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ABSTRACT  
   

During the initial stages of experimentation, there are usually a large 

number of factors to be investigated. Fractional factorial (2k-p) designs are 

particularly useful during this initial phase of experimental work. These 

experiments often referred to as screening experiments help reduce the large 

number of factors to a smaller set. The 16 run regular fractional factorial designs 

for six, seven and eight factors are in common usage. These designs allow clear 

estimation of all main effects when the three-factor and higher order interactions 

are negligible, but all two-factor interactions are aliased with each other making 

estimation of these effects problematic without additional runs.  

Alternatively, certain nonregular designs called no-confounding (NC) 

designs by Jones and Montgomery (Jones & Montgomery, Alternatives to 

resolution IV screening designs in 16 runs, 2010) partially confound the main 

effects with the two-factor interactions but do not completely confound any two-

factor interactions with each other. The NC designs are useful for independently 

estimating main effects and two-factor interactions without additional runs. While 

several methods have been suggested for the analysis of data from nonregular 

designs, stepwise regression is familiar to practitioners, available in commercial 

software, and is widely used in practice. Given that an NC design has been run, 

the performance of stepwise regression for model selection is unknown. In this 

dissertation I present a comprehensive simulation study evaluating stepwise 

regression for analyzing both regular fractional factorial and NC designs.  

Next, the projection properties of the six, seven and eight factor NC 

designs are studied. Studying the projection properties of these designs allows 
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the development of analysis methods to analyze these designs. Lastly the 

designs and projection properties of 9 to 14 factor NC designs onto three and 

four factors are presented. Certain recommendations are made on analysis 

methods for these designs as well. 
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Chapter 1  

INTRODUCTION 

During the initial stages of experimentation, there are usually a large number of 

factors to be investigated. Two-level fractional factorial designs are particularly 

useful during this phase of experimental work. These experiments, called 

screening experiments, allow practitioners to reduce the large number of factors 

to a smaller set that can be studied more extensively. Regular fractional factorial 

designs are widely used for factor screening. Plackett-Burman designs are 

another class of screening design in common usage. The main difference 

between these two classes of designs is the aliasing structure. Effects in regular 

fractional factorial designs are either completely confounded or unaliased 

whereas the Plackett-Burman designs have a more complex partial aliasing 

pattern. A third set of designs recently proposed by Jones and Montgomery 

(2010) are the no confounding (NC) designs which like the Plackett-Burman 

designs do not completely confound any of the main effects and two-factor 

interactions. Plackett-Burman designs and the NC designs of Jones and 

Montgomery are examples of nonregular designs. Because the nonregular 

designs do not completely confound two-factor interactions and main effects, it 

may be possible to use these designs to identify active factors that could not be 

identified without additional follow-up experimentation when using regular 

designs.  

Stepwise regression is a popular method for model selection because it is easy to 

use and widely available in standard software. Though it is widely used, there is 

no comprehensive study available documenting the effectiveness of using 
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stepwise regression to analyze nonregular designs. Chapter one details the 

simulation study done to study the effectiveness of stepwise regression to 

analyze regular fractional factorial and NC designs.  

The projection properties of fractional factorial designs and Plackett-Burman 

designs are well documented. Montgomery (2013) discusses the projection 

properties of the 2k-p designs that collapse into either full factorial or a fractional 

factorial in any subset of       of the original factors. The subsets that result 

in fractional factorials are subsets appearing as words in the complete defining 

relation. Lin and Draper (1992) and Box and Bisgaard (1993) showed that some 

of the Placket-Burman designs in fewer runs when projected onto three factors 

result in a complete 23 design and a half replicate of the 23 design. The 

projection properties of NC designs have not been studied. In chapter 2 I 

present the projection properties of NC designs for the six, seven and eight 

factor cases in 16 runs.  

Johnson and Jones (2011) show that the six, seven and eight factor NC designs 

have a classical-type construction with a 24 or a replicated 23 starting point. 

These generating columns can be used to study the projection properties of the 

NC designs. Studying the projection properties of the NC designs can suggest 

possible analytical methods for these designs. Suggestions for analysis methods 

for these designs are also discussed in Chapter 2.  

In chapter three the 9 – 14 factor NC designs are listed. A metric to evaluate 

these NC designs is presented, and it is used to obtain the choices for the 

nonregular 16-run fractional factorials through the use of a variation of the D-

optimality criterion.  I then present the projection properties of these designs 
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when projected to three and four factors and discuss an analysis strategy for 

these designs. I also present an example that illustrates the potential usefulness 

of these designs and the effectiveness of the analysis method. 
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Chapter 2  

ANALYSIS OF FRACTIONAL FACTORIAL DESIGNS USING STEPWISE 

REGRESSION 

2.1. Background 

Stepwise regression is a popular method for model selection because it is easy to 

use and widely available in standard software. Though it is widely used, there is 

no comprehensive study available documenting the effectiveness of using 

stepwise regression to analyze nonregular designs.  

2.2. Literature Survey 

A brief review of methods for analyzing nonregular designs is presented in this 

section. Hamada and Wu (1992) proposed a two-step method to analyze 

Plackett-Burman designs considering both the main effects and interactions. This 

paper sparked interest in analysis methods for nonregular fractional factorial 

designs. Box and Meyer (1993) suggested a Bayesian approach to identifying the 

active factors in screening experiments with complex aliasing. Chipman, Hamada 

and Wu (1997) proposed another Bayesian approach combining the Stochastic 

Search Variable Selection algorithm of George and McCulloch (1993) with priors 

for related predictors given by Chipman (1996). Hamada and Hamada (2010) 

proposed an all subsets regression method while imposing model heredity 

restrictions to dramatically reduce the number of models to consider. 

Tyssedal and Samset (1997) suggested using contrast plots to use the aliasing 

structure of the nonregular designs to identify the significant effects. Samset and 

Tyssedal (1998) suggested certain modifications to the Bayesian approach 

introduced by Box and Meyer (1993) to overcome some of the limitations they 
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observed while using the method. Samset (1999) discussed two variable 

selection methods to identify the active factors for nonregular designs. The first 

method is a best subsets regression procedure based on the effect heredity 

principle and the second one is based on the stepwise regression procedure. 

Lawson (2002) proposed a subsets regression method on a shortlisted set of 

candidates to identify the most significant main and interaction effects. The 

shortlist of candidates of candidate interactions is identified using an alias plot. 

Yuan et al (2007) propose extensions to a general purpose variable selection 

algorithm, Least Angle Regression (LARS), Li and Lin (2009) used penalized least 

squares with the SCAD penalty to identify the active factors in screening 

experiments.  

Due to the accessibility and simplicity of use of stepwise regression, it is a 

popular method for model selection in the analysis of fractional factorial designs. 

Marley and Woods (2010) evaluated E(s2)- Optimal and Bayesian D-optimal 

designs to compare three analysis strategies representing regression, shrinkage 

and a novel model-averaging procedure using simulated experiments. In this 

paper I evaluate the effectiveness of stepwise regression for model selection. 

The performance of stepwise regression is evaluated on the 16-run regular 

fractional factorial designs and the 16-run NC designs proposed by Jones and 

Montgomery (2010) for the six, seven and eight factor cases. 

2.3. Preliminary Study and Results 

Stepwise regression is the most commonly used analysis method to analyze the 

results from fractional factorial designs. There is no complete study available in 

the literature which studies how well stepwise regression actually works. JMP 
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was used to run the simulations. The data was simulated assuming different true 

models to see how well stepwise regression performs when used to analyze the 

results from the three designs being studied. Since the experimenter will never 

know the form of the true model, simulations were run to test different true 

models. The true models tested are listed in Table 2-1. Three different coefficient 

/ noise ratios were also tested. The next parameter that was varied was the 

number of true active terms. Depending on the true model and the number of 

variables in the model, this was varied over the entire possible range. The 

different settings of the simulation parameters are listed in Table 2-1. 

Table 2-1 Preliminary Simulation Study 

Designs Used 
Fractional 

Factorial 
Plackett Burman No Confounding 

True Model 
Main Effects 

Only 

Main Effects + 1 

hierarchical 

interaction 

Main Effects + 2 

hierarchical 

interaction 

No. of variables 6 7 8 

Coefficient / Noise Ratio 2/0.667 = 3 2/1 = 2 2/2 = 1 

No of 
Active 

Terms 

Main Effects 
Only Model 

1 2 3 4 5 6 7 8 

Main Effects 
+ 1 
hierarchical 
Interaction 
Model 

- 2+1 3+1 4+1 5+1 6+1 7+1 8+1 

Main Effects 
+ 2 
hierarchical 
Interaction 
Model 

- - 3+2 4+2 5+2 6+2 7+2 8+2 

 
Stepwise regression can be classified into three broad categories: (1) forward 

selection, (2) backward elimination and (3) stepwise (mixed) regression. 

Stepwise regression is a combination of the first two methods. Since the models 

being analyzed have more variables than the number of rows of data, backward 

elimination is not a feasible option. I ran the simulations using both stepwise 
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regression and forward selection. Since the results were similar using both 

methods the simulations were continues using just the stepwise regression 

approach.  

Since stepwise regression (forward and mixed) entail adding or adding and 

removing variables, there is a need for rules to add and remove the variables. 

needs to be selected for the entering and leaving variables. For these simulations 

in = 0.05 & out = 0.10 was chosen. Choosing an in < out ensures that it will 

make it relatively more difficult to add a regressor than to delete one.  

To maintain the hierarchy in the model, certain rules need to be followed. In JMP 

there are two different options to maintain hierarchy (1) Combine and (2) 

Restrict. The combine option groups a term with its precedent terms and 

calculates the group’s significance probability for entry as a joint F-test. The 

restrict option restricts the terms that have precedents so that they cannot be 

entered until their precedents are entered. For the current simulation study 

Stepwise regression with the Combine option was used. 

Initial experimentation showed that the results stabilized after 2000 runs 

therefore I ran 2000 runs for each combination of the simulation parameters. 

Figure 2.1 shows how the results stabilized after 2000 runs. 
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Figure 2.1 Simulation – Steady State 

The results from each simulation run (one combination of factors) was evaluated 

by categorizing the runs into one of the following four categories.  

1. Only Active terms identified as active 

2. All Active terms identified + some inactive terms identified as active (Type I 

Error) 

3. Missed some Active Terms (Type II Error) 

4. Missed all Active terms (Type II Error) 

When screening experiments are run, the experimenter is more tolerant to Type 

I error versus Type II error. You definitely do not want to miss the true active 

terms but false positive results can be eliminated in subsequent experiments. 

Therefore any analysis method utilized must have the ability to minimize the 

number of total errors particularly the Type II errors.  
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In the case of the Main Effects only models, the results for the three designs can 

be directly compared as there is no aliasing between the Main effects and any 

other terms. But in the cases where there are interactions in the true model, the 

results need to be adjusted for the Fractional Factorial designs. Since the aliasing 

between the two factor interactions in these designs is complete, the results 

need to incorporate the aliasing. Therefore whenever the analysis identifies a 

two factor interaction in the Fractional Factorial case, there is always Type I error 

due to the aliasing pattern. This is not the case when Plackett-Burman and No 

Confounding designs are used.  

2.3.1. Six factor Designs 

The results indicate that for the Main Effects Only model, the three designs 

behave very similarly. The results from using stepwise regression to analyze the 

data show that there is no difference when the coefficient/noise ratios are three 

or two. When the coefficient/noise ratio is 1, stepwise regression fails for all 

three designs and generates large Type I and Type II errors even when the 

number of active terms is just one. All three designs make no type II error when 

the number of active terms is one or two. Fractional Factorial designs make no 

Type II error even for the three and four active term cases. All three designs 

start making large type II errors (> 80%) when the number of active terms is 

five or more. One interesting observation about the No Confounding design is 

that it never misses all the active terms even when the number of active terms is 

six whereas the analysis of the Fractional Factorial designs totally breaks down. 

For the Main Effects + 1 hierarchical interaction case, the results are very similar 

when the coefficient/noise ratio is three and two. When the coefficient/noise 
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ratio is one, stepwise regression fails to give reasonable results. Once the true 

model includes hierarchical interactions, the fractional factorial starts generating 

Type I errors even when the number of active terms is three (two main effects + 

1 hierarchical interaction) due to the complete aliasing in these designs. The NC 

and PB designs perform better as there is no complete confounding in these 

designs. All three designs have type II error in more than 50% of the cases 

when the number of active terms is two or more.  

The Main Effects + 2 hierarchical interactions case the results are very similar 

when the PB and NC designs are used at the three and two coefficient/noise 

ratios. The FF designs totally break down (misses all Active terms) when the 

number of active terms is six (4 main effects + 2 hierarchical interactions). The 

NC designs are able to avoid missing all active terms even when there are 5 Main 

Effects + 2 hierarchical interactions in the true model. These results are shown in 

Table 2-2, Table 2-3 and Table 2-4. 
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Table 2-2 Results Summary – Six factor Main Effects Only Model 

 

 

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

1AF 47.3 52.7 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 93.1 0 6.9 93.1 6.9

5AF 0 14 46.1 39.9 14 86

6AF 0 0 82.3 17.7 0 100

1AF 48.5 51.5 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 5 0 95 5 95

6AF 0 0 0 100 0 100

1AF 50.9 49.1 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 92.3 7.7 0 92.3 7.7

4AF 0 71.3 28.7 0 71.3 28.7

5AF 0 0 100 0 0 100

6AF 0 0 100 0 0 100

1AF 46.3 53.7 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 99.9 0.1 0 99.9 0.1

4AF 0 86.8 3.2 10 86.8 13.2

5AF 0 20.1 45.9 34 20.1 79.9

6AF 0 0 62.1 37.9 0 100

1AF 46.8 53.2 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 59.8 0.3 39.9 59.8 40.2

6AF 0 3 6.8 90.2 3 97

1AF 51.9 48.1 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 94.6 5.4 0 94.6 5.4

4AF 0 71 29 0 71 29

5AF 0 1.5 98.5 0 1.5 98.5

6AF 0 0 100 0 0 100

1AF 12.4 37.6 0 50 50 50

2AF 1.4 30.4 38.2 30 31.8 68.2

3AF 0 19 54.2 26.8 19 81

4AF 0 10.3 68.6 21.1 10.3 89.7

5AF 0 4.4 72.7 22.9 4.4 95.6

6AF 0 2.8 67.7 29.5 2.8 97.2

1AF 20.7 41.3 0 38 62 38

2AF 2.9 40.1 34.5 22.5 43 57

3AF 0 27.2 54.4 18.4 27.2 72.8

4AF 0 20.9 63.3 15.8 20.9 79.1

5AF 0 8.3 70.2 21.5 8.3 91.7

6AF 0 3.8 69.1 27.1 3.8 96.2

1AF 20 38.2 0 41.8 58.2 41.8

2AF 1.9 33.8 44.9 19.4 35.7 64.3

3AF 0 21.8 64.2 14 21.8 78.2

4AF 0 12.6 76.2 11.2 12.6 87.4

5AF 0 5.1 86.3 8.6 5.1 94.9

6AF 0 2.1 89.7 8.2 2.1 97.9

1SD

3SD

2SD

NC

PB

FF

NC

PB

FF

NC

PB

FF
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Table 2-3 Results Summary – Six Factor Main Effects + 1 Hierarchical Interaction 

Model 

 

  

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No In 

active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs Missed 

= (I) + (II)

AFs Missed = 

(III) + (IV)

3AF 50 50 0 0 100 0

4AF 15.65 22.9 61.4 0.05 38.55 61.45

5AF 0.5 27.6 65.45 6.45 28.1 71.9

6AF 0 3.45 50.25 47.7 3.45 97.95

7AF 0 0 50.2 48.4 0 98.6

3AF 0 100 0 0 100 0

4AF 0 40.8 59.2 0 40.8 59.2

5AF 0 41.2 58.8 0 41.2 58.8

6AF 0 27.5 4.5 95.3 27.5 99.8

7AF 0 0.2 40.5 32 0.2 72.5

3AF 54.05 45.95 0 0 100 0

4AF 17.25 19.3 63.45 0 36.55 63.45

5AF 0 33.35 66.65 0 33.35 66.65

6AF 0 3.45 89.5 8.6 3.45 98.1

7AF 0 0 89.85 8.6 0 98.45

3AF 49.25 50.7 0.05 0 99.95 0.05

4AF 15.55 24.15 59.5 0.8 39.7 60.3

5AF 0.5 25.85 63.85 9.8 26.35 73.65

6AF 0 5.45 70.05 24.5 5.45 94.55

7AF 0 0.3 51.05 48.65 0.3 99.7

3AF 0 100 0 0 100 0

4AF 0 42.5 57.5 0 42.5 57.5

5AF 0 40 59.9 0.1 40 60

6AF 0 29.1 51.1 19.8 29.1 70.9

7AF 0 9.1 23.3 67.6 9.1 90.9

3AF 54.35 45.6 0.05 0 99.95 0.05

4AF 18 19.8 62.2 0 37.8 62.2

5AF 0 31.55 68.45 0 31.55 68.45

6AF 0 6.55 92.9 0.55 6.55 93.45

7AF 0 0 94.7 5.3 0 100

3AF 9.55 10.75 52.05 27.65 20.3 79.7

4AF 1.15 6.35 70.65 21.85 7.5 92.5

5AF 0.05 3.4 73.3 23.25 3.45 96.55

6AF 0 1.6 74.15 24.25 1.6 98.4

7AF 0 0.55 70.95 28.5 0.55 99.45

3AF 0 28.9 48.5 22.6 28.9 71.1

4AF 0 11.9 70.4 17.7 11.9 88.1

5AF 0 6.9 74.7 18.4 6.9 93.1

6AF 0 3.6 74.5 21.9 3.6 96.4

7AF 0 2.3 69.8 27.9 2.3 97.7

3AF 11.9 11.25 54.45 22.4 23.15 76.85

4AF 1.7 6.8 77.95 13.55 8.5 91.5

5AF 0.15 4.65 86.75 8.45 4.8 95.2

6AF 0 1.45 90.15 8.4 1.45 98.55

7AF 0 0.85 90.55 8.6 0.85 99.15

PB

FF

NC

1SD

3SD

2SD

NC

PB

FF

NC

PB

FF
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Table 2-4 Results Summary – Six Factor Main Effects + 2 Hierarchical Interaction 

Model 

 

2.3.2. Seven factor Designs 

When the number of terms in the design is seven, for the main effects only 

model, the NC designs performs better than the FF and PB designs. It is able to 

detect all active terms even when the number of active terms in the model is five 

or six. In fact the PB designs performs the worst as it starts deteriorating in 

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No In 

active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs Missed 

= (I) + (II)

AFs Missed = 

(III) + (IV)

3AF 50 50 0 0 100 0

4AF 15.65 22.9 61.4 0.05 38.55 61.45

5AF 0.5 27.6 65.45 6.45 28.1 71.9

6AF 0 3.45 50.25 47.7 3.45 97.95

7AF 0 0 50.2 48.4 0 98.6

3AF 0 100 0 0 100 0

4AF 0 40.8 59.2 0 40.8 59.2

5AF 0 41.2 58.8 0 41.2 58.8

6AF 0 27.5 4.5 95.3 27.5 99.8

7AF 0 0.2 40.5 32 0.2 72.5

3AF 54.05 45.95 0 0 100 0

4AF 17.25 19.3 63.45 0 36.55 63.45

5AF 0 33.35 66.65 0 33.35 66.65

6AF 0 3.45 89.5 8.6 3.45 98.1

7AF 0 0 89.85 8.6 0 98.45

3AF 49.25 50.7 0.05 0 99.95 0.05

4AF 15.55 24.15 59.5 0.8 39.7 60.3

5AF 0.5 25.85 63.85 9.8 26.35 73.65

6AF 0 5.45 70.05 24.5 5.45 94.55

7AF 0 0.3 51.05 48.65 0.3 99.7

3AF 0 100 0 0 100 0

4AF 0 42.5 57.5 0 42.5 57.5

5AF 0 40 59.9 0.1 40 60

6AF 0 29.1 51.1 19.8 29.1 70.9

7AF 0 9.1 23.3 67.6 9.1 90.9

3AF 54.35 45.6 0.05 0 99.95 0.05

4AF 18 19.8 62.2 0 37.8 62.2

5AF 0 31.55 68.45 0 31.55 68.45

6AF 0 6.55 92.9 0.55 6.55 93.45

7AF 0 0 94.7 5.3 0 100

3AF 9.55 10.75 52.05 27.65 20.3 79.7

4AF 1.15 6.35 70.65 21.85 7.5 92.5

5AF 0.05 3.4 73.3 23.25 3.45 96.55

6AF 0 1.6 74.15 24.25 1.6 98.4

7AF 0 0.55 70.95 28.5 0.55 99.45

3AF 0 28.9 48.5 22.6 28.9 71.1

4AF 0 11.9 70.4 17.7 11.9 88.1

5AF 0 6.9 74.7 18.4 6.9 93.1

6AF 0 3.6 74.5 21.9 3.6 96.4

7AF 0 2.3 69.8 27.9 2.3 97.7

3AF 11.9 11.25 54.45 22.4 23.15 76.85

4AF 1.7 6.8 77.95 13.55 8.5 91.5

5AF 0.15 4.65 86.75 8.45 4.8 95.2

6AF 0 1.45 90.15 8.4 1.45 98.55

7AF 0 0.85 90.55 8.6 0.85 99.15

PB

FF

NC

1SD

3SD

2SD

NC

PB

FF

NC

PB

FF
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performance and starts generating Type II errors even when the number of 

active terms is the model is four. All three designs perform similarly when the 

coefficient / noise ratio is 3 or 2. The only case where all three designs have 

some cases generate no type I or type II error is when the number of active 

terms is one. 

As in the six factor designs, once hierarchical interaction terms are added to the 

true model, fractional factorial designs are only able to detect the alias chains for 

the interactions and therefore always generate atleast one type I error. All three 

designs start generating close to 60% type II errors when the total number of 

active terms is four (3 main effects + 1 hierarchical interaction). Again the 

performance is very similar when the coefficient/noise ratio is two or three. 

For the main effects + two hierarchical interactions case, the trend seen in the 

one hierarchical interaction case continues. All three designs start generating 

large type II errors (>60%) when the number of active terms (main effects + 2 

hierarchical interactions) is four or more. For the one active term case, the PB 

design performs worse than the NC and FF designs. These results are shown in 

Table 2-5, Table 2-6 and Table 2-7. 
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Table 2-5 Results Summary – Seven Factor Main Effects Only Model 

 

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

1AF 35.2 64.8 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 90.1 4.85 5.05 90.1 9.9

5AF 0 9.4 55.9 34.7 9.4 90.6

6AF 0 0 85 15 0 100

7AF 0 0 63.95 36.05 0 100

1AF 42.85 57.15 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 5.55 0 94.45 5.55 94.45

6AF 0 0 0 100 0 100

7AF 0 0 56.6 43.4 0 100

1AF 40.5 59.5 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 99.9 0.1 0 99.9 0.1

5AF 0 75.95 0.35 23.7 75.95 24.05

6AF 0 81.45 2.05 16.5 81.45 18.55

7AF 0 0 59.3 40.7 0 100

1AF 35.8 64.2 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 99.9 0.1 0 99.9 0.1

4AF 0 81.1 9.1 9.8 81.1 18.9

5AF 0 13.9 59.3 26.8 13.9 86.1

6AF 0 0.05 64.05 35.9 0.05 99.95

7AF 0 0 62.65 37.35 0 100

1AF 41.7 58.3 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 59.5 0.3 40.2 59.5 40.5

6AF 0 2.6 7.35 90.05 2.6 97.4

7AF 0 0 58.7 41.3 0 100

1AF 39.60 60.40 0 0 100 0

2AF 0 100.00 0 0 100 0

3AF 0 100.00 0 0 100 0

4AF 0 99.45 0.55 0 99.45 0.55

5AF 0 90.60 1.90 7.50 90.6 9.4

6AF 0 68.65 9.40 21.95 68.65 31.35

7AF 0 0.00 59.50 40.50 0 100

1AF 11.1 45.3 0 43.6 56.4 43.6

2AF 0.6 33 41.35 25.05 33.6 66.4

3AF 0 21.05 59.85 19.1 21.05 78.95

4AF 0 11 71.15 17.85 11 89

5AF 0 4.3 75.65 20.05 4.3 95.7

6AF 0 1.8 73.25 24.95 1.8 98.2

7AF 0 0 62.75 37.25 0 100

1AF 15.05 47.4 0 37.55 62.45 37.55

2AF 1.7 42.35 35.25 20.7 44.05 55.95

3AF 0.3 28.75 54.9 16.05 29.05 70.95

4AF 0 21.95 61.1 16.95 21.95 78.05

5AF 0 10.4 69.45 20.15 10.4 89.6

6AF 0 4.55 70.8 24.65 4.55 95.45

7AF 0 0 55.35 44.65 0 100

1AF 15.85 47.65 0 36.50 63.5 36.5

2AF 0.95 43.60 38.05 17.40 44.55 55.45

3AF 0.05 27.10 60.55 12.30 27.15 72.85

4AF 0 18.05 69.90 12.05 18.05 81.95

5AF 0 10.70 76.95 12.35 10.7 89.3

6AF 0 6.60 78.85 14.55 6.6 93.4

7AF 0 0 58.70 41.30 0 100

3SD

2SD

NC

PB

FF

NC

FF

NC

PB

FF

PB

1SD
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Table 2-6 Results Summary – Seven factor Main Effects + 1 Hierarchical 

Interaction Model 

 

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No In 

active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs Missed 

= (I) + (II)

AFs Missed = 

(III) + (IV)

3AF 47.75 52.25 0 0 100 0

4AF 15.7 20.5 63.8 0 36.2 63.8

5AF 1.85 34.5 63.65 0 36.35 63.65

6AF 0 13.55 34.9 51.55 13.55 86.45

7AF 0 0 3.5 96.5 0 100

8AF 0 0 0 100 0 100

3AF 0 100 0 0 100 0

4AF 0 39.45 60.55 0 39.45 60.55

5AF 0 39.3 60.7 0 39.3 60.7

6AF 0 18.8 29.65 51.55 18.8 81.2

7AF 0 0.05 3.45 96.5 0.05 99.95

8AF 0 0 0 100 0 100

3AF 42.55 57.45 0 0 100 0

4AF 14.1 24.4 61.5 0 38.5 61.5

5AF 0 36.65 63.35 0 36.65 63.35

6AF 0 21.65 66.4 11.95 21.65 78.35

7AF 0 9.3 66.45 24.25 9.3 90.7

8AF 0 2.25 78.1 19.65 2.25 97.75

3AF 35.55 64.4 0.05 0 99.95 0.05

4AF 12.75 26.3 60.8 0.15 39.05 60.95

5AF 0.1 28.35 62.8 8.75 28.45 71.55

6AF 0 3.3 74.15 22.55 3.3 96.7

7AF 0 0.15 61.15 38.7 0.15 99.85

8AF 0 0 35.85 64.15 0 100

3AF 0 100 0 0 100 0

4AF 0 38.9 61.1 0 38.9 61.1

5AF 0 38.45 61.55 0 38.45 61.55

6AF 0 24.95 46.6 28.45 24.95 75.05

7AF 0 5.35 23.2 71.45 5.35 94.65

8AF 0 0.05 3.3 96.65 0.05 99.95

3AF 43.3 56.7 0 0 100 0

4AF 13.3 25.7 61 0 39 61

5AF 0.1 35.35 64.55 0 35.45 64.55

6AF 0 23.2 70.35 6.45 23.2 76.8

7AF 0 11 69.05 19.95 11 89

8AF 0 8.05 71.05 20.9 8.05 91.95

3AF 6 13.05 55.1 25.85 19.05 80.95

4AF 0.4 7.3 71.7 20.6 7.7 92.3

5AF 0.05 4.05 78.15 17.75 4.1 95.9

6AF 0 1.6 79.8 18.6 1.6 98.4

7AF 0 0.5 76.7 22.8 0.5 99.5

8AF 0 0.05 70.65 29.3 0.05 99.95

3AF 0 28.5 51.8 19.7 28.5 71.5

4AF 0 12.8 71.05 16.15 12.8 87.2

5AF 0 7.7 75.3 17 7.7 92.3

6AF 0 3.35 75.3 21.35 3.35 96.65

7AF 0 1.7 71.35 26.95 1.7 98.3

8AF 0 1.05 60.7 38.25 1.05 98.95

3AF 8.75 14.85 57.15 19.25 23.6 76.4

4AF 1.6 9 76.95 12.45 10.6 89.4

5AF 0.05 6.9 81.95 11.1 6.95 93.05

6AF 0 3.5 84.35 12.15 3.5 96.5

7AF 0 1.25 85.55 13.2 1.25 98.75

8AF 0 1.5 82.6 15.9 1.5 98.5

3SD

2SD

NC

PB

FF

NC

PB

FF

1SD

PB

FF

NC
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Table 2-7 Results Summary - Seven factor Main Effects + 2 Hierarchical 

Interaction Model 

 

  

Coefficient / 

Noise Ratio
Design

Active Factors 

in True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed 

Some AF 

(III)

Missed All 

AF (IV)

No AFs 

Missed = (I) 

+ (II)

AFs Missed 

= (III) + (IV)

5AF 16.75 45.9 5.45 31.9 62.65 37.35

6AF 0 1.45 88.5 10.05 1.45 98.55

7AF 0 0 36.3 63.7 0 100

8AF 0 0 3.85 96.15 0 100

9AF 0 0 0 100 0 100

5AF 0 94.05 5.95 0 94.05 5.95

6AF 0 4.2 14.4 81.4 4.2 95.8

7AF 0 0 0 100 0 100

8AF 0 0 0 100 0 100

9AF 0 0 0 100 0 100

5AF 26.8 59.15 12.4 1.65 85.95 14.05

6AF 0.2 14.2 47.75 37.85 14.4 85.6

7AF 0 0.9 57.1 42 0.9 99.1

8AF 0 0.15 28.4 71.45 0.15 99.85

9AF 0 0 0 100 0 100

5AF 16.75 44.25 13.5 25.5 61 39

6AF 0.1 0.85 84.75 14.3 0.95 99.05

7AF 0 0 38.95 61.05 0 100

8AF 0 0 4.2 95.8 0 100

9AF 0 0 0 100 0 100

5AF 0 94 5.95 0.05 94 6

6AF 0 5.1 14.95 79.95 5.1 94.9

7AF 0 0 0.4 99.6 0 100

8AF 0 0 0 100 0 100

9AF 0 0 0 100 0 100

5AF 27.35 58.65 11.65 2.35 86 14

6AF 0.05 12.7 49.5 37.75 12.75 87.25

7AF 0 0.7 58.05 41.25 0.7 99.3

8AF 0 0.05 31.15 68.8 0.05 99.95

9AF 0 0 0 100 0 100

5AF 1.95 3.5 69.05 25.5 5.45 94.55

6AF 0.05 0.95 70.8 28.2 1 99

7AF 0 0.05 48.65 51.3 0.05 99.95

8AF 0 0 14.4 85.6 0 100

9AF 0 0 0.2 99.8 0 100

5AF 0 15.5 62.1 22.4 15.5 84.5

6AF 0 2.95 52.5 44.55 2.95 97.05

7AF 0 0.2 28.1 71.7 0.2 99.8

8AF 0 0 3.2 96.8 0 100

9AF 0 0 0 100 0 100

5AF 5.3 7.95 67.75 19 13.25 86.75

6AF 0.1 2 70.95 26.95 2.1 97.9

7AF 0 0.3 62.75 36.95 0.3 99.7

8AF 0 0.05 37.7 62.25 0.05 99.95

9AF 0 0 8.35 91.65 0 100

PB

FF

NC

PB

FF

NC

3SD

2SD

1SD

PB

FF

NC
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2.3.3. Eight factor Designs 

When the number of factors in the design is eight the results look very similar to 

the seven factor case for all three model types. 

To summarize there is no difference in the results when the coefficient/noise 

ratio is either three or two. The fractional factorial designs generate type I error 

once the true model contains hierarchical terms. The Plackett-Burman and no 

confounding designs outperform the regular fractional factorial designs once 

interactions are present in the true model. When the true models contains four 

or more active terms, the analysis method starts breaking down irrespective of 

which design is used. In cases with interactions when the design does not break 

down completely, the FF design starts generating type I error for all cases and 

the NC design outperforms the PB design by generating the fewest type II 

errors. These results are shown in Table 2-8, Table 2-9 and Table 2-10. 
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Table 2-8 Results Summary – Eight factor Main Effects Only Model 

 

  

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

1AF 22.6 77.4 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 78.15 16.05 5.8 78.15 21.85

5AF 0 6.85 60.3 32.85 6.85 93.15

6AF 0 0 89.05 10.95 0 100

7AF 0 0 39.9 60.1 0 100

8AF 0 0 0 100 0 100

1AF 33.65 66.35 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 98.6 0.9 0.5 98.6 1.4

4AF 0 96.2 3.8 0 96.2 3.8

5AF 0 79.4 17.15 3.45 79.4 20.6

6AF 0 46.2 53.55 0.25 46.2 53.8

7AF 0 2.9 55.8 41.3 2.9 97.1

8AF 0 0 100 0 0 100

1AF 32.8 67.2 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 89.05 0.25 10.7 89.05 10.95

6AF 0 75.05 24.85 0.1 75.05 24.95

7AF 0 0.6 24.15 75.25 0.6 99.4

8AF 0 0 0 100 0 100

1AF 24.35 75.65 0 0 100 0

2AF 0.05 99.95 0 0 100 0

3AF 0 99.85 0.15 0 99.85 0.15

4AF 0 71.85 19.4 8.75 71.85 28.15

5AF 0 10.3 64.75 24.95 10.3 89.7

6AF 0 0 75.65 24.35 0 100

7AF 0 0 37.35 62.65 0 100

8AF 0 0 1.7 98.3 0 100

1AF 33.55 66.45 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 58.6 0.25 41.15 58.6 41.4

6AF 0 3.35 6.65 90 3.35 96.65

7AF 0 0 0.9 99.1 0 100

8AF 0 0 0.05 99.95 0 100

1AF 31.9 68.1 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 99.7 0.3 0 99.7 0.3

4AF 0 98.8 1.2 0 98.8 1.2

5AF 0 92.45 4.15 3.4 92.45 7.55

6AF 0 70.6 26.25 3.15 70.6 29.4

7AF 0 7.75 68.7 23.55 7.75 92.25

8AF 0 0 19.45 80.55 0 100

1AF 6.7 54.45 0 38.85 61.15 38.85

2AF 0.2 38 40.85 20.95 38.2 61.8

3AF 0 21.65 63.4 14.95 21.65 78.35

4AF 0 11.1 74.7 14.2 11.1 88.9

5AF 0 4.75 80.15 15.1 4.75 95.25

6AF 0 1.2 81.15 17.65 1.2 98.8

7AF 0 0.15 73.75 26.1 0.15 99.85

8AF 0 0 66.7 33.3 0 100

1AF 11.6 55.25 0 33.15 66.85 33.15

2AF 1 48.35 34.25 16.4 49.35 50.65

3AF 0.05 34.85 51.45 13.65 34.9 65.1

4AF 0 20.2 63.55 16.25 20.2 79.8

5AF 0 12.65 69.4 17.95 12.65 87.35

6AF 0 5.9 69.5 24.6 5.9 94.1

7AF 0 2.55 64.8 32.65 2.55 97.45

8AF 0 0.55 56 43.45 0.55 99.45

1AF 11.95 53 0 35.05 64.95 35.05

2AF 1.05 40.85 38.8 19.3 41.9 58.1

3AF 0.05 28.8 61 10.15 28.85 71.15

4AF 0 16.9 74.35 8.75 16.9 83.1

5AF 0 10.3 82.1 7.6 10.3 89.7

6AF 0 5.3 88.1 6.6 5.3 94.7

7AF 0 2.75 90.05 7.2 2.75 97.25

8AF 0 1.05 90.85 8.1 1.05 98.95

3SD

2SD

NC

PB

FF

NC

FF

NC

PB

FF

PB

1SD
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Table 2.8 (contd.) Results Summary – Eight factor Main Effects Only Model 

 

Table 2-9 Results Summary – Eight factor Main Effects + 1 Hierarchical 

Interaction Model 

 

  

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

1AF 22.6 77.4 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 78.15 16.05 5.8 78.15 21.85

5AF 0 6.85 60.3 32.85 6.85 93.15

6AF 0 0 89.05 10.95 0 100

7AF 0 0 39.9 60.1 0 100

8AF 0 0 0 100 0 100

1AF 33.65 66.35 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 98.6 0.9 0.5 98.6 1.4

4AF 0 96.2 3.8 0 96.2 3.8

5AF 0 79.4 17.15 3.45 79.4 20.6

6AF 0 46.2 53.55 0.25 46.2 53.8

7AF 0 2.9 55.8 41.3 2.9 97.1

8AF 0 0 100 0 0 100

1AF 32.8 67.2 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 89.05 0.25 10.7 89.05 10.95

6AF 0 75.05 24.85 0.1 75.05 24.95

7AF 0 0.6 24.15 75.25 0.6 99.4

8AF 0 0 0 100 0 100

1AF 24.35 75.65 0 0 100 0

2AF 0.05 99.95 0 0 100 0

3AF 0 99.85 0.15 0 99.85 0.15

4AF 0 71.85 19.4 8.75 71.85 28.15

5AF 0 10.3 64.75 24.95 10.3 89.7

6AF 0 0 75.65 24.35 0 100

7AF 0 0 37.35 62.65 0 100

8AF 0 0 1.7 98.3 0 100

1AF 33.55 66.45 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 58.6 0.25 41.15 58.6 41.4

6AF 0 3.35 6.65 90 3.35 96.65

7AF 0 0 0.9 99.1 0 100

8AF 0 0 0.05 99.95 0 100

1AF 31.9 68.1 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 99.7 0.3 0 99.7 0.3

4AF 0 98.8 1.2 0 98.8 1.2

5AF 0 92.45 4.15 3.4 92.45 7.55

6AF 0 70.6 26.25 3.15 70.6 29.4

7AF 0 7.75 68.7 23.55 7.75 92.25

8AF 0 0 19.45 80.55 0 100

1AF 6.7 54.45 0 38.85 61.15 38.85

2AF 0.2 38 40.85 20.95 38.2 61.8

3AF 0 21.65 63.4 14.95 21.65 78.35

4AF 0 11.1 74.7 14.2 11.1 88.9

5AF 0 4.75 80.15 15.1 4.75 95.25

6AF 0 1.2 81.15 17.65 1.2 98.8

7AF 0 0.15 73.75 26.1 0.15 99.85

8AF 0 0 66.7 33.3 0 100

1AF 11.6 55.25 0 33.15 66.85 33.15

2AF 1 48.35 34.25 16.4 49.35 50.65

3AF 0.05 34.85 51.45 13.65 34.9 65.1

4AF 0 20.2 63.55 16.25 20.2 79.8

5AF 0 12.65 69.4 17.95 12.65 87.35

6AF 0 5.9 69.5 24.6 5.9 94.1

7AF 0 2.55 64.8 32.65 2.55 97.45

8AF 0 0.55 56 43.45 0.55 99.45

1AF 11.95 53 0 35.05 64.95 35.05

2AF 1.05 40.85 38.8 19.3 41.9 58.1

3AF 0.05 28.8 61 10.15 28.85 71.15

4AF 0 16.9 74.35 8.75 16.9 83.1

5AF 0 10.3 82.1 7.6 10.3 89.7

6AF 0 5.3 88.1 6.6 5.3 94.7

7AF 0 2.75 90.05 7.2 2.75 97.25

8AF 0 1.05 90.85 8.1 1.05 98.95

3SD

2SD

NC

PB

FF

NC

FF

NC

PB

FF

PB

1SD

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

1AF 22.6 77.4 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 78.15 16.05 5.8 78.15 21.85

5AF 0 6.85 60.3 32.85 6.85 93.15

6AF 0 0 89.05 10.95 0 100

7AF 0 0 39.9 60.1 0 100

8AF 0 0 0 100 0 100

1AF 33.65 66.35 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 98.6 0.9 0.5 98.6 1.4

4AF 0 96.2 3.8 0 96.2 3.8

5AF 0 79.4 17.15 3.45 79.4 20.6

6AF 0 46.2 53.55 0.25 46.2 53.8

7AF 0 2.9 55.8 41.3 2.9 97.1

8AF 0 0 100 0 0 100

1AF 32.8 67.2 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 89.05 0.25 10.7 89.05 10.95

6AF 0 75.05 24.85 0.1 75.05 24.95

7AF 0 0.6 24.15 75.25 0.6 99.4

8AF 0 0 0 100 0 100

1AF 24.35 75.65 0 0 100 0

2AF 0.05 99.95 0 0 100 0

3AF 0 99.85 0.15 0 99.85 0.15

4AF 0 71.85 19.4 8.75 71.85 28.15

5AF 0 10.3 64.75 24.95 10.3 89.7

6AF 0 0 75.65 24.35 0 100

7AF 0 0 37.35 62.65 0 100

8AF 0 0 1.7 98.3 0 100

1AF 33.55 66.45 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 100 0 0 100 0

4AF 0 100 0 0 100 0

5AF 0 58.6 0.25 41.15 58.6 41.4

6AF 0 3.35 6.65 90 3.35 96.65

7AF 0 0 0.9 99.1 0 100

8AF 0 0 0.05 99.95 0 100

1AF 31.9 68.1 0 0 100 0

2AF 0 100 0 0 100 0

3AF 0 99.7 0.3 0 99.7 0.3

4AF 0 98.8 1.2 0 98.8 1.2

5AF 0 92.45 4.15 3.4 92.45 7.55

6AF 0 70.6 26.25 3.15 70.6 29.4

7AF 0 7.75 68.7 23.55 7.75 92.25

8AF 0 0 19.45 80.55 0 100

1AF 6.7 54.45 0 38.85 61.15 38.85

2AF 0.2 38 40.85 20.95 38.2 61.8

3AF 0 21.65 63.4 14.95 21.65 78.35

4AF 0 11.1 74.7 14.2 11.1 88.9

5AF 0 4.75 80.15 15.1 4.75 95.25

6AF 0 1.2 81.15 17.65 1.2 98.8

7AF 0 0.15 73.75 26.1 0.15 99.85

8AF 0 0 66.7 33.3 0 100

1AF 11.6 55.25 0 33.15 66.85 33.15

2AF 1 48.35 34.25 16.4 49.35 50.65

3AF 0.05 34.85 51.45 13.65 34.9 65.1

4AF 0 20.2 63.55 16.25 20.2 79.8

5AF 0 12.65 69.4 17.95 12.65 87.35

6AF 0 5.9 69.5 24.6 5.9 94.1

7AF 0 2.55 64.8 32.65 2.55 97.45

8AF 0 0.55 56 43.45 0.55 99.45

1AF 11.95 53 0 35.05 64.95 35.05

2AF 1.05 40.85 38.8 19.3 41.9 58.1

3AF 0.05 28.8 61 10.15 28.85 71.15

4AF 0 16.9 74.35 8.75 16.9 83.1

5AF 0 10.3 82.1 7.6 10.3 89.7

6AF 0 5.3 88.1 6.6 5.3 94.7

7AF 0 2.75 90.05 7.2 2.75 97.25

8AF 0 1.05 90.85 8.1 1.05 98.95

3SD

2SD

NC

PB

FF

NC

FF

NC

PB

FF

PB

1SD

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

3AF 12.75 62.10 25.15 0.00 74.85 25.15

4AF 3.30 27.75 68.95 0.00 31.05 68.95

5AF 0.60 19.40 76.80 3.20 20 80

6AF 0.00 7.95 77.40 14.65 7.95 92.05

7AF 0.00 0.55 68.60 30.85 0.55 99.45

8AF 0.00 0.05 55.40 44.55 0.05 99.95

9AF 0.00 0.00 31.70 68.30 0 100

3AF 0.00 78.70 21.30 0.00 78.7 21.3

4AF 0.00 37.75 62.25 0.00 37.75 62.25

5AF 0.00 31.35 68.65 0.00 31.35 68.65

6AF 0.00 31.40 66.85 1.75 31.4 68.6

7AF 0.00 26.30 72.00 1.70 26.3 73.7

8AF 0.00 14.40 80.55 5.05 14.4 85.6

9AF 0.00 3.85 92.55 3.60 3.85 96.15

3AF 16.45 57.50 26.05 0.00 73.95 26.05

4AF 5.20 26.45 68.35 0.00 31.65 68.35

5AF 0.80 22.80 76.40 0.00 23.6 76.4

6AF 0.00 15.65 78.35 6.00 15.65 84.35

7AF 0.00 10.75 81.85 7.40 10.75 89.25

8AF 0.00 5.35 85.25 9.40 5.35 94.65

9AF 0.00 1.25 94.95 3.80 1.25 98.75

3AF 12.45 62.25 25.30 0.00 74.7 25.3

4AF 4.30 27.55 67.95 0.20 31.85 68.15

5AF 1.35 19.30 75.80 3.55 20.65 79.35

6AF 0.15 7.90 80.30 11.65 8.05 91.95

7AF 0.00 1.20 76.25 22.55 1.2 98.8

8AF 0.00 0.00 61.00 39.00 0 100

9AF 0.00 0.00 35.95 64.05 0 100

3AF 0.00 79.35 20.65 0.00 79.35 20.65

4AF 0.00 37.95 62.05 0.00 37.95 62.05

5AF 0.00 32.45 67.55 0.00 32.45 67.55

6AF 0.00 28.55 70.75 0.70 28.55 71.45

7AF 0.00 23.30 75.25 1.45 23.3 76.7

8AF 0.00 12.75 84.60 2.65 12.75 87.25

9AF 0.00 4.00 92.40 3.60 4 96

3AF 20.35 57.85 21.80 0.00 78.2 21.8

4AF 4.60 26.90 68.50 0.00 31.5 68.5

5AF 0.90 23.00 76.10 0.00 23.9 76.1

6AF 0.00 17.15 80.65 2.20 17.15 82.85

7AF 0.00 12.85 82.75 4.40 12.85 87.15

8AF 0.00 5.75 87.35 6.90 5.75 94.25

9AF 0.00 4.25 91.05 4.70 4.25 95.75

3AF 1.75 12.05 61.20 25.00 13.8 86.2

4AF 0.50 6.90 75.65 16.95 7.4 92.6

5AF 0.10 2.70 82.50 14.70 2.8 97.2

6AF 0.00 1.25 83.90 14.85 1.25 98.75

7AF 0.00 0.45 83.55 16.00 0.45 99.55

8AF 0.00 0.30 80.95 18.75 0.3 99.7

9AF 0.00 0.00 71.55 28.45 0 100

3AF 0.00 21.55 59.10 19.35 21.55 78.45

4AF 0.00 9.75 77.95 12.30 9.75 90.25

5AF 0.00 5.90 84.45 9.65 5.9 94.1

6AF 0.00 3.35 90.10 6.55 3.35 96.65

7AF 0.00 2.55 91.50 5.95 2.55 97.45

8AF 0.00 1.70 91.95 6.35 1.7 98.3

9AF 0.00 0.65 92.80 6.55 0.65 99.35

3AF 4.85 14.10 58.50 22.55 18.95 81.05

4AF 0.60 7.70 79.30 12.40 8.3 91.7

5AF 0.10 3.95 86.10 9.85 4.05 95.95

6AF 0.00 3.35 88.20 8.45 3.35 96.65

7AF 0.00 1.50 91.15 7.35 1.5 98.5

8AF 0.00 0.90 91.30 7.80 0.9 99.1

9AF 0.00 0.70 93.20 6.10 0.7 99.3

NC

PB

FF

NC

PB

FF

1SD

3SD

2SD

PB

FF

NC
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Table 2.9 (contd.) Results Summary – Eight factor Main Effects + 1 

Hierarchical Interaction Model 

 

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

3AF 12.75 62.10 25.15 0.00 74.85 25.15

4AF 3.30 27.75 68.95 0.00 31.05 68.95

5AF 0.60 19.40 76.80 3.20 20 80

6AF 0.00 7.95 77.40 14.65 7.95 92.05

7AF 0.00 0.55 68.60 30.85 0.55 99.45

8AF 0.00 0.05 55.40 44.55 0.05 99.95

9AF 0.00 0.00 31.70 68.30 0 100

3AF 0.00 78.70 21.30 0.00 78.7 21.3

4AF 0.00 37.75 62.25 0.00 37.75 62.25

5AF 0.00 31.35 68.65 0.00 31.35 68.65

6AF 0.00 31.40 66.85 1.75 31.4 68.6

7AF 0.00 26.30 72.00 1.70 26.3 73.7

8AF 0.00 14.40 80.55 5.05 14.4 85.6

9AF 0.00 3.85 92.55 3.60 3.85 96.15

3AF 16.45 57.50 26.05 0.00 73.95 26.05

4AF 5.20 26.45 68.35 0.00 31.65 68.35

5AF 0.80 22.80 76.40 0.00 23.6 76.4

6AF 0.00 15.65 78.35 6.00 15.65 84.35

7AF 0.00 10.75 81.85 7.40 10.75 89.25

8AF 0.00 5.35 85.25 9.40 5.35 94.65

9AF 0.00 1.25 94.95 3.80 1.25 98.75

3AF 12.45 62.25 25.30 0.00 74.7 25.3

4AF 4.30 27.55 67.95 0.20 31.85 68.15

5AF 1.35 19.30 75.80 3.55 20.65 79.35

6AF 0.15 7.90 80.30 11.65 8.05 91.95

7AF 0.00 1.20 76.25 22.55 1.2 98.8

8AF 0.00 0.00 61.00 39.00 0 100

9AF 0.00 0.00 35.95 64.05 0 100

3AF 0.00 79.35 20.65 0.00 79.35 20.65

4AF 0.00 37.95 62.05 0.00 37.95 62.05

5AF 0.00 32.45 67.55 0.00 32.45 67.55

6AF 0.00 28.55 70.75 0.70 28.55 71.45

7AF 0.00 23.30 75.25 1.45 23.3 76.7

8AF 0.00 12.75 84.60 2.65 12.75 87.25

9AF 0.00 4.00 92.40 3.60 4 96

3AF 20.35 57.85 21.80 0.00 78.2 21.8

4AF 4.60 26.90 68.50 0.00 31.5 68.5

5AF 0.90 23.00 76.10 0.00 23.9 76.1

6AF 0.00 17.15 80.65 2.20 17.15 82.85

7AF 0.00 12.85 82.75 4.40 12.85 87.15

8AF 0.00 5.75 87.35 6.90 5.75 94.25

9AF 0.00 4.25 91.05 4.70 4.25 95.75

3AF 1.75 12.05 61.20 25.00 13.8 86.2

4AF 0.50 6.90 75.65 16.95 7.4 92.6

5AF 0.10 2.70 82.50 14.70 2.8 97.2

6AF 0.00 1.25 83.90 14.85 1.25 98.75

7AF 0.00 0.45 83.55 16.00 0.45 99.55

8AF 0.00 0.30 80.95 18.75 0.3 99.7

9AF 0.00 0.00 71.55 28.45 0 100

3AF 0.00 21.55 59.10 19.35 21.55 78.45

4AF 0.00 9.75 77.95 12.30 9.75 90.25

5AF 0.00 5.90 84.45 9.65 5.9 94.1

6AF 0.00 3.35 90.10 6.55 3.35 96.65

7AF 0.00 2.55 91.50 5.95 2.55 97.45

8AF 0.00 1.70 91.95 6.35 1.7 98.3

9AF 0.00 0.65 92.80 6.55 0.65 99.35

3AF 4.85 14.10 58.50 22.55 18.95 81.05

4AF 0.60 7.70 79.30 12.40 8.3 91.7

5AF 0.10 3.95 86.10 9.85 4.05 95.95

6AF 0.00 3.35 88.20 8.45 3.35 96.65

7AF 0.00 1.50 91.15 7.35 1.5 98.5

8AF 0.00 0.90 91.30 7.80 0.9 99.1

9AF 0.00 0.70 93.20 6.10 0.7 99.3

NC

PB

FF

NC

PB

FF

1SD

3SD

2SD

PB

FF

NC

Coefficient / 

Noise Ratio
Design

Active Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

3AF 12.75 62.10 25.15 0.00 74.85 25.15

4AF 3.30 27.75 68.95 0.00 31.05 68.95

5AF 0.60 19.40 76.80 3.20 20 80

6AF 0.00 7.95 77.40 14.65 7.95 92.05

7AF 0.00 0.55 68.60 30.85 0.55 99.45

8AF 0.00 0.05 55.40 44.55 0.05 99.95

9AF 0.00 0.00 31.70 68.30 0 100

3AF 0.00 78.70 21.30 0.00 78.7 21.3

4AF 0.00 37.75 62.25 0.00 37.75 62.25

5AF 0.00 31.35 68.65 0.00 31.35 68.65

6AF 0.00 31.40 66.85 1.75 31.4 68.6

7AF 0.00 26.30 72.00 1.70 26.3 73.7

8AF 0.00 14.40 80.55 5.05 14.4 85.6

9AF 0.00 3.85 92.55 3.60 3.85 96.15

3AF 16.45 57.50 26.05 0.00 73.95 26.05

4AF 5.20 26.45 68.35 0.00 31.65 68.35

5AF 0.80 22.80 76.40 0.00 23.6 76.4

6AF 0.00 15.65 78.35 6.00 15.65 84.35

7AF 0.00 10.75 81.85 7.40 10.75 89.25

8AF 0.00 5.35 85.25 9.40 5.35 94.65

9AF 0.00 1.25 94.95 3.80 1.25 98.75

3AF 12.45 62.25 25.30 0.00 74.7 25.3

4AF 4.30 27.55 67.95 0.20 31.85 68.15

5AF 1.35 19.30 75.80 3.55 20.65 79.35

6AF 0.15 7.90 80.30 11.65 8.05 91.95

7AF 0.00 1.20 76.25 22.55 1.2 98.8

8AF 0.00 0.00 61.00 39.00 0 100

9AF 0.00 0.00 35.95 64.05 0 100

3AF 0.00 79.35 20.65 0.00 79.35 20.65

4AF 0.00 37.95 62.05 0.00 37.95 62.05

5AF 0.00 32.45 67.55 0.00 32.45 67.55

6AF 0.00 28.55 70.75 0.70 28.55 71.45

7AF 0.00 23.30 75.25 1.45 23.3 76.7

8AF 0.00 12.75 84.60 2.65 12.75 87.25

9AF 0.00 4.00 92.40 3.60 4 96

3AF 20.35 57.85 21.80 0.00 78.2 21.8

4AF 4.60 26.90 68.50 0.00 31.5 68.5

5AF 0.90 23.00 76.10 0.00 23.9 76.1

6AF 0.00 17.15 80.65 2.20 17.15 82.85

7AF 0.00 12.85 82.75 4.40 12.85 87.15

8AF 0.00 5.75 87.35 6.90 5.75 94.25

9AF 0.00 4.25 91.05 4.70 4.25 95.75

3AF 1.75 12.05 61.20 25.00 13.8 86.2

4AF 0.50 6.90 75.65 16.95 7.4 92.6

5AF 0.10 2.70 82.50 14.70 2.8 97.2

6AF 0.00 1.25 83.90 14.85 1.25 98.75

7AF 0.00 0.45 83.55 16.00 0.45 99.55

8AF 0.00 0.30 80.95 18.75 0.3 99.7

9AF 0.00 0.00 71.55 28.45 0 100

3AF 0.00 21.55 59.10 19.35 21.55 78.45

4AF 0.00 9.75 77.95 12.30 9.75 90.25

5AF 0.00 5.90 84.45 9.65 5.9 94.1

6AF 0.00 3.35 90.10 6.55 3.35 96.65

7AF 0.00 2.55 91.50 5.95 2.55 97.45

8AF 0.00 1.70 91.95 6.35 1.7 98.3

9AF 0.00 0.65 92.80 6.55 0.65 99.35

3AF 4.85 14.10 58.50 22.55 18.95 81.05

4AF 0.60 7.70 79.30 12.40 8.3 91.7

5AF 0.10 3.95 86.10 9.85 4.05 95.95

6AF 0.00 3.35 88.20 8.45 3.35 96.65

7AF 0.00 1.50 91.15 7.35 1.5 98.5

8AF 0.00 0.90 91.30 7.80 0.9 99.1

9AF 0.00 0.70 93.20 6.10 0.7 99.3

NC

PB

FF

NC

PB

FF

1SD

3SD

2SD

PB

FF

NC
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Table 2-10 Results Summary – Eight factor Main Effects + 2 Hierarchical 

Interaction Model 

 

Coefficient 

/ Noise 

Ratio

Design

Active 

Factors in 

True Model

All AFs + No 

In active (I)

All AFs + 

Inactive (II)

Missed Some 

AF (III)

Missed All AF 

(IV)

No AFs 

Missed = (I) + 

(II)

AFs Missed = 

(III) + (IV)

5AF 12.15 46.45 4.65 36.75 58.6 41.4

6AF 0 1.2 87.25 11.55 1.2 98.8

7AF 0 0.15 40.35 59.5 0.15 99.85

8AF 0 0 8.65 91.35 0 100

9AF 0 0 0.05 99.95 0 100

10AF 0 0 0 100 0 100

5AF 0 72.9 21.6 5.5 72.9 27.1

6AF 0 11.5 71.95 16.55 11.5 88.5

7AF 0 2.55 80 17.45 2.55 97.45

8AF 0 1.4 80.4 18.2 1.4 98.6

9AF 0 0 82.8 17.2 0 100

10AF 0 0 76.6 23.4 0 100

5AF 21.25 64.7 14.05 0 85.95 14.05

6AF 0 10.45 68.3 21.25 10.45 89.55

7AF 0 1.5 89.2 9.3 1.5 98.5

8AF 0 0.1 83.8 16.1 0.1 99.9

9AF 0 0 60.45 39.55 0 100

10AF 0 0 15.55 84.45 0 100

5AF 11.9 46.3 13.4 28.4 58.2 41.8

6AF 0 0.95 84.6 14.45 0.95 99.05

7AF 0 0.25 41.45 58.3 0.25 99.75

8AF 0 0 9.25 90.75 0 100

9AF 0 0 0 100 0 100

10AF 0 0 0 100 0 100

5AF 0 75.15 18.9 5.95 75.15 24.85

6AF 0 12.35 71.05 16.6 12.35 87.65

7AF 0 1.95 80.5 17.55 1.95 98.05

8AF 0 1.55 81.55 16.9 1.55 98.45

9AF 0 0 81.45 18.55 0 100

10AF 0 0 77.3 22.7 0 100

5AF 20.45 64.6 14.9 0.05 85.05 14.95

6AF 0.4 9.55 68.4 21.65 9.95 90.05

7AF 0 1 89.9 9.1 1 99

8AF 0 0.25 84.4 15.35 0.25 99.75

9AF 0 0 64.1 35.9 0 100

10AF 0 0 23.65 76.35 0 100

5AF 1.1 4.65 73.45 20.8 5.75 94.25

6AF 0.05 1.15 74.8 24 1.2 98.8

7AF 0.05 0.25 54.7 45 0.3 99.7

8AF 0 0 23.1 76.9 0 100

9AF 0 0 3.45 96.55 0 100

10AF 0 0 0 100 0 100

5AF 0 12.4 72.55 15.05 12.4 87.6

6AF 0 3.75 77.4 18.85 3.75 96.25

7AF 0 0.8 78.3 20.9 0.8 99.2

8AF 0 0.45 80.7 18.85 0.45 99.55

9AF 0 0 80.4 19.6 0 100

10AF 0 0 75.25 24.75 0 100

5AF 1.5 6.55 78.45 13.5 8.05 91.95

6AF 0.05 1.5 85.9 12.55 1.55 98.45

7AF 0 0.15 89.25 10.6 0.15 99.85

8AF 0 0.25 91.1 8.65 0.25 99.75

9AF 0 0 87.75 12.25 0 100

10AF 0 0 81.05 18.95 0 100

PB

FF

NC

PB

FF

NC

3SD

2SD

1SD

PB

FF

NC
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2.3.4. Preliminary Results 

After studying these results, the Plackett-Burman designs were dropped from the 

study since these designs only have 12 runs as compared to the 16 runs in the 

FF and NC designs. Also when the coefficient to noise ratio is less than two, the 

noise level is too high for any method to identify the active terms in the model. 

Therefore the next simulation study done only considers the NC and FF designs 

and considers only true models with coefficient to noise ratios greater than two. 

2.4. Simulation Study 

The results of an extensive simulation study on the effectiveness of stepwise 

regression to analyze the regular 16-run fractional factorial design with 6-8 

factors and the 16-run NC designs with 6-8 factors are detailed in this section.  

The other factors studied in the simulation are: 

 True Model – This is unknown in real experiments, but controlled in the 

simulation study. For the purpose of this study the following models were 

studied; Main effects only, Main Effects + 1 interaction entering with strong 

heredity and Main Effects + 2 interactions entering with strong heredity. 

 Number of design factors – six, seven and eight. 

 Coefficient to Noise Ratio - Normally distributed with a mean of zero and 

standard deviation = 1. The ratio is varied as described subsequently. 

 Type of Design – Fractional Factorial and No Confounding 

 Number of Active Terms – This depends on the true model and the number 

of factors in the design and is listed in Table 2-11.  

 Model Selection Method – Stepwise Regression with AICc criterion, Two 

Stage Stepwise Regression (include main effects in stage one and then 
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including the interactions with strong heredity in stage two) with AICc 

criterion (2004). 

JMP was used to run the simulations. There are various options available in JMP 

to perform stepwise regression; in the case of p-value with stepwise regression, 

the combine option with mixed (stepwise) regression was used and for the AICc 

case the forward regression and combine was used. For the p-value case the 

Prob to Enter was set as 0.10 and Prob to Leave was set as 0.15.  

The combine option groups a two-factor interaction term with its two associated 

main effects and calculates the group’s significance probability for entry using a 

joint F-test. In each iteration, the active terms were randomly assigned to the 

columns of the model matrix. The coefficient of the inactive terms was set to 

zero. The 's of the active terms are randomly generated. The largest coefficient 

is varied from 3.8 to 4.2 and the smallest coefficient is varied from 2.0 to 2.2. 

The coefficients are varied following an exponential distribution from the largest 

coefficient value to the smallest coefficient value.  

Table 2-11 Number of active terms 

  Number of active terms 

  6 7 8 

True 
Model 

Main Effects Only 1, 2, 3, 4, 5, 
6 

1, 2, 3, 4, 5, 6, 
7 

1, 2, 3, 4, 5, 
6, 7, 8 

Main Effects + 1 

Interaction 

2+1, 3+1, 

4+1, 5+1, 
6+1 

2+1, 3+1, 4+1, 

5+1, 6+1, 7+1 

2+1, 3+1, 

4+1, 5+1, 
6+1, 7+1, 

8+1 

Main Effects + 2 

Interactions 

3+2, 4+2, 

5+2, 6+2 

3+2, 4+2, 5+2, 

6+2, 7+2 

3+2, 4+2, 

5+2, 6+2, 

7+2, 8+2 

 

There are three levels for three factors (true model, number of factors in the 

design, model selection method) and 6, 7 and 8 levels for the fourth factor 
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(number of active terms). The full factorial design in the simulation therefore, 

required a total of 216 factor combinations. 

2.5. Simulation Results 

The results from each trial (one combination of simulation factors) were 

evaluated by calculating.  

1. 1: Percentage of runs where only active terms were identified as active 

2. 2: Percentage of runs where all active terms were identified, plus some 

inactive terms were identified as active (Type I Error) 

3. 3: Percentage of runs where some of the active terms were missed (Type II 

Error) 

4. 4: Percentage of runs where all the active terms were missed (Type II Error) 

In an ideal scenario, 1 would be close to 100 and 2, 3 and 4 would be close to 

zero. Since it is a screening scenario, the experimenter would tolerate some Type 

I errors but would want to avoid Type II errors. This is because it is hard to 

recover from excluding important factors in the initial stage of experimentation. 

However, if some inactive factors are carried forward to the next stage of 

experimentation, these can usually be discovered and removed later. For a 

model selection method to be successful, 3 & 4 need to be close to zero. For 

the FF designs when the true model contains interactions, if the analysis 

identifies the alias chain correctly, I do not include that as a success. This is 

because there is no analytical way to correctly identify which interaction effect in 

the alias chain is active without running more experiments.  

Graphical summaries of the results are shown in Figures 2.2 – 2.13. For the six 

factor FF designs, the model selection method does not affect the error rate. The 
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designs performs well only when the true model only contains main effects and 

results in 0% type II error when the active terms in the model are five or less. 

Once the true model includes interactions, FF design results in 100% Type II 

error.  In the case of the NC design, the stepwise regression with AICc as the 

model selection criterion works better than the 2-stage stepwise regression for 

models which contain interactions. The 2-stage stepwise regression method 

works better for the NC design when the true model contains only main effects. 

Once interactions are present in the true model, stepwise regression with AICc 

as the model selection criteria works better when the number of active terms are 

between two and four. As the number of active terms increases, the error rates 

for the two methods converge.  The results for the eight factor NC and FF 

designs are similar to the results from the six factor designs.  

In the case of the seven factor NC design, the results look better than those for 

the six and eight factor designs. The error rate in the cases where the true 

model contains interactions varies from 30% to 78% for the case with one 

interaction and between 70% and 94% for the case with two interactions. In the 

case of the six and eight factor NC designs, the error rate ranges between 19% 

– 100% and 55% - 98% for models with one interaction and from 55% - 100% 

and 88% - 100% for models with two interactions. 
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Figure 2.2 2 stage stepwise AICc – NC Six Factor Design 

 

Figure 2.3 2 stage stepwise AICc – FF Six Factor Design 
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Figure 2.4 Stepwise AICc – NC Six Factor Design 

 

Figure 2.5 Stepwise AICc – FF Six Factor Design 
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Figure 2.6 2 stage stepwise AICc – NC Seven Factor Design 

 

Figure 2.7 2 stage stepwise AICc – FF Seven Factor Design 
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Figure 2.8 Stepwise AICc – NC Seven Factor Design 

 

Figure 2.9 Stepwise AICc – FF Seven Factor Design 
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Figure 2.10 2 stage stepwise AICc – NC Eight Factor Design 

 

Figure 2.11 2 stage stepwise AICc – FF Eight Factor Design 
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Figure 2.12 Stepwise AICc – NC Eight Factor Design 

 

Figure 2.13 Stepwise AICc – FF Eight Factor Design 

 
2.6. Simulation Output Analysis 

The response,  (Type II Error) is regressed on the five variables varied in 

the simulation study. The ANOVA results from this analysis are shown in Table 

2-12. The results show that the model predicted R-Squared is 0.89 and the 

significant effects include three of the main effects (B: True Model, D: No. of 

Design factors and E: No. of Active terms) and two 2 - factor interactions; BC 

0.0% 0.0% 0.0% 0.1% 1.4% 

23.2% 

78.9% 

99.4% 

51.4% 
61.9% 

69.2% 
77.5% 

90.8% 
99.2% 

92.4% 95.6% 95.6% 97.3% 98.6% 100.0% 

0.0% 

20.0% 

40.0% 

60.0% 

80.0% 

100.0% 

1 2 3 4 5 6 7 8 

NC8 - AICc 

Type II Error ME Only  Type II Error ME+1 INT Type II Error ME+2 INT 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

27.4% 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

0.0% 

20.0% 

40.0% 

60.0% 

80.0% 

100.0% 

1 2 3 4 5 6 7 8 

FF8 - AICc 

Type II Error ME Only  Type II Error ME+1 INT Type II Error ME+2 INT 



33 

and CE. The main effect C: Design is included in the analysis to maintain 

hierarchy. 

The interaction plots shown in Figure 2.14 and Figure 2.15 clearly show the 

interactions between the main factors. These plots are interpreted below and 

summarizes the effect the different factors have on the error rate. 

 The True Model * Design Interaction shows that both NC and FF designs 

have fairly small error rates when the true model consists of only main 

effects though the FF design has a lower error rate than the NC design in this 

case. But once the true model has interactions present in it, the NC design 

has a lower error rate as compared to the FF designs. For the FF designs the 

error rate goes to a 100% when any interaction is present in the true model 

whereas in the case of the NC designs, the error rate gradually increases as 

the number of interactions in the model increases. 

 The Design * No. of Active factors interaction shows that although the 

performance deteriorates as the No. of Active factors increases, the 

performance deteriorates from an error rate of 20% to an error rate of 

almost 100% in the NC design case and varies from 43% to 71% for the FF 

design case. The NC design actually performs better when the number of 

active terms in the model is lower and starts deteriorating faster than in the 

case of the FF design as the number of active terms in the model increases. 

This leads to the conclusion that if the number of active terms is relatively small, 

4 or less, that is, sparsity of effects prevails, the NC designs are good 

alternatives to the FF designs. 
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Table 2-12 Simulation ANOVA results 

Response: 3+4                        Transform: Square root                         Constant: 0.01 
Analysis of variance table [Classical sum of squares - Type II] 

Source Sum of 
Squares 

df Mean 
Square 

F Value p-value 
Prob>F 

Model 30.195 21 1.438 95.898 < 0.0001 
    B-True Model 21.272 2 10.636 709.381 < 0.0001 
    C-Design 0.021 1 0.021 1.404 0.2374 
    D-No. of Design Factors 0.086 2 0.043 2.874 0.0589 
    E-No. of Active Factors 1.852 7 0.265 17.648 < 0.0001 
    BC 1.253 2 0.626 41.773 < 0.0001 
    CE 0.736 7 0.105 7.014 < 0.0001 
Residual 2.909 194 0.015   
Cor Total 33.104 215    

 

Std. Dev. 0.122 R-Squared 0.912 
Mean 0.665 Adj R-Squared 0.903 
C.V. % 18.423 Pred R-Squared 0.889 
PRESS 3.688 Adeq Precision 29.581 

 

 

Figure 2.14 True Model * Design Interaction 
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Figure 2.15 Design * No. of Active factors Interaction 

2.7. Conclusion 

The regular fractional factorial designs with six, seven or eight factors in 16 runs 

are widely used. However due to the complete confounding of the two-factor 

interactions with one another, these designs often require the experimenter to 

perform runs to resolve ambiguities whenever any of the two-factor interactions 

are identified as being active. The NC designs allow for the estimation of all main 

effects along with some of the two-factor interactions since there is no complete 

confounding in these designs.  

The simulation study confirmed that stepwise regression does not work well once 

the total number of active terms exceeds four. However the study also showed 

that NC designs allow for estimation of two factor interactions without the need 

to run additional runs. Furthermore, once the true model contains interactions, 

regular fractional factorial designs are unable to compete with the nonregular 

designs due to the complete confounding of the two-factor interactions. 
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The simulation study shows that although stepwise regression may not be the 

best method to use for the analysis of nonregular designs, it is reasonably 

effective if the number of active terms (main effects and interactions included) is 

not more than four. There is no statistically significant difference between using 

a 2-stage stepwise regression method and a stepwise regression method. Both 

model selection methods used the AICc criterion.  

I believe that the NC designs are good alternatives to the FF designs specially 

when running another set of experiments is not an alternative. With the NC 

designs, the experimenter would be able to study both the main effects and the 

interactions from the initial 16 runs of the experiment when the effect sparsity 

principle holds true.  
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Chapter 3   

PROJECTION PROPERTIES OF NO-CONFOUNDING DESIGNS FOR SIX, SEVEN 

AND EIGHT FACTORS IN SIXTEEN RUNS  

3.1. Introduction 

The NC designs do not completely confound any of the main effects and two-

factor interactions. Plackett-Burman designs and the NC designs of Jones and 

Montgomery are examples of nonregular designs. The projection properties of 

fractional factorial designs and Plackett-Burman designs are well documented. 

Montgomery (2013) discusses the projection properties of the 2k-p designs that 

collapse into either full factorial or a fractional factorial in any subset of       

of the original factors. The subsets that result in fractional factorials are subsets 

appearing as words in the complete defining relation. Lin and Draper (1992) and 

Box and Bisgaard (1993) showed that some of the Placket-Burman designs in 

fewer runs when projected onto three factors result in a complete 23 design and 

a half replicate of the 23 design. The projection properties of NC designs have 

not been studied. In this paper the projection properties of NC designs for the 

six, seven and eight factor cases in 16 runs are presented. 

The principle of effect sparsity in designed experiments allows experimenters to 

study a larger number of factors under the assumption that only a few of them 

will have a significant effect on the response/s being studied. Once the design is 

collapsed to a smaller number of factors, the resulting design may have 

properties that allow for easier analysis of these designs. Studying the projection 

properties of the NC designs can suggest possible analytical methods for these 
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designs. Here I present the three factor and four factor projections of the six, 

seven and eight factor NC designs.  

Johnson and Jones (2011) show that the six, seven and eight factor NC designs 

have a classical-type construction with a 24 or a replicated 23 starting point. 

These generating columns can be used to study the projection properties of the 

NC designs. Sections 2, 3 and 4 describe the projection properties of six, seven 

and eight factor NC designs. Section 5 describes how these projections are 

related to the generating columns described in Johnson and Jones (2011). 

Section 6 suggests two potential analysis methods for NC designs. Sections 7 

and 8 illustrates the analysis methods for two example experiments from the 

literature. 

3.2. Projection properties of six factor NC design 

Box (1996), Cheng (1995), Cheng (1998), Dey (2005) and Evangelaras (2005) 

talk about projection properties of orthogonal arrays. There are a few other 

papers that discuss the projection properties of screening designs, Placket - 

Burman designs and nonregular designs such as Box & Tyssedal (2001), 

Bulutoglu et al (2003), Lin & Draper (1992), Loeppky et al (2007), Tsai et al 

(2000) and Xu et al (2005). All these papers talk about different projection 

properties of the designs and how they can be used to the experimenter’s 

benefit during both the design phase and the analysis phase of experiments. 

Studying the projection properties of the designs gives valuable insight into 

possible analysis methods. The following sections discuss the projection 

properties of the NC designs and provides valuable insight into how these 

properties can be used to develop analysis methods for these designs.  
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The six factor NC design has 20 different three factor projections. 12 of these 

projections result in replicated full factorial designs in three factors. These 

projections can therefore be analyzed like a full factorial design. The other eight 

projections result in two different projection types which are isomorphic in 

nature. The two projection types are shown in Figure 3.1. The projections show 

that there are eight distinct design points for the three factor projections of the 

six factor NC design. This allows for the estimation of the three main effects and 

the three two-factor interactions. The maximum VIF for any term for any of 

these projections is 1.33. 

There are 15 possible four factor projections of the six factor NC design. Three of 

these projections, ABCD, ABEF and CDEF, result in full factorial projections 

whereas the remaining 12 projections result in nine different projection types. 

The nine different types of projections are shown in Figure 3.2. Projections 1, 2, 

3, 6, 7, 8 & 9 have 12 distinct design points while projections 4 & 5 have 14 

distinct design points. 

This allows for estimation of all 10 terms (main effects and two-factor 

interactions). The correlation patterns for all three and four factor projections of 

the six factor NC design show that the maximum correlation between any two 

effects is 0.5. The maximum VIF for any term for any of these projections is 2. 
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Figure 3.1 Three factor Projections for the Six Factor NC design 

 
Figure 3.2 Four factor projections of the six factor NC design 
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Figure 3.2 (contd.) Four factor projections of the six factor NC design 

3.3. Projection properties of seven factor NC design 

Out of the 35 possible three factor projections for the seven factor design, 27 

projections result in a full factorial design with two replicates. The other eight 
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projections result in the main effects being partially aliased (0.5 or -0.5) with the 

two factor interaction not involving itself. The generating equations can be used 

to study the projection properties. The projections show that there are eight 

distinct design points for the three factor projections of the 7 variable no 

confounding design. This allows for the estimation of the three significant main 

effects and their three two-factor interactions. The three factor projections of the 

seven factor NC design that are not replicated full factorials are shown in Figure 

3.3. The maximum VIF for any of the terms for any of the projections is 1.33. 

12 of the possible 35 four factor projections result in a full factorial design; 

ABCD, ABCE, ABCF, ABCG, ABDG, ABEF, ACDE, ACFG, ADEF, ADEG, ADFG, AEFG 

and DEFG are the projections that results in a full factorial design. The remaining 

23 four factor projections result in 13 different types of projections. These four 

factor projections are shown in Figure 3.4. All projections have 12 distinct design 

points. This allows for estimation of all 10 terms (main effects and two-factor 

interactions). The maximum VIF for any term for any of the projections is 2.

 

Figure 3.3 Three factor projections for the seven factor NC design 
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Figure 3.4 Four factor projections of the seven factor NC design 
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Figure 3.4 (contd.) Four factor projections of the seven factor NC design 
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Figure 3.4 (contd.) Four factor projections of the seven factor NC design 

3.4. Projection properties of eight factor NC design 

Out of the 56 possible three factor projections, 42 of the projections result in a 

full factorial design with two replicates, and 14 projections result in the main 

effects being partially aliased (0.5) with the two factor interaction not involving 

itself. These projections result in the display shown in Figure 3.5. The projection 

shows that there are eight distinct design points for the three factor projections 

of the eight factor NC design. This allows for the estimation of the three main 

effects and their three two-factor interactions. The maximum VIF for any of the 

terms for any of the projections is 1.33. In the case of the four factor 

projections, 21 of the possible 70 four factor projections result in a full factorial 
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design. There are 11 projection types for the 49 projections that do not result in 

a full factorial design. These projections are illustrated in Figure 3.6. All 49 of 

these projections have 12 distinct design points. This allows for estimation of all 

10 terms (main effects and two-factor interactions). The maximum VIF for any 

term for any of the four factor projections is 2. 

 
Figure 3.5 Three factor projections of the eight factor NC design 

 
Figure 3.6 Four factor projections of the eight factor NC design 
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Figure 3.6 (contd.) Four factor projections of the eight factor NC design 
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Figure 3.6 (contd.) Four factor projections of the eight factor NC design 
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defining relation and the subsets of the words appearing in the relation gives us 

an indication of which projections result in full factorials and which ones result in 

fractional factorials. In the case of the NC designs, the generating columns 

presented in Johnson and Jones (2011) works in a similar manner.  

For the six factor NC design, the columns A, B, C & D form a full factorial in 16 

runs and the columns E and F can be generated using the following equations: 

E=1/2 [AC+BC+AD-BD] 

F=1/2 [-AC+BC+AD+BD] 

These equations can be used to study the projection properties for both the 

three factor and the four factor projections. Since the columns A, B, C and D 

form a full factorial in 16 runs, any projections which contain only, A, B, C and D 

columns will result in full factorial projections. If the projection contains E or F, 

then the generating equations can be used to identify the correlation structure 

and hence the projection. Table 3-1 illustrates how to identify the correlation 

structure and the projections for the three factor projections of the six factor NC 

design. 

A similar method can be applied to generating the four factor projections. Table 

3-2 illustrates some examples for the four factor projections of the six factor NC 

design. Projections ABCE and ABDF are the same because the correlation 

structure is the same for the two projections. 

For the seven factor NC design, columns A, B, C and D form a full factorial in 16 

runs and the columns E, F and G can be generated using the following 

equations. 

E=1/2 [BD+ABD+BCD-ABCD] 
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F=1/2 [BD+CD-ABD+ACD] 

G=1/2 [-CD+ACD+BCD+ABCD] 

The projections can be studied using these generating equations in a similar 

manner as was done for the six factor NC design. 

Table 3-1 Three factor projections based on generating columns for the six factor 

NC design 

Proj 
       

Equation Drop columns that are not part 
of the projection subset 

Projection 
Type 
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replicates 

    
  

 

 
      

   
     

  
 

 
              

  
 

 
        

 

 
       

Projection I 

    
  

 

 
       

   
     

  
 

 
               

  
 

 
        

 

 
       

Projection I 

    
  

 

 
       

   
     

  
 

 
               

  
 

 
         

 

 
        

Projection II 

    
  

 

 
      

   
     

  
 

 
              

  
 

 
         

 

 
        

Projection II 

 

 

 

 
 
 
 
 



51 

Table 3-2 Four factor projections based on generating columns for the six factor 

NC design 
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Table 3.2 (contd.) Four factor projections based on generating columns for the 
six factor NC design 
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The A, B, C and G columns in the eight factor NC design form a full factorial in 

16 runs. The columns D, E, F and H can be generated using the following 

equations. 

  
 

 
                

  
 

 
                

  
 

 
                  

  
 

 
                  

The projections for the eight factor NC design can be studied using these 

generating equations in a similar manner as was done for the six factor NC 

design. 

3.6. Analysis of NC designs based on projection properties 

The projection properties of the NC designs clearly show that all main effects and 

their interaction can be estimated if the number of active main effects is four or 

less. Li, Sudarsanam and Frey (2006) confirm three key ideas, effect sparsity, 

hierarchy and heredity associated with design of experiments through a meta-

analysis of 113 datasets from published factorial experiments. But they also saw 

that exceptions to these ideas are more likely than previously thought. The 

meta-analysis showed that about 33% of the main effects were active while 

about 7.4% of the two factor interactions and about 2.2% of the three factor 

interactions were found to be active. They state in their paper that the data 

presented suggest that a system with four factors is more likely than not to 

contain a significant interaction given that        
 
          

 
     .  
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If you are able to project the NC designs to four factors you can essentially 

estimate 70% of the main effects for the six factor case, 60% of the main effects 

for the seven factor case and 50% of the factors for the eight factor case. It also 

allows for estimation of 40% of the two factor interactions for the six factor case, 

29% of the interactions for the seven factor case and 21% of the interactions for 

the eight factor case. Therefore one logical approach to analyzing NC designs 

would be to fit all possible main effects and two-factor interaction models up to 

10 terms and evaluate these models using criteria such as R-Sq, R-Sq Adj, Root 

Mean Square Error (RMSE), the corrected Akaike Information Criteria (AICc) and 

the Bayesian Information Criteria (BIC). Once the best models are shortlisted the 

top few can be evaluated using ordinary least squares. Table 3.3 lists the steps 

involved in this approach. 

A second approach to analyzing these designs would be fitting all possible 

models with up to only four main effects, then evaluating these models using 

criteria such as R-Sq, R-Sq Adj, RMSE, AICc and BIC and choose the best 

model(s) from those. The second step would be to include the two-factor 

interactions into the best main effects models chosen in step one. One way to 

add the two-factor interactions would be to fit a model with the main effects and 

all interactions using ordinary least squares. The insignificant terms can then be 

eliminated using p-values for the effects. Another approach to add the two-factor 

interactions would be to use stepwise regression on the top models by forcing 

the main effects into the model and then using the stepwise algorithm to add the 

two-factor interactions to get the best fit. Table 3.3 lists the steps to be followed 

in this approach. 
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Table 3-3 Analysis Methods 

Analysis Method 1 Analysis Method 2 

 Fit all possible one to ten term 
models (both main effects and two 
factor interactions) 

 Evaluate the models using R2, R2-
Adj, RMSE, AICc or BIC 

 Choose the top few models for 
further analysis 

 Use ordinary Least Squares (OLS) to 
fit the model and pick the best one 

 Fit all possible main effects only models up 
to four factors 

 Evaluate the models using R2, R2-Adj, 
RMSE, AICc or BIC 

 Choose the top few models for further 
analysis 

 Use OLS to fit the model and pick the best 
one OR 

 Use stepwise regression to fit the model by 
forcing the main effects and then using the 
stepwise algorithm to add the two factor 
interactions 

 
3.7. Example 1 

These approaches are illustrated using an example. Montgomery (2012) presents 

an example of the regular 26–2 resolution IV design applied to a photoresist 

application process. The response variable is thickness and the design factors are 

X1 = speed RPM, X2 = acceleration, X3 = volume, X4 = time, X5 = resist viscosity, 

and X6 = exhaust rate. Montgomery (2013) found that the main effects X1, X2, X3 

and X5 along with the alias chain involving the X3X5 interaction were active. He 

used a fold-over technique to identify the significant X3X5 interaction. Jones and 

Montgomery (2010) simulated the response variable for this experiment using 

the six variable NC design. This simulated data is used as an example to illustrate 

the two methods described above. In constructing the simulation X1, X2, X3 and 

X5 were assumed to be the significant main effects and the X3X5 interaction was 

assumed to be the active interaction. The experiment is shown in Table 3-4. 

3.7.1. Analysis Method I 

This experiment was analyzed using JMP. All possible one to ten term models 

(excluding and including interactions) were fit using ordinary least squares 
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regression and evaluated using the AICc criterion and the RSquare values. The 

top three models for the one term model to the ten term model cases are listed 

in Table 3-5. The top two models based on the AICc criterion and the R-Square 

value are model numbers 13 (X1, X2, X3, X5, X3X5) and 16 (X1, X2, X3, X5, X2X5, 

X3X5). These two models were selected for further analysis. This indicated that 

the interaction X2X5 in model number 16 has a p-value of 0.1133 and can be 

removed from the model resulting in model 13. The two model fits are shown in 

Figure 3.7 and Figure 3.8. The results clearly show that the better model using 

this analysis methodology is the one which includes the main effects X1, X2, X3 

and X5 along with the interaction X3X5 which is the correct model. 

Table 3-4 The no-confounding design for the photoresist application experiment 

Run X1 X2 X3 X4 X5 X6 Thickness 

1 1 1 1 1 1 1 4,494 

2 1 1 -1 -1 -1 -1 4,592 
3 -1 -1 1 1 -1 -1 4,357 

4 -1 -1 -1 -1 1 1 4,489 

5 1 1 1 -1 1 -1 4,513 
6 1 1 -1 1 -1 1 4,483 

7 -1 -1 1 -1 -1 1 4,288 

8 -1 -1 -1 1 1 -1 4,448 
9 1 -1 1 1 1 -1 4,691 

10 1 -1 -1 -1 -1 1 4,671 

11 -1 1 1 1 -1 1 4,219 
12 -1 1 -1 -1 1 -1 4,271 

13 1 -1 1 -1 -1 -1 4,530 

14 1 -1 -1 1 1 1 4,632 
15 -1 1 1 -1 1 1 4,337 

16 -1 1 -1 1 -1 -1 4,391 
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Table 3-5 All Possible term Models up to ten terms (main effects and two-factor 

interaction) comparison 

No. 
Model 

No of 
terms RSq RMSE AICc BIC 

1 X1 1 0.66 86.67 194.06 194.38 

2 X2 1 0.13 138.47 209.05 209.37 

3 X3 1 0.06 143.99 210.30 210.62 
4 X1, X2 2 0.79 70.47 189.89 189.34 

5 X1, X3 2 0.72 81.52 194.55 194.00 

6 X1, X5 2 0.68 86.72 196.53 195.98 

7 X1, X2, X3 3 0.85 61.78 188.76 186.62 

8 X1, X2, X5 3 0.81 69.02 192.31 190.17 

9 X1, X2, X6 3 0.80 72.19 193.74 191.61 

10 X1, X2, X3, X5 4 0.88 59.09 191.27 186.57 

11 X1, X2, X3, X1*X3 4 0.86 61.76 192.69 187.99 

12 X1, X2, X5, X2*X5 4 0.86 62.18 192.91 188.21 

13 X1, X2, X3, X5, X3*X5 5 0.95 37.98 182.27 173.68 

14 X1, X3, X4, X6, X4*X6 5 0.92 50.40 191.32 182.73 

15 X1, X2, X3, X5, X2*X5 5 0.89 58.93 196.33 187.74 

16 X1, X2, X3, X5, X2*X5, X3*X5 6 0.97 34.56 186.13 171.74 

17 X1, X2, X3, X5, X6, X3*X5 6 0.96 37.11 188.42 174.03 

18 X1, X2, X3, X5, X1*X3, X3*X5 6 0.95 39.36 190.30 175.91 

19 X1, X2, X3, X5, X6, X2*X5, X3*X5 7 0.97 33.02 194.22 171.18 

20 X1, X2, X3, X5, X6, X3*X5, X5*X6 7 0.97 33.27 194.47 171.42 

21 X1, X2, X3, X4, X5, X2*X5, X3*X5 7 0.97 34.43 195.56 172.52 

22 X1, X2,X3,X5 X6, X2*X5, X3*X5, X5*X6 8 0.98 27.21 201.89 165.62 

23 X1,X2,X3,X4, X5, X1*X4, X2*X5, X3*X5 8 0.98 28.98 203.91 167.64 

24 X1,X2,X3,X5,X6, X1*X6, X3*X5, X5*X6 8 0.98 29.21 204.17 167.89 

25 X1,X2,X3,X5,X1*X4,X2*X5,X3*X4, 
X3*X5, X5*X6 9 0.99 18.08 210.34 152.84 

26 X1, X2, X3, X5, X1*X4, X2*X5, X3*X4, 
X4*X6, X5*X6 9 0.99 18.08 210.34 152.84 

27 X1, X3, X5, X1*X4, X2*X5, X3*X4, 
X3*X5, X4*X6, X5*X6 9 0.99 18.08 210.34 152.84 

28 X1, X2, X3, X4, X5, X1*X4, X1*X6, 
X3*X4, X3*X5, X5*X6 10 0.99 11.83 233.85 139.12 

29 X1, X2, X3, X4, X5, X1*X4, X1*X6, 
X3*X4, X4*X6, X5*X6 10 0.99 11.83 233.85 139.12 

30 X1, X2, X3, X4, X5, X1*X4, X2*X5, 
X3*X4, X3*X5, X5*X6 10 0.99 11.83 233.85 139.12 
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Figure 3.7 Model fit for X1, X2, X3, X5, X2X5, X3X5 
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Figure 3.8 Model fit for X1, X2, X3, X5, X3X5 

3.7.2. Analysis Method II 

The same experiment was analyzed using the second method which entails 

fitting all the main effects only models and then adding the two factor 

interactions using one of two methods (OLS or stepwise regression). The results 

from fitting all the main effects models with up to four factors and their R-Sq, 

RMSE, AICc and BIC values are listed in Table 3-6. The top three models with 

one to four main effects are listed in Table 3-6. The top three models were 

chosen and then the two factor interactions were added using both OLS and 

stepwise regression. The result using both approaches is the same. For the two 

term model with X1, X2 when the interaction is added the model fit is not 

improved as the interaction effect is not significant. In the case of the three term 
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model with X1, X2, X3, when the interactions X1X2, X1X3 and X2X3 are added to the 

model, none of the interactions are significant and therefore does not lead to a 

better fit then the main effects only model. Whereas in the four factor model 

case when the strong heredity interactions are included in the model, the model 

fit is improved when the X3X5 interaction is added to the original X1, X2, X3, X5 

main effects only model. The results from fitting these three models are shown 

in Figure 3.9, Figure 3.10 and Figure 3.11. The final model chosen based on the 

above analysis is again the one with X1, X2, X3, X5 and X3X5 interaction. Both 

analysis methods lead to the same result. 

Table 3-6 All Main Effects only Models comparison 

No. Model 
Number of terms in 

model RSquare RMSE AICc BIC 

1 X1 1 0.66 86.67 194.06 194.38 

2 X2 1 0.13 138.47 209.05 209.37 

3 X3 1 0.06 143.99 210.30 210.62 

4 X1,X2 2 0.79 70.47 189.89 189.34 

5 X1,X3 2 0.72 81.52 194.55 194.00 

6 X1,X5 2 0.68 86.72 196.53 195.98 

7 X1,X2,X3 3 0.85 61.78 188.76 186.62 

8 X1,X2,X5 3 0.81 69.02 192.31 190.17 

9 X1,X2,X6 3 0.80 72.19 193.74 191.61 

10 X1,X2,X3,X5 4 0.88 59.09 191.27 186.57 

11 X1,X2,X3,X6 4 0.86 63.08 193.37 188.67 

12 X1,X2,X3,X4 4 0.85 64.50 194.08 189.38 
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Figure 3.9 Two factor main effects model with interactions included 

 

Figure 3.10 Three factor main effects model with interactions included 
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Figure 3.11 Four factor main effects model with interactions included 

3.8. Example 2 

The second example that demonstrated here is from Junqua, Duran, Gancet and 

Goulas (1997), where they study microbial transglutaminase production using a 

designed experiment approach. In the example they study five factors casein 

(X1), glycerol (X2), peptones (X3), yeast extract (X4) and oligoelements (X5). 

Two dummy variables were added to extend the design to a seven variable 

design. The original experiment was run as a 32 run full factorial experiment with 

five center runs. The results from the original experiment was used to simulate 

data for the NC seven factor design in 16 runs with the same coefficients and 

RMSE as the original experiment. The analysis of the original experiment showed 

that X1, X2, X4 and X1X2 are the significant effects. The two analysis methods 

described in section 6 are used to analyze this simulated experiment. The 

simulated dataset is shown in Table 3.7. 
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Table 3-7 The NC design for microbial transglutaminase production experiment 

Run X1 X2 X3 X4 X5 X6 X7 Growth 

1 1 1 1 1 1 1 1 0.1694404385 

2 1 1 1 -1 -1 -1 -1 0.1557483244 

3 1 1 -1 1 1 -1 -1 0.1694441029 

4 1 1 -1 -1 -1 1 1 0.1556024284 

5 1 -1 1 1 -1 1 -1 0.0459173274 

6 1 -1 1 -1 1 -1 1 0.0320189712 

7 1 -1 -1 1 -1 -1 1 0.0455156956 

8 1 -1 -1 -1 1 1 -1 0.0318232652 

9 -1 1 1 1 1 1 -1 0.0812673458 

10 -1 1 1 -1 -1 -1 1 0.0679025994 

11 -1 1 -1 1 -1 1 1 0.0817517700 

12 -1 1 -1 -1 1 -1 -1 0.0672482974 

13 -1 -1 1 1 -1 -1 -1 0.0177728542 

14 -1 -1 1 -1 1 1 1 0.0031316223 

15 -1 -1 -1 1 1 -1 1 0.0176315712 

16 -1 -1 -1 -1 -1 1 -1 0.0033230487 

 

3.8.1. Analysis Method I 

JMP was used to analyze this experiment. All possible one to ten term models 

(excluding and including interactions) were fit using ordinary least squares 

regression and evaluated using the AICc criterion and the RSquare values. The 

top three models for the one term model to the ten term model cases are listed 

in Table 3-8. 

The top two models based on the AICc criterion and the R-Sq values are model 

numbers 7 (X1, X2, X1X2) and 10 (X1, X2, X4, X1X2). These two models were 

selected for further analysis. This indicated that the main effect X4 has a p-value 

of 0.0349 and is added to the final model resulting in model 10. The final model 

fit is shown in Figure 3.12. The model fit identified using analysis method 1 is 

identical to the true model. 
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Table 3-8 All Possible subsets Models up to ten terms (main effects only and 

main effects and two-factor interaction) comparison 

No. 
Model 

No of 
terms 

R - 
Sq RMSE AICc BIC 

1 X2 1 0.66 0.04 -55.34 -55.0 

2 X1 1 0.25 0.05 -42.61 -42.3 

3 X4 1 0.01 0.06 -38.14 -37.8 

4 X1,X2 2 0.92 0.02 -74.34 -74.9 

5 X2,X4 2 0.68 0.04 -52.42 -52.9 

6 X2,X5 2 0.66 0.04 -51.70 -52.3 

7 X1,X2,X1*X2 3 0.99 0.01 -97.37 -99.5 

8 X1,X2,X4 3 0.93 0.02 -73.16 -75.3 

9 X1,X2,X5 3 0.92 0.02 -69.98 -72.1 

10 X1,X2,X4,X1*X2 4 1.00 0.00 -202.32 -207.0 

11 X1,X2,X5,X1*X2 4 0.99 0.01 -92.04 -96.7 

12 X1,X2,X6,X1*X2 4 0.99 0.01 -92.04 -96.7 

13 X1,X2,X4,X1*X2,X1*X4 5 1.00 0.00 -199.74 -208.3 

14 X1,X2,X4,X5,X1*X2 5 1.00 0.00 -198.90 -207.5 

15 X1,X2,X4,X1*X2,X2*X4 5 1.00 0.00 -197.37 -205.9 

16 X1,X2,X4,X5,X1*X2,X2*X5 6 1.00 0.00 -197.22 -211.6 

17 X1,X2,X4,X5,X1*X2,X1*X4 6 1.00 0.00 -195.49 -209.9 

18 X1,X2,X4,X5,X1*X2,X1*X5 6 1.00 0.00 -193.74 -208.1 

19 X1,X2,X3,X4,X6,X1*X2,X3*X6 7 1.00 0.00 -195.08 -218.1 

20 X1,X2,X4,X5,X1*X2,X1*X5,X2*X5 7 1.00 0.00 -191.41 -214.5 

21 X1,X2,X4,X5,X1*X2,X1*X4,X1*X5 7 1.00 0.00 -189.00 -212.0 

22 X1,X2,X4,X5,X1*X2,X1*X5,X2*X4, 
X2*X5 

8 1.00 0.00 -186.24 -222.5 

23 X1,X2,X3,X4,X6,X1*X2,X1*X6,X3*X6 8 1.00 0.00 -185.79 -222.1 

24 X1,X2,X4,X6,X7,X1*X2,X1*X4,X2*X7 8 1.00 0.00 -182.45 -218.7 

25 X1,X2,X3,X4,X7,X1*X2,X3*X5,X3*X6,  
X5*X6 

9 1.00 0.00 -205.21 -262.7 

26 X1,X2,X4,X7,X1*X2,X1*X3,X3*X5, 
X3*X6,X4*X7 

9 1.00 0.00 -198.19 -255.7 

27 X1,X2,X4,X7,X1*X2,X3*X5,X3*X6, 
X4*X6,X4*X7 

9 1.00 0.00 -197.96 -255.5 

28 X1,X2,X3,X4,X7,X1*X2,X2*X3, 
X3*X5,X3*X6,X5*X6 

10 1.00 0.00 -183.83 -278.6 

29 X1,X2,X4,X7,X1*X2,X1*X3,X2*X3, 
X3*X5,X3*X6, X4*X7 

10 1.00 0.00 -179.63 -274.4 

30 X1,X2,X3,X4,X7,X1*X2,X3*X5,X3*X6, 
X4*X5, X5*X6 

10 1.00 0.00 -179.37 -274.1 
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3.8.2. Analysis Method II 

JMP was used to analyze this experiment using analysis method II. All possible 

one to four term main effects models were fit using the all possible regressions 

method. The next step was to include all the interaction effects for the significant 

main effects. The results from using this method are listed in Table 3-9.  

The top two models were chosen and then the two factor interactions were 

added to the models. In the case of the two main effects model, the model fit 

improves to an RSquare Adj value of 0.981. But when the three term model (X1, 

X2, X4) is used with interactions, the model with the terms X1, X2, X4 & X1X2 

results in a better model with an RSq - Adj value of 0.99 and a lower AICc value. 

This again matches with the true model. Using both analysis methods, the 

results match the simulated true model thereby showing that both these analysis 

methods work well when the NC design is used to identify the main effects and 

then any interactions effects involving these main effects that are significant. 

3.9. Additional steps to consider for analysis 

From the projection properties of the six, seven and eight factor NC designs, it 

can be seen that up to 11 term models can be fit as there are 12 distinct designs 

points when the designs are projected to four factors. Therefore once the initial 

models are fit using the above analysis methods, you can add up to a total of 11 

terms (including one interaction term) to the final model if it improves the fit of 

the model. This can be done by fixing the terms identified from the previous 

steps in the model and then adding more terms if it does improve the fit. In the 

case of the above two examples, adding terms to the existing models did not 
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result in a better fit. The best models were still the ones identified using the 

analysis methods 1 and 2 detailed in the previous sections. 

 

Figure 3.12 Model fit for X1, X2, X4, X1X2 

Table 3-9 All Main Effects only Models comparison 

No. Model 
Number of 

terms in model RSquare RMSE AICc BIC 

1 X2 1 0.6636 0.0357 -55.3355 -55.0177 

2 X1 1 0.2547 0.0532 -42.6105 -42.2927 

3 X4 1 0.0147 0.0612 -38.1437 -37.8259 

4 X1,X2 2 0.9183 0.0183 -74.3439 -74.8899 

5 X2,X4 2 0.6783 0.0363 -52.4156 -52.9616 

6 X2,X5 2 0.6636 0.0371 -51.6993 -52.2453 

7 X1,X2,X4 3 0.9330 0.0172 -73.1616 -75.2986 

8 X1,X2,X5 3 0.9183 0.0190 -69.9808 -72.1179 

9 X1,X2,X6 3 0.9183 0.0190 -69.9805 -72.1176 

10 X1,X2,X4,X5 4 0.9330 0.0180 -67.8289 -72.5267 

11 X1,X2,X4,X6 4 0.9330 0.0180 -67.8285 -72.5263 

12 X1,X2,X3,X4 4 0.9330 0.0180 -67.8285 -72.5263 
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3.10. Conclusion 

The regular fractional factorial designs with six, seven or eight factors in 16 runs 

are widely used. However due to the complete confounding of the two-factor 

interactions with one another, these designs often require the experimenter to 

perform runs to resolve ambiguities whenever any of the two-factor interactions 

are identified as being active. The projection properties of the NC designs show 

that these designs allow for the estimation of all main effects along with some of 

the two-factor interactions since there is no complete confounding in these 

designs.  

Two intuitive approaches to analyzing these designs based on the projection 

properties are presented. Systems with four active terms (main effects) are likely 

to have a significant interaction. Therefore being able to estimate the two-factor 

interactions without the need for design augmentation is a desirable 

characteristic. Based on the projection properties of the NC designs all the main 

effects and their interactions can be estimated for up to four active factors or in 

other words models with up to 11 terms (including the intercept) can be fit as 

there are 12 distinct designs points for the four factor projections of these 

designs. The two examples illustrate that both these methods identify the correct 

active terms. 
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Chapter 4  

DESIGN, PROJECTION PROPERTIES AND ANALYSIS OF NO-CONFOUNDING 

ALTERNATIVES TO RESOLUTION III SCREENING DESIGNS FOR 9 – 14 FACTORS 

IN 16 RUNS 

4.1. Introduction 

For between 9 and 14 factors the regular minimum aberration resolution III 

designs are widely used.  Montgomery (2013) gives the generators for these 

designs; for example, if there are k = 9 factors the generators are E = ABC, F = 

BCD, G = ACD, H = ABD, and J = ABCD.  This produces a 16-run design with 

nine single-degree-of-freedom alias chains composed of a single main effect and 

one or more two-factor interactions and seven single-degree-of-freedom alias 

chains composed entirely of  two-factor interactions assuming that all interaction 

of order three and higher are negligible.  For example the alias chain for factor A 

is A = FJ, for J it is J = DE = AF = BG = CH, and for AB it is AB = CE = FG = 

DH.  These are all regular designs; that is, the effects in any alias chain are 

completely confounded (the constants multiplying each effect are 1 ).  

Because the regular resolution III designs are completely confounded, 

experimenters often end up with ambiguous conclusions about which main 

effects and two-factor interactions are important.  Resolving these ambiguities 

requires either additional experimentation (such as use of a fold-over design to 

augment the original fraction) or assumptions about which effects are important 

or external process knowledge.  None of these alternatives are entirely 

satisfactory and experimenters would like to avoid either the need to expend 
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resources for a follow-up study, or make assumptions, or rely on experienced-

based process knowledge. 

It is possible to reduce the risk of analytical ambiguity by using a specific 

orthogonal but nonregular fractional factorial design. Our proposed designs for 9 

– 14 factors in 16 runs have no complete confounding between main effects and 

two-factor interactions and pairs of two-factor interactions. These designs are 

preferred and are recommended as alternatives for the usual regular minimum 

aberration resolution III fractional factorials. In subsequent sections, a metric to 

evaluate these fractional factorial designs is presented, and it is used to obtain 

the choices for the nonregular 16-run fractional factorials through the use of a 

variation of the D-optimality criterion.  The projection properties of these designs 

are presented when projected to three and four factors and discuss analysis 

strategy for these designs. An example is also presented that illustrates the 

potential usefulness of these designs and the effectiveness of the analysis 

method. 

4.2. Literature review 

Plackett and Burman (1946) introduced nonregular orthogonal designs for 

sample sizes that are a multiple of four but not powers of two. Hall (1961) 

identified five non-isomorphic orthogonal designs for 15 factors in 16 runs.  

Contemporaneously with Hall’s work, Box and Hunter (1961) introduced the 

regular fractional factorial designs that became the standard tools for factor 

screening. Sun et al. (2002) catalogued all the non-isomorphic projections of the 

Hall designs. Li et al. (2003) used this catalogue to identify the best designs to 
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use in case there is a need for a foldover. For each of these designs they provide 

the columns to use for folding and the resulting resolution of the combined 

design. Loeppky et al. (2007) also used this catalogue to identify the best 

designs to use assuming that a small number of factors are active and the 

experimenter wished to fit a model including the active main effects and all two-

factor interactions involving factors having active main effects. 

Jones and Montgomery (2010) proposed 16-run nonregular orthogonal designs 

for 6 – 8 factors that are alternatives to the usual regular resolution IV minimum 

aberration fractions.  These designs are projections of the Hall designs created 

by selecting specific sets of columns. Because there is no complete confounding 

of two-factor interactions, the authors referred to these designs as no-

confounding designs.   Johnson and Jones (2011) show how these designs can 

be found by using a column generator approach that is similar to that used for 

regular designs. The work in Jones and Montgomery (2010)  is presented by 

developing no-confounding designs for 9 – 14 factors in 16 runs that are good 

alternatives to the usual minimum aberration resolution III designs when there 

are only a few main effects and two-factor interactions that are important. 

4.3. Design Evaluation and Construction 

The alias matrix is a generalization of the confounding pattern that is useful for 

comparing nonregular designs. Suppose that we plan to fit the model 

y = X1β1 + ε 

where X1 is the design matrix for the experiment that has been conducted 

expanded to model form, β1 is the corresponding vector of model parameters, 
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and ε is the usual vector of NID(0, σ2) random errors.  However, the true model 

is 

y = X1β1 + X2β2 + ε 

where the columns of X2 contain additional factors not included in the original 

model (such as interactions) and β2 is the corresponding vector of model 

parameters. It is straightforward to show that the expected value of 
1β̂ , the least 

squares estimate of β1, is 

E(
1β̂ ) = β1 + 1

1 1 1 2 2( ) ( )
X X X X β = β1 + Aβ2 

The alias matrix A = 1

1 1 1 2( ) ( )
X X X X shows how estimates of terms in the fitted 

model are biased by active terms that are not in the fitted model. Each row of A 

is associated with a parameter in the fitted model. Non-zero elements in a row of 

A show the degree of biasing of the fitted model parameter due to terms 

associated with the columns of X2. 

In a regular design, an arbitrary entry in the alias matrix, Aij, is either 0 or ±1. If 

Aij is 0 then the ith column of X1 is orthogonal to the jth column of X2. Otherwise if 

Aij is ±1, then the ith column of X1 and the jth column of X2 are perfectly 

correlated. 

For nonregular designs the aliasing is more complex. If X1 is the design matrix 

for the main effects model and X2 is the design matrix for the two-factor 

interactions, then the entries of the alias matrix for orthogonal nonregular 

designs for 16 runs take the values 0, ±1 or ±0.5. A small subset of these 

designs have no entries of ±1. 
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Table 4-1 Number of Non-isomorphic Nonregular 16-run Designs 

Number of 
Factors 

Number of Non-
isomorphic Designs 

6 27 

7 55 

8 80 

9 87 

10 78 

11 58 

12 36 

13 18 

14 10 

 

Bursztyn and Steinberg (2006) propose using the trace of AA′ as a scalar 

measure of the total bias in a design. This is just the sum of squares of all of the 

elements of the alias matrix. They use this as a means for comparing designs for 

computer simulations but this measure works equally well for ranking 

competitive screening designs.  The no-confounding designs in Jones and 

Montgomery (2010) all minimize the trace of AA′.  They found these designs by 

enumeration of all of the non-isomorphic nonregular 16-run designs.  By non-

isomorphic, I mean that one cannot obtain one of these designs from another 

one by permuting the rows or columns or by changing the labels of the factor. 

Table 4-1 shows the number of these designs for 6 – 14 factors. 

Jones and Nachtsheim (2011) have proposed a design optimality criterion that 

effectively minimizes the aliasing in a design.  They propose minimizing the trace 

of AA subject to a lower bound on the D-efficiency of the design.  They use a 

modification of the coordinate exchange algorithm for design construction.  

Formally, they choose a design to solve the following problem: 
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Min ( )

 subject to:

Eff D

trace

D l





AA

 

where DEff  is the D-efficiency of the design and lD is the lower bound on D-

efficiency. 

All of the designs in Jones and Montgomery (2010) satisfy this criterion with DEff 

of 100%, because all of their designs are orthogonal for the first-order model. 

This method also produces the recommended designs for 9 – 14 factors given in 

the next section.  These designs are also first-order orthogonal so they are 100% 

D-efficient. 

4.4. Recommended Designs 

I now provide the recommended no-confounding designs.  For nine factors the 

recommended design is in Table 4-2.  Jones and Montgomery (2010) introduce 

the correlation matrix or cell plot as a convenient display of the alias 

relationships in a fractional factorial design. Figure 4.1 shows the correlation 

matrix for the principal fraction of this design. Notice that the design is 

orthogonal for the main effects and that no main effect is completely confounded 

with a two-factor interaction.  All of the correlations between main effects and 

two-factor interactions are 0.5. Tables 4.3 through 4.7 present the design 

matrices for 10 – 14 factors and Figure 4.2 through Figure 4.6 present the 

associated correlation matrices.  All designs are first-order orthogonal (100% D-

efficient) and the correlations between main effects and two-factor interactions 

are 0.5. 



74 

Table 4-2 Recommended 16-run 9-factor no-confounding design 

Run A B C D E F G H J 

1 -1 -1 -1 -1 -1 -1 1 -1 1 

2 -1 -1 -1 1 -1 1 -1 1 -1 

3 -1 -1 1 -1 1 1 1 1 -1 

4 -1 -1 1 1 1 -1 -1 -1 1 

5 -1 1 -1 -1 1 1 -1 1 1 

6 -1 1 -1 1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 

8 -1 1 1 1 -1 1 1 -1 1 

9 1 -1 -1 -1 1 -1 -1 -1 -1 

10 1 -1 -1 1 1 1 1 1 1 

11 1 -1 1 -1 -1 1 -1 -1 1 

12 1 -1 1 1 -1 -1 1 1 -1 

13 1 1 -1 -1 -1 1 1 -1 -1 

14 1 1 -1 1 -1 -1 -1 1 1 

15 1 1 1 -1 1 -1 1 1 1 

16 1 1 1 1 1 1 -1 -1 -1 

 

 

Figure 4.1 Correlations of Main Effects and Two-Factor Interactions, NC Design 

for 9 Factors in 16 Runs 
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Table 4-3: Recommended 16-run 10-factor no-confounding design 

Run A B C D E F G H J K 

1 -1 -1 -1 -1 1 -1 -1 1 -1 1 

2 -1 -1 -1 1 1 1 -1 -1 1 1 

3 -1 -1 1 -1 -1 1 1 1 1 1 

4 -1 -1 1 -1 1 -1 1 -1 1 -1 

5 -1 1 -1 1 -1 1 1 1 -1 1 

6 -1 1 -1 1 1 -1 1 -1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 

8 -1 1 1 1 -1 1 -1 -1 1 -1 

9 1 -1 -1 -1 -1 1 1 -1 -1 -1 

10 1 -1 -1 1 -1 -1 -1 1 1 -1 

11 1 -1 1 1 -1 -1 1 -1 -1 1 

12 1 -1 1 1 1 1 -1 1 -1 -1 

13 1 1 -1 -1 -1 -1 -1 -1 1 1 

14 1 1 -1 -1 1 1 1 1 1 -1 

15 1 1 1 -1 1 1 -1 -1 -1 1 

16 1 1 1 1 1 -1 1 1 1 1 

 

 

Figure 4.2 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 10 Factors in 16 Runs 
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Table 4-4 Recommended 16-run 11-factor no-confounding design 

Run A B C D E F G H J K L 

1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 

2 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 

3 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 

4 -1 -1 1 1 -1 1 1 1 -1 1 1 

5 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 

6 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 

7 -1 1 -1 1 1 1 -1 1 1 1 -1 

8 -1 1 1 -1 1 -1 1 1 1 1 1 

9 1 -1 -1 -1 -1 1 -1 1 1 -1 1 

10 1 -1 -1 -1 1 1 1 -1 -1 1 1 

11 1 -1 -1 1 -1 -1 1 1 1 1 -1 

12 1 -1 1 1 1 -1 -1 -1 -1 1 -1 

13 1 1 -1 -1 1 -1 1 1 -1 -1 -1 

14 1 1 1 -1 -1 1 -1 -1 1 1 -1 

15 1 1 1 1 -1 -1 -1 1 -1 -1 1 

16 1 1 1 1 1 1 1 -1 1 -1 1 

 

 

Figure 4.3 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 11 Factors in 16 Runs 
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Table 4-5 Recommended 16-run 12-factor no-confounding design 

Run A B C D E F G H J K L M 

1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 

2 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1 

3 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 

4 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 

5 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 

6 -1 1 -1 1 1 1 1 -1 1 1 1 1 

7 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 

8 -1 1 1 -1 1 -1 1 1 -1 1 1 -1 

9 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 

10 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 

11 1 -1 1 1 -1 -1 -1 1 -1 1 1 1 

12 1 -1 1 1 1 1 1 1 1 -1 -1 1 

13 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 

14 1 1 -1 1 1 -1 -1 1 1 1 -1 -1 

15 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 

16 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 

 

 

Figure 4.4 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 12 Factors in 16 Runs 
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Table 4-6 Recommended 16-run 13-factor no-confounding design 

Run A B C D E F G H J K L M N 

1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 

2 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 

3 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 

4 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 

5 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 

6 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 

7 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 1 

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 

9 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 

10 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 

11 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1 

12 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1 

13 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1 

14 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 

15 1 1 1 -1 1 1 -1 1 1 1 1 1 1 

16 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 

 

 

Figure 4.5 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 13 Factors in 16 Runs 
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Table 4-7 Recommended 16-run 14-factor no-confounding design 

Run A B C D E F G H J K L M N P 

1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1 

2 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 

3 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1 

4 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1 

5 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 

6 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 

9 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 

10 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 

11 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 

12 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 

13 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 

14 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 

15 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

Figure 4.6 Correlations of Main Effects and Two-Factor Interactions, no-

confounding Design for 14 Factors in 16 Runs 

4.5. Projection Properties 

The projection properties of these designs allow us to better understand the 

possible analysis methods. This section details the projection properties of the 

nine to 14 factor NC designs. I study both the three and four factor projections 

of the NC designs. There are three possible types of three factor projections for 

the 9 – 14 factor NC designs. One of the three factor projections results in a full 

factorial projection in eight distinct design points with two replicates. The other 

two projections result in eight distinct design points with four of the points 

replicated thrice and the other four points not replicated. Consequently I can fit 
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the complete three-factor model (main effects and interactions) and have eight 

degrees of freedom for error. For the 9 – 14 factor NC designs, there are 43 

different four factor projections possible. One of these 43 projections is a full 

factorial projection (Projection type I). Two of these projections result in a 

projection (Projection type II (i) and II (ii)) with eight distinct design points. The 

other 40 projections result in projections with 12 distinct design points. Figure 

4.7 and Figure 4.8 lists the different three and four factor projections for the 9 – 

14 factor NC designs. Tables 4.8 – 4.25 describe the different types of 

projections for the 9-14 factor NC designs. 

 

Rotating projection III (a) on axis 3 results in projection III (b) 

Figure 4.7 Three factor projections for 9 - 14 NC designs 

  
Proj II (ia) → switch signs in 4th col → Proj II (ib) 

 

Figure 4.8 Four factor projections for 9 - 14 NC designs 
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Proj III (ia) → Proj III(ib) Proj III (iia) → Proj III(iib) 

  
Proj III (va) → Proj III(iiib) Proj III (via) → Proj III(ivb) 

  
Proj III (va) → Proj III(vb) Proj III (via) → Proj III(vib) 

  
Proj III (viia) → Proj III(viib) Proj III (viiia) → Proj III(viiib) 

  
Proj III (ixa) → Proj III(ixb) Proj III (xa) → Proj III(xb) 

 

Figure 4.8 (contd.) Four factor projections for 9 - 14 NC designs 
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Proj III (xia) → Proj III(xib) Proj III (xiia) → Proj III(xiib) 

  
Proj III (xiiia) → Proj III(xiiib) Proj III (xiva) → Proj III(xivb) 

  
Proj III (xva) → Proj III(xvb) Proj III (xvia) → Proj III(xvib) 

  
Proj III (xviia) → Proj III(xviib) Proj III (xviiia) → Proj III(xviiib) 

  
Proj III (xixa) → Proj III(xixb) Proj III (xxa) → Proj III(xxb) 

 

Figure 4.8 (contd.) Four factor projections for 9 - 14 NC designs 
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4.5.1. Three factor projections 

For 9 – 14 factor NC designs, the three factor projections are of two types; 

projection type I is a full factorial projection with eight distinct design points each 

replicated twice. The second type of three factor projection (projection type III) 

also results in eight distinct designs points but as can be seen in Figure 4.7, four 

points are not replicated and the other four points are replicated thrice. 

Projection type three actually results in two different projections that are 

isomorphic in nature. When rotated on any axis projection type III (a) results in 

projection type III (b) and vice versa. Table 4-8, Table 4-11, Table 4-14, Table 

4-17, Table 4-20 and Table 4-23 gives the details of how many of the three 

factor projections result in the two projections types for the 9 – 14 factor NC 

designs. Table 4-9, Table 4-12, Table 4-15, Table 4-18, Table 4-21 and Table 

4.24 lists out the exact columns that result in projection type I, III (a) or III (b). 

4.5.2. Four factor projections 

For 9 – 14 factor NC designs, the four factor projections can be categorized into 

three basic types of projections; projection type I (full factorial projection with 16 

distinct points and no replicates), projection type II (eight distinct design points 

replicated twice) and projection type III (12 distinct design points, four of which 

are replicated twice and eight are not replicated). Projection type II results in 

two projections that are isomorphic in nature. Projection type III results in a 

maximum of 40 different projections; 20 of which are isomorphic in nature 

resulting in a total of 40 different projections. Table 4-10, Table 4-13, Table 

4-16, Table 4-19, Table 4-22 and Table 4-25 lists out the 20 projections and their 

isomorphic projections. 
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Table 4-8 Projections for 9 factor NC design 

Proj 
Type 

Number 
Type of Projections 

3-factor 
projections 

4-factor 
projections 

I Full factorial projections 68 64 

II 2 FI Completely Confounded with 
other 2 FIs 

0 14 (2 types) 

III Main effects Partially Confounded 
with Two Factor Interactions 

16 (2 types) 48 (16 types) 

 

Table 4-9 Three factor projections for 9 factor NC design 

Projection Type Projection (a) Isomorphic Projection (b) 

III 
ADH, AGH, AHJ, BHJ, CGH, EFH, 
EGH, EHJ 

AFH, BDH, BFH, BGH, CDH, CFH, 
CHJ, DEH 

 

Table 4-10 Four factor projections for 9 factor NC design 

Projection 
Type 

Projections 

I 

ABCG, ABCH, ABCJ, ABDE, ABDF, ABDJ, ABEF, ABEG, ABEH, ABEJ, 
ABFG, ABGJ, ACDE, ACDF, ACDG, ACEF, ACEG, ACEH, ACEJ, ACFJ, 
ACGJ, ADEG, ADEJ, ADFG, ADFJ, ADGJ, AEFG, AEFJ, AFGJ, BCDE, BCDG, 
BCDJ, BCEF, BCEG, BCEH, BCEJ, BCFG, BCFJ, BDEF, BDEG, BDFG, BDFJ, 
BDGJ, BEFJ, BEGJ, BFGJ, CDEF, CDEJ, CDFG, CDFJ ,CDGJ, CEFG, CEGJ, 
CFGJ, DEFG, DEFJ, DEGJ, DFGH, DFHJ, DGHJ, EGHJ, FGHJ 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

II (i) 
ABDG, ABFJ, ACDJ, ACFG, BDEJ, 
BEFG, CDEG, CEFJ 

ADEF, AEGJ, BCDF, BCGJ, DFGJ, 
ABCE 

III (ix) 
ABFH,ACFH,BCDH,BCFH ABHJ, ACGH, AEGH, AEHJ, 

BEHJ, CEGH 

III (x) BDEH,CDEH  

III (xi) BDFH,BDGH,BFGH,CDFH ADGH, EFGH 

III (xii)  DEHJ 

III (xiii) CDHJ,CFHJ AFHJ, BDHJ, BFHJ, BGHJ 

III (xvi) CGHJ ADHJ, AGHJ, EFGJ, EFHJ 

III (xviii) ADEH DEFH, DEGH 

III (xix) ADFH AFGH, CDGH, CFGH 

III (xx) 
ABDH, BGH, ACDH, ACHJ, BCHJ AEFH, BCGH, BEFH, BEGH, 

CEFH, CEHJ 
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Table 4-11 Projections for 10 factor NC design 

Proj 
Type 

Number 
Type of Projections 

3-factor 
projections 

4-factor 
projections 

I Full factorial projections 88 35 

II 
2 FI Completely Confounded with 
other 2 FIs 

0 5 (2 types) 

III 
Main effects Partially Confounded 
with Two Factor Interactions 

32 (2 types) 170 (32 types) 

 
Table 4-12 Three factor projections for 10 factor NC design 

Projection Type Projection (a) Isomorphic Projection (b) 

III 

ABE, ABJ, ABK, ACD, ACE, ACK, 
ADH, AEF, AEH, AHJ, BDG, BEG, 
BGH, CGJ, CGK, DGK, EGJ, FGH, 
GHJ, GHK 

ABD, ACJ, ADF, AFJ, AFK, 
AHK, BCG, CFG, DFG, DGJ, 
EFG, EGK 

 

Table 4-13 Four factor projections for 10 factor NC design 

Projection Type Projections 

I 

ABCF, ABCH, ABFG, ABFH, ACFH, ACGH, ADEG, ADEJ, 
ADEK, ADJK, AEJK, AGJK, BCDE, BCDF, BCDH, BCDK, BCEF, 
BCEH, BCEJ, BCFJ, BCFK, BCHJ, BCHK, BCJK, BDEH, BDEJ, 
BDEK, BDFH, BDFJ, BDFK, BDHJ, BDJK, BEFH, BEFJ, BEFK 

Projection Type Projection 
(a) 

Isomorphic Projection (b) 

II BCFH, BDEF BCDJ, BCEK, BDHK 

II   

III (i) ACFG ABGH, ADGK, AEGJ 

III (iii) AFGK ABGJ, AEGH 

III (v) ACEG ACDG 

III (vi) ABGK, ADGH AFGJ 

III (viii) AFGH ABCG, ADGJ, AEGK 

III (ix)  AGHJ 

III (x) BCFG ACGK 

III (xi) ACFJ, AFHK ABCE, ABCK, ABHJ, ADEH, BDEG 

III (xii) ADFG ABDG, BCGJ, BCGK 

III (xiii) 
ABDF, ADFJ, 
ADFK 

ABDH, BCGH 

III (xiv) AFJK ABDE, ABDJ, ABDK, ACJK, ADFH 

III (xv) AEFG, BDGJ ABEG, BDGK, BEGJ 
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Table 4.13 (contd.) Four factor projections for 10 factor NC design 

Projection Type Projection (a) Isomorphic Projection (b) 

III (xvi) 
ACDF, ADHK, 
AEFJ, AEFK, 
AEHK 

ABEF, ABEH, ACDH, ACEF, ACEH, ADHJ, AEHJ, 
BDGH, BEGH 

III (xvii) 
ACDJ, ACEJ, 
AHJK 

ABEJ, ABEK, ABJK, ACDE, ACDK, ACEK, AEFH 

III (xviii) BDFG, BEFG ACGJ 

III (xix) 

ABCJ, ABFJ, 
ABFK, ABHK, 
ACFK, ACHK 

ABCD, ACHJ, ADEF, AFHJ, BCDG, BCEG, BEGK, 
BEHJ, BEHK, BEJK, BFGH, BFGJ, BFGK, BFHJ, BFHK, 
BFJK, BGHJ, BGHK, BGJK, BHJK, CDEF, CDEG, 
CDEH, CDEJ, CDEK, CDFG, CDFH, CDFJ, CDFK, 
CDGH, CDGJ, CDGK, CDHJ, CDHK, CDJK, CEFG, 
CEFH, CEFJ, CEFK, CEGH, CEGJ, CEGK, CEHJ, CEHK, 
CEJK, CFGH, CFGJ, CFGK, CFHJ, CFHK, CFJK, CGHJ, 
CGHK, CGJK, CHJK, DEFG, DEFH, DEFJ, DEFK, 
DEGH, DEGJ, DEGK, DEHJ, DEHK, DEJK, DFGH, 
DFGJ, DFGK, DFHJ, DFHK, DFJK, DGHJ, DGHK, 
DGJK, DHJK, EFGH, EFGJ, EFGK, EFHJ, EFHK, EFJK, 
EGHJ, EGHK, EGJK, EHJK, FGHJ, FGHK, FGJK, FHJK, 
GHJK 

III (xx)  AGHK 

 

Table 4-14 Projections for 11 factor NC design 

Projection 
Type 

Number 

Type of Projections 
3-factor 

projections 

4-factor 

projections 

I Full factorial projections 117 94 

II 2 FI Completely Confounded with 
other 2 FIs 

0 8 (2 types) 

III Main effects Partially Confounded 
with Two Factor Interactions 

48 (2 types) 228 (43 types) 

 

Table 4-15 Three factor projections for 11 factor NC design 

Projection Type Projection (a) Isomorphic Projection (b) 

III 

ABC, ACD, AEG, AFJ, AFL, BCJ, BCL, 
BDF, BEG, BEH, BEJ, BFJ, BJK, CDL, 
CGJ, CGL, CHL, DEJ, DFG, DHK, 
EGL, EJL, FGL, GHK, GKL, HJK 

ABK, ACG, ACH, ADF, AEH, 
AEJ, AFH, AHK, AKL, BDK, BFH, 
BFL, BGK, CDJ, CHJ, DEG, DEH, 
DKL, EHL, FGH, FGJ, JKL 
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Table 4-16 Four factor projections for 11 factor NC design 

Projection 
Type 

Projections 

I 

ABDE, ABDG, ABDH, ABDJ, ABEF, ABEL, ABFG, ABGH, ABGJ, ABGL, ABHL, 
ABJL, ACEF, ACEK, ACEL, ACFK, ACJK, ACJL, ADEK, ADEL, ADGH, ADGK, 
ADGL, ADHJ, ADHL, ADJK, ADJL, AEFK, AFGK, AGHJ, AGJK, AGJL, AHJL, 
BCDE, BCDG, BCDH, BCEF, BCEK, BCFG, BCFK, BCGH, BCHK, BDEL, BDGJ, 
BDGL, BDHJ, BDHL, BDJL, BEFK, BEKL, BGHJ, BGHL, BHJL, BHKL, CDEF, 
CDEK, CDFH, CDFK, CDGH, CDGK, CEFG, CEFH, CEFJ, CEFL, CEGH, CEGK, 
CEHK, CEJK, CEKL, CFGK, CFHK, CFJK, CFJL, CFKL, DEFK, DEFL, DFHJ, DFHL, 
DFJK, DFJL, DGHJ, DGHL, DGJK, DGJL, EFGK, EFHJ, EFHK, EFJK, EFKL, EGHJ, 
EGJK, FHJL, FHKL, GHJL 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

II (i) ABHJ, AGHL, BDGH, CEFK, DHJL ABDL, ADGJ, BGJL 

III (i) CDEH, EFGH, FJKL CDFG, CEJL, CGHK, EHJK 

III (ii) 
ACKL, BCDK, BCFH, BFGK, CFHJ, 
DEKL, EFHL 

ACFJ, AEFL, BCEG, CEGJ, DFHK 

III (iii) ABEK, BFKL AEFG, BCEL, BDEF, CDFL, CHKL, DEFJ 

III (iv) 
ACGK, ADFK, AEJK, CDJK, DEGK, 
FGJK 

BFHK 

III (v) 
ABCE, ACDK, AEGK, AFJK, CGJK, 
DEJK, DFGK ABCF, ACDE, BEHK 

III (vi) 
BCKL, BEFG, CDEL 

ABFK, ACFG, ADEF, BDEK, CDFJ, 
DEFH, EHKL 

III (vii) ACFL, BCDF, BCEH, CFHL, EFJL ACEJ, AEKL, BCGK, BEFL, CEHJ, DFKL 

III (viii) CDHK, EGHK, FHJK CDEG, CFGH, CJKL, EFGJ 

III (ix) 
ABFH, ADEH, ADKL, AJKL, DJKL ABEG, ABFJ, BDEJ, BHJK, CEGL, CFGL, 

DGHK, EFGL 

III (x) 
ABDK, ABGK, AFGH, BFGH AFGL, BCDL, BCGJ, BCGL, BCHL, 

CGKL, DHJK, EGKL, FGKL, GHJK 

III (xi) 
ABHK, ACEH, ACFH, AEFH, BDGK, 
CDHJ 

BCEJ, BCFJ, BEFJ, CDGL, CDHL, CGHL, 
EGJL 

III (xii) 
ACHJ, AEHL, BDKL, DEHL ACGJ, ACGL, ACHL, ADFG, AEJL, 

BGKL, CHJK, DEGL, FGHK 

III (xiii) 
ABKL, ACHK, ADFH, AEHK, AFHK, 
AHKL 

ADFJ, ADFL, DEHK 

III (xiv) 
ACGH, AEHJ, BFHL, DEGH, FGHJ AFHJ, AFHL, BFHJ, CDJL, CHJL, DEGJ, 

DEHJ, FGHL, FGJL 

III (xv) 
ACDJ, BEHL, BJKL, DFGH, DFGJ, 
HJKL 

ABCJ, ABCL, ACDL, AEGL, BDFG, 
BEGL, BEJL, DEJL, DFGL 

III (xvi) 
ABCG, ABCH, ACDF, BDFH, BDFL, 
BEGK, DHKL 

ABCD, BCJK, BDFJ, BEJK, BFJK, GHKL 
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Table 4.16 (contd.) Four factor projections for 11 factor NC design 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

III (xvii) ABCK, ACDG, ACDH, AEGH, 
AEGJ, BDFK, BFJL 

AFJL, BCJL, BEGH, BEGJ, BEHJ, CGJL 

III (xviii) AFGJ, BCDJ, BCHJ, BFGJ, 
CDKL, EJKL 

ABJK, AHJK, BDHK, BFGL, BGHK, CDEJ 

III (xix) AFKL, BCFL, BEFH, CGHJ, 
EGHL 

ACEG, AEFJ, BDJK, BGJK, CDGJ, DEFG, 
EHJL 

III (xx) ABFL, ADEG, BDEG, BDEH, 
CEHL, CFGJ, GJKL 

ABDF, ABEH, ABEJ, ADEJ, ADHK, AGHK, 
AGKL, DGKL 

  

Table 4-17 Projections for 12 factor NC design 

Projection 
Type 

Number 
Type of Projections 

3-factor 
projection

s 

4-factor 
projections 

I Full factorial projections 156 144 

II 2 FI Completely Confounded with 
other 2 FIs 

0 15 (2 types) 

III Main effects Partially Confounded 
with Two Factor Interactions 

64 (2 
types) 

336 (40 
types) 

 

Table 4-18 Three factor projections for 12 factor NC design 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

III 

ACD, ACL, ACM, ADH, ADJ, AFM, 
AHK, AHM, BCL, BDJ, BEK, BEL, 
BFM, BGK, BGL, BHK, CEF, CGJ, 
DEF, DEJ, DEK, DFG, DGJ, DGL, 
EFM, EHJ, EJM, ELM, FGH, FGM, 
GJM, GKM 

ACK, ADF, AEK, AEL, AGK, AGL, 
AHL, AJM, BCD, BCK, BCM, BDF, 
BDH, BHL, BHM, BJM, CEJ, CFG, 
CFK, CFL, CJK, CJL, DEL, DGK, EFH, 
EKM, FHK, FHL, GHJ, GLM, HJK, 
HJL 
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Table 4-19 Four factor projections for 12 factor NC design 

Projection 
Type 

Projections 

I 

ABCE, ABCF, ABCG, ABCJ, ABDE, ABDG, ABDK, ABDL, ABEF, ABEH, 
ABEJ, ABEM, ABFG, ABFH, ABFK, ABFL, ABGH, ABGJ, ABGM, ABHJ, 
ABJK, ABJL, ABKM, ABLM, ACEG, ACEH, ACFH, ACFJ, ACGH, ACHJ, 
ADEG, ADEM, ADGM, ADKL, ADKM, ADLM, AEFG, AEFJ, AEGH, AEGJ, 
AEGM, AFGJ, AFHJ, AFJK, AFJL, AFKL, AJKL, AKLM, BCEG, BCEH, 
BCFH, BCFJ, BCGH, BCHJ, BDEG, BDEM, BDGM, BDKL, BDKM, BDLM, 
BEFG, BEFJ, BEGH, BEGJ, BEGM, BFGJ, BFHJ, BFJK, BFJL, BFKL, BJKL, 
BKLM, CDEG, CDEH, CDEM, CDFH, CDFJ, CDFM, CDGH, CDGM, CDHJ, 
CDHK, CDHL, CDJM, CDKL, CDKM, CDLM, CEGK, CEGL, CEGM, CEHK, 
CEHL, CEHM, CEKL, CFHM, CFJM, CGHK, CGHL, CGHM, CGKL, CHJM, 
CHKM, CHLM, CKLM, DEGH, DEHM, DFHJ, DFHM, DFJK, DFJL, DFKL, 
DFKM, DFLM, DGHM, DHJM, DHKL, DHLM, DHLM, DJKL, DJKM, 
DJLM, EFGK, EFGL, EFJK, EFJL, EFKL, EGHK, EGHL, EGHM, EGJK, EGJL, 
EHKL, EJKL, FGJK, FGJL, FGKL, FHJM, FJKM, FJLM, FKLM, GHKL, GJKL, 
HKLM, JKLM 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

II (i) 
ABCH, ABDM, ABEG, ABFJ, 
ABKL 

CDHM, CEGH, CFHJ, CHKL, DEGM, 
DFJM, DKLM, EFGJ, EGKL, FJKL 

III (i) 
BCEJ, BCFG, BEFH, BGHJ, CDEL, 
CDGK, CEKM, CGLM, DFHK, 
DHJL 

ACEF, ACGJ, AEHJ, AFGH 

III (ii) 
AFGL, BEHM, CDFL, CDJK, 
EHKM, GHLM 

AGHM, BFGK 

III (iii) 
AEFK, AEJL, AGJK, AJKM, AJLM, 
BCGM, BDGH, DEHL, DGHK 

ACEM, ADEH, BEFL, BEJK, BFKM, 
BFLM, BGJL 

III (iv) 
ADFK, ADFL, BCDE, CFKM, 
CJLM, FHLM, HJKM 

BCDG, BDFK, BDFL, CFLM, CJKM, 
FHKM, HJLM 

III (v) ACDE, ADJK, ADJL ACDG, BDJK, BDJL 

III (vi) 
ACGM, ADGH, AFKM, AFLM, 
BEFK, BEJL, BGJK, DEHK, DGHL 

AEFL, AEJK, AGJL, BCEM, BDEH, 
BJKM, BJLM 

III (vii) AEHM, BFGL, EHLM, GHKM AFGK, BGHM, CDFK, CDJL 

III (viii) 
BCEF, BCGJ, BEHJ, BFGH, CDEK, 
CDGL, CELM, CGKM 

ACEJ, ACFG, AEFH, AGHJ, DFHL, 
DHJK 

III (ix) 
ABCK, ABDF, ABHL, ABJM, 
ADEL, ADGK, AFHL, BFHL, CHJK, 
CHJL 

ABCL, ABDJ, ABFM, ABHK, AEFM, 
BDEK, BDGL, BEFM, CDEF, CDGJ, 
EGJM 

III (x) 
ACFK, ACJK, AHJL, BCFK, BCJK, 
BHJL, CFHK, CFHL, FHJK, FHJL 

ADEJ, ADGJ, AFGM, BDEJ, BDGJ, 
BFGM, DEHJ, EFGM, FGJM, FGKM 

III (xi) 
ACEK, ACGK, AEGK, AEGL, 
AEHL, AGHL, BCHM, BCJM, 
BHJM, CFJK, CFJL 

ACFM, ACHM, AFHM, BCEL, 
BCGL, BEGK, BEGL, BEHK, BGHK, 
DEGJ, EFJM, EFLM, EJLM, GJKM 
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Table 4.19 (contd.) Four factor projections for 12 factor NC design 

Projection 
Type 

Projection (a) Isomorphic Projection (b) 

III (xii) 
AEKM, AGLM, EFHK, EFHL, GHJK, 
GHJL 

ADFG, AELM, AGKM, BDFG, 
CEJM, CFGH, CFGM, DELM, 
DGKM 

III (xiii) 
BCDF, BCDH, BDHL, BDHM, 
CEJK, CEJL 

ADFM, BCDJ, BDFM, BDHK, CFGJ, 
EFHJ, GHJM 

III (xiv) 
AEKL, AGKL, BCDK, BCDM, 
BCKM, BDFH, BHLM, CFGK, 
CFGL, CFKL, CJKL, FHKL, HJKL 

ACKL, ACKM, ADFH, ADFJ, AHLM, 
BCDL, BCKL, BDFJ, BDHJ, DGKL, 
EFHM 

III (xv) 
BEKM, BGLM, CEFH, DEFH, 
DEKM, DGLM, EHJK, EHJL, FGHJ 

BELM, BGKM, CEFM, CGJM, 
DEFM, DEJM, DFGH, DFGM, 
DGJM 

III (xvi) 
ACDF, ADHL, ADJM, BDJM, 
CEFG, CEFK, CEFL, CGJK, CGJL, 
DFGK, FGHK, FGHL 

ACDH, ACDJ, ADHK, ADHM, 
DEFG, DFGJ, DFGL, EHJM 

III (xvii) ACDK, AHKL, BCLM, BHKL, 
BHKM, CEFJ, DEFL, DEJL, DEKL, 
DGJK 

ACDL, ACDM, ACLM, ADHJ, 
AHKM, BEKL, BGKL, DEFJ, DEFK, 
DEJK, DGJL, FGHM 

III (xviii) ACFL, ACJL, AHJK, BCFL, BCJL, 
BHJK, CGHJ, DGHJ, FGLM 

ADEF, BDEF, CEHJ, EFGH 

III (xix) ACEL, ACGL, ACHL, ACJM, AFJM, 
AHJM, BCHL, BEHL, BFHM, 
BFJM, BGHL, DEGK, EFKM, 
EJKM, GJLM, GKLM 

ACHK, AEHK, AGHK, BCEK, BCFM, 
BCGK, BCHK, CEGJ, DEGL, EKLM 

III (xx) ABCD, ABCM, ABDH, ABHM, 
AFHK, BDEL, BDGK, BFHK, EGHJ, 
EGLM 

ABEK, ABEL, ABGK, ABGL, ADEK, 
ADGL, AEJM, AGJM, BEJM, BGJM, 
CDEJ, CDFG, EGKM 

 

Table 4-20 Projections for 13 factor NC design 

Proj 
Type 

Number 

Type of Projections 
3-factor 

projections 

4-factor 

projections 

I Full factorial projections 198 180 

II 2 FI Completely Confounded with 
other 2 FIs 

0 15 (1 type) 

III Main effects Partially Confounded 
with Two Factor Interactions 

88 (2 types) 520 (40 types) 
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Table 4-21 Three factor projections for 13 factor NC design 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

III 

ABC, ABH, ABK, ACL, ACN, ADF, AFJ, 
AFN, AJK, AKL, ALM, BCE, BDJ, BEK, 
BEM, BFK, BGN, BHJ, BHN, BJM, 
BMN, CDM, CEJ, CEL, CFH, CFL, CFM, 
CGH, DHK, DLN, EFG, EFJ, EFN, EHL, 
EKL, EKN, FHJ, FHK, FKM, FMN, GJL, 
GKM, HJL, HLN, JLM, LMN 

ABM, ACJ, ADH, ADM, AFG, 
AGH, AGM, AHL, AKN, BCF, BDF, 
BDN, BEH, BFG, BGJ, CDH, CDJ, 
CDN, CEN, CGJ, CGM, CGN, DEF, 
DEH, DEM, DFL, DJK, DJL, DKM, 
DKN, EGH, EGM, EJK, ELM, FGL, 
FHN, FJM, FKL, GHK, GJK, GKN, 
GLN 
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Table 4-22 Four factor projections for 13 factor NC design 

Proj Type Projections 

I 

ABDE, ABDG, ABDL, ABEF, ABEG, ABEJ, ABEN, ABFL, ABGL, ABJL, ABJN, 
ABLN, ACDE, ACDG, ACDK, ACEF, ACEG, ACEH, ACEM, ACFK, ACGK, 
ACHK, ACHM, ACKM, ADEJ, ADEK, ADEL, ADEN, ADGJ, ADGK, ADGL, 
ADGN, ADJN, AEFH, AEFK, AEFL, AEFM, AEGJ, AEGK, AEGL, AEGN, 
AEHJ, AEHK, AEHN, AEJL, AEJM, AEKM, AELN, AEMN, AFHM, AGJN, 
AHJM, AHJN, AHKM, AHMN, AJLN, AJMN, BCDG, BCDK, BCDL, BCGK, 
BCGL, BCHK, BCHL, BCHM, BCJK, BCJL, BCJN, BCKM, BCKN, BCLM, 
BCLN, BDEG, BDEL, BDGH, BDGK, BDGM, BDHL, BDHM, BDKL, BDLM, 
BEFL, BEGL, BEJL, BEJN, BELN, BFHL, BFHM, BFJL, BFJN, BFLM, BFLN, 
BGHL, BGHM, BGKL, BGLM, BHKL, BHKM, BJKL, BJKN, BKLM, BKLN, 
CDEG, CDEK, CDFG, CDFK, CDGL, CDKL, CEFK, CEGK, CEHK, CEHM, 
CEKM, CFGK, CFJK, CFJN, CFKN, CGKL, CHJK, CHJM, CHJN, CHKL, CHKN, 
CHLM, CHMN, CJKL, CJKM, CJLN, CJMN, CKLM, CKLN, CKMN, DEGJ, 
DEGK, DEGL, DEGN, DEJN, DFGH, DFGJ, DFGK, DFGM, DFGN, DFHM, 
DFJN, DGHJ, DGHL, DGHN, DGJM, DGKL, DGLM, DGMN, DHJM, DHJN, 
DHLM, DHMN, DJMN, EFHM, EGJN, EHJM, EHJN, EHKM, EHMN, EJLN, 
EJMN, FGHM, FGJN, FHLM, FJKN, FJLN, GHJM, GHJN, GHLM, GHMN, 
GJMN, HJKM, HJKN, HKLM, HKMN, JKLN, JKMN 

Proj Type Projection (a) Isomorphic Projection (b) 

II (i) 

ABEL, ACEK, ADEG, AEHM, AEJN, 
BCKL, BDGL, BHLM, BJLN, CDGK, 
CHKM, CJKN, DGHM, DGJN, 
HJMN 

 

III (i) 
ABDN, ABGJ, ADJL, AGLN, BCDH, 
BCGM, BDKM, BGHK, CDEF, 
DFHN, DFJM, EGLN, FGJK 

ACFM, AFHK, BEFN, CHJL, CLMN, 
DEKL, EFKM 

III (ii) 
ACFG, BEGJ, CFGN, DEJL, DFKN, 
FGHN, FGJM 

ABFJ, AFLM, AGKL, AHJK, BCHN, 
BCJM, BKMN, CEFH, EFHL, EHKN, 
HKLN, JKLM 

III (iii) 
ADJM, BDEN, CDFJ, CGLM, DFHL, 
DKLM, EGJM 

ABDK, ABFH, ACDL, ACHN, ACMN, 
AFLN, BCDE, BEFM, BEGK, BFJK, 
CEGL, CEHJ, CFJL, EKMN 

III (iv) 
ADHN, AFGK, AGHJ, AGMN, 
BDFM, BFGH, CDHL, DEFK, DEHJ, 
DEMN, EGHN, FGLM, GHKL 

ACJM, ADHJ, ADMN, AGHN, BCFJ, 
BCFN, BDFH, BFGM, DEHN, DFLM, 
EGHJ, EGMN, EJKM, FKLN 

III (v) 
ABCD, ADFK, AFJL, BCEG, CGHL, 
DHKL, EFGK 

ABCG, AJKM, BFKN, BHJK, CEJM, 
CFLN, EFJL 

III (vi) 
ABGK, ACGL, BDEJ, BHKN, BJKM, 
CDLM, EFLN, GKLM, HJKL 

ABFM, ACHJ, AGJM, AKMN, BEFH, 
CDFN, CEHN, CEMN, DEJM, FGHL 

III (vii) 
ABFN, ACDF, ADKL, BCHJ, BCMN, 
BDEK, BEGN, CDEL, CEFM, DELN, 
EGKL, FGHJ, FGMN 

AFHL, AHKN, CFGJ, DFJK, EFLM, 
EHJK, FJKL 
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Table 4.22 (contd.) Four factor projections for 13 factor NC design 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

III 
(viii) 

ABDJ, ABGN, ACFH, ADLN, AFKM, 
AGJL, BCDM, BCGH, BDHK, BEFJ, 
BGKM, CEFG, CHLN, CJLM, DFHJ, 
DFMN, EFHK, EGJL, KLMN 

FGKN 

III (ix) 
ABFG, ACDH, ACGM, ADKN, AEGH, 
AEGM, AGKN, BCDN, BCGJ, BDEH, 
CEGM, DEJK, DGJK, DGKN, EGJK 

AEFJ, AEFN, AEKL, AJLM, BFHJ, 
BFMN, BLMN, DFHK, DHLN, FGKM, 
FLMN, GHJL 

III (x) 

ACDJ, ACGJ, ADEH, ADEM, ADKM, 
BDEF, BDKN, BEGH, CDEH, CDKN, 
CGKN, CGLN, DEGH, DEGM, DELM, 
DFGL, DFKL 

ABEK, ABFK, ACEL, ACFL, AFHJ, 
AFMN, BFHK, BHLN, BJLM, CEFJ, 
CEHL, CEKL, CFKM, DLMN, EFHJ, 
EFMN, EHJL, HLMN 

III (xi) 
ABDM, ABGM, ADGH, ADGM, BCDF, 
CDEN, CDGJ, CDGN, CEGN, DEKM, 
DFJL, EGLM, FGKL, GHJK, GKLN 

ABJK, ACFN, ACKL, BDHJ, BEFK, 
BEJM, BGHN, BGMN, BHMN, CDFM, 
CEFL, CFGH, EFKN, EHKL 

III (xii) 

AFGL, AGHK, BDFL, BFGL, BGJK, 
CDJK, CDJL, CGJK, EGHK, FGLN 

ABMN, ADHK, AHLN, BCFH, BCFL, 
BCFM, BEHL, BGJL, CDHK, CGJL, 
DEFG, DEFJ, DEFN, DEHL, DJLM, 
ELMN 

III 
(xiii) 

ADHL, AFGH, AFGM, AGHL, BCFG, 
BDFG, BFGJ, DEFL, DJKM, DJKN, 
GHKN, GJKN 

ACJK, AHLM, BCFK, BDFK, BEHJ, 
BEHN, BFGN, BGJM, DEHK, DFLN, 
DJLN, EGHL, EJKL, EJKN, FJMN, 
GHKM, GJKM 

III 
(xiv) 

ADHM, AGHM, BDFN, CDHJ, CDHN, 
CDJN, CGJM, CGJN, CGMN, DEFH, 
DEFM, DEHM, DJKL, DKMN, EGHM 

ACJL, ACJN, AFGJ, AFGN, BDFJ, BEHK, 
BEHM, BFGK, BGJN, CDHM, CDJM, 
FKLM, GJKL 

III (xv) 

ABCF, ADFL, AFJM, BCEN, BDJK, 
BDJL, BFKL, CEJK, CELM, CFHN, 
CGHK, EFGL, EFJM 

ABCE, ABHJ, ABHN, ALMN, BCEJ, 
BCEL, BEKL, BEKN, BFKM, BHJL, 
CFHJ, CFHK, CFMN, EHLN, FHJL, 
GJLM, HJLM, JLMN 

III 
(xvi) 

ABCJ, ABHL, ABKN, ADFG, AJKN, 
BCEH, DHKM, DHKN, EFGH, EFGM, 
EFJK, EHLM, EKLM, FHJM, FHKL, 
GJLN 

ABCL, ABCN, ABKL, ACLM, ADFJ, 
ADFN, AFJK, AJKL, AKLM, BCEK, 
BCEM, BDJM, BEMN, BHJM, BJMN, 
FHKM, FKMN, HJLN 

III 
(xvii) 

ABCM, ABHM, ABKM, ADFH, ADFM, 
AKLN, BCEF, BDJN, CDMN, CEJN, 
CELN, CGHJ, CGHM, CGHN, FHJN, 
FHKN, GKMN 

ABCH, ABCK, ABHK, ACLN, AFJN, 
BEKM, BHJN, CEJL, CFHL, CFHM, 
CFLM, EFGJ, EFGN, EFJN, EKLN, FHJK 

III 
(xviii) 

ABEH, ACDN, ACEN, ACGN, ADEF, 
AFHN, BEGM, BEJK, BELM, BGKN, 
BGLN, CDEM, CDKM, CFGL, CFJM, 
CFKL, EFHN 

ABEM, ABJM, ACEJ, AGKM, AHJL, 
BDLN, CDLN, CEFN, CEKN, CGKM, 
EGKM, FGJL, FHLN, FJLM, GLMN 
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Table 4.22 (contd.) Four factor projections for 13 factor NC design 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

III 
(xix) 

ABDH, ABGH, ACHL, ACKN, AFKN, 
BDGJ, CDGM, CEGJ, CFGM, DHJK 

ABLM, ACFJ, ADLM, AGLM, AHKL, 
BDGN, BDHN, BDMN, BGHJ, CDEJ, 
CDFH, CDGH, DKLN, FHMN, FJKM 

III (xx) 

ABDF, ADJK, AEJK, AELM, AFKL, 
AGJK, BCDJ, BCGN, BDEM, BFHN, 
BFJM, CDFL, CEGH, DGHK, DGLN, 
EFKL, EGKN, FGHK 

ACDM, ACGH, AEFG, AEHL, AEKN, 
BEFG, DEKN, DFKM, DGJL, DGKM, 
DHJL, EJLM, GHLN 

 
Table 4-23 Projections for 14 factor NC design 

Proj 
Type 

Number 
Type of Projections 

3-factor 
projections 

4-factor 
projections 

I Full factorial projections 252 252 

II 2 FI Completely Confounded with 
other 2 FIs 

0 21 (1 type) 

III Main effects Partially Confounded 
with Two Factor Interactions 

112 (2 types) 728 (30 types) 

 

Table 4-24 Three factor projections for 14 factor NC design 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

III (a) 

ABG, ABK, ABN, ACG, ACK, ACM, 
ADH, ADL, ADO, AEJ, AEM, AEN, AGH, 
AHJ, AJL, AKL, AMO, ANO, BDE, BDK, 
BDO, BEH, BEJ, BFG, BFK, BFM, BGJ, 
BHM, BHN, BJO, BLM, BLN, BLO, CDE, 
CDG, CDO, CEJ, CEL, CFG, CFK, CFN, 
CHM, CHN, CHO, CJK, CJO, CLM, CLN, 
DEF, DFH, DFL, DGM, DGN, DHM, 
DKM, DKN, DLN, EFM, EFN, EGH, EGL, 
EGN, EHK, EKL, EKM, FGL, FHJ, FHK, 
FJL, FJO, FMO, FNO, GHO, GJM, GJN, 
GLO, GMO, HJN, HKO, JKM, JKN, JLM, 
KLO, KNO 

ABM, ACN, ADE, AGL, AHK, AJO, 
BDG, BEL, BFN, BHO, BJK, CDK, 
CEH, CFM, CGJ, CLO, DFO, DHN, 
DLM, EFJ, EGM, EKN, FGH, FKL, 
GNO, HJM, JLN, KMO 
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Table 4-25 Four factor projections for 14 factor NC design 

Project
ion 

Type 

Projections 

I 

ABCD,  ABCE,  ABCH,  ABCJ,  ABCL,  ABCO,  ABDF,  ABDJ,  ABEF,  ABEO,  
ABFH,  ABFJ,  ABFL,  ABFO,  ABHL,  ACDF,  ACDJ,  ACEF,  ACEO,  ACFH,  
ACFJ,  ACFL,  ACFO,  ACHL,  ADFG,  ADFK,  ADFM,  ADFN,  ADGJ,  ADGK,  
ADJK,  ADJM,  ADJN,  ADMN,  AEFG,  AEFH,  AEFK,  AEFL,  AEGK,  AEGO,  
AEHL,  AEHO,  AEKO,  AELO,  AFGJ,  AFGM,  AFGN,  AFGO,  AFHM,  AFHN,  
AFHO,  AFJK,  AFJM,  AFJN,  AFKM,  AFKN,  AFKO,  AFLM,  AFLN,  AFLO,  
AGJK,  AGKM,  AGKN,  AGKO,  AGMN,  AHLM,  AHLN,  AHLO,  AHMN,  
AJMN,  AKMN,  ALMN,  BCDF,  BCDH,  BCDL,  BCDM,  BCDN,  BCEF,  BCEG,  
BCEK,  BCEM,  BCEN,  BCFH,  BCFJ,  BCFL,  BCFO,  BCGH,  BCGL,  BCGM,  
BCGN,  BCGO,  BCHJ,  BCHK,  BCJL,  BCJM,  BCJN,  BCKL,  BCKM,  BCKN,  
BCKO,  BCMO,  BCNO,  BDFJ,  BDHJ,  BDHL,  BDJL,  BDJM,  BDJN,  BDMN,  
BEFO,  BEGK,  BEGO,  BEKO,  BEMN,  BEMO,  BENO,  BFHL,  BGHK,  BGHL,  
BGKL,  BGKM,  BGKN,  BGKO,  BGMN,  BHJL,  BHKL,  BJMN,  BKMN,  
BMNO,  CDFJ,  CDHJ,  CDHL,  CDJL,  CDJM,  CDJN,  CDMN,  CEFO,  CEGK,  
CEGO,  CEKO,  CEMN,  CEMO,  CENO,  CFHL,  CGHK,  CGHL,  CGKL,  CGKM,  
CGKN,  CGKO,  CGMN,  CHJL,  CHKL,  CJMN,  CKMN,  CMNO,  DEGJ,  DEGK,  
DEGO,  DEHJ,  DEHL,  DEHO,  DEJK,  DEJL,  DEJM,  DEJN,  DEKO,  DELO,  
DEMN,  DEMO,  DENO,  DFGJ,  DFGK,  DFJK,  DFJM,  DFJN,  DFMN,  DGHJ,  
DGHK,  DGHL,  DGJL,  DGJO,  DGKL,  DGKO,  DHJK,  DHJO,  DHKL,  DHLO,  
DJKL,  DJKO,  DJLO,  DJMO,  DJNO,  DMNO,  EFGK,  EFGO,  EFHL,  EFHO,  
EFKO,  EFLO,  EGJK,  EGJO,  EHJL,  EHJO,  EHLM,  EHLN,  EHMN,  EHMO,  
EHNO,  EJKO,  EJLO,  EJMN,  EJMO,  EJNO,  ELMN,  ELMO,  ELNO,  FGJK,  
FGKM,  FGKN,  FGKO,  FGMN,  FHLM,  FHLN,  FHLO,  FHMN,  FJMN,  
FKMN,  FLMN,  GHJK,  GHJL,  GHKM,  GHKN,  GHLM,  GHLN,  GHMN,  GJKL,  
GJKO,  GKLM,  GKLN,  GLMN,  HJKL,  HJLO,  HKLM,  HKLN,  HKMN,  HLMO,  
HLNO,  HMNO,  JMNO,  KLMN,  LMNO 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

II (i) 

ABCF,  ADFJ,  AEFO,  AFGK,  AFHL,  
AFMN,  BCDJ,  BCEO,  BCGK,  
BCHL,  BCMN,  DEJO,  DGJK,  DHJL,  
DJMN,  EGKO,  EHLO,  EMNO,  
GHKL,  GKMN,  HLMN 

 

III (i) 

 ABEH,  ABLO,  ACEL,  ACHO,  ADGM,  
ADKN,  AGJN,  AJKM,  BDFH,  BEGN,  
BEKM,  BFJL,  BGMO,  BKNO,  CDFL,  
CEGN,  CEKM,  CFHJ,  CGMO,  CKNO,  
DEGL,  DEHK,  DGHO,  DKLO,  EHJN,  
EJLM,  FGJM,  FJKN 
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Table 4.25 (contd.) Four factor projections for 14 factor NC design 

Proj Type Projection (a) Isomorphic Projection (b) 

III (ii) 

 ABDL,  ABHJ,  ACDH,  ACJL,  AHMO,  
ALNO,  BDFM,  BEFK,  BFLO,  BGHN,  
BGLM,  BKLN,  CDFN,  CEFG,  CFHO,  
CGHM,  CGLN,  CHJK,  CKLM,  DEHM,  
DELN,  DFGN,  DFKM,  EJKL,  FGJO,  
FHNO,  FLMO,  GJLO,  HJKO 

III (iii) 

 ABDN,  ABEG,  ABJN,  ACDM,  ACEK,  
ACJM,  ADGO,  ADKO,  AEGJ,  AEHN,  
AELM,  BDHK,  BDNO,  BEFH,  BFJM,  
BGHJ,  BHKM,  BJMO,  CDMO,  CEFL,  
CFJN,  CHKN,  CJNO,  EFHM,  EFLN,  
FJKO 

III (iv) 

 ADEG,  ADEK,  AGLM,  AGLN,  AHKM,  
AHKN,  BDGH,  BDGL,  BJKL,  CDKL,  
CGJL,  DHNO,  DLMO,  EFJK,  FGHM,  
FGHN,  FKLM,  FKLN,  HJMO,  JLNO 

III (v) 

ABGO,  ACKO,  BDEN,  BEJM,  
BFKO,  CDEM,  CEJN,  CFGO 

ABKO,  ACGO,  AEJK,  AGHM,  AGHN,  
AKLM,  AKLN,  BDEM,  BDKL,  BEJN,  
BFGO,  BGJL,  CDEN,  CDGH,  CDGL,  
CEJM,  CFKO,  CJKL,  DEFG,  DEFK,  
DHMO,  DLNO,  EGHJ,  FGLM,  FGLN,  
FHKM,  FHKN,  HJNO,  JLMO 

III (vi) 

ABEK,  ACEG,  AEHM,  AELN,  
BDMO,  BHKN,  BJNO,  CDNO,  
CHKM,  CJMO,  EFHN,  EFLM,  
EGJL,  EHJK,  GHJO 

ABDM,  ABJM,  ACDN,  ACJN,  AJKO,  
BEFL,  BFJN,  CDHK,  CEFH,  CFJM,  
CGHJ,  DFGO,  DFKO,  EFGJ 

III (vii) 

ABDH,  ABJL,  ACDL,  ACHJ,  
AHNO,  ALMO,  BEFG,  BGHM,  
BGLN,  BKLM,  CEFK,  CGHN,  
CGLM,  CKLN,  DFGM,  DFKN,  
FHMO,  FLNO 

AGJO,  BDFN,  BFHO,  BHJK,  CDFM,  
CFLO,  DEHN,  DELM 

III (viii) 

ADGN,  ADKM,  AGJM,  AJKN,  
BDFL,  BFHJ,  CDFH,  CFJL,  
DEGH,  DEKL,  DGLO,  DHKO,  
FGJN,  FJKM,  JKLO 

ABEL,  ABHO,  ACEH,  ACLO,  BEGM,  
BEKN,  BGNO,  BKMO,  CEGM,  
CEKN,  CGNO,  CKMO,  EHJM,  EJLN 
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Table 4.25 (contd.) Four factor projections for 14 factor NC design 

Proj Type Projection (a) Isomorphic Projection (b) 

III (ix) 

 ABDO,  ABEJ,  ACDO,  ACEJ,  AEGH,  
AEKL,  AFHJ,  AFJL,  AFMO,  AFNO,  
AGMO,  AKNO,  BCDE,  BCDO,  BCEJ,  
BCFG,  BCFK,  BCHM,  BCHN,  BCJO,  
BCLM,  BCLN,  BDHM,  BDLN,  BEFM,  
BFJO,  BGLO,  BJLM,  BKLO,  CDHM,  
CDLN,  CEFN,  CFJO,  CGHO,  CJLM,  
DEGN,  DEKM,  DJKM,  DJKN,  EFGL,  
EFHK,  EJKM,  FGMO,  FKNO,  GHJN,  
GKLO 

III (x) 

 ABDK,  ABFG,  ABFK,  ABHN,  ABLN,  
ACDG,  ACFG,  ACFK,  ACHM,  ACJK,  
ACLM,  ADFH,  ADFL,  AEFM,  AEFN,  
AEGN,  AEKM,  BEGH,  BFHK,  BHJN,  
CEGL,  CEKL,  CFHK,  CHJN,  CHKO,  
DFGL,  DFJL,  DGJM,  DGJN,  EGJN,  
GHKO,  GJKM,  GJKN,  GJLM,  HJKN,  
HKLO,  HKNO 

III (xi) 

 ABCG,  ABCK,  ABEN,  ACEM,  ADGH,  
ADJL,  ADKL,  ADMO,  ADNO,  AEHJ,  
AJKL,  AMNO,  BDFK,  BDJO,  BDLO,  
BEGJ,  BFHM,  BFLM,  BHLM,  BHLN,  
BJLO,  CDFG,  CDHO,  CDJO,  CFHN,  
CFJK,  CFLN,  CHJO,  CHLM,  CHLN,  
DGHM,  DGKM,  DGKN,  DGLN,  DHKM,  
DKLN,  EFGN,  EFKM,  EGKL,  FGJL,  
FJMO,  FJNO,  FMNO,  GHLO,  GHMO,  
GLMO,  JKLM,  KLNO 

III (xii) 

 ADEF,  AGLO,  AHKO,  BDGM,  BDGN,  
BFNO,  BJKM,  BJKN,  CDKM,  CDKN,  
CEHK,  CFMO,  CGJM,  CGJN,  EFJL,  
EFJO,  EGMO,  EKNO,  FGHO,  FKLO 

III (xiii) 

 ABMO,  ACNO,  ADEJ,  ADEM,  ADEN,  
AHKL,  BDGJ,  BELM,  BELN,  BELO,  
CEHM,  CEHN,  CEHO,  CGJK,  CGJO,  
FGHJ,  FGHK 

III (xiv) 

 ABMN,  ADEH,  ADEL,  ADEO,  BDGK,  
BDGO,  BJKO,  CDKO,  CEHJ,  CEHL,  
CFMN,  DLMN,  EFJM,  EFJN,  EGMN,  
FGHL,  HJMN 
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Table 4.25 (contd.) Four factor projections for 14 factor NC design 

Proj 
Type 

Projection (a) Isomorphic Projection (b) 

III 
(xv) 

ACGJ,  ADHN,  ADLM,  AHJM,  
AJLN,  BFGH,  BFKL,  CFGH,  
CFKL,  DEFJ,  DGNO,  DKMO,  
EGNO,  EKMO,  FHJM,  FJLN,  
JKMO 

ABGJ,  ADHM,  ADLN,  AGHO,  AHJN,  AJLM,  
AKLO,  BDEF,  BDKM,  BDKN,  BEHK,  BFGL,  
BFMO,  BGJM,  BGJN,  CDEF,  CDGM,  
CDGN,  CFGL,  CFNO,  CJKM,  CJKN,  DEFM,  
DEFN,  DFHJ,  DFHK,  DGMO,  DKNO,  
EFMO,  EFNO,  EGHO,  EGLO,  EHKO,  EKLO,  
FGLO,  FHJN,  FHKO,  FJLM,  JKNO 

III 
(xvi) 

ABGL,  ACGL,  ADHK,  AEJO,  
AGHK,  AHJO,  BDEL,  BEHO,  
BEJK,  BGJK,  CDEH,  CDGJ,  
CELO,  CFGJ,  DEFO,  DFHN,  
DFLM,  EHKN,  FHKL,  GJNO 

ABGH,  ABKL,  ABNO,  ACGH,  ACKL,  ACMO,  
ADHJ,  AEJL,  AEMO,  AENO,  AGHJ,  AHJL,  
BDEH,  BDEJ,  BEHM,  BEHN,  BEJO,  BFGJ,  
BGJO,  CDEJ,  CDEL,  CEJK,  CEJO,  CELM,  
CELN,  DEFH,  DEFL,  DFHM,  DFLN,  EGHK,  
EHKL,  EHKM,  FHJL,  FHJO,  GJMO 

III 
(xvii) 

ABGM,  ABKM,  ACGN,  ACKN,  
ACMN,  AGHL,  AHJK,  AJLO,  
BDEG,  BEHL,  BEJL,  BFGN,  
BFKN,  BFMN,  BHMO,  BHNO,  
CDEK,  CDGK,  CFGM,  CFKM,  
CLMO,  CLNO,  DFHO,  DFLO,  
DHMN,  EGHM,  EGLM,  EKLN,  
EKMN,  JLMN 

ABGK,  ABGN,  ABKN,  ACGK,  ACGM,  
ACKM,  ADHL,  ADHO,  ADLO,  AEJM,  AEJN,  
AEMN,  BDEK,  BDEO,  BDKO,  BEHJ,  BFGK,  
BFGM,  BFKM,  BHMN,  BLMN,  BLMO,  
BLNO,  CDEG,  CDEO,  CDGO,  CEJL,  CFGK,  
CFGN,  CFKN,  CHMN,  CHMO,  CHNO,  
CJKO,  CLMN,  DFHL,  DGMN,  DKMN,  
EFMN,  EGHL,  EGHN,  EGLN,  EKLM,  FHJK,  
FJLO,  GJMN,  JKMN 

III 
(xviii

) 

ABDG,  ABFN,  ABJK,  ACDK,  
ACFM,  ADFO,  AEFJ,  AEGM,  
AEKN,  BDFO,  BEFJ,  BHJM,  
CDFO,  CEFJ,  CHJM,  DFGH,  
DFKL,  DHJM,  GJLN,  HJLN,  
HKMO 

ABFM,  ABHM,  ABLM,  ACFN,  ACHN,  
ACLN,  BEGL,  BEKL,  BHKO,  CEGH,  DFJO,  
DFMO,  DFNO,  DHJN,  EFHJ,  EGJM,  HJKM,  
HJLM 

III 
(xix) 

ABCN,  ABHK,  ACHK,  ADGL,  
ADJO,  BDHO,  BDJK,  BFJK,  
CDLO,  CEGJ,  CHLO,  CJLO,  
DGHN,  DGLM,  DHLM,  
DKLM,  EFGM,  EFKN,  EGKN,  
FGKL,  FJKL,  GHNO,  GLNO,  
GMNO,  JKLN,  KLMO 

ABCM,  ABEM,  ACEN,  AGJL,  AGKL,  AJMO,  
AJNO,  BDFG,  BFHN,  BFLN,  BHJO,  BHLO,  
CDFK,  CDJK,  CFHM,  CFLM,  DHKN,  DHLN,  
EGKM,  KMNO 

III 
(xx) 

AFGH,  AFKL,  AGNO,  AKMO,  
BCDK,  BCEH,  BCFM,  BCGJ,  
BCLO,  BDHN,  BDLM,  BJLN,  
CDHN,  CDLM,  CJLN,  DEGM,  
DEKN,  DJLN,  EFGH,  EFKL,  
FGNO,  FKMO,  GHJM,  GKMO 

ABDE,  ABJO,  ACDE,  ACJO,  AEGL,  AEHK,  
AFGL,  AFHK,  AFJO,  BCDG,  BCEL,  BCFN,  
BCHO,  BCJK,  BEFN,  BGHO,  CEFM,  CGLO,  
CKLO,  DJLM,  EJKN,  GKNO 
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4.6. Analysis Method 

Based on the projection properties of the 9 – 14 factor NC designs, it can be 

clearly seen that the full three and four factor models with main effects and their 

interactions can be fit. The projections show that there are eight distinct design 

points for all three factor projections and atleast 12 distinct design points for the 

four factor projections. This indicates that the full factorial model can be fit for all 

the three and four factor projections for the 9 – 14 factor NC designs. Therefore 

using all possible subsets regression method for analyzing these designs is a 

logical method to analyze these designs. I tested a variation of the all possible 

subsets regression along with stepwise regression on two examples. The method 

used is listed below. 

Step 1: Fit all possible subsets from one to ten terms with only main effects. 

Step 2: Pick the best main effects only model and add all the two factor 

interactions for the selected main effects. 

Step 3: Fit all possible subsets from one to ten terms for this modified list of 

factors 

Step 4: Pick the best 2 or 3 models and fit the ordinary least squares model to it 

and select the terms from the model which is the best fit amongst these models. 

4.6.1. Example I 

This example is from Junqua, Duran, Gancet and Goulas (1997), where they 

study microbial transglutaminase production using a designed experiment 

approach. In the example they study five factors casein (X1), glycerol (X2), 

peptones (X3), yeast extract (X4) and oligoelements (X5). I added two dummy 
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variables to extend the design to a nine factor design. The original experiment 

was run as a 32 run full factorial experiment with five center runs. I used the 

results from the original experiment to simulate data for the NC nine factor 

design in 16 runs with the same coefficients and RMSE as the original 

experiment. The analysis of the original experiment showed that X1, X2, X4 and 

X1X2 are the significant effects. The analysis method described in the previous 

section is used to analyze this simulated experiment. The simulated dataset is 

shown in Table 4-26.  

Table 4-26 The 9 factor no-confounding design for the microbial 

transglutaminase production experiment 

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 Growth 

1 -1 -1 -1 -1 -1 -1 1 -1 1 0.0188893887 
2 -1 -1 -1 1 -1 1 -1 1 -1 0.0289614421 
3 -1 -1 1 -1 1 1 1 1 -1 -0.001691386 
4 -1 -1 1 1 1 -1 -1 -1 1 0.0365263064 
5 -1 1 -1 -1 1 1 -1 1 1 0.0724725282 
6 -1 1 -1 1 1 -1 1 -1 -1 0.0872040587 
7 -1 1 1 -1 -1 -1 -1 1 -1 0.0586051129 
8 -1 1 1 1 -1 1 1 -1 1 0.1055086723 
9 1 -1 -1 -1 1 -1 -1 -1 -1 0.0185123407 

10 1 -1 -1 1 1 1 1 1 1 0.0528304058 
11 1 -1 1 -1 -1 1 -1 -1 1 0.0482017164 
12 1 -1 1 1 -1 -1 1 1 -1 0.0572336741 
13 1 1 -1 -1 -1 1 1 -1 -1 0.1481654593 
14 1 1 -1 1 -1 -1 -1 1 1 0.1619445557 
15 1 1 1 -1 1 -1 1 1 1 0.1560683984 
16 1 1 1 1 1 1 -1 -1 -1 0.1900055485 
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Table 4-27 All Possible Factor Models up to nine terms (main effects only) 

comparison 

No. Model 
No of 
terms 

R - 
Square 

RMSE AICc BIC 

1 X2 1 0.63 0.04 -54.48 -54.16 

2 X1 1 0.22 0.05 -42.48 -42.16 

3 X4 1 0.05 0.06 -39.28 -38.96 

4 X1,X2 2 0.85 0.02 -65.60 -66.15 

5 X2,X4 2 0.68 0.04 -53.14 -53.69 

6 X2,X8 2 0.64 0.04 -51.08 -51.63 

7 X1,X2,X4 3 0.90 0.02 -67.81 -69.94 

8 X1,X2,X8 3 0.86 0.02 -61.84 -63.98 

9 X1,X2,X9 3 0.86 0.02 -61.82 -63.96 

10 X1,X2,X4,X8 4 0.91 0.02 -63.39 -68.09 

11 X1,X2,X4,X9 4 0.91 0.02 -63.36 -68.06 

12 X1,X2,X3,X4 4 0.91 0.02 -63.25 -67.95 

13 X1,X2,X4,X8,X9 5 0.91 0.02 -57.66 -66.25 

14 X1,X2,X3,X4,X8 5 0.91 0.02 -57.55 -66.14 

15 X1,X2,X3,X4,X9 5 0.91 0.02 -57.52 -66.11 

16 X1,X2,X3,X4,X8,X9 6 0.92 0.02 -49.97 -64.36 

17 X1,X2,X4,X6,X8,X9 6 0.92 0.02 -49.65 -64.04 

18 X1,X2,X3,X4,X6,X8 6 0.92 0.02 -49.54 -63.93 

19 X1,X2,X3,X4,X6, X8,X9 7 0.92 0.02 -39.13 -62.18 

20 X1,X2,X3,X4,X5, X8,X9 7 0.92 0.02 -38.60 -61.64 

21 X1,X2,X3,X4,X7, X8,X9 7 0.92 0.02 -38.56 -61.61 

22 X1,X2,X3,X4,X5, X6,X8,X9 8 0.92 0.02 -23.19 -59.47 

23 X1,X2,X3,X4,X6, X7,X8,X9 8 0.92 0.02 -23.15 -59.43 

24 X1,X2,X3,X4,X5, X7,X8,X9 8 0.92 0.02 -22.62 -58.89 

25 X1,X2,X3,X4,X5, X6,X7,X8,X9 9 0.92 0.03 0.79 -56.72 

 

The top three main effects models for one to nine terms are listed in Table 4-27. 

The best model is the main effects model with X1, X2 and X4. Next I add all the 

two factor interactions; X1X2, X1X4 and X2X4 and then fit all possible subsets to 

these main effects and interactions.The top three models for one to six terms are 

listed in Table 4-28. The second, third and fourth best models each with four 
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terms in the first step were also tested to check if these including any of these 

terms gave better model fits. But the best model fit is the one with X1, X2, X4 and 

X1X2. Including any other term does not improve the model fit. This model is fit is 

shown in Figure 4.9. The RSquare Adj value for this model is 0.962. The terms 

identified using this analysis method is identical to the true model. 

Table 4-28 All Possible subsets Models up to nine terms (main effects and two 

factor interactions) comparison 

No. Model 
No of 
terms 

R - 
Square 

RMSE AICc BIC 

1 X2 1 0.63 0.04 -54.48 -54.16 

2 X1 1 0.22 0.05 -42.48 -42.16 

3 X1*X2 1 0.07 0.06 -39.62 -39.30 

4 X1,X2 2 0.85 0.02 -65.60 -66.15 

5 X2,X1*X2 2 0.70 0.03 -54.18 -54.72 

6 X2,X4 2 0.68 0.04 -53.14 -53.69 

7 X1,X2,X1*X2 3 0.92 0.02 -71.50 -73.63 

8 X1,X2,X4 3 0.90 0.02 -67.81 -69.94 

9 X1,X2,X1*X4 3 0.85 0.03 -61.29 -63.42 

10 X1,X2,X4,X1*X2 4 0.97 0.01 -82.46 -87.16 

11 X1,X2,X1*X2,X1*X4 4 0.92 0.02 -66.25 -70.95 

12 X1,X2,X1*X2,X2*X4 4 0.92 0.02 -66.24 -70.94 

13 X1,X2,X4,X1*X2,X1*X4 5 0.97 0.01 -76.05 -84.64 

14 X1,X2,X4,X1*X2,X2*X4 5 0.97 0.01 -76.02 -84.61 

15 X1,X2,X1*X2,X1*X4,X2*X4 5 0.92 0.02 -59.67 -68.26 

16 X1,X2,X4,X1*X2,X1*X4,X2*X4 6 0.97 0.01 -67.70 -82.09 
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Figure 4.9 Model fit for X1, X2, X4, X1X2 
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Chapter 5  

CONCLUSIONS AND FUTURE WORK 

The regular fractional factorial designs with six, seven or eight factors in 16 runs 

are widely used. However due to the complete confounding of the two-factor 

interactions with one another, these designs often require the experimenter to 

perform runs to resolve ambiguities whenever any of the two-factor interactions 

are identified as being active. The NC designs allow for the estimation of all main 

effects along with some of the two-factor interactions since there is no complete 

confounding in these designs.  

The simulation study confirmed that stepwise regression does not work well once 

the total number of active terms exceeds four. However the study also showed 

that NC designs allow for estimation of two factor interactions without the need 

to run additional runs. Furthermore, once the true model contains interactions, 

regular fractional factorial designs are unable to compete with the nonregular 

designs due to the complete confounding of the two-factor interactions. 

The simulation study shows that although stepwise regression may not be the 

best method to use for the analysis of nonregular designs, it is reasonably 

effective if the number of active terms (main effects and interactions included) is 

not more than four. There is no statistically significant difference between using 

a 2-stage stepwise regression method and a stepwise regression method. Both 

model selection methods used the AICc criterion.  

I believe that the NC designs are good alternatives to the FF designs specially 

when running another set of experiments is not an alternative. With the NC 

designs, the experimenter would be able to study both the main effects and the 
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interactions from the initial 16 runs of the experiment when the effect sparsity 

principle holds true.  

The projection properties of the NC designs show that these designs allow for 

the estimation of all main effects along with some of the two-factor interactions 

since there is no complete confounding in these designs. I presented two 

intuitive approaches to analyzing these designs based on the projection 

properties. Systems with four active factors are likely to have a significant 

interaction. Therefore being able to estimate the two-factor interactions without 

the need for design augmentation is a desirable characteristic. Based on the 

projection properties of the NC designs all the main effects and their interactions 

can be estimated for up to four active factors or in other words models with up 

to 11 terms (including the intercept) can be fit as there are 12 distinct designs 

points for the four factor projections of these designs.  

As part of this dissertation I looked at a few examples of NC designs and 

analyzed them using all subsets regression and two stage stepwise regression 

using all subsets. The methods are intuitive approaches to analyze these designs. 

Running a simulation study to evaluate the effectiveness of the analysis method 

for NC designs would be an ideal extension to this dissertation.  

The Dantzig Selector (2007) has been used to identify active terms in nonregular 

designs. Candes and Tao explain how the ’s can be estimated when p is much 

larger than n. Since in the case of NC designs where both main effects and 

interactions are being estimated, the p is much larger than n specially as the 

number of terms in the design matrix increase, this could be another analysis 

method worth exploring.  
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Box et al (2005), Montgomery and Runger (1996), Li and Mee (2002) and Li and 

Lin (2003) study the foldover plans for regular orthogonal designs. Another 

extension to this work would be identification of additional runs in cases where 

additional runs are to be run. Either foldover plans or addition of individual runs 

to the designs would allow the experimenter to run experiments using the NC 

designs and have a plan on how to run further experiments, if additional 

experiments are to be run.  
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