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ABSTRACT 

   

Asymptotic and Numerical methods are popular in applied electromagnetism.  

In this work, the two methods are applied for collimated antennas and calibration 

targets, respectively.     

As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is 

developed for design and simulation of collimated multi-reflector antenna systems, 

based upon Huygens principle and independent Gaussian beam expansion, 

referred to as the frames.  To simulate a reflector antenna in hundreds to 

thousands of wavelength, it requires 10
7
 – 10

9
 independent Gaussian beams.  To 

this end, high performance parallel computing is implemented, based on Message 

Passing Interface (MPI). 

The second part of the dissertation includes the plane wave scattering from a 

target consisting of doubly periodic array of sharp conducting circular cones by 

the magnetic field integral equation (MFIE) via Coiflet based Galerkin's 

procedure in conjunction with the Floquet theorem. Owing to the orthogonally, 

compact support, continuity and smoothness of the Coiflets, well-conditioned 

impedance matrices are obtained.  Majority of the matrix entries are obtained in 

the spectral domain by one-point quadrature with high precision. For the 

oscillatory entries, spatial domain computation is applied, bypassing the slow 

convergence of the spectral summation of the non-damping propagating modes. 

The simulation results are compared with the solutions from an RWG-MLFMA 

based commercial software, FEKO, and excellent agreement is observed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Reflector antennas design 

The diffracted Gaussian beam approach (DGBA) [1] for design and analysis 

of the multi-reflector antenna systems is presented in Chapter 2-5. This method 

has efficiency and modularity advantage compared to the time-consuming PO 

based methods and geometrical optics (GO) plus uniform theory of diffraction 

(UTD) or geometrical theory of diffraction (GTD) method.  

 

Fig. 1.1.  A single step of the DGBA in a multi-reflector analysis. 

Fig. 1.1 shows a single step in the DGBA multi-reflector analysis. The 

incident field on an input plane is expanded [2][3] in terms of fundamental 3-D 
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Gaussian beam modes. And each beam has a beam-width of several wavelengths. 

The elementary beams are propagated to the reflector to be analyzed. Reflection 

of these beams is treated in a geometrical optics manner [4] and diffraction is then 

treated by applying Boundary Diffraction Wave (BDW) method. Reflection of 

Gaussian beam will change the radii of wavefront curve surface which changes 

the parameter q of Gaussian beam. The BDW of Gaussian beam is approximately 

calculated by the steepest descent method [5][6][7][8]. The output beam is a 

superposition of all reflected and diffracted elementary beams and can again be 

expanded into a set of Gaussian beams. However when dealing reflectors in tens 

to hundreds wavelength, more than 10 million elementary Gaussian beams will be 

generated. Computation of reflection and diffraction of these Gaussian beams may 

cost tens or hundreds hours on ordinary PCs.  In order to speed up computations, 

the parallel computation method for DGBA on clusters is developed. After 

expansion, all Gaussian beams are evenly distributed to the assigned CPUs. Upon 

reflection and diffraction of computation, the field on the selected output plane is 

evaluated by the summation of all coming different Gaussian beams. Simulation 

results on Saguaro cluster at Arizona State University are presented at the last part 

of this paper. The computation speed is highly accelerated as expected. 
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1.2 Scattering From a Doubly Periodic Surface 

Microwave remote sensing [13] is often used for astronomical studies, 

military applications and environmental monitoring. The term used for 

characterizing the emission by the scene observed by the radiometer is the 

brightness temperature TB, which may vary from zero Kelvin (for a 

non-emissivity medium) to a maximum value equal to the physical temperature T0 

of the scene (for a perfect emitter known as a blackbody). In other words, the 

emissivity e (=TB/T0) varies between zero and unity.  

Scattering by an infinite rough surface, such as land and ocean, is 

characterized by the bistatic scattering cross-section per unit area 

𝜎𝑜(𝜃0, 𝜙0; 𝜃𝑠, 𝜙𝑠; 𝑝0, 𝑝𝑠) which relates the magnitude of the power scattered in 

the direction (𝜃𝑠, 𝜙𝑠)  with polarization 𝑝𝑠  to the power incident upon the 

surface from the direction (𝜃0, 𝜙0)  with polarization 𝑝0  (Fig. 1.2). 𝜎𝑜  is 

known as the surface scattering coefficient. 𝑝0 and 𝑝𝑠 could be v or h, which is 

vertically or horizontally polarized. 
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Fig. 1.2.  Geometry of incident and scattered. 

Peake (1959) developed expressions for the polarized emissivity 

𝑒(𝜃0, 𝜙0; 𝑝0) of a surface observed from the direction (𝜃0, 𝜙0) and for the 

scattered temperature 𝑇𝑆𝐶(𝜃0, 𝜙0; 𝑝0) in terms of 𝜎𝑜: 
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where TDN is the downward-emitted atmospheric apparent temperature. 

Special rough surface is often used as calibration in microwave remote 

sensing area. Before fabrication, the scattering property and emissivity of the 

calibration source must be predicted and calculated, which provide reference data 

for system calibration.  

A sharp-cone array is a kind of rough surface for calibration. In Beijing 

Institute of Aeronautics, research people [15] build a cone array as indicated in 

Fig. 1.3 

High 70mm，
bottom 18mm  

Fig. 1.3.  Top view and side view of cone array. 

There are 14 corns in diameter location, arranged in 8 rows. And the number 

decreases to 8 on the edge of each column (the reduction of two per line in equal 

difference).  
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Fig. 1.4.  Physical diagram of cone array. 

Relevant frequency is from 10GHz to 100GHz. There material used to build this 

cone array includes metal, metal covered by a thin absorbing material and 

dielectric material. Calibration data for each case should be computed well.  

The calibration sources have been studied by optical methods [14][15] and 

the finite difference time domain (FDTD) method [16][17]. Despite the versatility 

and simplicity of the FDTD, high precision results may be restricted owing to the 

stair case discretization and artificial boundaries of the FDTD. On the other hand, 

the open boundary nature of scattering and radiation problems preferably choose 

the integral equation method based method of moments (MoM) [18]. Nonetheless, 

such a scattering problem is electrically large. To alleviate high demanding of 

computation resources in terms of the CPU time and memory consumption, the 

Floquet theorem enforced periodic method of moments (PMM) were reported 

[19][21]. 
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Fig. 1.5.  One cone profile and incidence configuration. 

In this dissertation, the MoM with the Floquet theorem are combined, 

assuming the array to be infinite and using a plane wave incident, so that only one 

period, namely a single cone in the array, is discretized. While the electric field 

integral equation (EFIE) was solved in [19][21], the magnetic field integral 

equation (MFIE) are solved because it is well-posted. As a result, there is no need 

to employ the RWG formulation, yet well-conditioned impedance matrix is 

guaranteed. In fact, the standard Cartesian coordinate system is used, even though 

the cone is very sharp, possessing discontinuities in the 1
st
 spatial derivatives on 

the vertex and four legs as seen in Fig. 1.5. The Coiflets is employed as the basis 

and testing functions to conduct Galerkin’s procedure. The Coiflets are 
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orthonormal, continuous, smooth, compact supported, and nearly symmetric with 

zero moment properties [22]. The smoothness of the Coiflet in spatial domain 

leads to rapid decay in the spectral domain, while zero moments correspond to 

minimum low frequency components in its spectrum. Hence, The Coifman 

wavelets are highly concentrated in the spatial and spectral domains, allowing 

much coarser mesh to achieve the high precision results of collocation method 

with very fine mesh, and demonstrating a memory saving in 39 fold [23]. To 

analyze plane wave scattering from a doubly periodically conic surface, a hybrid 

spectral and spatial domain formulation is conducted in CHAPTER 7, where the 

Coifman scalets (Coiflets) are employed to perform Galerkin’s procedure in the 

PMM. In addition to the aforementioned merits of continuity, smoothness, 

orthogonality and nearly symmetry, the Coifman scalets of order L = 4 have three 

vanishing moments. This Dirac-δ like property provides high precision O(h5) 

one-point quadrature, reducing impedance matrix filling computation into O(n). 

Coiflets have been successfully implemented in rough random surface scattering 

[23]. However, due to boundary truncation in periodic problems, intervallic 

Coiflets [25][26] would be required to handle boundary truncations, which will 

complicate mathematics and destroy several important merits of the Coiflets. In 

order to avoid this loss, I split the unknown doubly periodically surface current 
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into four unknown currents, which are equal to zero at boundaries and maintain 

the double periodicity. Hence, I may utilize the standard Coiflets to attack 

periodic structures. When computing an impedance matrix entry in spectral 

domain, I sum up all propagating modes and sufficient numbers of evanescent 

modes. The attenuation factor 𝑒−𝑗𝑘𝑧|𝑧−𝑧′|  in the Green’s function plays an 

important role. For those entries representing the source and field points with 

different elevations, 𝑧 ≠ 𝑧′, the spectral domain summation converges very fast, 

namely, just a few propagating modes may provide accurate value of the entry. 

Whereas for entries with z = z′, especially for self-entries, the attenuation factor 

vanishes. Thus, the summation converges slowly and one needs a lot of undamped 

propagating modes to reach the precision. In this situation, spatial domain 

computation is applied since it is faster than the spectral domain computation. 

Once the matrix equation has solved and the induced surface current on the 

reference cone is obtained, I may conduct the far field calculations. By the 

Floquet theorem, the surface current on each cone in an infinite array is identical, 

subject to a phase shift. The current distribution on a finite sized array is obtained 

as if each cone were among an infinite array. This current distribution is then used 

to produce the far-zone fields and radar cross sections (RCS). If the array is large 

enough, the edge effect from the truncation should be relatively small. I present 
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the Bi-static RCS results of a 9 × 9 conic array and compare with the solution 

from the commercial software, FEKO in CHAPTER 8. 
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CHAPTER 2 

GAUSSIAN BEAM EXPANSION 

2.1 Aperture expansion theory 

In this chapter, the classical aperture theory, i.e. the methodology of 

determining the electromagnetic field in the half-space z>0 given the appropriate 

aperture field distribution at z=0, is presented. In 3D application, there are two 

transverse electric field Ex and Ey on a plane z = 0 which are needed to expand the 

field in terms of circular Gaussian beams. Generalizing the expansion to a 2-D 

signal results in an expansion of the form [2], there is 

       2 0 0 0 0

, , ,

, , expmnuv D

m n u v

f x y A w x md y ud j n x v y       (2-1) 

with a Gaussian shaped window function 

         2 2 2

2

2
, exp /Dw x y x y L w x w y

L
      (2-2) 

where f stands for either of the two transverse field components, L is the radius of 

the circular Gaussian beam and Amnuv is the expansion coefficient, and d0 

represents the spatial shift and Ω0 represents the spectral shift. The product Ω0d0 

has to be chosen smaller than 2π (Gabor's representation) to ensure stability. The 

smaller it is compared to 2π, the smoother the shape of the dual frame function, it 

then resembling more and more the Gaussian shape of the window function. 

However the smaller the product is, the more Gaussian beams will be produced 
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which will burden the computation. Since the window function can be separated 

into the two transverse co-ordinates, so the 2-D dual frame function w̃2−D(x, y) 

can also be written as the product of two 1-D dual frame functions. The expansion 

coefficients are then calculated as 

     0 0 0 0, ( ) ( )expmnuvA f x y w x md w y ud j n x v y dxdy        (2-3) 

where w̃ is the dual frame function. Two-dimensional FFT can be utilized to find 

expansion coefficients with high numerical efficiency. 

     To describe the scalar field components Ex and Ey of each contributing term 

in the expansion everywhere in the half space z≥0, asymptotic techniques are 

employed. For the Gaussian shape of the window function, they will produce 

many complex beams source which are paraxially approximately equivalent to 

Gaussian beams. Let Bmnuv(x, y, z) denote the beam mode corresponding to the 

expansion coefficient Amnuv in (1.1) such that [3] 

 
      0 0

, , ,

, , exp , ,mnuv mnuv

m n u v

f x y z A j mn uv d B x y z     ;

0z   

(2-4) 

Asymptotically derived to 

  
 
   

2

0

02
, exp

2

nv t
mnuv t t t

nv t nv t

q
B z jk z

L q z q z




  
     

  

 (2-5) 
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The transformed coordinates ρt  and zt  are linked with the Cartesian 

co-ordinates x, y, z and the spectral components of the wave vector by the 

transformation 

 

       
2 22

0 0 0 0 0 0 0 0/tz n x md v y ud k n v z k           
  

0 2 /k     

   
2 22 2 2

0 0t tx md y ud z z        

(2-6) 

zt can be viewed as the projection of the vector pointing from the source point 

(mL0, uL0, 0) to the observation point (x, y, z) onto the direction 

    
2 22

0 0 0 0 0

0

,ˆ
1

, ?tz n v k n v
k

        
 

 (2-7) 

of the wave vector. The complex beam parameter qnv(zt) absorbs all the 

information about the local spot size ω(zt) and the local radius of curvature R(zt) 

of the beam at each axial position zt: 

  
   

1 2 2
2

0 0

2

0 0

1
1nv t t

t t

L n v
q z j z j

R z z k k



 


       
                    

 (2-8) 

The asymptotic expression (2-5) in terms of a complex beam is accurate only 

within the range of the paraxial approximation. Fig. 2.1 illustrates this 

interpretation of the expansion in terms of Gaussian beam modes. A number of 

spectral Gaussian beam modes located at each spatial 'sampling point' separated 

by d0 with different directions. 
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Fig. 2.1.  Interpretation of the expansion in terms of Gaussian beam modes. 

2.2 Gaussian beam expansion Example 
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Fig. 2.2.  Gaussian beam expansion example. 

In Fig. 2.2 the example is illustrated. A Gaussian beam propagates in z direction 

from z=0 plane. I calculate electrical field Ey on z=500λ plane according to field 

Ey z=0 plane. The source plane is 40λ×40λ and expanded with d0=2λ, L=8λ. 
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Fig. 2.3.  Ey on z=0 plane (the plane is 40λ*40λ, sampling shift is 2λ). 

 

(a) 

 

(b) 

Fig. 2.4.  Ey on z=500λ plane. 

(a) is analytical solution and (b) is result from Gaussian beam expansion theory. 
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Fig. 2.5.  Amplitude difference between analytical solution and Gaussian beam 

expansion theory. 

The result indicates the deviation of Gaussian beam expansion method is less 

than 2/1000, when d0=2λ, L=8λ. So 2λ sampling shift is acceptable considering 

the phase change on the plane which is perpendicular to propagation is not big. Of 

course smaller the sampling shift d0, better the result will be. As for Gaussian 

beam width L, L/d0 can not be very small, otherwise the result will not be good 

enough. 
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CHAPTER 3 

GAUSSIAN BEAM REFLECTION 

3.1 Properties of Rays in Uniform Region 

The rays that are near to a given axial ray are called paraxial and are said to 

form a pencil. The rays of the pencil are normal to wavefronts. In the near area of 

the axial ray Oz, the wavefront through point O can be represented by the 

second-degree equation [4]. 

 
1

2
z Q     (3-1) 

Where ρ⃑ = [
x
y]  is the transverse position vector represented by its 

components (x, y) with respect to the two principal directions of wavefront 

curvature x̂ ⁡and⁡ŷ . 

 
1

2

1 0

10

R
Q

R

 
 


 
  

 (3-2) 

Where R1 and R2 are the two principal radii of the curvature.  
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Fig. 3.1.  Wavefront for a pencil with axis Oz. 

How Q changes, or R1 and R2 change, under reflection through a curved 

surface Σ is needed to be found. A principle of phase matching will be used which 

is a direct consequence of Snell’s law: the phase in the reflected pencil, at every 

point of the surface Σ, is the same as that in the incident pencil. Actually, the 

phase should be 180 degree difference. But it is simplified to the same in Q 

derivation. Let us take the origin O where the axis Oz of the incident pencil meets 

the surface Σ (Fig. 3.2). The normal n̂ to the surface makes angle θ with Oz. 

Let’s set the reference to be x̂1, ŷ1 which are orthonormal vectors perpendicular 

to n̂. Then the equation of the surface Σ near O, should be written as 

  
1

( )
2

ˆr t t t Ct n    (3-3) 
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Where 𝑡 = t1x̂1 + t2ŷ1 and C is a 2 × 2 matrix which defines the curvature of 

Σ. The phase in the incident pencil is kS(r) with 

  
1

2
S r z Q     (3-4) 

The coordinates (ρ⃑ , z) of  𝑟 (𝑡 ) are  

 

 2t O t     

 21
 cos

2
z v t t Ct O t      

(3-5) 

where Θ is the matrix that expresses the projection of the vector 𝑡  on the plane z 

=0, and 𝑣 = v1x̂1 + v2ŷ1 is the projection of ẑ on the plane L tangent to Σ . The 

components of v⃑  are v1=x̂1 ∙ ẑ, v2=ŷ1 ∙ ẑ. If the reference vectors are chose such 

that ŷ = ŷ1 is perpendicular to zOw and x̂1, x̂  are in the plane zOw making 

the angle θ between them (Fig. 3.2), the matrix Θ is 

 
cos 0

0 1

 
   

 
 (3-6) 

     If the reference vectors are not in this special configuration, they can be 

derived by a simple change of coordinate; alternatively, the projection operator Θ 

could be evaluated directly 

 
1 1

1 1

ˆ ˆ

ˆ ˆ

ˆ

ˆ

ˆ

ˆ

x x x y

y x y y

 



 
   

 
 (3-7) 

Substituting Equation (3-5) in the expression Equation (3-4) for S(r) leads to  

  
1

2
S r v t t Гt     (3-8) 
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Where 

  cosTQ C      (3-9) 

The phase is the sum of a linear terms 𝑘𝑣 ∙ 𝑡 = 𝜅 ∙ 𝑡 , where 𝜅  is the projection 

on the tangent plane L of the axial wave vector k0z, and a quadratic term defined 

by the 2 x 2 symmetric matrix Г. 

Consider now the reflected pencil described with the same letter as the 

incident one, by being primed. The phases are matched if both linear and 

quadratic terms coincide. This means that 

 
'   

' 'k k    

(3-10) 

The first condition means the incident angle is equal to the reflected angle. The 

second indicates how the curvature is transformed 

 

   ' ' ' ' cos cosT Tk Q C k Q C        

or 

' ' ''T Tk Q k Q hC      

(3-11) 

The contribution of the surface curvature C is multiplied by h = k′ cos θ′ −

k cos θ, which is the variation of the wave vector when reflected by the surface Σ. 
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Fig. 3.2.  Reflection axes. 

3.2 Parameters change of Gaussian beam reflection 
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Fig. 3.3.  Local coordinates of Gaussian beam reflection. 

For one Gaussian beam reflection, it is convenient to do all calculations in the 

ray-based coordinate system (x̂i,c,r, ŷi,c,r) as illustrated in Fig. 3.3. The two 

principal directions of curvature of surface (ui,c,r, vi,c,r) are transformed as: 

 
   

   

, , , ,
, , , ,

, , , ,

, , , ,

cos sin

sin cos

i c r i c r
i c r i c r

i c r i c r

i c r i c r

u x

v y

 

 

    
     

     

 (3-12) 



24 

The rotation angle αi,c,r  is the angle between x̂i,c,r  and the first principal 

direction of curvature of surface.  

      And the direction of the reflected ray, using Snell’s law is 

  ˆ 2cˆ ˆosr is s n   (3-13) 

Substituting Equation (3-12) to (3-11) leads to 

 

 

 

 

 

 

 

cos 2

sin 2

1 1
cos cos 0

cos cos

1 1
cos 2 cos cos 0 cos 2

cos cos
sin 2 sin 2

0 0 2

r

r r

r r

i c

i i c c

i i c c





 
 

   
 

 

 
 

  
  

 
  

     
             
         

 
 

 

With 

 , , , ,

, , 2 11/ 1/ / 2i c r i c r

i c r R R    and  , , , ,

, , 2 11/ 1/ / 2i c r i c r

i c r R R    

(3-14) 

The reflected beam is approximated by a circular beam with a complex beam 

parameter  

 

1

2

1 2

1

r r
q j

wR R







 
  
 
 

 (3-15) 

At the reflection point, the spot size of the beam stays the same. So using the 

spot size and new q, the image Gaussian beam can be determined. 

 

   
2

1 / 2R z z b z  
 

 and    
22 2

0 1 2 /w z w z b  
 

 

Where 2

0b kw  

(3-16) 
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Fig. 3.4.  Incident and image Gaussian beam. 

As for the polarization of reflected beam, I separate incident E field to 

perpendicular and parallel parts as indicated in Fig. 3.5. According to the reflected 

beam polarization in Fig. 3.5, the dyadic reflection coefficient is 

 
1 0

0 1
R

 
   

 (3-17) 
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Fig. 3.5.  Polarization of the incident and reflected beams. 
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CHAPTER 4 

GAUSSIAN BEAM DIFFRACTION 

4.1 Generalization of Boundary Diffraction Wave 

     Theoretical studies of diffraction of light by an obstacle whose dimensions 

are large compared to the wavelength are almost based on the classical principle 

of Huygens and Fresnel. According to this principle, each point of the 

unobstructed part of a primary wave is assumed to be a source of sphere waves 

and the diffracted field is considered to arise from the superposition of these 

sphere waves. 

     A different physical model for diffraction was suggested by Young in 1802 

prior to the principle of Huygens and Fresnel. Young believed that the incident 

light undergoes a kind of reflection at the boundary of the diffracting body and he 

considered diffraction to arise from the interference between the direct light and 

the light propagated from each point of the boundary. But due to the early success 

of Fresnel’s Theory and also due to no accurate analytical expression for Young’s 

ideas, Fresnel’s theory soon dominated in diffraction research and Young’s 

explanation of diffraction has been forgotten by most people.  
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However after a long time, more and more evidence and experiments suggest 

that Young’s theory is a good physical model which is probably more fundamental 

and simpler than principle of Huygens and Fresnel.  

In 1962, Kenro Miyamoto and Emil Wolf [5][6] first proposed Boundary 

Diffraction Wave equation according to Helmholtz-Kirchholf integral equation 

which is: 

    ,
s

U P V Q P ndS   (4-1) 

 

Where 

   
   

 
exp exp1

,
4 ?

Q Q

iks iks
V Q P U Q U Q

s s

 
    

   

(4-2) 

Where a monochromatic scalar wave field with frequency ω could be written 

as  

  , , , ( , , )exp( )V x y z t U x y z i t   (4-3) 

And U satisfies the Helmholtz equation 

  2 2 0k U    (4-4) 

n is the unit inward normal to S, and s is the distance from observation point P to 

point Q on aperture. 
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Fig. 4.1.  Illustrating the Helmholtz-Kirchhoff integral theorem. 

There is a way to express it as a curl of an associated vector potential W(P,Q) 

  , ( , )QV P Q W P Q    (4-5) 

Through the use of the Stokes theorem, Kenro Miyamoto and Emil Wolf found 

this equation could be deduced to 

   ( ) ( )j B

j

U P F P U P   
(4-6) 

This separation forms the basic equation of the Boundary Diffraction Wave 

(BDW) theory. UB represents the boundary diffraction wave coming from the 

boundary Г of the diffraction aperture. This expression is given by the contour 

integral of W 

 ( ) ( , )BU P W P Q dl


   (4-7) 
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The vector potential W associated with a given field U(Q) incident upon the 

aperture may be expressed as  

  
 

ˆ
ˆ

, ( )
4

iks
Q

Q

e
W P Q s U Q

s ik s


 

 
 (4-8) 

Where k=2π/λ. The distance PQ is denoted by s; ŝ is the corresponding unit 

vector (see Fig. 4.2). 

The Fj term represents the integral contribution of singular points Qj on the 

closed surface S. In application of the Stokes theorem to Equation (4-1), these 

singular points Qj are dealt with by surrounding them with very small circles of 

radii σj. When the radii σj close to zero, contour integrals can be derived 

(performed clockwise, as seen from P) along the perimeters Гj 

  
0

lim ( , )
j

j

j jF P W P Q dl
 



   (4-9) 
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Fig. 4.2.  Geometry of the diffraction problem. 

According to Equation (4-9), when the incident wave upon the diffracting 

aperture is either plane or spherical, the term Fj in Equation (4-6) represents 

precisely the incident wave, propagating freely to the observation point P 

according to the laws of geometrical optics when there is no any obstacles. In the 

case where there are no singularities W(P,Qj) in the aperture, the geometrical 

wave is zero which physically means the observation point P lies in the optical 

shadow region. 
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4.2 Asymptotic representation of BDW for Gaussian beam incident upon a 

half-screen 

 
Fig. 4.3.  Gaussian Beam diffraction by half screen. 

Let a Gaussian beam be normally incident upon a screen in a half-plane x>c, 

z=z0, as shown in Fig. 4.3. The field of the incident Gaussian beam could be 

written as [7]: 

 

   
(0)

, , exp , ,
( )

i

q
U x y z ik x y z

q z
     

Where   2 2, , ( ) / 2 ( )x y z z x y q z     

 
2

ib
q z z   

2       ( 2 / )sb k k     

(4-10) 
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The incident beam is assumed to propagate along the z direction and to have the 

smallest spot size ωs at z=0. 

     Following the BDW theory, the diffracted field U(P) at an observation point 

P is 

   ( ) ( )j B

j

U P F P U P   
(4-11) 

The first term contains the contributions from the singularities of a vector 

potential W(P,Q) on a plane x<c, z=z0. Within the paraxial approximation 

𝑥0
2 + 𝑦0

2 ≪ |𝑞(𝑧0)|
2, 𝜆 ≪ 𝜔𝑠, according to Equation (4-8) the vector potential 

W(P,Q) for the Gaussian beam is: 

  
 

, ( )
4 1

ˆ

ˆ

iks
Q

i

Q

se
W P Q U Q

s s



 




 
 (4-12) 

 

2 2

0 0 0 0

2

0 0 0

1
( ) ( ) 2 ( )

ˆ ˆ ˆ
Q

x y x y
x y z

q z q z q z


 
     

   
(4-13) 

For the paraxial region: |𝑥0 − 𝑥|2 + |𝑦0 − 𝑦|2 ≪ |𝑧0 − 𝑧|2 , we have the 

approximation 

 

   
2 2

0 0 / 2s Z x x y y Z     
 

 (for phase term) 

s Z   (for amplitude term) 

   0 0
ˆ /ˆ ˆ ˆs x x x y y y Zz Z        

(4-14) 
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Where Z=(z-z0) is the distance between point P and its projection on the screen, 

and the vectors x̂, ŷ⁡and⁡ẑ are the unit vectors in the x, y, and z directions 

respectively. 

The singularities of the vector potential 𝑊⃑⃑⃑  are determined from the 

denominator of the right-hand side of Equation (4-12): 

  
2 2

0 0

0 0

1 ( ) ( )
1 0

2 (
ˆ

) ( )
Q

q z q z
s s x x y y

Z q z q z


     
          

     

 (4-15) 

From Equation (4-15), two singular points P1(x0
1
, y0

1
,z0) and P2(x0

2
, y0

2
,z0) of the 

vector potential 𝑊⃑⃑⃑  on the plane of the aperture in real space are 

 

1

0 2(1 )

x y
x



 





 

1

0 2(1 )

x y
y



 





 

 
2

0 2(1 )

x y
x



 





 

2

0 2(1 )

x y
y



 

 



 

(4-16) 

Where 
𝑞(𝑧)

𝑞(𝑧0)
= 𝛼 + 𝛽𝑖,⁡⁡⁡⁡𝛾 =

𝛽

𝛼
 

It can easily be shown that the contribution from each singularity P1 and P2 

is equal to a half of the unperturbed incident beam Ui(P) at P. Therefore the first 

term in Equation (4-11) is represented as 

      
2

1 2

1

( ) / 2j h h i

j

F P E x x E x x U P


    
   (4-17) 

Where E(τ) is the unit step function and 𝑥ℎ
1 and 𝑥ℎ

2 are the values of x when the 

singularities P1, and P2 , respectively, are on the boundary of the half-screen, i.e. 
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 1 21hx c y      

  2 21hx c y      

(4-18) 

The second term 𝑈𝐵(𝑃) in Equation (3.11) is the boundary diffraction wave 

given by 

   ( , ˆ)BU P W P Q ldl


   (4-19) 

where 𝑙 is the unit vector tangential to the boundary Γ of the half-screen. And 

the contour integral should be taken counterclockwise when viewed from P. In 

derivation of Equation (4-16), the contribution only from the small area close to 

(c,0,z0) because the field of the incident Gaussian beam vanishes rapidly away 

from the propagation axis. By substituting Equation (4-13) and (4-14) into 

Equation (4-12), UB(P) is represented as 

    0 0 0( )expBU P G y ikd y dy





     (4-20) 

Where 

 

   
 

2 2 2 2

0 0
0 0

0

( ) ( )

2 2

c y c x y y
d y q z Z

q z Z

   
      

 
     

    
0 0 /2

0 2 1 2

0 0

0 /

2

kb

p p

q q z x c cZ q z
G y e

q z y y y y


   
 

 

(4-21) 

Where 𝑦𝑝
1 and 𝑦𝑝

2 are poles of the integrand in Equation (4-20) 
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 
 

 
 

1 0 01p

q z q z
y y ic x

q z cq z

 
   

 
 

 
 

 
 

2 0 01p

q z q z
y y ic x

q z cq z

 
   

 
 

(4-22) 

It is difficult to obtain analytical result of the boundary-diffraction wave 

given by Equation (4-20). In high-frequency regions, however, the wave number 

k is so large that the integral given by Equation (4-20) can be evaluated 

approximately by the steepest-descent method. The major contributions to UB(P) 

come from the poles yp
1 and yp

2 and the saddle point 

 
 
 

0

s

q z
y y

q z
  (4-23) 

Let xs denote the value of x when two poles yp
1  and yp

2  are on the 

steepest-descent path (SDP), i.e., xs is determined from Re[d(yp
1)] = Re[d(ys )]; 

then  

 

1/2
2 2 2 2

0

2 2 2 2

0 0 0

4 2 ( ) 4

4 4 4
s

z b b z z z b
x c

z z b zz b z b

    
   

     

 (4-24) 

We define x = xs, as the shadow boundary. 

In the deformation of the path of integration from −∞ to ∞⁡into the SDP, 

some poles are encountered. The number of poles encountered depends on the 

location of observation point P. In the case in which xh
2
 < xs < xh

1
, it is found that 

no pole is encountered for region x < xh
2
, pole yp

2
 for  xh

2
<x< xs, pole yp

1
 for  xs 
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<x< xh
1
, and no pole for xh

1
<x. Therefore the boundary diffraction wave is 

represented as 

 

         

 

1

0

1 2

( )

0 0

2 2

e

pikd y

B h h s

ikd y

SDP

U P E x x E x x E x x i e

G y dy

       
 

 
 (4-25) 

Where κ is the residue of G(y0) at pole yp
1
, 

 
/2(0)

4 ( )

kbiq
e

q z




   (4-26) 

Using Appendix D we will get  

 

        

   
 

    

1

0

1/2
( ) 1

0 0

1/2

0

1/2
1

e 2 e

2 2
/ e

( )

p

s

ikd yikd y

s p

SDP

ikd y

s

s p

G y dy i erfc i ik d y d y

i q z Z
k G y

q z i d y d y

 




       

 
  

   
    

  



 

 sx x  

(4-27) 

Where erfc(τ) is the complementary error function defined by 

  
22 xerfc e dx








   (4-28) 

After some calculation of the right-hand side of Equation (4-27), it is found that 

the two parts in second term cancel each other, so that only the first term remains. 

Use of Equations (4-17), (4-26), and (4-27) in Equation (4-11) yields the 

uniform asymptotic representation of the diffracted field UK(P) as follows: 

      k G DU P U P U P   (4-29) 
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Where UG(P) and UD(P) are the geometrical-optics and diffraction components, 

respectively. These are given by 

 

     ( )G s iU P E x x U P   

 
 

 

1/2

0( )
exp ( )D u d i d

q z
U P D iks Q U Q

q z Z

 
     

 

 

(4-30) 

Where s(Qd)  is the complex distance from saddle point Qd (c,ys,z0) to 

observation point P, 

  
   

2 2

2

s

d

x c y y
s Q Z

Z

  
   (4-31) 

the first factor Du in Equation (4-30) is given by 

 

    
 

   1

1/2
1/2

1 01 ( )
e

2

p sik d y d y

u s p

q z Z
D erfc i ik d y d y

q z

 
 

  
           

  

 sx x  

(4-32) 

4.3 Diffraction Field in the Backward-scattering Region 

Since we will compute reflection by reflector antennas, we are only 

interested in the diffracted field in the backward-scattering region (z<0). We try to 

find an equivalent model to describe the diffracted field in the 

backward-scattering region. As we discussed in reflection part, reflected wave in 

the backward scattering region is equivalent to an image beam at the opposite side 

of the half-screen, the same in magnitude but opposite in sign to the incident 

beam. The image beam is propagating in the -z direction and diffraction has to be 
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described in a new coordinate system with the transformed xr, yr and zr axes 

pointing in the -x, y and -z directions, respectively. And in the equivalent model 

the equivalent half screen must be complementary to the real half screen to 

generate a shadow region in the lower half-space (x<0). The boundary location 

should be the same since diffraction wave depends on the location of the edge and 

not on the orientation of the half-screen. Fig. 4.4 shows the equivalent geometry 

for calculating the diffracted field in the backward-scattering region. Fig. 4.5 

shows the backward-scattering field for different Gaussian beam spot size. Fig. 

4.6 shows the backward-scattering field for different parameter c. 

 

(a) 
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(b) 
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Fig. 4.4.  Origin and equivalent geometry for determining the diffracted field in 

the backward-scattering region. 

 

Fig. 4.5.  Backscattered field for various beam spot sizes c=0, z=-400λ, z0=0. 
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Fig. 4.6.  Backscattered field for various c, ws=16λ, z=-400λ, z0=0. 

However when each Gaussian beam hit the reflector edge, the propagation 

direction of Gaussian beam may be not perpendicular to the reflector. Fig. 4.7 

depicts the geometry of the discussed problem, showing three different coordinate 

systems: the transmitted beam-related co-ordinate system (xt, yt, zt), the reflected 

beam related co-ordinate system (xr, yr, zr) and the half-screen based co-ordinate 

system (x, y, z). The intersection point between the incident and reflected beam 

axes is the origin point of the half-screen based coordinate system. Since normal 

incidence is assumed with respect to the polar angle, the y-direction is the same 

for all three co-ordinate systems. Let φ0 be the incidence angle of negative 

propagation direction ( −ẑt ) and half-screen tangential direction ( ẑ ). The 
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observation point is described in the half-screen based cylindrical (ρ, φ, y) 

coordinate system. The transmitted and reflected beams propagate in the (π+φ0) 

and (π-φ0) direction, respectively. Their co-ordinate systems are expressed 

regarding to the half-screen co-ordinate system by simple translation as 
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Fig. 4.7.  Equivalent geometry for determining the diffracted field in the 

backward-scattering region at oblique incident. 

Since the boundary diffraction wave is obtained as a line integral along the 

edge and does not depend on the orientation of the half-screen, we can apply it 

regarding to the reflected beam co-ordinate system (xr, yr, zr). The offset distance 

c from the edge (see Fig. 4.4(a)) is related to the axial position z. In the 

half-screen based co-ordinate system (Fig. 4.7), it is c=zesin(φ0). 

 

Fig. 4.8.  Backscattered field for various orientations of the half-screen ws=8λ, 

c=0, zt=-300λ, z0=100λ. 

With respect to the polarization, we use normal incidence (θ= 90
o
). The field 

has been calculated with the half-beamwidth ws to be eight wavelengths. The 

parameter c equals zero. 
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It would be great if we can derive a solution for non-normal incidence with 

respect to the polar angle as we did in reflection part. Unfortunately, in our 

general problem the incident Gaussian beam cannot be separated into three 

Cartesian coordinates as people do in classical GTD problem. However we can 

only consider the normal incidence part as a good approximation. Since in 

quasi-optical systems the distance between the reflectors is usually much larger 

than their diameter such that the beams are well located in the validity of the 

paraxial approximation and the incident condition is close to normal incidence. 

The error is small enough to be neglected. So the conclusion is that for incidence 

angles close to 90
o
 the results for the equivalent geometry in Fig. 4.7 can still be 

valid.  
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CHAPTER 5 

PARALLEL COMPUTATION RESULT 

The field on a plane z≥0 is the superposition of all Gaussian beams. Since 

these Gaussian beams are independent, they can be calculated on different 

processors. Fig. 5.1 illustrates the parallel scheme for computation task 

assignment. First, all Amnuv will be calculated on the master processor. Then all 

information about these Gaussian beams, stored in [A0], will be distributed to all 

slave processors. According to number of processor N, [A0] is equally divided 

into N segments, of which each will pass to the relevant processor. Every 

processor will produce the field [Un] for the output plane from their assigned 

Gaussian beams and then pass the output field to the master processor which will 

add up output field. 
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Fig. 5.1. Program flow chat for parallel computation. 

The reflector antenna system in Fig. 5.2 is analyzed to demonstrate the efficiency 

and effectiveness of this algorithm. The source is a Huygens source and the 

radiated electrical field could be written as [12] 

 cos (1 cos )
jkr

kb

y

e
E N e

r

    (5-1) 

If the taper is specified to A dB (A < 0) at the angle θ0, b can be obtained as  
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(5-2) 

In this example we choose A=-6dB. At 30GHz the reflector has a diameter of 

40λ. The source is located at one focal point of the hyperboloid reflector, and the 

image of the source is the other focal point of the hyperboloid reflector. The input 

plane is chosen 0.8m away from the feed. The elementary beams in Gaussian 

beam expansion are 12 wavelengths wide i.e., L=6λ. The input plane is 52λ by 

52λ with sampling shift λ. The output plane is 2m away from the reflector. Results, 

well agreed with the previous paper [1], are shown in Fig. 5.2 (b). In Fig. 5.2 (c), 

we list the computation time on Arizona State University Saguaro cluster. The 

developed parallel algorithm is based on Message Passing Interface (MPI) [28]. 

For this simulation, efficiency has greatly increased when 16 processors are used. 
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When using 24 processors, communications between computers degrades the 

performance. 

 

(a) 

 

(b) 
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(c) 

Fig. 5.2.  Reflector antenna simulation.  

(a) geometry of antenna; (b) near field from reflector antenna at output plane; (c) 

simulation time comparison for parallel computation. 
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CHAPTER 6 

COIFMAN WAVELETS AND INTERVALLIC COIFLETS 

6.1 Multi-resolution Analysis 

The study of orthogonal wavelets begins with the multi-resolution analysis 

(MRA) which is defined as a nested sequence of closed subspace {𝑉𝑗}𝑗∈𝑍
 of 

𝐿2(𝑅), with the following properties: 

1. 2

1 0 ( )V V L R     

2. 1( ) (2 )j jv x V v x V     

3. 0 0( ) ( 1)v x V v x V     

4.     20 , ( )j jj j
V closure V L R   

5. 0( )t V   such that  ( )t n   form a Riesz basis of 0V  

Correspondingly physical meaning of these five properties is: 

 The nested sub-spaces implies that information in coarser 𝑉𝑗 space is 

contained in the finer spaces 

 𝑉𝑗 is dilation invariant subspace. This property allows us to multigrid 

basis functions according to the nature of the solution. In the rapidly 

varying regions the resolution could be very fine, while in the 

opposite situation the basis could be very coarse. 

 Translation invariant 𝑉𝑗. 

 Errors and residues in wavelet expansion. 

 Riesz basis condition will be used to drive and prove convergence. 
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If we have basis 𝜑(𝑡) ∈ 𝑉0, then √2𝜑(2𝑡 − 𝑘) ∈ 𝑉1, according the MRA 

properties we should have  

 
2( ) 2 (2 ), { } ,k k

k

t h t k h l t R      (6-1) 

Equation (6-1) is called the dilation equation, and is one of the most 

important equations in the field of wavelets. The MRA allow us to expand a 

function 𝑓(𝑡) in terms of basis functions, consisting of the scalets and wavelets. 

Any function 𝑓 ∈ 𝐿2(𝑅) can be projected onto 𝑉𝑚 by means of a projection 

operator 𝑃𝑉𝑚 , defined as 𝑃𝑉𝑚𝑓 = 𝑓𝑚 ≔ ∑ 𝑓𝑚,𝑛𝜑𝑚,𝑛𝑛 , where 𝑓𝑚,𝑛  is the 

coefficient of expansion of 𝑓 on the basis 𝜑𝑚,𝑛. From the previously listed MRA 

properties, it can be proved that lim𝑚→∞‖𝑓 − 𝑓𝑚‖ = 0, which means a function 

can be approximated with any precision by increasing the resolution in MRA. 

6.2 Coifman Wavelets (Coiflets) 

An orthonormal wavelet system with compact support is called the Coifman 

wavelet system of order L if 𝜑(𝑡) have 𝐿 − 1 vanishing moments, which is 

 ( ) 0, 1,2, , 1lt t dt l L     (6-2) 

And 

 ( ) 1t dt   (6-3) 

The nonzero support of the Coiflets of order 𝐿 = 2𝐾 is [−𝐿, 2𝐿 − 1]. 

Property of (6-2) will yield: 
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 0.kkh   (6-4) 

In order to let Coiflets to be orthonormal basis, following equations can be 

derived 

 

2 0
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( 1) 0
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k k n n

k

h

h

h h 



 









 (6-5) 

According to (6-4) and (6-5), for L=4, hk result is list in Table 1 

Table 1 hk coefficient for L=4 Coiflets dilation equation 

n 𝒉𝒌 √𝟐⁄  

-4 1.15876e-2 

-3 -2.932014e-2 

-2 -4.76396e-2 

-1 2.73021047e-1 

0 5.7468239e-1     

1 2.948671937e-1 

2 -5.408561e-2 

3 -4.20264805e-2 

4 1.67444101e-2     

5 3.96788361e-3 
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6 -1.2892033e-3 

7 -5.095054e-4 

6.3 Construction Coiflets by Recursion & Iteration 

6.3.1 Average Current Sensing Recursion method 

For L=4 Coiflets, it has support [-4, 7]. At boundary, 𝜑(−4) = 0, 𝜑(7) = 0, 

other wise Coiflets won’t be continuous. Plug in other integer points in support to 

dilation equation (6-1) 
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(6-6) 
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Equation (6-6) is typical eigen-value equation. When considering the 

normalization condition: 

 ( ) 1
n

t n    (6-7) 

We can get values at integer points. 

 

( 4) 0

( 3) 0.000750387321579783

( 2) 0.0342775992864935

( 1) -0.147015530207457

(0) 1.23031367372496

(1) -0.162912388827161

(2) 0.0470857907521607

(3) -0.00252723822119367

(4) 2.51783852394600e-05

(





















 

 

 

 











5) 2.53035721025110e-06

(6) -2.57183018768425e-09

(7) 0











 (6-8) 
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6.3.2 Iteration method 

 

Fig. 6.1.  Coiflet for j0=0, k=0, L=4. 

After get values at integer points, we may plug half integer points in to dilation 

equation (6-1) 

 
4

4 3 2

( 3.5) 2 ( 3)

( 2.5) 2 ( 1) 2 ( 2) 2 ( 3)

h

h h h

 
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

  

  

        (6-9) 

Utilizing these half-integer points, we may obtain the values at the quarter-integer 

points. Repeating this process, we shall find the values at any dyadic fraction 

points. In other words, for Coiflets there is no analytical expression but digital 

solution. Once we get this 0 level Coiflets 𝜑0,0⁡at original point, the other basis 

should be 
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 0 0

0

/2

, 0,0( ) 2 (2 )
j j

j k t t k    (6-10) 

Where j0 represents the level of subspace, k is the shift for each basis. All basis 

for one subspace is complete orthonormal, which leads 

 
0 0, , ,
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1
j m j n m n

m n
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m n
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
  (6-11) 

6.4 Coiflets Property 

Because of properties (6-2) and (6-3), Coiflets can exhibit Dirac-𝛿 sampling 

property for smooth functions, which is 
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(6-12) 

Where integration interval [p,q] is the support of 𝜑(𝑥). 

Dirac-𝛿 function is the extreme example of localization in the spatial domain 

with infinite number of vanishing moments. 

 0 0( ) ( ) ( )f x x x dx f x    (6-13) 

The Dirac-𝛿 function like nature of the Coiflets allows us to simplify quadrature 

computation into a single point value, and thus speeds up the matrix element 

evaluations. As an example of the zero moment property, we present in Table 2 

first seven moment integrals for L=4 Coiflet. Comparing to pulse basis for which 
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one point quadrature rule is O((x-x0)), Coiflet has three exact zero moments and 

even the fourth moment integral is close to zero.  

Table 2 Moment Integrals for L=4 Coiflet 

n Moment integral value 

0 1.0000000     

1 0.0000000     

2 0.0000000     

3 0.0000000     

4 4.9333e-11     

5 -0.1348373 

6 3.5308e-10 

 

Table 3 Numerical result for Coiflets properties 

Ideal Property Numerical value from computation 

0,0 0,0( ) ( ) 1t t dt    1.000000003387167   

0,0 0,1( ) ( ) 0t t dt    0.000000039638602 

0,0 ( ) 1t dt   0.99998758604572 

0,0 ( ) 0t t dt   -0.000049873707868  

2

0,0 ( ) 0t t dt   -0.000199813419603 

3

0,0 ( ) 0t t dt   -0.00079826902927 
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4

0,0 ( ) 0t t dt   -0.003180400355591 

 

6.5 Intervallic Coiflets on [0, 1] 

For any given function which is defined on [0, 1], the function itself may have 

nonzero value at the two end points, 0 and 1. This condition has limited the 

application of the Coiflets in periodic problem, since Coiflet is zero at its 

boundary. An alternate approach, which is less restrictive, is the use of intervallic 

wavelets. This approach converts a regular wavelet into its corresponding 

intervallic wavelet within the domain [0, 1].  

For L=4, j0=0 level Coiflets, the nonzero support is 11, namely 

 supp{ ( )} [ 4,7]x    (6-14) 

Then when for any j0, and k 

 0 0 0supp{ (2 )} [2 ( 4 ),2 (7 )]
j j j

x k k k  
      (6-15) 

We divide the regular Coiflets into three groups: 

1) The left group, 𝑆𝑗0
𝐿 , which intercepting the left boundary point 0. 

2) The right group, 𝑆𝑗0
𝑅, which intercepting the right boundary point 1. 

3) Completely situated within [0, 1]. No treatment is necessary. 

The two groups, 𝑆𝑗0
𝐿  and 𝑆𝑗0

𝑅 are treated in a similar manner. 

For left group, point 0 should inside of its support, namely 
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 (6-16) 

It follows that 

 7 4k    (6-17) 

For right group, point 1 should inside of its support, namely 
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 (6-18) 

It follows that 

 0 02 7 2 4
j j

k     (6-19) 

We wish to build the left basis functions from the Coiflets in the left group. 

Ideally these wavelets are orthogonal to the Coiflets in the central group, and 

orthogonal to the right group basis. Finally they are orthonormal among 

themselves within the group. Then construction begins with the expansion of the 

monomials. One approach to make the edge bases is to employ monomials: 

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑟−1⁡. For any monomial x 
r 
we have: 

  0 0, ,, ( ) 0 1r r

j k j k

k

x x x r L      (6-20) 

Where 𝜑𝑗0,𝑘 is unrestricted, namely 

 x R   

And k should be the value indicated (6-17) and (6-19) respectively for left and 

right edge bases. Next, if 𝑥 ∈ [0, 1]  

 0 0[0,1] , , [0,1]| , ( ) |r r

j k j k

k

x x x   (6-21) 
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So the new left basis functions, 𝑥𝑗0,𝐿
𝑟  (r=0,1,…, L-1) are defined as 

 0 00, , , [0,1], ( ) |
L

r r

j L j k j k

k S

x x x 


   (6-22) 

These basis functions are linearly independent but not orthonormal. So we 

may use Schmidt Cramer orthogonalization method in Appendix. When j0=4, the 

orthonormalized left and right bases are illustrated in Fig. 6.2 and Fig. 6.3 
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Fig. 6.2.  Left-edge basis after orthonormalization. 

 

Fig. 6.3.  Right-edge basis after orthonormalization. 
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Fig. 6.4.  Coifman intervallic scalets when j0=4. 

For example, expand the following function 

 

2 /22 1 0
( )

1 0 1

xe for x
y x

x for x

    
 

   

 (6-23) 

First, we have to rescale the x range, let 

 
1

'
2

x
x


  (6-24) 

Then, ' [0,1]x   
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Fig. 6.5.  Original function (6-23) and its reconstructed value  

at level 4 intervallic Coiflets. 

 

Fig. 6.6.  Difference between original function  

(6-23) and its reconstructed value at level 4 intervallic. 
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From Fig. 6.6, we can find the main difference between original and reconstructed 

value is around 0 point. This is because the original function is not smooth at 0 

point. 
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CHAPTER 7 COIFLETS IMPLEMENTATION OF THE MFIE 

7.1 Magnetic Integral Equation Formulation (MFIE) 

7.1.1 MFIE in spatial domain 

For 3-D plane wave scattering by PEC surface, the MFIE [24] is 

 ( ) 2 ( ) ( ) ( , )
2

t

s i s

S

n
J R n H R J R g R R ds




        (7-1) 

Where St is infinite scattering area and g is 3-D Green’s function 
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( , )

jk R R
e

g R R
R R
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 
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 (7-2) 

When we consider the doubly periodic cone, (7-1) convert to 

 

,
,

( ) 2 ( )

( ) ( , )
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m n

s i
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m n S

J R n H R

n
J R g R R ds



  


    

 (7-3) 

Where m and n are integers numbering the periodic elements, with m=n=0 being 

the reference element, Sm,n is the cone area, and D is periodic distance in x and y 

direction. k0 is plane wave propagation constant in free space. 

 

2

0 0 0

0 0 (sin cos ,sin sin ,cos )

k

k k

  

    




 (7-4) 

𝑅′ is the position vector of an arbitrary point on cone surface. 

Cone profile and TE and TM incidence are indicated in Fig. 7.1  
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(a)                        (b) 

Fig. 7.1.  One cone profile and incidence configuration 

 (a) TMz incidence (b) TEz incidence. 

 Surface function of cone is 

 

2 22
( , ) 1

x y
z f x y C

D

 
   
 
 

 (7-5) 

where C is the height of cone. Then normal direction on the surface is 
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( , ) ( , ) ( , ) ( , )
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 (7-6) 

For TM case 
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(7-7) 

 H0 is the magnitude of incident wave. The current is just on PEC surface, which 

leads to  
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 (7-9) 

Plug Equation (7-7), (7-8) and (7-9) into Equation (7-1), and we just consider x 

and y component, 
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And 
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 (7-11) 

Where 𝐺(𝑅, 𝑅′) is the gradient of Green’s function 𝑔(𝑅, 𝑅′) 
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 (7-12) 

The weighted surface current components are defined as 
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 (7-13) 

For TE case 
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 (7-14) 

 So we can get the full equation for TE case by just changing the right side of 

Equation (7-10) and (7-11). 
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7.1.2 MFIE in spectral domain 

Because of the periodicity and plane wave incidence, these currents must satisfy 

Floquet’s theorem, which is  
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ˆ( ) ( )ˆ x x y yj k D m k D ns
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    (7-16) 

From Appendix B, the vector potential created by a doubly periodic cone array is 
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(7-17) 

Where S is surface area of reference cone and  
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H field is calculated as 
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Where 
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Origin MFIE is coming from the boundary condition that expresses the total 

electric current density induced at any point on the surface of PEC  

  ( ) ( ) ( )i sJ R n H R H R    (7-21) 

Where H
i
 and H

s
 stand for the incident and scattered magnetic field respectively. 

Plug (7-19) into (7-21), we get 
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We can take 𝑛⃑ × into quadrature  
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Plug (7-6), (7-7), (7-8), (7-9) and (7-23) into (7-22) left part, we may get  



71 

 

2
,

( )

( )

1
ˆ ( )

2

( , ) ( , )
( ) ( )

( , ) ( , )
( )

( , )
( )

x

k l S

jk R R

y z x x

z

x x y

jk R R

y z x

z

LHS x F R dx dy
D

e f x y f x y
u z z r r r F R

r y x

f x y f x y
r r F R

y y

e f x y
u z z r r r

r y





  

  

 

  

  

   

     
     

   

   
    

    


   





( , )
( )

( , ) ( , )
( )

x

x x y

f x y
F R

x

f x y f x y
r r F R

y y
 

    
  

  

   
    

    

 (7-24) 

 

2
,

( )

( )

1
ˆ ( )

2

( , ) ( , )
( ) ( )

( , ) ( , )
( )

( , ) ( ,
( )

y

k l S

jk R R

y y x

z

z y x y

jk R R

y

z

LHS y F R dx dy
D

e f x y f x y
u z z r r F R

r x x

f x y f x y
r r r F R

y x

e f x y f x y
u z z r

r x





  

 

  

  



   

     
        

   
    

    

  
  





)
( )

( , ) ( , )
( )

y x

z y x y

r F R
x

f x y f x y
r r r F R

y x



  

  
   

 

   
    

    

 (7-25) 

Right part of (7-22) is the same with that in spatial domain formula (7-10) and 

(7-11). 
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7.2 Coiflets Implementation in MFIE 

7.2.1 Coiflets Implementation in spatial domain MFIE 

To solve the coupled integral equations (7-10) and (7-11), we apply the Galerkin 

based method of moments. First we expand the unknown function 𝐹𝑥(𝑅⃑ ) and 

𝐹𝑦(𝑅⃑ ) in term of Coiflets 
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Substituting the expansions into the integral equations (7-10), multiplying 

𝜑𝑗0,𝑢(𝑥) 𝜑𝑗0,𝑣(𝑦) 

 And integrating, we arrive at 
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 (7-27) 

Imposing orthogonality and one point quadrature we obtain 
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In the same manner, we can discretize the other integral equation in terms of 

Coiflets coefficients. The matrix form of the discretized MFIE is 
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Where I is the identity matrix and 
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7.2.2 Coiflets Implementation in spectral domain MFIE 

For periodical problem, unknown current on edge is nonzero which limits 

Coiflets implementation. Since Coiflets can only be utilized when boundary value 

is zero. So we may consider using Intervallic Coiflets as bases to expand 

unknown current. However the edge bases will no longer have the property with 

vanishing moments, which may lead more computation effort. In order avoid this 

loss, we will expand the unknown current to two periodical current which have 

zero value at the boundary. 

Let us begin with a 1-D problem. For cos⁡(2𝜋𝑥), the period is 1. And we 

expand it with j0=4 Coiflets as illustrated in Fig. 7.2 
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Fig. 7.2.  Function cos⁡(2𝜋𝑥) expanded with Coiflets. 

 

For bases center located in one period [0, 1) is 
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Fig. 7.3.  Coiflets with center located in [0, 1). 

Fig. 7.4 indicates the summation of these bases multiply with expansion 

coefficients. If j is big enough, support of these bases will all located in [-0.5, 0.5] 

which is double of cos⁡(2𝜋𝑥) function period. 
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Fig. 7.4.  Summation of Coiflets with center located in [0, 1). 

 

Fig. 7.5.  Two new periodical function. 

So cos⁡(2𝜋𝑥) function can be expanded to two periodical functions with doubled 

period and zero value at boundary. We will utilize this idea to our surface current 

as illustrated in Fig. 7.6, each black box means one cone area projecting to xy 

plane. There are four shade styles, each of them stand for core part of new 

double-period current. Red box means the boundary of new double-period 

current. 
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Fig. 7.6.  Doubled period surface current. 

According to Floquet’s theorem (7-16), total surface current is  

 

( )

( )

( )

( ) ( )( )

,

ˆ( ) ( )

ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( 2 2 ) (1 )

x

y

x x y y

y x x y yx

j k Ds

j k Ds

j k D k Ds

j k D j k D k Dj k Ds

m n

J R xD J R e

J R yD J R e

J R xD yD J R e

total J R x mD y nD e e e





 

  

 

 

  



      

 (7-32) 

And Plug it into (7-24), and double the period let D=2D, we will arrive at 
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We will the same thing as we did in 7.2.1. First we expand the unknown function 

𝐹𝑥(𝑅⃑ ) and 𝐹𝑦(𝑅⃑ ) in term of Coiflets just in one new period area. 
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Please note that bases only located in core area. Substituting the expansions into 

the integral equations (7-33), multiplying 𝜑𝑗0,𝑢(𝑥) 𝜑𝑗0,𝑣(𝑦) 

 And integrating, we arrive at 
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Imposing orthogonality and one point quadrature we obtain 
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In the same manner, we can discretize the other integral equation in terms of 

Coiflets coefficients. The matrix form of the discretized MFIE is 
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Where I is the identity matrix and 
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CHAPTER 8 

SCATTERING FROM A CALIBRATION TARGET 

8.1 Comparison of spatial and spectral equations  

Over the previous equations, there are summations for spatial and spectral 

functions. To clarify, we denote the spatial summation by m, n representing the 

indices of the (m,n) element, with m=n=0 being the reference element. In the 

spectral summation, k and l represent the (k,l) mode, with k=l=0 being the 

incident wave. Ideally, both spatial and spectral summations are from -∞ to ∞. 

Nevertheless, due to finite computer resources, in numerical computations, we 

have to truncate the summation at M1 and M2 in (8-1) as small as possible, 

subject to an accepted precision. 

 

1 1

1 1

2 2

2 2

M M

m M n M

M M

k M l M

 

 

 

 
 (8-1) 

 



84 

 

Fig. 8.1.  |𝑄̃|, when receiving and transmitting cell are identical. 

Coiflet one-point quadrature may not be accurate enough when the integrand is 

non-smooth. For both spatial domain and spectral domain integrals, there are 

singular or non-smooth points. As for spectral domain integration, when the 

source patch and field patch are at the same elevation, z=z', or they coincide 

(self-entry in the impedance matrix), we have to subdivide the integration range 

into many small pieces and sum up the results. From Equations (7-24) (7-25), 

there are only pure propagation modes, without attenuation when z=z', which 

leads to underdamped and oscillation behavior. The summations converge slowly 

and integration for every mode requires a large amount of computation, as 

indicated in Fig. 8.1. In this situation, spectral domain function is not a good 

choice, while spatial domain integration may be better off. In fact, numerical 

integration is needed only if there is an overlap between source and field cells, 
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and the spatial domain formulation is definitely faster than that of the spectral 

domain to fill these entries in the impedance matrix. As for spatial domain 

integration, there is only one cell, m=n=0, needs numerical integration, other m,n 

value we can still use one-point quadrature property. Let us discuss the numerical 

integration for m=n=0 case. For this 4-D integration, we will use Gaussian 

Quadrature for x and y. Gaussian Quadrature is a weighted sum of function values 

at specified points 𝑥  and 𝑦 . Then the function will be infinity when 𝑥′ = 𝑥  

𝑦′ = 𝑦 . As indicated in Fig. 8.2, numerical integration for area close to singular 

point will be fine pulses, which become coarse when get far away from singular 

point. 
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Fig. 8.2.  Illustration for numerical integration at singular point. 

All parameters for numerical integration, such as number of Gaussian 

Quadrature sample points, pulse width and etc. are carefully chosen to ensure 

computation efficiency and precision. 

 

 

Fig. 8.3.  𝑄 and 𝑄̃, when no overlap between source and field cell, the abscissa 

is the summation range M1 or M2. 

On the other hand, when there is no overlap between source and field cells, 

we may use spectral one-point quadrature property. Fig. 8.3 illustrates the values 

of 𝑄 and 𝑄̃ from the spatial domain equation and spectral domain equation 

respectively, when the z and z' coordinates of basis center are 0.4D apart. As one 

can tell, the spectral domain function converges faster than spatial domain 

function.  It just needs 6 modes to get very accurate value.  As indicated in (8-2) 

when k and l are small, the waves are mainly in propagating modes. However, 
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when k and l become large, wave becomes evanescent with k+z being imaginary. 

Therefore, computations with spectral domain equations are faster, and we choose 

spectral domain equations in this situation.  

  
( )

,

jk R R

k l zS

e
dx dy

r

   

   (8-2) 

Computation method for different situation is in Table 4. 

Table 4 Impedance Matrix Fill method, where 𝜌 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 

situation Method of Integration 

|𝑧 − 𝑧′| > 0.3𝐷 One-point + spectral domain     

|𝑧 − 𝑧′| = 0⁡&⁡𝜌 = 0 

Numerical Integration for self point 

One-point + spatial domain for others      

|𝑧 − 𝑧′| = 0⁡&⁡𝜌 ≠ 0  One-point + spatial domain    

else 

4-D Gasussian Quadrature for closest point 

One-point + spatial domain for others      

8.2 Computation result 
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Fig. 8.4.  Plane wave incident on 9 by 9 intersected identical PEC cones. 

As outlined in the Introduction, once the matrix equation has been solved and 

the induced surface current on the reference cone is obtained, we calculate the far 

fields and patterns. By the Floquet theorem, the surface current on each cone in an 

infinite array is identical, subject to a phase shift. If we analyze the infinite array 

under a plane wave incidence, the far-zone pattern is a Dirac-δ function similar to 

lim𝑛→∞
sin⁡(𝑛𝑥)

𝑠 𝑛𝑥
, which seems useless. The current distribution on a finite sized 

array is obtained as if each cone were among an infinite array. This current 

distribution is then used to produce the far-zone fields and radar cross sections 

(RCS). This result is different from the solution of the same finite sized array 
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illuminated by a tapered wave. Nonetheless, if the array is large enough, the edge 

effect from the truncation should be relatively small. 

 

 

(a) 

 

 

(b) 
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Fig. 8.5.  Surface current on reference cone for normal plane wave incident with 

H0=1; 

(a) Jx from FEKO and our PMM, (b) Jy from FEKO and our PMM. 

Fig. 8.4 configures an array of 9 by 9 identical BEC cones with a normal 

plane wave incidence. The cone has the period, Dx = Dy = D = 17.5mm and vertex 

angle γ = 17.5
o
. A normally incident plane wave of 10.695 GHz, with λ = 

28.03mm, θi = 0, ϕi=0.  There are 32×32 Coiflet bases deployed on the reference 

cone, which makes a total of 2048 unknown surface currents. In order to increase 

computation efficiency, parallel computation is implemented when fill impedance 

matrix. The developed parallel algorithm is based on C++ with MPI [28] and run 

on Saguaro cluster at Arizona State University.  

Fig. 8.5 and Fig. 8.6 demonstrate the surface current and bi-static radar cross 

sections (RCS) of the configuration in Fig. 8.4. The results by our method are 

compared with the solutions from a RWG-MLFMA based commercial software, 

FEKO. There are 3751 unknown RWG triangle edges in reference cone for FEKO. 

As indicated in Fig. 8.5 and Fig. 8.6, there are some differences between peak 

current at the edges, but RCS are well matched with that from the FEKO. 
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(a) 

 

 

(b) 
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Fig. 8.6.  Bi-static RCS of 9×9 cone array; 

 (a) for ϕs = 0
o
, (b) for ϕs = 90

o
. 

The results are compared against that of an RWG-MLFMA based 

commercial software, FEKO with excellent agreement. 
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CHAPTER 9 

CONCLUSION 

9.1 Summary for DGBA 

The diffracted Gaussian beam approach is a good method for large scale 

multi-reflector antenna simulation. Independence of expanded Gaussian beams 

makes this method much more efficient when the MPI is used on the computers. 

9.2 Summary for periodic MoM 

Employing the well-posted MFIE, we conducted a full wave analysis for 

doubly periodically PEC conic array. The proposed algorithm combines the 

Floquet theorem and Coifman wavelets to perform Galerkin’s procedure with high 

precision and great computational efficiency. Majority entries of the impedance 

matrix are obtained by Coiflet one-point quadrature. Both spectral domain and 

spatial domain formulations are derived and used to evaluate the singular or 

oscillatory entries of impedance matrix, depending on different situations. This 

hybrid filling process is faster than either the pure spectral PMM or spatial PMM. 

The results are compared against that of an RWG-MLFMA based commercial 

software, FEKO with excellent agreement. 
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APPENDIX A 

SCHMIDT-CRAMER ORTHOGONALIZATION 

For a set of linearly independent basis {𝑎1, 𝑎2, … , 𝑎𝑛}, we can generate a set of 

orthonormal bases {𝑏1, 𝑏2, … , 𝑏𝑛} as follows: 

 

 

1 1

2 1

2 2 1

1 1

1 1 1

1 1 1

1 1

,

,

, ,

, ,

k k k

k k k

k k

b a

a b
b a b

b b

a b a b
b a b b

b b b b

 

 



 

   

 (A 1) 
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APPENDIX B 

THE FIELD FROM AN ARRAY  

In this appendix we determine the exact field of an infinite array of dipoles of 

length dl and oriented along the arbitrary unit vector 𝑝̂  [29]. The double 

periodical array is located in the XY-plane with inter-element spacing Dx and Dy 

and the reference element at (0, 0, 0). 

The total vector potential 𝑑𝐴 (𝑥, 𝑦, 𝑧) for an infinite array of dipoles is 

obtained by simple addition of the vector potentials 𝑑𝐴 𝑞𝑚 of each element: 

 
ˆ( , , )

4

nmR

qm nm

n m n m nm

dl e
dA x y z dA p I

R





   

   

      

 

(B 1) 

Where 𝛾 = 𝛼 + 𝑗𝛽 is the propagation constant in the lossy medium, and  

 
2 2 2( )nm yR a mD y    (B 2) 

Where 

 
2 2 2( )xa nD x z    (B 3) 

For an incident plane wave propagating in the direction 𝑠̂. According to Floquet’s 

theorem (7-16), (B 1) will yield 

 ( , , ) x xj nD s

n

n

dA x y z e dA







   (B 4) 

Where 
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 ˆ
4

nm

y y

R
j mD s

n

m nm

Idl e
dA p e

R











   (B 5) 

Simply denotes the vector potential for a single column. 

We shall first evaluate 𝑑𝐴 𝑛 by transforming the infinite series in (B 5) into a 

faster converging series by use of Poisson’s sum formula: 

 0

0( ) ( )
jm t

m l

e F m T f t lT
 

 

 

    (B 6) 

Where 𝐹(𝜔) is the Fourier transform of 𝑓(𝑡), and 

 
0

2
T




  (B 7) 

From Bateman [30] we obtain the Fourier transform pair: 

 

2 2
1 1

( )

(2) 2 2

0
2 2

1

( )
2( )

a j te e
H a t

ja
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
 

    
   
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 (B 8) 

Comparison of (B 5) and (B 6) and application of (B 2), (B 7) and (B 8) now 

suggests that we put 

 0 1

0

2 2
, , ,y y

y

D T t s y
D

 
  


       (B 9) 

By application of Poisson’s sum formula (B 6) we then transform (B 5) into 

 
( ( / )) (2)

0
ˆ ( ' )
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y yj y s l D

n
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Idl
dA p e H r a

jD
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



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where 
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Substituting (B 10) into (B 4), 

 
( ( / )) (2)

0
ˆ ( ' )

4
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Idl
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The summation over q in (B 12) is now to be transformed into a faster convergent 

series by the use of Poisson sum formula similarly as above. We the obtain 

 

ˆ

ˆ , 0
2

R r

k lx y z

Idl e
dA p for z or

D D r
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
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Where 𝑟̂± and rz are given by (7-18) 

Having determined the vector potential 𝑑𝐴  from the entire array of dipoles as 

given by (B 13), it is a simple matter to find the magnetic and electric fields from 
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1

dH x y z dA x y z

E H
j
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Yielding 
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APPENDIX C 

GAUSSIAN QUADRATURE 

Gaussian quadrature 0 is an approximation of the definite integral of a 

function, stated as a weighted sum of function values at specified points within 

the domain of integration. An n-point 1D Gaussian is stated as 

 
1

( )
2 2 2
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i i
a

i

b a b a b a
f x dx f x



   
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 
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Where xi is i-th root of Pn, Pn is Legendre polynomials. It weight 𝜔  is given by  
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APPENDIX D 

INTEGRAL ALONG THE STEEPEST DESCENT PATH 

The integration variable of the integral along SDP in Equation (4-25) is 

changed from y0 to ζ as follows: 

    2

0si d y d y      (D 1) 

The SDP transforms into the real axis of the complex ζ plane. The saddle 

point and poles y0=ys, yp
1
,yp

2
 correspond to ζ=0, ζp, -ζp, respectively, where 

 
    

1/2
1

p s pi d y d y   
 

  

 

(D 2) 

The square root is defined so that ζp is positive real at x=xs . On substitution 

of Equation (D1) into (4-25), the integral along SDP becomes 
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(D 3) 

Where 
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d
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
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(D 4) 

In order to take into account the effect of two poles ζ=± ζp on the saddle point 

ζ=0, we set 
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Where H(ζ) is regular. Approximation of H(ζ) by H(0) and use of the 

integral formula 
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(D 6) 

Yield the asymptotic representation of the integral along SDP, which is given 

by Equation (4-27) 


