− x′|2 − (t− t′)2

)∆

(4.17)

where ∆ = 1
2
(d +

√
d2 + 4m2). We see that the above bulk-boundary propagator

satisfies the equations of motion, is well behaved as z → ∞ (regularity in the bulk

for precisely this value of ∆) and also has the desired property at the boundary i.e.

lim
z→0

(
z

z2 + |x− x′|2 − (t− t′)2

)∆

∝ δ(xi − x′i, t− t′) (4.18)

Using the above bulk-boundary propagator we write the bulk field ϕ as

ϕ(z, xi, t) =

∫
K(z, xi, t; x′i, t′)ϕ0(x

′i, t′)dx′dt′ (4.19)

In order to evaluate the correlation functions in the CFT, we compute the classical

action using (4.19). Only the surface term of the action survives as the bulk term

vanishes because ϕ in (4.19) satisfies the equations of motion. Hence the action

for a massive scalar field in AdSd+1 upto a normalization reads

I(ϕ) =

[∫
√
ggzzϕ∂zϕ dt dx

1..dxd−1

]z→∞

z→0

(4.20)

From (4.17),(4.19) and (4.20), the action upto a normalization turns out be

I(ϕ) =

∫
dxdtdx′dt′

ϕ0(x, t)ϕ0(x
′, t′)[

|x− x′|2 − (t− t′)2
]∆ (4.21)

Using (4.15), we get the two-point function of the conformal field O by differentiating

the action twice with respect to ϕ0

⟨O( x1 t1)O( x2 t2) ⟩ =
1

[(x1 − x2)2 − (t1 − t2)2]
∆

(4.22)
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Comparing with (4.11), we see that ∆ = 1
2
(d+

√
d2 + 4m2) is the conformal weight

of the operator O.

We have thus demonstrated the AdS/CFT correspondence using the simplest of

examples. For related reviews, the reader is directed to [59, 60, 61, 62, 63, 64,

65, 66, 67, 68]. The correspondence can be applied to understand certain aspects

of field theories since many calculations involving quantities at very strong coupling

can be reduced to a pure gravity calculation. For example, progress has been made

in understanding QCD at strong coupling using AdS/CFT [69]. Though technically

the gravity dual of QCD is yet to be found. AdS/CFT has also been applied to con-

densed matter systems for which the usual analytical tools may fail [70, 71, 72].

Therefore, the AdS/CFT correspondence is a potentially powerful tool which can

help us understand strongly coupled quantum field theories and the quantum as-

pects of gravity.

With this chapter, we have laid down the necessary foundation to discuss the appli-

cation of AdS/CFT to Rindler-AdS space to synthesize a formulation which will try

to probe event horizons more quantitavely as compared to just studying quantum

fields in Rindler/black hole spacetimes.
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CHAPTER 5

RINDLER-ADS/CFT

In anti-de Sitter space a highly (compared to the AdS scale) accelerating observer

admits a Rindler horizon. The two Rindler wedges in AdSd+1 are holographically

dual to an entangled conformal field theory that lives on two boundaries with ge-

ometry R × Hd−1. For AdS3, the holographic duality is especially tractable, allow-

ing quantum-gravitational aspects of Rindler horizons to be probed. We recover

the thermodynamics of Rindler-AdS space directly from the boundary conformal

field theory. We derive the temperature from the two-point function and obtain the

Rindler entropy density precisely, including numerical factors, using the Cardy for-

mula. We also probe the causal structure of the spacetime, and find from the be-

havior of the one-point function that the CFT “knows" when a source has fallen

across the Rindler horizon. This is so even though, from the bulk point of view,

there are no local signifiers of the presence of the horizon. Finally, we discuss an

alternate foliation of Rindler-AdS which is dual to a CFT living in de Sitter space.

The discussion in this chapter is based on my work [73] with M. Parikh.

5.1 Introduction and Motivation

Rindler space, the portion of Minkowski space with which an observer undergoing

constant acceleration can interact, is perhaps the simplest spacetime with a hori-

zon. As the near-horizon limit of all nonextremal black holes and an example of

a spacetime with an observer-dependent horizon, Rindler space has been much

studied. Nevertheless, most of the literature on the subject has treated Rindler

space using the techniques of quantum field theory in curved spacetime; however

it is now recognized that many of the most interesting problems of horizon physics

are not accessible with those techniques. Instead one would like to be able to study

Rindler space in a theory of quantum gravity. This has not been done for the simple
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reason that a tractable theory of quantum gravity in asymptotically flat space does

not presently exist.

Fortunately, a tractable theory of quantum gravity in anti-de Sitter space

does exist via the AdS/CFT correspondence. This motivates us to consider accel-

erating observers not in Minkowski space but in AdS space. Observers in anti-de

Sitter space with suitably high proper acceleration (compared with the AdS length

scale) have acceleration horizons; Rindler-AdS space is thus the portion of anti-de

Sitter space that such observers can interact with. The purpose of this chapter then

is to investigate quantum-gravitational aspects of Rindler-AdS space via its dual

CFT. It is worth emphasizing that Rindler-AdS space is a particularly advantageous

spacetime for studying the quantum gravity of horizons. Unlike eternal black holes

in AdS, Rindler-AdS has no singularities where known physics breaks down. And

unlike flat Rindler space, the existence of a dual conformal field theory is assured;

indeed, in the case of AdS5 it is known to be N = 4 super Yang-Mills theory. Thus in

principle one has all the necessary tools to study event horizons in quantum gravity.

While Rindler-AdS space in general dimensions has been described and

studied previously, the real power of the AdS/CFT correspondence can be brought

to bear when the (bulk) spacetime dimension is three. For that special case, the

boundary theory becomes a two-dimensional CFT, with all the ensuing advantages.

In particular, the two-point function can be calculated explicitly and the Rindler

entropy density can be derived from the Cardy formula. The result matches the

Bekenstein-Hawking entropy density of the Rindler horizon precisely, including nu-

merical factors. Even more interestingly, one can test questions of information loss

within this context. For example, we find that the boundary theory “knows" when a

source has fallen past the Rindler horizon even though, from a bulk point of view,

there are no local invariants that mark the presence of the event horizon.
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This chapter is organized as follows. In Section 5.2, we present the classical

geometry of Rindler-AdS space. In Section 5.3, we quickly review Rindler-AdS

thermodynamics. Section 5.4 describes the boundary theory and contains our main

results. We calculate the bulk-boundary propagator and the two-point correlation

function of operators in the boundary theory. Specializing to AdS3, we show that the

Cardy formula precisely reproduces the Bekenstein-Hawking entropy density. We

then discuss the relation between Rindler-AdS space and AdS black holes. Next,

we turn to perhaps our most interesting derivation. We consider a source that falls

freely into the Rindler horizon. By calculating the one-point function of a boundary

operator, we show that a “boundary theorist" can tell whether the source has fallen

across the horizon. In Section 5.5, we consider an alternate foliation of Rindler-AdS

in which the boundary conformal field theory lives in de Sitter space. We briefly

discuss some subtleties of this variant of Rindler-AdS/CFT. We summarize and

conclude in Section 5.6 with some remarks about directions and puzzles suggested

by Rindler-AdS/CFT.

5.2 The Geometry of Rindler-AdS

We would like to cover anti-de Sitter space in the Rindler coordinates natural to

an accelerating observer. AdSd+1 can conveniently be described using embedding

coordinates of d+ 2-dimensional Minkowski space with two time-like directions:

−
(
X0

)2
+
(
X1

)2
+ ...+

(
Xd

)2 − (
Xd+1

)2
= −L2 . (5.1)

Here the AdS curvature scale is L and theO(2, d) isometry group is manifest. In the

embedding space, a Rindler observer is one whose Hamiltonian is a boost genera-

tor. It was shown in an elegant paper by Deser and Levin [74] that both acceleration

and “true" horizons in an Einstein space (such as say Schwarzschild, de Sitter, or

anti-de Sitter) can be regarded as Rindler horizons in a higher-dimensional flat em-

bedding space. The Hawking or Unruh temperature detected by observers in the
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lower-dimensional space can be obtained directly from accelerating trajectories in

the embedding space.2 In particular, Rindler observers in AdS are also Rindler

observers in the embedding Minkowski space [75].

Consider then a Rindler observer in d+2-dimensional Minkowski space (with

two time directions) uniformly accelerating in the X1 direction:

X0 = ξ sinh(t/L) X1 = ξ cosh(t/L) . (5.2)

To view these observers as part of AdS, define also

X2 =
√
L2 + ξ2 sinh(χ/L) cos θ1

...

Xd−2 =
√
L2 + ξ2 sinh(χ/L) sin θ1... sin θd−3 cos θd−2

Xd−1 =
√
L2 + ξ2 sinh(χ/L) sin θ1... sin θd−2 cosϕ

Xd =
√
L2 + ξ2 sinh(χ/L) sin θ1... sin θd−2 sinϕ

Xd+1 =
√
L2 + ξ2 cosh(χ/L) . (5.3)

This satisfies the AdS embedding equation (5.1). The ranges of the coordinates

are

0 < ξ −∞ < t <∞ −∞ < χ <∞ 0 ≤ θi ≤ π 0 ≤ ϕ < 2π . (5.4)

These cover the part of the hypersurface (5.1) with (X1)
2−(X0)

2
> 0 andX1, Xd+1 >

0. With this parameterization, the AdS metric becomes:

ds2 = −(ξ/L)2dt2+
dξ2

1 + (ξ/L)2
+(1+(ξ/L)2)

[
dχ2 + L2 sinh2(χ/L)dΩ2

d−2

]
. (5.5)

A few remarks are in order: 1) Note that the constant-ξ hypersurfaces are of the

form R × Hd−1. These are the hypersurfaces on which the boundary CFT will be
2This is because the response of Unruh detectors depends on the Wightman function which in

turn depends only on geometric invariants constructed out of bi-vectors, and these can just as well
be computed in the embedding space.
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defined.

2) Indeed, as the AdS curvature scale diverges, so that ξ
L
→ 0 and L2 sinh2(χ/L) →

χ2, we recover

ds2 = −(ξ/L)2dt2 + dξ2 + dχ2 + χ2dΩ2
d−2 , (5.6)

which is just the line element of standard (flat) d+ 1-dimensional Rindler space.

3) In three spacetime dimensions, the metric reduces to the β = 0 form for the

rotating Rindler-AdS metric (3.13).

The above metric was also discussed in [76, 77, 78, 79, 80] in various other con-

texts. To better understand the global properties of Rindler-AdS space, it is useful

to consider AdSd+1 in global coordinates for which the line element is

ds2 = −(1 + (ρ/L)2)dτ 2 +
dρ2

1 + (ρ/L)2
+ ρ2dΩ2

d−1 . (5.7)

For completeness, we also list how global coordinates are related to embedding

coordinates:

X0 =
√
L2 + ρ2 sin(τ/L)

X1 = ρ cosψ

X2 = ρ sinψ cos θ1

...

Xd−2 = ρ sinψ sin θ1... sin θd−3 cos θd−2

Xd−1 = ρ sinψ sin θ1... sin θd−2 cosϕ

Xd = ρ sinψ sin θ1... sin θd−2 sinϕ

Xd+1 =
√
L2 +R2 cos(τ/L) . (5.8)
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Here ψ is the polar angle on the Sd−1, which we have explicitly separated from

the angles on the Sd−2. Comparison with (5.3) yields the transformation between

Rindler and global coordinates in the chart where Rindler coordinates apply. The

angles θi, ϕ on the Sd−2 are the same in both coordinate systems. The remaining

global coordinates can be expressed in Rindler coordinates by

ρ2 = ξ2
[
cosh2(χ/L) + sinh2(t/L)

]
+ L2 sinh2(χ/L)

tanψ =

√
ξ2 + L2 sinh(χ/L)

ξ cosh(t/L)

cos2(τ/L) =
(ξ2 + L2) cosh2(χ/L)

ξ2
[
cosh2(χ/L) + sinh2(t/L)

]
+ L2 cosh2(χ/L)

. (5.9)

In particular, at t = 0, we see that τ = 0. At other times, the constant-time slices

of t are tilted with respect to the constant-time slices of τ . We also see from the

last of the above equations that, with the other coordinates held fixed, τ → ±π
2

as

t → ±∞. Our Rindler coordinates therefore cover a finite interval of global time.

This is illustrated in Fig. 5.3.

Since many of our calculations will be done in three dimensions, let us briefly

mention that special case. The metric for Rindler-AdS3 is

ds2 = − ξ2

L2
dt2 +

dξ2

1 + ξ2

L2

+

(
1 +

ξ2

L2

)
dχ2 . (5.10)

Its asymptotic behavior near the AdS boundary is given by

ds2 → L2dξ2

ξ2
+
ξ2

L2

(
−dt2 + dχ2

)
. (5.11)

We see that, unlike in higher dimensions, the metric on a constant-ξ hypersurface

is conformal to Minkowski space. Moreover, as ξ ⇒ ∞, the transformation ξ →

γξ and (χ, t) → γ−1(χ, t) is the usual scale-radius duality, and is manifestly an

isometry of the asymptotic metric.
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Figure 5.3: Geometry of Rindler-AdSd+1 space. A surface of constant ξ is a R ×
Hd−1 hypersurface. τ and ρ are the time and radius in global coordinates; except
at ρ = 0 each point in the interior corresponds to a Sd−2. The Rindler-AdS region
extends only up to τ = ±π/2 at the boundary of AdS. The arrow on the right points
in the direction of ∂t, whose orbits are a Rindler observer’s worldline; the arrow is
reversed for the antipodal observer. One copy of the CFT lives on the boundary
within the region shown in red.

5.3 Thermodynamics of Rindler-AdS

Contrary to the situation in flat space, the temperature seen by an observer moving

with constant acceleration in curved spacetime is not always proportional to the

proper acceleration. Rather, the general formula relating proper acceleration a and

local temperature in (A)dSd+1 from [75] is

Tlocal =
1

2π

√
2Λ

d(d− 1)
+ a2 =

1

2π
aembed , (5.12)

where aembed is the proper acceleration of the Rindler observer in the flat embed-

ding space. This agrees for example with the fact that even a geodesic observer

(a = 0) in de Sitter space sees a temperature. In AdS, there is a critical acceleration

(ac = 1/L) before the observer detects thermality. Observers at the critical accel-

eration see zero-temperature extremal horizons. Observers with lower acceleration

do not have horizons. For example, an observer at a constant nonzero global radial
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coordinate ρ, moving in the direction of ∂τ , has a constant nonzero acceleration

but nevertheless does not measure a temperature. Such an observer moves verti-

cally up the Penrose diagram and has no horizons. From the embedding point of

view, sub-critical acceleration trajectories correspond to spacelike trajectories in the

higher-dimensional space and therefore do not give an Unruh temperature.

Consider then a Rindler-AdS observer at constant ξ. The proper accelera-

tion of such an observer is

a2 =
1

ξ2
+

1

L2
. (5.13)

Inserting (5.13) into (5.12) we get

Tlocal =
1

2πξ
. (5.14)

Therefore our coordinates manifestly describe observers having acceleration greater

than the critical value. This can also be seen directly from the coordinates. The

SO(2, d)-invariant vacuum state (analogous to the Poincaré-invariant vacuum in

Minkowski space) is the state annihilated by the modes that have positive frequency

with respect to the global time coordinate, τ . Being global, τ can be assigned to

each point on the entire space, (5.1), in a single-valued manner. But (5.2) then

implies that the Rindler time t must have an imaginary period of 2πL. Thus the

Green’s function of the SO(2, d)-invariant vacuum, when expressed in Rindler co-

ordinates is similarly periodic in imaginary time, indicating that an Unruh detector

carried by the Rindler observer will record a temperature. Finally, the proper time of

the Rindler observer has an extra factor of
√
−gtt, giving precisely (5.14). Later, we

will derive this temperature from the two-point correlation function in the boundary

theory.

Next consider the entropy. The horizon is at ξ = 0. As in flat Rindler space,
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the area of the horizon in Rindler-AdS space is infinite:

AH(AdSd+1) ∼ Ld−2

∫ ∞

0

sinhd−2(χ/L)dχ . (5.15)

However, the entropy density, s, is finite and obeys the universal relation:

s =
1

4Gd+1

. (5.16)

For the case of three-dimensional rotating Rindler space (3.13) described in chapter

3, the temperature and entropy are

T =
1− β2

2πL
S =

1

4G3

∫
(1− β2)dχr , (5.17)

where β is the rotation parameter, −1 ≤ β ≤ 1. The event horizon is still at ξ = 0

and the entropy is of course infinite. We would like to remind the reader that the

non-rotating Rindler-AdS space is related to its rotating counterpart (3.13) by the

simple diffeomorphism

t→ t− βχ ; χ→ χ− βt (5.18)

5.4 The Boundary Theory

We are now interested in the holographically dual theory, which defines quantum

gravity in Rindler-AdS space. As emphasized earlier, Rindler-AdS is simpler to

study than eternal AdS black holes. Rindler-AdS space does not have singularities

and the precise form of the boundary CFT is known in certain cases. Now, as usual

in AdS/CFT [7], in the limit of large N and large ’t Hooft coupling, the string partition

function can be approximated at saddle point by the exponential of the classical

supergravity action:

Z[ϕ0(x)]CFT = ⟨ei
∫
∂AdS ϕ0(x)O(x)⟩ ≈ eiSsugra[ϕ(z,x)] (5.19)

where the bulk field ϕ(z, x) takes the value ϕ0(x) on the boundary ∂AdS. In the Eu-

clidean formulation, ϕ0(x) acts as a source term in the CFT, and specification of the
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boundary field ϕ0(x) (along with the assumption of regularity in the interior) uniquely

determines the bulk field, which can be determined using the bulk-boundary propa-

gator. Thus bulk fields are dual to boundary sources. However, there are additional

subtleties in the Lorentzian version of the correspondence [81, 82] because of the

existence of normalizable modes in the bulk. These are bulk excitations that do not

change the leading (in z) contribution to the boundary value of the field, ϕ0(x). The

normalizable modes are dual to states in the boundary theory. For our present pur-

pose, we will ignore the contribution of the normalizable modes and just analytically

continue the bulk-boundary propagators defined in Euclidean signature in order to

study the various boundary correlation functions in Lorentzian signature. We will

also focus on AdS3 for computational convenience; most of the results can be ex-

tended without loss of generality to higher dimensions. Below we will first recover

the thermodynamics from the CFT. Then we will perform a calculation that indicates

how the boundary theorist could perceive the horizon. Remarkably, the calculation

indicates that at least partial information is available to the CFT about events that

are across the Rindler horizon.

Temperature, Two-Point Correlators and Entropy

We take the complete Hilbert space of conformal operators to be given by a direct

product of two Hilbert spaces, H = H1 ⊗ H2. We also take the complete state to

be an entangled state of the two CFTs, as studied in [83]:

|Ψ⟩ = 1√
Z(β)

∑
n

e−βEn/2|En⟩1 × |En⟩2 . (5.20)

All expectation values of the conformal operators are taken with respect to the

entangled state given by (5.20). In order to compute the correlation functions in

the boundary theory, one needs the explicit form of the bulk-boundary propagator
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K(ξ, χ, t;χ0, t0) defined by

ϕ(ξ, χ, t) =

∫
K(ξ, χ, t;χ0, t0)ϕ0(χ0, t0)dχ0dt0 . (5.21)

Here the point (χ0, t0) acts as a source on the boundary while the bulk point (ξ, χ, t)

is the sink. In AdS3, the bulk-boundary propagator for a minimally coupled massive

scalar field, upto normalization, is

K(ξ, χ, t;χ0, t0) =
1[√

1 + ξ2

L2 cosh(
χ−χ0

L
)− ξ

L
cosh( t−t0

L
)

]∆ . (5.22)

Here ∆ = 1+
√
1 +m2 is the conformal dimension of the boundary operator dual to

a bulk scalar of mass m. The bulk-boundary propagator satisfies the massive wave

equation in Rindler-AdS coordinates and is valid as long as both the source and

sink happen to be on the same side of the Rindler horizon i.e. when the conformal

operaters are inserted on the same boundary. As ξ → ∞, K becomes a delta

function supported at χ = χ0 and t = t0. Using the standard rules for AdS/CFT

[84, 85], the two-point function between conformal operators inserted on the same

boundary is

⟨O(χ1, t1)O(χ2, t2)⟩ =
1[

cosh(χ1−χ2

L
)− cosh( t1−t2

L
)
]1+√

1+m2
(5.23)

The two-point functions has a periodicity of 2πL in imaginary time; evidently the

boundary CFT is thermal in nature. This is in agreement with the fact that the

temperature of the Rindler horizon is indeed TH = 1
2πL

. Hence the boundary theory

gives the correct horizon temperature.

To evaluate the bulk-boundary propagator when the sink is on the other side

of the horizon, we analytically continue the time as t → t − iπL, as can be seen

from (5.3). The bulk-boundary propagator then becomes

K(ξ, χ, t;χ0, t0) =
1[√

1 + ξ2

L2 cosh(
χ−χ0

L
) + ξ

L
cosh( t−t0

L
)

]1+√
1+m2

(5.24)
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Using the above bulk-boundary propagator and the rules of AdS/CFT we arrive at

the two-point function of operators inserted on the opposite boundaries

⟨O1(χ1, t1)O2(χ2, t2)⟩ =
1[

cosh(χ1−χ2

L
) + cosh( t1−t2

L
)
]1+√

1+m2
(5.25)

The two-point function is nonsingular because the operators are always spacelike

separated. The reason the expectation value does not vanish even though the

operators on opposite boundaries commute is that the CFTs are entangled. Given

the explicit forms of both (5.23) and (5.25), it is suggestive that we should have

complete knowledge of the entire causal structure of the Rindler-AdS spacetime.

This suggests that one may be able to use the present framework to address certain

issues about the information loss puzzle.

Entropy

What about entropy? First let us consider the entropy in higher dimensions. Spe-

cializing to AdS5, the Rindler horizon has entropy

SRindler = lim
χ0→∞

πL2

G5

∫ χ0

0

sinh2(χ/L)dχ , (5.26)

which diverges as expected. The coordinate ξ scales the boundary theory. Specifi-

cally, for AdS5, the dual theory is N = 4 SYM theory, with a gauge field, four Weyl

spinors and six conformally coupled scalars, all in the adjoint of SU(N). The num-

ber of degrees of freedom is thus 15N2. The size of the gauge group is related to

the AdS radius by the usual dictionary

N2 =
πL3

2G5

(5.27)

A priori, there are now two ways of calculating the entropy from the dual theory: as

the entropy of a gas of thermal free fields, and as entanglement entropy. The free

field entropy computation for a thermal CFT is done using the standard result

SCFT =
2

3
π2N2VCFTT

3
CFT (5.28)
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Evaluating this “holographically" implies substituting boundary data into the above

expression. At fixed ξ = ξ0 ≫ L, the boundary metric is

ds2 = ξ20

[
−dt2

L2
+
dχ2

L2
+ sinh2

(χ
L

)
dΩ2

2

]
(5.29)

The horizon temperature is given by TH = 1
2πL

and the physical temperature at the

boundary is

TCFT =
TH√
−gtt

=
1

2πξ0
(5.30)

and VCFT is given by

VCFT = lim
χ0→∞

4πξ30
L

∫ χ0

0

sinh2(χ/L)dχ (5.31)

Using (5.27), (5.30), (5.31) and inserting them into (5.28),we see that the free field

CFT entropy scales in the same manner as (5.26), albeit with

SCFT =
1

6
SRindler (5.32)

This familiar numerical disagreement is presumably because of the fact that we

have assumed the large N limit and large ’t Hooft coupling. In this approximation,

the entropy of the boundary theory is computed using the results for a free field

CFT. In the exact case however, the CFT could be a fully interacting field theory; we

do not yet understand how to calculate the entropy for such a theory directly.

So far this is all mostly familiar. We can do much better for Rindler-AdS3.

For (5.10), the Bekenstein-Hawking entropy is given by

SBH =
A

4G3

=

∫
dχ

4G3

The Euclideanized boundary metric for (5.10) is given by

ds2
boundary = dτ 2 + dχ2 ,

where τ ∼ τ + β = τ + 2πL, and the last equality follows from the fact that the

boundary two-point function (5.23) is periodic in imaginary time with period β =
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2πL. Since by the AdS/CFT correspondence ZAdS = ZCFT , we can now use the

Cardy formula [86] which gives the entropy of a two dimensional CFT to calculate:

SCFT =
π

3β
c Volume =

π

3

3L

2G3

1

2πL

∫
dχ = SBH , (5.33)

where c = 3L
2G3

is the central charge of the unitary CFT as calculated by Brown and

Henneaux [87]. Of course the entropy of the Rindler horizon is infinite, but it is very

interesting that the entropy densities are now in precise agreement.

We can also use the Cardy formula for the CFT dual to the rotating Rindler-

AdS space (3.13):

SCFT =
π

3
cT Volume =

π

3

3L

2G3

1− β2

2πL

∫
dχr = SBH (5.34)

Once again the CFT entropy density and the Bekenstein-Hawking entropy density

are in precise agreement, including the numerical factor. Under the diffeomorphism

(5.18), the volume element transforms as dχ → (1 − β2)dχ, and therefore (5.33)

and (5.34) both have the universal entropy density 1/4G.

Let us pause here to comment briefly on the relation between Rindler-AdS

space and black holes in anti-de Sitter space. First, it is important to clarify that

Rindler-AdS space is not the near-horizon limit of black holes in AdS; the near-

horizon limit of all non-extremal black holes, including AdS black holes, is flat

Rindler space.

The existence of an ergosphere in rotating Rindler-AdS space recalls the

rotating BTZ black hole. Indeed, rotating Rindler-AdS space is related to the rotating

BTZ black hole [88] via

χr ∼ χr + 2π . (5.35)

A change of coordinates

ξ =

√
r2 − 1

1− β2
(5.36)
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puts the metric in the familiar BTZ form:

ds2 = −(r2 − 1)(r2 − β2)

r2
dt2r+

r2

(r2 − 1)(r2 − β2)
dr2+r2

(
dχr −

β

r2
dtr

)2

. (5.37)

Rindler-AdS is thus the universal cover for the BTZ black hole [76, 77, 78, 79, 80].

The black hole solution is obtained by making an identification in a direction per-

pendicuar to ∂t at the boundary. However, there is an important difference between

Rindler-AdS space and the BTZ black hole. The identification breaks the symme-

try group down from SL(2, R) × SL(2, R) to SL(2, R) × U(1). Consequently, the

freedom of picking out the time direction is lost; neither the event horizon nor the

ergosphere of the BTZ black hole is observer-dependent. Put another way, the

identification χr ∼ χr +2π gives the two-dimensional boundary Minkowski space a

cylinder topology. But special relativity on a cylinder has a preferred frame, singled

out by the identification [89, 90]. Hence there is a preferred direction of time.

That Rindler-AdS3 is the universal cover of the BTZ black hole also means

that two-point functions in the CFT for BTZ black holes are infinite sums of Rindler-

AdS two-point functions summed over all image points. For example, for operators

inserted on opposite boundaries, the BTZ two-point correlator is

⟨O1(χ1, t1)O2(χ2, t2)⟩BTZ ∼
n=+∞∑
n=−∞

1[
cosh(χ1−χ2+2πn

L
) + cosh( t1−t2

L
)
]1+√

1+m2

∼
n=+∞∑
n=−∞

⟨O1(χ1 + 2πn, t1)O2(χ2, t2)⟩Rindler (5.38)

The relative simplicity of the two-point function in Rindler-AdS is, as we shall see

below, another one of the advantages of Rindler-AdS as a model spacetime in the

study of horizons.

The Omniscient CFT

It is now widely believed, if not proven, that the process of black hole formation

and evaporation is unitary. The existence of a unitary conformal field theory dual to
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anti-de Sitter space lends support to this belief, as the formation and evaporation of

AdS black holes is presumably a process that has a dual description within a unitary

theory. Nevertheless, a detailed account of how information emerges from a black

hole is far from clear. Here we will take a step in that direction by showing that the

dual CFT can tell whether an infalling source has crossed the horizon. In fact, the

CFT even has partial information about events that happen across the horizon. This

is promising because, from the local bulk point of view, the horizon is a nondescript

place; by contrast, gauge/gravity duality is nonlocal and it is precisely in a theory

with nonlocality that one expects to be able to evade the paradoxes of black holes.

There are of course several different ways to probe the horizon [91, 92, 93].

In particular, Shenker et al. in [94] probed the singularity structure of the BTZ

black hole using spacelike geodesics. Even though Rindler-AdS spacetime does

not have any singularity, it is instructive to carry out a similar analysis and study

its implications in our case. The basic premise is to study geodesics which start

at the boundary, cross the horizon in finite proper length and end at the opposite

boundary of the spacetime.

In the case of Rindler-AdS in three dimensions (5.10), spacelike geodesics

for ∆χ = 0 trajectories are given by

1

1 + ξ2

L2

(
dξ

ds

)2

− E2λ2

ξ2
= 1, (5.39)

where E denotes the conserved energy per unit mass and is given by

E =
ξ2

λ2
dt

ds
(5.40)

and “s" denotes the proper length. Integrating, we find

ξ(s) = L

√(
cosh

( s
L

)
+
Eλ

L
sinh

( s
L

))2

− 1 ; E2 > 0,
E2λ2

L2
< 1, (5.41)
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where we have set ξ(0) = 0. The proper length required for the trajectory to begin

at a bulk coordinate | ξ0
L
| ≫ 1 (but from behind the horizon), and reach the horizon

is given by (5.41)

s− ≈ − ln

(
2ξ0

L− Eλ

)
(5.42)

The proper length required to reach the same bulk coordinate on the other side of

the horizon is

s+ ≈ ln

(
2ξ0

L+ Eλ

)
(5.43)

Hence the total proper length is given by

s+ − s− ≈ ln

(
4ξ20

L2 − E2λ2

)
(5.44)

The action for this process is I = m∆s = 2m ln
(

2ξ0√
L2−E2λ2

)
. In order to connect E

to ∆t, we solve for (5.40) using (5.41) and get

tanh

(
−t
λ

)
= 1 +

(
L2 + E2λ2

LEλ

)
tanh(

s

L
) (5.45)

Hence

∆t = t(+∞)− t(−∞) = λ ln

(
L− Eλ

L+ Eλ

)
− iπλ (5.46)

As seen from the above equation, iπλ is the required jump in imaginary time to go

across the Rindler horizon. The real part, ∆tr, is related to E by

Eλ = −L tanh

(
∆tr
2λ

)
(5.47)

Using the above expression, the action for the geodesic is given by

I = m∆s = 2m ln

(
2ξ0√

L2 − E2λ2

)
= 2m ln

(
2
ξ0
L

cosh(
∆tr
2λ

)

)
(5.48)
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As the infrared cutoff ξ0
L

→ ∞, the above action diverges. Subtracting the infinite

contribution, we arrive at the renormalized action for the geodesic given by

Iren = 2m ln

(
cosh(

∆tr
2λ

)

)
(5.49)

The contribution of this geodesic to the two-point function given by the WKB ap-

proximation upto a normalization is

e−Iren =
1(

cosh(∆tr
2λ

)
)2m (5.50)

We see that for largem (when the WKB approximation is indeed valid),1+
√
1 +m2 ≃

m, the leading term of (5.25) agrees with (5.50) as ∆t → ∞. This is analogous to

the fact that although classically a particle is always confined inside the light-cone,

quantum mechanically there is a small but finite amplitude for the particle to “leak"

outside the light-cone and the amplitude to do so is given by e−I where I = m|∆x⃗|.

The above calculation is encouraging and is highly suggestive of the fact

that the CFT indeed has access to information across the horizon. However, the

formation of an actual blackhole is through collapse and that the surface of the

collapsing matter follows a timelike trajectory. Therefore, in order to better under-

stand the causal structure of the event horizon we need to study infalling matter

following timelike geodesics from the dual CFT perspective. This can be done as

follows. we will consider “switching on" a source which freely falls into the Rindler

horizon, before being “switched off" after the passage of some finite interval of

proper time. The source couples to a bulk field which, for simplicity, we will take

to be a free scalar field. The boundary value of the bulk field in turn plays the role

of a coupling constant in the boundary CFT. The motivation for choosing such an
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infalling source as a probe is both physical and technical. Consider, as an analogy,

a Reissner-Nordstrom black hole. The bulk field here would be the electromagnetic

field and a source would be any charge or current configuration. For the purpose

of understanding information retrieval, one might like to send in a source that car-

ries no coarse-grained hair (i.e. no mass, charge, or angular momentum) such as,

say, an electric dipole, to test whether the CFT can determine what was thrown in.

The alternative to throwing in a source would be to send in some excitation of the

field itself; this would be analogous to probing our Reissner-Nordstrom black hole

by sending in an electromagnetic wave. Technically, the problem with sending in

a wave is that it is not localized even in the bulk; by contrast, the source can be

localized. We would have to send in a wave packet and deal with issues of the

spreading of the packet. Also, if the bulk field is massless, waves of this field will

propagate on null trajectories. Hence in light-cone or Eddington-type coordinates,

the wave would have a constant ingoing null coordinate and we would not be able

to distinguish the moment the packet crossed the horizon from any earlier moment.

The advantage of sending in a source is that it can travel on a timelike trajectory,

for which the ingoing null coordinate time varies along the trajectory. And by con-

sidering the signatures of the “switching on" and “switching off" processes of our

infalling source, we will see that the CFT can tell whether the source is switched on

or off even after it crosses the Rindler horizon.

In order to describe an infalling source, we need to define the Rindler coor-

dinates beyond the horizon i.e. into the region (X1)2 − (X0)2 < 0. To that end, we

transition to ingoing Eddington-Finkelstein (EF) coordinates by defining

r ≡ ξ2

2L

v ≡ t+

∫
dr

2r
L

√
1 + 2r

L

= t+
L

2
ln


√

1 + 2r
L
− 1√

1 + 2r
L
+ 1

 . (5.51)
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With this, the Rindler-AdS3 metric in EF coordinates becomes

ds2 = −2r

L
dv2 +

2dvdr√(
1 + 2r

L

) +

(
1 +

2r

L

)
dχ2 . (5.52)

The ranges of the coordinates is −L/2 < r < ∞ and −∞ < v < ∞, with the

region outside the horizon being 0 < r < ∞. In particular, these coordinates are

perfectly smooth at the future horizon r = 0. These coordinates span one patch

of the Rindler-AdS space time (−L
2
< r < ∞). In the Penrose diagram, the entire

space time can be viewed as an infinite concatenation of such identical patches, in

the direction of the global time coordinate. The boundary metric at large r is

ds2b =
2r

L

(
−dv2 + dχ2

)
, (5.53)

which is conformally flat, an advantage of working in three dimensions.

In order to describe a source falling into the Rindler horizon, we consider

timelike radially ingoing geodesics in Rindler-AdS3. Since the metric is invariant

under translations of the v coordinate, the momentum component pv is conserved

along geodesics. Since pv = muv (where ua is the velocity vector), and setting

m ≡ 1, we have that uv is conserved. For simplicity, let the conserved value of uv

be −1. Then setting χ=const so that uχ = 0 (which corresponds to radial infall) we

have

(ur)2 +
4r2

L2
= 1 . (5.54)

Choosing the initial condition r(0) = L/2 and using uv = −1, we find that the

source’s geodesic trajectory is given by

rJ(τ) =
L

2
cos

(
2τ

L

)
vJ(τ) =

L

2
ln

[
1 + sin

(
2τ
L

)
(
√
2 cos

(
τ
L

)
+ 1)2

]
, (5.55)

where τ is the proper time. The conditions are chosen such that, at τ = 0, we have

r = L/2 and v = −L ln(1 +
√
2). The source exits the patch covered by Eddington
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coordinates at τmax = Lπ/2 for which vmax = 0. In particular, the source crosses

the Rindler horizon at

τh = L
π

4
, rh = 0 , vh = −L

2
ln 2 . (5.56)

We now consider a bulk scalar field, ϕ, sourced by a freely falling localized

source, J , which we model as

J =

∫ τf

τi

dτ δ(r − rJ(τ))δ(v − vJ(τ))δ(χ− χJ(τ)) , (5.57)

where rJ(τ) and vJ(τ) are given by (5.55), and χJ(τ) = 0 for simplicity. In addition,

we require the source to get “switched on" at a certain instant with proper time τi ≥

0, then traverse the geodesic path (5.55) before getting “switched off" or terminated

at a later proper time, τf .

In order to describe the infall of the source into the horizon from the boundary

perspective, we use the basic AdS/CFT tool∫
bulk

Dϕ eiI[ϕ] =
⟨
e
∫
ϕ0O

⟩
CFT

, (5.58)

where ϕ0 is the boundary value of the bulk field ϕ. Using the SUGRA approximation,

we can approximate the bulk path integral by its saddle-point∫
bulk

Dϕ eiI[ϕ] ∼ eiI[ϕcl] , (5.59)

where I[ϕcl] is the action for the classical field configuration. In order to evaluate

the bulk action, we need to first find ϕcl. Given J , we can solve for the bulk scalar

field as

ϕcl(r, χ, v) =

∫
G(r, χ, v; r′, χ′, v′)J(r′, χ′, v′)dr′dχ′dv′ , (5.60)

where G(r, χ, v; r′, χ′, v′) is the bulk-bulk propagator. For our source (5.57) we have

ϕcl(r, χ, v) =

∫ τf

τi

G(r, χ, v; rJ(τ), χJ(τ), vJ(τ))dτ . (5.61)
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An important point to note is that the propagators that arise in path integrals, such

as on the left-hand side of (5.58), are Feynman propagators; Feynman’s iϵ prescrip-

tion is necessary for path integrals to converge. Hence we must use the Feynman

propagator to evaluate ϕcl in order to be consistent with our setup. This is very im-

portant since the Feynman propagator, which crucially does not vanish at spacelike

separation, can yield signatures about across-horizon physics.

The boundary value, ϕ0(χ, v), of the scalar field can be obtained by taking

lim
r→∞

ϕcl(r, χ, v) = ϕ0(χ, v). The explicit form for the bulk-bulk Feynman propagator

for AdS3 was derived in [95] and is given by

G(r1, χ1, v1; r2, χ2, v2) ∼ γ∆ 2F1

(
∆

2
,
∆

2
+

1

2
,∆, γ2

)
, (5.62)

where ∆ = 1+
√
1 +m2. Here γ is related to the AdS invariant geodesic distance,

γ =
L2

Xa
1X

b
2ηab

, (5.63)

for any two vectors Xa
1 and Xa

2 , where ηab is the Minkowski metric in the embedding

space (i.e. with two time directions). In EF coordinates (see appendix), we find that

γ =
L2

+
√
+4r1r2

L2 cosh
(

v2−v1−f(r2)+f(r1)
L

)
−
√(

1 + 2r1
L

) (
1 + 2r2

L

)
cosh

(
χ2−χ1

L

) .
(5.64)

According to the AdS/CFT correspondence, at large N and large ’t Hooft

coupling, the one-point function is given by

⟨O(v, χ)⟩ = lim
r→∞

1√
−h

δI

δϕ0(v, χ)
, (5.65)

Here h is the determinant for the boundary metric (5.29). Let us first evaluate the

action. The action for the field ϕ is

I[ϕ] =

∫ (
−1

2
(∂ϕ)2 − 1

2
m2ϕ2 + Jϕ

)
dχdvdr . (5.66)
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Integrating (5.66) by parts, and separating the bulk and the surface terms,

we get for the variation of the action

δI[ϕcl] ∼
∫
gµνδϕcl ∂µϕcl dΣν , (5.67)

where dΣν is the surface normal to the v coordinate and the variation of the bulk

term vanishes on-shell. Since we wish to evauate this action at the boundary, i.e.

at r → ∞, using the above expression and (5.65), the one-point function is

⟨O⟩ ∼ lim
r→∞

√
−g√
−h

grµ∂µϕcl , (5.68)

as one power of ϕ is pulled down by differentiation. We now plug in (5.61) to get

⟨O⟩ ∼ lim
r→∞

√
−g√
−h

grµ∂µ

∫ τf

τi

G(r, χ, v; rJ(τ), χJ(τ), vJ(τ))dτ . (5.69)

Finally, we assume a massless scalar field m = 0 ⇒ ∆ = 2 for ease of calculation,

χJ = 0, and insert (5.55), (5.62), and (5.64) into the above expression. Next,

we notice from (5.64) that γ goes to zero as r ⇒ ∞. We can therefore perform

a power series expansion of the hypergeometric function for small γ in terms of

Pochhammer symbols. We then get

lim
r→∞

∂r
[
γ2 2F1

(
1, 3/2, 2, γ2

)]
= lim

r→∞

∂

∂γ2

[
γ2

(
1 +

3γ2

4
+ ...

)]
∂γ2

∂r

= lim
r→∞

[
1 +

3γ2

2
+ ...

]
∂γ2

∂r
, (5.70)

where, from (5.64), we have

lim
r→∞

∂γ2

∂r
=

−1

r2∞

[√
1 + cos

(
2τ
L

)
cosh(χ)−

√
cos

(
2τ
L

)
cosh

(
v
L
− g(τ)

)]2 . (5.71)

Here r∞ is the infrared cutoff that marks the surface on which the CFT lives. There-

fore in the large r = r∞ limit, only the first term in (5.70) contributes. Noting that in

the large r limit,
√
−h→ 2r∞

L
, grr → 4r2∞

L2 , we have for the one-point function

⟨O(v, χ)⟩ ∼
∫ τf

τi

dτ

r∞

[√
1 + cos

(
2τ
L

)
cosh(χ)−

√
cos

(
2τ
L

)
cosh

(
v
L
− g(τ)

)]2 ,
(5.72)
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where g(τ) = vJ(τ) − L
2
ln

[√
1+

2rJ (τ)

L
−1√

1+
2rJ (τ)

L
+1

]
= 1

2
ln
[
1+sin 2τ

L

cos 2τ
L

]
. The appearance of the

1
r∞

factor is consistent with the scaling dimensions of the operator O. The above

integral for ⟨O(v, χ)⟩ can be further simplified to yield∫ τf

τi

4 dτ

r∞

[
2
√
1 + cos (2τ/L) coshχ− e−v/L

√
1 + sin (2τ/L)− ev/L cos(2τ/L)√

1+sin(2τ/L)

]2 .
(5.73)

Signatures of Across-Horizon Physics

First, let us consider the one-point function when the source is both switched on

and switched off outside the horizon. For instance, we could take τi = 0 and

τf = Lπ/6 < τh. Setting χ = 0 and performing the integral (5.73), we obtain

⟨O(v, 0)⟩ ∼ 1

r∞
(√

2− cosh(v/L)
) (√

6−
√
3 cosh(v/L) + sinh(v/L)

) . (5.74)

Notice that the one-point function has four poles at

ui = L ln(
√
2 + 1) , vi = L ln(

√
2− 1)

uf =
L

2
ln(2 +

√
3)(5 + 2

√
6) , vf =

L

2
ln(2 +

√
3)(5− 2

√
6) . (5.75)

Here u and v are ingoing and outgoing Eddington-Finkelstein coordinates; u is re-

lated to the v-coordinate by u = v − 2f(r), where f(r) is given by the log term in

(5.51). We have expressed two of the poles in terms of u coordinates for reasons

that will be clear soon.

Now, consider the case where the source switches off only after it crosses

the horizon. For example, choose τi = 0 and τf = Lπ/2 > τh. Evaluating the

integral, we find

⟨O(v, 0)⟩ ∼ 1

r∞
(√

2− cosh(v/L)
)
sinh(v/L)

. (5.76)
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In this case the one-point function has only three poles. They are at

ui = L ln(
√
2 + 1) , vi = L ln(

√
2− 1)

vf = 0 . (5.77)

The appearance of poles in the one-point function is easy to understand. We

considered an idealized source which is nonzero only for a finite interval of proper

time, τi ≤ τ ≤ τf . As a result, the field ϕcl is discontinuous at the endpoints (τi, τf )

since at these points we abruptly switch the source on and off. But the one-point

function is related to the derivative of the field (5.69). The poles therefore come

from taking the derivative of a discontinuous field. The discontinuity in the field

propagates towards the AdS boundary along light-like trajectories. Moreover, since

we are using the Feynman propagator, the propagation of these signals occur via

the retarded (the u poles) as well as the advanced component (the v poles) of the

propagator. In a certain sense, these poles indicate the creation and annihilation

of the source from a boundary theory perspective. There are also poles in the

χ (spatial) direction on the boundary. That is because the locus of poles is the

intersection of the constant r hypersurface where the CFT lives with the past/future

light cone emanating from the endpoint. See Figure 5.4.

Now the crucial point is that, once the source crosses the horizon, there

is no pole corresponding to the outgoing Eddington coordinate u when the source

switches off at τf . This is because once past the horizon, retarded signals from

the source do not reach the surface where the CFT lives. This is schematically

illustrated in Figure 5.5.

Evidently, the poles of the one-point function, ⟨O⟩, allows the boundary the-

orist to determine whether the source was annihilated before or after crossing the

horizon. If there are four poles, the source switched off before it reached the Rindler
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Figure 5.4: The locus of points on the boundary where there are poles coming from
one endpoint of the source trajectory. The specific values plotted are for the case
where the source switches off precisely on the horizon, for which there are only v
poles coming from the intersection of the past light cone of the endpoint with the
hypersurface on which the CFT lives.

Figure 5.5: a) The left figure illustrates when the source is active for a certain time
period outside the horizon in the right Rindler wedge (R). The red and blue lines
indicate signals propagating towards the AdS boundary which correspond to the
creation and annihilation of the source respectively. The four poles are indicated
on the boundary where the CFT lives. b) The right figure shows a source that
crosses the horizon. It is evident that the retarded signal from the annihilation (or
switching off) of the source no longer reaches the CFT boundary, and therefore the
CFT perceives just three poles as shown. The dashed lines indicate the boundary
of the Eddington-Finkelstein coordinates.
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horizon; if there are only three poles, it means that the source switched off after

horizon-crossing. But in order to determine whether the source switches off before

or after the horizon, the boundary theorist has to observe the one-point function

for all time. For example, a source that is switched off just infinitesimally before

crossing the horizon will contribute a future-light-cone (u) pole in the near-infinite

future. So the boundary theorist has to wait till future infinity to determine whether

there are three poles or four.

In fact, the boundary theorist even acquires partial information about the

location of the switching off event, even if that event was across the horizon. In

our radial infall scenario, we have effectively suppressed the χ coordinate and the

location of a switching on/off event is characterized by its u and v coordinates.

If the source switches off before it traverses the horizon, the CFT pole structure

records both the u and the v values of the event so that its precise location can

be identified. Even if the source switches off after it crosses the horizon, the CFT

still knows about the v value of the event. So partial information is obtained even

about events that happen across the event horizon. For complete information, note

that the past light cone of a switching off event in the upper Rindler wedge (F)

(see Figure 5.5) also intersects the antipodal CFT (associated with a hypersurface

in region (L)). The missing fourth pole is actually in the antipodal CFT; complete

knowledge of the pole structure of both CFTs is therefore sufficient to reconstruct

switching off events in the upper Rindler wedge.

5.5 De Sitter space as the boundary of Rindler-AdS

In this section, we touch upon an alternate formulation of Rindler-AdS with a poten-

tially wide spectrum of applications. Consider again a Rindler observer in d + 2-

dimensional Minkowski space (with two time directions) uniformly accelerating in
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the X1 direction:

X0 = r̃ sinh(t/L) X1 = r̃ cosh(t/L) (5.78)

This turns the flat space line element into

ds2 = −
(
r̃

L

)2

dt2 + dr̃2 + dX2
2 + ...+ dX2

d − dX2
d+1 (5.79)

which, indeed, is Rindler space (albeit with two time directions). Rindler observers

at constant r̃ have proper acceleration 1/r̃. We foliate AdS as

X0 = R cosχ sinh(t/L)

X1 = R cosχ cosh(t/L)

X2 = R sinχ cos θ1

...

Xd−2 = R sinχ sin θ1... sin θd−3 cos θd−2

Xd−1 = R sinχ sin θ1... sin θd−2 cosϕ

Xd = R sinχ sin θ1... sin θd−2 sinϕ

Xd+1 =
√
L2 +R2 (5.80)

This satisfies the AdS embedding equation (5.1). The first two coordinates are of

the form (5.78) with what we called r̃ now being R cosχ. Defining r = L sinχ, we

finally obtain

ds2 =
dR2

1 + (R/L)2
+ (R/L)2

[
−(1− (r/L)2)dt2 +

dr2

1− (r/L)2
+ r2dΩ2

d−2

]
(5.81)

We see that Rindler-AdS can also be foliated in slices that are conformal to static

de Sitter space with de Sitter radius L [96, 97]. The ranges of the coordinates are

0 ≤ R −∞ < t <∞ 0 ≤ r < L 0 ≤ θi ≤ π 0 ≤ ϕ < 2π (5.82)
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The coordinate r is related to the polar angle on the Sd−1 by r = L sinχ in the

region 0 ≤ χ < π/2. The range π/2 < χ ≤ π covers the static patch of the

antipodal observer. Note that, since r̃ = cosχ, the relation (5.78) between ∂X0 and

∂t is reversed for this observer.

Incidentally, the spatial geometry at constant t is given by

ds2 =
dR2

1 + (R/L)2
+R2

(
dχ2 + sin2 χdΩ2

d−2

)
(5.83)

which is locally Euclidean AdSd i.e. the hyperbolic space Hd. For the region 0 ≤

χ < π/2 (corresponding to 0 ≤ r < L), the spatial part of AdS that corresponds

to a Rindler observer is really Hd/Z2 whose topology is Bd/Z2. The geometry of

Rindler-AdS space is depicted in Fig. 5.6

Figure 5.6: Geometry of Rindler-AdSd+1 space. The shaded region is a surface
of constant R, which covers the static patches of a pair of antipodal de Sitter ob-
servers. τ and ρ are the time and radius in global coordinates. The Rindler-AdS
region extends only up to τ = ±π/2 at the boundary of AdS. The arrow in the right
shaded region points in the direction of ∂t, whose orbits are a Rindler/de Sitter ob-
server’s worldline; the arrow is reversed for the antipodal observer. Except at ρ = 0
each point in the interior corresponds to a Sd−2.

To compute the temperature of the Rindler horizon, consider a Rindler ob-

server at constant R and constant r. The proper acceleration of such an observer
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is

a =
1

R

√
(R/L)2 +

1

1− (r/L)2
(5.84)

Inserting (5.84) into (5.12) we get

Tlocal =
1

2πR

√
1

1− (r/L)2
(5.85)

and the horizon temperature is

TH =
√
−gttTlocal (5.86)

From the boundary point of view the Rindler observer is an accelerating

observer at fixed r in static de Sitter space. To obtain the de Sitter temperature, we

define t = t̂/(R/L)2 which puts the constant R part of the metric in the form:

ds2 = −f(r)dt̂2 + dr2

f(r)
+ (R/L)2 r2dΩ2

d−2 (5.87)

Then the de Sitter temperature is

T =
f ′(rH)

4π
=

l

2πR2
(5.88)

and the local temperature at constant r is

Tboundary =
1

2πR

1√
1− (r/L)2

(5.89)

which is again the physically-measured Rindler temperature.

The entropy of the Rindler horizon is calculated using the standard area

formula. The horizon is at r = λ. Specializing to AdS5, the Rindler horizon has

entropy

SRindler =
π

G5

∫ R0

0

R2dR√
1 + (R/L)2

=
πL2

2G5

(
R0

√
1 + (R0/L)2 − L sinh−1(R0/L)

)
(5.90)
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where R0 is a cut-off radius which acts in the bulk as an infrared regulator. We see

that for large R0 the entropy scales like R2
0:

SRindler ≈
πLR2

0

2G5

(5.91)

The coordinate R scales the boundary theory in this parameterization. At fixed

R = R0, therefore, the theory is a UV cut-off CFT in static de Sitter space. The R2
0

scaling of the entropy, (5.91), seems to indicate, perhaps surprisingly, that a free

field computation for a thermal CFT will not give the right result either. A free field

calculation, quite apart from being off by numerical factors, would be expected to

yield an extensive entropy that scales like R3
0 though oddly the entropy in this case

is precisely (R0/L)
2N2 using (5.27). The actual R2

0 scaling strongly suggests that

the correct boundary interpretation of Rindler entropy could be as entanglement

entropy [98, 99, 100, 101]; the de Sitter horizon acts as a surface across which

the conformal fields are entangled with the fields in the static de Sitter patch of the

antipodal observer.

To calculate the two-point correlator consider a massive scalar field in Rindler-

AdSd+1. The easiest way to calculate the boundary correlation functions is to Wick-

rotate the time coordinate as t → iLψ; the CFT then lives on an Sd. The two-point

function of the dual operator can now be easily calculated as

⟨O(θ1, ψ1)O(θ2, ψ2)⟩ =
1

(1− cosD)∆
(5.92)

where ∆ = 1 +
√
1 +m2, is the conformal dimension of the dual operator, and

D is the de Sitter invariant distance in d dimensions, which in two dimensions be-

comes cosD = (sin θ1 sin θ2 cos (ψ1 − ψ2) + cos θ1 cos θ2). We observe that (5.92)

has the required periodicity in the imaginary time coordinate, ψ, and yields the cor-

rect Rindler temperature (5.86).
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5.6 Conclusion

In this Chapter, we have presented a holographic duality for acceleration horizons.

The key idea was to consider acceleration horizons in AdS, rather than in flat space,

so as to be able to exploit the AdS/CFT correspondence. We then used the dual

picture to holographically probe properties of the Rindler horizon. We recovered

the horizon thermodynamics including the precise entropy density for the case of

Rindler-AdS3. We also showed that physics beyond the horizon can be probed from

the perspective of the boundary theory by calculating the response of the boundary

theory to an infalling horizon-crossing source. Evidently, Rindler-AdS/CFT holds

much promise for studying the quantum gravity of horizons and, moreover, it is

considerably more tractable than the holography of AdS-Schwarzschild black holes;

we have surely only scratched the surface of this rich subject.

Among the obvious directions for future study are to work out two-point and

higher correlation functions for infalling sources and to look at other more realistic

scenarios that might probe the horizon. It would be particularly interesting to set up

a problem in which information fell into the Rindler horizon, to see whether our intu-

ition about information return is borne out. Another obvious direction is to perform

calculations using Rindler-AdS/CFT and then finally make a global identification in

the χ direction to learn about the holography of BTZ black holes.

Also, as mentioned earlier, there are subtleties in the Lorentzian version of

AdS/CFT because of the presence of normalizable modes. We ignored in this work

but it would be interesting to work out mode solutions for (5.5) and map them to

the boundary theory. One can also determine the spectrum of normalizable modes

and study the quantization conditions. This will throw more light on the dictionary

between the bulk and the boundary descriptions in Rindler-AdS/CFT.

80



It should be noted that what we have done was, in some sense, still quantum

field theory in curved spacetime. The boundary theory learned about the bulk from

the boundary value of the bulk field which in turn was determined using a propagator

over a fixed background geometry. By considering graviton fluctuations, we might

be able to take a step beyond QFT in curved spacetime.

More speculatively, we could try to implement some kind of observer com-

plementarity [102, 103]. For example, in our scenario we know that complete infor-

mation about the switching off event in the upper Rindler wedge was provided by

the pole structure in both CFTs. In order for all this information to be available to

one observer, it might be necessary to perform some kind of antipodal identification

[103] or to map the antipodal CFT to some other surface in the original wedge, such

as at the stretched horizon [102, 104]. It might also be, however, that complete in-

formation is not provided even by both CFTs. In particular, the points where the

two antipodal Rindler wedges intersect cannot be attributed unambiguously to ei-

ther Rindler wedge. Correspondingly, operator insertions on the boundary of global

AdS at precisely the points where it touches that intersection surface cannot obvi-

ously be thought of as insertions in either of the two CFTs.

Still more speculatively, there might be connections to the Hagedorn tran-

sition. In quantum field theory, acceleration and temperature are linearly related,

but in string theory it is possible that something nontrivial happens when the tem-

perature reaches the Hagedorn temperature. Perhaps the existence of a Rindler-

AdS/CFT correspondence might provide a new angle from which to examine this

old issue.

That a certain foliation of AdS has de Sitter space as its boundary is also

very interesting. One can try to understand the vacuum states in de Sitter space

using this setup [30]. It may allow us to use the AdS/CFT correspondence in the
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reverse way: by using gravity in Rindler-AdS space to learn about strongly-coupled

field theories in de Sitter space.

Appendix
Eddington-Finkelstein coordinates for Rindler-AdS3

Ingoing Eddington-Finkelstein coordinates are related to AdS embedding coordi-

nates through

X0 =
√
2rL sinh

(
1

L
(v − f(r))

)
=

1

2

[
ev/L

√
2rL(

√
1 + 2r/L+ 1)√

1 + 2r/L− 1
− e−v/L

√
2rL(

√
1 + 2r/L− 1)√

1 + 2r/L+ 1

]
(5.93)

X1 =
√
2rL cosh

(
1

L
(v − f(r))

)
=

1

2

[
ev/L

√
2rL(

√
1 + 2r/L+ 1)√

1 + 2r/L− 1
+ e−v/L

√
2rL(

√
1 + 2r/L− 1)√

1 + 2r/L+ 1

]
(5.94)

X2 =
√
L2 + 2rL sinh

(χ
L

)
X3 =

√
L2 + 2rL cosh

(χ
L

)
, (5.95)

where f(r) = L
2
ln

[√
1+ 2r

L
−1√

1+ 2r
L
+1

]
as given by (5.51). These coordinates are nonsingu-

lar at the Rindler horizon r = 0.
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CHAPTER 6

WEAK MEASUREMENTS IN QUANTUM MECHANICS

This chapter is based on my work [105] with Y. Aharanov, P. C. W. Davies, and

S. Walker.

6.1 Introduction

In quantum mechanics, we have two kinds of time evolution: the usual unitary evo-

lution, and the sudden, irreversible, and nonunitary collapse of the wavefunction

projected onto an eigenstate. The latter describes the “measurement" process ac-

cording to Von Neumann [106], where it is understood that the system is strongly

coupled to the measuring device. However, if one considers the measurement

process carried out on an ensemble of such systems, certain novel features are

observed.

Following the arguments in [107], we consider a large collection of quantum sys-

tems represented by the product state

|Ψ⟩N = |ψ⟩1|ψ⟩2...|ψ⟩N (6.1)

where the systems described by ψ are non-interacting. Consider the set of identical

observables (A1, A2, ..AN), where Ai acts on the ith wavefunction of the ensemble.

Let us now define the operator

ÂN =
1

N

N∑
i=1

Ai (6.2)

which can be interpreted as the ensemble average operator. Imposing the initial

condition that all the N quantum systems were initially prepared in the same identi-

cal state, the action of the ensemble average operator in the limit that N → ∞, on

|Ψ⟩N yields

ÂN |Ψ⟩N = ⟨A⟩|Ψ⟩N (6.3)
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where ⟨A⟩ is the quantum expectation value for any single system in the ensem-

ble (6.1). The interesting feature emerging out of this construction is that in the

limit N → ∞, a measurement of ÂN does not disturb the ensemble, or any of

its individual members. This can be understood by realizing that ⟨A⟩ is in fact the

eigenvalue of the operator ÂN in (6.3), and its known that repeated measurements

of an eigenstate does not disturb the system. From the perspective of the measur-

ing device, this can be understood as follows. If the measuring device is coupled to

the whole ensemble (comprised of N non-interacting quantum systems) with certain

fixed strength, then it is fair to assume that its coupling strength to each individual

members is rescaled by 1/N . Therefore, in the large N limit, the coupling to indi-

vidual members approaches zero. Such measurements are called “weak" since the

measuring device is weakly coupled to the system being measured, and therefore

does not disturb the system. Nevertheless, the ensemble average is acquired in

the large N limit.

A natural question that arises is what would be the outcome if a strong measure-

ment is performed on the ith member of the ensemble, after a weak measurement

has already been performed? Even though all the members of the ensemble were

initially prepared in the same quantum state, it is not mandatory that subsequent

strong measurements on the ith member would yield the same eigenvalue. There-

fore, the initial ensemble (6.1) can be split into various new subensembles, with

each subensemble satisfying the condition that a strong measurement at a later

time yields a specific eigenvalue for its members. Depending on the outcome, we

are then free to focus on any subensemble of our interest. Thus, in addition to

pre-selecting the initial ensemble (N identical, non-interacting quantum systems),

we can also post-select a subensemble (≤ N identical, non-interacting quantum

systems) which satisfy a specific final condition.

Let us denote the initial state of the whole ensemble as |Ψi⟩, and the final state as
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|Ψf⟩. Correspondingly, let us denote the initial state of the kth member as |ψi⟩k,

and the final state as |ψf⟩k. Consider the expectation value of the operator Âk

(i.e. action of Â on the kth member) with respect to |Ψi⟩,

⟨Ψi|Âk|Ψi⟩ =
∑
j

|⟨Ψi|ψf,j⟩k|2⟨ψf,jk|Âk|Ψi⟩/⟨ψf,jk|Ψi⟩ (6.4)

Here we have inserted a complete single-member final states {|ψf,j⟩k}. The first

term in the right hand side of the above equation is the probability that the kth mem-

ber of the ensemble yields a final eigenstate j upon a strong measurement. This

term in the large N limit represents the fraction of the whole ensemble that satisfies

the initial pre-selection and also the specific post-selection (to be in the eigenstate

j). Therefore, this term defines the pre and post-selected subensemble, and the

expression (6.4) gives the expectation value Âk of a single member, expressed as

a sum of all possible subensembles (i.e. all post-selections) weighted by the quan-

tities

⟨ψf,jk|Âk|Ψi⟩/⟨ψf,jk|Ψi⟩ = ⟨ψf,jk|Âk|ψi⟩k/⟨ψf,jkψi⟩k (6.5)

We drop the redundant index k, since all the members are identical. Therefore the

quantity

⟨ψf,j|Â|ψi⟩/⟨ψf,j|ψi⟩ (6.6)

is called the weak value of the operator Â subject to the specific post-selected

eigenstate j. Schematically, the weak value can be written as

w = ⟨final|Â|initial⟩/⟨final|initial⟩ (6.7)

where |initial⟩ is the pre-selected state, and |final⟩ is the post-selected state. In

the case of time-dependent systems, the weak value at time ti ≤ t ≤ tf , can be

expressed as

w =
⟨ψf |U †(t− tf )ÂU(t− ti)|ψi⟩
⟨ψf |U †(t− tf )U(t− ti)|ψi⟩

, (6.8)
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where U is the time-evolution operator U(t − t0) = e−iH(t−t0 , and |ψi⟩ is the en-

semble of systems that has been pre-selected at time t = ti. |ψf⟩ then represents

a subensemble post-selected at a time t = tf .

These weak values are peculiar in the sense that they can be arbitrarily large, and

may lie outside the range of eigenvalues. They may be even negative or complex

valued. For more review on this subject, the reader is directed to the references

[106, 108, 109, 110, 111, 112, 113, 114].

In this chapter, we will consider weak measurements performed on certain quantum

systems subjected to specific pre and post-selections.

6.2 Weak values in “quiescent" regions

Consider an atom, coupled to the electromagnetic field, and prepared at time ti in

an excited state. Suppose a measurement made at a later time tf finds the atom to

still be in the initial, excited, state. What can one say about the electromagnetic

field in the interval [ti,tf ]? In recent years, problems of this sort have been tackled

by considering weak measurements conducted at times in the interval between

pre- and post-selected states. In the case of an excited atom coupled to the

electromagnetic field, weak values of the field observables in the interval [ti , tf ]

will generally be non-zero, even when the atom is found to have not decayed at

time tf . We are familiar with the fact that the decay of an atom excites the

electromagnetic field around it. Here we show that the excitation energy of an

atom that does not decay can nevertheless still create measurable effects in the

surrounding field.

Special interest attaches to cases where ⟨in|out⟩ ≪ 1, because w can then be

very large, leading to potentially large physical effects. We predict that the weak

values of the electromagnetic field in the vicinity of an un-decayed atom will
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become exponentially large as a function of time, with an e-folding time that

approaches the atom’s expectation time for decay. To pursue this claim, we

consider a simplified model in which a two-level atom is coupled to an infinite bath

of other two-level atoms n with identical ground states and upper levels distributed

as follows:

En − E0 = n∆E; N ≤ n ≤ N (6.9)

i.e. equispaced and distributed symmetrically about the excited state of atom “0". If

for simplicity one assumes a constant identical interaction Hamiltonian H (H is

assumed to be a real number) between 0 and each atom in the bath, then the

evolution operator U of the system can be written down explicitly [107]. Here we

wish to focus on the case that the atom 0 is both pre-selected (at time ti) and

post-selected (at time tf ) to be in the excited state, with all the bath atoms initially

set in their ground states, and focus on the subsequent behavior of the bath atoms

in the interval [ti, tf ]. Intuitively one might imagine that because the atom has not

decayed at time tf then there will be no disturbance to the bath atoms, but this is

not the case. Let the weak value for the projection operator onto the excited state

of atom n be denoted wn, and the bra vector for the initial state of the total system

be denoted as (1,0,0,0,..), the first entry corresponding to atom 0 in its excited

states and the remaining entries to the n bath atoms in their ground states. The

projection operator Pn onto the excited state of atom n will then be, in this notation,

a square matrix with all elements 0 except the entry for row n, column n, which will

be 1. The Schrödinger equation for this system is a set of coupled differential

equations

ȧ0 = −i
∑
n

Hane
−in∆Et

ȧn = −iHa0ein∆Et (6.10)
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where an is the probability amplitude that the atom labeled by n is in the excited

state. We set ~ = 1 for convenience. The above set of equations (6.10) can be

solved exactly using Laplace transforms, in the limit that N ⇒ ∞,∆E ⇒ 0,

H ⇒ 0, and H2π
∆E

⇒ γ, where γ is defined as the decay constant. The evolution

operator (which in this case is a 2N + 1× 2N + 1 matrix) can be written down as:

U00(t) = exp [−γ|t| − iE0t]

Un0(t) = H exp (−iEnt)
[exp [−γ|t| − iEnt− 1]]

γ − in∆E

U0n(t) = H exp (−iEnt)
[exp [−γ|t| − iEnt− 1]]

γ + in∆E
(6.11)

The elements Unm are not required for what follows. It may be readily verified that

the above operator satisfies the unitarity constraint UU † = 1 (for the elements

given), and the evolution condition U(tf − t)U(t− ti) = U(tf − ti). Using (6.8), the

weak values of interest are given by

wn =
[1, 0, 0, 0, ..]TU(tf − t)PnU(t− ti)[1, 0, 0, 0..]

[1, 0, 0, 0, ..]TU(tf − ti)[1, 0, 0, 0..]
(6.12)

where [1, 0, 0, 0, ..]T is the transpose of the column vector [1, 0, 0, 0, ..], and use has

been made of the relation U †(t− tf ) = U(tf − t). The matrix multiplications are

straightforward, and using (6.11) we find

wn =

(
H2

γ2 + n2∆E

)
exp [γ(tf − ti)] (exp [−γ(tf − ti)] + exp [−in∆E(tf − ti)])

−
(

H2

γ2 + n2∆E

)
exp [γ(tf − ti)] (exp [−γ(t− ti)− in∆E(tf − t)])

−
(

H2

γ2 + n2∆E

)
exp [γ(tf − ti)] (exp [−γ(tf − t)− in∆E(t− ti)]) (6.13)

Thus, this gives the weak value that the nth atom is in an excited state, subject to

our specific pre and post-selection.

6.3 Particle tunneling through a barrier

As a second example, let us consider the quantum tunneling of a particle trapped

inside a potential well. This can be considered as a stylized model of alpha-decay,
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in which a particle tunnels through a potential barrier with small probability. Let us

model the system by the potential:

V (x) =
~2κ
m

δ(x)

= ∞ ; x ≤ −2L (6.14)

where κ > 0, i.e. it describes a potential barrier centered at x = 0. The problem is

set up as follows : A particle, modeled by a wave packet is confined to the region,

−2L < x < 0, under the influence of a positive delta function potential at x = 0.

The wave packet is prepared such that initially at time t = 0, it is confined to the

well, −2L < x < 0, and is incident on the barrier with some speed. Therefore, the

particle goes back and forth between the infinite wall at x = −2L and the potential

barrier at x = 0. Everytime the wave packet hits the potential, a part of it gets

transmitted and the rest, reflected. Usually if we wait for a sufficiently long time, we

will find that the wave packet has completely tunneled through the potential. We

are interested in weak values at an intermediate time 0 < t < T of the projection

operator δ(x− a) outside the well, subject to the post-selection that the particle is

still confined to the well at time t = T .

For simplicity, let us model the trapped particle by the Gaussian wave packet

Φ(x, t) =
b√

b2 + i~t
m

exp

[
ik0

(
x− x0 −

vt

2

)
− (x− x0 − vt)2

2(b2 + i~t
m
)

]
(6.15)

where m is the particle mass, and x0 is the position of maximal |Φ(x, t)|2 at t = 0.

To avoid the complications associated with wave packet spreading, we assume the

following conditions:

1) the mass m is very large such that b2 ≫ ~t
m

in the range of time that we are

interested in, i.e neglect spreading

2) the initial width b to be extremely small, and

3) the dominant wave number k0 to be very large such that v = ~k0
m

is finite.
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With the above conditions, the wave packet can be approximated as

Φ(x, t) = exp

[
ik0

(
x− x0 −

vt

2

)
− (x− x0 − vt)2

2b2

]
(6.16)

which would suffice for our calculation. The pre-selection condition at t = 0 is

Φpre(x, 0) = exp

[
ik0(x+ L)− (x+ L)2

2b2

]
(6.17)

and we post-select the state at a later time t = T to be

Φpost(x, T ) = exp

[
−ik0(x+ L)− (x+ L)2

2b2

]
(6.18)

We have chosen the post-selected state to be the same as the pre-selected state,

except for the fact that the post-selected wave is traveling in the opposite direction.

These choices of pre and post selections are chosen for convenience without any

loss of generality. In order to compute the weak value, one requires an exact time

dependent solution to the system (6.14), which for an incident Gaussian wave

packet is intractable. However, one can derive the reflection(ρ) and transmission(τ )

coefficients for the time-independent Schroedinger equation in the presence of a

delta function barrier [115, 116, 117, 118]. Therefore, without introducing much

error, it can be safely assumed that every time a narrow Gaussian wave packet is

incident upon a delta barrier, the reflected component (assumed to be a Gaussian)

has its amplitude reduced by a factor ρ. The rest of the wave packet is transmitted

with an amplitude τ times the amplitude of the incident wave packet.

To include the effects of an infinite wall to the existing delta barrier is non-trivial.

For our purpose, it would suffice to assume that the wall is at a large distance from

the barrier, i.e. L
b
≫ 1 and acts as a mirror. Also b2 ≫ ~t

m
, and the typical time

scale will be given by t ∼ L/v from dimensional grounds. However, since

mv = ~k0, we require that

bk0 ≫
L

b
≫ 1 (6.19)
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With these approximations, we construct the forward time evolution Φpre(x, t) of

the pre-selected wave packet (6.17), in the region −2L < x < 0 as

ρN exp

[
ik0

(
x+ (4N + 1)L− vt

2

)
− (x+ (4N + 1)L− vt)2

2b2

]
−

ρN exp

[
−ik0

(
x− (4N − 3)L+

vt

2

)
− (x− (4N − 3)L+ vt)2

2b2

]
and in the region 0 < x <∞, as

N∑
N=1

τρN−1 exp

[
ik0

(
x+ (4N − 3)L− vt

2

)
− (x+ (4N − 3)L− vt)2

2b2

]
(6.20)

Here N is the number of interactions with the delta barrier. As required the solution

satisfies the boundary condition at the wall Φ(−2L, t) = 0. It can be seen that with

increasing time, the amplitude of the oscillating wave packet decreases by a factor

ρ = −iκ
k0+iκ

. Also, N such interactions with the barrier creates a train of N

transmitted wave packets in the region x > 0 as intuitively expected. Following

similar reasoning, the backward time evolution Φpost(x, t) of the post-selected

wave packet, in the region −2L < x < 0, can be expressed as

ρS exp

[
−ik0

(
x+ (4S + 1)L+

vt′

2

)
− (x+ (4S + 1)L+ vt′)2

2b2

]

−ρS exp

[
ik0

(
x− (4S − 3)L− vt′

2

)
− (x− (4S − 3)L− vt′)2

2b2

]
and in the region 0 < x <∞, it is given by

S∑
S=1

τρS−1 exp

[
−ik0

(
x+ (4S − 3)L+

vt′

2

)
− (x+ (4S − 3)L+ vt′)2

2b2

]
(6.21)

where t′ = t− T , and S is the number of interactions with the delta barrier. These

forward and backward evolving wavepackets overlap at certain specific points in

the spacetime diagram (see figure), where the weak values are non-zero. A wise

choice of post-selection time vastly simplifies calculations without compromising

important qualitative features.
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Figure 6.7: Spacetime diagram showing all “sweet spots" outside the well, for the
post-selected time T = 14L/v. For this choice of T , the spacetime diagram is
extremely symmetric. The wall is at x = −2L and the delta barrier at x = 0

These “sweet spots" can be interpreted as follows. Consider the point in the figure

represented by I. This is the intersection point of the forward and backward

evolving packets, where the forward wave packet has interacted once with the

barrier and the backward evolving wave packet has had three interactions.

Therefore this point in spacetime corresponds to (N = 1, S = 3). Now consider the

points III and IV . These points are on the same time slice (at t = 7L/v in the

figure). The point III is where both the forward and backward evolving wave

packets have had just one interaction with the barrier. Therefore, this point

92



corresponds to (N = S = 1). The point IV corresponds to (N = S = 2) since this

intersection point is reached after the forward and backward evolving wave

packets have had two interactions each with the barrier.

We will now proceed to evaluate weak values at these sweet spots for particular

choices of the post-selection time T . The simplest non-trivial choice would be a

post-selection at time T = 6L/v. In this case, there are two points of overlap

between the forward and backward evolving wavepackets, viz. at x = +2L and

x = −2L at time t = 3L/v. Using (6.20), (6.21), and the formula (6.8), the weak

values at the time slice t = 3L/v are evaluated to be

w(x, T = 6L/v)outside =

√
1
b2
e
(b2k0−i(x−2L))

2

b2 k20
√
π
(
k20 +

(
−1 + eb

2k20
)
κ2
) , x > 0 (6.22)

for outside the well (weak value for the transmitted packet overlaps), and

w(x, T = 6L/v)inside = −

√
1
b2
e
(b2k0−i(2L+x))

2

b2
(
−1 + e2ik0(2L+x)

)2
κ2

√
π
(
k20 +

(
−1 + eb

2k20
)
κ2
) (6.23)

for inside the well, i.e. −2L < x < 0 (weak value for the reflected packet overlaps)

Plots of the real and imaginary parts of these expressions are consistent with the

expectation that the weak value oscillates rapidly outside the well, and therefore,

the mean of the weak value should average out to zero. This is so because upon a

strong projective measurement at time T = 6L/v, the particle is still found inside

the well. In fact, as a check, it can be mathematically verified that∫∞
−2L

w(x)insidedx+
∫∞
0
w(x)outsidedx = 1. This is a generic feature of weak

measurements.

Weak values can also be measured for other choices of post-selection time T . It

turns out that if the post-selection time is chosen to be of the form T = (4i+ 2)L/v
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where i = 1, 2, 3, 4..., the resulting spacetime diagram is symmetric, and the

calculations simplify considerably. The spacetime diagram shown before

corresponds to the choice i = 3. For completeness, we tabulate the weak values

evaluated at time slices corresponding to all the sweet spots outside the well, for

this choice of post-selected time:

w(x)I =

√
1
b2
e
(b2k0−6iL+ix)(b2k0+i(2L+x))

b2 k20
√
π
(
k20 +

(
−1 + eb

2k20+
16L2

b2

)
κ2
) (6.24)

w(x, T = 14L/v)II =

√
1
b2
eb

2k20−2ik0(2L−x)− (−4L+x)2

b2 k20
√
π
(
eb

2k20κ2 + e4ik0L(k0 − κ)(k0 + κ)
) (6.25)

w(x, T = 14L/v)III =

√
1
b2
e
(b2k0−(4+6i)L+ix)(b2k0+(4−6i)L+ix)

b2 k20(k0 − iκ)2

√
π
(
k40 − 2ik30κ− 2k20κ

2 −
(
−1 + eb

2k20
)
κ4
) (6.26)

w(x, T = 14L/v)IV =

√
1
b2
e
(b2k0−(4+2i)L+ix)(b2k0+(4−2i)L+ix)

b2 k20κ
2

√
π
(
−k40 + 2ik30κ+ 2k20κ

2 +
(
−1 + eb

2k20
)
κ4
) (6.27)

w(x, T = 14L/v)V =

√
1
b2
e

b4k20−48L2−2ib2k0(2L−x)+8Lx−x2

b2 k20
√
π
(
eb

2k20κ2 + e4ik0L(k0 − κ)(k0 + κ)
) (6.28)

w(x, T = 14L/v)V I =

√
1
b2
e

b4k20−52L2−2ib2k0(2L−x)+4Lx−x2

b2 k20
√
π
(
k20 +

(
−1 + eb

2k20+
16L2

b2

)
κ2
) (6.29)
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6.4 Conclusion

In the case of an excited atom coupled to a bath of atoms, we observe that the

exponential pre-factor dominates, and wn rises exponentially on time scales

greater than the decay time 1/γ. That is, the weak values of the projection

operators onto excited states of the bath atoms grow exponentially, and the later

the initially excited atom 0 is post-selected to have remained in the excited state,

the larger the values wn become. Of course, for times tf ≫ 1/γ, the probability of

finding the atom 0 un-decayed falls exponentially, so the sub-ensemble becomes

exponentially small, but for a sufficiently large ensemble there will always be

systems that satisfy the final condition. It may easily be checked that for t = ti and

t = tf then wn = 0, as required. For the case that n = 0, (6.13) is real, and the

exponential growth is manifest:

w0 =
H2

γ2
(1 + exp [γ(tf − ti)]− exp [γ(tf − t)]− exp [γ(t− ti)]) (6.30)

Although wn can grow exponentially large, the phase factors in (6.13) imply that

the sign of the real part can be both positive and negative. Indeed, one may

explicitly sum (6.13) over all n (in the limit N → ∞,∆E → 0), to find
∑
wn = 0.

In the second example of a trapped particle in a well, even though the solutions

were an approximation, certain salient features can be deduced. we observe that

the weak values oscillate rapidly outside the well. Of interest is the ratio between

the weak values (6.22) and (6.24) at the sweet spot I, i.e at x = 2L. This ratio

essentially indicates the effect of the post-selection time (T ) on the real part of the

weak value. Noting that the condition (6.19) holds, this ratio is given by

w(2L, T = 14L/v)

w(2L, T = 6L/v)
∼ exp[16L2/b2] ≫ 1 (6.31)

Therefore, we see that the weak value is enhanced when the post-selection

happens at a later time. Though, unlike in the case of an excited atom, the weak
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value in this case does not grow exponentially with the post selected time. In

principle, weak measurements are amenable to experiments, and therefore it

would be interesting to come up with experimental models to test the examples

discussed in this chapter.
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Figure 6.8: Shown are the real (blue) and imaginary (pink) components of the weak
value outside the well for post-selection at T = 6L/v. Constants are set as b = 1;
m = 1, 000; κ = 1, 000; k0 = 5, 000; and L = 100.
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Figure 6.9: Shown are the real (blue) and imaginary (pink) components of the weak
value inside the well for post-selection at T = 6L/v. Constants are set as b = 1;
m = 1, 000; κ = 1, 000; k0 = 5, 000; and L = 100.

98



REFERENCES

[1] S. W. Hawking, “Black-hole explosions," Nature 248 (1974) 30-31;

[2] J. D. Bekenstein, “Black holes and the second law," Nuovo Cim. Lett. 4
(1972) 737-740;

[3] J. D. Bekenstein, “Black holes and entropy," Phys. Rev. D 7 (1973)
2333-2346;

[4] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole
physics," Phys. Rev. D 9 (1974) 3292-3300;

[5] S. W. Hawking, “Breakdown of predictability in gravitational collapse," Phys.
Rev. D 14 (1976) 2460-2473

[6] A. Strominger, and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking
Entropy," Phys. Lett. B 379 (1996) 99-104; hep-th/9601029

[7] J. M. Maldacena, “The large N limit of superconformal field theories and
supergravity," Adv. Theor. Math. Phys. 2 (1998) 231-252; hep-th/9711200

[8] P. c. W. Davies, “Scalar production in Schwarzschild and Rindler metrics," J.
Phys. A:Math. Gen 8 (1975) 609;

[9] W. G. Unruh, “Notes on black-hole evaporation," Phys. Rev. D 14(1976)
870-892;

[10] L. Sriramkumar, “Quantum Fields in Non-Trivial Backgrounds," PhD thesis
(1997)

[11] N. D. Birrell and P. C. W. Davies,“Quantum Fields in Curved Space,"
(Cambridge University Press, Cambridge, England, 1982).

[12] F. Mukhanov and S. Winitzki, “Introduction to Quantum Fields in Classical
Backgrounds," (Draft version, 2005).(Cambridge University Press,
Cambridge, 2002).

[13] S. A. Fulling, "Nonuniqueness of Canonical Field Quantization in Riemannian
Space-Time," Phys. Rev. D 7 (1973) 2850-2862;

[14] L. Crispino, A. Higuchi, and G. Matsas, “The Unruh effect and its
applications," Rev. Mod. Phys. 80 (2008) 787;

[15] R. Wald, “Quantum field theory in curved spacetimes and black hole
thermodynamics," University of Chicago Press (1994)

[16] A. Ashtekar, and A. Magnon, “Quantum fields in curved space-times," Proc.
R. Soc. London Ser. A 346 (1975) 375-394;

99



[17] S. M. Christensen, and S. A. Fulling, “Trace anomalies and the Hawking
effect," Phys. Rev. D 15 (1977) 2088-2104;

[18] D. G. Boulware, “Quantum field theory in Schwarzschild and Rindler spaces,"
Phys. Rev. D 11 (1975) 1404-1423;

[19] D. G. Boulware, “Radiation from a uniformly accelerated charge," Ann. Phys.
(N.Y.) 124 (1980) 169-188

[20] E. J. Copeland, P. C. W. Davies, and K. Hinton, “Acceleration radiation in a
compact space," Class. Quant. Grav. 1 (1984) 179-187;

[21] S. S. Costa, and G. E. A. Matsas, “Background thermal contributions in
testing the Unruh effect," Phys. Rev. D 52 (1995) 3466-3471

[22] P. C. W. Davies, “On the origin of black hole evaporation radiation," Proc.
Roy. Soc. London Ser. A 351 (1976) 129-139;

[23] P. C. W. Davies, and S. A. Fulling, “Quantum vacuum energy in two
dimensional space-times," Proc. Roy. Soc. London Ser. A 354 (1977) 59-77;

[24] P. C. W. Davies, and S. A. Fulling, “Radiation from moving mirrors and from
black holes," Proc. R. Soc. Lond. Ser. A 356 (1977) 237-257;

[25] P. C. W. Davies, S. A. Fulling, and W. G. Unruh, “Energy-momentum tensor
near an evaporating black hole," Phys. Rev. D 13 (1976) 2720-2723;

[26] M. Parikh, P. Samantray, and E. Verlinde, “Rotating Rindler-AdS Space,"
Phys. Rev. D 86 (2011) 024005; arXiv:1112.3433

[27] M. Parikh and P. Samantray, “Rotating Vacuum States of de Sitter Space," To
appear.

[28] J. R. Letaw and J. D. Pfautsch, “The Quantized Scalar Field in the Stationary
Coordinate Systems of Flat Space-Time," Phys. Rev. D 24 (1981) 1491.

[29] P. C. W. Davies, T. Dray, and C. A. Manogue, “Detecting the rotating quantum
vacuum," Phys. Rev. D 53 (1996) 4382.

[30] B. Allen, “Vacuum States in de Sitter Space," Phys. Rev. D 32 (1985) 3136.

[31] E. Keski-Vakkuri, “Bulk and boundary dynamics in BTZ black holes," Phys.
Rev. D 59 (1999) 104001; arXiv: hep-th/9808037

[32] M. Banados, C. Teitelboim, and J. Zanelli, “The black hole in
three-dimensional space-time," Phys. Rev. Lett. 69 (1992) 1849-1851; arXiv:
hep-th/9204099

[33] R. Emparan, “AdS/CFT duals of topological black holes and the entropy of
zero energy states," JHEP 9906 (1999) 036; arXiv: hep-th/9906040

100



[34] R. C. Myers, and A. Sinha, “Seeing a c-theorem with holography," Phys. Rev.
D 82 (2010) 046006; arXiv:1006.1263

[35] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Holographic
representation of local bulk operators," Phys. Rev. D 74 (2006) 066009; arXiv:
hep-th/0606141

[36] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Local bulk operators
in AdS/CFT correspondence: A boundary view of horizons and locality,"
Phys. Rev. D 73 (2006) 086003; arXiv: hep-th/0506118

[37] L. Vanzo, “Black holes with unusual topology," Phys. Rev. D 56 (1997) 6475;
arXiv: gr-qc/9705004

[38] J. D. Barrow and J. J. Levin, “The twin paradox in compact spaces," Phys.
Rev. A 63 (2001) 044104; arXiv: gr-qc/0101014

[39] B. Greene, J. Levin, and M. Parikh, “Brane-World Motion in Compact
Dimensions," Class. Quant. Grav. 28 (2011) 155013; arXiv:1103.2174

[40] V. Balasubramanian, J. de Boer, and D. Minic, “Mass, entropy and
holography in asymptotically de Sitter spaces," Phys. Rev. D 65 (2002)
123508; arXiv: hep-th/9805171

[41] L. F. Abbott, and S. Deser, “Stability of Gravity with a Cosmological
Constant," Nucl. Phys. B 195 (1982) 76;

[42] V. Balasubramanian, P. Kraus, and A. E. Lawrence, “Bulk vs. boundary
dynamics in anti-de Sitter spacetime," Phys. Rev. D 59 (1999) 046003; arXiv:
hep-th/0110108

[43] A. Strominger, “The dS/CFT Correspondence," arXiv: hep-th/0106113

[44] M. Spradlin, A. Strominger, and A. Volovich, “Les Houches lectures on de
Sitter space," arXiv: hep-th/0110007

[45] M. Park, “Statistical entropy of three-dimensional Kerr-de Sitter space," Phys.
Let. B 440 (1998) 275; arXiv: hep-th/9806119

[46] D. Anninos, S. A. Hartnoll, and D. M. Hofman, “Static Patch Solipsism:
Conformal Symmetry of the de Sitter Worldline," arXiv:1109.4942

[47] J. Polchinski, “Combinatorics of Boundaries in String Theory," Phys. Rev. D
50 (1994) 6041

[48] G. Št Hooft, “Dimensional reduction in quantum gravity," ;arXiv:gr-qc/9310026

[49] L. Susskind, “The World as a hologram," J. Math. Phys. 36 (1995) 6377;
arXiv:hep-th/9409089

101



[50] B. Zwiebach, “A first course in string theory," Cambridge University Press,
2004

[51] M. B. Green, J. H. Schwarz, and E. Witten, “Superstring theory," vols. 1 and
2, Cambridge University Press, 1987

[52] J. Polchinski, “String theory," vols. 1 and 2, Cambridge University Press, 1998

[53] K. Becker, M. Becker, and J. H. Schwarz, “String theory and M-theory,"
Cambridge University Press, 2007

[54] P. Ginsparg, “Applied Conformal Field Theory" ; arXiv:hep-th/9108028

[55] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,"
Springer, New York (1997)

[56] C. V. Johnson, “D-Brane Primer,"; arXiv:hep-th/0007170

[57] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators
from non-critical string theory," Phys. Lett. B 428, 105 (1998);
arXiv:hep-th/9802109

[58] E. Witten, “Anti-de Sitter space and holography," Adv. Theor. Math. Phys. 2,
253 (1998); arXiv:hep-th/9802150

[59] S. S. Gubser, “AdS/CFT and gravity," Phys. Rev. D 63 (2001) 084017;
arXiv:hep-th/9912001

[60] S. S. Gubser, “Non-conformal examples of AdS/CFT," Class. Quant. Grav. 17
(2000) 1081; arXiv:hep-th/9910117

[61] M. Henningson and K. Skenderis, “The holographic Weyl anomaly," JHEP 07
(1998) 023; arXiv:hep-th/9806087

[62] G. T. Horowitz and A. Strominger, “Black strings and P-branes," Nucl. Phys. B
360 (1991) 197

[63] D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli, “Correlation
functions in the CFT(d)/AdS(d+1) correspondence," Nucl. Phys. B 546 (1999)
96; arXiv:hep-th/9804058

[64] H. Nastase, “Introduction to AdS-CFT"; arXiv:0712.0689

[65] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, “Large N field
theories, string theory and gravity," Phys. Rept. 323 (2000) 183;
arXiv:hep-th/9905111

[66] E. DŠHoker and D. Z. Freedman, “Supersymmetric gauge theories and the
AdS/CFT correspondence," TASI 2001 lecture notes, arXiv:hep-th/0201253

102



[67] W. Muck and K. S. Viswanathan, “Conformal field theory correlators from
classical scalar field theory on AdSd+1," Phys. Rev. D 58 (1998) 041901;
arXiv:hep-th/9804035

[68] E. Witten, “String theory dynamics in various dimensions," Nucl. Phys. B 443
(1995) 85; arXiv:hep-th/9503124

[69] D. Mateos, “String Theory and Quantum Chromodynamics," Class. Quant.
Grav. 24 S713 (2007)

[70] S. A. Hartnoll, “Lectures on holographic methods for condensed matter
physics,"; arXiv:hep-th/0903.3246

[71] D. T. Son, “Toward an AdS/cold atoms correspondence: a geometric
realization of the Schroedinger symmetry," Phys. Rev. D 78 046003 (2008)

[72] K. Balasubramanian and J. McGreevy, “Gravity duals for non-relativistic
CFTs," Phys. Rev. Lett. 101 061601 (2008)

[73] M. Parikh and P. Samantray, “Rindler-AdS/CFT,"; arXiv:hep-th/1211.7370

[74] S. Deser, and O. Levin, “Equivalence of Hawking and Unruh Temperatures
and Entropies Through Flat Space Embeddings," Class. Quant. Grav. 15
(1998) L85; arXiv:hep-th/9806223

[75] S. Deser, and O. Levin, “Accelerated Detectors and Temperature in (Anti) de
Sitter Spaces," Class. Quant. Grav. 14 (1997) L163; arXiv:gr-qc/9706018

[76] R. Emparan, “AdS/CFT duals of topological black holes and the entropy of
zero energy states," JHEP 9906 (1999) 036; arXiv:hep-th/9906040

[77] R. C. Myers, and A. Sinha, “Seeing a c-theorem with holography," Phys. Rev.
D 82 (2010) 046006; arXiv:1006.1263

[78] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Holographic
representation of local bulk operators," Phys. Rev. D 74 (2006) 066009;
arXiv:hep-th/0606141

[79] A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Local bulk operators
in AdS/CFT correspondence: A boundary view of horizons and locality,"
Phys. Rev. D 73 (2006) 086003; arXiv:hep-th/0506118

[80] L. Vanzo, “Black holes with unusual topology," Phys. Rev. D 56 (1997) 6475;
arXiv:gr-qc/9705004

[81] V. Balasubramanian, P. Kraus, and A. Lawrence, “Bulk vs. Boundary
Dynamics in Anti-de Sitter Spacetime," Phys. Rev. D 59 (1999) 046003;
arXiv:hep-th/9805171

103



[82] V. Balasubramanian, P. Kraus, A. Lawrence, and S. Trivedi, “Holographic
Probes of Anti-de Sitter Spacetimes," Phys. Rev. D 59 (1999) 104021;
arXiv:hep-th/9808017

[83] J. Maldacena, “Eternal black holes in Anti-de Sitter," JHEP 0304 (2003) 021;
arXiv:hep-th/0106112

[84] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators
from non-critical string theory", Phys. Lett. B 428, 105 (1998)
arXiv:hep-th/9802109

[85] E. Witten, “Anti-de Sitter space and holography", Adv. Theor. Math. Phys. 2,
253 (1998) arXiv:hep-th/9802150

[86] J. L. Cardy, “Critical percolation in finite geometries," Journ. of Phys A:
Mathematical and General 25 (1992) 201;

[87] J. D. Brown, and M. Henneaux, “Central Charges in the Canonical
Realization of Asymptotic Symmetries: An Example from Three Dimensional
Gravity," Commun. Math. Phys. 104 (1986) 207.

[88] M. Banados, C. Teitelboim, and J. Zanelli, “The black hole in
three-dimensional space-time," Phys. Rev. Lett. 69 (1992) 1849;
arXiv:hep-th/9204099

[89] J. D. Barrow and J. J. Levin, “The twin paradox in compact spaces," Phys.
Rev. A 63 (2001) 044104; arXiv:gr-qc/0101014

[90] B. Greene, J. Levin, and M. Parikh, “Brane-World Motion in Compact
Dimensions," Class. Quant. Grav. 28 (2011) 155013; arXiv:1103.2174

[91] G. Horowitz, A. Lawrence, and E. Silverstein, “Insightful D-branes," JHEP
0907 (2009) 057; arXiv:0904.3922

[92] V. Balasubramanian, and B. Czech, “Quantitative approaches to information
recovery from black holes," Class. Quant. Grav. 28 (2011) 163001;
arXiv:1102.3566

[93] D. A. Lowe and L. Thorlacius, “AdS/CFT and the Information Paradox," Phys.
Rev. D 60 (1999) 104012; arXiv:hep-th/9903237

[94] P. Kraus, H. Ooguri, and S. Shenker, “Inside the Horizon with AdS/CFT,"
Phys. Rev. D 67 (2003) 124022; arXiv:hep-th/0212277

[95] U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski, “Vacua, Propagators,
and Holographic Probes in AdS/CFT," JHEP 9901 (1999) 002;
arXiv:hep-th/9812007

104



[96] S. Hawking, J. Maldacena, and A. Strominger, “De Sitter Entropy, Quantum
Entanglement and AdS/CFT," JHEP 0105 (2001) 001; arXiv:hep-th/0002145

[97] S. R. Das and A. Zelnikov, “Unruh Radiation, Holography and Boundary
Cosmology," Phys. Rev. D 64 (2001) 104001; arXiv:hep-th/01041982

[98] S. Ryu and T. Takayanagi, “Horizon Derivation of Entanglement Entropy from
AdS/CFT," Phys. Rev. Lett. 96 (2006) 181602; arXiv: hep-th/0603001

[99] R. Bousso, A. Maloney, and A. Strominger, “Conformal vacua and entropy in
de Sitter space," Phys. Rev. D 65 (2002) 104039; arXiv:hep-th/0112218

[100] D. Lohiya and N. Panchapakesan, “Massless scalar field in a de Sitter
universe and its thermal flux," J. Phys. A. 11 (1978) 1963.

[101] D. Marolf, M. Rangamani, and M. Van Raamsdonk, “Holographic models of
de Sitter QFTs," Class. Quant. Grav. 28 (2011) 105015; arXiv:1007.3996

[102] L. Susskind, L. Thorlacius and J. Uglum, “The stretched horizon and black
hole complementarity,” Phys. Rev. D 48 (1993) 3743; arXiv:hep-th/9306069

[103] M. K. Parikh, I. Savonije and E. P. Verlinde, “Elliptic de Sitter space:
dS/Z(2),” Phys. Rev. D 67 (2003) 064005; arXiv:hep-th/0209120

[104] M. Parikh and F. Wilczek, “An action for black hole membranes,” Phys. Rev.
D 58 (1998) 064011; arXiv:gr-qc/9712077

[105] Y. Aharanov, P. C. W. Davies, P. Samantray, and S. Walker, “Quantum
Non-barking Dogs,"; To appear

[106] J. Von Neumann, “Mathematical Foundations of Quantum Theory,"
Princeton University Press, New Jersey, (1983)

[107] P. C. W, Davies, “Time-dependent quantum weak values: Decay law for
postselected states," Phys. Rev. A 79 (2009) 032103

[108] Y. Aharonov and L. Vaidman, “Properties of a Quantum System During the
Time Interval Between Two Measurements," Phys. Rev. A 41 (1990) 11

[109] Y. Aharonov and D. Rohrlich, “Quantum Paradoxes," Wiley-VCH, Weinheim,
(2005)

[110] Y. Aharonov, A. Casher, D. Albert, and L. Vaidman, “Surprising Quantum
Effects," Phys. Lett. A 124 (1987) 199

[111] Y. Aharonov and D. Rohrlich, “Towards a Two Vector Formulation of
Quantum Mechanics," Quantum Coherence, Ed. J. Anandan, World
Scientific, 221 (1990)

105



[112] A. M. Steinberg, “How much time does a tunneling particle spend in the
barrier region?," Phys. Rev. Lett. 74, (1995) 2405

[113] P. J. S. G. Ferreira, A. Kempf, and M. J. C. S. Reis, “Construction of
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