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ABSTRACT 

This thesis introduces the Model-Based Development of Multi-iRobot Toolbox 

(MBDMIRT), a Simulink-based toolbox designed to provide the means to acquire and 

practice the Model-Based Development (MBD) skills necessary to design real-time 

embedded system. The toolbox was developed in the Cyber-Physical System Laboratory 

at Arizona State University. 

The MBDMIRT toolbox runs under MATLAB/Simulink to simulate the 

movements of multiple iRobots and to control, after verification by simulation, multiple 

physical iRobots accordingly. It adopts the Simulink/Stateflow, which exemplifies an 

approach to MBD, to program the behaviors of the iRobots. The MBDMIRT toolbox 

reuses and augments the open-source MATLAB-Based Simulator for the iRobot Create 

from Cornell University to run the simulation. Regarding the mechanism of iRobot 

control, the MBDMIRT toolbox applies the MATLAB Toolbox for the iRobot Create 

(MTIC) from United States Naval Academy to command the physical iRobots. 

The MBDMIRT toolbox supports a timer in both the simulation and the control, 

which is based on the local clock of the PC running the toolbox. In addition to the build-

in sensors of an iRobot, the toolbox can simulate four user-added sensors, which are 

overhead localization system (OLS), sonar sensors, a camera, and Light Detection And 

Ranging (LIDAR). While controlling a physical iRobot, the toolbox supports the 

StarGazer OLS manufactured by HAGISONIC, Inc. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation of the Thesis 

Since the cyber-physical nature of real-time embedded systems was recognized, 

industries have run into problems with the growing complexity of embedded software. 

The scenario makes Model-Based Development (MBD) a sound strategy to develop 

robust, reliable systems. However, academia still lacks educational tools exposing 

engineers to the key elements of MBD. In order to provide the means to acquire and 

practice the necessary MBD skills, this thesis research will build a robot simulator in 

MATLAB/Simulink, whose graphical languages exemplify an approach to MBD. 

Real-time embedded systems integrate computation with physical processes. 

Recently, this kind of systems is referred to Cyber-Physical System (CPS) [1]. The nature 

of CPS enables itself to interact with, or modify the capabilities of, physical world, but it 

also poses challenges to system developers, for instance, the difficulties in automotive 

industry [2]. Definitely, engineers must acquire new skills to respond to the challenges. 

According to [3], we can say that the challenges of CPS stem from the different 

abstractions of Electrical/Mechanical systems (hardware) and computational systems 

(software). Hardware design starts from analytical models, which specify translator 

functions. Software design, in contrast, begins from computational models, whose 

semantics is defined by an automaton. Although analytical models are good at handling 

concurrency and quantitative constraints, these capabilities are exactly the deficiencies of 

computational models. More specifically, the derivation of most major paradigms in 

Computer Science, at the very beginning, abstracted away from the physical notions of 

concurrency and from all physical constraint on computation; for example, ‘‘… in 
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algorithms and complexity theory, actual time is abstracted to big-O time, and physical 

memory to big-O space’’ [3]. These facts reveal the intrinsic heterogeneity of CPS. 

The complexity of embedded software rapidly increases [4], which necessitates 

adopting a Model-Based Development (MBD) paradigm for the development of new 

systems [5] [6]. However, there is still a chasm between how real-time embedded 

systems are taught and how they are being developed in safety critical applications. In 

order to bridge this gap, academia and industry need research and education tools that 

will help engineers develop the appropriate MBD skills, especially the knowledge about 

Statecharts established by Harel [7].  

Harel was inspired by avionics engineers and proved that Statecharts are 

effective to describe avionics systems that are heavily driven by events [8]. Since event-

driven nature is one of the characters of real-time embedded systems, and Stateflow, 

which is an extension of MATLAB/Simulink, implements a variant of Harel’s Statecharts 

[9], a robot simulator inside MATLAB/Simulink that can be interfaced with 

Simulink/Stateflow will provide the means to acquire and practice the necessary MBD 

skills. 

1.2 Contribution of the Thesis 

The main contribution of this thesis is the Model-Based Development of Multi-iRobot 

Toolbox (MBDMIRT). The toolbox is designed to apply Stateflow charts to implement 

control program to simulate and control multiple iRobot Create ground vehicles [10]. By 

running the toolbox, end users can evaluate the differences between the MBD-style 

programming method and the traditional programming languages, like C/C++. Besides, 

the graphical, intuitive visualization of the iRobot simulation offers valuable information 
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before running the programs on actual iRobots. Thus, the toolbox creates a unified 

control program development suite for simulating/controlling virtual/physical iRobot 

Creates. 

The MBDMIRT toolbox reuses and modifies the open-source MATLAB-Based 

Simulator for the iRobot Create [11] from Cornell University to build its simulator. In 

order to accommodate multiple iRobots and compute reasonable physical responses, The 

MBDMIRT toolbox expands the capabilities of the physics engine powering the Cornell 

MATLAB-based simulator. Besides, a new visualization method is applied in 

MBDMIRT toolbox. Since MBDMIRT is Simulink-based, the MATLAB Graphical User 

Interface Design Environment (MATLAB GUIDE) [12] applied in Cornell MATLAB-

based simulator is not suitable for the development of the new toolbox. The visualization 

of the simulation in MBDMIRT is developed upon Simulink Callback-Based Animation 

[13]. 

After verification by simulation, the MBDMIRT toolbox enables end users to 

control real iRobots by running the same Stateflow charts. At this stage, the toolbox calls 

the corresponding functions in MATLAB Toolbox for the iRobot Create (MTIC) [14] to 

control the iRobots through Bluetooth wireless communication. 

1.3 Thesis Structure 

This thesis is intended to serve as an introduction and reference guide to the MBDMIRT 

toolbox. The MBDMIRT implementation of the simulation and control interface are 

included, as well as installation instructions and Getting-Started examples. The thesis is 

structured according to the following outline: 
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• Chapter 1: The first chapter introduces the motivation of the thesis and 

mentions the result—MBDMIRT toolbox.  

• Chapter 2: The second chapter discusses the previous researches that 

form the fundamentals of the MBDMIRT. Similar researches are also 

included. 

• Chapter 3: The third chapter is the reference guide of the MBDMIRT. It 

incorporates the development of the toolbox, features implemented in the 

toolbox, and the restriction on controlling physical iRobots. A tutorial for 

the MBDMIRT toolbox is included. This chapter ends with a summary 

of the functions that the toolbox users call in the iRobot Simulation 

Stateflow chart and the iRobot Control Stateflow chart. 

• Chapter 4: This final chapter discusses some possible future work related 

to the MBDMIRT toolbox. 

• Appendices: The Appendices include the instructions for the toolbox 

installation and configuration, as well as Simulink/Stateflow keyboard 

shortcuts and tips beneficial for the toolbox users. Appendix E shows the 

StarGazer map applied in this thesis, and Appendix F discusses the offset 

table for the StarGazer landmarks distributed in the map. 
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CHAPTER 2  

RELATED LITERATURE 

2.1 Previous Research 

Salzberger et al. [11] developed the MATLAB-based Simulator for the iRobot Create at 

Cornell University. This toolbox was developed under open-source FreeBSD license to 

help motivate students to learn programming and knowledge about autonomous mobile 

robots. Its simulation power is augmented in the MBDMIRT toolbox to implement multi-

iRobot simulation. Esposito et al. developed the MATLAB Toolbox for the iRobot Create 

(MTIC) to communicate with physical iRobot Creates. Through MTIC, physical iRobots 

can be controlled from a host PC running MATLAB. Because MTIC is a free toolbox, it 

is interfaced with the MBDMIRT toolbox to implement multi-iRobot control. 

2.1.1 MATLAB-based Simulator for the iRobot Create 

The MATLAB-based Simulator for the iRobot Create [11] is a MATLAB toolbox 

developed for educational purpose. Fan et al. [15] concludes that in a 300-student 

introductory programming course at Cornell University, the toolbox helped the students 

better understand the concept of approximation and error. Meanwhile, the students 

achieve the same level of programming competence as the prior classes where the 

simulator was not adopted. 

The toolbox consists of a main simulator graphical user interface (GUI) 

SimulatorGUI and three GUIs for map making, simulation replay, and configuration 

setting (e.g., set the sensor noise or communication delay). It can simulate and visualize 

the movements of a single iRobot Create in manual mode or autonomous mode.  
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During the manual mode, the end-user drives the virtual iRobot with the 

keyboard or the GUI controls. On the other hand, during the autonomous mode, the user 

controls the iRobot by editing an autonomous control program, which is a user-edited 

MATLAB function, and loading the control program into SimulatorGUI. Because the 

toolbox is based on the MTIC, the autonomous control program can also run on actual 

iRobot through the MTIC toolbox. 

Before SimulatorGUI runs the user-edited control program in the autonomous 

mode, SimulatorGUI performs initialization process which creates a robot object and 

sets up a timer object CreateSim as well as its corresponding timer function 

updateSim. The robot object is an instance of a class CreateRobot that is defined in 

the toolbox and contains all the properties for simulation. The task of the timer object is 

to update the simulation periodically with the timer function. 

When the initialization process completes, SimulatorGUI parses the 

autonomous control program and calls the Translator Functions in the class 

CreateRobot accordingly. Salzberger et al. [16] explains that the Translator Functions 

is a set of class methods that shares the same function names and simulates the same 

functionalities of those in the MTIC toolbox, which makes the user-edited control 

program compatible with the MTIC toolbox. Next, the timer function updateSim will be 

invoked by CreateSim at a regular interval. The updateSim will recalculate the position of 

the iRobot and update the plot accordingly. If any sensor is involved in the control 

program, updateSim will also visualize the position of the sensor. 
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The discussion above completes the basic workflow of the MATLAB Simulator 

for the iRobot Create. There are more supplement functions available in the toolbox, 

which are explained in more details in [17] and [16]. 

2.1.2 MATLAB Toolbox for the iRobot Create (MTIC) 

The Open Interface (OI) [18] built in the iRobot Create allows users to utilize a host PC 

to control and communicate with the iRobot by sending the OI numerical instructions 

over serial connection. However, due to the cryptic-nature of the OI commands (e.g. a 

sequence 152 13 137 1 44 128 0 156 1 144 137 0 0 0 0 drives the iRobot 40 cm, then 

stops it) and the difficulty in establishing a software serial link between the host PC and 

the iRobot, Esposito et al. developed the MTIC toolbox to overcome the disadvantages 

mentioned above. 

The MTIC [14] toolbox translates the OI numerical instructions into a set of 

high-level, intuitive MATLAB functions (e.g. SetFwdAngVelCreate specifies the 

forward and the angular velocity of the iRobot). These MATLAB functions make easy 

access to the iRobot Create and let programmers able to write programs for the iRobot 

Create. Moreover, the MTIC toolbox offers a function that connects the host PC to the 

iRobot Create through a software serial link. 

While the hardware serial link can be achieved by a wired serial cable, it tethers 

the iRobot to the host PC and limits the movements of the iRobot. Thus, the MBDMIRT 

toolbox uses the Bluetooth Adapter Module (BAM) [19] instead. As long as the BAM is 

installed on the iRobot Create, the host PC can communicate with the iRobot through a 

virtual serial port created by the Bluetooth service. 
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2.2 Similar Research 

This section presents similar researches in the realm of simulation and control. The first 

one conducts complete Model-Based Design process with LabVIEW, NI Single-Board 

RIO 9632, and the iRobot Create. The second one implements a virtual environment that 

allows real robots to involve in the simulation of large-scale cooperative robotic systems. 

2.2.1 Model-Based Design with the NI Robotics Simulator and the iRobot Create 

Jensen [20] was presented in the NIWeek 2011 Conference [21]. The research conducted 

a complete MBD process in LabVIEW to develop embedded software controlling an 

iRobot Create. The involved software and hardware include:  

• NI LabVIEW, 

• LabVIEW 2011 Robotics Module, 

• NI Single-Board RIO 9632, 

• Analog Devices ADXL-322 analog accelerometer, and 

• ASUS WL-330gE wireless router. 

The main development environment, LabVIEW, is a tool capable of capturing 

the interactions in Cyber-Physical Systems. Jensen et al. [22] shows that ‘‘… continuous 

systems are expressed as ordinary differential equations or differential algebraic 

equations, and discrete systems are expressed as difference equation, in the LabVIEW 

Control, Design, and Simulation Module; concurrent state machines are expressed in 

models created in the LabVIEW Statechart Module (which implements a variant of 

Harel’s Statecharts)’’ (p. 2). 
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Jensen [20] demonstrates the development of embedded software in LabVIEW, 

following the complete MBD process: 

‘‘1. Solve in simulation, deploy on real device 

   2. Verify experimental results against simulations 

   3. Revise and repeat.’’ 

The goal is to develop embedded software driving the iRobot to climb a ramp. 

The researchers choose LabVIEW Dataflow programming language and LabVIEW 

Statechart Module to design the embedded software because they expect the software 

consists of two parts: (1) a controller program driving the continuous system (i.e., 

adjusting motor speed, reading bump sensor output, reading accelerometer output, etc.) 

and (2) a control algorithm defining the behavior of the whole system (e.g., iRobot drives 

straight if it is tilted uphill). 

Firstly, they use the Dataflow programming in LabVIEW to design the controller 

program, and then verified the controller program in the simulator. Next, they develop the 

control algorithm, using LabVIEW Statechart Module. Finally, they verify and test the 

developed embedded software in LabVIEW 2011 Robotics Module, which is a 3-D 

physics-based simulator. If any error is found in the simulation, they revise it and repeat 

the MBD process. After the error is fixed and verified, they deploy the solution to the NI 

Single-Board RIO 9632 that is an embedded controller fully compatible with LabVIEW. 

2.2.2 A Simulation-Based Virtual Environment to Study Cooperative Robotic Systems 

Hu et al. [23] proposed a hybrid simulator that creates a virtual environment where real 

robots and robot models are able to work together. Experiments have proved that the 

robot-in-the-loop simulation can effectively support systematic analysis of large-scale 
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cooperative robotic systems. Very often, this kind of large-scale systems is difficult to be 

verified in physical world with actual robots due to the complexity and scalability 

involved. 

The effectiveness of the hybrid simulator is achieved by a well-defined 

architecture, which includes an environment model and a set of robot models. The 

environment model forms a virtual environment for both the virtual robots and real robots, 

such that real robots can interact with virtual environment in the hybrid mode. The robot 

model represents two elements, which are a robot’s decision-making model and 

sensor/actuator interfaces. The decision-making model defines the control logic. 

Regarding the sensor/actuator interfaces, it has two different types, but all share the same 

interface functions. The first sensor/actuator interfaces is sensor/actuator 

abstractActivities, which represents virtual sensors and actuators; the second one is 

sensor/actuator RTActivities, which drives the real sensors and actuators of a robot. 

Besides, the environment model and the decision-making model can pass message with 

each other through the sensor/actuator abstractActivities. 

The advantage of the interface functions shared between the abstractActivities 

and the RTActivities is that a decision-making model can execute without modification in 

both a virtual environment and a real environment to command a virtual robot and a real 

robot respectively. Furthermore, the robot-in-the-loop simulation is also benefitted by the 

shared interface functions. During the robot-in-the-loop simulation, a real robot is 

configured to use a combination of abstractActivities and the RTActivities, such that the 

real robot receives the outputs from virtual robots and makes decisions accordingly. More 

specifically, the real robot has its own virtual sensors, which are able to detect the virtual 
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robots and virtual obstacles. Consequently, the real robot is able to interact with the 

virtual environment.  

For large-scale cooperative robotic system involving hundreds of robots, the 

capability of the robot-in-the-loop simulation makes it possible to conduct experiments 

without setting up the system-wide environment and all of the real robots. The 

researchers have succeeded running a robot-in-the-loop simulation with two real robots, 

and the quantitative results from the simulation will be collected and analyzed. 
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CHAPTER 3  

MBDMIRT TOOLBOX REFERENCE GUIDE 

This chapter provides an overview of the major MBDMIRT toolbox components and 

describes how the main functionalities (MBDMIRT iRobot Simulation and MBDMIRT 

iRobot Control) are developed. The chapter ends with a tutorial on initializing and using 

the toolbox, as well as a summary of the frequently used devices in the MBDMIRT 

toolbox. 

3.1 MBDMIRT Toolbox Overview 

The main objective of the MBDMIRT toolbox is to provide the means to acquire and 

practice the Model-Based Development skills necessary to design real-time embedded 

system. The toolbox focuses on the practice of modeling event-driven systems with 

Simulink/Stateflow, which exemplifies an approach to MBD [3] [6]. 

The MBDMIRT toolbox, short for Model-Based Development of Multi-iRobot 

Toolbox, is an enhancement to MATLAB/Simulink. It links Simulink/Stateflow to a 

multi-iRobot simulator interface (iRobotSimulation.mdl in the toolbox) and a multi-

iRobot control interface (iRobotControl.mdl in the toolbox) respectively. Stateflow is 

an extension of MATLAB/Simulink, and it implements a variant of Harel’s Statecharts 

[9], which is widely adopted in many industrial MBD development suites, e.g. SCADE 

[24] and LabVIEW [25]. The MBDMIRT toolbox, in conjunction with Stateflow, 

composes an educational environment for practicing the graphical Stateflow 

programming language in simulating multiple virtual iRobots and controlling multiple 

physical iRobots. 



13 
 

The MBDMIRT toolbox consists of two user interfaces and supporting utilities. 

The user interfaces (iRobotSimulation.mdl and iRobotControl.mdl) are 

implemented in Simulink model files in order to adopt Stateflow charts. The supporting 

utilities, mostly coded in switchyard programming pattern [26] [27], are related to 

simulation processing, simulation updating, real iRobot initializing, and StarGazer (an 

optional localization system) initializing. 

The files in the MBDMIRT toolbox are organized into the directory structure 

shown in Figure 3.1. 

 

Figure 3.1: MBDMIRT Directory Structure 
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The iRobotSimulation.mdl is the interface (shown in Figure 3.2) for 

simulating multiple iRobots with Stateflow charts. It provides a Stateflow Chart Block 

for end-users to design the control logic of the virtual iRobot Creates. In addition, it also 

contains an iRobot Monitor Block that visualizes the simulation (shown in Figure 3.3). 

The design process of the iRobotSimulation.mdl is described in Section 3.2.4. A 

tutorial on using iRobotSimulation.mdl can be found in Section 3.4. 

 

Figure 3.2: MBDMIRT iRobot Simulation Interface 

 

Figure 3.3: Virtual iRobots in Simulation 
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The iRobotControl.mdl is the interface (shown in Figure 3.4) for controlling 

multiple iRobots with the same Stateflow charts after verification by simulation. It 

provides a Stateflow Chart Block to run the control logic for the actual iRobot Creates. 

The design process of the iRobotControl.mdl is described in Section 3.2.5. A tutorial 

on using iRobotControl.mdl can be found in Section 3.4. 

 

Figure 3.4: MBDMIRT iRobot Control Interface 

3.2 MBDMIRT Design Process 

Since MBDMIRT toolbox has to provide functionalities of simulating virtual iRobots and 

controlling physical iRobots, the MBDMIRT design process is divided up into two sub-

processes: the Development of MBDMIRT iRobot Simulation and the Development of 

MBDMIRT iRobot Control. 

The Development of MBDMIRT iRobot Simulation begins from modeling 

iRobots and continues with two phases of Simulink-based simulator development. The 

Development of MBDMIRT iRobot Control consists of interfacing Stateflow charts with 

the MTIC toolbox, and interfacing Stateflow charts with the StarGazer indoor 
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localization systems. Figure 3.5 shows the development process of the MBDMIRT 

toolbox. 

 

Figure 3.5: Development Process of MBDMIRT Toolbox 

3.2.1 iRobot Create Mathematical Model 

The iRobot Create is a differentially-driven two-wheeled robot. The bottom view of the 

iRobot is illustrated in Figure 3.6. For simplicity, the distance between the driven wheels 

approximates to the diameter of the iRobot Create. The top view of the simplified iRobot 

Create is shown in Figure 3.7. 
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Figure 3.6: Bottom View of iRobot Create  
(image copied from iRobot Create Owner’s Guide) 

 

Figure 3.7: Simplified iRobot Create Model (top view) 

Bräunl [1] points out that ‘‘… driving control for differential drive is more 

complex than for single wheel drive, because it requires the coordination of the two 

driven wheels… If both motors run at the same speed, the robot drives straight forward or 

backward, if one motor is running faster than the other, the robot drives in a curve along 

the arc of a circle, and if both motors are run at the same speed in opposite directions, the 

robot turns on the spot.’’ The above driving actions are illustrated in Figure 3.8 and 

Figure 3.9. 
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Figure 3.8: Driving forward and driving in a curve of differential drive 

 

Figure 3.9: Rotation of differential drive 

The kinematics of iRobot Create can be described as the relations among the 

driven wheel velocities 𝑣𝐿,𝑅 , linear velocity 𝑣 , and angular velocity 𝜔 , which are 

illustrated in Figure 3.10. 

 

Figure 3.10: Linear Velocity, Angular velocity, and Driven Wheel Velocities 
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In order to model the kinematics of the iRobot Create, I start from Figure 3.11 to 

determine the distance 𝑆 the iRobot has traveled, then discuss iRobot’s rotation angle 

𝜃𝑡𝑢𝑟𝑛 and derive kinematics of iRobot Create. The following derivation references Bräunl 

[1] and Salzberger [16]. 

Assume a scenario in which the iRobot move along a circular segment, that is 

illustrated in Figure 3.11.  

 

Figure 3.11: Kinematics calculation for iRobot Create 

Given the driven wheel velocities 𝑣𝐿,𝑅, the distances 𝑆𝐿,𝑅 traveled by the driven 

wheels can be derived by the following: 

 
𝑆𝑅(𝑡) = 𝑣𝑅 ∙ 𝑡, 

𝑆𝐿(𝑡) = 𝑣𝐿 ∙ 𝑡. 
(3.1) 
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Thus, the distance the iRobot has traveled is: 

 

𝑆(𝑡) =
𝑆𝑅(𝑡) + 𝑆𝐿(𝑡)

2
, 

𝑆(𝑡) =
𝑣𝑅 ∙ 𝑡 + 𝑣𝐿(𝑡)

2
. 

(3.2) 

Since 𝜃𝑡𝑢𝑟𝑛 is directional (𝜃𝑡𝑢𝑟𝑛 is negative if iRobot rotates clockwise, or 𝜃𝑡𝑢𝑟𝑛 

is positive if iRobot rotates counterclockwise), the analysis of 𝜃𝑡𝑢𝑟𝑛 can be broken into 

two cases: 

Case 1 (𝜃𝑡𝑢𝑟𝑛 < 0, iRobot rotates clockwise): 

 

Figure 3.12: iRobot's Rotation Angle while SR < SL 

By observing Figure 3.12, we know: 

 

𝑆𝑅 = �𝑐 − 𝑑
2
� ∙ 𝜙, 

𝑆𝐿 = �𝑐 + 𝑑
2
� ∙ 𝜙, 
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∵ 𝑆𝑅 < 𝑆𝐿 and 𝜙 ∈ [0,2𝜋], 

∴ 𝑑 ∙ 𝜙 = 𝑆𝐿 − 𝑆𝑅, 

𝜙 = 𝑆𝐿−𝑆𝑅
𝑑

, 

𝜃𝑡𝑢𝑟𝑛 = −𝜙 = 𝑆𝑅−𝑆𝐿
𝑑

. 

Therefore, we know 

 𝜃𝑡𝑢𝑟𝑛 =
𝑆𝑅 − 𝑆𝐿

𝑑
< 0, if 𝑆𝑅 < 𝑆𝐿 . (3.3) 

Case 2 (𝜃𝑡𝑢𝑟𝑛 > 0, iRobot rotates counterclockwise): 

 

Figure 3.13: iRobot's Rotation Angle while SR > SL 

By observing Figure 3.13, we know 

 

𝑆𝑅 = �𝑐 + 𝑑
2
� ∙ 𝜙, 

𝑆𝐿 = �𝑐 − 𝑑
2
� ∙ 𝜙, 
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∵ 𝑆𝑅 > 𝑆𝐿 and 𝜙 ∈ [0,2𝜋], 

∴ 𝑑 ∙ 𝜙 = 𝑆𝑅 − 𝑆𝐿, 

𝜙 = 𝑆𝑅−𝑆𝐿
𝑑

, 

𝜃𝑡𝑢𝑟𝑛 = +𝜙 = 𝑆𝑅−𝑆𝐿
𝑑

. 

Thus, we have 

 𝜃𝑡𝑢𝑟𝑛 =
𝑆𝑅 − 𝑆𝐿

𝑑
> 0, if 𝑆𝑅 > 𝑆𝐿 . (3.4) 

Due to Equation (3.3) in the Case 1 and Equation (3.4) in the Case 2, we 

conclude that: 

 

𝜃𝑡𝑢𝑟𝑛 =
𝑆𝑅 − 𝑆𝐿

𝑑
, 

𝜃𝑡𝑢𝑟𝑛 > 0, if iRobot rotates counterclockwise, 

𝜃𝑡𝑢𝑟𝑛 < 0, if iRobot rotates clockwise. 

(3.5) 

Next, we can use the driven wheel velocities 𝑣𝐿,𝑅 and the angle turned 𝜃𝑡𝑢𝑟𝑛 to 

derive the kinematics of the iRobot Create by the following: 

 

𝑣 = 𝑣𝑅+𝑣𝐿
2

, 

𝜔 = 𝑑𝜃𝑡𝑢𝑟𝑛
𝑑𝑡

  

= 𝑑
𝑑𝑡
�𝑆𝑅−𝑆𝐿

𝑑
�  

= 𝑑
𝑑𝑡
�𝑣𝑅∙𝑡−𝑣𝐿∙𝑡

𝑑
�  
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= 𝑣𝑅−𝑣𝐿
𝑑

 . 

Thus, we know the kinematics of iRobot Create is: 

 

𝑣 =
𝑣𝑅 + 𝑣𝐿

2
, 

𝜔 =
𝑣𝑅 − 𝑣𝐿

𝑑
. 

(3.6) 

Further, Equation (3.6) can be written into matrix form: 

 

𝑣 = 𝑣𝑅+𝑣𝐿
2

= �1
2

1
2
� �
𝑣𝑅
𝑣𝐿�, 

𝜔 = 𝑣𝑅−𝑣𝐿
𝑑

= 𝑣𝑅−𝑣𝐿
2𝑟

= � 1
2𝑟

− 1
2𝑟
� �
𝑣𝑅
𝑣𝐿�. 

 

Thus, the kinematics of iRobot Create in matrix form is: 

 �𝑣𝑤� = �

1
2

1
2

1
2𝑟

−
1

2𝑟

� �
𝑣𝑅
𝑣𝐿�. (3.7) 

Through Equation (3.6), we can also obtain the inverse kinematics of iRobot 

Create: 

 

∵ 𝑣 = 𝑣𝑅+𝑣𝐿
2

, 

𝜔 = 𝑣𝑅−𝑣𝐿
𝑑

= 𝑣𝑅−𝑣𝐿
2𝑟

, 

𝜔 ∙ 𝑟 = 𝑣𝑅−𝑣𝐿
2

, 

∴ 𝑣 + 𝑤 ∙ 𝑟 = 𝑣𝑅, 

𝑣 − 𝑤 ∙ 𝑟 = 𝑣𝐿, 
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𝑣𝑅 = [1 𝑟] �𝑣𝜔�, 

𝑣𝑅 = [1 −𝑟] �𝑣𝜔�. 

The inverse kinematics of iRobot Create is: 

 �
𝑣𝑅
𝑣𝐿� = �1 𝑟

1 −𝑟� �
𝑣
𝜔�. (3.8) 

3.2.2 Physics Engine 

With the principles of modeling iRobots discussed in Section 3.2.1, I reuse and translate 

the physics engine of Salzberger [11] into a Simulink-based simulator for a single iRobot 

Create that becomes the core of the MBDMIRT iRobot Simulation. 

The physics engine of Salzberger [11] expects that a virtual iRobot has velInt 

and wInt, which are properties intentionally, set by end-users through control program 

(e.g. a Stateflow Chart in the MBDMIRT toolbox). The velInt is the intended linear 

velocity; the wInt is the intended angular velocity. 

Salzberger [16] states that with the velInt and wInt set properly, the physics 

engine determines the new pose of a virtual iRobot by calculating the relevant Abs 

properties including: 

• velAbs containing both the x-axis component and y-axis component of 

a valid linear velocity, 

• wAbs representing a valid angular velocity, 

• posAbs representing iRobot’s position in Cartesian coordinates, and 
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• thAbs representing iRobot’s heading angle relative to the positive x-axis. 

thAbs is wrapped to [−𝜋,𝜋], which is the smaller angle relative to the 

positive x-axis (the definition thAbs simplifies the sensor generating 

function updateOdom explained in Section 3.2.3). 

The physics engine updates the Abs properties by four physics engine functions, 

including: 

• driveNormal: This function is called when the virtual iRobot is not 

interacting with any walls. 

• drive1Wall: This function is called when one wall is affecting the 

virtual iRobot. 

• drive2Wall: This function works similarly to drive1Wall but is 

called when two walls are affecting the virtual iRobot. 

• driveCorner: This function operates when the virtual iRobot is 

contacting the corner of one or two walls. 

Salzberger [16] shows that each of the physics engine functions listed above 

needs to be fed into ∆𝑡 that is the time since the last simulation update. Upon receiving 

the ∆𝑡, the physics engine uses the simple rule, 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑣 ∙ ∆𝑡, to caluculate the 

virtual iRobot’s new position. ∆𝑡 is represented by tstep in the source code of both 

Salzberger [11] and the MBDMIRT toolbox. For more details on the physics engine see 

State Manipulator Functions (Physics Engine) in Salzberger [16]. 
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3.2.3 Sensor Generating Functions 

The new pose of a virtual iRobot is calculated by the physics engine. In the same manner, 

the outputs of sensors on a virtual iRobot are processed by sensor generating functions 

that are summarized in Table 3.1 and further explained in this section. The sensor 

generating functions are translated from Salzberger [11]. 

Table 3.1: Sensor Generating Functions 

  Sensor Generating Function 

iRobot’s 
Built-in 
Sensors 

Bump Sensor genBump 
Buttons (simulated by Button/LED Panel) 
Cliff Sensor genCliff 

Omni-Directional Infrared Receiver  
(for iRobot Virtual Wall) 

genVWall 

Odometer updateOdom 

Wall Sensor genIR 

Battery Meter – 
Motor Current Meter – 
Wheel Drop – 

User-
Added 
Sensors 

Sonar genSonar 

Light Detection And Ranging 
(LIDAR) 

genLIDAR 

Camera genCamera 

Overhead Localization System genOverhead 

Note: ‘–’ indicates unsupported sensor in the simulation. 

genBump: The effective detection range of the virtual bump sensors is illustrated 

in Figure 3.14. Most hits with the side ① or ③ will trigger the left or right bump sensors 

respectively. Hits with side ② will trigger the front sensor. Note that the actual bump 

sensors on a real iRobot Create may not be activated on a glancing blow. Whether the 

real bump sensors are activated depends on the strength and the angle of the hit on an 

object. For simplicity, these actual, physical effects are not taken into account by the 

physics engine. 
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Figure 3.14: Detection Range of Virtual Bump Sensors 

Button/LED Panel: There are Play (>) and Advance (>>|) button on the real 

iRobot Create. The MBDMIRT toolbox represents these buttons in Button/LED Panel 

accessible through the button in the upper right corner of the MBDMIRT simulation 

visualization interface shown in Figure 3.3. The layout of the Button/LED Panel consists 

of a set of one-touch buttons for all the iRobots and several sets of Buttons and LEDs for 

a specific iRobot. The one-touch buttons can toggle all the Play buttons the Advance 

buttons on the panel. The number of the button/LED set for a specific iRobot vary, 

depending on how many virtual iRobots are currently being simulated. For example, 

Figure 3.15 shows a panel for three virtual iRobots, and Figure 3.16 shows a panel for 

seven virtual iRobots. Note that the buttons in the Button/LED Panel are toggle buttons, 

which are activated by a push, and deactivated by another push. However, on the real 

iRobot, the relevant MTIC instruction (ButtonSensorRoomba) will return true only if 

the buttons are currently being held down. 
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Figure 3.15: Button/LED Panel for Three Virtual iRobots 

 

Figure 3.16: Button/LED Panel for Seven Virtual iRobots 

genCliff: The location of the virtual cliff sensors is illustrated in Figure 3.17. 

Note that, in reality, the cliff sensors on a real iRobot check a single point on the ground, 

while the point is on a real line that has thickness. However, the virtual lines on the map 

for simulation have no thickness (see Appendix B for all the elements available on the 

map for simulation). Thus, the effective detection point of the virtual cliff sensors are 

increased to ranges that are different between the right (or left) cliff sensor and the front 

right (or front left) cliff sensor. The right (or left) virtual cliff sensor is activated if a 

virtual line intersects with the robot perimeter within 6.75°; the front right (or front left) 
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virtual cliff sensor is activated if a virtual line intersects with the robot perimeter within 

5.85°. The effective detection ranges of the virtual cliff sensors are illustrated in Figure 

3.18. 

 

Figure 3.17: Location of Virtual Cliff Sensors 

 

Figure 3.18: Detection Range of Virtual Cliff Sensors 

genVWall: In reality, there is an omni-directional infrared receiver in front of a 

real iRobot. One of the usages of the infrared receiver is to read signals from Virtual 

Wall® (see page 14 of iRobot Corp. [10] for more information about Virtual Wall®). The 

physics engine supports the simulation of the infrared receiver. A Virtual Wall® in reality 

produces a field around the emitter and in the direction it faces, which is illustrated in 

Figure 3.19. Similarly, a Virtual Wall® in MBDMIRT iRobot Simulation is represented 
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by a halo radius and effective signal range and angle, which is illustrated in Figure 3.20. 

See Appendix B for how to set a Virtual Wall® on the map for simulation. 

 

Figure 3.19: Invisible Barrier Created by Virtual Wall®  
(image copied from iRobot Create Owner’s Guide) 

 

Figure 3.20: Virtual Wall® in MBDMIRT iRobot Simulation  
(revised image from MATLAB-Based Simulator for the iRobot Create  

Code Documentation) 

Salzberger [16] explains that ‘‘the physics engine checks whether a virtual 

iRobot is against a Virtual Wall® by first comparing the sensor position to that of the 

emitter to see if the iRobot is within the halo. If the iRobot is not in the halo, the physics 

engine uses an area algorithm to see if the sensor position is inside the triangular field. 
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The area of a triangle is calculated from the vertices of the triangle using the determinant 

method: 

 𝑎𝑟𝑒𝑎 = 1
2
�det�

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
1 1 1

��.’’  

Salzberger [16] explains further that ‘‘the physics engine calculates the area of 

the triangular field, and then the area of the three triangles whose vertices are two vertices 

from the field and the sensor position. If the sensor is within the field, then the area of the 

field is equal to the sum of the areas of the other three triangles. If not, the area of the 

three triangles is greater than the area of the field.’’ 

 

Figure 3.21: Determination of whether iRobot hits Virtual Wall®  
(revised image from MATLAB-Based Simulator for the iRobot Create  

Code Documentation) 

updateOdom: This function is called at every execution of the simulation 

updating function updateFigSim in the MBDMIRT toolbox (or the timer function 

updateSim in Salzberger [11]). Salzberger [16] makes two assumptions regarding 

updateOdom: 
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1. The movements of the virtual iRobot between two calls on updateOdom 

is small, 

2. The angle the virtual iRobot has turned between two calls on 

updateOdom is small. 

The first assumption simplifies the algorithm in calculating the odometry 

distance. ‘‘The odometry distance is calculated by using a linear approximation of the 

distance traveled between the previous location and the current one. The magnitude of the 

change odomDist comes from a simple distance formula. The sign of the change is more 

complicated. If the robot is moving in the direction it is pointing, the odometry will 

increase, and vice-versa’’ (Salzberger [16], p. 28). The Figure 3.22 illustrates the 

calculation of the odometry distance. 

 

Figure 3.22: Sign of Odometry Distance  
(revised image from MATLAB-Based Simulator for the iRobot Create  

Code Documentation) 
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The second assumption regarding updateOdom simplifies the calculation of the 

angular odometry. ‘‘The angle turned on a given step is calculated from the start thAbs, 

and the end thAbs, with no knowledge of which path is taken. The path could be 

determined from wAbs, but that would be more difficult than just assuming that the 

iRobot turns the shorter amount. This is especially important when the robot turns 

through 𝜋 or –𝜋 radians, since thAbs is automatically wrapped to between those values. 

In the diagram below, the odometry will be changed by the small angle of the two (𝛽). It 

will be increased if wAbs is positive, and decreased if negative.’’ If the maximum 

allowable turning speed is large compared to the rate of updating the simulation, this 

method may cause errors (Salzberger [16], p. 28). 

 

Figure 3.23: Calculation of Angular Odometry  
(revised image from MATLAB-Based Simulator for the iRobot Create  

Code Documentation) 

genIR: On the real iRobot Create, there is infrared proximity sensor with a very 

low effective range on the front right of the bumper. The output of the sensor is a 

Boolean value indicating whether a wall is detected. The counterpart on a virtual iRobot 

locates at the position shown in Figure 3.24. The linear effective range is assumed within 

0.1 meter from the location. 
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Figure 3.24: Location of Virtural Infrared Proximity Wall Sensor 

In addition to the sensors built-in on the real iRobot Create, there are four user-

added sensors available in the simulation, including sonar sensors, LIDAR, a camera, and 

an overhead localization system. A real overhead localization system (StarGazer indoor 

localization system by Hagisonic, Inc.) is supported in the MBDMIRT iRobot Control. 

See Section 3.2.5 for more information about StarGazer with the MBDMIRT toolbox. 

genSonar: Salzberger [16] states that ‘‘… there are four sonar sensors, placed in 

the cardinal directions on the edges of the robot. This makes it easy to check each sensor 

since they are evenly spaced around the circumference.’’ Note the difference between the 

order of outputs from genSonar and the sonar sensor actually called by 

ReadSonarSpecified, which is a Stateflow graphical function in the MBDMIRT 

iRobot Simulation: 

• The output of genSonar is a row vector with four elements, which is 

[front left back right]. 

• The syntax of the ReadSonarSpecified is  

distance = ReadSonarSpecified(serPort, sonarNum). The 

sonarNum must be an integer corresponding to sonar to be read, where: 

1 represents the right virtual sonar, 2 – front, 3 – left, 4 – back. 



35 
 

genLidar: Salzberger [16] mentions that ‘‘… the LIDAR sensor is located on 

the front of the robot… Like genSonar, this function calls findDist to get the reading 

for each point in the LIDAR field of view.’’ 

genCamera: In Salzberger [17], it is mentioned that ‘‘… assumed a camera has 

been installed on the front of the Create. This camera is to be used for color blob 

detection only… The camera is used for finding beacons.’’ Beacons are a kind of 

elements available on the map for simulation. They are immaterial objects (e.g. colored 

paint or paper) on the ground, so the virtual iRobot can pass over them. See Appendix B 

for more information about the elements on the map for simulation. 

genOverhead: Salzberger [16] states that ‘‘… the overhead localization system 

is assumed to be very accurate, so it outputs the exact location and orientation of the 

robot with no noise.’’ In addition to the virtual overhead localization system, the 

MBDMIRT iRobot Control supports a real localization system (StarGazer manufactured 

by Hagisonic Inc.). See Appendix A for more information about the StarGazer. 

3.2.4 Development of MBDMIRT iRobot Simulation 

3.2.4.1 Simulink Graphical Animation 

The MBDMIRT iRobot Simulation adopts Stateflow, which is an extension to Simulink, 

for users to design the control logic of the virtual iRobots in the simulation. Thus, an 

effective way to visualize the movements of the iRobots as Simulink animations is 

required in the MBDMIRT toolbox, which leads the discussion in this section into 

Simulink graphical animations. 

Simulink graphical animation is an animation displaying the data received from a 

Simulink model as the model executes. There are several approaches to developing 
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Simulink graphical animation, such as callback-based animation, S-Function-based 

animation, the Animation Toolbox, the Dials & Gauges Blockset, and the Virtual Reality 

Toolbox. These methods are discussed in Dabney [13] [28], where the Dials & Gauges 

Blockset is obsolete and has been replaced by Gauges Blockset [29] [30]. Dabney [13] 

[28] shows that the callback-based animation is the most powerful techniques compared 

to other alternatives. By using the callback-based animation, Dabney [28] states that ‘‘... 

it permits you to include custom controls in the animation window, and also allows you 

to build an animation block that can be open or closed during a simulation.’’ Therefore, 

the MBDMIRT iRobot Simulation is implemented with the callback-based animation. 

3.2.4.2 Simulink Callback-Based Animation 

The technique of Simulink callback-based animation is realized by use of the Simulink 

callback parameters and an M-file function containing the callbacks written in switchyard 

style. A template for Simulink callback-based animation is available in Debney [13]. 

The callback parameters associated with a Simulink block or with a Simulink 

model contain MATLAB commands, such that when certain events (for example, 

opening a model or double-clicking a block) occurs, the MATLAB commands are 

executed. Listed in Table 3.2 is a portion of the callback parameters associated with a 

particular Simulink block, courtesy of Dabney [13]. See The MATLAB, Inc. [31] for a 

complete list of the callback parameters. 
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Table 3.2: Simulink Block Callback Parameters Applied in MBDMIRT toolbox 

Parameter Name When Executed 

ModelCloseFcn 

Before model is closed. This callback is recursive for subsystem 
blocks. Use this callback to do any block-specific housecleaning 
before closing a model. For example, use this callback to close a 
graphical user interface if the GUI is associated with the block. 

DeleteFcn 
Before a block is deleted. Use this callback to close any open user 
interface windows associated with the block. This callback is 
recursive for subsystem blocks. 

InitFcn 
Before the block diagram is compiled and before block 
parameters are evaluated. This callback could be used to obtain 
data to set block parameters. 

NameChangeFcn 

After the name of a block changes. Here, name means the full 
path name of the block. If a subsystem name is changed, all 
blocks in the subsystem are affected. This callback can be used in 
conjunction with a graphical user interface associated with a 
block to prevent the graphical user interface from being orphaned 
when the block name changes. 

StopFcn When the simulation stops for any reason. 

  

Table 3.3: Simulink Model Callback Parameters Applied in MBDMIRT toolbox 

Parameter Name When Executed 

InitFcn At start of model simulation 

CloseFcn 

Before model is closed. Use this callback to do any needed 
housecleaning when a model is closed For example, if the model 
uses a custom graphical user interface, all interface windows 
should be closed before closing the model. 

  
Both the model callback parameters and the block callback parameters can be set 

interactively [32] [33] or programmatically [34]. Afterwards, the associate callback code 

written in a switchyard-style M-file function will be executed whenever a certain event, 

such as double-clicking a block or changing the name of a block, occurs. 

The switchyard-style M-file function contains a single entry point (the 

switchyard) and a collection of local functions that implement the callbacks. This kind of 



38 
 

switchyard programming has several advantages. Firstly, it encapsulates all the callback 

functions into a single M-file, such that the problem of M-file proliferation is eliminated 

[26]. Secondly, ‘‘… because each callback function manipulates variables in its own 

workspace, those variables are protected from changes made in the base workspace’’ 

(Webb [35]). 

3.2.4.3 Review of Cornell’s MATLAB-Based Simulator in Autonomous Mode 

When the MATLAB-based Simulator for the iRobot Create [11] is called, it initializes an 

iRobot object and a timer object with a timer function updateSim. The iRobot object is 

an instance of the user-defined class CreateRobot, which contains the properties of the 

virtual iRobot, such as velInt, wInt, and the Abs properties. The task of the timer 

object is to update the simulation every 0.1 second. 

When the initialization process completes, the user can load a map and a 

configuration file. Then, the simulator enters into the autonomous mode when the user 

clicks the Autonomous Start button. Afterwards, the simulation begins and continues as 

the control program executes. Meanwhile, the timer object will call updateSim to 

update the visualization of the simulation every 0.1 second by interrupting the execution 

of the control program. The simulation stops when the control program reaches the end of 

its code. The above description is shown diagrammatically in Figure 3.25. 
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Figure 3.25: Flowchart of MATLAB-Based Simulator for the iRobot Create in 
Autonoumous Mode 

The control program consists of statements calling translator functions (TRLT 

Fcn) and statements computing numerical results. The translator functions are built in the 

MATLAB-based Simulator for the iRobot Create. Salzberger [16] states that ‘‘each of the 

functions falling into this category are used as the ‘middle function’ between the 
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autonomous control program and the simulator’s raw algorithms and data.’’ Therefore, 

the control program can call the relevant translator functions to set intended velocity 

velInt or read virtual sensor outputs. The character of the translator functions in 

Cornell’s MATLAB-based simulator is illustrated in Figure 3.26. 

 

Figure 3.26: Component Relationships of Cornell's MATLAB-Based Simulator in 
Autonomous Mode 

The main tasks of the timer object are to move the virtual iRobot to its new 

position and update the sensor visualization. The timer object achieves these tasks by 

interrupting the control program at a regular interval (every 0.1 sec in real clock time). 

During the interruption, a timer function associated with the timer object invokes the 

physics engine to compute iRobot’s new Abs properties. Next, the timer function uses the 

new Abs properties to update the visualization of the iRobot and the virtual sensors. 

3.2.4.4 Simulink Solver Type and Simulation Speed 

The MBDMIRT iRobot Simulation is a Simulink-based simulator. Therefore, the 

simulation speed depends on versatile factors such as Simulink model complexity, 

Simulink solver step sizes, and the CPU speed. In order for the MBDMIRT iRobot 
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Simulation to have consistent performance such as the same simulation speed and the 

same total simulation time on different PCs, a RealTime Pacer Block [36] is applied in 

the MBDMIRT toolbox. The RealTime Pacer Block synchronizes the simulation time 

with real elapsed time. 

The Simulink environment provides a variety of solvers such as a fixed-step 

solver and a variable-step solver. The main task of a solver is to determine the time of the 

next simulation step. The MathWorks, Inc. [37] states that ‘‘both fixed-step and variable-

step solvers compute the next simulation time as the sum of the current simulation time 

and a quantity known as the step size. With a fixed-step solver, the step size remains 

constant throughout the simulation. In contrast, with a variable-step solver, the step size 

can vary from step to step, depending on the model dynamics. In particular, a variable-

step solver increases or reduces the step size to meet the error tolerances that you 

specify.’’ Moreover, ‘‘Simulation time is not the same as clock time. For example, 

running a simulation for 10 seconds usually does not take 10 seconds. Total simulation 

time depends on factors such as model complexity, solver step sizes, and computer 

speed’’ (The MathWorks, Inc. [38]). 

Consequently, the RealTime Pacer Block [36] is introduced in order for the 

MBDMIRT iRobot Simulation to have consistent performance on different PCs. By 

slowing down the simulation time, the RealTime Pacer Block synchronizes the 

simulation with real elapsed clock time. However, Vallabha [36] mentions a technical 

issue: ‘‘the matching between simulation time and elapsed time is approximate, with 

expected difference on the order of 10 to 30 milliseconds. This limitation is due to 

difficulties of precise timing with a multitasking operating system.’’ 



42 
 

3.2.4.5 Translating Autonomous Mode of Cornell’s MATLAB-Based Simulator  

into a Simulink-Based Simulator 

The translation of Cornell’s MATLAB-based simulator into a Simulink-based simulator 

for a single iRobot begins from the Simulink callback-based animation. The technique of 

Simulation callback animation consists of a callback switchyard M-file and a Simulink 

model file. The main components of the MATLAB-based simulator such as the physics 

engine, the sensors generating functions (SENS GEN Fcn), the timer function 

updateSim, and the translator functions (TRLT Fcn) are coded into the switchyard M-

file in the manner illustrated in Figure 3.27. The Simulink model file contains a Stateflow 

Chart Block, a masked subsystem block, and a RealTime Pacer Block. 

 

Figure 3.27: Translation of Cornell's MATLAB-Based Simulator  
into a Simulink-Based Simulator 

The Stateflow Chart Block in the Simulink-based simulator has a set of graphical 

functions and a superstate named CPSLab. The supersate CPSLab is the place where 
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users can draw Stateflow charts to design their control logic for the virtual iRobot. The 

users can call the graphical functions in their Stateflow chart to control the iRobot’s 

behavior such as setting iRobot’s intended velocity or reading the virtual sensors. 

Recall that in the MATLAB-based simulator, the translator functions (TRLT Fcn) 

are middle functions between the autonomous control program and the simulator’s raw 

algorithm and data such as the physics engine, sensors generating functions (SENS GEN 

Fcn) and the Int properties. In the Simulink-based simulator, the Stateflow chart needs 

an addition layer to communicate with the TRLT Fcn. The new layer is the set of 

predefined graphical functions in the Stateflow Chart Block. The relationships between 

the graphical functions and the TRLT Fcn in the Simulink-based Simulator are illustrated 

in Figure 3.28. 

 

Figure 3.28: Component Relationships of MBDMIRT Simulink-Based Simulator 

The timer object in Cornell’s MATLAB-based simulator is replaced with the 

Simulink Solver and a RealTime Pacer Block in the Simulink-based simulator. The 

Simulink Solver is a discrete fix-step solver with step size 1. The RealTime Pacer has a 

speed-up parameter named simTimePerRealTime, whose value can be changed by users. 
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Since the Stateflow charts are invoked by the Simulink model in the way depicted in 

Figure 3.29 [9], with the RealTime Pacer Block working with the discrete fix-step 

Simulink Solver, the Stateflow charts will be invoked every 1
𝑠𝑖𝑚𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒

 second in 

real clock time, which means the physics engine and the updateFigSim will update the 

simulation visualization every 1
𝑠𝑖𝑚𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒

 second in real clock time. In fact, there 

is a global variable named STperRT in the switchyard M-file, it stores the same value as 

simTimePerRealTime. The physics engine is always fed into STperRT to compute the 

iRobot’s new position according to the basic rule, 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 ∙ ∆𝑡 = 𝑥𝑜𝑙𝑑 ∙
1

𝑆𝑇𝑝𝑒𝑟𝑅𝑇
.  

Therefore, the accuracy of the simulation is determined by 1
𝑠𝑖𝑚𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑅𝑒𝑎𝑙𝑇𝑖𝑚𝑒

. The larger 

the value of simTimePerRealTime is, the more accurate the iRobot simulation will be. 

 

Figure 3.29: Stateflow charts are invoked in a cyclical manner  
(image copied from Stateflow User’s Guide R2012a) 

3.2.4.6 Expanding Simulation Capacity 

The Simulink-based simulator introduced in Section 3.2.4.5 is able to simulate only a 

single iRobot Create. In this section, the upgrades of the simulation capacity will be 
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introduced. The result is the MBDMIRT iRobot Simulation, which is a Simulink-based 

Simulator capable of simulating multiple iRobots. Besides, the new simulator can read 

the local PC clock, such that the virtual iRobots can make decisions based on time stamp 

or the readings from the local clock. 

The representation of both the virtual iRobot and walls in the Simulink-based 

simulator are MATLAB lineseries graphics objects created by plot function. 

Originally, the physics engine processes only the interactions among the iRobot graphics 

object and the wall graphics objects. With the same physics engine, multiple virtual 

iRobots goes through with each other when they collide. This is incorrect simulation 

because the collision is not visualized. The solution is to create a view of obstacles for 

every virtual iRobot. In an iRobot’s view, obstacles include all walls and other iRobot 

graphics objects. Each iRobot’s view of obstacle is stored in mapObstacles, which is a 

MATLAB matrix. Each row in mapObstacles represents a line object: 

 [𝑥1 𝑦1 𝑥2 𝑦2].  

The whole mapObstacles contains the line objects representing all the wall 

graphics objects and the other iRobot graphics objects from a specific iRobot’s view. 

Each iRobot has its own mapObstacles (or its own view of obstacles). The drawback of 

this solution is that every time the simulation visualization is updated by updateFigSim, 

updateFigSim has to refresh every mapObstacles associated with each virtual 

iRobots, which increases the computation burden. 

Besides the multi-iRobot simulation, a new Stateflow graphical function, 

LocalPCClock, reading local PC clock is also introduced into the new Simulink-based 
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simulator. Through the new graphical function, users can apply time stamps to their 

Stateflow charts, such that the virtual iRobots behaves according to real clock time. 

3.2.5 Development of MBDMIRT iRobot Control 

The purpose of the MBDMIRT iRobot Control is for users to control real iRobot Creates 

by executing, without modification, the control Stateflow charts designed in the 

MBDMIRT iRobot Simulation. In addition, the MBDMIRT toolbox is designed to 

support StarGazer indoor localization system, so the relevant facilities are introduced in 

the MBDMIRT iRobot Control. 

In order to execute the same Stateflow charts in the simulator and on the real 

iRobots without modification, the MBDMIRT iRobot Control has a set of Stateflow 

graphical functions with the same function signatures as those in the MBDMIRT iRobot 

Simulation. The new set of Stateflow graphical functions are interface layer between the 

MTIC toolbox and the user-created Stateflow charts. In the graphical functions, MTIC 

commands are accessed through Stateflow ml function. For example, calling MTIC 

command SetFwdVelAngVelCreate to set the forward velocity and angular velocity of 

a real iRobot Create is achieved by the following command in the graphical functions, 

where the serObjNum, FwdVel, AngVel are Stateflow data: 

 

 Similarly, calling MTIC commands AngleSensorRoomba to read angular 

odometry on the real iRobot is achieved by the following command in the graphical 

functions, where the AngleR and serObjNum are Stateflow data: 

 

ml('SetFwdVelAngVelCreate(iRobot_%d, %f, %f)', serObjNum, FwdVel, AngVel) 

AngleR = ml('AngleSensorRoomba(iRobot_%d)', serObjNum) 
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However, Stateflow data is not like MATLAB variables whose size 

automatically shrinks or expands. The size or dimension of a Stateflow data is fixed and 

defined through Stateflow Editor or Simulink Model Explorer (see The MathWorks, Inc. 

[9] for Sizing Stateflow Data). Besides, the index notation for Stateflow vector data and 

Stateflow matrix data is zero-based, and the elements are accessed through C-like syntax 

(see The MathWorks, Inc. [9] for How to Assign and Access Values of Vectors and 

Matrices). For example: 

• To access the first element of a Stateflow vector data sfVector, use: 

 

• To access the element in row 5 and column 4 of a Stateflow matrix data 

sfMatrix, use: 

 

Therefore, the Stateflow graphics function calling the MTIC commands that have 

more than one output argument, such as the ButtonsSensorRoomba, is implemented by 

following steps: 

1. For a Stateflow graphical function whose function definition is: 

 

2.  Create a container in MATLAB workspace: 

 

sfVector[0] 

sfMatrix[4][3] 

function [ButtonAdv, ButtonPlay] = ButtonsSensorRoomba(serObjNum) 

ml('iRobot_%d_ButtSensor(1:2)=0;', serObjNum); 
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3. Run the MTIC ButtonsSensorRoomba in MATLAB workspace and 

assign the sensor reading into the container created in step 1: 

 

4. Define a Stateflow vector data ButtSensor with size 1 by 2 (see The 

MathWorks, Inc. [9] for Sizing Stateflow Data). Assign the elements in 

the MATLAB container to the Stateflow vector data ButtSensor: 

 

5. Use C-like syntax to access the elements of the Stateflow vector data: 

 

Note that, if the output of the MTIC command ButtonsSensorRoomba is 

directly assigned to the Stateflow vector data ButtSensor: 

 

All the elements in ButtSensor will be assigned with the same value as the first element 

of the output from the MTIC command ButtonsSensorRoomba. That is to say: 

 

which is not desired in the Stateflow graphical function. 

Since the MBDMIRT toolbox controls the real iRobots through Bluetooth 

channel instead of storing and executing embedded code on the iRobot, in the 

ml('[iRobot_%d_ButtSensor(1), iRobot_%d_ButtSensor(2)] = ButtonsSensorRoomba(iRobot_%d);',... 
      serObjNum, serObjNum, serObjNum); 

ButtSensor = ml('iRobot_%d_ButtSensor', serObjNum); 

ButtonAdv = ButtSensor[0]; 
ButtonPlay = ButtSensor[1]; 

ButtSensor = ml('ButtonsSensorRoomba(iRobot_%d);',serObjNum); 

ButtSensor[0] == ButtSensor[1] == the first element of the output from ButtonsSensorRoomba 
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MBDMIRT iRobot Control (iRobotControl.mdl) a RealTime Pacer Block works with 

the Simulink discrete fixed-step solver in order to run the control Stateflow charts in real 

time. The parameter simTimePerRealTime of the RealTime Pacer Block is set to 1000, 

which is based on experiments. Thus, the communication rate between the control 

Stateflow charts and the real iRobots is 1
𝑠𝑖𝑚𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑅𝑒𝑎𝑙𝑇𝑖𝑚

= 1
1000

= 1 ms. 

The StarGazer localization system communicates with the MBDMIRT toolbox 

through an adapter, which converts StarGazer’s RS-232 serial signal to Bluetooth radio 

signal. The Stateflow graphical function OverheadLocalizationCreate, inspired by 

the Cornell’s MATLAB-based simulator, reads the Bluetooth signals by calling the 

supporting functions in iRobotControl_switchyard.m. Figure 3.29 shows the 

system diagram of the MBDMIRT iRobot Control. 

 

Figure 3.30: System Diagram of the MBDMIRT iRobot Control 
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3.3 Composition of the MBDMIRT Toolbox 

The composition of the MBDMIRT toolbox is summarized in this section. The superstate 

CPSLab, in other words, is a container of the control logic designed by end-users. The 

control logic will drive both the virtual iRobots and the real iRobots via the mechanism 

depicted in Figure 3.32 and Figure 3.33. 

 

Figure 3.31: The CPSLab superstate is a container of control logic 

 

Figure 3.32: Composition of MBDMIRT iRobot Simulation 

 

Figure 3.33: Composition of MBDMIRT iRobot Control 
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3.4 MBDMIRT Tutorial 

This tutorial assumes that the MBDMIRT toolbox is correctly installed (see Appendix A 

for MBDMIRT installation instructions). We will go through a two-iRobot example in 

which an iRobot moves along a line on ground, and the other iRobot will perform action 

according to the local clock on the base station PC. The example begins from Stateflow 

chart creation, iRobot simulation, and eventually to iRobot control. 

Begin by typing 

>> iRobotSimulation 

at the MATLAB command prompt to invoke the iRobot Simulation interface shown in 

Figure 3.2. Double-click the Stateflow Chart Block to enter the Stateflow Chart 

workspace shown in Figure 3.30.  

 

Figure 3.34: Stateflow Chart Workspace for MBDMIRT iRobot Simulation 
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Double-clicking the superstate CPSLab brings out the Stateflow Chart editor for 

the simulation shown in Figure 3.31. The decomposition of the superstate CPSLab is 

parallel. 

 

Figure 3.35: Stateflow Chart Editor for MBDMIRT iRobot Simulation 

Create two subcharted superstate. One is named iRobot_1; the other is named 

iRobot_2 (as shown in Figure 3.32). 

 

Figure 3.36: Containers of the Stateflow Charts for Two Virtual iRobots 
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In the superstate iRobot_1, draw the Stateflow chart shown in Figure 3.33 and 

add the relevant Stateflow data through Model Explorer or the Stateflow Editor. Similarly, 

in the superstate iRobot_2, draw the Stateflow chart shown in Figure 3.34 and add the 

relevant Stateflow data. 

 

Figure 3.37: Example Control Logic for iRobot_1 
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Figure 3.38: Example Control Logic for iRobot_2 
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Go back to the iRobot Simulation interface, double-click the iRobot Monitor 

Block. Then, a pop-up window shows up and inquires the quantity of the virtual iRobots 

in the simulation. Enter ‘‘2’’ for this tutorial. 

 

Figure 3.39: Pop-up Window inquiring iRobot Quantity 

Clicking the OK button brings out the simulation monitor shown in Figure 3.36. 

 

Figure 3.40: iRobot Simulation Monitor 

Loading an pre-edited example map either through the Setup menu at the upper-

left corner the monitor, or through a keyboard shortcut Ctrl+M. Either way bring up a 

folder window for you to choose a desired map. In this tutorial, we choose the example 

map. Loading the map refreshes the monitor, which is shown in Figure 3.37. 
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Figure 3.41: iRobot Simulation Monitor with a Loaded Map 

Next, set up the origin position for the virtual iRobots either through the Setup 

menu at the upper-left corner the monitor, or through a keyboard shortcut Ctrl+R. Set the 

origin positions the same as those shown in Figure 3.38. 

 

Figure 3.42: Origin Positions of the iRobots 

Go back to the iRobot Simulation interface, starting the simulation makes the 

iRobot_1 moves along the line on ground, and the iRobot_2 to make a right turn 

approximately every 5 second in real clock time. 
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After verification by simulation, we can execute the same Stateflow charts to 

control real iRobots. Begin by typing 

>> iRobotControl 

at the MATLAB command prompt to invoke the iRobot Control interface shown in 

Figure 3.4. 

In the same manner, double-click the Stateflow Chart Block and go into the 

superstate CPSLab in the iRobot Control Interface. Then, copy the Stateflow Charts 

designed in the simulation stages into the superstate CPSLab of the control interface. 

Next, prepare two real iRobot, mark one of them as iRobot_1, the other as 

iRobot_2. Connect the Bluetooth Adapter Modules (BAMs) to the iRobots. Power up the 

iRobots. Assume the BAM on iRobot_1 has been assigned with COM 5 to communicate 

with the base station PC, and the BAM on iRobot_2 with COM 6 (see Element Direct, 

Inc. [19] for BAM installation instructions). 

Before start running the Stateflow charts in the MBDMIRT iRobot Control 

interface, we need to associate each BAM with corresponding iRobots. Now, the BAM 

with COM 5 is installed on the iRobot_1, and the BAM with COM 6 is installed on the 

iRobot_2. With the above information, typing 

>> activate_iRobot(1, 5) 

>> activate_iRobot(2, 6) 

at the MATLAB command prompt. By doing so, the ideal numbers of each iRobot, such 

as number 1 for the iRobot_1 and number 2 for the iRobot_2, are bound with correct 

BAM. Thus, the same Stateflow charts design at the simulation stage can execute on the 

real iRobots without any modification. 
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The execution of the function activate_iRobot for each real iRobot may take 

1 to 2 minutes. After activating each iRobots, go back to the iRobot Control Interface, 

start the simulation of the Simulink model. This time, instead of the virtual iRobots in the 

simulation monitor, the real iRobot Creates will move in the same manner as in the 

simulation monitor, which completes this tutorial. 
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CHAPTER 4  

RESULTS AND FUTURE WORK 

In this thesis, the development and structure of the MBDMIRT toolbox is described. The 

main contribution of this thesis is: 

• The MBDMIRT toolbox as an enhancement to MATLAB & Simulink, such 

that Simulink/Stateflow is linked to both a multi-iRobot simulator interface and 

a multi-iRobot control interface. 

The toolbox was designed to help users acquire and practice the Model-Based 

Development skills necessary to design real-time embedded system. Through 

the toolbox, this goal is achieved by: 

1. Using Stateflow charts to design control logic for virtual iRobots, 

2. Running the simulator to check the correctness of the Stateflow charts, 

3. After verification by simulation, running the same Stateflow chart 

without modification to control real iRobots. 

MBDMIRT toolbox was designed to run in real clock time. To enable this 

functionality, a RealTime Pacer Block is introduced to work with Simulink 

Solver. 

4.1 Future Work 

From many viewpoints, the MBDMIRT toolbox could be improved with numerous ways. 

A few of these are mentioned below: 



60 
 

• Conduct surveys on users’ experience. The effectiveness of the MBDMIRT 

toolbox in MBD education could be evaluated by surveying its users. The 

evaluation will be important in updating the toolbox functionalities. 

• Generate real-time embedded code from the verified Stateflow charts. Instead 

of controlling iRobots from a host PC, running real-time embedded code on the 

iRobots provides more efficient and accurate control. A candidate controller 

able to execute code on the real iRobot is the iRobot Command Module [10] 

[39]. One of the concerns about it is that the Command Module has only 

general purposes I/O (GPIO). Thus, it could be difficult to let devices with RS-

232 serial port communicate with the Command Module. 

This thesis introduces and demonstrates the MBDMIRT toolbox. There are still 

numerous ways in which the MBDMIRT toolbox could be revised. I hope it will 

eventually contribute the education of Model-Based Development in ways I never 

imagined. 
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A.1 License Agreement 

The MBDMIRT toolbox modifies the source code of the MATLAB-Based Simulator for 

the iRobot Create by Cameron Salzberger. The MBDMIRT toolbox is written by Shih-

Kai Su, and its code is released under the open-source BSD license. A copy of the license 

is provided with the software and listed below: 

 
Copyright (c) 2012, Arizona State University 

All rights reserved. 

• Redistributions of source code must retain the above copyright notice, this list of 

conditions and the following disclaimer.  

• Redistributions in binary form must reproduce the above copyright notice, this list 

of conditions and the following disclaimer in the documentation and/or other 

materials provided with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 
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STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

The views and conclusions contained in the software and documentation are those of the 

authors and should not be interpreted as representing official policies, either expressed or 

implied, of Arizona State University. 

A.2 Required Hardware and Software for the MBDMIRT Toolbox 

This section details the required hardware and software for the MBDMIRT toolbox. The 

required software includes: 

• MATLAB & Simulink 2010b (or newer): The MBDMIRT toolbox was 

developed on MATLAB 2012a, and has been tested on MATLAB 2010b. 

It should work on all newer versions of MATLAB including Simulink 

environment, 

• RealTime Pacer Block: It is obtainable through the link in The 

MathWorks, Inc. [36]. For information about RealTime Pacer Block in 

the MBDMIRT toolbox, see Section 3.2.4.4 and Section 3.2.5. 

The required hardware includes: 

• iRobot Create: It is a differentially-driven two-wheeled ground vehicle. 

For more information about iRobot Create, see the introduction at 

http://www.irobot.com/us/robots/Educators/Create.aspx, 
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• BAM: BAM is short for Bluetooth Adapter Module. It is used to connect 

a control computer wirelessly to the iRobot Create. For more information 

about BAM, see the introduction at http://www.elementdirect.com. 

A.3 Optional Hardware for the MBDMIRT Toolbox 

This section details the optional hardware for the MBDMIRT toolbox. The optional 

hardware includes: 

• iRobot Virtual Wall: A Virtual Wall emits an adjustable infrared beam (8 

feet in maximum) that the iRobot is able to detect. A Virtual Wall 

prevents the iRobot from entering a specific area. For more information 

about iRobot Virtual Wall, see http://www.irobot.com/us, 

• StarGazer Indoor Localization System: StarGazer outputs the current 

Cartesian coordinates with respect to a StarGazer landmark. StarGazer 

can be mounted on the iRobot Create to do guidance control based on the 

coordinates. For more information about StarGazer, see http:// 

www.hagisonic.com/, 

• SIIG RS-232 Serial to Bluetooth Adapter: It is used to connect a control 

computer wirelessly to the StarGazer. For more information about the 

RS-232 Serial to Bluetooth Adapter, see http://www.siig.com/rs-232-

serial-to-bluetooth-adapter.html. 

A.4 Installing the MBDMIRT Toolbox 

1. Unzip the mbdmirt.zip 

2. Copy the /mbdmirt folder to the path you desired. For example, 

C:/userfolder/ 
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3. Go to MATLAB, change MATLAB Current Folder to the path  

C:/userfolder/mbdmirt 

4. At MATLAB command prompt (>>), type and enter 

>> install_mbdmirt_toolbox 

5. After the function install_mbdmirt_toolbox completes execution, 

the mbdmirt directory is added into and saved in the MATLAB path. 
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APPENDIX B  

CREATION OF THE MAP FOR SIMULATION 
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The physics engine of the MBDMIRT iRobot Simulation is based on that of the Cornell’s 

MATLAB-Based Simulator for the iRobot Create. Therefore, the MBDMIRT uses the 

same map format for simulation. This appendix shows the types of elements available in 

the map and the methods of creating a map, courtesy of the Cornell University’s user 

manual [17]. 

B.1 Elements of the Map 

There are four types of elements available in a map, including: 

1. Walls: Represented by solid lines. The virtual iRobots are unable to pass 

through them. Walls can trigger bump sensors, infrared proximity wall 

sensor, sonar, and LIDAR. 

2. Lines: Represented by dashed lines. Lines are used to indicate markings 

on the ground, such as paints or tapes. The virtual iRobots can pass over 

lines. Lines can change the readings of the cliff sensor signal strength 

despite that there is no cliff in a map for simulation. 

3. Beacons: Represented by colored circles. Beacons are used to indicate 

some kinds of objects on the ground, such as colorful paints or papers. 

The virtual iRobots can pass over them. Beacons are detectable only by 

the camera. 

4. Virtual Walls: Represented by a green asterisk and green lines showing 

the range of the field. The virtual iRobots can pass through them. Virtual 

Walls can trigger the omni-directional infrared sensor. 
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B.2 Creating a Map 

A map for simulation can be created manually in a text file, or by using the 

MapMakerGUI in the Cornell’s MATLAB-based simulator. This section describes the 

approach of a manually-created text file, courtesy of the Cornell University’s user manual 

[17]. For the usage of MapMakerGUI, see the Cornell University’s user manual [17]. 

Creating a map manually in a text file allows users to precisely control the 

positions of the elements. There are a few formatting rules to be followed, such that the 

simulator can read the files correctly: 

• The keywords in the text file are ‘‘%’’, ‘‘wall’’, ‘‘line’’, ‘‘beacon’’, 

and ‘‘virtwall’’. Any row in the text file does not start with these 

keywords is unrecognized and a warning will display on the command 

window. Blank rows are allowed in the text file. 

• Comments are the row of words that begins with a ‘‘%’’ symbol. 

• The syntax for wall definition is, 

wall x1 y1 x2 y2 

Where (x1, y1) indicates the first point of the wall, and (x2, y2) 

indicates the second point of the wall. For example, 

wall 1.5 1.59 2 2.7 

• The syntax for line definition is similar to wall definition, 

line x1 y1 x2 y2 

where (x1, y1) indicates the first point of the wall, and (x2, y2) indicates 

the second point of the wall. For example, 

line 2.5 2.59 3 3.8 
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• The syntax for beacon definition is, 

beacon x y [r g b] id 

where (x, y) indicates the Cartesian coordinates of the beacon, [r g b] 

is the color vector of the beacon, and id is the beacon’s ID number 

defined by user. For example, 

beacon 1.5 -1.7 [0 1 0.5] 1 

• The syntax for Virtual Wall definition is, 

virtwall x y th r 

where (x, y) indicates the Cartesian coordinates of the emitter; th is the 

angle (in radians) of the direction of emission relative to the positive x-

axis; r indicates the range setting (1 is the lowest range, 3 is the highest). 

For example, 

virtwall 2.5 3.3 -1.5 2 
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APPENDIX C  

CREATION OF THE CONFIGURATION FILE FOR SIMULATION 
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A configuration file defines the properties of the virtual sensors in the simulation, such as 

communication delay and noise. The physics engine of the MBDMIRT iRobot 

Simulation is based on that of the Cornell’s MATLAB-Based Simulator for the iRobot 

Create. Therefore, the MBDMIRT uses the same configuration file for simulation. This 

appendix shows the types of elements available in the configuration and the methods of 

creating a configuration, courtesy of the Cornell University’s user manual [17]. 

C.1 Elements of the Configuration 

• Communication Delay: Determines the response time for the iRobots. 

Increasing this value causes longer delay for all commands, such as 

setting velocity or reading sensor outputs, to the iRobots. 

• Noise Data: Noise data consists of mean and standard deviation. They 

determine the fluctuation in the virtual sensors outputs. Noise data has 

different meanings for each kind of virtual sensors, which is explained 

below: 

1. Wall sensor: The default effective range of the virtual wall sensor is 

defined by a property rangeIR in the source code. The noise data changes 

the effective range. The mean of the noise causes an offset from the 

default range. The standard deviation causes the variance in the effective 

range. 

2. Cliff sensors: With no noise, the cliff sensor signal strengths will read 

1.5% when over a line, and 21.5% when not. The real values of the 

readings will vary based on room lighting, floor color and material, and 

the sensors themselves. If real sensors tend to read higher or lower, set a 
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value in the noise mean that will change the sensor output. The standard 

deviation adds to the variance in the readings. 

3. Odometry: The odometry noise parameters should be given as a 

percentage of the true measurement. For example, if the Stateflow 

graphical function DistanceSensorRoomba consistently reads 2.2 

meters, when the robot has only traveled 2 m, the mean should be set to 

0.1 to signify an offset of 10%. Or if the standard deviation of readings 

from the Stateflow graphical function AngleSensorRoomba after 

turning 6 radians is 0.3 radians, then the noise standard deviation should 

be set to 0.05 to signify 5% variation. Both angle sensors and distance 

sensors use the same noise parameters. 

4. Sonar: The noise data specifies the difference of the readings from the 

real distance. 

5. LIDAR: The noise data specifies the difference of the reading from each 

point on the LIDAR range from the real distance. 

6. Camera: The noise data specifies the difference between the readings of 

the distance and angle to the beacons, and the real values, in percent. 

There is no noise on the color reading. The distance and angle readings 

use the same noise parameters. 

C.2 Creating a Configuration 

A configuration file for simulation can be created manually in a text file, or by using the 

ConfigMakerGUI in the Cornell’s MATLAB-based simulator. This section describes 

the approach of a manually-created text file, courtesy of the Cornell University’s user 
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manual [17]. For the usage of ConfigMakerGUI, see the Cornell University’s user 

manual [17]. 

There are a few formatting rules for creating a configuration file: 

• The keywords in the text file are ‘‘%’’, ‘‘com_delay’’, ‘‘wall’’, 

‘‘cliff’’, ‘‘odometry’’, ‘‘sonar’’, ‘‘lidar’’, and ‘‘camera’’. Any 

row in the text file does not start with these keywords is unrecognized 

and a warning will display on the command window. Blank rows are 

allowed in the text file. 

• Comments are the row of words that begins with a ‘‘%’’ symbol. 

• The syntax for the definition of communication delay is, 

com_delay sec 

where sec indicates the communication delay (in seconds). For example, 

com_delay 0.1 

• The syntax for specification of noise data is, 

‘‘sensor keyword’’ noise_mean noise_std_deviation 

For example, 

odometry 0.05 0.01 
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APPENDIX D  

THE STARGAZER MAP APPLIED IN THIS THESIS 
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The StarGazer has two operation modes, which are Alone mode and Map mode. In the 

alone mode, StarGazer will treat each StarGazer landmark as an independent center point 

(or the origin in Cartesian coordinate system). When StarGazer sees another landmark in 

the alone mode, it will output coordinates with respect to the second landmark. On the 

other hand, in the map mode, StarGazer can memorize a set of landmarks through the 

procedure of map building described in the StarGazer User’s manual. 

However, based on practical test, I found that the map mode is problematic. 

Although it is easy to build a four-landmark map as described in the user’s manual, it is 

quite difficult to build a map with more than four landmarks. Since the StarGazer can 

easily identify noise as an inexistent landmark, the whole procedure of map building must 

be started from the very beginning whenever the StarGazer records an inexistent 

landmark. Therefore, I establishes an offset table for the StarGazer landmarks distributed 

in the Cyber-Physical Laboratory (CPSLab) in Arizona State University, such that even 

the StarGazer operates in the alone mode, the StarGazer can output Cartesian coordinates 

with respect to the same origin. The layout of the StarGazer landmarks in CPSLab and 

landmark offset table is shown on the following pages. 

The usage of the offset table is shown below: 

1. Determine which landmark is the origin. For example, pick up landmark 

#10576 as the origin. 

2. Whenever the StarGazer output coordinates, check the offset table in the 

manner depicted below: (Assume landmark #10576 is the origin) 
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origin 

Coordinates with 
respect to the landmark 
#10678 

  

plus 

Coordinates with 
respect to the landmark 
#10576 (the origin) 
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