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ABSTRACT

During the initial stages of experimentation, there are usually a large
number of factors to be investigated. Fractional factorial (2“P) designs are
particularly useful during this initial phase of experimental work. These
experiments often referred to as screening experiments help reduce the large
number of factors to a smaller set. The 16 run regular fractional factorial designs
for six, seven and eight factors are in common usage. These designs allow clear
estimation of all main effects when the three-factor and higher order interactions
are negligible, but all two-factor interactions are aliased with each other making
estimation of these effects problematic without additional runs.

Alternatively, certain nonregular designs called no-confounding (NC)
designs by Jones and Montgomery (Jones & Montgomery, Alternatives to
resolution IV screening designs in 16 runs, 2010) partially confound the main
effects with the two-factor interactions but do not completely confound any two-
factor interactions with each other. The NC designs are useful for independently
estimating main effects and two-factor interactions without additional runs. While
several methods have been suggested for the analysis of data from nonregular
designs, stepwise regression is familiar to practitioners, available in commercial
software, and is widely used in practice. Given that an NC design has been run,
the performance of stepwise regression for model selection is unknown. In this
dissertation I present a comprehensive simulation study evaluating stepwise
regression for analyzing both regular fractional factorial and NC designs.

Next, the projection properties of the six, seven and eight factor NC

designs are studied. Studying the projection properties of these designs allows



the development of analysis methods to analyze these designs. Lastly the
designs and projection properties of 9 to 14 factor NC designs onto three and
four factors are presented. Certain recommendations are made on analysis

methods for these designs as well.
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Chapter 1

INTRODUCTION

During the initial stages of experimentation, there are usually a large number of
factors to be investigated. Two-level fractional factorial designs are particularly
useful during this phase of experimental work. These experiments, called
screening experiments, allow practitioners to reduce the large number of factors
to a smaller set that can be studied more extensively. Regular fractional factorial
designs are widely used for factor screening. Plackett-Burman designs are
another class of screening design in common usage. The main difference
between these two classes of designs is the aliasing structure. Effects in regular
fractional factorial designs are either completely confounded or unaliased
whereas the Plackett-Burman designs have a more complex partial aliasing
pattern. A third set of designs recently proposed by Jones and Montgomery
(2010) are the no confounding (NC) designs which like the Plackett-Burman
designs do not completely confound any of the main effects and two-factor
interactions. Plackett-Burman designs and the NC designs of Jones and
Montgomery are examples of nonregular designs. Because the nonregular
designs do not completely confound two-factor interactions and main effects, it
may be possible to use these designs to identify active factors that could not be
identified without additional follow-up experimentation when using regular
designs.

Stepwise regression is a popular method for model selection because it is easy to
use and widely available in standard software. Though it is widely used, there is

no comprehensive study available documenting the effectiveness of using
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stepwise regression to analyze nonregular designs. Chapter one details the
simulation study done to study the effectiveness of stepwise regression to
analyze regular fractional factorial and NC designs.

The projection properties of fractional factorial designs and Plackett-Burman
designs are well documented. Montgomery (2013) discusses the projection
properties of the 2P designs that collapse into either full factorial or a fractional
factorial in any subset of r < k — p of the original factors. The subsets that result
in fractional factorials are subsets appearing as words in the complete defining
relation. Lin and Draper (1992) and Box and Bisgaard (1993) showed that some
of the Placket-Burman designs in fewer runs when projected onto three factors
result in a complete 23 design and a half replicate of the 23 design. The
projection properties of NC designs have not been studied. In chapter 2 I
present the projection properties of NC designs for the six, seven and eight
factor cases in 16 runs.

Johnson and Jones (2011) show that the six, seven and eight factor NC designs
have a classical-type construction with a 2% or a replicated 2° starting point.
These generating columns can be used to study the projection properties of the
NC designs. Studying the projection properties of the NC designs can suggest
possible analytical methods for these designs. Suggestions for analysis methods
for these designs are also discussed in Chapter 2.

In chapter three the 9 — 14 factor NC designs are listed. A metric to evaluate
these NC designs is presented, and it is used to obtain the choices for the
nonregular 16-run fractional factorials through the use of a variation of the D-

optimality criterion. I then present the projection properties of these designs
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when projected to three and four factors and discuss an analysis strategy for
these designs. I also present an example that illustrates the potential usefulness

of these designs and the effectiveness of the analysis method.



Chapter 2

ANALYSIS OF FRACTIONAL FACTORIAL DESIGNS USING STEPWISE
REGRESSION

2.1. Background

Stepwise regression is a popular method for model selection because it is easy to
use and widely available in standard software. Though it is widely used, there is
no comprehensive study available documenting the effectiveness of using
stepwise regression to analyze nonregular designs.

2.2. Literature Survey

A brief review of methods for analyzing nonregular designs is presented in this
section. Hamada and Wu (1992) proposed a two-step method to analyze
Plackett-Burman designs considering both the main effects and interactions. This
paper sparked interest in analysis methods for nonregular fractional factorial
designs. Box and Meyer (1993) suggested a Bayesian approach to identifying the
active factors in screening experiments with complex aliasing. Chipman, Hamada
and Wu (1997) proposed another Bayesian approach combining the Stochastic
Search Variable Selection algorithm of George and McCulloch (1993) with priors
for related predictors given by Chipman (1996). Hamada and Hamada (2010)
proposed an all subsets regression method while imposing model heredity
restrictions to dramatically reduce the number of models to consider.

Tyssedal and Samset (1997) suggested using contrast plots to use the aliasing
structure of the nonregular designs to identify the significant effects. Samset and
Tyssedal (1998) suggested certain modifications to the Bayesian approach

introduced by Box and Meyer (1993) to overcome some of the limitations they
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observed while using the method. Samset (1999) discussed two variable
selection methods to identify the active factors for nonregular designs. The first
method is a best subsets regression procedure based on the effect heredity
principle and the second one is based on the stepwise regression procedure.
Lawson (2002) proposed a subsets regression method on a shortlisted set of
candidates to identify the most significant main and interaction effects. The
shortlist of candidates of candidate interactions is identified using an alias plot.
Yuan et al (2007) propose extensions to a general purpose variable selection
algorithm, Least Angle Regression (LARS), Li and Lin (2009) used penalized least
squares with the SCAD penalty to identify the active factors in screening
experiments.

Due to the accessibility and simplicity of use of stepwise regression, it is a
popular method for model selection in the analysis of fractional factorial designs.
Marley and Woods (2010) evaluated E(s?)- Optimal and Bayesian D-optimal
designs to compare three analysis strategies representing regression, shrinkage
and a novel model-averaging procedure using simulated experiments. In this
paper I evaluate the effectiveness of stepwise regression for model selection.
The performance of stepwise regression is evaluated on the 16-run regular
fractional factorial designs and the 16-run NC designs proposed by Jones and
Montgomery (2010) for the six, seven and eight factor cases.

2.3. Preliminary Study and Results

Stepwise regression is the most commonly used analysis method to analyze the
results from fractional factorial designs. There is ho complete study available in

the literature which studies how well stepwise regression actually works. JMP
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was used to run the simulations. The data was simulated assuming different true
models to see how well stepwise regression performs when used to analyze the
results from the three designs being studied. Since the experimenter will never
know the form of the true model, simulations were run to test different true
models. The true models tested are listed in Table 2-1. Three different coefficient
/ noise ratios were also tested. The next parameter that was varied was the
number of true active terms. Depending on the true model and the number of
variables in the model, this was varied over the entire possible range. The
different settings of the simulation parameters are listed in Table 2-1.

Table 2-1 Preliminary Simulation Study

Designs Used Fract|0|_1al Plackett Burman No Confounding
Factorial
. Main Effects + 1 Main Effects + 2
True Model Main Effects hierarchical hierarchical
Only : - . X
interaction interaction
No. of variables 6 7 8
Coefficient / Noise Ratio 2/0.667 = 3 2/1 =2 2/2=1
Main Effects
Only Model 1 2 3 4 5 6 7 8
Main Effects
+ 1
hierarchical - 2+1 | 3+1 | 4+1 | 5+1 | 6+1 | 7+1 | 8+1
No of .
. Interaction
Active
Terms Model
Main Effects
+2
hierarchical - - 342 | 442 | 542 | 642 | 742 | 8+2
Interaction
Mode/

Stepwise regression can be classified into three broad categories: (1) forward
selection, (2) backward elimination and (3) stepwise (mixed) regression.
Stepwise regression is a combination of the first two methods. Since the models
being analyzed have more variables than the number of rows of data, backward

elimination is not a feasible option. I ran the simulations using both stepwise
6



regression and forward selection. Since the results were similar using both
methods the simulations were continues using just the stepwise regression
approach.

Since stepwise regression (forward and mixed) entail adding or adding and
removing variables, there is a need for rules to add and remove the variables.
For stepwise (mixed) regression two cutoff values are required. -in and -out
needs to be selected for the entering and leaving variables. For these simulations
oin = 0.05 & ae = 0.10 was chosen. Choosing an ai, < ooy €nsures that it will
make it relatively more difficult to add a regressor than to delete one.

To maintain the hierarchy in the model, certain rules need to be followed. In JMP
there are two different options to maintain hierarchy (1) Combine and (2)
Restrict. The combine option groups a term with its precedent terms and
calculates the group’s significance probability for entry as a joint F-test. The
restrict option restricts the terms that have precedents so that they cannot be
entered until their precedents are entered. For the current simulation study
Stepwise regression with the Combine option was used.

Initial experimentation showed that the results stabilized after 2000 runs
therefore I ran 2000 runs for each combination of the simulation parameters.

Figure 2.1 shows how the results stabilized after 2000 runs.
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Figure 2.1 Simulation — Steady State

The results from each simulation run (one combination of factors) was evaluated

by categorizing the runs into one of the following four categories.

1.

2.

3.

4.

Only Active terms identified as active

All Active terms identified + some inactive terms identified as active (Type I
Error)

Missed some Active Terms (Type II Error)

Missed all Active terms (Type II Error)

When screening experiments are run, the experimenter is more tolerant to Type

I

error versus Type II error. You definitely do not want to miss the true active

terms but false positive results can be eliminated in subsequent experiments.

Therefore any analysis method utilized must have the ability to minimize the

number of total errors particularly the Type II errors.



In the case of the Main Effects only models, the results for the three designs can
be directly compared as there is no aliasing between the Main effects and any
other terms. But in the cases where there are interactions in the true model, the
results need to be adjusted for the Fractional Factorial designs. Since the aliasing
between the two factor interactions in these designs is complete, the results
need to incorporate the aliasing. Therefore whenever the analysis identifies a
two factor interaction in the Fractional Factorial case, there is always Type I error
due to the aliasing pattern. This is not the case when Plackett-Burman and No
Confounding designs are used.

2.3.1. Six factor Designs

The results indicate that for the Main Effects Only model, the three designs
behave very similarly. The results from using stepwise regression to analyze the
data show that there is no difference when the coefficient/noise ratios are three
or two. When the coefficient/noise ratio is 1, stepwise regression fails for all
three designs and generates large Type I and Type II errors even when the
number of active terms is just one. All three designs make no type II error when
the number of active terms is one or two. Fractional Factorial designs make no
Type II error even for the three and four active term cases. All three designs
start making large type II errors (> 80%) when the number of active terms is
five or more. One interesting observation about the No Confounding design is
that it never misses all the active terms even when the number of active terms is
six whereas the analysis of the Fractional Factorial designs totally breaks down.
For the Main Effects + 1 hierarchical interaction case, the results are very similar

when the coefficient/noise ratio is three and two. When the coefficient/noise
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ratio is one, stepwise regression fails to give reasonable results. Once the true
model includes hierarchical interactions, the fractional factorial starts generating
Type I errors even when the number of active terms is three (two main effects +
1 hierarchical interaction) due to the complete aliasing in these designs. The NC
and PB designs perform better as there is no complete confounding in these
designs. All three designs have type II error in more than 50% of the cases
when the number of active terms is two or more.

The Main Effects + 2 hierarchical interactions case the results are very similar
when the PB and NC designs are used at the three and two coefficient/noise
ratios. The FF designs totally break down (misses all Active terms) when the
number of active terms is six (4 main effects + 2 hierarchical interactions). The
NC designs are able to avoid missing all active terms even when there are 5 Main
Effects + 2 hierarchical interactions in the true model. These results are shown in

Table 2-2, Table 2-3 and Table 2-4.

10



Table 2-2 Results Summary — Six factor Main Effects Only Model

No AF
Coefficient / ) Active Factors in | All AFs + No All AFs + | Missed Some | Missed All AF ) 0 AFs AFs Missed =
R . Design ) R Missed = (1) +
Noise Ratio True Model In active (1) | Inactive (I1) AF (I1) (1v) () +(1v)
1AF I 47.3 52.7 0 100 0
2AF ol 100 ol 100/ 0
3AF ol 100/ 0l 100/ 0
PB
4AF ol 93.1] ol 6.9 93.1 6.9
SAF ol 14l 46.11 39.9| 14 M 86
6AF i) ol 82.3) 17.7 oY 100
1AF 1 4850 515] ol 1001 0
2AF ol 100/ 0l 100/ 0
3AF ol 100 ol 100/ 0
35D FF
4AF ol 100 ol 100/ 0
SAF ol 5 ol g5l s ML 95|
6AF ol 0l ollll 10 oMY 100
1AF I 50.900 49.1] 0 100] 0
2AF ol 100/ ol 100 0
3AF ol 923! 7.7/ 923 7.7
NC
4AF ol 71301 28.7] 71310 28.7
SAF 0l ol 100 oMY 100
6AF i) ol 100/ o MY 100
1AF 46.3 53.7 0 100 0
2AF 0 100 0 100/ 0
3AF 0 99.9 0.1 99.9/ 0.1
PB
4AF 0 6.8 3.2 10l 8681 13.2
SAF 0 20.1 45.9 340 20.1 [l 79.9
6AF 0 0 62.1 37.9 | 100
1AF 46.8 53.2 0 100] 0
2AF 0 100 0 100! 0
3AF 0 100 0 100! 0
25D FF
AAF 0 100 0 100!
SAF 0 59.8 03 39.9fl0 59.8 1 40.2)
6AF 0 3 6.8 90.2) Ey [ 97
1AF 51.9 48.1 0 100l 0
2AF 0 100 0 100! 0
3AF 0 9.6 5.4 9.6 5.4
NC
4AF 0 71 29 71l 29
SAF 0 15 98.5 o 98.5
6AF 0 0 100 o il 100]
1AF 12400 37.6] ol 50 50 50
2AF 1400 30.4/1 3g.2[l 30 3.l 652
N ETY; ol 191 54,21 26.8 10 NI 81
4AF ol 1030 68.6 211 10.3 IR s0.7,
SAF ol a4l 7270 22.9 44T o5.6
6AF ol 2.8/ 67.7)] 29.5 2.s I o7.2
1AF I 20.710 413l ol 38 7] 3g
2AF 2900 40.1 00 34.5) 22.5 1l 57,
3AF ol 27.21 s4.4) 18.4Jl 272N 728
15D FF
4AF ol 20.9[0 63.3] 15.8jl 20.0 IR 791
SAF ol 83/l 70.2) 21500 s3MMINT 917
6AF ) 3.8/l 6.1 27.1 sl o6.2
1AF [ 200" 38.2] ol 418 582 41.8
2AF 1.9/ 338/l 44.9). 19.4 7l 63
3AF ol 2180 64.2] 14Jll 2. sl 752
NC
4AF ol 12,6/ 76.2] 11.20 12.6 IR g7.4
SAF ol 5.1/l 6.3/ 8.6 5.1 Y 94,9
6AF ol 2.1 89.7) 8.2 2.1 MY 979
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Table 2-3 Results Summary — Six Factor Main Effects + 1 Hierarchical Interaction

Model
Coefficient / Design Active Factors in | All AFs + No In All AFs + Missed Some | Missed All AF |[No AFs Missed| AFs Missed =
Noise Ratio True Model active (1) Inactive (11) AF (1) (v) =(1)+ (1) () +(1v)

3AF 50! 50 0 o] 100 0|

4AF 15.65 2.9/ 61.4 0.05 38.55] 61.45

PB  [5AF 0.5/ 27.6} 65.45 6.45 28.1] 71.9

6AF 0 3.45] 50.25 47.7) 3.45) 97.95

7AF 0 ol 50.2 48.4) ol 98.6

3AF ol 100 0 o] 100 0|

4AF ol 40.8| 59.2 of 408} 59.2

35D FF [sAF ol 41.2] 58.8 of 41.2} 58.8
6AF 0l 27.5 45 95.3 2751 99.8]

7AF 0 0.2/ 40.5] 32 0.2} 72.5

3AF 54.05] 45.95 0 o] 100 0|

4AF 17.25/ 19.3} 63.45 0 36.55 63.45

NC  [sAF ol 33.35] 66.65 0 33.35) 66.65,

6AF 0 3.45] 89.5 8.6 3.45) 98.1]

7AF 0 ol 89.85 8.6 ol 98.45)

3AF 49.25 50.7 0.05 0 99.95 0.05

4AF 15.55 24.15 59.5 0.8 39.7 60.3

PB  [sAF 05 25.85 63.85 9.8 26.35 73.65

6AF 0 5.45 70.05 24.5 5.45 94.55

TAF 0 0.3 51.05 48.65 0.3 99.7,

3AF 0 100 0 0 100 0|

4AF 0 225 57.5 0 425 57.5

25D FF [sAF 0 40 59.9 0.1 0 60
6AF 0 29.1 51.1 19.8 29.1 70.9

7AF 0 9.1 23.3 67.6) 9.1 90.9

3AF 54.35 45.6 0.05 0 99.95 0.05

4AF 18 19.8 62.2 0 37.8 62.2)

NC  [sAF 0 31.55 68.45 0 31.55 68.45

6AF 0 6.55 92.9 0.55 6.55 93.45

7AF 0 0 94.7 5.3 0 100]

3AF 9.55 10.75) 52.05 27.65 203 79.7

4AF 1.15 6.35) 70.65 21.85 7.5] 92.5

PB  [sAF 0.05 3.4} 73.3] 23.25 3.45] 96.55,

6AF 0 1.6/ 74.15 24.25 1.60 98.4

IAF 0 0.55| 70.95 28.5 0.55 99.45

3AF 0l 28.9] 48.5] 22.6 2891 71.1

AAF 0 11.9] 70.4 17.7 11.9/ 88.1

15D FF o [sAF 0 6.9} 74.7 18.4) 6.9/ 93.1
6AF 0 3.6} 745/ 21.9 36! 9.4

TAF 0 2.3} 69.8] 27.9 2.3] 97.7

3AF 11.9 11.25) 54.45] 22.4 23.151 76.85

4AF 17 6.8} 77.95 13.55 8.5 91.5

NC  [sAF 0.15 4.65] 86.75 8.45 48] 95.2)

6AF 0 1.45] 90.15 8.4 1.45] 98.55,

7AF 0 0.85 90.55 8.6 0.85 99.15
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Table 2-4 Results Summary — Six Factor Main Effects + 2 Hierarchical Interaction

Model
Coefficient / Design Active Factors in | All AFs + No In All AFs + Missed Some | Missed All AF |[No AFs Missed| AFs Missed =
Noise Ratio True Model active (1) Inactive (11) AF (1) (v) =(1)+ (1) () +(1v)
3AF 50 50 0 of 100 0|
4AF 15.65 229/ 61.4 0.05, 38.55 61.45
PB  [sAF 0.5 27.6] 65.45 6.45 28.1 71.9
6AF 0 3.45] 50.25 47.7) 3.45] 97.95
7AF 0 ol 50.2] 48.4) ol 98.6
3AF ol 100 0 of 100 0|
4AF 0l 40.8| 59.2 0 40.8 59.2
35D FF [sAF 0l 41.2] 58.8 0 41.2 58.9
6AF 0 27.5 45] 95.3 27.5] 99.8]
7AF 0 0.2/ 40.5] 32 0.2 72.5
3AF 54.05] 45.95 0 of 100 0|
4AF 17.25 19.3/ 63.45 0 36.55 63.45,
NC  [sAF ol 33.35) 66.65 0 33.35 66.65
6AF 0 3.45] 89.5 8.6 3.45] 98.1
7AF 0 ol 89.85 8.6 ol 98.45)
3AF 49.25 50.7 0.05 0 99.95 0.05
4AF 15.55 24.15 59.5 0.8 39.7 60.3
PB  [sAF 0.5 25.85 63.85 9.8 26.35 73.65
6AF 0 5.45 70.05 24.5 5.45 94.55,
7AF 0 0.3 51.05 48.65 0.3 99.7,
3AF 0 100 0 0 100 0
4AF 0 425 57.5 0 425 57.5
25D FF [sAF 0 40 59.9 0.1 40 60
6AF 0 29.1 51.1 19.8 29.1 70.9
TAF 0 9.1 23.3 67.6) 9.1 90.9
3AF 54.35 45.6 0.05 0 99.95 0.05
AAF 18 19.8 62.2 0 37.8 62.2)
NC  [sAF 0 31.55 68.45 0 31.55 68.45
6AF 0 6.55 92.9 0.55 6.55 93.45,
TAF 0 0 94.7 53 0 100]
3AF 9.55 10.75 52.05 27.65 203 79.7
AAF 1.15 6.35] 70.65 21.85 75 92.5
PB  [sAF 0.05 3.4] 73.3 23.25 3.45 96.55,
6AF 0 1.6/ 74.15 24.25 16 98.4
TAF 0 0.55| 70.95 28.5 0.55 99.45,
3AF 0 28.9 485 22.6 28.9 71.1]
AAF 0 11.9| 70.4 17.7] 11.9 88.1
15D FF [sAF 0 6.9 74.7 18.4) 6.9 93.1]
6AF 0 3.6 74.5 21.9 36 9.4
TAF 0 2.3 69.8 27.9 2.3 97.7
3AF 11.9 11.25 54.45 22.4 23.15 76.85,
AAF 17 6.8 77.95 13.55 85 91.5
NC  [sAF 0.15 4.65] 86.75 8.45 48 95.2)
6AF 0 1.45] 90.15 8.4 1.45 98.55,
7AF 0 0.85 90.55 8.6 0.85 99.15

2.3.2. Seven factor Designs

When the number of terms in the design is seven, for the main effects only

model, the NC designs performs better than the FF and PB designs. It is able to

detect all active terms even when the number of active terms in the model is five

or six. In fact the PB designs performs the worst as it starts deteriorating in
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performance and starts generating Type II errors even when the number of
active terms is the model is four. All three designs perform similarly when the
coefficient / noise ratio is 3 or 2. The only case where all three designs have
some cases generate no type I or type II error is when the number of active
terms is one.

As in the six factor designs, once hierarchical interaction terms are added to the
true model, fractional factorial designs are only able to detect the alias chains for
the interactions and therefore always generate atleast one type I error. All three
designs start generating close to 60% type II errors when the total number of
active terms is four (3 main effects + 1 hierarchical interaction). Again the
performance is very similar when the coefficient/noise ratio is two or three.

For the main effects + two hierarchical interactions case, the trend seen in the
one hierarchical interaction case continues. All three designs start generating
large type II errors (>60%) when the number of active terms (main effects + 2
hierarchical interactions) is four or more. For the one active term case, the PB
design performs worse than the NC and FF designs. These results are shown in

Table 2-5, Table 2-6 and Table 2-7.
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Table 2-5 Results Summary — Seven Factor Main Effects Only Model

Coefficient / ) Active Factorsin | All AFs +No All AFs + | Missed Some | Missed All AF . No AFs AFs Missed =
A R Design ) . Missed = (1) +

Noise Ratio True Model In active (1) | Inactive (1) AF (1) ) (m) +(1v)

1AF Il 35.2 64.8 ol 0| 1001 0|

2AF | ol 100 ol 0 100/ 0

3AF | ol 100/ ol 0 100/ 0

PB  [4AF | ol 90.1/ 485 5.05 9.1} 9.9

SAF | ol 9.4l 55.9 01 347 9.4 N <0.6]

6AF | ol ol Y 15| o IRE' 100]

TAF | 0l ol 63.95 36.05|0 o MIIRLY 100

1AF I 428500 57151 ol q 100 o

2AF ol 100 ol 0 100/ 0

3AF olill 100 ol 0 100/ 0

35D FF [4AF ollll 100/ ol 0 100/ 0

SAF ol 5.55] ol 94.45)) 5.55 T 94.45

6AF ol ol olllll 100f ] T

7AF 0l ol 56.6 11 43.4) o MIIRLY 100

1AF | 40500 5951 ol o 100 q

2AF ol 100/ ol 0 100/ 0

3AF ollll 100/ ol 0 100/ 0

NC  [aaF ol 99,9/ 01! 0 99.9) 0.1

SAF ol 75.95 ES 23.7, 75.95 [l 24.05,

6AF ol 81.45] 2,051 16.5 81.45 1l 18.55

TAF 0l ol 59.300 20.7) oMY 100

1AF 35.8 64.2 0 0| 100 0|

2AF ol 100 0 0| 100/ 0|

3AF ol 99.9 0.1 0| 99,9/ 0.1

PB  [4AF ol 81.1 9.1 9.g|ll 8110 18.9

SAF 0 13.9 59.3 26.8) 13.9 [l 86.1

6AF 0 0.05 64.05 35.9 0.05 I 99,95

7AF 0 0 62,65 37.35, o MM 100

1AF 41.7] 583 0 0 100l 0

2AF ol 100 0 0 100/ 0|

3AF ol 100 0 0 100/ 0|

25D FF [aAF ol 100 0 0 100/ 0

SAF 0! 59.5 0.3/ 20.2J0 59.5 40.5

6AF 0 26 7.35) 90.05, 2.6l 97.4

TAF 0 0 58.7] 413 o M 100)

1AF 39.60] 60.40 0 0 100l 0

2AF ol 100.00 0 0 100/ 0

3AF ol 100.00 0 0 100/ 0|

NC  [aAF ol 99.45 0.55 0 99.45| 0.55

SAF ol 90.60 1.90 7,500 %0.6/! 9.4

6AF 0! 68.65 9.40 21,951 68.65 1! 31.35

TAF 0 0.00 59.50] 40.50 ol 100

1AF ] FERl 453 ol 236 56.4 43.9]

2AF 0.6l 33l 41.35 01 25.05{lll! 336l 664

3AF ol 21.05 1 59.85 /! 19.1] 21.05 T 78,95

PB  [4AF ol 111l 71.15 ) 17850 11 Y g9

SAF ol 43 75.651 20.05ff 4.3 IR o057

6AF ol 1.3l 73.25 0 24.95 1.8 MR 9.2

7AF ol ol 62.75 37.25|f o MIIIRLY 100

1AF 15.05 10 4741 ol 37.55 62.45 37.55

2AF 1.7 423510 352500 20.7, 44050 5595

3AF 03l 28.75 1 5490 16.05l 20.05 T 70.95

1SD FF - [aAF ol 21.95 1 6110 16.95] 21.95 T 78,05

SAF ol 10.4 0 69.45 ! 20151 1040 s9.6

6AF ol 45510 70.81 24.65) 4,55 [N 95,45

7AF ol ol 55.35 |11 44.65|) oMY 100

1AF 158500 47.65] 0 36.50 63.5 365

2AF 0.95 11! 236010 38.05 )" 17.40] 44550 55.45

3AF 0.05 1! 27.10 00 60.55 " 12.30Jl 27.15 I 7235

NC  [aAF ol 18.05 I 69.90 1205}l 18.05 T 81,95

SAF ol 10.70 [ 76.95| 12.35)1 10.7 Y g9.3

6AF ol 6.60 I 78.85] 14.55) c.c N 93.4

7AF ol ol 58.70 1 41.30] oMY 100
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Table 2-6 Results Summary — Seven factor Main Effects + 1 Hierarchical

Interaction Model

Coefficient / . Active Factorsin| All AFs +No In All AFs + Missed Some | Missed All AF | No AFs Missed | AFs Missed =
A R Design . .
Noise Ratio True Model active (1) Inactive (I1) AF (1) (1v) =(1)+ () () +(1v)

3AF 47.75) 52.25 0 off 100 0

4AF 15.7/ 20,5 63.8 0 36.2] 63.8

b |SAF 1.85] 34,50 63.65 0 36.35 63.65

6AF ol 13.55] 34,9 51.55 13.55 86.45

7AF 0 0 350 9.5 ol 100

SAF 0 0 ol 100| oll 100)

3AF ol 100 0 of: 100 0

4AF ol 39.45] 60.55 0 39.45] 60.55

350 o [oAF ol 39.3) 60.7 0 39.30 60.7,
6AF ol 18.8/ 29.65! 51.55 188 81.2

7AF 0 0.05 3450 9.5 0.05 1 99.95

SAF 0 0 ol 100 ol 100)

3AF 22551 57.45 0 0 100 0

4AF 14.1/ 24.4) 61.5 0 385 61.5

N [P ol 36.65 63.35 0 36.65 63.35

6AF ol 2165/ 66.4/ 11.95 21650 78.35

7AF 0 9.3/ 66.45) 24.25 9.3 90.7]

SAF 0 2.25) 78.1] 19.65 2250 97.75

3AF 35.55 64.4 0.05 0| 99.95 0.05

4AF 12.75 26.3 60.8 0.15 39.05 60.95

o [SAF 0.1 28.35 62.8 8.75 28.45 71.55

6AF 0 33 74.15 22.55 33 9.7

TAF 0 0.15 61.15 38.7] 0.15 99.85

SAF 0 0 35.85 64.15 0 100|

3AF 0 100 0 0| 100 0|

4AF 0 38.9 61.1 0 38.9 61.1]

20 o [ 0 38.45 61.55 0 38.45 61.55
6AF 0 24.95 6.6 28.45 24.95 75.05

TAF 0 5.35 232 71.45 5.35 94.65

SAF 0 0.05 3.3 96.65 0.05 99.95

3AF 433 56.7 0 0 100 0

4AF 13.3 25.7 61 0 39 61

Ne  BAF 0.1 35.35 64.55 0 35.45 64.55

6AF 0 232 70.35 6.45 232 76.8

7AF 0 11 69.05 19.95 11 89

SAF 0 8.05 71.05 20.9 8.05 91,95

3AF 6 13.05| 55.1 25.85 19.05 ] 80.95

4AF 0.4 73] 7171 20.6 7.71 923

pg  |SAF 0.05 4.05] 78.15) 17.75 41 95.9

6AF 0 1.6/ 79.8] 18.6 160 98.4]

7AF 0 05! 76.7] 228 0.5 99.5

SAF 0 0.05 70.65 29.3 0.05 | 99.95

3AF ol 28,5 T 51.80 19.7] 28,5 71.5

4AF 0 12.8 71.05) 16.15, 12.8 87.2

150 Y 0 7.71 75.3 17 7.71 923
6AF 0 3350 75.3] 21.35 335 96.65

7AF 0 1.7} 71.35) 26.95 1.7 98.3

SAF 0 1.05) 60.7/ 38.25 1.05 98.95

3AF 8.75! 14.85| 57.15) 19.25 2361 76.4)

4AF 16 9| 76.95 12.45, 10.61 89.4)

ne [P 0.05 6.9l 81.95 11.1] 6.95] 93.05

6AF 0 350 84.35 12.15, 3.5 9.5

7AF 0 1.250 85.55 13.2) 1.250 98.75

SAF 0 1.5] 82.6) 15.9) 15 98.5
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Table 2-7 Results Summary - Seven factor Main Effects + 2 Hierarchical

Interaction Model

. ) Missed A No AFs i
Coefficient / Design Active Factors | All AFs + No | All AFs + Some AF Missed All Missed = (1) AFs Missed
Noise Ratio in True Model| In active (1) | Inactive (II) () AF (IV) () = (1) +(1v)

5AF 16.75 45.9 5.45 31.9 62.65 37.35]

6AF 0 1.45 88.5 10.05 1.45 98.55|

PB 7AF 0 0 36.3 63.7| 0 100

8AF 0 0 3.85 96.15 0 100

9AF 0 0 0 100 0 100

5AF 0 94.05 5.95 0 94.05 5.95]

6AF 0 4.2 14.4 81.4 4.2 95.8]

3SD FF 7AF 0 0 0 100 0 100
8AF 0 0 0 100 0 100

9AF 0 0 0 100 0 100

5AF 26.8 59.15 12.4 1.65 85.95 14.05]

6AF 0.2 14.2 47.75 37.85] 14.4 85.6)

NC 7AF 0 0.9 57.1 42| 0.9 99.1]

8AF 0 0.15 28.4 71.45 0.15 99.85

9AF 0 0 0 100 0 100

SAF 16.75 44.25 13.5 25.5 61 39

6AF 0.1 0.85 84.75 14.3 0.95 99.05]

PB 7AF 0 0 38.95 61.05) 0 100

8AF 0 0 4.2 95.8 0 100

9AF 0 0 0 100 0 100

5AF 0 94 5.95 0.05 94 6

6AF 0 5.1 14.95 79.95) 5.1 94.9

2SD FF 7AF 0 0 0.4 99.6| 0 100
8AF 0 0 0 100 0 100

9AF 0 0 0 100 0 100

5AF 27.35 58.65 11.65 2.35 86 14

6AF 0.05 12.7 49.5 37.75) 12.75 87.25]

NC 7AF 0 0.7 58.05 41.25 0.7 99.3]

8AF 0 0.05 31.15 68.8] 0.05 99.95

9AF 0 0 0 100 0 100

5AF 1.95 3.5 69.05 25.5 5.45 94.55]

6AF 0.05 0.95 70.8 28.2 1 99

PB 7AF 0 0.05 48.65 51.3 0.05 99.95]

8AF 0 0 14.4 85.6 0 100

9AF 0 0 0.2 99.8 0 100

5AF 0 15.5 62.1 22.4 15.5 84.5)

6AF 0 2.95 52.5 44.55 2.95 97.05|

1SD FF 7AF 0 0.2 28.1 71.7| 0.2 99.8]
8AF 0 0 3.2 96.8 0 100

9AF 0 0 0 100 0 100

5AF 5.3 7.95 67.75 19 13.25 86.75|

6AF 0.1 2 70.95 26.95] 2.1 97.9

NC 7AF 0 0.3 62.75 36.95] 0.3 99.7|

8AF 0 0.05 37.7 62.25] 0.05 §19.95

9AF 0 0 8.35 91.65 0 100
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2.3.3. Eight factor Designs

When the number of factors in the design is eight the results look very similar to
the seven factor case for all three model types.

To summarize there is no difference in the results when the coefficient/noise
ratio is either three or two. The fractional factorial designs generate type I error
once the true model contains hierarchical terms. The Plackett-Burman and no
confounding designs outperform the regular fractional factorial designs once
interactions are present in the true model. When the true models contains four
or more active terms, the analysis method starts breaking down irrespective of
which design is used. In cases with interactions when the design does not break
down completely, the FF design starts generating type I error for all cases and
the NC design outperforms the PB design by generating the fewest type II

errors. These results are shown in Table 2-8, Table 2-9 and Table 2-10.
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Table 2-8 Results Summary — Eight factor Main Effects Only Model

Coefficient / ) Active Factorsin| All AFs + No All AFs + Missed Some | Missed All AF ) No AFs AFs Missed =
A . Design ) . Missed = (1) +
Noise Ratio True Model In active (I) | Inactive (1) AF (1) (v) () +(1v)
1AF 22.6 77.4 0 100 0|
2AF ol 100/ 0l 100/ 0|
3AF ol 100| ol 100/ 0|
op |9AF ol 78.15] 16.05 78.15 [l 21.85
SAF ol 6.85 1l 60.3 /! 6.85 Y o3.15)
GAF ol ol 89.05/ o MR 100
TAF 0l ol 39.9/l0 o MIMERT  100]
8AF ol ol ol o] |
1AF I 33.6500 66.35] ol 100 o
2AF ol 100/ 0l 100/ 0|
o ol i
AAF 0 9.2 38 9.2 3.8
3P o [sar ol 79.41 17.15] 794 206
GAF ol 46201 53.55] 46.2 I 53.8
TAF ol 2900 55.80 2.9 IR o7.1
8AF ol ol 100/ oMY 100
1AF | 2.l 6721 ol 00l q
2AF ol 100/ 0l 100/ 0|
3AF ol 100/ 0l 100/ 0|
4AF ol 100 0l 100/ 0|
NC
SAF ol 89.05 0.25) 89.05 10.95]
6AF ol 75.05 1 24.85| 75.05 [l 24.95
TAF ol 0.6 24.15 1 0.6 MIRT 99.4
8AF ol ol ol oMINY 100
1AF 24.35 75.65 0 100 0
2AF 0.05 99.95 0 100/ 0|
3AF 0 99.85 0.15 99.85| 0.15
pp  AF 0 71.85 19.4 718500 28.15
SAF 0 10.3 64.75 10.3 0 89.7,
6AF 0 0 75.65 ol 100
TAF 0 0 37.35 ok 100|
8AF 0 0 17 ol 100
1AF 33.55 66.45 0 1000 0|
2AF 0 100 0 100/ 0|
3AF 0 100 0 100/ 0|
250 Y 0 100 0 100/ 0|
SAF 0 58.6 0.25 8.6/ 41.4
6AF 0 3.35 6.65 335000 96.65
7AF 0 0 0.9 ol 100|
8AF 0 0 0.05 ol 100
1AF 31.9 68.1 0 100 0
2AF 0 100 0 100/ 0|
3AF 0 99.7 0.3 99,7/ 0.3
ne |4 0 98.8 1.2 93.8| 1.2
SAF 0 92.45 4.15 92.45] 7.55
6AF 0 70.6 26.25 7061 29.4
TAF 0 7.75 68.7 7.75 I 2. 25
SAF 0 0 19.45 ol 100)
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Table 2.8 (contd.) Results Summary — Eight factor Main Effects Only Model

- . . . ) No AFs .
Coefficient / . |Active Factorsin | AllAFs+No | AllAFs+ |Missed Some | Missed All AF | AFs Missed =
. . Design . . Missed = (1) +
Noise Ratio True Model | Inactive (I) | Inactive (ll) |  AF(lll) (Iv) (I (1) +(1v)

1AF 6.71 54.45 ol 38.85 61.15 38.85

2AF 0.2) 38l 2085/ 20.95|l! 38.2 [l 618

3AF ol 21.65 0 63.4] 14,95 21.65 I 7835

bp  |AF 0l 11.10 74.7) 14.2 11.1 RN 85,9

SAF ol 47511 80.15| 151l 4,75 N o5, 25

6AF 0l 1200 81.15! 17.65) 1.2 [N 988

TAF 0 0.15 0 73.75] 26.1) 0.15 N 99.85

SAF 0 oll 66.7 ] 33.3J oMY 100

1AF 1161 55.25 ol 33.15 6685 33.15

2AF 1l 4835 34.25] 16.4 49.35 [l 50.65

3AF 0.05 ) 34.85 0 51.45] 13.65 34.9 0 65.1]

4AF ol 2021 63.55| 16.25, 20.2 IR 79.8

15D FF

SAF ol 12,651 69.4} 17.95 12.65 T 87.35

6AF 0l 5.9l 69.5] 24.6)f 5.0 IR 04,1

7AF 0l 2550 64.8] 32.65 2.55 I 97.45

SAF 0 055 56 43.45) o.55 IR 99.45

1AF 11.950 53 ol 35.05, s4osl 3505

2AF 1.05) 40,85 38.8| 19,3l 41.9 8 58.1]

3AF 0.05 2880 61l 10.15jl 2885 7115

e aAF ol 16.9 74.35] 8.75[ 16.9 Y s3.1

SAF 0l 10.30 82.1] 7.6 10.3 Y 80,7

6AF 0l 5300 88.1] 6.6|l 53T 047

TAF 0l 27511 90.05| 7.2)f 2.7 Y 9725

SAF 0| 1.05 0 90.85| 8.1 1.05 N 98.95

Table 2-9 Results Summary — Eight factor Main Effects + 1 Hierarchical

Interaction Model

Coefficient / . Active Factorsin | All AFs + No All AFs + |Missed Some [Missed All AF| | No AFs AFs Missed =
A . Design ) B Missed = (1) +

Noise Ratio True Model In active () | Inactive (II) AF (1) (1v) ) (m)+(v)

3AF 12.751 62.10] 25.15 0.00) 74.85) 25.19

4AF 3300 27.75 11 68.95 0.00| 31.05 ]! 68.95

SAF 0.60/ 19.40 76.80] 3.20] 200 80

PB  |6AF 0.00| 7.95 1 77.40! 14.65 7.95 1 92.05

7AF 0.00/ 0.55 1 68.60 30.85 0.55 11 99.45

8AF 0.00/ 0.05 55.40 ! 44,55, 0.05 I 99.95

9AF 0.00] 0.00] 31700 68.30 ol 100

3AF 0.001" 78.70] 21.30] 0.00) 7871 213

AAF 0.00 377510 62.25/ 0.00}! 37750 62.25

SAF 0.00 31.350 68.65/ 0.00| 31350 68.65

35D FF [6AF 0.00 31.408 66.85/ 1.75) 3140 68.6

TAF 0.001 26300 72.00/ 1.70f 26.3 01 73.7)

SAF 0.00/ 14.40 0 80.55/ 5,05 14.410 85.6

9AF 0.00] 385 92,55/ 3.60) 3.85 96.15

3AF 16.450 57500 26.05] 0.00[1 73.951 26.05

4AF 5.20] 26.45 1 68.35/ 0.00| 31651 68.35

SAF 0.801 22.80 08 76.40/ 0.00| 2.6l 76.4

NC  [6AF 0.00/ 15.65 11 78.35/ 6.00| 15.65 1 84.35

7AF 0.00/ 10.75 1 81.85/ 7.40| 10.75 11 89.25

SAF 0.00/ 5351 85.25| 9.40) 535 94.65

9AF 0.00] .25l 94.95 3.80 .25l 98.75
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Table 2.9 (contd.) Results Summary — Eight factor Main Effects + 1

Hierarchical Interaction Model

Coefficient / i Active Factorsin | All AFs +No AllAFs+ [Missed Some |Missed All AF| No AFs AFs Missed =
) R Design X 3 Missed =(1) +

Noise Ratio True Model In active (1) | Inactive (Il) AF () (Iv) m () +(1v)

3AF 12.45 62.25 25.30 0.00) 74.7 25.3

4AF 4.30 27.55 67.95 0.20 31.85 68.15

SAF 1.35 19.30 75.80 3.55 20.65 79.35

P [6AF 0.15 7.90 80.30 11.65 8.05 91.95

TAF 0.00 1.20 76.25 22.55 12 98.8

SAF 0.00 0.00 61.00 39.00 0 100]

9AF 0.00 0.00 35.95 64.05 0 100|

3AF 0.00 79.35 20.65 0.00] 79.35 20.65

4AF 0.00 37.95 62.05 0.00) 37.95 62.05

SAF 0.00 32.45 67.55 0.00) 32.45 67.55

25D FF [6AF 0.00 28.55 70.75 0.70) 28.55 71.45

TAF 0.00 23.30 75.25 1.45 233 76.7,

SAF 0.00 12.75 84.60 2.65 12.75 87.25

9AF 0.00 4.00 92.40 3.60) 4 9%

3AF 20.35 57.85 21.80 0.00) 78.2 21.8

4AF 4.60 26.90 68.50 0.00) 315 68.5

SAF 0.90 23.00 76.10 0.00) 23.9 76.1

NC  [6AF 0.00 17.15 80.65 2.20 17.15 82.85

7AF 0.00 12.85 82.75 4.40 12.85 87.15

SAF 0.00 5.75 87.35 6.90 5.75 94.25,

9AF 0.00 4.25 91.05 4.70 4.25 95.75

3AF 1.75 12.05 10 61.201" 25.00] 13.81 6.2

4AF 0.50 6.90/ 75.65 16.95 7.4] 92.6

SAF 0.10 2700 82.50 14.70 2.8} 97.2

PB  [6AF 0.00 1.25] 83.90 14.85, 1.25] 98.75

7AF 0.00 0.45] 83.55 16.00) 0.45] 99,55

SAF 0.00 0.30/ 80.95 18.75 0.3/ 99.7

9AF 0.00 0.00} 71.55/ 28.45, ol 100|

3AF 0.00 2155000 59.10 19.35 21.55) 78.45,

4AF 0.00 975/ 77.95 12.30 9.75/ 90.25

SAF 0.00 5.90/ 84.45 9.65 59] 94.1

1SD FF |eAF 0.00 3.35) 90.10 6.55 3.35) 96.65

7AF 0.00 2.55] 91.50 5.95 255/ 97.45

8AF 0.00 1.70] 91.95 6.35 1.7} 983

9AF 0.00 0.65) 92.80 6.55, 0.65 | 99,35,

3AF 4.85 14.10) 58.50 22.55 18.95 | 81.05

4AF 0.60 7.70} 79.30 12.40 83| 91.7

SAF 0.10 3.5/ 86.10 9.85 4.05| 95.95,

NC  [eAF 0.00 3.35) 88.20 8.45, 3.35] 96.65,

7AF 0.00 150 91.15 7.35 151 98.5

8AF 0.00 0.90! 91.30 7.80 09| 99.1

9AF 0.00 0.70} 93.20 6.10 0.7/ 99.3
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Table 2-10 Results Summary — Eight factor Main Effects + 2 Hierarchical

Interaction Model

Coefficient Active ) i No AFs )
) ) ) All AFs + No All AFs + |Missed Some [Missed All AF| | AFs Missed =
[Noise | Design | Factorsin |\ " oty | mnactive () | AF () (Iv) Missed =(I)+| "\ 4 v)
Ratio True Model (n)
S5AF 12.15 46.45 4.65 36.75 58.6 41.4
6AF 0 1.2 87.25 11.55 1.2 98.8
P8 7AF 0 0.15 40.35 59.5 0.15 99.85]
8AF 0 0 8.65 91.35 0 100
9AF 0 0 0.05 99.95 0 100
10AF 0 0 0 100 0 100
5AF 0 72.9 21.6 5.5] 72.9 27.1]
6AF 0 11.5 71.95 16.55 11.5 88.5]
5D FE 7AF 0 2.55 80 17.45 2.55 97.45]
8AF 0 14 80.4 18.2 14 98.6|
9AF 0 0 82.8 17.2 0 100
10AF 0 0 76.6 23.4 0 100
S5AF 21.25 64.7 14.05 0 85.95 14.05|
6AF 0 10.45 68.3 21.25 10.45 89.55]
NC 7AF 0 1.5 89.2 9.3 1.5 98.5
8AF 0 0.1 83.8 16.1] 0.1 99.9
9AF 0 0 60.45 39.55 0 100
10AF 0 0 15.55 84.45 0 100
5AF 11.9 46.3 13.4 28.4] 58.2 41.8
6AF 0 0.95 84.6 14.45 0.95 99.05]
PB 7AF 0 0.25 41.45 58.3 0.25 99.75]
8AF 0 0 9.25 90.75 0 100
9AF 0 0 0 100 0 100
10AF 0 0 0 100 0 100
5AF 0 75.15 189 5.95 75.15 24.85
6AF 0 12.35 71.05 16.6] 12.35 87.65
25D FE 7AF 0 1.95 80.5 17.55 1.95 98.05]
8AF 0 1.55 81.55 16.9] 1.55 98.45]
9AF 0 0 81.45 18.55 0 100
10AF 0 0 77.3 22.7| 0 100
5AF 20.45 64.6 14.9 0.05] 85.05 14.95]
6AF 0.4 9.55 68.4 21.65 9.95 90.05]
7AF 0 1 89.9 9.1 1 99|
NC 8AF 0 0.25 84.4 15.35 0.25 99.75]
9AF 0 0 64.1 35.9 0 100
10AF 0 0 23.65 76.35 0 100
5AF 1.1 4.65 73.45 20.8 5.75 94.25]
6AF 0.05 1.15 74.8 24 1.2 98.8
P8 7AF 0.05 0.25 54.7 45 0.3 99.7
8AF 0 0 23.1 76.9 0 100
9AF 0 0 3.45 96.55 0 100
10AF 0 0 0 100 0 100
5AF 0 12.4 72.55 15.05 12.4 87.6
6AF 0 3.75 77.4 18.85 3.75 96.25]
7AF 0 0.8 78.3 20.9] 0.8 99.2]
1SD FF
8AF 0 0.45 80.7 18.85 0.45 99.55]
9AF 0 0 80.4 19.6 0 100
10AF 0 0 75.25 24.75 0 100
5AF 1.5 6.55 78.45 13.5] 8.05 91.95]
6AF 0.05 1.5 85.9 12.55 1.55 98.45]
NC 7AF 0 0.15 89.25 10.6] 0.15 99.85]
8AF 0 0.25 91.1 8.65 0.25 99.75]
9AF 0 0 87.75 12.25 0 100
10AF 0 0 81.05 18.95 0 100
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2.3.4. Preliminary Results

After studying these results, the Plackett-Burman designs were dropped from the
study since these designs only have 12 runs as compared to the 16 runs in the
FF and NC designs. Also when the coefficient to noise ratio is less than two, the
noise level is too high for any method to identify the active terms in the model.
Therefore the next simulation study done only considers the NC and FF designs
and considers only true models with coefficient to noise ratios greater than two.
2.4, Simulation Study

The results of an extensive simulation study on the effectiveness of stepwise
regression to analyze the regular 16-run fractional factorial design with 6-8
factors and the 16-run NC designs with 6-8 factors are detailed in this section.

The other factors studied in the simulation are:

True Model — This is unknown in real experiments, but controlled in the

simulation study. For the purpose of this study the following models were

studied; Main effects only, Main Effects + 1 interaction entering with strong

heredity and Main Effects + 2 interactions entering with strong heredity.

e Number of design factors — six, seven and eight.

e Coefficient to Noise Ratio - Normally distributed with a mean of zero and
standard deviation = 1. The B/c ratio is varied as described subsequently.

e Type of Design — Fractional Factorial and No Confounding

e Number of Active Terms — This depends on the true model and the number
of factors in the design and is listed in Table 2-11.

e Model Selection Method — Stepwise Regression with AICc criterion, Two

Stage Stepwise Regression (include main effects in stage one and then
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including the interactions with strong heredity in stage two) with AICc

criterion (2004).
JMP was used to run the simulations. There are various options available in JMP
to perform stepwise regression; in the case of p-value with stepwise regression,
the combine option with mixed (stepwise) regression was used and for the AICc
case the forward regression and combine was used. For the p-value case the
Prob to Enter was set as 0.10 and Prob to Leave was set as 0.15.
The combine option groups a two-factor interaction term with its two associated
main effects and calculates the group’s significance probability for entry using a
joint F-test. In each iteration, the active terms were randomly assigned to the
columns of the model matrix. The coefficient of the inactive terms was set to
zero. The B's of the active terms are randomly generated. The largest coefficient
is varied from 3.8 to 4.2 and the smallest coefficient is varied from 2.0 to 2.2.
The coefficients are varied following an exponential distribution from the largest
coefficient value to the smallest coefficient value.

Table 2-11 Number of active terms

Number of active terms
6 7 8
Main Effects Only 1,2,3,4,5 11,2,3,456, |1,2,3,4,5,
6 7 6,7,8
Main Effects + 1 2+1, 3+1, 2+1, 3+1, 4+1, | 2+1, 3+1,
True Interaction 4+1, 5+1, 5+1, 6+1, 7+1 | 4+1, 5+1,
Model 6+1 6+1, 7+1,
8+1
Main Effects + 2 342, 4+2, 3+2,4+2,5+2, | 3+2, 4+2,
Interactions 5+2, 6+2 6+2, 7+2 5+2, 6+2,
7+2, 842

There are three levels for three factors (true model, number of factors in the

design, model selection method) and 6, 7 and 8 levels for the fourth factor
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(number of active terms). The full factorial design in the simulation therefore,

required a total of 216 factor combinations.

2.5.  Simulation Results

The results from each trial (one combination of simulation factors) were

evaluated by calculating.

1. m: Percentage of runs where only active terms were identified as active

2. my. Percentage of runs where all active terms were identified, plus some
inactive terms were identified as active (Type I Error)

3. m3: Percentage of runs where some of the active terms were missed (Type II
Error)

4. n4: Percentage of runs where all the active terms were missed (Type II Error)

In an ideal scenario, m; would be close to 100 and =,, n3 and n4y would be close to

zero. Since it is a screening scenario, the experimenter would tolerate some Type

I errors but would want to avoid Type II errors. This is because it is hard to

recover from excluding important factors in the initial stage of experimentation.

However, if some inactive factors are carried forward to the next stage of

experimentation, these can usually be discovered and removed later. For a

model selection method to be successful, n; & n4 need to be close to zero. For

the FF designs when the true model contains interactions, if the analysis

identifies the alias chain correctly, I do not include that as a success. This is

because there is no analytical way to correctly identify which interaction effect in

the alias chain is active without running more experiments.

Graphical summaries of the results are shown in Figures 2.2 — 2.13. For the six

factor FF designs, the model selection method does not affect the error rate. The
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designs performs well only when the true model only contains main effects and
results in 0% type II error when the active terms in the model are five or less.
Once the true model includes interactions, FF design results in 100% Type II
error. In the case of the NC design, the stepwise regression with AICc as the
model selection criterion works better than the 2-stage stepwise regression for
models which contain interactions. The 2-stage stepwise regression method
works better for the NC design when the true model contains only main effects.
Once interactions are present in the true model, stepwise regression with AICc
as the model selection criteria works better when the number of active terms are
between two and four. As the number of active terms increases, the error rates
for the two methods converge. The results for the eight factor NC and FF
designs are similar to the results from the six factor designs.

In the case of the seven factor NC design, the results look better than those for
the six and eight factor designs. The error rate in the cases where the true
model contains interactions varies from 30% to 78% for the case with one
interaction and between 70% and 94% for the case with two interactions. In the
case of the six and eight factor NC designs, the error rate ranges between 19%
— 100% and 55% - 98% for models with one interaction and from 55% - 100%

and 88% - 100% for models with two interactions.
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NC6 - 2 stage Stepwise
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Figure 2.2 2 stage stepwise AICc — NC Six Factor Design
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Figure 2.3 2 stage stepwise AICc — FF Six Factor Design
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NC6 - AlCc

100.0%
80.0%
60.0%
40.0%
20.0%

0.0%

=Q==Type Il Error ME Only ==0=Type Il Error ME+1 INT === Type Il Error ME+2 INT

Figure 2.4 Stepwise AICc — NC Six Factor Design
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Figure 2.5 Stepwise AICc — FF Six Factor Design
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NC7 - 2 stage Stepwise
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Figure 2.6 2 stage stepwise AICc — NC Seven Factor Design
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Figure 2.7 2 stage stepwise AICc — FF Seven Factor Design

29




NC7 - AlCc
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Figure 2.8 Stepwise AICc — NC Seven Factor Design

100F&’/Z-%&5% 100.0% 100.0% 100.0%
» A A A—366-094200.0%

100.0%
80.0%
60.0%
40.0%
20.0%

0.0% ——0=0:0%—0—0:0%—0—0-0%—0—8-8%—0—0:0%—0—0:0%—002%

=Q==Type Il Error ME Only ==0=Type Il Error ME+1 INT === Type |l Error ME+2 INT

Figure 2.9 Stepwise AICc — FF Seven Factor Design
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NCS8 - 2 stage Stepwise
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Figure 2.10 2 stage stepwise AICc — NC Eight Factor Design
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Figure 2.11 2 stage stepwise AICc — FF Eight Factor Design
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NC8 - AlCc
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Figure 2.12 Stepwise AICc — NC Eight Factor Design
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Figure 2.13 Stepwise AICc — FF Eight Factor Design

2.6. Simulation Output Analysis

The response, n;+ m, (Type II Error) is regressed on the five variables varied in
the simulation study. The ANOVA results from this analysis are shown in Table
2-12. The results show that the model predicted R-Squared is 0.89 and the
significant effects include three of the main effects (B: True Model, D: No. of

Design factors and E: No. of Active terms) and two 2 - factor interactions; BC
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and CE. The main effect C: Design is included in the analysis to maintain

hierarchy.

The interaction plots shown in Figure 2.14 and Figure 2.15 clearly show the

interactions between the main factors. These plots are interpreted below and

summarizes the effect the different factors have on the error rate.

The True Model * Design Interaction shows that both NC and FF designs
have fairly small error rates when the true model consists of only main
effects though the FF design has a lower error rate than the NC design in this
case. But once the true model has interactions present in it, the NC design
has a lower error rate as compared to the FF designs. For the FF designs the
error rate goes to a 100% when any interaction is present in the true model
whereas in the case of the NC designs, the error rate gradually increases as
the number of interactions in the model increases.

The Design * No. of Active factors interaction shows that although the
performance deteriorates as the No. of Active factors increases, the
performance deteriorates from an error rate of 20% to an error rate of
almost 100% in the NC design case and varies from 43% to 71% for the FF
design case. The NC design actually performs better when the number of
active terms in the model is lower and starts deteriorating faster than in the

case of the FF design as the number of active terms in the model increases.

This leads to the conclusion that if the number of active terms is relatively small,

4 or less, that is, sparsity of effects prevails, the NC designs are good

alternatives to the FF designs.
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Table 2-12 Simulation ANOVA results

Response: ms+my Transform: Square root
Analysis of variance table [Classical sum of squares - Type Il]

Constant: 0.01

Source Sum of df Mean F Value p-value
Squares Square Prob>F
Model 30.195 21 1.438 95.898 < 0.0001
B-True Model 21.272 2 10.636 709.381 <0.0001
C-Design 0.021 1 0.021 1.404 0.2374
D-No. of Design Factors 0.086 2 0.043 2.874 0.0589
E-No. of Active Factors 1.852 7 0.265 17.648 <0.0001
BC 1.253 2 0.626 41.773 <0.0001
CE 0.736 7 0.105 7.014 <0.0001
Residual 2.909 194 0.015
Cor Total 33.104 215
Std. Dev. 0.122 R-Squared 0.912
Mean 0.665 Adj R-Squared 0.903
CV. % 18.423 Pred R-Squared 0.889
PRESS 3.688 Adeq Precision 29.581

Design-Expert® Software
Original Scale
P3+P4

X1 = B: True Model FF —|
X2 = C: Design 0.0188606

Actual Factors

A: Model Selection = Average

D: No. of Design Factors = Average
E: No. of Active Factors = Average

C: Design

NC —

0.106605

1.01092

0.657732

0.99793

0.834963

ME Only

ME + 1 Int

B: True Model

ME + 2 Int

Figure 2.14 True Model * Design Interaction
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Design-Expert® Software
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P3+P4 8 —
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= - i 7 —
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Actual Factors s
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w
B: True Model = Average 5
D: No. of Design Factors = Average € 5 |
s 0468215 0.486919
v
2
= 4 —
& 0401703 0.484566
k5]
c 3
= 0335738 0.484566
i
2
0.195482 0.466896
1
0.193526 0423224
I I
NG FF
C: Design

Figure 2.15 Design * No. of Active factors Interaction

2.7. Conclusion

The regular fractional factorial designs with six, seven or eight factors in 16 runs
are widely used. However due to the complete confounding of the two-factor
interactions with one another, these designs often require the experimenter to
perform runs to resolve ambiguities whenever any of the two-factor interactions
are identified as being active. The NC designs allow for the estimation of all main
effects along with some of the two-factor interactions since there is no complete
confounding in these designs.

The simulation study confirmed that stepwise regression does not work well once
the total number of active terms exceeds four. However the study also showed
that NC designs allow for estimation of two factor interactions without the need
to run additional runs. Furthermore, once the true model contains interactions,
regular fractional factorial designs are unable to compete with the nonregular

designs due to the complete confounding of the two-factor interactions.

35



The simulation study shows that although stepwise regression may not be the
best method to use for the analysis of nonregular designs, it is reasonably
effective if the number of active terms (main effects and interactions included) is
not more than four. There is no statistically significant difference between using
a 2-stage stepwise regression method and a stepwise regression method. Both
model selection methods used the AICc criterion.

I believe that the NC designs are good alternatives to the FF designs specially
when running another set of experiments is not an alternative. With the NC
designs, the experimenter would be able to study both the main effects and the
interactions from the initial 16 runs of the experiment when the effect sparsity

principle holds true.
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Chapter 3

PROJECTION PROPERTIES OF NO-CONFOUNDING DESIGNS FOR SIX, SEVEN
AND EIGHT FACTORS IN SIXTEEN RUNS

3.1 Introduction

The NC designs do not completely confound any of the main effects and two-
factor interactions. Plackett-Burman designs and the NC designs of Jones and
Montgomery are examples of nonregular designs. The projection properties of
fractional factorial designs and Plackett-Burman designs are well documented.
Montgomery (2013) discusses the projection properties of the 2P designs that
collapse into either full factorial or a fractional factorial in any subset of r <k —p
of the original factors. The subsets that result in fractional factorials are subsets
appearing as words in the complete defining relation. Lin and Draper (1992) and
Box and Bisgaard (1993) showed that some of the Placket-Burman designs in
fewer runs when projected onto three factors result in a complete 23 design and
a half replicate of the 2° design. The projection properties of NC designs have
not been studied. In this paper the projection properties of NC designs for the
six, seven and eight factor cases in 16 runs are presented.

The principle of effect sparsity in designed experiments allows experimenters to
study a larger number of factors under the assumption that only a few of them
will have a significant effect on the response/s being studied. Once the design is
collapsed to a smaller number of factors, the resulting design may have
properties that allow for easier analysis of these designs. Studying the projection

properties of the NC designs can suggest possible analytical methods for these
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designs. Here I present the three factor and four factor projections of the six,
seven and eight factor NC designs.

Johnson and Jones (2011) show that the six, seven and eight factor NC designs
have a classical-type construction with a 2% or a replicated 2° starting point.
These generating columns can be used to study the projection properties of the
NC designs. Sections 2, 3 and 4 describe the projection properties of six, seven
and eight factor NC designs. Section 5 describes how these projections are
related to the generating columns described in Johnson and Jones (2011).
Section 6 suggests two potential analysis methods for NC designs. Sections 7
and 8 illustrates the analysis methods for two example experiments from the
literature.

3.2. Projection properties of six factor NC design

Box (1996), Cheng (1995), Cheng (1998), Dey (2005) and Evangelaras (2005)
talk about projection properties of orthogonal arrays. There are a few other
papers that discuss the projection properties of screening designs, Placket -
Burman designs and nonregular designs such as Box & Tyssedal (2001),
Bulutoglu et al (2003), Lin & Draper (1992), Loeppky et al (2007), Tsai et al
(2000) and Xu et al (2005). All these papers talk about different projection
properties of the designs and how they can be used to the experimenter’s
benefit during both the design phase and the analysis phase of experiments.
Studying the projection properties of the designs gives valuable insight into
possible analysis methods. The following sections discuss the projection
properties of the NC designs and provides valuable insight into how these

properties can be used to develop analysis methods for these designs.
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The six factor NC design has 20 different three factor projections. 12 of these
projections result in replicated full factorial designs in three factors. These
projections can therefore be analyzed like a full factorial design. The other eight
projections result in two different projection types which are isomorphic in
nature. The two projection types are shown in Figure 3.1. The projections show
that there are eight distinct design points for the three factor projections of the
six factor NC design. This allows for the estimation of the three main effects and
the three two-factor interactions. The maximum VIF for any term for any of
these projections is 1.33.

There are 15 possible four factor projections of the six factor NC design. Three of
these projections, ABCD, ABEF and CDEF, result in full factorial projections

whereas the remaining 12 projections result in nine different projection types.
The nine different types of projections are shown in Figure 3.2. Projections 1, 2,

3, 6, 7, 8 & 9 have 12 distinct design points while projections 4 & 5 have 14
distinct design points.

This allows for estimation of all 10 terms (main effects and two-factor
interactions). The correlation patterns for all three and four factor projections of
the six factor NC design show that the maximum correlation between any two

effects is £0.5. The maximum VIF for any term for any of these projections is 2.
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Figure 3.1 Three factor Projections for the Six Factor NC design
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Figure 3.2 Four factor projections of the six factor NC design
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Figure 3.2 (contd.) Four factor projections of the six factor NC design
3.3. Projection properties of seven factor NC design
Out of the 35 possible three factor projections for the seven factor design, 27

projections result in a full factorial design with two replicates. The other eight
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projections result in the main effects being partially aliased (0.5 or -0.5) with the
two factor interaction not involving itself. The generating equations can be used
to study the projection properties. The projections show that there are eight
distinct design points for the three factor projections of the 7 variable no
confounding design. This allows for the estimation of the three significant main
effects and their three two-factor interactions. The three factor projections of the
seven factor NC design that are not replicated full factorials are shown in Figure
3.3. The maximum VIF for any of the terms for any of the projections is 1.33.

12 of the possible 35 four factor projections result in a full factorial design;
ABCD, ABCE, ABCF, ABCG, ABDG, ABEF, ACDE, ACFG, ADEF, ADEG, ADFG, AEFG
and DEFG are the projections that results in a full factorial design. The remaining
23 four factor projections result in 13 different types of projections. These four
factor projections are shown in Figure 3.4. All projections have 12 distinct design
points. This allows for estimation of all 10 terms (main effects and two-factor

interactions). The maximum VIF for any term for any of the projections is 2.
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Figure 3.3 Three factor projections for the seven factor NC design
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Figure 3.4 (contd.) Four factor projections of the seven factor NC design

3.4. Projection properties of eight factor NC design

Out of the 56 possible three factor projections, 42 of the projections result in a
full factorial design with two replicates, and 14 projections result in the main
effects being partially aliased (0.5) with the two factor interaction not involving
itself. These projections result in the display shown in Figure 3.5. The projection
shows that there are eight distinct design points for the three factor projections
of the eight factor NC design. This allows for the estimation of the three main
effects and their three two-factor interactions. The maximum VIF for any of the
terms for any of the projections is 1.33. In the case of the four factor

projections, 21 of the possible 70 four factor projections result in a full factorial
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design. There are 11 projection types for the 49 projections that do not result in
a full factorial design. These projections are illustrated in Figure 3.6. All 49 of
these projections have 12 distinct design points. This allows for estimation of all
10 terms (main effects and two-factor interactions). The maximum VIF for any

term for any of the four factor projections is 2.
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Figure 3.6 (contd.) Four factor projections of the eight factor NC design
3.5. Projections using the generating columns
Johnson and Jones (2011) present the generating columns for the NC designs for

the six to eight factor cases. In the case of the fractional factorial designs, the
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defining relation and the subsets of the words appearing in the relation gives us
an indication of which projections result in full factorials and which ones result in
fractional factorials. In the case of the NC designs, the generating columns
presented in Johnson and Jones (2011) works in a similar manner.
For the six factor NC design, the columns A, B, C & D form a full factorial in 16
runs and the columns E and F can be generated using the following equations:
E=1/2 [AC+BC+AD-BD]
F=1/2 [-AC+BC+AD+BD]
These equations can be used to study the projection properties for both the
three factor and the four factor projections. Since the columns A, B, C and D
form a full factorial in 16 runs, any projections which contain only, A, B, C and D
columns will result in full factorial projections. If the projection contains E or F,
then the generating equations can be used to identify the correlation structure
and hence the projection. Table 3-1 illustrates how to identify the correlation
structure and the projections for the three factor projections of the six factor NC
design.
A similar method can be applied to generating the four factor projections. Table
3-2 illustrates some examples for the four factor projections of the six factor NC
design. Projections ABCE and ABDF are the same because the correlation
structure is the same for the two projections.
For the seven factor NC design, columns A, B, C and D form a full factorial in 16
runs and the columns E, F and G can be generated using the following
equations.

E=1/2 [BD+ABD+BCD-ABCD]
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F=1/2 [BD+CD-ABD+ACD]
G=1/2 [-CD+ACD+BCD+ABCD]
The projections can be studied using these generating equations in a similar
manner as was done for the six factor NC design.

Table 3-1 Three factor projections based on generating columns for the six factor

NC design
Proj Equation Drop columns that are not part Projection
X, X,X5 of the projection subset Type
ABC | Columns A, B, C, D - Full Factorial
form a full factorial with 2
replicates
ABE 1 1 Full Factorial
E =-[AC+BC E=-[A6+B6+AD—BB] | ..
+ AD replicates
— BD]
1 1 - -
ACE | p_ Slac+Bc E = Z[AC + BC + AD — BD] Projection I
+ AD 1 1
— BD] E—E[AC]*X3—E[X1X2]
1 1 - -
ADE | p S[-AC +BC F = [~A€ +BE + AD + BD] Projection I
+ AD 1 1
+ BD] F—E[AD]—’Xs _E[XIXZ]
1 1 . -
ACE g S[-AC +BC F = Z[~AC + BC + AD + BD] Projection II
+ AD 1 1
+ BD] F—E[_AC]_’X3—E[_X1XZ]
1 1 . -
BDE E = Z[AC + BC E = Z[4€ + BE + AD — BD] Projection II
+ AD 1 1
— BD] E—E[—BD]—’X3—E[—X1X2]

50




Table 3-2 Four factor projections based on generating columns for the six factor

NC design
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Table 3.2 (contd.) Four factor projections based on generating columns for the

six factor NC design
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The A, B, C and G columns in the eight factor NC design form a full factorial in
16 runs. The columns D, E, F and H can be generated using the following

equations.

1
D = [BC + BG + ABC — ABG]

1
E = [BC + CG — ABC + ACG]
F ==[CG — ACG + BCG + ABCG]

H =-[BG + ABG + BCG — ABCG]

N| = N| =

The projections for the eight factor NC design can be studied using these
generating equations in a similar manner as was done for the six factor NC
design.

3.6. Analysis of NC designs based on projection properties

The projection properties of the NC designs clearly show that all main effects and
their interaction can be estimated if the number of active main effects is four or
less. Li, Sudarsanam and Frey (2006) confirm three key ideas, effect sparsity,
hierarchy and heredity associated with design of experiments through a meta-
analysis of 113 datasets from published factorial experiments. But they also saw
that exceptions to these ideas are more likely than previously thought. The
meta-analysis showed that about 33% of the main effects were active while
about 7.4% of the two factor interactions and about 2.2% of the three factor
interactions were found to be active. They state in their paper that the data
presented suggest that a system with four factors is more likely than not to

contain a significant interaction given that 7.4% (3) + 2.2% (%) > 50%.
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If you are able to project the NC designs to four factors you can essentially
estimate 70% of the main effects for the six factor case, 60% of the main effects
for the seven factor case and 50% of the factors for the eight factor case. It also
allows for estimation of 40% of the two factor interactions for the six factor case,
29% of the interactions for the seven factor case and 21% of the interactions for
the eight factor case. Therefore one logical approach to analyzing NC designs
would be to fit all possible main effects and two-factor interaction models up to
10 terms and evaluate these models using criteria such as R-Sq, R-Sq Adj, Root
Mean Square Error (RMSE), the corrected Akaike Information Criteria (AICc) and
the Bayesian Information Criteria (BIC). Once the best models are shortlisted the
top few can be evaluated using ordinary least squares. Table 3.3 lists the steps
involved in this approach.

A second approach to analyzing these designs would be fitting all possible
models with up to only four main effects, then evaluating these models using
criteria such as R-Sq, R-Sq Adj, RMSE, AICc and BIC and choose the best
model(s) from those. The second step would be to include the two-factor
interactions into the best main effects models chosen in step one. One way to
add the two-factor interactions would be to fit a model with the main effects and
all interactions using ordinary least squares. The insignificant terms can then be
eliminated using p-values for the effects. Another approach to add the two-factor
interactions would be to use stepwise regression on the top models by forcing
the main effects into the model and then using the stepwise algorithm to add the
two-factor interactions to get the best fit. Table 3.3 lists the steps to be followed

in this approach.
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Table 3-3 Analysis Methods

Analysis Method 1 Analysis Method 2

e Fit all possible one to ten term o Fit all possible main effects only models up
models (both main effects and two to four factors
factor interactions) e Evaluate the models using R?, RZ-Adj,
e Evaluate the models using R? R*- RMSE, AlCc or BIC
Adj, RMSE, AlCc or BIC e Choose the top few models for further
e Choose the top few models for analysis
further analysis e Use OLS to fit the model and pick the best

e Use ordinary Least Squares (OLS) to one OR
fit the model and pick the best one e Use stepwise regression to fit the model by
forcing the main effects and then using the
stepwise algorithm to add the two factor
interactions

3.7. Example 1

These approaches are illustrated using an example. Montgomery (2012) presents
an example of the regular 2°? resolution IV design applied to a photoresist
application process. The response variable is thickness and the design factors are
X; = speed RPM, X, = acceleration, X3 = volume, X; = time, Xs = resist viscosity,
and Xs = exhaust rate. Montgomery (2013) found that the main effects X;, X5, X3
and Xs along with the alias chain involving the X;Xs interaction were active. He
used a fold-over technique to identify the significant XsXs interaction. Jones and
Montgomery (2010) simulated the response variable for this experiment using
the six variable NC design. This simulated data is used as an example to illustrate
the two methods described above. In constructing the simulation X;, X;, X3 and
Xs were assumed to be the significant main effects and the X3Xs interaction was
assumed to be the active interaction. The experiment is shown in Table 3-4.
3.7.1. Analysis Method I

This experiment was analyzed using JMP. All possible one to ten term models

(excluding and including interactions) were fit using ordinary least squares
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regression and evaluated using the AICc criterion and the RSquare values. The
top three models for the one term model to the ten term model cases are listed
in Table 3-5. The top two models based on the AICc criterion and the R-Square
value are model numbers 13 (X;, X3, X3, Xs, X3Xs5) and 16 (X;, X3, X3, X5, XoXs,
X3Xs). These two models were selected for further analysis. This indicated that
the interaction X,;Xs in model number 16 has a p-value of 0.1133 and can be
removed from the model resulting in model 13. The two model fits are shown in
Figure 3.7 and Figure 3.8. The results clearly show that the better model using
this analysis methodology is the one which includes the main effects X;, X;, X3
and Xs along with the interaction X5Xs which is the correct model.

Table 3-4 The no-confounding design for the photoresist application experiment

Run X, X X3 X4 Xs Xe Thickness
1 1 1 1 1 1 1 4,494
2 1 1 -1 -1 -1 -1 4,592
3 -1 -1 1 1 -1 -1 4,357
4 -1 -1 -1 -1 1 1 4,489
5 1 1 1 -1 1 -1 4,513
6 1 1 -1 1 -1 1 4,483
7 -1 -1 1 -1 -1 1 4,288
8 -1 -1 -1 1 1 -1 4,448
9 1 -1 1 1 1 -1 4,691
10 1 -1 -1 -1 -1 1 4,671
11 -1 1 1 1 -1 1 4,219
12 -1 1 -1 -1 1 -1 4,271
13 1 -1 1 -1 -1 -1 4,530
14 1 -1 -1 1 1 1 4,632
15 -1 1 1 -1 1 1 4,337
16 -1 1 -1 1 -1 -1 4,391
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Table 3-5 All Possible term Models up to ten terms (main effects and two-factor

interaction) comparison

No. No of

Model terms | RSq | RMSE AlCc BIC
1 X1 1 0.66 | 86.67 | 194.06 | 194.38
2 X2 1 0.13 | 138.47 | 209.05 | 209.37
3 X3 1 0.06 | 143.99 | 210.30 | 210.62
4 X1, X2 2 0.79 | 70.47 | 189.89 | 189.34
5 X1, X3 2 0.72 | 81.52 | 194.55 | 194.00
6 X1, X5 2 0.68 | 86.72 | 196.53 | 195.98
/] X1, X2, X3 3 0.85 | 61.78 | 188.76 | 186.62
8 X1, X2, X5 3 0.81 | 69.02 | 192.31 | 190.17
9 X1, X2, X6 3 0.80 | 72.19 | 193.74 | 191.61
10 | x1, X2, X3, X5 4 0.88 | 59.09 | 191.27 | 186.57
11 | X1, X2, X3, X1*X3 4 0.86 | 61.76 | 192.69 | 187.99
12 | X1, X2, X5, X2*X5 4 0.86 | 62.18 | 192.91 | 188.21
13 | X1, X2, X3, X5, X3*X5 5 0.95 | 37.98 | 182.27 | 173.68
14 | X1, X3, X4, X6, X4*X6 5 0.92 | 50.40 | 191.32 | 182.73
15 | X1, X2, X3, X5, X2*X5 5 0.89 | 58.93 | 196.33 | 187.74
16 | X1, X2, X3, X5, X2*X5, X3*X5 6 0.97 | 34.56 | 186.13 | 171.74
17 | X1, X2, X3, X5, X6, X3*X5 6 0.96 | 37.11 | 188.42 | 174.03
18 | X1, X2, X3, X5, X1*X3, X3*X5 6 0.95 | 39.36 | 190.30 | 175.91
19 | X1, X2, X3, X5, X6, X2*X5, X3*X5 7 0.97 | 33.02 | 194.22 | 171.18
20 | X1, X2, X3, X5, X6, X3*X5, X5*X6 7 1097 | 33.27 | 194.47 | 171.42
21 | X1, X2, X3, X4, X5, X2*X5, X3*X5 7 0.97 | 34.43 | 195.56 | 172.52
22 | X1, X2,X3,X5 X6, X2*X5, X3*X5, X5*X6 8 0.98 | 27.21 | 201.89 | 165.62
23 | X1,X2,X3,X4, X5, X1*X4, X2*X5, X3*X5 8 0.98 | 28.98 | 203.91 | 167.64
24 | X1,X2,X3,X5,X6, X1*X6, X3*X5, X5*X6 8 0.98 | 29.21 | 204.17 | 167.89
25 | X1,X2,X3,X5,X1*X4,X2*X5,X3*X4,

X3*X5, X5*X6 9 0.99 | 18.08 | 210.34 | 152.84
26 | X1, X2, X3, X5, X1*X4, X2*X5, X3*X4,

X4*X6, X5*X6 9 0.99 | 18.08 | 210.34 | 152.84
27 | X1, X3, X5, X1*X4, X2*X5, X3*X4,

X3*X5, X4*X6, X5*X6 9 0.99 | 18.08 | 210.34 | 152.84
28 | X1, X2, X3, X4, X5, X1*X4, X1*X6,

X3*X4, X3*X5, X5*X6 10 |0.99 | 11.83 | 233.85 | 139.12
29 | X1, X2, X3, X4, X5, X1*X4, X1*X6,

X3*X4, X4*X6, X5*X6 10 |0.99 | 11.83 | 233.85 | 139.12
30 | X1, X2, X3, X4, X5, X1*X4, X2*X5,

X3*X4, X3*X5, X5*X6 10 |0.99 | 11.83 | 233.85 | 139.12
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Figure 3.7 Model fit for X1, X3, X3, X5, XoXs, X3Xs
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The same experiment was analyzed using the second method which entails
fitting all the main effects only models and then adding the two factor
interactions using one of two methods (OLS or stepwise regression). The results
from fitting all the main effects models with up to four factors and their R-Sq,
RMSE, AICc and BIC values are listed in Table 3-6. The top three models with
one to four main effects are listed in Table 3-6. The top three models were
chosen and then the two factor interactions were added using both OLS and
stepwise regression. The result using both approaches is the same. For the two
term model with X;, X, when the interaction is added the model fit is not

improved as the interaction effect is not significant. In the case of the three term



model with X;, X5, X3, when the interactions X;X,, X;X3 and X,X3 are added to the
model, none of the interactions are significant and therefore does not lead to a
better fit then the main effects only model. Whereas in the four factor model
case when the strong heredity interactions are included in the model, the model
fit is improved when the X;Xs interaction is added to the original X;, X;, X3, Xs
main effects only model. The results from fitting these three models are shown
in Figure 3.9, Figure 3.10 and Figure 3.11. The final model chosen based on the
above analysis is again the one with X;, X, X3, Xs and X3Xs interaction. Both
analysis methods lead to the same result.

Table 3-6 All Main Effects only Models comparison

Number of terms in

No. Model model RSquare | RMSE AlCc BIC

1 X1 1 0.66 86.67 | 194.06 | 194.38
2 X2 1 0.13 | 138.47 | 209.05| 209.37
3 X3 1 0.06 143.99 210.30 210.62
4 X1,X2 2 0.79 70.47 | 189.89 | 189.34
5 X1,X3 2 0.72 81.52 | 194.55 | 194.00
6 X1,X5 2 0.68 86.72 | 196.53 | 195.98
] X1,X2,X3 3 0.85 61.78 | 188.76 | 186.62
8 X1,X2,X5 3 0.81 69.02 | 192.31 | 190.17
9 X1,X2,X6 3 0.80 7219 | 193.74 | 191.61
10 | X1,X2,X3,X5 4 0.88 59.09 | 191.27 | 186.57
11 | X1,X2,X3,X6 4 0.86 63.08 | 193.37 | 188.67
12| X1,X2,X3,X4 4 0.85 64.50 | 194.08 | 189.38
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4=/ Response Y
[* Actual by Predicted Plot
4 Summary of Fit

RSquare 0.79229
RSquare Adj 0.740362
Root Mean Square Error 7313629
Mean of Response 4462 875
Observations (or Sum Wats) 16
4 Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 3 24483475 81611.6 15.2576
Error 12 G64187.00 5348.9 Prob>F
C. Total 15  309021.75 0.0002*

[ Parameter Estimates
[» Effect Tests
4 Sorted Parameter Estimates

Term Estimate Std Error tRatio Prob=|t|
31 112875 18.28407  6.17 | =0001*
*2 50375 18.28407 -276 | ‘ 0.0174°
H1#X2 -4875 18.28407 -0.27 | 0.7943

Figure 3.9 Two factor main effects model with interactions included

4 [~|Response Y
[* Actual by Predicted Plot
4 Summary of Fit

R&quare 0.873556
RSquare Adj 0.78926
Root Mean Square Errar 65.89048
Mean of Response 4462 875
Obszervations (or Sum Wats) 16
4 Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 6 26994775 449913 10.3629
Error g 39074.00 43416 Prob>F
C. Total 15 30902175 0.0013*
I* Lack Of Fit

[* Parameter Estimates
[» Effect Tests
4 Sorted Parameter Estimates

Term Estimate Std Error tRatio Prob=|t|
X1 112,875 1647262 6.85 | =.0001*
X2 -50.375 1647262 -3.06 | 0.0136%
X3 -3425 1647262 -208 0.0674
H1*K3 18.5 16.47262 0.94 0.3713
H2*H3 125 1647262 076 04674
H1*K2 -4 875 1647262 -0.30 [ 0.7740

Figure 3.10 Three factor main effects model with interactions included
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4~ Stepwise Fit for Y
4 Stepwise Regression Control

Stopping Rule: [Minimum AICc »| (=] [ Enteran | [Make Model
Direction: @| [E| [Remover'—'\lll [ Run Model |
Rules: Restrict '|
[ Go H Stop H Step |
SSE DFE RMSE RSguare RSguare Adj Cp p AlCc BIC
14421.75 10 37.975979 0.9533 0.9200 357246 6 182.2685 17V3.67GE
4 Current Estimates
Lock Entered Parameter Estimate nDF 55 "FRatio” "Prob=F"
Intercept 4462 875 1 0 0.000 1
o X1 85.5 1 77976 54.068 2.44e-5
o K2 -T775 1 6448067 44 711 5.45e-5
o X3 -34.25 0 0
o X5 215 0 0 . .
H1*H2 0 1 380.25 0244 063335
K13 0 1 4813333 0311 058081
X1*x5 0 1 1203333 0076 078939
K23 0 1 6533333 0041 084412
H2*K5 0 1 3675 3078 011327
o X3I*KE 5475 1 239805 16.628 0.00222

Figure 3.11 Four factor main effects model with interactions included

3.8. Example 2

The second example that demonstrated here is from Junqua, Duran, Gancet and
Goulas (1997), where they study microbial transglutaminase production using a
designed experiment approach. In the example they study five factors casein
(X1), glycerol (X2), peptones (X3), yeast extract (X4) and oligoelements (X5).
Two dummy variables were added to extend the design to a seven variable
design. The original experiment was run as a 32 run full factorial experiment with
five center runs. The results from the original experiment was used to simulate
data for the NC seven factor design in 16 runs with the same coefficients and
RMSE as the original experiment. The analysis of the original experiment showed
that X1, X2, X4 and X1X2 are the significant effects. The two analysis methods
described in section 6 are used to analyze this simulated experiment. The

simulated dataset is shown in Table 3.7.
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Table 3-7 The NC design for microbial transglutaminase production experiment

Run ) & X5 X3 X4 X5 X5 X7 Growth
1 1 1 1 1 1 1 0.1694404385
2 1 -1 -1 -1 -1 0.1557483244
3 1 -1 1 1 -1 -1 0.1694441029
4 1 -1 -1 -1 1 1 0.1556024284
5 1 -1 1 1 -1 1 -1 0.0459173274
6 1 -1 1 -1 1 -1 1 0.0320189712
7 1 -1 -1 1 -1 -1 1 0.0455156956
8 1 -1 -1 -1 1 -1 0.0318232652
9 -1 1 1 1 1 -1 0.0812673458
10 -1 1 -1 -1 -1 1 0.0679025994
11 -1 1 1 -1 1 1 0.0817517700
12 -1 1 -1 -1 1 -1 -1 0.0672482974
13 -1 -1 1 -1 -1 -1 0.0177728542
14 -1 -1 -1 1 1 1 0.0031316223
15 -1 1 1 -1 1 0.0176315712
16 -1 -1 -1 -1 -1 1 -1 0.0033230487

3.8.1. Analysis Method I

JMP was used to analyze this experiment. All possible

one to ten term models

(excluding and including interactions) were fit using ordinary least squares

regression and evaluated using the AICc criterion and the RSquare values. The

top three models for the one term model to the ten term model cases are listed

in Table 3-8.

The top two models based on the AICc criterion and the R-Sq values are model

numbers 7 (X;, X3, XiX;) and 10 (Xi, X3, X4, XiX;). These two models were

selected for further analysis. This indicated that the main effect X, has a p-value

of 0.0349 and is added to the final model resulting in model 10. The final model

fit is shown in Figure 3.12. The model fit identified using analysis method 1 is

identical to the true model.
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Table 3-8 All Possible subsets Models up to ten terms (main effects only and

main effects and two-factor interaction) comparison

No. Noof | R-
Model terms | Sq RMSE | AlCc BIC
1 X2 1 0.66 | 0.04 -55.34 -55.0
2 X1 1 0.25 | 0.05 -42.61 -42.3
3 X4 1 0.01 | 0.06 -38.14 -37.8
4 X1,X2 2 0.92 | 0.02 -74.34 -74.9
5 X2,X4 2 0.68 | 0.04 -52.42 -52.9
6 X2,X5 2 0.66 | 0.04 -51.70 -52.3
7 X1,X2,X1*X2 3 0.99 | 0.01 -97.37 -99.5
8 X1,X2,X4 3 0.93 | 0.02 -73.16 -75.3
9 X1,X2,X5 3 0.92 | 0.02 -69.98 -72.1
10 | X1,X2,X4,X1*X2 4 1.00 | 0.00 | -202.32 | -207.0
11 | X1,X2,X5,X1*X2 4 0.99 | 0.01 -92.04 -96.7
12 | X1,X2,X6,X1*X2 4 0.99 | 0.01 -92.04 -96.7
13 | X1,X2,X4,X1*X2,X1*X4 5 1.00 | 0.00 -199.74 | -208.3
14 | X1,X2,X4,X5,X1*X2 5 1.00 | 0.00 -198.90 | -207.5
15 | X1,X2,X4,X1*X2,X2*X4 5 1.00 | 0.00 -197.37 | -205.9
16 | X1,X2,X4,X5,X1*X2,X2*X5 6 1.00 | 0.00 | -197.22 | -211.6
17 | X1,X2,X4,X5,X1*X2,X1*X4 6 1.00 | 0.00 -195.49 | -209.9
18 | X1,X2,X4,X5,X1*X2,X1*X5 6 1.00 | 0.00 -193.74 | -208.1
19 | X1,X2,X3,X4,X6,X1*X2,X3*X6 7 1.00 | 0.00 | -195.08 | -218.1
20 | X1,X2,X4,X5,X1*X2,X1*X5,X2*X5 7 1.00 | 0.00 -191.41 | -2145
21 | X1,X2,X4,X5,X1*X2,X1*X4,X1*X5 7 1.00 | 0.00 -189.00 | -212.0
22 | X1,X2,X4,X5,X1*¥X2,X1*X5,X2*X4, 8 1.00 | 0.00 -186.24 | -222.5
X2*X5
23 | X1,X2,X3,X4,X6,X1*X2,X1*X6,X3*X6 8 1.00 | 0.00 -185.79 | -222.1
24 | X1,X2,X4,X6,X7,X1*X2,X1*X4,X2*X7 8 1.00 | 0.00 | -182.45 | -218.7
25 | X1,X2,X3,X4,X7,X1*X2,X3*X5,X3*X6, 9 1.00 | 0.00 -205.21 | -262.7
X5*X6
26 | X1,X2,X4,X7,X1*X2,X1*X3,X3*X5, 9 1.00 | 0.00 -198.19 | -255.7
X3*X6,X4*X7
27 | X1,X2,X4,X7,X1*X2,X3*X5,X3*X6, 9 1.00 | 0.00 -197.96 | -255.5
XA*X6,X4*X7
28 | X1,X2,X3,X4,X7,X1*X2,X2*X3, 10 1.00 | 0.00 -183.83 | -278.6
X3*X5,X3*X6,X5*X6
29 | X1,X2,X4,X7,X1*¥X2,X1*¥X3,X2*X3, 10 1.00 | 0.00 | -179.63 | -274.4
X3*X5,X3*X6, X4*X7
30 | X1,X2,X3,X4,X7,X1*X2,X3*X5,X3*X6, 10 1.00 | 0.00 | -179.37 | -274.1

X4*X5, X5*X6
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3.8.2. Analysis Method II

JMP was used to analyze this experiment using analysis method II. All possible
one to four term main effects models were fit using the all possible regressions
method. The next step was to include all the interaction effects for the significant
main effects. The results from using this method are listed in Table 3-9.

The top two models were chosen and then the two factor interactions were
added to the models. In the case of the two main effects model, the model fit
improves to an RSquare Adj value of 0.981. But when the three term model (X1,
X2, X4) is used with interactions, the model with the terms X1, X2, X4 & X1X2
results in a better model with an RSq - Adj value of 0.99 and a lower AICc value.
This again matches with the true model. Using both analysis methods, the
results match the simulated true model thereby showing that both these analysis
methods work well when the NC design is used to identify the main effects and
then any interactions effects involving these main effects that are significant.

3.9. Additional steps to consider for analysis

From the projection properties of the six, seven and eight factor NC designs, it
can be seen that up to 11 term models can be fit as there are 12 distinct designs
points when the designs are projected to four factors. Therefore once the initial
models are fit using the above analysis methods, you can add up to a total of 11
terms (including one interaction term) to the final model if it improves the fit of
the model. This can be done by fixing the terms identified from the previous
steps in the model and then adding more terms if it does improve the fit. In the

case of the above two examples, adding terms to the existing models did not
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result in a better fit. The best models were still the ones identified using the

analysis methods 1 and 2 detailed in the previous sections.

4 [~IResponse Y1
4 Whole Model
[* Actual by Predicted Plot

4 Summary of Fit

RSquare 0.912381
RSquare Adj 0.90144
Root Mean Square Error 0.017849
Mean of Response 0.071568
Observations (or Sum Wats) a7
4 Analysis of Variance
Sum of
Source DF Squares Mean Square  F Ratio
Model 4 0.10666138 0.026665 83.3153
Error 32 0.01024171 0.000320 Prob>F
C. Total 36 0.11690308 =.0001*

I Lack Of Fit

[* Parameter Estimates

[ Effect Tests

I* Residual by Predicted Plot
4 Sorted Parameter Estimates

Term Estimate 5td Error tRatio Prob=|t|
X1 0.0290938 0.003163 920 | =.0001*

X2 0.0470938 0.003163 14.89 <.0001*
‘ ] <.0001"
0.0249°

Figure 3.12 Model fit for X1, Xz, X4, XX

X1*X2  0.0148438 0.003163 469
X4 0.0069688 0.003163 2.20

Table 3-9 All Main Effects only Models comparison

Number of

No. Model terms in model | RSquare | RMSE AlCc BIC

1 X2 1 0.6636 | 0.0357 | -55.3355 | -55.0177
2 X1 1 0.2547 0.0532 | -42.6105 | -42.2927
3 X4 1 0.0147 | 0.0612 | -38.1437 | -37.8259
4 X1,X2 2 0.9183 | 0.0183 | -74.3439 | -74.8899
5 X2,X4 2 0.6783 | 0.0363 | -52.4156 | -52.9616
6 X2,X5 2 0.6636 | 0.0371 | -51.6993 | -52.2453
7 X1,X2,X4 3 0.9330 | 0.0172 | -73.1616 | -75.2986
8 X1,X2,X5 3 0.9183 | 0.0190 | -69.9808 | -72.1179
9 X1,X2,X6 3 0.9183 | 0.0190 | -69.9805 | -72.1176
10 | X1,X2,X4,X5 4 0.9330 | 0.0180 | -67.8289 | -72.5267
11 | X1,X2,X4,X6 4 0.9330 | 0.0180 | -67.8285 | -72.5263
12 | X1,X2,X3,X4 4 0.9330 | 0.0180 | -67.8285 | -72.5263
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3.10. Conclusion

The regular fractional factorial designs with six, seven or eight factors in 16 runs
are widely used. However due to the complete confounding of the two-factor
interactions with one another, these designs often require the experimenter to
perform runs to resolve ambiguities whenever any of the two-factor interactions
are identified as being active. The projection properties of the NC designs show
that these designs allow for the estimation of all main effects along with some of
the two-factor interactions since there is no complete confounding in these
designs.

Two intuitive approaches to analyzing these designs based on the projection
properties are presented. Systems with four active terms (main effects) are likely
to have a significant interaction. Therefore being able to estimate the two-factor
interactions without the need for design augmentation is a desirable
characteristic. Based on the projection properties of the NC designs all the main
effects and their interactions can be estimated for up to four active factors or in
other words models with up to 11 terms (including the intercept) can be fit as
there are 12 distinct designs points for the four factor projections of these
designs. The two examples illustrate that both these methods identify the correct

active terms.
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Chapter 4

DESIGN, PROJECTION PROPERTIES AND ANALYSIS OF NO-CONFOUNDING
ALTERNATIVES TO RESOLUTION III SCREENING DESIGNS FOR 9 — 14 FACTORS
IN 16 RUNS

4.1.  Introduction

For between 9 and 14 factors the regular minimum aberration resolution III
designs are widely used. Montgomery (2013) gives the generators for these
designs; for example, if there are k< = 9 factors the generators are E = ABC, F =
BCD, G = ACD, H = ABD, and J = ABCD. This produces a 16-run design with
nine single-degree-of-freedom alias chains composed of a single main effect and
one or more two-factor interactions and seven single-degree-of-freedom alias
chains composed entirely of two-factor interactions assuming that all interaction
of order three and higher are negligible. For example the alias chain for factor A
isA=FJ] forJitis]=DE = AF = BG = CH, and for AB it is AB = CE = FG =
DH. These are all regular designs; that is, the effects in any alias chain are

completely confounded (the constants multiplying each effect are +1).

Because the regular resolution III designs are completely confounded,
experimenters often end up with ambiguous conclusions about which main
effects and two-factor interactions are important. Resolving these ambiguities
requires either additional experimentation (such as use of a fold-over design to
augment the original fraction) or assumptions about which effects are important
or external process knowledge. None of these alternatives are entirely

satisfactory and experimenters would like to avoid either the need to expend
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resources for a follow-up study, or make assumptions, or rely on experienced-

based process knowledge.

It is possible to reduce the risk of analytical ambiguity by using a specific
orthogonal but nonregular fractional factorial design. Our proposed designs for 9
— 14 factors in 16 runs have no complete confounding between main effects and
two-factor interactions and pairs of two-factor interactions. These designs are
preferred and are recommended as alternatives for the usual regular minimum
aberration resolution III fractional factorials. In subsequent sections, a metric to
evaluate these fractional factorial designs is presented, and it is used to obtain
the choices for the nonregular 16-run fractional factorials through the use of a
variation of the D-optimality criterion. The projection properties of these designs
are presented when projected to three and four factors and discuss analysis
strategy for these designs. An example is also presented that illustrates the
potential usefulness of these designs and the effectiveness of the analysis

method.

4.2. Literature review

Plackett and Burman (1946) introduced nonregular orthogonal designs for
sample sizes that are a multiple of four but not powers of two. Hall (1961)
identified five non-isomorphic orthogonal designs for 15 factors in 16 runs.
Contemporaneously with Hall's work, Box and Hunter (1961) introduced the
regular fractional factorial designs that became the standard tools for factor
screening. Sun et al. (2002) catalogued all the non-isomorphic projections of the

Hall designs. Li et al. (2003) used this catalogue to identify the best designs to
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use in case there is a need for a foldover. For each of these designs they provide
the columns to use for folding and the resulting resolution of the combined
design. Loeppky et al. (2007) also used this catalogue to identify the best
designs to use assuming that a small number of factors are active and the
experimenter wished to fit a model including the active main effects and all two-

factor interactions involving factors having active main effects.

Jones and Montgomery (2010) proposed 16-run nonregular orthogonal designs
for 6 — 8 factors that are alternatives to the usual regular resolution IV minimum
aberration fractions. These designs are projections of the Hall designs created
by selecting specific sets of columns. Because there is no complete confounding
of two-factor interactions, the authors referred to these designs as no-
confounding designs. Johnson and Jones (2011) show how these designs can
be found by using a column generator approach that is similar to that used for
regular designs. The work in Jones and Montgomery (2010) is presented by
developing no-confounding designs for 9 — 14 factors in 16 runs that are good
alternatives to the usual minimum aberration resolution III designs when there

are only a few main effects and two-factor interactions that are important.

4.3. Design Evaluation and Construction
The alias matrix is a generalization of the confounding pattern that is useful for

comparing nonregular designs. Suppose that we plan to fit the model
y=XB; +€

where X; is the design matrix for the experiment that has been conducted
expanded to model form, B; is the corresponding vector of model parameters,
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and € is the usual vector of NID(0, ¢%) random errors. However, the true model
is
y=XiB: + X;B. + €

where the columns of X, contain additional factors not included in the original

model (such as interactions) and B, is the corresponding vector of model
parameters. It is straightforward to show that the expected value of Bl, the least

squares estimate of By, is
Hﬁl) =B + (Xlxl)il(xlxz)ﬁz = B1 + AB:

The alias matrix A = (X, X,)*(X,X,) shows how estimates of terms in the fitted

model are biased by active terms that are not in the fitted model. Each row of A
is associated with a parameter in the fitted model. Non-zero elements in a row of
A show the degree of biasing of the fitted model parameter due to terms

associated with the columns of X,.

In a regular design, an arbitrary entry in the alias matrix, A is either 0 or +1. If
Ajis 0 then the i column of X; is orthogonal to the j™ column of X,. Otherwise if
Aj is %1, then the i™ column of X; and the j" column of X, are perfectly

correlated.

For nonregular designs the aliasing is more complex. If X; is the design matrix
for the main effects model and X, is the design matrix for the two-factor
interactions, then the entries of the alias matrix for orthogonal nonregular
designs for 16 runs take the values 0, +1 or +0.5. A small subset of these

designs have no entries of 1.
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Table 4-1 Number of Non-isomorphic Nonregular 16-run Designs

Number of Number of Non-
Factors isomorphic Designs
6 27
7 55
8 80
9 87
10 78
11 58
12 36
13 18
14 10

Bursztyn and Steinberg (2006) propose using the trace of AA’ as a scalar
measure of the total bias in a design. This is just the sum of squares of all of the
elements of the alias matrix. They use this as a means for comparing designs for
computer simulations but this measure works equally well for ranking
competitive screening designs. The no-confounding designs in Jones and
Montgomery (2010) all minimize the trace of AA’. They found these designs by
enumeration of all of the non-isomorphic nonregular 16-run designs. By non-
isomorphic, I mean that one cannot obtain one of these designs from another
one by permuting the rows or columns or by changing the labels of the factor.
Table 4-1 shows the number of these designs for 6 — 14 factors.

Jones and Nachtsheim (2011) have proposed a design optimality criterion that
effectively minimizes the aliasing in a design. They propose minimizing the trace
of AA’subject to a lower bound on the D-efficiency of the design. They use a
modification of the coordinate exchange algorithm for design construction.

Formally, they choose a design to solve the following problem:
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Min trace(AA")
subject to:
DEff > ID
where Dg+ is the D-efficiency of the design and /, is the lower bound on D-

efficiency.

All of the designs in Jones and Montgomery (2010) satisfy this criterion with Dg
of 100%, because all of their designs are orthogonal for the first-order model.
This method also produces the recommended designs for 9 — 14 factors given in
the next section. These designs are also first-order orthogonal so they are 100%

D-efficient.

4.4, Recommended Designs

I now provide the recommended no-confounding designs. For nine factors the
recommended design is in Table 4-2. Jones and Montgomery (2010) introduce
the correlation matrix or cell plot as a convenient display of the alias
relationships in a fractional factorial design. Figure 4.1 shows the correlation
matrix for the principal fraction of this design. Notice that the design is
orthogonal for the main effects and that no main effect is completely confounded
with a two-factor interaction. All of the correlations between main effects and
two-factor interactions are +0.5. Tables 4.3 through 4.7 present the design
matrices for 10 — 14 factors and Figure 4.2 through Figure 4.6 present the
associated correlation matrices. All designs are first-order orthogonal (100% D-
efficient) and the correlations between main effects and two-factor interactions

are +0.5.
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Table 4-2 Recommended 16-run 9-factor no-confounding design

B

Run | A

10
11
12
13

14
15

16

G(EOOOUJU-(DI—Jggggé

Figure 4.1 Correlations of Main Effects and Two-Factor Interactions, NC Design

for 9 Factors in 16 Runs
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Table 4-3: Recommended 16-run 10-factor no-confounding design

B

Run | A

10
11
12
13

14
15

16
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Figure 4.2 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 10 Factors in 16 Runs
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Table 4-4 Recommended 16-run 11-factor no-confounding design

B

Run | A

10
11
12
13

14
15

16

r
o
1

1)
T4
-

e T T

Figure 4.3 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 11 Factors in 16 Runs
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Table 4-5 Recommended 16-run 12-factor no-confounding design

Run| Al B | C|D|E|F|G|H
-1y-1)-1}|-1}1(-1}-1 1} 1|-1|] 1] 1
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1-1|-1]-1|-1 1)-1(-1} 1] 1| 1| -1
10 1-1}-1}-1| 1}-1| 1}-1|-1]-1|-1]-1
11 1| -1 1 1(-1-1|-1]1-1| 1| 1] 1
12 1| -1 1 1| 1 1) 11} 1-1|-1] 1
13 1 1| -1]-1|-1 1) 1 1}-1 1|-1] 1
14 1, 1}-1} 1 1)-1|-1} 1] 1] 1]-1]-1
15 1] 1 11-1| 1 1}-1(-1}-1|-1| 1] 1
16 1] 1 1, 1(-1-1| 1}-1(1|-1|] 1]-1
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Figure 4.4 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 12 Factors in 16 Runs
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Table 4-6 Recommended 16-run 13-factor no-confounding design

Run|A |B |C |D|E |F|G|H|J |[K|L | M|N

OO0 N IWIN |-
1
[y
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'
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'
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'
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[EY
'
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[uny
1
[y
'
Ry

-1,1}j-1j-1y1}j1)1(-1}-1|]1}|-1|]1|1
-1,1}j-1j1(-1}-1)1(1}1|-1] 1|11
-1,1})1}11}-1}|-1(-1}1|-1|-1|] 1]|-1
1/1-1}-1|-1(-1} 1|11} 1|1 1]-1
10 1111} 1(-1}-1|)1(-1}-1|-1| 1]|-1
11 1/1f-1} 11111 1}-1|-1]-1| 1
12 11,1} 1}j-1(1}-1|-1(-1}-1| 1] 1| 1
13 1141} 1}j-1(1}-1)1(1]1|-1|-1]-1
14 11,1111} 1| 1(-1|-1|-1]-1| 1
15 11,111 1}-1) 111 1] 1|1
16 1111141} 1|-1(-1}1|1|-1]-1
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Figure 4.5 Correlations of Main Effects and Two-Factor Interactions, no-

B o 5 B A A S e e I

confounding Design for 13 Factors in 16 Runs
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Table 4-7 Recommended 16-run 14-factor no-confounding design

Run|A |B |C (D |E |F |G|H|J |[K|L | |M|N|P
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Figure 4.6 Correlations of Main Effects and Two-Factor Interactions, no-
confounding Design for 14 Factors in 16 Runs

4.5. Projection Properties

The projection properties of these designs allow us to better understand the
possible analysis methods. This section details the projection properties of the
nine to 14 factor NC designs. I study both the three and four factor projections
of the NC designs. There are three possible types of three factor projections for
the 9 — 14 factor NC designs. One of the three factor projections results in a full
factorial projection in eight distinct design points with two replicates. The other
two projections result in eight distinct design points with four of the points

replicated thrice and the other four points not replicated. Consequently I can fit
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the complete three-factor model (main effects and interactions) and have eight
degrees of freedom for error. For the 9 — 14 factor NC designs, there are 43
different four factor projections possible. One of these 43 projections is a full
factorial projection (Projection type I). Two of these projections result in a
projection (Projection type II (i) and II (ii)) with eight distinct design points. The
other 40 projections result in projections with 12 distinct design points. Figure
4.7 and Figure 4.8 lists the different three and four factor projections for the 9 —
14 factor NC designs. Tables 4.8 — 4.25 describe the different types of

projections for the 9-14 factor NC designs.

% 2
1 1
Projection Il (a) Projection Il (b)

Rotating projection I1I (a) on axis 3 results in projection III (b)

Figure 4.7 Three factor projections for 9 - 14 NC designs
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Figure 4.8 Four factor projections for 9 - 14 NC designs
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Figure 4.8 (contd.) Four factor projections for 9 - 14 NC designs
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Figure 4.8 (contd.) Four factor projections for 9 - 14 NC designs
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4.5.1. Three factor projections

For 9 — 14 factor NC designs, the three factor projections are of two types;
projection type I is a full factorial projection with eight distinct design points each
replicated twice. The second type of three factor projection (projection type III)
also results in eight distinct designs points but as can be seen in Figure 4.7, four
points are not replicated and the other four points are replicated thrice.
Projection type three actually results in two different projections that are
isomorphic in nature. When rotated on any axis projection type III (a) results in
projection type III (b) and vice versa. Table 4-8, Table 4-11, Table 4-14, Table
4-17, Table 4-20 and Table 4-23 gives the details of how many of the three
factor projections result in the two projections types for the 9 — 14 factor NC
designs. Table 4-9, Table 4-12, Table 4-15, Table 4-18, Table 4-21 and Table
4.24 lists out the exact columns that result in projection type I, III (a) or III (b).
4.5.2. Four factor projections

For 9 — 14 factor NC designs, the four factor projections can be categorized into
three basic types of projections; projection type I (full factorial projection with 16
distinct points and no replicates), projection type II (eight distinct design points
replicated twice) and projection type III (12 distinct design points, four of which
are replicated twice and eight are not replicated). Projection type II results in
two projections that are isomorphic in nature. Projection type III results in a
maximum of 40 different projections; 20 of which are isomorphic in nature
resulting in a total of 40 different projections. Table 4-10, Table 4-13, Table
4-16, Table 4-19, Table 4-22 and Table 4-25 lists out the 20 projections and their

isomorphic projections.
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Table 4-8 Projections for 9 factor NC design

Proj - -

Type Type of Projections 3 f act_or 4 f act.or
Number projections projections
I Full factorial projections 68 64
II 2 FI Completely Confounded with

other 2 FIsp ! 0 14 (2 types)
I1I Main effects Partially Confounded
with Two Factor Interactions 16 (2 types) | 48 (16 types)

Table 4-9 Three factor projections for 9 factor NC design

Projection Type

Projection (a)

Isomorphic Projection (b)

ADH, AGH, AHJ, BHJ, CGH, EFH,
EGH, EHJ

AFH, BDH, BFH, BGH, CDH, CFH,
CHJ, DEH

Table 4-10 Four factor projections for 9 factor NC design

Projection Projections
Type
ABCG, ABCH, ABCJ, ABDE, ABDF, ABDJ, ABEF, ABEG, ABEH, ABEJ,
ABFG, ABGJ, ACDE, ACDF, ACDG, ACEF, ACEG, ACEH, ACEJ, ACFJ,
| ACGJ, ADEG, ADEJ, ADFG, ADFJ, ADGJ, AEFG, AEFJ, AFGJ, BCDE, BCDG,
BCDJ, BCEF, BCEG, BCEH, BCEJ, BCFG, BCFJ, BDEF, BDEG, BDFG, BDFJ,
BDGJ, BEFJ, BEGJ, BFGJ, CDEF, CDEJ, CDFG, CDFJ ,CDGJ, CEFG, CEGJ,
CFGJ, DEFG, DEFJ, DEGJ, DFGH, DFHJ, DGHJ, EGHJ, FGHJ
Projection Projection (a) Isomorphic Projection (b)
Type
I (i) ABDG, ABFJ, ACDJ, ACFG, BDEJ, ADEF, AEGJ, BCDF, BCGJ, DFGJ,
BEFG, CDEG, CEFJ ABCE
Il (ix) ABFH,ACFH,BCDH,BCFH ABHJ, ACGH, AEGH, AEHJ,
BEHJ, CEGH
111 (x) BDEH,CDEH
I (xi) BDFH,BDGH,BFGH,CDFH ADGH, EFGH
1 (xii) DEHJ
[ (xiii) CDHJ,CFHJ AFHJ, BDHJ, BFHJ, BGH)J
I (xvi) CGHJ ADHJ, AGHJ, EFGJ, EFH)
11 (xviii) ADEH DEFH, DEGH
11 (xix) ADFH AFGH, CDGH, CFGH
Il (xx) ABDH, BGH, ACDH, ACHJ, BCHJ AEFH, BCGH, BEFH, BEGH,
CEFH, CEHJ
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Table 4-11 Projections for 10 factor NC design

Proj ) )
Type Type of Projections ;E ccttig:]s :(').fg c:c’;cig:]s
Number pro] pro]
I Full factorial projections 88 35
2 FI Completely Confounded with
T other 2 Fls 0 > (2 types)
Main effects Partially Confounded
1 with Two Factor Interactions 32 (2 types) | 170 (32 types)

Table 4-12 Three factor projections for 10 factor NC design

Projection Type

Projection (a)

Isomorphic Projection (b)

ABE, ABJ, ABK, ACD, ACE, ACK,
ADH, AEF, AEH, AHJ, BDG, BEG,
BGH, CGJ, CGK, DGK, EGJ, FGH,

ABD, ACJ, ADF, AFJ, AFK,
AHK, BCG, CFG, DFG, DGJ,
EFG, EGK

GHJ, GHK

Table 4-13 Four factor projections for 10 factor NC design

Projection Type Projections
ABCF, ABCH, ABFG, ABFH, ACFH, ACGH, ADEG, ADEJ,
| ADEK, ADJK, AEJK, AGJK, BCDE, BCDF, BCDH, BCDK, BCEF,
BCEH, BCEJ, BCFJ, BCFK, BCHJ, BCHK, BCJK, BDEH, BDEJ,
BDEK, BDFH, BDFJ, BDFK, BDHJ, BDJK, BEFH, BEFJ, BEFK
Projection Type | Projection Isomorphic Projection (b)
(a)
Il BCFH, BDEF BCDJ, BCEK, BDHK
Il
I (i) ACFG ABGH, ADGK, AEGJ
11 (iii) AFGK ABGJ, AEGH
1 (v) ACEG ACDG
I (vi) ABGK, ADGH | AFGJ
I (viii) AFGH ABCG, ADGJ, AEGK
111 (ix) AGH)J
I (x) BCFG ACGK
11 (xi) ACFJ, AFHK ABCE, ABCK, ABHJ, ADEH, BDEG
11 (xii) ADFG ABDG, BCGJ, BCGK
Il (xiii) ABDF, ADFJ, ABDH, BCGH
ADFK
I (xiv) AFJK ABDE, ABDJ, ABDK, ACJK, ADFH
I (xv) AEFG, BDGJ ABEG, BDGK, BEG)
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Table 4.13 (contd.) Four factor projections for 10 factor NC design

Projection Type | Projection (a) Isomorphic Projection (b)
ACDF, ADHK, | ABEF, ABEH, ACDH, ACEF, ACEH, ADHJ, AEHJ,
I (xvi) AEFJ, AEFK, BDGH, BEGH
AEHK
N ACDJ, ACEJ, ABEJ, ABEK, ABJK, ACDE, ACDK, ACEK, AEFH
I (xvii)
AHIJK
NI (xviii) BDFG, BEFG ACG)J
ABCJ, ABFJ, ABCD, ACHJ, ADEF, AFHJ, BCDG, BCEG, BEGK,
ABFK, ABHK, | BEHJ, BEHK, BEJK, BFGH, BFGJ, BFGK, BFHJ, BFHK,
ACFK, ACHK BFJK, BGHJ, BGHK, BGJK, BHJK, CDEF, CDEG,
CDEH, CDEJ, CDEK, CDFG, CDFH, CDFJ, CDFK,
CDGH, CDGJ, CDGK, CDHJ, CDHK, CDJK, CEFG,
CEFH, CEFJ, CEFK, CEGH, CEGJ, CEGK, CEHJ, CEHK,
I (xix) CEJK, CFGH, CFGJ, CFGK, CFHJ, CFHK, CFJK, CGHJ,
CGHK, CGJK, CHJK, DEFG, DEFH, DEFJ, DEFK,
DEGH, DEGJ, DEGK, DEHJ, DEHK, DEJK, DFGH,
DFGJ, DFGK, DFHJ, DFHK, DFJK, DGHJ, DGHK,
DGIJK, DHJK, EFGH, EFGJ, EFGK, EFHJ, EFHK, EFJK,
EGHJ, EGHK, EGJK, EHJK, FGHJ, FGHK, FGJK, FHIK,
GHJK
1 (xx) AGHK
Table 4-14 Projections for 11 factor NC design
Projection 3-factor 4-factor
Type Type of Projections o o
Number projections projections
I Full factorial projections 117 94
IT 2 FI Completely Confounded with
other 2 FIF; ! 0 8 (2 types)
I1I Main effects Partially Confounded
with Two Factor Intgractions 48 (2 types) | 228 (43 types)

Table 4-15 Three factor projections for 11 factor NC design

Projection Type

Projection (a)

Isomorphic Projection (b)

ABC, ACD, AEG, AFJ, AFL, BCJ, BCL,
BDF, BEG, BEH, BEJ, BFJ, BJK, CDL,
CGJ, CGL, CHL, DEJ, DFG, DHK,
EGL, EJL, FGL, GHK, GKL, HJK

ABK, ACG, ACH, ADF, AEH,
AEJ, AFH, AHK, AKL, BDK, BFH,
BFL, BGK, CDJ, CHJ, DEG, DEH,
DKL, EHL, FGH, FGJ, JKL
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Table 4-16 Four factor projections for 11 factor NC design

Projection Projections
Type
ABDE, ABDG, ABDH, ABDJ, ABEF, ABEL, ABFG, ABGH, ABGJ, ABGL, ABHL,
ABJL, ACEF, ACEK, ACEL, ACFK, ACJK, ACIL, ADEK, ADEL, ADGH, ADGK,
ADGL, ADHJ, ADHL, ADJK, ADJL, AEFK, AFGK, AGHJ, AGJK, AGJL, AHIL,
BCDE, BCDG, BCDH, BCEF, BCEK, BCFG, BCFK, BCGH, BCHK, BDEL, BDGJ,
I BDGL, BDHJ, BDHL, BDJL, BEFK, BEKL, BGHJ, BGHL, BHJL, BHKL, CDEF,
CDEK, CDFH, CDFK, CDGH, CDGK, CEFG, CEFH, CEFJ, CEFL, CEGH, CEGK,
CEHK, CEJK, CEKL, CFGK, CFHK, CFJK, CFJL, CFKL, DEFK, DEFL, DFHJ, DFHL,
DFJK, DFJL, DGHJ, DGHL, DGJK, DGIJL, EFGK, EFHJ, EFHK, EFJK, EFKL, EGHJ,
EGJK, FHJL, FHKL, GHJL
Projection Projection (a) Isomorphic Projection (b)
Type
Il (i) ABHJ, AGHL, BDGH, CEFK, DHJL ABDL, ADGJ, BGJL
I (i) CDEH, EFGH, FJKL CDFG, CEJL, CGHK, EHJK
i i) ACKL, BCDK, BCFH, BFGK, CFHJ, ACFJ, AEFL, BCEG, CEGJ, DFHK
DEKL, EFHL
I (iii) ABEK, BFKL AEFG, BCEL, BDEF, CDFL, CHKL, DEFJ
Il (iv) ACGK, ADFK, AEJK, CDJK, DEGK, BFHK
FGIJK
Il (v) ABCE, ACDK, AEGK, AFJK, CGJK,
DEJK, DFGK ABCF, ACDE, BEHK
i (vi) ABFK, ACFG, ADEF, BDEK, CDFJ,
BCKL, BEFG, CDEL DEFH, EHKL
Il (vii) | ACFL, BCDF, BCEH, CFHL, EFJL ACEJ, AEKL, BCGK, BEFL, CEHJ, DFKL
Il (viii) | CDHK, EGHK, FHJK CDEG, CFGH, CJKL, EFG)J
1 (i) ABFH, ADEH, ADKL, AJKL, DJKL ABEG, ABFJ, BDEJ, BHJK, CEGL, CFGL,
DGHK, EFGL
() ABDK, ABGK, AFGH, BFGH AFGL, BCDL, BCGJ, BCGL, BCHL,
CGKL, DHJK, EGKL, FGKL, GHJK
1 (i) ABHK, ACEH, ACFH, AEFH, BDGK, | BCEJ, BCFJ, BEFJ, CDGL, CDHL, CGHL,
CDHJ EGJL
i (i) ACHJ, AEHL, BDKL, DEHL ACGJ, ACGL, ACHL, ADFG, AEJL,
BGKL, CHJK, DEGL, FGHK
I (i) ABKL, ACHK, ADFH, AEHK, AFHK, | ADFJ, ADFL, DEHK
AHKL
Il (xiv) ACGH, AEHJ, BFHL, DEGH, FGHJ AFHJ, AFHL, BFHJ, CDIL, CHJL, DEGJ,
DEHJ, FGHL, FGJL
Il (xv) ACDJ, BEHL, BJKL, DFGH, DFGJ, ABCJ, ABCL, ACDL, AEGL, BDFG,
HJKL BEGL, BEJL, DEJL, DFGL
1 (xvi) ABCG, ABCH, ACDF, BDFH, BDFL, | ABCD, BCJK, BDFJ, BEJK, BFJK, GHKL

BEGK, DHKL
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Table 4.16 (contd.) Four factor projections for 11 factor NC design

Projection Projection (a) Isomorphic Projection (b)
Type
Il (xvii) | ABCK, ACDG, ACDH, AEGH, | AFJL, BCIL, BEGH, BEGJ, BEHJ, CGIL
AEGJ, BDFK, BFJL
Il (xviii) | AFGJ, BCDJ, BCHJ, BFGJ, ABJK, AHJK, BDHK, BFGL, BGHK, CDEJ
CDKL, EJKL
I (xix) AFKL, BCFL, BEFH, CGHJ, ACEG, AEFJ, BDJK, BGJK, CDGJ, DEFG,
EGHL EHJL
I (xx) ABFL, ADEG, BDEG, BDEH, | ABDF, ABEH, ABEJ, ADEJ, ADHK, AGHK,
CEHL, CFGJ, GJKL AGKL, DGKL
Table 4-17 Projections for 12 factor NC design
Projection 3-factor
- o 4-factor
Type Type of Projections projection -
projections
Number S
I Full factorial projections 156 144
II 2 FI Completely Confounded with
other 2 FIs 0 15 (2 types)
III Main effects Partially Confounded 64 (2 336 (40
with Two Factor Interactions types) types)

Table 4-18 Three factor projections for 12 factor NC design

Projection
Type

Projection (a)

Isomorphic Projection (b)

ACD, ACL, ACM, ADH, ADJ, AFM,
AHK, AHM, BCL, BDJ, BEK, BEL,
BFM, BGK, BGL, BHK, CEF, CGJ,
DEF, DEJ, DEK, DFG, DGJ, DGL,
EFM, EHJ, EJM, ELM, FGH, FGM,

GJM, GKM

ACK, ADF, AEK, AEL, AGK, AGL,
AHL, AJM, BCD, BCK, BCM, BDF,
BDH, BHL, BHM, BJM, CEJ, CFG,
CFK, CFL, CIK, CJL, DEL, DGK, EFH,
EKM, FHK, FHL, GHJ, GLM, HIK,
HIL
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Table 4-19 Four factor projections for 12 factor NC design

Projection
Type

Projections

ABCE, ABCF, ABCG, ABCJ, ABDE, ABDG, ABDK, ABDL, ABEF, ABEH,
ABEJ, ABEM, ABFG, ABFH, ABFK, ABFL, ABGH, ABGJ, ABGM, ABH),
ABJK, ABJL, ABKM, ABLM, ACEG, ACEH, ACFH, ACFJ, ACGH, ACHJ,
ADEG, ADEM, ADGM, ADKL, ADKM, ADLM, AEFG, AEFJ, AEGH, AEG),
AEGM, AFGJ, AFHJ, AFJK, AFJL, AFKL, AJKL, AKLM, BCEG, BCEH,
BCFH, BCFJ, BCGH, BCHJ, BDEG, BDEM, BDGM, BDKL, BDKM, BDLM,
BEFG, BEFJ, BEGH, BEGJ, BEGM, BFGJ, BFHJ, BFJK, BFJL, BFKL, BJKL,
BKLM, CDEG, CDEH, CDEM, CDFH, CDFJ, CDFM, CDGH, CDGM, CDHJ,
CDHK, CDHL, CDJM, CDKL, CDKM, CDLM, CEGK, CEGL, CEGM, CEHK,
CEHL, CEHM, CEKL, CFHM, CFJM, CGHK, CGHL, CGHM, CGKL, CHIM,
CHKM, CHLM, CKLM, DEGH, DEHM, DFHJ, DFHM, DFJK, DFJL, DFKL,
DFKM, DFLM, DGHM, DHJM, DHKL, DHLM, DHLM, DJKL, DJKM,
DJLM, EFGK, EFGL, EFJK, EFJL, EFKL, EGHK, EGHL, EGHM, EGJK, EGIL,
EHKL, EJKL, FGJK, FGIL, FGKL, FHJM, FIKM, FJLM, FKLM, GHKL, GJKL,

HKLM, JKLM

Projection
Type

Projection (a)

Isomorphic Projection (b)

Il (i)

ABCH, ABDM, ABEG, ABFJ,
ABKL

CDHM, CEGH, CFHJ, CHKL, DEGM,
DFIM, DKLM, EFGJ, EGKL, FJKL

1 (i)

BCEJ, BCFG, BEFH, BGHJ, CDEL,
CDGK, CEKM, CGLM, DFHK,
DHIL

ACEF, ACGJ, AEHJ, AFGH

I (i)

AFGL, BEHM, CDFL, CDJK,
EHKM, GHLM

AGHM, BFGK

I (iii)

AEFK, AEJL, AGJK, AJKM, AJLM,
BCGM, BDGH, DEHL, DGHK

ACEM, ADEH, BEFL, BEJK, BFKM,
BFLM, BGIL

11 (iv)

ADFK, ADFL, BCDE, CFKM,
CILM, FHLM, HJKM

BCDG, BDFK, BDFL, CFLM, CJKM,
FHKM, HILM

11 (v)

ACDE, ADJK, ADJL

ACDG, BDJK, BDJL

11 (vi)

ACGM, ADGH, AFKM, AFLM,
BEFK, BEJL, BGJK, DEHK, DGHL

AEFL, AEJK, AGJL, BCEM, BDEH,
BJKM, BJLM

I (vii)

AEHM, BFGL, EHLM, GHKM

AFGK, BGHM, CDFK, CDJL

I (viii)

BCEF, BCGJ, BEHJ, BFGH, CDEK,
CDGL, CELM, CGKM

ACEJ, ACFG, AEFH, AGHJ, DFHL,
DHJK

11 (ix)

ABCK, ABDF, ABHL, ABJM,
ADEL, ADGK, AFHL, BFHL, CHIK,
CHJL

ABCL, ABDJ, ABFM, ABHK, AEFM,
BDEK, BDGL, BEFM, CDEF, CDGJ,
EGIM

I (x)

ACFK, ACIK, AHIL, BCFK, BCIK,
BHIL, CFHK, CFHL, FHJK, FHIL

ADEJ, ADGJ, AFGM, BDEJ, BDGJ,
BFGM, DEHJ, EFGM, FGJM, FGKM

I (xi)

ACEK, ACGK, AEGK, AEGL,
AEHL, AGHL, BCHM, BCIM,
BHJM, CFJK, CFJL

ACFM, ACHM, AFHM, BCEL,
BCGL, BEGK, BEGL, BEHK, BGHK,
DEGJ, EFJM, EFLM, EJLM, GIKM
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Table 4.19 (contd.) Four factor projections for 12 factor NC design

Projection Projection (a) Isomorphic Projection (b)
Type
AEKM, AGLM, EFHK, EFHL, GHJK, | ADFG, AELM, AGKM, BDFG,
1 (xii) GHJL CEJM, CFGH, CFGM, DELM,
DGKM
I (xiii) BCDF, BCDH, BDHL, BDHM, ADFM, BCDJ, BDFM, BDHK, CFGJ,
CEJK, CEJL EFHJ, GHIM
AEKL, AGKL, BCDK, BCDM, ACKL, ACKM, ADFH, ADFJ, AHLM,
I (xiv) BCKM, BDFH, BHLM, CFGK, BCDL, BCKL, BDFJ, BDHJ, DGKL,
CFGL, CFKL, CJKL, FHKL, HJKL EFHM
BEKM, BGLM, CEFH, DEFH, BELM, BGKM, CEFM, CGJM,
I (xv) DEKM, DGLM, EHJK, EHIJL, FGH)J DEFM, DEJM, DFGH, DFGM,
DGIM
ACDF, ADHL, ADJM, BDJM, ACDH, ACDJ, ADHK, ADHM,
I (xvi) CEFG, CEFK, CEFL, CGJK, CGIL, DEFG, DFGJ, DFGL, EHJM
DFGK, FGHK, FGHL
I (xvii) ACDK, AHKL, BCLM, BHKL, ACDL, ACDM, ACLM, ADHJ,
BHKM, CEFJ, DEFL, DEJL, DEKL, AHKM, BEKL, BGKL, DEFJ, DEFK,
DGIJK DEJK, DGIL, FGHM
Il (xviii) | ACFL, ACIL, AHJK, BCFL, BCIL, ADEF, BDEF, CEHJ, EFGH
BHIJK, CGHJ, DGHJ, FGLM
I (xix) ACEL, ACGL, ACHL, ACIM, AFJM, | ACHK, AEHK, AGHK, BCEK, BCFM,
AHJM, BCHL, BEHL, BFHM, BCGK, BCHK, CEGJ, DEGL, EKLM
BFJM, BGHL, DEGK, EFKM,
EJKM, GJLM, GKLM
I (xx) ABCD, ABCM, ABDH, ABHM, ABEK, ABEL, ABGK, ABGL, ADEK,
AFHK, BDEL, BDGK, BFHK, EGHJ, | ADGL, AEJM, AGJM, BEJM, BGJM,
EGLM CDEJ, CDFG, EGKM
Table 4-20 Projections for 13 factor NC design
Proj 3-factor 4-factor
Type Type of Projections o o
Number projections projections
I Full factorial projections 198 180
II 2 FI Completely Confounded with
other 2 FIs 0 15 (1 type)
III Main effects Partially Confounded
with Two Factor Int?alractions 88 (2 types) | 520 (40 types)
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Table 4-21 Three factor projections for 13 factor NC design

Proj
Type

Projection (a)

Isomorphic Projection (b)

GKM, HIL, HLN, JLM, LMN

ABC, ABH, ABK, ACL, ACN, ADF, AFJ,
AFN, AJK, AKL, ALM, BCE, BDJ, BEK,
BEM, BFK, BGN, BHJ, BHN, BJM,
BMN, CDM, CEJ, CEL, CFH, CFL, CFM,
CGH, DHK, DLN, EFG, EFJ, EFN, EHL,
EKL, EKN, FHJ, FHK, FKM, FMN, GIL,

ABM, ACJ, ADH, ADM, AFG,
AGH, AGM, AHL, AKN, BCF, BDF,
BDN, BEH, BFG, BGJ, CDH, CDJ,
CDN, CEN, CGJ, CGM, CGN, DEF,
DEH, DEM, DFL, DJK, DJL, DKM,
DKN, EGH, EGM, EJK, ELM, FGL,
FHN, FJM, FKL, GHK, GJK, GKN,
GLN
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Table 4-22 Four factor projections for 13 factor NC design

Proj Type Projections

ABDE, ABDG, ABDL, ABEF, ABEG, ABEJ, ABEN, ABFL, ABGL, ABIL, ABIN,
ABLN, ACDE, ACDG, ACDK, ACEF, ACEG, ACEH, ACEM, ACFK, ACGK,
ACHK, ACHM, ACKM, ADEJ, ADEK, ADEL, ADEN, ADGJ, ADGK, ADGL,
ADGN, ADJN, AEFH, AEFK, AEFL, AEFM, AEGJ, AEGK, AEGL, AEGN,
AEHJ, AEHK, AEHN, AEJL, AEJM, AEKM, AELN, AEMN, AFHM, AGIN,
AHIM, AHIN, AHKM, AHMN, AJLN, AIMN, BCDG, BCDK, BCDL, BCGK,
BCGL, BCHK, BCHL, BCHM, BCJK, BCJL, BCJN, BCKM, BCKN, BCLM,
BCLN, BDEG, BDEL, BDGH, BDGK, BDGM, BDHL, BDHM, BDKL, BDLM,
BEFL, BEGL, BEJL, BEJN, BELN, BFHL, BFHM, BFJL, BEJN, BFLM, BFLN,
BGHL, BGHM, BGKL, BGLM, BHKL, BHKM, BJKL, BJKN, BKLM, BKLN,
CDEG, CDEK, CDFG, CDFK, CDGL, CDKL, CEFK, CEGK, CEHK, CEHM,
CEKM, CFGK, CFJK, CFJN, CFKN, CGKL, CHJK, CHJM, CHIN, CHKL, CHKN,
CHLM, CHMN, CJKL, CJKM, CJLN, CJMN, CKLM, CKLN, CKMN, DEGJ,
DEGK, DEGL, DEGN, DEJN, DFGH, DFGJ, DFGK, DFGM, DFGN, DFHM,
DFJN, DGHJ, DGHL, DGHN, DGJM, DGKL, DGLM, DGMN, DHJM, DHIN,
DHLM, DHMN, DIJMN, EFHM, EGIN, EHJM, EHJN, EHKM, EHMN, EJLN,
EJMN, FGHM, FGIN, FHLM, FIKN, FILN, GHJM, GHIN, GHLM, GHMN,
GJMN, HIKM, HIKN, HKLM, HKMN, JKLN, JKMN

Proj Type Projection (a) Isomorphic Projection (b)

ABEL, ACEK, ADEG, AEHM, AEJN,
BCKL, BDGL, BHLM, BJLN, CDGK,

U CHKM, CJKN, DGHM, DGJN,

HIMN
ABDN, ABGJ, ADJL, AGLN, BCDH, | ACFM, AFHK, BEFN, CHJL, CLMN,
1 (i) BCGM, BDKM, BGHK, CDEF, DEKL, EFKM

DFHN, DFJM, EGLN, FGJK

ACFG, BEGJ, CFGN, DEJL, DFKN, | ABFJ, AFLM, AGKL, AHJK, BCHN,

(i) | FGHN, FGJM BCJM, BKMN, CEFH, EFHL, EHKN,
HKLN, JKLM
ADJM, BDEN, CDFJ, CGLM, DFHL, | ABDK, ABFH, ACDL, ACHN, ACMN,
Il (iii) | DKLM, EGIM AFLN, BCDE, BEFM, BEGK, BFJK,
CEGL, CEHJ, CFJL, EKMN
ADHN, AFGK, AGHJ, AGMN, ACJM, ADHJ, ADMN, AGHN, BCFJ,
Il (iv) | BDFM, BFGH, CDHL, DEFK, DEHJ, | BCFN, BDFH, BFGM, DEHN, DFLM,
DEMN, EGHN, FGLM, GHKL EGHJ, EGMN, EJKM, FKLN
) ABCD, ADFK, AFJL, BCEG, CGHL, | ABCG, AJKM, BFKN, BHJK, CEJM,
DHKL, EFGK CFLN, EFJL
(i) ABGK, ACGL, BDEJ, BHKN, BJKM, | ABFM, ACHJ, AGJM, AKMN, BEFH,
CDLM, EFLN, GKLM, HJKL CDFN, CEHN, CEMN, DEJM, FGHL

ABFN, ACDF, ADKL, BCHJ, BCMN, | AFHL, AHKN, CFGJ, DFIK, EFLM,
1 (vii) BDEK, BEGN, CDEL, CEFM, DELN, | EHIK, FJKL
EGKL, FGHJ, FGMN
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Table 4.22 (contd.) Four factor projections for 13 factor NC design

Proj Projection (a) Isomorphic Projection (b)
Type
ABDJ, ABGN, ACFH, ADLN, AFKM, FGKN
1 AGIJL, BCDM, BCGH, BDHK, BEFJ,
(viii) | BGKM, CEFG, CHLN, CIJLM, DFHJ,
DFMN, EFHK, EGIL, KLMN
ABFG, ACDH, ACGM, ADKN, AEGH, AEFJ, AEFN, AEKL, AJLM, BFHJ,
Il (ix) | AEGM, AGKN, BCDN, BCGJ, BDEH, BFMN, BLMN, DFHK, DHLN, FGKM,
CEGM, DEJK, DGJK, DGKN, EGJK FLMN, GHJL
ACDJ, ACGJ, ADEH, ADEM, ADKM, ABEK, ABFK, ACEL, ACFL, AFHJ,
I (x) BDEF, BDKN, BEGH, CDEH, CDKN, AFMN, BFHK, BHLN, BJLM, CEFJ,
CGKN, CGLN, DEGH, DEGM, DELM, CEHL, CEKL, CFKM, DLMN, EFHJ,
DFGL, DFKL EFMN, EHJL, HLMN
ABDM, ABGM, ADGH, ADGM, BCDF, | ABJK, ACFN, ACKL, BDHJ, BEFK,
Il (xi) | CDEN, CDGJ, CDGN, CEGN, DEKM, BEJM, BGHN, BGMN, BHMN, CDFM,
DFJL, EGLM, FGKL, GHJK, GKLN CEFL, CFGH, EFKN, EHKL
AFGL, AGHK, BDFL, BFGL, BGIK, ABMN, ADHK, AHLN, BCFH, BCFL,
Il (xii) CDJK, CDJL, CGJK, EGHK, FGLN BCFM, BEHL, BGIL, CDHK, CGJL,
DEFG, DEFJ, DEFN, DEHL, DJLM,
ELMN
ADHL, AFGH, AFGM, AGHL, BCFG, ACJK, AHLM, BCFK, BDFK, BEHJ,
1 BDFG, BFGJ, DEFL, DJKM, DJKN, BEHN, BFGN, BGJM, DEHK, DFLN,
(xiii) | GHKN, GJKN DJLN, EGHL, EJKL, EJKN, FJMN,
GHKM, GJKM
" ADHM, AGHM, BDFN, CDHJ, CDHN, ACJL, ACIN, AFGJ, AFGN, BDFJ, BEHK,
(xiv) CDJN, CGJM, CGJN, CGMN, DEFH, BEHM, BFGK, BGIJN, CDHM, CDJM,
DEFM, DEHM, DJKL, DKMN, EGHM FKLM, GJKL
ABCF, ADFL, AFJM, BCEN, BDJK, ABCE, ABHJ, ABHN, ALMN, BCEJ,
Il (xv) BDJL, BFKL, CEJK, CELM, CFHN, BCEL, BEKL, BEKN, BFKM, BHIL,
CGHK, EFGL, EFJM CFHJ, CFHK, CFMN, EHLN, FHIL,
GJLM, HJLM, JLMN
ABCJ, ABHL, ABKN, ADFG, AJKN, ABCL, ABCN, ABKL, ACLM, ADFJ,
1 BCEH, DHKM, DHKN, EFGH, EFGM, ADFN, AFJK, AJKL, AKLM, BCEK,
(xvi) | EFJK, EHLM, EKLM, FHJM, FHKL, BCEM, BDJM, BEMN, BHJM, BJMN,
GJLN FHKM, FKMN, HJLN
ABCM, ABHM, ABKM, ADFH, ADFM, | ABCH, ABCK, ABHK, ACLN, AFJN,
1 AKLN, BCEF, BDJN, CDMN, CEJN, BEKM, BHIN, CEJL, CFHL, CFHM,
(xvii) | CELN, CGHJ, CGHM, CGHN, FHJN, CFLM, EFGJ, EFGN, EFJN, EKLN, FHJK
FHKN, GKMN
ABEH, ACDN, ACEN, ACGN, ADEF, ABEM, ABJM, ACEJ, AGKM, AHIL,
1 AFHN, BEGM, BEJK, BELM, BGKN, BDLN, CDLN, CEFN, CEKN, CGKM,
(xviii) | BGLN, CDEM, CDKM, CFGL, CFIM, EGKM, FGIL, FHLN, FJLM, GLMN

CFKL, EFHN
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Table 4.22 (contd.) Four factor projections for 13 factor NC design

Proj Projection (a) Isomorphic Projection (b)
Type
i | ABDH, ABGH, ACHL, ACKN, AFKN, ABLM, ACFJ, ADLM, AGLM, AHKL,
(xix) BDGJ, CDGM, CEGJ, CFGM, DHJK BDGN, BDHN, BDMN, BGHJ, CDEJ,
CDFH, CDGH, DKLN, FHMN, FJKM
ABDF, ADJK, AEJK, AELM, AFKL, ACDM, ACGH, AEFG, AEHL, AEKN,
I (xx) AGJK, BCDJ, BCGN, BDEM, BFHN, BEFG, DEKN, DFKM, DGIL, DGKM,
BFJM, CDFL, CEGH, DGHK, DGLN, DHIL, EJLM, GHLN
EFKL, EGKN, FGHK
Table 4-23 Projections for 14 factor NC design
Proj
- 3-factor 4-factor
Type Type of Projections L .
projections projections
Number
I Full factorial projections 252 252
II 2 FI Completely Confounded with
other 2 FIs 0 21 (1 type)
I1I Main effects Partially Confounded
with Two Factor Interactions 112 (2 types) | 728 (30 types)
Table 4-24 Three factor projections for 14 factor NC design
Proj Projection (a) Isomorphic Projection (b)
Type
ABG, ABK, ABN, ACG, ACK, ACM, ABM, ACN, ADE, AGL, AHK, AJO,
ADH, ADL, ADO, AEJ, AEM, AEN, AGH, | BDG, BEL, BFN, BHO, BJK, CDK,
AHJ, AJL, AKL, AMO, ANO, BDE, BDK, | CEH, CFM, CGJ, CLO, DFO, DHN,
BDO, BEH, BEJ, BFG, BFK, BFM, BGJ, DLM, EFJ, EGM, EKN, FGH, FKL,
BHM, BHN, BJO, BLM, BLN, BLO, CDE, | GNO, HJM, JLN, KMO
CDG, CDO, CEJ, CEL, CFG, CFK, CFN,
Il (a) | CHM, CHN, CHO, CJK, CJO, CLM, CLN,

DEF, DFH, DFL, DGM, DGN, DHM,
DKM, DKN, DLN, EFM, EFN, EGH, EGL,
EGN, EHK, EKL, EKM, FGL, FHJ, FHK,
FIL, FJO, FMO, FNO, GHO, GJM, GIN,
GLO, GMO, HIN, HKO, JKM, JKN, JLM,
KLO, KNO
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Table 4-25 Four factor projections for 14 factor NC design

Project
ion
Type

Projections

ABCD, ABCE, ABCH, ABCJ, ABCL, ABCO, ABDF, ABDJ, ABEF, ABEO,
ABFH, ABFJ, ABFL, ABFO, ABHL, ACDF, ACDJ, ACEF, ACEO, ACFH,
ACFJ, ACFL, ACFO, ACHL, ADFG, ADFK, ADFM, ADFN, ADGJ, ADGK,
ADJK, ADJM, ADIN, ADMN, AEFG, AEFH, AEFK, AEFL, AEGK, AEGO,
AEHL, AEHO, AEKO, AELO, AFGJ, AFGM, AFGN, AFGO, AFHM, AFHN,
AFHO, AFJK, AFJM, AFIN, AFKM, AFKN, AFKO, AFLM, AFLN, AFLO,
AGJK, AGKM, AGKN, AGKO, AGMN, AHLM, AHLN, AHLO, AHMN,
AJMN, AKMN, ALMN, BCDF, BCDH, BCDL, BCDM, BCDN, BCEF, BCEG,
BCEK, BCEM, BCEN, BCFH, BCFJ, BCFL, BCFO, BCGH, BCGL, BCGM,
BCGN, BCGO, BCHJ, BCHK, BCJL, BCJM, BCIN, BCKL, BCKM, BCKN,
BCKO, BCMO, BCNO, BDFJ, BDHJ, BDHL, BDJL, BDJM, BDIN, BDMN,
BEFO, BEGK, BEGO, BEKO, BEMN, BEMO, BENO, BFHL, BGHK, BGHL,
BGKL, BGKM, BGKN, BGKO, BGMN, BHJL, BHKL, BJMN, BKMN,
BMNO, CDFJ, CDHJ, CDHL, CDJL, CDJM, CDIJN, CDMN, CEFO, CEGK,
CEGO, CEKO, CEMN, CEMO, CENO, CFHL, CGHK, CGHL, CGKL, CGKM,
CGKN, CGKO, CGMN, CHJL, CHKL, CJMN, CKMN, CMNO, DEGJ, DEGK,
DEGO, DEHJ, DEHL, DEHO, DEJK, DEJL, DEJM, DEJN, DEKO, DELO,
DEMN, DEMO, DENO, DFGJ, DFGK, DFJK, DFJM, DFIN, DFMN, DGHJ,
DGHK, DGHL, DGJL, DGJO, DGKL, DGKO, DHJK, DHJO, DHKL, DHLO,
DJKL, DJKO, DJLO, DIMO, DJNO, DMNO, EFGK, EFGO, EFHL, EFHO,
EFKO, EFLO, EGJK, EGJO, EHIL, EHJO, EHLM, EHLN, EHMN, EHMO,
EHNO, EJKO, EJLO, EJMN, EJMO, EJNO, ELMN, ELMO, ELNO, FGIK,
FGKM, FGKN, FGKO, FGMN, FHLM, FHLN, FHLO, FHMN, FIMN,
FKMN, FLMN, GHJK, GHIL, GHKM, GHKN, GHLM, GHLN, GHMN, GIKL,
GJKO, GKLM, GKLN, GLMN, HJKL, HILO, HKLM, HKLN, HKMN, HLMO,
HLNO, HMNO, JMNO, KLMN, LMNO

Proj
Type

Projection (a) Isomorphic Projection (b)

Il (i)

ABCF, ADFJ, AEFO, AFGK, AFHL,
AFMN, BCDJ, BCEO, BCGK,
BCHL, BCMN, DEJO, DGIK, DHIL,
DJMN, EGKO, EHLO, EMNO,
GHKL, GKMN, HLMN

1 (i)

ABEH, ABLO, ACEL, ACHO, ADGM,
ADKN, AGIN, AJKM, BDFH, BEGN,
BEKM, BFIL, BGMO, BKNO, CDFL,
CEGN, CEKM, CFHJ, CGMO, CKNO,
DEGL, DEHK, DGHO, DKLO, EHIN,
EJLM, FGJM, FIKN
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Table 4.25 (contd.) Four factor projections for 14 factor NC design

Proj Type

Projection (a)

Isomorphic Projection (b)

I (ii)

ABDL, ABHJ, ACDH, ACIL, AHMO,
ALNO, BDFM, BEFK, BFLO, BGHN,
BGLM, BKLN, CDFN, CEFG, CFHO,
CGHM, CGLN, CHJK, CKLM, DEHM,
DELN, DFGN, DFKM, EJKL, FGJO,
FHNO, FLMO, GILO, HIKO

11 (iii)

ABDN, ABEG, ABIN, ACDM, ACEK,
ACIM, ADGO, ADKO, AEGJ, AEHN,
AELM, BDHK, BDNO, BEFH, BFIM,
BGHJ, BHKM, BJMO, CDMO, CEFL,
CFJN, CHKN, CINO, EFHM, EFLN,
FIKO

I (iv)

ADEG, ADEK, AGLM, AGLN, AHKM,
AHKN, BDGH, BDGL, BJKL, CDKL,
CGJL, DHNO, DLMO, EFJK, FGHM,
FGHN, FKLM, FKLN, HIMO, JLNO

I (v)

ABGO, ACKO, BDEN, BEJM,
BFKO, CDEM, CEJN, CFGO

ABKO, ACGO, AEJK, AGHM, AGHN,
AKLM, AKLN, BDEM, BDKL, BEIN,
BFGO, BGJL, CDEN, CDGH, CDGL,
CEJM, CFKO, CIKL, DEFG, DEFK,
DHMO, DLNO, EGHJ, FGLM, FGLN,
FHKM, FHKN, HJNO, JLMO

I (vi)

ABEK, ACEG, AEHM, AELN,
BDMO, BHKN, BJNO, CDNO,
CHKM, CJMO, EFHN, EFLM,
EGIL, EHJK, GHJO

ABDM, ABJM, ACDN, ACIN, AJKO,
BEFL, BFJN, CDHK, CEFH, CFJM,
CGHJ, DFGO, DFKO, EFGJ

111 (vii)

ABDH, ABIL, ACDL, ACHJ,
AHNO, ALMO, BEFG, BGHM,
BGLN, BKLM, CEFK, CGHN,
CGLM, CKLN, DFGM, DFKN,
FHMO, FLNO

AGJO, BDFN, BFHO, BHIK, CDFM,
CFLO, DEHN, DELM

1 (viii)

ADGN, ADKM, AGJM, AJKN,
BDFL, BFHJ, CDFH, CFIL,
DEGH, DEKL, DGLO, DHKO,
FGIN, FIKM, JKLO

ABEL, ABHO, ACEH, ACLO, BEGM,
BEKN, BGNO, BKMO, CEGM,
CEKN, CGNO, CKMO, EHJM, EJLN
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Table 4.25 (contd.) Four factor projections for 14 factor NC design

Proj Type

Projection (a)

Isomorphic Projection (b)

I (ix)

ABDO, ABEJ, ACDO, ACEJ, AEGH,
AEKL, AFHJ, AFIL, AFMO, AFNO,
AGMO, AKNO, BCDE, BCDO, BCEJ,
BCFG, BCFK, BCHM, BCHN, BCIO,
BCLM, BCLN, BDHM, BDLN, BEFM,
BFJO, BGLO, BJLM, BKLO, CDHM,
CDLN, CEFN, CFJO, CGHO, CILM,
DEGN, DEKM, DJKM, DJKN, EFGL,
EFHK, EJKM, FGMO, FKNO, GHIN,
GKLO

I (x)

ABDK, ABFG, ABFK, ABHN, ABLN,
ACDG, ACFG, ACFK, ACHM, ACIK,
ACLM, ADFH, ADFL, AEFM, AEFN,
AEGN, AEKM, BEGH, BFHK, BHIN,
CEGL, CEKL, CFHK, CHIN, CHKO,
DFGL, DFIL, DGJM, DGIN, EGIN,
GHKO, GJKM, GJKN, GJLM, HIKN,
HKLO, HKNO

11 (xi)

ABCG, ABCK, ABEN, ACEM, ADGH,
ADJL, ADKL, ADMO, ADNO, AEHJ,
AJKL, AMNO, BDFK, BDJO, BDLO,
BEGJ, BFHM, BFLM, BHLM, BHLN,
BJLO, CDFG, CDHO, CDJO, CFHN,
CFJK, CFLN, CHJO, CHLM, CHLN,
DGHM, DGKM, DGKN, DGLN, DHKM,
DKLN, EFGN, EFKM, EGKL, FGIL,
FIMO, FINO, FMNO, GHLO, GHMO,
GLMO, JKLM, KLNO

I (xii)

ADEF, AGLO, AHKO, BDGM, BDGN,
BFNO, BJKM, BJKN, CDKM, CDKN,
CEHK, CFMO, CGJM, CGIN, EFIL,
EFJO, EGMO, EKNO, FGHO, FKLO

11 (xiii)

ABMO, ACNO, ADEJ, ADEM, ADEN,
AHKL, BDGJ, BELM, BELN, BELO,
CEHM, CEHN, CEHO, CGJK, CGJO,
FGHJ, FGHK

I (xiv)

ABMN, ADEH, ADEL, ADEO, BDGK,
BDGO, BJKO, CDKO, CEHJ, CEHL,
CFMN, DLMN, EFJM, EFJN, EGMN,
FGHL, HIMN
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Table 4.25 (contd.) Four factor projections for 14 factor NC design

Proj Projection (a) Isomorphic Projection (b)
Type
Il | ACGJ, ADHN, ADLM, AHJM, | ABGJ, ADHM, ADLN, AGHO, AHIN, AJLM,
(xv) | AJLN, BFGH, BFKL, CFGH, AKLO, BDEF, BDKM, BDKN, BEHK, BFGL,
CFKL, DEFJ, DGNO, DKMO, BFMO, BGJM, BGIN, CDEF, CDGM,
EGNO, EKMO, FHIM, FJLN, CDGN, CFGL, CFNO, CJKM, CJKN, DEFM,
JKMO DEFN, DFHJ, DFHK, DGMO, DKNO,
EFMO, EFNO, EGHO, EGLO, EHKO, EKLO,
FGLO, FHIN, FHKO, FJLM, JKNO
1 ABGL, ACGL, ADHK, AEJO, ABGH, ABKL, ABNO, ACGH, ACKL, ACMO,
(xvi) | AGHK, AHJO, BDEL, BEHO, ADHJ, AEJL, AEMO, AENO, AGHJ, AHIL,
BEJK, BGJK, CDEH, CDGJ, BDEH, BDEJ, BEHM, BEHN, BEJO, BFGJ,
CELO, CFGJ, DEFO, DFHN, BGJO, CDEJ, CDEL, CEJK, CEJO, CELM,
DFLM, EHKN, FHKL, GINO CELN, DEFH, DEFL, DFHM, DFLN, EGHK,
EHKL, EHKM, FHIL, FHJO, GIMO
1 ABGM, ABKM, ACGN, ACKN, | ABGK, ABGN, ABKN, ACGK, ACGM,
(xvii) | ACMN, AGHL, AHJK, AJLO, ACKM, ADHL, ADHO, ADLO, AEJM, AEIJN,
BDEG, BEHL, BEJL, BFGN, AEMN, BDEK, BDEO, BDKO, BEHJ, BFGK,
BFKN, BFMN, BHMO, BHNO, | BFGM, BFKM, BHMN, BLMN, BLMO,
CDEK, CDGK, CFGM, CFKM, BLNO, CDEG, CDEO, CDGO, CEJL, CFGK,
CLMO, CLNO, DFHO, DFLO, | CFGN, CFKN, CHMN, CHMO, CHNO,
DHMN, EGHM, EGLM, EKLN, | CJKO, CLMN, DFHL, DGMN, DKMN,
EKMN, JLMN EFMN, EGHL, EGHN, EGLN, EKLM, FHIK,
FILO, GIMN, JKMN
Il | ABDG, ABFN, ABJK, ACDK, | ABFM, ABHM, ABLM, ACFN, ACHN,
(xviii | ACFM, ADFO, AEFJ, AEGM, | ACLN, BEGL, BEKL, BHKO, CEGH, DFJO,
) AEKN, BDFO, BEFJ, BHIM, DFMO, DFNO, DHIN, EFHJ, EGIJM, HIKM,
CDFO, CEFJ, CHJM, DFGH, HILM
DFKL, DHJM, GILN, HILN,
HKMO
Il | ABCN, ABHK, ACHK, ADGL, | ABCM, ABEM, ACEN, AGIL, AGKL, AIMO,
(xix) | ADJO, BDHO, BDJK, BFJK, AJNO, BDFG, BFHN, BFLN, BHJO, BHLO,

CDLO, CEGJ, CHLO, CILO,
DGHN, DGLM, DHLM,
DKLM, EFGM, EFKN, EGKN,
FGKL, FJKL, GHNO, GLNO,
GMNO, JKLN, KLMO

CDFK, CDJK, CFHM, CFLM, DHKN, DHLN,
EGKM, KMNO

i
(xx)

AFGH, AFKL, AGNO, AKMO,
BCDK, BCEH, BCFM, BCGJ,
BCLO, BDHN, BDLM, BILN,
CDHN, CDLM, CILN, DEGM,
DEKN, DILN, EFGH, EFKL,
FGNO, FKMO, GHJM, GKMO

ABDE, ABIJO,
AFGL, AFHK,
BCHO, BCIK,
CKLO, DILM,

ACDE, ACIO, AEGL, AEHK,

AFJO, BCDG, BCEL, BCFN,

BEFN, BGHO, CEFM, CGLO,
EJKN, GKNO
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4.6. Analysis Method

Based on the projection properties of the 9 — 14 factor NC designs, it can be
clearly seen that the full three and four factor models with main effects and their
interactions can be fit. The projections show that there are eight distinct design
points for all three factor projections and atleast 12 distinct design points for the
four factor projections. This indicates that the full factorial model can be fit for all
the three and four factor projections for the 9 — 14 factor NC designs. Therefore
using all possible subsets regression method for analyzing these designs is a
logical method to analyze these designs. I tested a variation of the all possible
subsets regression along with stepwise regression on two examples. The method

used is listed below.
Step 1: Fit all possible subsets from one to ten terms with only main effects.

Step 2: Pick the best main effects only model and add all the two factor

interactions for the selected main effects.

Step 3: Fit all possible subsets from one to ten terms for this modified list of

factors

Step 4: Pick the best 2 or 3 models and fit the ordinary least squares model to it

and select the terms from the model which is the best fit amongst these models.

4.6.1. Example]

This example is from Junqua, Duran, Gancet and Goulas (1997), where they
study microbial transglutaminase production using a designed experiment
approach. In the example they study five factors casein (X;), glycerol (X,),

peptones (X3), yeast extract (X4) and oligoelements (Xs). I added two dummy
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variables to extend the design to a nine factor design. The original experiment
was run as a 32 run full factorial experiment with five center runs. I used the
results from the original experiment to simulate data for the NC nine factor
design in 16 runs with the same coefficients and RMSE as the original
experiment. The analysis of the original experiment showed that X;, X5, X4 and
X;X, are the significant effects. The analysis method described in the previous
section is used to analyze this simulated experiment. The simulated dataset is

shown in Table 4-26.

Table 4-26 The 9 factor no-confounding design for the microbial

transglutaminase production experiment

Run X4 X2 X3 X4 Xs X X; X Xg Growth
1 -1 -1 -1 -1 -1 -1 1 -1 1| 0.0188893887
2 -1 -1 -1 1 -1 1 -1 1 -1 | 0.0289614421
3 -1 -1 1 -1 1 1 1 1 -1 | -0.001691386
4 -1 -1 1 1 1 -1 -1 -1 1| 0.0365263064
5 -1 1 -1 -1 1 1 -1 1 1| 0.0724725282
6 -1 1 -1 1 1 -1 1 -1 -1 | 0.0872040587
7 -1 1 1 -1 -1 -1 -1 1 -1 | 0.0586051129
8 -1 1 1 1 -1 1 1 -1 1| 0.1055086723
9 1 -1 -1 -1 1 -1 -1 -1 -1 | 0.0185123407
10 1 -1 -1 1 1 1 1 1 1| 0.0528304058
11 1 -1 1 -1 -1 1 -1 -1 1| 0.0482017164
12 1 -1 1 1 -1 -1 1 1 -1 | 0.0572336741
13 1 1 -1 -1 -1 1 1 -1 -1 | 0.1481654593
14 1 1 -1 1 -1 -1 -1 1 1| 0.1619445557
15 1 1 1 -1 1 -1 1 1 1| 0.1560683984
16 1 1 1 1 1 1 -1 -1 -1 | 0.1900055485
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Table 4-27 All Possible Factor Models up to nine terms (main effects only)

comparison
No Model Noof | R- RMSE | AlCc BIC
terms | Square
1|X2 1 0.63 0.04 | -54.48 | -54.16
2| X1 1 0.22 0.05 | -42.48 | -42.16
3| X4 1 0.05 0.06 | -39.28 | -38.96
4 | X1,X2 2 0.85 0.02 | -65.60 | -66.15
5 | X2,X4 2 0.68 0.04 | -53.14 | -53.69
6 | X2,X8 2 0.64 0.04 | -51.08 | -51.63
7 | X1,X2,X4 3 0.90 0.02 | -67.81 | -69.94
8 | X1,X2,X8 3 0.86 0.02 | -61.84 | -63.98
9 | X1,X2,X9 3 0.86 0.02 | -61.82 | -63.96
10 | X1,X2,X4,X8 4 0.91 0.02 | -63.39 | -68.09
11 | X1,X2,X4,X9 4 0.91 0.02 | -63.36 | -68.06
12 | X1,X2,X3,X4 4 0.91 0.02 | -63.25 | -67.95
13 | X1,X2,X4,X8,X9 5 0.91 0.02 | -57.66 | -66.25
14 | X1,X2,X3,X4,X8 5 0.91 0.02 | -57.55 | -66.14
15 | X1,X2,X3,X4,X9 5 0.91 0.02 | -57.52 | -66.11
16 | X1,X2,X3,X4,X8,X9 6 0.92 0.02 | -49.97 | -64.36
17 | X1,X2,X4,X6,X8,X9 6 0.92 0.02 | -49.65 | -64.04
18 | X1,X2,X3,X4,X6,X8 6 0.92 0.02 | -49.54 | -63.93
19 | X1,X2,X3,X4,X6, X8,X9 7 0.92 0.02 | -39.13 | -62.18
20 | X1,X2,X3,X4,X5, X8,X9 7 0.92 0.02 | -38.60 | -61.64
21 | X1,X2,X3,X4,X7, X8,X9 7 0.92 0.02 | -38.56 | -61.61
22 | X1,X2,X3,X4,X5, X6,X8,X9 8 0.92 0.02 | -23.19 | -59.47
23 | X1,X2,X3,X4,X6, X7,X8,X9 8 0.92 0.02 | -23.15 | -59.43
24 | X1,X2,X3,X4,X5, X7,X8,X9 8 0.92 0.02 | -22.62 | -58.89
25 | X1,X2,X3,X4,X5, X6,X7,X8,X9 9 0.92 0.03 0.79 -56.72

The top three main effects models for one to nine terms are listed in Table 4-27.
The best model is the main effects model with X;, X, and X4. Next I add all the
two factor interactions; X;X;, X;Xs and XX, and then fit all possible subsets to
these main effects and interactions.The top three models for one to six terms are

listed in Table 4-28. The second, third and fourth best models each with four
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terms in the first step were also tested to check if these including any of these
terms gave better model fits. But the best model fit is the one with X;, X,, X4 and
X:Xz. Including any other term does not improve the model fit. This model is fit is
shown in Figure 4.9. The RSquare Adj value for this model is 0.962. The terms
identified using this analysis method is identical to the true model.

Table 4-28 All Possible subsets Models up to nine terms (main effects and two

factor interactions) comparison

No Model No of R- RMSE | AlCc | BIC
terms Square
1|x2 1| 063 0.04 | -54.48 | -54.16
2 [ x1 1| 022 0.05 | -42.48 | -42.16
3 | X1*X2 1| 007 0.06 | -39.62 | -39.30
4| x1,x2 2| 085 0.02 | -65.60 | -66.15
5 | X2,X1*X2 2| 070 0.03 | -54.18 | -54.72
6 | X2,X4 2| 068 0.04 | -53.14 | -53.69
7 | X1,X2,X1*X2 3] 092 0.02 | -71.50 | -73.63
8 | X1,X2,%4 3| 090 0.02 | -67.81 | -69.94
9 | X1,X2,X1*X4 3| 085 0.03 | -61.29 | -63.42
10 | X1,X2,X4,X1*X2 4| 0.97 0.01 | -82.46 | -87.16
11 | X1,X2,X1*X2,X1*X4 4| 092 0.02 | -66.25 | -70.95
12 | X1,X2,X1*X2,X2*X4 4| 092 0.02 | -66.24 | -70.94
13 | X1,X2,X4,X1*X2,X1*X4 5| 097 0.01 | -76.05 | -84.64
14 | X1,X2,%X4,X1*X2,X2*X4 5| 097 0.01 | -76.02 | -84.61
15 | X1,X2,X1*X2,X1*X4,X2*X4 5 092 0.02 | -59.67 | -68.26
16 | X1,X2,X4,X1*X2,X1*X4,X2*X4 6| 097 0.01 | -67.70 | -82.09
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4= |Fit Group
4=|Response Y
£ Summary of Fit

RSquare 0872204
RSquare Adj 08962097
Root Mean Square Error 0.011387
Mean of Response 0.077465
Observations (or Sum Wots) 16
A Analysis of Variance
Sum of
Source DF Sguares Mean Square F Ratio
Model 4 0.04988815 0.012472 961866
Errar 11 0.00142631 0.000130 Prob=F
. Total 15 0.05131447 =.0001*
[> Lack Of Fit
£ Parameter Estimates
Term Estimate Std Error tRatio Prob=[t|
Intercept 00774649 0002847 2721 =0001*
X 0.0266554 0.002847 936 =.0001*
2 0.0450319 0002847 1582 =0001*
x4 0.0125619 0.002847 441 0.0010*

K1*K2 0.0148938 0.002847 523 0.0003*

Figure 4.9 Model fit for X1, Xz, X4, XX,
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Chapter 5

CONCLUSIONS AND FUTURE WORK

The regular fractional factorial designs with six, seven or eight factors in 16 runs
are widely used. However due to the complete confounding of the two-factor
interactions with one another, these designs often require the experimenter to
perform runs to resolve ambiguities whenever any of the two-factor interactions
are identified as being active. The NC designs allow for the estimation of all main
effects along with some of the two-factor interactions since there is no complete
confounding in these designs.

The simulation study confirmed that stepwise regression does not work well once
the total number of active terms exceeds four. However the study also showed
that NC designs allow for estimation of two factor interactions without the need
to run additional runs. Furthermore, once the true model contains interactions,
regular fractional factorial designs are unable to compete with the nonregular
designs due to the complete confounding of the two-factor interactions.

The simulation study shows that although stepwise regression may not be the
best method to use for the analysis of nonregular designs, it is reasonably
effective if the number of active terms (main effects and interactions included) is
not more than four. There is no statistically significant difference between using
a 2-stage stepwise regression method and a stepwise regression method. Both
model selection methods used the AICc criterion.

I believe that the NC designs are good alternatives to the FF designs specially
when running another set of experiments is not an alternative. With the NC

designs, the experimenter would be able to study both the main effects and the
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interactions from the initial 16 runs of the experiment when the effect sparsity
principle holds true.

The projection properties of the NC designs show that these designs allow for
the estimation of all main effects along with some of the two-factor interactions
since there is no complete confounding in these designs. I presented two
intuitive approaches to analyzing these designs based on the projection
properties. Systems with four active factors are likely to have a significant
interaction. Therefore being able to estimate the two-factor interactions without
the need for design augmentation is a desirable characteristic. Based on the
projection properties of the NC designs all the main effects and their interactions
can be estimated for up to four active factors or in other words models with up
to 11 terms (including the intercept) can be fit as there are 12 distinct designs
points for the four factor projections of these designs.

As part of this dissertation I looked at a few examples of NC designs and
analyzed them using all subsets regression and two stage stepwise regression
using all subsets. The methods are intuitive approaches to analyze these designs.
Running a simulation study to evaluate the effectiveness of the analysis method
for NC designs would be an ideal extension to this dissertation.

The Dantzig Selector (2007) has been used to identify active terms in nonregular
designs. Candes and Tao explain how the B’s can be estimated when p is much
larger than n. Since in the case of NC designs where both main effects and
interactions are being estimated, the p is much larger than n specially as the
number of terms in the design matrix increase, this could be another analysis

method worth exploring.
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Box et al (2005), Montgomery and Runger (1996), Li and Mee (2002) and Li and
Lin (2003) study the foldover plans for regular orthogonal designs. Another
extension to this work would be identification of additional runs in cases where
additional runs are to be run. Either foldover plans or addition of individual runs
to the designs would allow the experimenter to run experiments using the NC
designs and have a plan on how to run further experiments, if additional

experiments are to be run.
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