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ABSTRACT 
 
Facility location models are usually employed to assist decision processes in 

urban and regional planning. The focus of this research is extensions of a classic 

location problem, the Weber problem, to address continuously distributed demand 

as well as multiple facilities. Addressing continuous demand and multi-facilities 

represents major challenges. Given advances in geographic information systems 

(GIS), computational science and associated technologies, spatial optimization 

provides a possibility for improved problem solution. 

Essential here is how to represent facilities and demand in geographic 

space. In one respect, spatial abstraction as discrete points is generally assumed as 

it simplifies model formulation and reduces computational complexity. However, 

errors in derived solutions are likely not negligible, especially when demand 

varies continuously across a region. In another respect, although mathematical 

functions describing continuous distributions can be employed, such theoretical 

surfaces are generally approximated in practice using finite spatial samples due to 

a lack of complete information. To this end, the dissertation first investigates the 

implications of continuous surface approximation and explicitly shows errors in 

solutions obtained from fitted demand surfaces through empirical applications.   

The dissertation then presents a method to improve spatial representation 

of continuous demand. This is based on infill asymptotic theory, which indicates 

that errors in fitted surfaces tend to zero as the number of sample points increases 

to infinity. The implication for facility location modeling is that a solution to the 

discrete problem with greater demand point density will approach the theoretical 
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optimum for the continuous counterpart. Therefore, in this research discrete points 

are used to represent continuous demand to explore this theoretical convergence, 

which is less restrictive and less problem altering compared to existing 

alternatives.  

The proposed continuous representation method is further extended to 

develop heuristics to solve the continuous Weber and multi-Weber problems, 

where one or more facilities can be sited anywhere in continuous space to best 

serve continuously distributed demand. Two spatial optimization approaches are 

proposed for the two extensions of the Weber problem, respectively. The special 

characteristics of those approaches are that they integrate optimization techniques 

and GIS functionality. Empirical results highlight the advantages of the developed 

approaches and the importance of solution integration within GIS.   
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Chapter 1 

INTRODUCTION 

1.1 Background 

In ancient China, the discipline of spatial arrangement relies on knowledge of 

astronomy and geography, known as Feng Shui, and is inherently considered in 

location selection to achieve harmony and fortune, and remains very popular in 

Southern China. In fact, it has long been recognized in geography that location 

related decisions play an important role in human activities since “all human 

activities involve the choice, either explicit or implicit, of location” (Church and 

Sorensen 1996). Nowadays, location science continues to be a very active 

research area involving people from diverse disciplines, including mathematics, 

operation research, management science, geography, urban planning, and 

industrial engineering among others.  

1.1.1 Facility Location Problems 

Location problems usually concern determining one or more sites for facilities 

under certain constraints, sometimes involving demand allocation, to optimize 

certain objectives. Current objective functions in location models can be classified 

as minimization, maximization, min-max and max-min (Brandeau and Chiu 1989). 

A minimization model can be used to minimize total or average travel distance or 

cost (Hakimi 1964, 1965, ReVelle and Swain 1970). A maximization model can 

be applied to optimize service coverage (Church and ReVelle 1974). Min-max 
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models are appropriate when seeking locations that minimize the distance the 

farthest customer to its closest facility (Hakimi 1964, 1965). Finally, max-min 

models reflect a decision to maximize the closest customer to its closest facility. 

Of interest in this dissertation are minimization models, the Weber problem and 

the multi-facility Weber problem, where demand is continuously distributed. 

As one of the first formalized location problems ever posed, the Weber 

problem involves: 

Placing a single facility in continuous space in order to serve a finite set 

of demand points, where the goal is to minimize total transportation costs.  

In addition to the classic context seeking the best location for a factory, it 

has been widely applied in other situations as well. For example, it can be use to 

find the best location for an emergency center to minimize average response time. 

Since it was first proposed in the 17th century, considerable research effort has 

been devoted to the Weber problem and related models (Wesolowsky 1993, 

Drezner et al. 2002), largely attributed to its capability and potential for extension. 

In fact, many location models can be considered built upon the Weber problem 

(Drezner et al. 2002), such as the continuous location-allocation problem (Cooper 

1963, 1964) and the p-median problem (Hakimi 1964, 1965). 

One extension of the Weber problem of interest in this dissertation is 

continuous demand instead of discrete demand proposed in the original 

formulation, referred to as the continuous Weber problem (Drezner 1995). 

Generally, demand is modeled as discrete points in facility location problems due 

to the lack of detailed data or the need to simplify model formulation and solution 
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(Miller 1996, Francis et al. 2009). However, it is more reasonable in practice to 

conceive of the underlying demand as continuously distributed such as population 

and risk. The solution methods for the Weber problem are not appropriate for the 

continuous counterpart. In fact, the objective of the latter involves a double 

integral which makes it quite difficult to solve. 

Another concern in this dissertation further extends the continuous Weber 

problem by taking into account siting several facilities simultaneously, which is 

known as the continuous location-allocation problem or multi-Weber problem 

(MWP) (Cooper 1963, Plastria 1995). In addition to finding locations for multiple 

facilities, the problem involves an allocation process as well with the goal that 

each demand is served by the nearest facility. This generalization is more 

complicated in both model formulation and solution because of the need to 

address both location and allocation decisions. 

While many solution approaches have been proposed to solve the 

continuous Weber problem (Drezner 1995, Carrizosa et al. 1998, Fekete et al. 

2005) and the continuous multi-Weber problems (Marucheck and Aly 1981, 

Suzuki and Okabe 1995, Murat et al. 2010), unfortunately, they are all subject to 

simplified assumptions regarding demand region or continuous distribution. 

Given the geographic nature inherent in location related decision-making, this 

dissertation explores spatial optimization approaches to solve those two 

extensions of the Weber problem.  
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1.1.2 Spatial Optimization 

Spatial optimization can be simply considered as the science of optimal spatial 

arrangement (Church 2001). It is rooted in classic geographic theories, such as 

Von Thunen’s land rent theory to explain the efficiency of observed agricultural 

activities, Alfred Weber’s theory of industrial location and cost minimization, and 

Christaller’s central place theory concerned with the organization patterns of 

cities (Church 2001, Murray 2010). Generally, spatial optimization involves the 

attempt to identify the best locations for facilities, as well as arrange land use or 

other resources spatially with respect to some objectives, often relying on distance 

or cost constraints. The development of spatial optimization is mostly attributed to 

the availability of more accurate spatial data, progress in geographic information 

science, the evolution of optimization algorithms, and the advance of 

computational technologies. 

Recent years have seen a proliferation in application of spatial 

optimization approaches involving GIS in location problems, largely attributed to 

the advances in geographic information science and computer technologies 

(Church 2002, Church and Murray 2009, Murray 2010). GIS is an information 

system designed to collect, store, manipulate, analyze, manage and present all 

types of geographically referenced data (Longley et al. 2011). It has played an 

important role in spatial optimization in terms of data input and visualization, as 

well as model formulation and model analysis (Longley and Batty 1996, Church 

1999, Murray 2010).  
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Traditionally, GIS has been used to collect and prepare spatial information 

as input for spatial optimization models and visualize results through desktop 

mapping. For instance, data aggregation, which is often applied in optimization 

models to reduce problem size or facilitate model formulation, can be easily 

achieved in GIS by extracting data at a certain geographic scale like census tracts. 

Another example related to data acquisition is that distance as a common measure 

of accessibility in many models can be obtained through spatial analysis 

functionality of GIS. Further, model solutions can be presented by the powerful 

visualization capability of  GIS, such as the Voronoi diagram depicting trade 

areas (Suzuki and Okabe 1995) and the spider diagram describing the scheme of 

location-allocation (Bender et al. 2002). Visualization is also important in 

understanding objective, decision and model spaces (Densham 1994) and 

detecting underlying problems that otherwise cannot be identified (Murray 2005).  

In addition to data provision and visualization, GIS can also aid in model 

formulation and analysis. In one respect, GIS helps model formulation by 

evaluating spatial properties and relationships. Murray (2010) highlighted the 

importance of spatial search in the case where an area of interest needs to be 

identified using complicated spatial relationships, such as adjacency, contiguity, 

containment and intersection. For example, constraints based on adjacency can be 

used to avoid the simultaneous selection of adjacent sites (Murray and Church 

1996, Downs et al. 2008). Contiguity or connectivity is often necessary in land 

acquisition (Cova and Church 2000, Wu and Murray 2007, Kim and O’Kelly 

2009). In another respect, sometimes models can be solved just through basic GIS 
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operations when the available options are limited. A well known example is the 

work of McHarg (1969) identifying suitable roads through comparison of a series 

of map layers, each with a different theme. Such an operation is a basic function 

of GIS known as overlay and is common in suitability analysis. Another GIS 

function often used in model solution is the Voronoi diagram. For example, 

Suzuki and Okabe (1995) developed a heuristic using a Voronoi diagram to solve 

the continuous p-center problem, which was later extended in Wei et al. (2006) 

for emergency warning sirens location. 

Obviously, GIS is an indispensable component in spatial optimization and 

can help to better understand the problem under study and assist decision-making 

processes. Therefore, it is crucial in spatial optimization that GIS is integrated to 

the greatest extent possible with location models in formulation, solution and 

evaluation in addition to simple data management and graphic display. 

1.2 Research Objectives 

There are a number of goals and objectives associated with this dissertation 

research. The primary goals may be summarized as follows: 

(1) Examine alternatives for effectively representing continuous demand;  

(2) Develop better solution approaches for the continuous Weber problem; 

(3) Develop better solution approaches for the continuous multi-Weber 

problem. 

The intent is to address these goals and objectives through integration of 

GIS, both to better represent continuously distributed demand as well as to 
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develop enhanced spatial optimization techniques that exploit geographical 

knowledge. 

1.3 Organization of Research 

The aim of this research is to employ spatial optimization approaches that 

combine GIS and operation research methods to solve the continuous Weber and 

continuous multi-Weber problems. The dissertation is structured as follows. 

Given the importance of spatial representation in facility location 

problems and the fact that continuous representation in practice is usually 

approximated by a finite set of sample points, Chapter 2 investigates the 

implications of continuous surface approximation in spatial analysis, particularly 

in location analysis. First, the process of how continuous surfaces are 

approximated in a GIS environment is described. The errors introduced in fitted 

surfaces are then explored. An empirical study using such surfaces in facility 

location modeling is employed to explicitly demonstrate the cumulative errors in 

analysis results.  

Following the discussion of continuous representation, Chapter 3 focuses 

on solving the continuous Weber problem. Simplifying assumptions in existing 

solution approaches are discussed. Then, the representation method employed in 

this research is addressed, built on infill asymptotic theory widely applied in 

spatial data analysis. Further, the mathematical formulation of the continuous 

Weber problem is offered and a spatial optimization method based on the 
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proposed continuous representation is presented. Empirical results are provided 

and discussed, highlighting the advantage of integration with GIS. 

Chapter 4 extends the continuous Weber problem to take into account 

multiple facilities - the continuous multi-Weber problem. It is more complex due 

to the consideration of allocating demand to facilities in addition to seeking 

optimal locations. Relevant solution techniques are reviewed and their 

assumptions for continuous demand are discussed.  Following the mathematical 

formulation of the continuous multi-Weber problem, a spatial optimization 

solution approach is detailed, building on the continuous representation method 

presented in Chapter 3. This is followed by application results and associated 

discussion. 

Finally, Chapter 5 concludes the dissertation by summarizing research 

findings and implications, as well as the contribution to theories and methods of 

location science. Directions for future research are also discussed. 
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Chapter 2 

CONTINUOUS SURFACE REPRESENTATION AND 

APPROXIMATION: SPATIAL ANALYTICAL IMPLICATIONS* 

2.1 Introduction 

Spatial representation has long been a critical issue in spatial analysis (Miller and 

Wentz 2003, Goodchild and Haining 2004, Church and Murray 2009). It is widely 

accepted in the geographic information systems (GIS) community that continuous 

fields and discrete objects are the two basic conceptual models of geographical 

space (Openshaw 1983, Peuquet 1988, Couclelis 1992, Frank 1992, Goodchild 

1992, Burrough 1996, Worboys and Duckham 2004, Longley et al. 2011). The 

field view considers the phenomena continuously distributed across space, such as 

rainfall, air quality, elevation, temperature, population density and land use. In 

contrast, the object view conceives of the real world as an empty geographic 

space littered with discrete entities, such as roads, rivers, lakes, parcels and 

buildings. 

There are basically two spatial representation approaches to reflect these 

perspectives: raster and vector (Goodchild 1992, Burrough and McDonnell 1998, 

Worboys and Duckham 2004, Longley et al. 2011). In a vector-based model, 

geographical entities are described by geometry having distinct locations and 

boundaries: point, line and polygon. Each entity can have one or more attributes. 

In a raster representation, geographical space is usually delineated by a 

                                                            
* This chapter is a slightly modified version of a paper published in International Journal of 
Geographical Information Science, co-authored with Alan Murray. 
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continuous grid of square cells, with each raster cell having an associated 

attribute(s). It should be noted that the two conceptual models (object and field) 

and the two representation approaches (vector and raster) do not have an exact 

one-to-one relationship (Longley et al. 2011). Of course, the choice of 

representation is usually not straightforward, but rather dependent on the spatial 

phenomena under study, the analysis context, data availability, computational 

efficiency and so on. 

Of interest here is the representation of the continuous field. In principle, 

the set of locations contained in continuous geographic space is infinite, while 

representation in a digital computer based environment is finite (Winter 1998, 

Cova and Goodchild 2002). Further, although in mathematical terms a field can 

be modeled as a function mapping a location in geographic space to a value in an 

attribute domain (Worboys and Duckham 2004, Kjenstad 2006), in practice such 

functions are never simply known or given with certainty due to a lack of 

complete information. As a result, representations of fields are necessarily 

abstracted or approximated at a certain spatial scale, and continuous geographic 

space in GIS is usually fitted or approximated through spatial interpolation based 

on sample points. Thus, errors and uncertainty are unavoidable as it is impossible 

to collect and store the attribute value about each and every location (Goodchild 

2004). 

When an approximated continuous surface is used in spatial analysis, 

resident errors will inevitably be introduced into subsequent results, since spatial 

analysis implementation is closely related to how we represent spatial phenomena 
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(Goodchild et al. 1992, Miller and Wentz 2003). In other words, the results of 

spatial analysis are reliant on the representation methods employed. Of course, 

theoretically, as the number of sample points tend to infinity, greater accuracy in 

the approximation is possible, something known as infill asymptotic theory 

(Cressie 1993, Stein 1999). In practice, however, it is hoped that a finite number 

of sample points would be sufficient to reasonably approximate a continuous field.  

The aim of this chapter is to explore the significance of approximate 

representation of a continuous surface as well as its implications in certain spatial 

analyses. Section 2.2 discusses spatial representation and related issues. Then, 

methods that are employed to fit continuous surfaces are discussed, followed by a 

designed experiment to explicitly show the errors in an approximated surface. 

Propagation of errors in spatial analysis is then examined. The chapter concludes 

with a discussion of results and practical implications. 

2.2 Background 

How to represent infinite geographic space in a finite digital computing 

environment has been a great challenge in GIScience, receiving significant 

attention over the past few decades. Discrete-object and continuous-field 

distinctions, introduced in late 1980s and early 1990s, are well known 

perspectives for conceptualizing geographical space (Couclelis 1992, Goodchild 

1992, Worboys and Duckham 2004, Longley et al. 2011), and are also considered 

as formal spatial concepts that have been adopted in GIScience (Goodchild 2010). 
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The object/field view assumes that geographic phenomena are either 

discrete or continuous. Due to the complexity of reality and application needs, 

scholars have argued that both perspectives are not necessarily exclusive and that 

they can coexist or be integrated (Peuquet 1988, Couclelis 1992, Winter 1998, 

Egenhofer et al. 1999, Worboys and Duckham 2004). Winter (1998) introduced a 

hybrid representation, valuable for data integration and interoperability. Yuan 

(2001) offered a hierarchy space-time framework that included both object and 

field properties to represent complex geographic phenomena such as precipitation. 

Another example is the field object that integrates both perspectives by mapping 

locations in a field to objects (Cova and Goodchild 2002, Goodchild et al. 2007). 

Kjenstad (2006) provided a common base-model for the two conceptual models 

using the unified modeling language (UML). Further, Goodchild et al. (2007) 

suggested that all of these spatial concepts could be unified in a general theory 

relying on the atomic form of geographic information: the geo-atom and the geo-

dipole. Though spatial representation has become more complex given these new 

concepts, discrete objects and continuous fields remain the foundation for 

geographic representation (Goodchild et al. 2007). 

The focus in this study is the representation of continuous fields. The 

concept of “field” originates from classical physics and has been employed to 

describe physical properties such as electricity, magnetism and gravity (Yuan 

2001, Kjenstad 2006). Fields in GIS have been extended as a perspective for 

conceptualizing geographic space, assuming phenomena varies continuously 

across space. There are many ways to implement a field view in current GIS, such 
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as spatial tessellations consisting of regular or irregular polygons and uniformly 

or non-uniformly distributed point sets. Comprehensive discussions of modeling 

continuous fields abound in the literature, including that of Goodchild (1992), 

Goodchild et al. (1992), Frank (1992), Burrough (1996), Kemp (1997a, b), 

Worboys and Duckham (2004) and Longley et al. (2011). 

An important issue that arises when modeling a field is the error and 

uncertainty inherent in any fitted continuous surface. First, uncertainty in 

imperfect sample data from various sources can potentially impact the accuracy of 

estimated values. For example, Kyriakidis and Goodchild (2006) studied the 

propagation of sampling errors through spatial interpolation and derived 

prediction errors in fitted surfaces. Also, all techniques used to construct surfaces 

representing continuous phenomena are subject to assumptions that are usually 

not satisfied in practice, and the resulting errors have been investigated in many 

applications, such as elevation models (Wood and Fisher 1993; Gong et al. 2000), 

monitoring data of sulfur dioxide concentrations (Host et al. 1995), areal 

interpolation between zonal systems (Fisher and Langford 1995) and estimation 

of rainfall magnitude (Tomczak 1998).  

As errors/uncertainties in approximated surfaces are inevitable, increasing 

effort has been devoted to error modeling and propagation research (Goodchild 

and Gopal 1989, Heuvelink 1998, Cressie and Wikle 2011). This work is largely 

numerical, built on the theory of error analysis in statistics, such as Monte Carlo 

simulation (e.g. Fisher and Langford 1995) and regression models (e.g. Carlisle 

2005). Further, most approaches analyzing error propagation have focused on the 
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impacts on common spatial operations like intersection (e.g. Heuvelink and 

Burrough 1993) or attribute calculations from approximated continuous data like 

a digital elevation model (DEM) (e.g. Oksanen and Sarjakoski 2005). With regard 

to the implications of such error propagating through more advanced spatial 

analysis, however, related research is almost non-existent. An exception is the 

uncertainty work of Murray et al. (2008) focused on facility siting where they 

explicitly consider the impacts of different spatial representations of continuous 

demand space. Needless to say, cumulative error and uncertainty using 

approximated surfaces in spatial analytical methods is generally not well 

understood, yet can be significant. We will explore this issue in the remainder of 

the paper.  

2.3 Approximations of Continuous Surfaces  

To facilitate visualization and analysis of continuously distributed phenomena, a 

surface is usually approximated based on observed values at sampled locations. 

Sampling procedures are adopted for dealing with a very large or infinite 

population, concerned with selection of a subset of individuals from which some 

characteristics of the whole population can be estimated (Burt et al. 2009). 

Specifically, spatial sampling is a process that determines a finite set of locations 

in geographic space (Berry and Baker 1968) based on underlying principles of 

geographic phenomena – spatial dependency and spatial heterogeneity. The 

former indicates that similar phenomena can be found at nearby locations so a 

sample of observations over space will be reasonable, while the latter suggests a 
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dependency relationship can vary across space (Anselin 1989). A similar idea is 

also inherent in Tobler’s first law of geography: “Everything is related to 

everything else, but near things are more related than distant things” (Tobler 

1970). These theories suggest that a finite sample of points is sufficient to obtain 

reliable inferences about values at unsampled nearby locations. Basic spatial 

sampling schemes include random sampling, stratified sampling, systematic 

sampling, clustered sampling and contour sampling (Berry and Baker 1968, Burt 

et al. 2009, Longley et al. 2011). The choice of sampling method depends on the 

known distribution of the phenomena, but also the time and cost of collecting the 

data. 

Many methods and procedures have been developed to fit or approximate 

continuous surfaces using sample data (Lam 1983, Myers 1994, Burrough 1996, 

Mitas and Mitasova 1999). These are generally referred to as spatial interpolation 

methods, enabling estimation of attribute values at unobserved locations in 

geographic space based on observed/measured attribute values for a sampled set, 

generating a coverage (usually a raster grid) of the study region (Lam 1983, 

Cressie 1993, Longley et al. 2011). In other words, if  is the true attribute 

value at a particular location , the goal of spatial interpolation is to obtain an 

estimate  that has as little error as possible at all locations . Consider 

the following notation: 

= index of sample points  

= location of sample point  

( , )g x y

( , )x y

ˆ( , )g x y ( , )x y

k

( , )k kx y k
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= observed attribute value at sample point  

= number of sample points 

= true attribute value at location  

= estimated attribute value at location  

= estimation error at location  

Then, the estimated attribute value, , is a function of the observed sample 

data: 

                                          (2-1) 

where  is some function. In general, the intent is to minimize 

the estimation errors: 

Minimize                                        (2-2) 

where R  is the study area and . 

Spatial interpolation is currently available in most commercial GIS 

packages, including a host of techniques to support and fit a continuous surface. 

Common interpolation approaches include inverse distance weighting (IDW), 

natural-neighbor, splines, polynomial regression, and Kriging, among others, 

which can be classified in a number of ways according to their inherent 

characteristics, such as global or local, exact or approximate, deterministic or 

stochastic (Lam 1983, Myers 1994, de Smith et al. 2009). For example, natural-

neighbor is a local method as it only uses neighboring data rather than all 

observations, as well as an exact approach because it preserves the original known  

k k

m

( , )g x y ( , )x y

ˆ( , )g x y ( , )x y

( , )x y ( , )x y

ˆ( , )g x y

1 2 3ˆ ( , ) ( , , ,..., )mg x y f    

1 2 3( , , ,..., )mf    

( , )

( , )
x y R

E x y dxdy


 

ˆ( , ) ( , ) ( , )x y g x y g x y 
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Figure 2.1: Different approximated surfaces based on the same sampled points: 

(a) sampled data points, (b) surface estimated using IDW, (c) surface estimated 

using natural-neighbors and (d) surface estimated using a spline 

values at sample points. IDW is a deterministic method since it does not provide 

any measure of prediction accuracy. Kriging, which is widely used in geostatistics, 

relies on a random function and employs statistical methods to analyze sample 

data and errors in attribute value prediction. 

Choosing an appropriate interpolation method is challenging as it depends 

on many factors, including the spatial phenomenon under study, attribute value  

type, desired accuracy, spatial variability, computational capability and 

assumptions employed. Given a set of sampled locations, several possible 

surfaces can be obtained, depending on the interpolation approaches used. For 

example, Figure 2.1 shows three surfaces fitted using IDW (Figure 2.1b), Natural-

neighbor (Figure 2.1c) and Spline (Figure 2.1d) based on the sampled points 
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shown in Figure 2.1a. Regardless of the method employed, errors and uncertainty 

are unavoidable since all interpolation techniques are subject to certain 

assumptions that may or may not be true (Lam 1983). While much can be done to 

improve spatial interpolation method accuracy through the use of ancillary 

information or supplementary datasets, such as remote sensing data (Wu and 

Murray 2007), errors and uncertainty remain. In other words,  is never 

likely to be known, and any approximation, , will no doubt have error, 

, for most locations .  

2.4 Error in Approximated Surfaces 

To illustrate errors that arise due to spatial interpolation approaches, a known 

surface is assumed and relied upon. Mathematical surfaces are generally adopted 

to assess the performance of different interpolation methods (Morrison 1971, 

Zimmerman et al. 1999). In this study, Figure 2.2 represents the actual field of the 

continuous phenomena of interest and is defined by the following function: 

1 2 3 4 5 6( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )g x y f x y f x y f x y f x y f x y f x y              (2-3) 

where 

 

 

 

 

( , )g x y

ˆ( , )g x y

( , ) 0x y  ( , )x y

2 2
1( , ) ( (( ) /1.8));f x y exp x y  

2 2
2 ( , ) 0.8* ( ((( 3) ( 1) ) /1.9));f x y exp x y    

2 2
3 ( , ) 0.87* ( ((( 2) ( 1) ) /1.4));f x y exp x y    

2 4
4 ( , ) 0.72* ( ((( 1) ( 2.3) ) / 2.4));f x y exp x y    
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1.2 2
5

0.85 4

( , ) 0.42* ( *( ( 4)) / 0.89

               *( (1.6*( 3.3))) / 0.72);

f x y exp x sin x

y cos y

  

 
 

 

If the actual surface is sampled, it is possible to investigate errors that 

would result from the use of an approximated surface derived using an 

interpolation approach. Several discrete point instances are sampled here, and 

then used to fit an interpolation process. The number of points range from 100 to 

5,000. One realization is shown in Figure 2.3 for 100 points. 30 different 

instances are generated for each number of points. In total, 210 different samples 

are generated and examined. The sampling process follows a random pattern 

because the intent here is to investigate errors in the estimated surface rather than 

comparing the performance of various interpolation techniques. In addition, a set 

of 810,000 points regularly spaced are used to evaluate predictive capabilities and 

resulting errors. 

 

Figure 2.2: Actual attribute surface 

6 2
6 ( , ) 0.68* ( ((( 4.1) ( 3.8) ) / 0.8));f x y exp x y    
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Figure 2.3: Illustrative point sample 

Several spatial interpolation approaches, including IDW using inverse of 

distance square, Natural-neighbor, ordinary Kriging, regularized Spline and 

second order Trend surface, are applied to each of the 210 different sample point 

instances. Interpolation is carried out using ArcGIS 10.0 (ESRI). The fitted 

surfaces are then used to estimate attribute values at the 810,000 evaluation 

locations. Error assessment is based on the set of evaluation points, measured as 

the difference between the true value given by the actual surface and the 

estimated value given by the fitted surface. The average estimation error for each 

set of observations and each interpolation method are summarized in Table 2.1.  

The errors vary in terms of interpolation method and point sample density. 

It is obvious in one respect that, for any interpolation technique, the errors 

decrease when the number of sampling points increases. For example, the IDW 

mean relative estimation error is 637.6% when using 100 sample points, but drops 

to 26.8% when using 5,000 sample points. It is not difficult to understand this 

trend since the more sample points, the more likely the characteristics of the 

underlying surface can be captured, implying potential to reduce the subsequent  
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inference error (Burt et al. 2009). In fact, many interpolation approaches will 

generate similar fitted surfaces if very dense sample points are used. However, 

selecting an appropriate method is more critical if less dense points are relied 

upon (de Smith et al. 2009). Of course, it is often the case that fewer sample 

points are used in practice due to cost and time associated with sample data 

collection and processing (Berry and Baker 1968, Burt et al. 2009). The 

implications of this are very clear in Table 2.1. 

In another respect, the errors differ among various interpolation 

approaches given the same number of sample points. For instance, when using 

100 sample points, the largest relative mean error is about 660.7% for the Trend 

surface method, while Natural-neighbor produces a surface with the smallest 

relative mean error, 149.7%. Also, estimation errors vary among an interpolation 

technique. For example, the Trend surface approach gives the largest prediction 

error for any sample size, and remains consistently high even for larger point 

samples. The relative merits of different interpolation methods have been 

extensively studied (Lam 1983, Cressie 1993, Myers 1994, de Smith et al. 2009), 

so are not a focus here. However, Weber and Englund (1992) found IDW gave 

better results than those given by Kriging through the estimation of contaminant 

concentrations using multiple sample datasets, while Zimmerman (1999) 

concluded that ordinary/universal Kriging is superior to IDW by a designed 

experiment subjected to different surface types and sampling patterns. The fact 

remains that there is not an interpolation method that is perfect in all contexts, and 
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the quality of an interpolation approach can be different depending on the 

underlying phenomena and the sample points used (Mitas and Mitasova 1999). 

Regardless of the sample points or the interpolation techniques employed, 

the essential implication of Table 2.1 is that errors in approximated surfaces are 

always present, though in varying degrees. This leads to a critical issue of how 

such uncertainty and errors will influence any spatial analyses involving 

continuous data. How will errors propagate through analyses? The next section 

will further explore the implications of surface approximation error in spatial 

analysis using an empirical study. 

2.5 Significance of Error Propagation 

As discussed above, spatial interpolation approaches rely on sample points to fit a 

surface describing continuous fields. Due to the lack of complete information 

about the true distribution of continuous phenomena, precise estimation is often 

impossible. Instead, asymptotic theories are generally relied on to derive 

approximate results. The most straightforward way is to consider the sample size 

increasing to infinity to obtain asymptotic inference of a continuous distribution. 

A related asymptotic theory for spatial data is infill asymptotics (Cressie 1993) or 

fixed-domain asymptotics (Stein 1999), widely adopted in spatial interpolation for 

a fixed and bounded domain. According to infill asymptotics, using previous 

notation, we have:  

ˆlim ( , ) ( , )
m

g x y g x y



                                                  

(2-4) 

This implies: 
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                                                                  (2-5) 

That is, when the number of sample points increases to infinity, the estimation 

error tends to zero as more information reduces uncertainty in the inference of 

unknown attribute values (Stein 1999). In other words, a discrete set 

 with dense point samples can better describe a continuous 

distribution  in an asymptotic sense. The implication for 

spatial analysis, however, remains unknown. 

To explore this further, consider the continuous Weber problem. The 

Weber problem is one of the first proposed spatial analytical techniques, where 

the intent is to site a single facility in continuous space in order to serve a finite 

set of demand points at minimum total transportation cost (Wesolowsky 1993, 

Church and Murray 2009). The continuous Weber problem is an extension of the 

Weber problem involving continuously distributed demand. A mathematical 

formulation of the continuous Weber problem is given in Chapter 3. Current 

efforts to solve the continuous Weber problem generally employ some sort of 

mathematical function, , to represent the distribution of continuous 

demand, and focus on developing advanced optimization algorithms to solve this 

problem (Carrizosa et al. 1998, Fekete et al. 2005, Church and Murray 2009, 

Drezner and Suzuki 2010, Murat et al. 2010). Of course, the actual continuous 

surface is never simply known or given with certainty. Instead, it is usually fitted 

using a point sample, so  is actually relied upon in practice. Errors are  

 

 lim 0
m

E




1 2 3( , , ,..., )m   

1 2 3( , , ,..., )mf    

( , )g x y

ˆ( , )g x y
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Figure 2.4: Weber solutions for approximated surfaces compared with               

the actual optimal location 

therefore unavoidable, and may potentially affect the analysis and decision 

making in various ways.  

In this study, the continuous Weber problem is solved using the approach 

detailed in Chapter 3. Comparison is made between the actual optimal facility 

location  for  and that obtained using , . Figure 2.4 

shows the distribution of  obtained using the previously detailed fitted 

surfaces relative to the actual optimal location . As is evident in Figure 2.4, 

the approximated locations  derived from the fitted surfaces are littered 

around the actual optimal location. Figure 2.5 illustrates that the distribution of 

the  solutions varies for the different approximated surfaces based on the 

point sample size. By visual inspection, it is not difficult to observe trends. 

Specifically, for smaller samples (e.g., 100 or 200), the derived locations   

( , )X Y ( , )g x y ˆ( , )g x y ˆ ˆ( , )X Y

ˆ ˆ( , )X Y

( , )X Y

ˆ ˆ( , )X Y

ˆ ˆ( , )X Y

ˆ ˆ( , )X Y
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Figure 2.5: Weber solutions by surface sample size 

for the approximated surfaces  are more dispersed, while for larger 

sample sizes (i.e., 5000) the derived locations  are more compact and 

closer to the true optimum. 

The spatial variability shown in Figures 2.4 and 2.5 is significant as well. 

If the derived locations  are evaluated using the actual surface , the 

objective value can be computed and the associated error can be measured. The 

ˆ( , )g x y

ˆ ˆ( , )X Y

ˆ ˆ( , )X Y ( , )g x y
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error is the difference between the optimal objective value based on  and 

that for , divided by the former. Table 2.2 gives the objective value percent 

errors. While in general the error decreases when larger point samples are used, 

the distribution of error varies among interpolation techniques. For example, the 

surfaces fitted by the Spline method generates the smallest mean error in objective 

value, whereas those from the Trend surface approach always produce the largest 

mean error, regardless of the sample size. Further, due to different sample 

distributions, errors differ even for an interpolation technique when using the 

same sample size. The Spline method with sample size 1000 is one example. The 

maximum relative error in Table 2.2 for this case is 2.7%, 27 times higher than 

the mean value of 0.1%. Though the average errors may seem relatively small in 

Table 2.2, the observed maximums are generally a concern in all cases except 

when the number of sample points is large. 

The results shown in Figure 2.4 and Table 2.2 indicate that errors 

contained in approximated surfaces absolutely affect spatial analysis. In this case 

the spatial analysis is erroneous, both in terms of resultant location as well as its 

associated efficiency. That is, the identified locations using the approximated 

surface  are not the same or equivalent to the actual optimal location 

associated with the actual surface . Further, the locational errors are 

significant because they are highly inefficient as measured by the continuous 

Weber objective function. Thus, error is propagated through spatial analysis 

making any findings questionable and uncertain. 

( , )X Y

ˆ ˆ( , )X Y

ĝ x, y 

g x, y 
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2.6 Discussion and Conclusions 

Spatial analysis is greatly dependent on how we represent geographic phenomena.  

Discrete objects and continuous fields are two distinct views for describing 

geographical space. Continuous surfaces are usually relied upon for a range of 

spatial analyses. Though it is possible to depict a continuous surface using an 

exact mathematical function, this is not typically possible in practice. Instead, 

approximated surfaces derived using spatial interpolation are usually adopted, but 

are subject to errors and uncertainty. As a result, a fitted surface presents 

problems for spatial analytical methods that assume error free inputs. 

In this study, a designed experiment is employed to investigate prediction 

errors in approximated surfaces. Though varying in terms of sample sizes and 

interpolation approaches, the presence of errors is ubiquitous. Of course, the 

errors are influenced by many factors, such as sample size, interpolation 

technique and sample schemes. In general, the error decreases as the sample size 

increases. Also, various interpolation approaches have different assumptions that 

are not necessarily satisfied by the sample data. Finally, sample schemes 

influence the distribution of sample points, which contribute to distribution errors 

even when the sample size and the interpolation method are the same. 

When approximate surfaces are used as inputs, errors propagate through 

spatial analysis. Application results based on the continuous Weber problem 

demonstrated that analysis and derived results are significantly affected by 

approximated surfaces. Specifically, errors are present in derived facility locations 

and associated objective values. The implication is that the identified location can 
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be far away from the actual optimal location, which means that total 

transportation costs would be substantially higher than they would be if properly 

sited, and this is due solely to erroneous input data. 

Spatial analysis requires a reliable representation of geographic space. It is 

highly problematic to assume that a continuous surface  is known and 

accurate in any planning and analysis context. This research shows that errors in 

an approximated continuous surface based on sample points are inevitable, which 

leads to cumulative errors and uncertainty in spatial analysis. It appears essential 

then that future research focus on developing new methods that take into account 

the errors inherent in approximated surfaces in order to reduce their impacts on 

spatial analytical results. Work by Kyriakidis and Goodchild (2006) provides a 

capacity to understand and quantify surface errors. Making use of this information 

in spatial analytical methods remains the challenge. 

 

  

( , )g x y
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Chapter 3 

THE CONTINUOUS WEBER PROBLEM† 

3.1 Introduction 

Our daily life relies on various public and private service facilities. For example, 

we need schools for education, supermarkets to purchase groceries, public transit 

stations to connect different transportation modes, fire stations to respond to 

emergencies, and others as well. Decisions related to where those services should 

best be located are therefore essential. As an example, for the well-being of a 

region, hospitals must be well placed in order to maximize accessibility for 

medical care and emergencies, and distribution centers should be appropriately 

located to minimize shipment costs. Where these facilities are located can affect 

the quality of services provided and profitability. Location modeling therefore 

continues to be important in urban and regional planning as well as other socio-

economic contexts.  

Of particular interest in this paper is a location planning problem that 

concerns siting a single facility to serve continuously distributed demand across a 

region at minimum total transportation cost. A special case is the Weber problem, 

having received considerable attention since first proposed in the 17th century 

(Wesolowsky 1993, Drezner et al. 2002). This seemingly simple problem has 

attracted a lot of interest largely attributed to its broad applicability and potential 

for extension (Drezner et al. 2002). Consequently, many location models can be 

                                                            
† A modified version of this chapter has been submitted for publication, co-authored with Alan 
Murray. 
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traced back to the Weber problem, such as the continuous location-allocation 

problem involving multiple facilities (e.g. Cooper 1963, 1964) and the p-median 

problem given fixed locations for potential facilities (e.g. Hakimi 1964).  

Model formulation of this problem generally requires a geographic 

representation of demand. Originally, demand in the Weber problem is conceived 

to be a finite set of fixed points. It is appropriate when demand is in fact discrete, 

but in practice it is likely that the underlying demand is continuously distributed 

over space. Figure 3.1 illustrates this contrast between discrete and continuous 

demand in a region. Figure 3.1a shows eight fixed points abstracted to represent 

demand across the region, each with an associated demand weight or value. 

Figure 3.1b depicts demand continuously distributed over space. In fact, many 

problems in location research involve continuous demand, such as Hotelling's 

problem seeking to locate two competing suppliers to serve continuous uniform 

demand (Hotelling 1929, Ghosh and Craig 1984) or the design of supply chain 

networks (Bhattacharya and Bandyopadhyay 2010, Tsao and Lu 2012). Errors are 

inevitably introduced into any location model relying on a discrete demand point 

abstraction when it is actually continuously distributed (Murray 2003, Francis et 

al. 2009). Therefore, it is essential that demand be represented continuously in 

such a case, but this complicates both model formulation as well as model 

solution.   

While much attention has been devoted to the Weber problem with 

continuous demand (Love 1972, Bennett and Mirakhor 1974, Drezner and 

Wesolowsky 1980, Drezner and Drezner 1997, Wang et al. 1997, Carrizosa et al.  
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Figure 3.1: Demand representations: 

(a) Discrete demand and (b) Continuous demand ( , )g x y x y     
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1998), the complexity of the objective function and computational difficulty has 

necessitated simplification in demand region shape, the distribution of demand or 

travel distance. Model solutions for the continuous Weber problem are either 

problem specific or not computationally efficient. Developing an effective 

solution approach for the Weber problem involving continuous demand therefore 

remains a major research challenge. 

In this chapter we are interested in solving the Weber problem with 

continuously distributed demand where the facility may be located anywhere so 

as to minimize the average user distance to access the facility, hereafter referred 

to simply as the continuous Weber problem. The next section reviews existing 

research related to the continuous Weber problem. Problem specification and 

spatial representation are then covered. An approach is proposed to site a single 

facility to best serve continuously distributed demand in a region. This is followed 

by an empirical evaluation and assessment. The final section gives discussion and 

conclusions. 

3.2 Background 

The Weber problem was originally proposed for locating a factory with the intent 

of minimizing transportation costs. A range of disciplines, such as mathematics, 

geography, industrial engineering, regional science and transportation, among 

others, have studied this problem, each referring to it differently. Common 

references include: the Weber problem, the Fermat problem, Torricelli point and 



35 

the minisum problem. Recent reviews can be found in Wesolowsky (1993) and 

Drezner et al. (2002). 

As noted previously, demand is assumed to be a finite set of fixed points. 

To achieve this, data aggregation involving the abstraction of geographical space 

as a finite set of points is commonly relied upon. This is done because it is often 

how space is perceived in the most simplistic terms but also because of publicly 

accessible data, like that from the Census (Miller 1996, Murray 2003, Church and 

Murray 2009). Further, such discretization offers computational efficiencies as 

well. Miller (1996) addressed the importance of adopting non-point based demand 

representations in location modeling, but others too have recognized this need. 

Wesolowsky (1977) employed density functions to model a probability 

distribution of demand over space. Love (1972) and Drezner and Wesolowsky 

(1978) represented demand as regions rather than points, where demand is 

considered continuously distributed over the study area. While a point based 

simplification is attractive, errors and uncertainty are introduced into the objective 

function, and ultimately the solution (Drezner and Wesolowsky 1978; Hillman 

and Rhoda 1978; Vaughan 1984) when demand is actually continuously 

distributed.  

Attempts to get around this complication abound in the literature. Instead 

of using distance between a point-based proxy and a facility, an alternative is to 

approximate it by the average distance to the demand area from the facility. For 

example, assuming uniform demand, the “distance correction” approach proposed 

by Drezner (1995) applied the average distance of a circle to study a competitive 
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facility location problem in a rectangular demand area. Further, Carrizosa et al. 

(1998) approximated non-uniformly distributed demand by replacing the demand 

area with disks, which in turn are substituted with triangles. Rather than exploring 

a single value of expected distance, Carmi et al. (2005) proved that for a convex 

demand region the average distance from the optimal facility location is within 

[ / 7d , / 7d ], where d  is the region diameter. Abu-Affash and Katz (2009) 

improved the bounds to [ 4 / 25d , 2 / 3 3d ]. More recently, Puerto and 

Rodríguez-Chía (2011) obtained the geometrical characterizations of the entire set 

of optimal solutions given demand defined by some probability distribution. 

Algorithms to solve the continuous Weber problem by approximating average 

distance are relatively easy to implement for regular demand regions such as 

circles (Koshizuka and Kurita 1991) and rectangles (Love 1972, Vaughan 1984), 

but cumbersome otherwise. 

Another group of approaches solve a double integral representing 

continuous demand directly using numerical procedures. Drezner and 

Wesolowsky (1980), Drezner and Drezner (1997), Wang et al. (1997), Chen 

(2001) and Franco et al. (2008) extended the Weiszfeld algorithm given the 

differentiability of the objective function associated with continuous demand. 

Fekete et al. (2005) proposed an exact algorithm relying on computational 

geometry for rectilinear distances. Gugat and Pfeiffer (2007) derived bounds on 

the optimal objective value for the Weber problem with continuous regional 

demand traveling along a network. Church and Murray (2009) discussed an 

iterative enumeration process. These approaches, again, are only appropriate for 
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certain regularly shaped demand areas, distance norms or assumed convex 

solution surfaces. 

Work on the continuous location-allocation problem (LAP) or the 

continuous Weber problem involving multi-facilities by Dasci and Verter (2001, 

2005), Ouyang and Daganzo (2006) and Murat et al. (2010, 2011) is also relevant. 

Assumptions central to work in this area are approximate uniform demand (e.g. 

Dasci and Verter 2001, 2005) or a non-homogeneous demand distribution 

specified by exact, known mathematical function (e.g. Ouyang and Daganzo 2006; 

Murat et al. 2010, 2011). For example, Murat et al. (2011) developed a multi-

dimensional shooting algorithm to solve a continuous LAP which can tackle 

dense demand within non-convex regions. It was found to be more efficient than a 

steepest descent algorithm proposed earlier by Murat et al. (2010). However, the 

algorithm is limited to two facilities and specific demand distribution functions.  

As discussed above, methods for solving the continuous Weber problem to 

date are developed for problem instances under certain assumptions, either for 

regular demand area shapes, rectilinear distances, or specific density functions. 

The efficiency of applying these approaches to irregular regions as well as 

demand that is generally distributed remains unknown. The objective of this 

chapter is to develop an efficient and general solution procedure for the 

continuous Weber problem that is not restricted by assumed demand distributions 

or regional shape. 
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3.3 Problem Specification  

When demand is represented by discrete points, the Weber problem objective 

function can be readily structured to reflect minimizing the sum of weighted 

distances over a finite set of demand points. The following notation is adopted in 

the model formulation: 

i  = index of demand points 

( , )i ix y  = location of demand point i  

n  = number of demand points 

iw  = weight of demand associated with point i  

( , )X Y  = facility location 

The Weber problem with discrete demand using the Euclidean distance 

norm is as follows (Wesolowsky 1993): 

Minimize       2 2

1

( ) ( )
n

i i i
i

w X x Y y


                             (3-1) 

The goal is to find the best location, defined by variables X and Y, that 

minimizes the total weighted distance demand is from the sited facility. This is 

equivalent to minimizing average distance. By definition, the facility location may 

be anywhere in continuous space.  

Many algorithms have been developed to solve the Weber problem, 

including early efforts like the “Torricelli Point” for the unweighted problem with 

three demand points and the Varignon Frame for a finite set of weighted demand 

points. The Weiszfeld (1936) algorithm has proven to be most popular as it 

utilizes the first order derivative of the objective function in an iterative manner. 
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Similar approaches are also investigated in Miehle (1958), Kuhn and Kuenne 

(1962) and Cooper (1963, 1964). The convergence of this algorithm was proven 

by Kuhn (1973), among others. However, a limitation of this approach is that the 

objective function is not differentiable at the demand points, so it could fail if the 

optimal solution coincides with one of the demand points (Kuhn 1973, 

Chandrasekaran and Tamir 1989, Wesolowsky 1993, Church and Murray 2009). 

Accounting for this is therefore necessary, and can be readily done (Love and 

Yeong 1981, Church and Murray 2009). Isodapanes, which are lines representing 

equal transportation cost, can also be used to solve the Weber problem (Weber 

1909, Hoover 1937). The solution procedure usually involves composite overlay 

of multiple distance layers, one layer for the distance to each demand point. 

Though this approach can be readily integrated in GIS, challenges with the 

computational requirements remain as this is excessive if the number of demand 

points is large, particularly compared to Weiszfeld algorithm. 

When demand is continuously distributed, the objective function remains 

to minimize the average distance from the facility location, but it is more 

complicated to formalize. Consider the following additional notation: 

( , )g x y  = function of demand at point ( , )x y  

( , , , )d x y X Y  = 2 2( ) ( )X x Y y    

R  = region of demand 

The Weber problem with continuous demand can therefore be expressed 

as follows given a single demand area or region (Church and Murray 2009): 
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Minimize   
( , )

( , ) ( , , , )
x y R

g x y d x y X Y dxdy

                                  (3-2) 

The sum in the discrete version of the Weber problem, (3-1), is replaced in 

(3-2) by a double integral over the demand area, making the model with 

continuously distributed demand a stochastic optimization problem that turns out 

to be quite difficult to solve in practice.  

The difference between (3-1) and (3-2) is evident in Figure 3.1, where the 

points shown in Figure 3.1a reflect the input necessary for the discrete Weber 

problem in (3-1) and the actual surface in Figure 3.1b shows the continuously 

varying demand across the area modeled in (3-2). As noted previously, a number 

of approaches have been explored for solving the Weber problem with 

continuously distributed demand, (3-2). Unfortunately all rely on fairly restrictive 

simplification assumptions, making their practical use and applicability rather 

limited. 

3.4 Spatial Representation 

In a digital environment, representation of geographic space is challenging, with 

many options for carrying this out. At issue is whether demand is most 

appropriately viewed as a field or an object. Physical features that can be 

considered as discrete objects include roads, trees, houses, etc. Phenomena like 

rainfall amount, air quality, elevation, temperature and land use are often thought 

of as continuous fields. As a result, there are basically two spatial representation 

methods relied on in commercial GIS to reflect these perspectives (Goodchild 

1992): vector and raster. In a vector representation, geographical features are 
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described by geometry: point, line and polygon. Each vector object may have one 

or more attributes, like expected demand. Figure 3.1a is an example of a point 

representation of demand where each point has a unique demand value or weight. 

The raster based method represents geographical space using a continuous 

tessellation consisting of square cells and each raster cell has an associated 

attribute(s)‡. Figure 3.1b displays continuous demand as a raster surface.  

Vector and raster representations have advantages and disadvantages 

(Longley et al. 2011). A raster is a simple data structure, making it less 

computationally expensive for certain types of spatial processing. A limitation, 

however, is that the attribute within a cell is approximated as a single value, so 

accuracy is dependent on the resolution of the cell. A vector representation 

usually requires less data storage overall, but for some spatial operations 

computational processing can be high. Of course, the choice of representation 

depends on the spatial phenomena under study and the analysis context, but also 

data availability, data accuracy, computational efficiency, etc. among which 

geographic scale is a key element to be considered. For example, Miller (1996) 

discusses geometric representation related to different spatial scales in facility 

location problems and Murray et al. (2008) explored the uncertainty in coverage 

solutions obtained using different spatial representations of continuous demand 

space.  

                                                            
‡ In general, a tessellation may be regular or irregular, and consists of squares (cells) or rectangles 
as well as triangles and hexagons (Goodchild 1992, Church and Murray 2009, Longley et al. 
2011). Discussion is limited here to a regular raster for simplification, but any representation can 
be considered. 
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Discrete demand points in location models reflect an object perspective, 

whereas a continuous surface representing demand varying over space is a field 

view. The benefit of the field view is that it accounts for specific demand at any 

location ( , )x y  in continuous space. It is theoretically possible to represent a 

continuous surface as a mathematical function, ( , )g x y . While an infinite number 

of functional forms are possible, three continuous demand surfaces given by first, 

second and third order mathematical functions are shown in Figures 3.1b and 3.2, 

where ( , )g x y x y   in Figure 3.1b, 2 2( , )g x y x xy y    in Figure 3.2a and 

3 2 2 3( , )g x y x x y xy y     in Figure 3.2b. The issue that arises with these or 

any other functions, however, is that ( , )g x y  must either be known or be fitted. Of 

course, the demand function is never simply known or given with certainty, so in 

practice it is usually fitted through spatial sampling in order to characterize the 

underlying geographic distribution. 

There are a number of techniques available in GIS that can be used to fit 

or approximate continuous surfaces, usually referred to as spatial interpolation 

approaches. Spatial interpolation is to estimate unknown attribute values in 

geographic space using the known attribute values at measured locations, 

generating a tessellation across the study region (Lam 1983, Cressie 1993). 

Suppose ( , )g x y  is the true attribute value at a location ( , )x y , the goal of spatial 

interpolation then can be considered as the estimation of ( , )g x y  for all locations 

( , )x y  with as little error as possible. Consider the following notation: 

k  = index of sample locations  
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Figure 3.2: Alternative continuous demand representations:  

(a) 2 2( , )g x y x xy y    and (b) 3 2 2 3( , )g x y x x y xy y      
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( , )k kx y  = location of sample k  

k  = observed attribute value of sample k  

m  = number of samples  

( , )g x y  = true attribute value at location ( , )x y  

ˆ ( , )g x y  = estimated attribute value at location ( , )x y  

( , )ε x y  = estimation error at location ( , )x y  

Thus, the estimated attribute value, ˆ ( , )g x y , can be expressed as a function of the 

observed sample data as follows: 

1 2 3ˆ ( , ) ( , , ,..., )mg x y f                                                  (3-3) 

where f  is some function. Generally, the goal is minimization of the estimation 

errors which can be formally written as: 

Minimize   
( , )

( , )
x y R

E x y dxdy


                                             (3-4) 

where ˆ( , ) ( , ) ( , )ε x y g x y g x y  . 

There are generally two types of interpolation techniques to support and fit 

a continuous surface, point and areal. Examples of point interpolation methods 

include inverse distance weighting (IDW), nearest-neighbor, splines, polynomial 

regression, Kriging and others. For example, Weber and Englund (1992) 

employed IDW and Kriging approaches to estimate the contaminant 

concentrations using multiple sample datasets. Janssen et al. (2008) used a 

Kriging-based model for the approximation of air quality surfaces. Areal 

interpolation, in contrast, estimates attribute values for areas within a regions, 
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typically based on another set of reporting zones for which boundaries do not 

coincide (Goodchild et al. 1993). Areal weighting and dasymetric mapping are 

two common areal interpolation approaches. The latter is more sophisticated in 

terms of the adoption of ancillary data and has been widely applied in population 

density estimation (Langford and Unwin 1994, Eicher and Brewer 2001, Mennis 

2003). 

An issue, however, is that estimation is uncertain, with significant error 

and variance (Lam 1983, Goodchild et al. 1993). This is due to the quality of 

interpolation, influenced by many factors, such as the actual distribution, spatial 

sample and measurement accuracy as well as assumptions employed. Many 

efforts have been devoted to improve spatial interpolation methods with the aid of 

ancillary information or supplementary datasets (e.g. Wu and Murray 2007). 

However, errors and uncertainty are inevitable. For instance, density surfaces 

derived from dasymetric mapping are subject to satellite image misclassification. 

Therefore, it is always impossible to get a known ( , )g x y  with certainty, and thus 

any estimation, ˆ ( , )g x y , will no doubt be subject to error, which indicates

( , ) 0ε x y   for most locations ( , )x y . This means that cumulative error and 

uncertainty is significant (Tomczak 1998), and subsequent facility location siting 

based on continuous demand surfaces represented by either assumed ( , )g x y  or 

approximated ˆ ( , )g x y  surfaces would likely be uncertain, erroneous or biased in 

many ways.  
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3.5 Solution Approach 

It is obvious that in practice surfaces representing continuous demand are 

necessarily approximated by spatial interpolation methods using sample data. 

Thus, it is often impossible to obtain accurate estimation because the complete 

knowledge about the true underlying demand distribution is usually unavailable. 

Therefore, asymptotic theories are generally employed to acquire approximate 

results rather than precise estimation. In terms of continuous representation, the 

most straightforward way is to increase the sample size to infinity since more 

information from larger sample would increase the accuracy in the estimation of 

unknown attribute values (Stein 1999). Infill asymptotics (Cressie 1993), or fixed-

domain asymptotics (Stein 1999) is such a theory that is widely applied in spatial 

data analysis, particularly in spatial interpolation for a fixed and bounded region. 

According to infill asymptotics, the estimated attribute value approaches the true 

attribute value when the sample size increases to infinity, as defined by (3-5):  

ˆlim ( , ) ( , )
m

g x y g x y


                                                 (3-5) 

Based on the expression in (3-4), (3-5) is equivalent to: 

lim 0
m

E



                                                        (3-6) 

That is, the estimation error approximates zero when the number of sample points 

goes to infinity. As the volume of sample data increases, point based spatial 

interpolation methods will theoretically provide better estimations of attribute 

values at unsampled locations. 
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In the context of location modeling, although a discrete representation of 

continuous demand as a finite set of points can introduce errors into model 

solutions (Murray 2003, Francis et al. 2009), an improved approximation of 

continuous demand occurs as n  . The assumption is that with an increase in 

the density of demand points, the set better approximates the actual continuous 

distribution. The implication is that a solution to the discrete Weber problem with 

greater demand point density will approach the theoretical optimum for the 

continuous Weber problem. Computationally, however, the hope would be that 

some finite number of demand points is sufficient. Therefore, in this study a finite 

set of fixed points is used to represent continuously distributed demand to explore 

this theoretical convergence. Simplification of continuous demand as a discrete 

sample set is anticipated to be less restrictive and less problem altering compared 

to existing approaches. To explore the relationship between point density and the 

accuracy of facility locations derived from discrete representations, point density 

is systematically increased to better approximate continuous demand.  

Based on a point-based demand representation, the proposed process for 

solving the continuous Weber problem is outlined in Figure 3.3, incorporating the 

following parameters: 

INIT_D: initial point density 

NUM_R: number of layers for each density 

STEP_D: step size of density 

 : number of layers to consider in examining convergence of objective 

value 
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τ : tolerance used to determine convergence of the objective value 

l  : point layer  

t  : index tracking number of layers of same density  

D  : density of point representation 

 

Figure 3.3: Solution approach for the continuous Weber problem  
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Following input of data and initialization (INPUT), Figure 3.3 then 

proceeds to generating a discrete demand layer that reflects continuous demand 

density for a region (DEMAND LAYER). This represents a demand 

approximation, ˆ ( , )lg x y , for the actual continuously distributed demand. The 

infill sampling process can be carried out with readily available GIS software 

such as ArcGIS (ESRI, Redlands, California). Spatial sampling schemes 

employed can be random, stratified, clustered or contour sampling (Longley et al. 

2011), depending on knowledge of the underlying demand distribution, if any. 

Figure 3.4 gives an example of demand layer generation, where initially the two 

sub-regions comprising the entire demand area have 4 and 2 points, respectively. 

With iteration proceeding, the number of points is systematically increased, 

keeping the proportion of demand densities among the two sub-regions constant.  

 

Figure 3.4: Process of demand layer generation 

Given a demand layer l , the associated Weber problem is solved 

(SOLUTION). In this study, solution is obtained using the Weiszfeld algorithm§ 

which relies on an iterative process to improve a current solution. Let ( , )k kX Y  

                                                            
§ Any other solution approaches could be used to solve the Weber problem with discrete point 
demand. As well, other optimization models involving continuous demand could be considered, 
too. Discussion is limited to the continuous Weber problem solved by Weiszfeld algorithm. 
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and 1 1( , )k kX Y   be the facility location in the k th and ( 1)k  th iteration. The 

Weiszfeld procedure can be formalized as: 

       1 11 1

1 1

                                          (3-7)

n n
i i i i

i ik ki i
n n

i i

i ii i

w x w y

d d
X Y

w w

d d

  

 

 
 

 
                                  

where 2 2( ) ( )k k
i i id X x Y y     using Euclidean norm**. If the set Ω  is all of 

the discrete representations generated, then any representation Ωl  has an 

optimal facility location, * *( , )l lX Y , and a corresponding objective value, *
lZ , 

identified by this solution technique. In this case, *
lZ  is calculated as the average 

travel distance, that is, *

1 1

/
n n

l i i i
i i

Z w d w
 

   . 

 Figure 3.3 suggests that once a demand layer solution has been obtained, 

re-sampling can take place (RE-SAMPLING?), provided that t<NUM_R. 

Assuming so, the new demand layer is created, then solved. Otherwise, a test for 

convergence is undertaken (CONVERGENCE?). The test for convergence is 

based on the last  layers solved. The difference between the current solution *
lZ  

and a previous solution *
kZ  is calculated for each layer Ωk  where 

( Γ) ( 1)l k l    . If the sum of those differences is smaller than the predefined 

tolerance τ , the procedure terminates with an approximated optimal solution 

                                                            

** Here we use
2 2( ) ( )k k

i i i
d X x Y y     , where  is a small value, in order to avoid 

issues when a current location is at a demand point (see Wesolowsky and Love 1972, Church and 
Murray 2009). 
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(END). Otherwise, demand density is increased (DENSITY CHANGE) and 

demand layer generation and solution are repeated.  

Again, the goal is to find the true optimal location * *( , )X Y  for ( , )g x y . 

Essential here is the proper representation of continuous demand, which is 

achieved in this case by a series of approximated demands surfaces, ˆ ( , )lg x y , 

based on which the Weber problem is solved, giving * *( , )l lX Y as an approximation 

of the optimal location. According to infill asymptotics, the accuracy of * *( , )l lX Y  

will improve with increased demand point density. Thus, as n  , * *
lZ Z  

and * * * *( , ) ( , )l lX Y X Y , if the solution space is convex. In other words, 

convergence to the optimal solution is achieved as point density increases. In 

practice, however, it is hoped that only a finite number of demand points are 

needed, and the iterative process will terminate in a reasonable amount of 

processing time.  

3.6 Empirical Results 

To solve the continuous Weber problem, two variants of continuous demand are 

explored using the proposed approach. The first case considers unweighted 

demand distributed uniformly in an irregularly shaped region. The second case 

examines an application where demand varies across the region. 
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3.6.1 Uniformly distributed demand 

Figure 3.5 shows three Census tract regions: “rectangular”, “circular” and 

“concave”. The three regions vary in shape and there is no ancillary information 

about the underlying demand distribution. In such a situation, it is necessary to 

assume demand to be uniformly distributed as there is no information to indicate 

otherwise. In this case, demand is represented by equally spaced points and can be 

easily implemented using discretization functionality in GIS. To solve the 

continuous Weber problem for these regions, the parameters of proposed solution 

procedure are as follows: INIT_D = STEP_D = 100 points/ 2km , NUM_R = 1, Γ

= 5 and τ  = 0.5. The process is carried out on a Mac OS X system with 3.06 GHz 

intel Core 2 Duo processor and 4GB, 800 MHz memory. 

Convergence is achieved rather quickly for the “rectangular” and “circular” 

regions ( Ω 14  and 5 seconds, and Ω 88  and 16.2 minutes, respectively), and 

a little longer for the “concave” region ( Ω 144  and 1.8 hours). Figure 3.5 

summarizes the optimal facility location, * *( , )l lX Y , for each layer Ωl . As the 

number of points increases, they appear to converge to a single point – the 

theoretical optimal location. For the “circular” region, Figure 3.6 displays the 

solutions in greater detail associated with Figure 3.5b, where each solution is 

labeled by specific representation l  and a line connects consecutive layers. By 

visual inspection, it is not difficult to observe convergence behavior in the optimal 

facility locations as demand density increases. Figure 3.7 summarizes the distance 

between optimal locations of successive representations for the “circular” region.  
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Figure 3.5: Solutions for the different shaped regions (homogeneous demand):  

(a) Rectangular, (b) Circular and (c) Concave 

Though the curve in Figure 3.7 is not monotonically decreasing, in general, we 

have * * 2 * * 2
1 1lim ( ) ( ) 0l l l ll

X X Y Y 
    , supporting that * *

1 1( , )l lX Y   and * *( , )l lX Y  

become closer and closer, approaching the theoretical optimal facility location 
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* *( , )X Y  for the continuous Weber problem. In particular, most of the distance 

variation in Figure 3.7 is less than 10 m  after the first a few iterations. For most 

facilities, siting to within 10m  would be considered extremely precise.   

 

Figure 3.6: Solution location variability based on demand density change 

(for Figure 3.5b) 



55 

 

Figure 3.7: Distance between facility locations for successive representations  

(for Figure 3.5b) 

3.6.2 Region with varying demand 

Now our attention is turned to a region with varying demand. Specifically, the 

region contains 55 Census tracts. The area of each sub-region ranges from 0.325

2km  to 23.495 2km , and the total area is 209.968 2km . The continuous demand 

density is estimated based on the sampling points, one for each sub-region, with 

density varying from 224unit/ 2km  to 9493unit/ 2km . A demand surface layer 

fitted from these points is shown in Figure 3.8a. The actual demand density in 

each sub-region is depicted by Figure 3.8b. 

An alternative for representing the continuous demand in this region could 

be discrete points, as done previously. Though the demand changes across the 

entire area, it must be assumed uniformly distributed over each sub-region. 

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

D
is

ta
n

ce
 b

et
w

ee
n

 c
on

se
cu

ti
ve

 
op

ti
m

al
 lo

ca
ti

on
s 

(m
)

l



56 

Specifically, the demand is represented using equally spaced points but with 

different spatial density in each sub-region. This is illustrated in Figure 3.8c. Thus, 

the proposed solution approach can be applied in this situation as well, with 

processing to ensure appropriate spatial density proportions. The continuous 

Weber problem is solved with following parameters: INIT_D = STEP_D = 2 

points/ 2km , NUM_R = 1, Γ  = 5 and τ  = 0.5. 

When convergence is achieved, the total number of layers generated is 106. 

That is Ω 106  with processing time of 57.5 minutes. To obtain the best 

approximate optimal solution, the maximum number of points created for each 

sub-region varies from 70 to 5,028, and the total number of points for the entire 

region is 247,253. Shown in Figure 3.9 are the optimal facility locations for each 

representation. On the whole, the solution set has a very small geographic extent. 

The detailed map on the right side of Figure 3.9 depicts a similar convergence 

trend observed previously. The approach quickly converges to the optimal 

location. 
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Figure 3.8: A region with varying demand: (a) demand surface,  

(b) actual demand and (c) discrete demand point   
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Figure 3.9: Optimal facility locations for varying regional demand 

3.7 Discussion and Conclusions 

In location science, the Weber problem has proven to be an important planning 

model with numerous extensions. Though continuously distributed demand 

reflects important realities of the real world, solving the Weber problem in this 

case presents challenges. One approach is to introduce a double integral in the 

objective function, complicating the problem as well as making solution 

extremely difficult. Further, assuming that a demand distribution ( , )g x y   is 

known and accurate is highly problematic in any planning context. This chapter 

thus proposed an effective approach to solve the continuous Weber problem.  
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A key issue in the solution procedure is how to appropriately represent 

continuous demand. As noted previously, it is possible to describe demand in a 

GIS environment as an object or a field. On one hand, though field views can 

depict a continuous surface given by an exact demand density function, the 

problem is that such theoretical mathematical functions are not known in practice. 

Further, a fitted surface derived from spatial interpolation is subject to errors and 

uncertainty. On the other hand, according to infill asymptotics, the object view 

appears to be a better alternative as demand point density increases, which is 

therefore adopted in the proposed approach.  

In other words, the developed solution method for the continuous Weber 

problem uses discrete points of different demand densities to approximate 

continuous demand. Empirical applications explored the relationship between 

solutions and point demand density. Optimal facility locations and objective 

values were found to converge quickly in all cases. However, regional shape 

appears to influence performance behavior. For example, the distance between 

* *
1 1( , )X Y  and * *

2 2( , )X Y  in Figure 3.7 is about 50 m , much larger than the values on 

the tail of the curve, most of which are less than 1 m . However, as point density 

increased, the differences became smaller and smaller until finally convergence is 

achieved.  

Though the convergence criterion in the proposed approach relies on the 

objective value assessment, other methods of convergence could be adopted as 

well. For example, since convergence is also observed in the optimal facility 

locations from different representations with increasing demand density, 
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1
* *

l

l k
k l

Z Z


 

    in Figure 3.3 could be substituted by 

1
* * 2 * * 2( ) ( )

l

l k l k
k l

X X Y Y


 

     . That is, the solution procedure terminates only 

when the optimal facility location changes little. Also, convergence could be 

examined by statistical methods such as root and ratio tests. For instance, 

objective functions values or distances between optimal facility locations from 

successive representations can be considered as a series of values, where a 

convergence test could be carried out to find the best representation and 

associated solution. 

As discussed above, the proposed method recognizes important limitations 

in accurately representing continuous demand and employed discrete 

representations as a good approximation for continuous demand in facility 

location models provided that demand point density was sufficient. When 

convergence is achieved, an approximate optimal solution based on infill 

asymptotics is possible. GIS facilitates this process, making it straightforward to 

vary density in an informed and justified manner. Results from the empirical 

studies demonstrated that the proposed approach is effective in solving the 

continuous Weber problem. 
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Chapter 4 

THE CONTINUOUS MULTI-WEBER PROBLEM†† 

4.1 Introduction 

Location theory is concerned with analysis and placement of socio-economic 

activities, including land use, industrial production, central places and spatial 

competition (Murray 2008). Founded on such theory, location modeling has long 

been recognized as playing an important role in regional and urban planning, as 

well as other contexts, as “all human activities involve the choice, either explicit 

or implicit, of location” (Church and Sorensen 1996). Location related decisions 

are fundamental in many aspects of human activities. Examples include, but are 

not limited to, locating retail stores, deploying switching centers in 

communication networks, selecting nature reserves to preserve threatened species, 

etc. In fact, whenever a question about where to place goods and services is posed, 

a location problem arises. 

Facility location problems usually concern determining where to site one 

or more facilities subject to certain constraints in order to optimize objectives 

(Brandeau and Chiu 1989). Of particular interest here is a minimization problem – 

the multi-facility Weber problem with continuously distributed demand, or simply 

the continuous multi-Weber problem. The Weber problem is a classic facility 

location model, with the task of identifying a site for a single facility in 

continuous space in order to minimize the total transportation costs from the 

                                                            
†† A modified version of this chapter has been submitted for publication, co-authored with Alan 
Murray. 
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facility to a set of fixed demand points (Weber 1909). The multi-facility extension 

of the Weber problem requires multiple facilities to be sited (Cooper 1963), and 

remains a challenge to solve (see Rosing 1992, Righini and Zaniboni 2007). Add 

to this the need to deal with continuously distributed demand, the continuous 

multi-Weber problem is arguably one of the most difficult facility location 

problems to solve optimally or heuristically.  

Continuous demand is often encountered in planning and analysis, 

reflecting the distribution of people, risk, danger, vegetation, businesses, retail 

markets, and customers more generally. Typically, continuous demand is 

abstracted as a finite set of discrete points in order to facilitate model formulation 

as well as reduce computational expense (Miller 1996, Ouyang and Daganzo 2006, 

Francis et al. 2009). Though attractive, point-based simplifications can lead to 

significant errors and uncertainty in analyses due to the loss of spatial detail 

(Murray and O’Kelly 2002, Murray et al. 2008, Francis et al. 2009, Alexandris 

and Giannikos 2010, Cromley et al. 2012). An alternative is to describe 

continuous demand as a surface defined by a mathematical function (Drezner 

1995, Gastner and Newman 2006, Brimberg et al. 2008, Murat et al. 2010). The 

issue, however, is that the exact demand distribution/function is never known or 

given with certainty. Therefore, how to effectively deal with continuously 

distributed demand in facility location remains a great challenge. To this end, the 

intent of this chapter is to address continuous demand representation in the 

continuous multi-Weber problem. 
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When facilities can be located anywhere and demand is continuously 

distributed, model formulation as well as solution becomes mathematically 

complicated. Traditionally, facility location problems have been solved by 

operations research techniques like linear and integer programming. In recent 

years, solution capabilities have been significantly enhanced by spatial 

optimization approaches incorporating geographic information systems (GIS) 

functions and methodologies (Church 2002, Wei et al. 2006, Church and Murray 

2009, Matisziw and Murray 2009, Murray 2010, Cromley et al. 2012). GIS is 

used to facilitate data input and visualization, but arguably is more valuable and 

meaningful as part of modeling and solution processes (Murray 2010). 

The aim of this chapter is to develop an approach that combines GIS and 

optimization methods for solving the continuous multi-Weber problem. The next 

section reviews relevant research in this area. The problem specification is given 

in section 4.3. Spatial representation in GIS is covered in section 4.4. This is 

followed by a detailed description of the proposed method in section 4.5 and 

empirical results in section 4.6. Finally, the chapter ends with discussion and 

conclusions. 

4.2 Background 

As one of the first location problems formally posed, the Weber problem involves 

placing a single facility anywhere in space (continuous space) to serve a finite set 

of demand points so that total transportation costs are minimized. It has been 

extensively investigated and continues to be of interest since first proposed in the 



64 

17th century (Wesolowsky 1993, Drezner et al. 2002). The classic context is 

siting a factory in order to minimize the transportation costs to acquire raw 

materials and distribute products, but could as well involve locating a fire station 

or hospital to minimize average response time. This seemingly simple problem 

has attracted so much interest because of its overall applicability as well as 

potential for extension. Many location models can, in fact, be formally connected 

to the Weber problem (Drezner et al. 2002). 

One extension of interest here is replacing discrete demand by continuous 

demand, usually referred to as the continuous Weber problem (Drezner 1995, 

Fekete et al. 2005). In this context, the Weber problem becomes a stochastic 

optimization problem with the goal of minimizing average distance to the demand 

area from the facility. The most straightforward method for dealing with a 

demand area is to represent it by a single point, such as a centroid (Bennett and 

Mirakhor 1974). Given the well-known concerns and limitations of data 

aggregation, research has employed knowledge from computational geometry to 

evaluate average travel distance (Drezner 1995, Carrizosa et al. 1998, Fekete et al. 

2005) or its bounds (Carmi et al. 2005, Abu-Affash and Katz 2008, Puerto and 

Rodríguez-Chía 2011). Such approximations of average distance are relatively 

straightforward for regular shapes but can be quite complex in other cases. Finally, 

some efforts have focused on numerical methods for problem solution. For 

example, the Weiszfeld algorithm, popular for solving the Weber problem, has 

been adapted for dealing with continuous extensions (Drezner and Wesolowsky 

1980, Franco et al. 2008). 
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Another relevant extension considers multiple facilities instead of a single 

facility, known as the multi-Weber problem (Cooper 1963). The distinct feature 

of this extension is that it concerns siting multiple facilities simultaneously in 

continuous space with discrete demand assigning to its closest facility. The multi-

Weber problem has challenged generations of researchers because the objective 

function is neither concave nor convex, making it difficult to find the global 

minima. Since the early ALTERNATE heuristic developed by Cooper (1964), 

many heuristics have been proposed, such as Tabu search (Brimberg and 

Mladenović 1996), genetic algorithms (Houck et al. 1996, Salhi and Gamal 2003) 

and variable neighborhood decomposition (Brimberg et al. 2006). The benefit of 

such approaches is that they can solve large problems quickly as well as provide a 

good initial solution for exact approaches. In contrast, exact or optimal methods 

are constrained by application problem size (Rosing 1992, Righini and Zaniboni 

2007). A detailed survey of exact methods and heuristic approaches can be found 

in Brimberg et al. (2008). 

When extension involves both continuous demand and multiple facilities, 

the problem becomes extremely complicated as facilities may be sited anywhere 

and demand varies across space. Algorithms have been proposed for the simplest 

assumption of a uniform demand distribution (Marucheck and Aly 1981, Drezner 

1986). Work dealing with other probabilistic distributions of demand can be 

found in Rao and Varma (1985) and Altınel et al. (2009). To facilitate the 

allocation process, some researchers have utilized Voronoi partitions of the 

demand area (see Suzuki and Okabe 1995, Gastner and Newman 2006). More 
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recently, Murat et al. (2010) applied an approximate line search method to find a 

single facility location for each Voronoi polygon, but it can be computationally 

expensive due to a focus on the allocation process. 

Compared to the continuous Weber problem and the multi-Weber problem, 

the extension of both multiple facilities and continuous demand has drawn less 

attention. It is worth noting that current solution approaches for the continuous 

multi-Weber problem are problem specific, inexact or not computationally 

efficient. Therefore, addressing multiple facilities and continuous demand 

represents an unresolved issue, with much potential for use and application. Given 

the inherent spatial nature of the problem and advanced spatial techniques linked 

to GIS, spatial optimization represents potential for improved problem solution 

that exploits knowledge of distributed demand. This avoids problematic 

assumptions characteristic of existing solution approaches for this problem. 

4.3 Problem Specification 

The continuous multi-Weber problem involves continuously distributed demand 

served by several facilities that may be located anywhere in continuous space. To 

begin, the mathematical formulation of the classic Weber problem is detailed.  

Then, two related extensions, the continuous Weber problem and the multi-Weber 

problem, are given. The continuous multi-Weber problem is then presented. 
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4.3.1 Weber Problem 

Given demand represented by discrete, aggregate points, the objective function of 

the Weber problem is to minimize the sum of weighted distance to the sited 

facility over the finite set of demand points. This is equivalent to minimizing 

average distance to demand. The decision variables are the location of the facility. 

Consider the following notation: 

i  = index of demand points 

( , )i ix y  = location of demand point  

n  = number of demand points 

iw  = weight associated with demand point  

( , )X Y  = facility location decision 

The Weber problem is as follows (Wesolowsky 1993): 

Minimize                                  (4-1) 

The goal is to find the best location in continuous space defined by ( , )X Y  

so that the total weighted distances from the demand points to the sited facility is 

minimized. Notice that the distance function in (4-1) is defined by the Euclidean 

metric, and involves ( , )X Y  as the facility location site to be determined. 

4.3.2 Continuous Weber Problem 

As mentioned above, the Weber problem, (4-1), can be extended in many ways. 

Previous extensions include models considering other distance measures, negative 
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weights associated with demand, or multiple objective functions, among others 

(Drezner et al. 2002). 

An important extension is accounting explicitly for demand varying 

continuously over space, not assuming aggregate demand points. This extension 

obviously complicates things as representation of a continuous surface is not 

trivial. Consider the following additional notation: 

( , )g x y  = function of demand at point ( , )x y  

( , , , )d x y X Y  = 2 2( ) ( )X x Y y    

R  = region of demand 

Discrete demand at a priori defined locations, wij , are replaced by a 

function corresponding to demand at any location ( , )x y . Further, the distance 

function reflects this change as well. Formal specification of the continuous 

Weber problem follows (Church and Murray 2009): 

Minimize      
( , )

( , ) ( , , , )
x y R

g x y d x y X Y dxdy

                             (4-2) 

The objective, (4-2), involves a double integral over the demand area 

instead of the sum in the Weber problem, (4-1). The distance, ( , , , )d x y X Y , 

remains the Euclidean metric, but the objective function now accounts for 

continuously distributed demand using ( , )g x y , making this far more complex. 

The reason it is more complex is that in order to apply this model, ( , )g x y  must 

first be mathematically defined. 
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Though more complicated in formulation, the continuous Weber problem, 

(4-2), remains equivalent to (4-1), minimizing the average travel distance to the 

sited facility (Carrizosa et al. 1998). 

4.3.3 Multi-Weber Problem 

Another extension to the Weber problem considers multiple facilities. Thus, 

decisions regarding where each facility should be located must also consider what 

demand is assigned to which facility. This makes the problem a location and 

allocation problem, or simply a location-allocation problem. Additional notation: 

j  = index of facilities 

p  = number of facilities to be located 

( , )j jX Y  = location of facility j 

 
ij


1  demand  point i is served by facility j

0  otherwise





 

Now there are decision variables for each of the p facilities to be sited. 

Further, allocation variables to assign demand to each facility are introduced. The 

formulation of the multi-Weber problem can be expressed as follows (Cooper 

1963, 1964): 

Minimize      w
i


ij
(X

j
 x

i
)2  (Y

j
 y

i
)2

j1

p


i1

n

                         (4-3) 

Subject to:        
ij

j1

p

 1      i                                                  (4-4) 
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The objective, (4-3), remains to minimize total weighted distances. 

Constraints (4-4) specify that each demand point is served exactly by one facility. 

This model is more complicated with multiple facilities than the Weber 

problem, (4-1), since it not only considers facility location, X j,Yj , but now also 

accounts for allocation of demand points among several facilities, indicated by 

 ij . 

4.3.4 Continuous Multi-Weber Problem 

Combining the above extensions, the continuous Weber problem and the multi-

Weber problem, we get a very challenging facility location problem. The 

variation of the Weber problem in this case concerns both continuous demand and 

multiple facilities, referred to as the continuous multi-Weber problem. Consider 

the following additional notation: 

( , , , )j jd x y X Y  = 2 2( ) ( )j jX x Y y    

jR  = sub-region of demand served by facility j 

The discrete allocation variables,  ij , are now replaced by the variables 

Rj  that define a portion of the demand region to be served. More specifically, this 

is the area served by facility j, X j,Yj , and includes  , jx y R  reflecting 

demand assignment to the facility. The continuous Multi-Weber problem follows: 

Minimize      g(x, y)d (x, y, X
j
,Y

j
)dx dy

( x ,y )Rj


j1

p

                        (4-5) 
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Subject to:                                                                (4-6) 

    
R

j
R j  j, j where j  j                         (4-7) 

The objective, (4-5), includes both a double integral over each sub-region 

jR  served by facility j and a sum over the entire demand area characterized by a 

demand distribution ( , )g x y . Similar to the previous models, this is equivalent to 

minimizing average weighted distance. In addition to seeking the best facility 

locations, the model must simultaneously determine the best allocation as well, 

reflected in constraints (4-6) and (4-7).  

Essential here is making the distinction between a discrete and continuous 

representation of demand across space. To this end, this chapter will investigate 

how GIS can accommodate the continuous distribution of demand, as well as how 

this might facilitate structuring and solving the multiple facility problem 

associated with such a demand representation. 

4.4 Spatial Representation 

The appropriate representation of geographic space has long been a concern in the 

field of GIScience and spatial analysis (Miller and Wentz 2003, Goodchild and 

Haining 2004). In GIS, discrete-object and continuous-field are two common 

ways to conceptualize geographic space (Worboys and Duckham 2004, Longley 

et al. 2011). Discrete objects usually refer to features with distinct boundaries, 

such as houses, trees and roads, while continuous fields are often utilized to 

describe phenomena dispersed over space, such as pollution, elevation and 
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precipitation. Though many more advanced concepts have been proposed in 

recent years to describe complex spatial phenomena (Cova and Goodchild 2002, 

Yuan 2001), the object/field views remain the basis for geographic representation 

(Goodchild et al. 2007).  

Given the geographic nature of facility location problems, spatial 

representation is no doubt crucial to consider. A necessity in any facility location 

model is to appropriately represent facilities and demand in geographic space. Of 

particular interest here is continuous demand, which can be conceived of as an 

object or a field view. Discrete points based on the object perspective have been 

popular in location modeling for the last several decades, largely attributed to 

model and computation simplification (Miller 1996, Francis et al. 2009). 

However, significant errors can result from data aggregation if the underlying 

demand is continuous in nature (Murray and O’Kelly 2002, Murray et al. 2008, 

Francis et al. 2009, Alexandris and Giannikos 2010, Cromley et al. 2012). 

Because of theoretical as well as practical limitations associated with 

discrete demand, recent interest in location modeling has shifted to addressing 

continuous representations of demand. There are primarily two approaches that 

have been considered in location models. One option is to address continuous 

demand using an exact surface defined by a mathematical function (Carrizosa et 

al. 1998, Murat et al. 2010). One advantage is that demand is readily known for 

every location ( , )x y  in continuous space. In addition, solution approaches may be 

possible that exploit and benefit from the specific mathematical properties of 

these theoretical functions. The issue, however, is that such functions are never 
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known with certainty due to the lack of complete information about the 

underlying demand distribution. This is clearly a problem. 

As an alternative, the continuous surface may be approximated then used 

in a model. This is typically done in practice based on sample data. There are a 

number of techniques in GIS that can be used to fit a continuous surface, 

including inverse distance weighting (IDW), natural-neighbor, trend surface, 

Kriging and so on. They are generally known as spatial interpolation methods 

(Longley et al. 2011). The goal of spatial interpolation is to estimate attribute 

values at unobserved locations using the known values collected/measured at a 

finite set of locations (Cressie 1993). Consider the following notation: 

( , )g x y  = true attribute value at location ( , )x y  

ˆ ( , )g x y  = estimated attribute value at location ( , )x y  

( , )ε x y  = ˆ( , ) ( , )g x y g x y  

The intent of spatial interpolation is to estimate ˆ ( , )g x y , necessarily 

making it an approximation of ( , )g x y . Clearly it is desirable to minimize total 

estimation errors associated with an approximated function. This may be stated 

formally as follows:     

Minimize       
( , )

( , )
x y R

E x y dxdy


                                    (4-8) 

It is well recognized that estimation error ( , )ε x y  is unavoidable, and 

results from inaccurate sample data, assumptions inherent in interpolation 

approaches, as well as others (Lam 1983, Cressie 1993). Thus, errors and 
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uncertainty exist in any derived approximation surfaces. That is, ( , ) 0ε x y   

regardless of the interpolation techniques employed.  

If such fitted surfaces are further used in spatial analysis, cumulative 

errors can be introduced in obtained results and findings (Wood and Fisher 1993, 

Miller and Wentz 2003, Oksanen and Sarjakoski 2005). In the case of continuous 

demand in facility location problems, though errors caused by point-based 

abstraction have been well recognized, issues associated with the use of 

continuous surfaces are not well understood. Chapter 2 explicitly demonstrated 

error in the obtained facility location when the continuous Weber problem is 

considered. Addressing continuous representation in the multi-facility case 

remains a major challenge.  

4.5 Solution Approach 

As discussed above, it is impossible to represent continuous demand without any 

associated error using a mathematical function or spatial interpolation. Rather 

than pursuing exact representation, asymptotic theories are often employed in 

practice to obtain results. Infill asymptotics (Cressie 1993), or fixed-domain 

asymptotics (Stein 1999) is such a theory widely applied in spatial analysis related 

fields. The underlying principle is that the estimation error in spatial interpolation 

tends to zero when the sample size increases to infinity. In other word, when the 

number of sample points, m , goes to infinity, the difference between the true 

attribute value and the estimated attribute value can be negligible, and can be 

formally expressed as follows:    
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ˆlim ( , ) ( , )
m

g x y g x y


                                                 (4-9) 

From equation (4-8) this implies: 

lim 0
m

E



                                                        (4-10) 

The infill asymptotic theory implications for facility location problems 

reliant on continuous demand are, though the point-based simplification can lead 

to errors in the solution of optimal facility locations, that it is possible to improve 

continuous demand approximation by increasing the number or density of sample 

points for a bounded region.  Similar conclusions are also proven by Francis and 

Lowe (2011). 

The proposed heuristic approach for solving the continuous multi-Weber 

problem is therefore based on the discrete approximation for continuous demand, 

exploiting the above asymptotic theory in an intelligent way. The assumption is 

that better approximation of continuous demand can be obtained if m , 

which indicates that a solution to the multi-Weber problem with higher demand 

point densities would approach the optimum of the continuous multi-Weber 

problem. In practice, however, a finite set of demand points is hopefully sufficient 

to achieve a good approximation of the actual continuous distribution. In one 

respect, the discrete point approximation is less restrictive compared to other 

alternatives as the demand points can be identified/collected based on known 

characteristics of the underlying continuous distribution. In another respect, 

demand point density can be systematically increased to improve accuracy as a 

discrete representation.  
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The proposed heuristic solution procedure for the continuous multi-Weber 

problem is given in Figure 4.1. Consider the following parameters: 

INIT_D = initial demand point density 

l  = demand point layer 

p  = number of facilities 

t  = index of sub-areas in the demand region 

s  = number of sub-areas in the demand region 

t
l= demand point density in sub-area t 

Γ  = number of layers to consider in examining convergence of objective 

τ  = tolerance used to determine convergence of the objective value 

Δ j  = change in demand point density for facility j service area 

The process starts in Figure 4.1 with INPUT, where initialization occurs. 

With the data and knowledge of the underlying continuous distribution, an 

approximation layer l  is generated. The layer approximation is systematically 

enhanced as l increases in Figure 4.1. Considering the spatial variation of demand 

over space, the study region is divided into a set of sub-areas with demand density 

t
l . Thus, each sub-area has a unique density. Conversion of the region into 

discrete points can be carried out with GIS software like ArcGIS, a very popular 

commercial GIS package. 

Once a demand layer l  is approximated, the multi-Weber problem is 

solved in Figure 4.1. The algorithm applied to solve the multi-Weber problem is 

ALTERNATE (Cooper 1964) because of its wide application and ease of  
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Figure 4.1: Solution procedure for the continuous multi-Weber problem 

implementation. The general description of ALTERNATE is given in Figure 4.2. 

First, the study area is divided into several adjacent partitions, one for each 

facility, so that all demand points are served. Next, the Weber problem is solved 

to find the optimal facility location for each partition. The two steps are repeated 

until no further improvement in the objective can be achieved. This process 

usually repeats several times and the best result is selected. The final solution is 

the facility locations ( , )l l
j jX Y for layer l as well as the allocation of each demand 

point to its nearest facility. Also, an objective value representing the minimized 
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average distance to the closest facility, Z l , is obtained, calculated as 

1 1 1

Ψ /
pn n

l
i ij ij i

i j i

Z w d w
  

  , where 2 2( ) ( )ij j i j id X x Y y    . 

 

Figure 4.2: ALTERNATE heuristic 



79 

The next step in Figure 4.1 is assessment of convergence 

(CONVERGENCE?). The evaluation is based on the last Γ  layers, calculated as 

the sum of the absolute difference between the objective value of current layer Z l  

and previous layers, Z k  where 0<k<l. Specifically, the convergence measure is 

Z l  Z k

kl

l1

 , and is then compared to a given tolerance threshold, τ . If τ  is 

larger, convergence is assumed and the solution procedure terminates (END). As 

a result, the solution derived from layer l  is the approximate solution for the 

continuous multi-Weber problem with average distance to the nearest facility Z l .  

Otherwise, the process in Figure 4.1 proceeds to DENSITY 

EVALUATION. In this stage, the Weber problem is solved for each partition to 

seek a good point density for the discrete representation. The intent of this step is 

to better approximate the continuous surface. Suppose ( 1 2Δ ,  Δ ,  ,  Δ p ) are the 

changes in the point densities that are necessary to obtain solution convergence 

for different partitions, the minimum value 1 2Δ min(Δ ,  Δ ,  ,  Δ )p   is used as 

the density change for the entire layer in ADJUST DENSITY. 

Based on change density Δ  and the point density of the current layer, 

Figure 4.1 indicates that a new demand layer is generated by adjusting the 

demand density for each sub-area, keeping the proportion of point densities 

among all sub-areas fixed. The procedure of demand density adjustment is similar 

to that given in Figure 3.4. Demand point layer is then used as input and re-solved. 

This process is repeated until convergence is achieved. 
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In summary, the proposed approach uses a systematic discrete point-based 

approximation of demand, each time moving closer toward asymptotic 

convergence. At each iteration, the best solution is found and comparison is made 

to previous representations. This continues until the no improvement is possible. 

Upon convergence, the best facility locations ( , )j jX Y  are found that minimize 

average travel distance Z for the continuous multi-Weber problem. The 

approximation of ( , )g x y  using a series of demand point layers results in a series 

of solutions, where Z l  Z  as n   (recall n is the number of demand points). 

Again, this is based on asymptotic theory, but in practice convergence is achieved 

for a reasonable n. Finding this reasonable n is accomplished through the 

proposed heuristic process given in Figure 4.1.    

4.6 Empirical Results 

The approach outlined in Figure 4.1 to solve the continuous multi-Weber problem 

was implemented using the Python programming language integrating an Open 

Source GIS library, Shapelib, to process geographic data. Analysis was carried 

out on a personal computer (Mac OS X system) running a 3.06 GHz, intel Core 2 

Duo processor and 4GB, 800 MHz memory. 

To assess the performance of the proposed heuristic, two types of demand 

distributions are considered: uniform and non-uniform. The former represents the 

situation where continuous demand is uniformly distributed over a region, and the 

latter reflects the situation where demand varies across space. 
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4.6.1 Uniform Demand 

The data used here are the Census tracts shown in Figure 4.3, including two 

demand regions. The areas covered are 19.373 2km  and 2.574 2km  for Region A 

and Region B, respectively. It is assumed that the continuous demand is uniformly 

distributed over both regions, with the same initial point density, INI_D = 2point/

2km .  Specifically, equal spaced points are used in this case and can be obtained 

using available functions in GIS. Four facilities ( p =4) are sited. Termination 

criteria are based on the last five consecutive data layers. Specifically, the 

parameters are Γ = 5 and τ  = 2.   

Using the proposed solution procedure (Figure 4.1) with the above 

parameters, the best facility locations are illustrated in Figure 4.3 as green dots. 

Suppose Ω  is the set of total data layers generated in reaching convergence, then 

for solution here we have Ω  = 94. Thus, every four points in different groups in 

Figure 4.3 correspond to the facility locations derived from a data layer l , where 

Ωl . It can be seen that the four groups of facility locations are naturally 

clustered, with a few points littered around the group centers. A more detailed 

description of spatial distribution, as well as the distance between consecutive 

approximate locations of one facility group in Figure 4.3 is provided in Figure 4.4. 

The numbers in the top portion of Figure 4.4 correspond to the indices of data 

layers, l . It can be observed that the approximated facility locations for the first 

several demand layer approximations are far away from the others. The facilities 

converge as the point densities increase. 
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Figure 4.3: Solution for the study region with uniform continuous demand:           

(a) Region A and (b) Region B  
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Figure 4.4: Detailed solution information for Figure 4.3(a)   

This pattern is more apparent in the lower right portion of Figure 4.4 

showing the distance between the two facility locations obtained from layer l  and 

1l  , given Ωl  and 1l  . The longest distance between the facilities is as high 

as 430km. This value quickly declines with the increase of point densities, and 

there is much less variation among the distances when 12l  , most of which are 

within 50m. The implication is that 2 2
1 1lim ( ) ( ) 0l l l ll

X X Y Y 
    . The 

solution from the multi-Weber problem tends to be changing little and appears to 

approach the theoretical optimal solution of the continuous multi-Weber problem. 
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The distance variations for the last several layers are less than 30m, no doubt 

reasonable accuracy in practice.  

4.6.2 Varying Demand Across Space 

The second application concerns non-uniformly distributed continuous demand 

over space. This involves 55 Census tracts with varying demand. The smallest 

tract has an area 0.325 2km  and the largest area is 23.495 2km , with the study 

region covering a total area of 209.968 2km . The demand density among the tracts 

varies 224unit/ 2km  to 9493unit/ 2km  as shown in Figure 4.5(b). Figure 4.5(a) 

describes the demand using a continuous surface fitted from spatial interpolation. 

An alternative representation is using discrete points. The assumption is that 

though the demand density varies across the study region, it can be considered 

uniform within each tract as depicted in Figure 4.5(c). The reason for this is that 

no further information exists to define the demand distribution at a finer level. 

Again, the developed method in Figure 4.1 is applied after the discretization of 

continuous demand in this context. The specific parameters used are: p  = 4, 

INI_D = 1 points/ 2km ,   = 5 and   = 8. 

The solution is shown in Figure 4.6. Similar to the results in Figure 4.4, 

the best facility locations are clustered in four groups, representing the sites 

derived for each facility from all the data layers, Ω . In total 20 layers are 

generated ( Ω  = 20) before the convergence criterion is satisfied. The spatial 

distribution of the facility locations in each group is also investigated, with 

distance between consecutive locations shown in Figure 4.6. A clear convergence  
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Figure 4.5: A region with varying demand: (a) demand surface,  

(b) actual demand and (c) discrete demand point 
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pattern can be observed.  The location differences for all the four location groups 

quickly decreases to within 50m after only a few iterations, then get much smaller 

when convergence is achieved. For example, in the lower left portion of Figure 

4.6, the final distance is less than 10m, which is very accurate for actual facility 

planning.  

 

Figure 4.6: Solution for the study region with uniform continuous demand 

4.7 Discussion and Conclusions 

Continuous demand is common in regional planning that concerns siting facilities 

to provide social services for underlying demand. However, how to appropriately 

represent continuous demand in a digital environment is challenging and remains 

a key issue in facility location modeling. Traditional mathematical functions and 



87 

fitted surfaces through spatial interpolation would inevitably introduce errors and 

uncertainties to the analysis results. Based on infill asymptotic theory, this 

research developed a spatial optimization approach integrating GIS functionalities 

and optimization techniques to solve the continuous multi-Weber problem in a 

way that reduces representation error and conforms to what is actually known 

about the demand region. 

Essential here is how to represent continuous demand. It is well known 

that discrete-object and continuous-field are two primary models that are widely 

applied in GIS to represent geographic space. Though the surfaces based on the 

field view can reflect the continuous nature of the underlying demand, surfaces 

defined by mathematical functions or fitted by spatial interpolations are subject to 

significant errors. The discrete point approximation employed in this research can 

be a better option, both in terms of error minimization as well as no unrealistic 

assumptions about functional form. According to infill asymptotic theory, the 

discrete representation can be improved by increased demand point densities in 

order to approach the actual continuous distribution, which implies that the results 

derived will get closer to the theoretical optimal solution.   

The empirical applications demonstrated the consistent convergence 

patterns in both facility locations and average travel distance (Figures 4.4 and 4.6). 

Though the solution changes among different representations, this variation 

becomes negligible as demand density increases sufficiently. For example, the 

distance between the first two solution layers was as large as 430 m  but became 
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smaller as the demand density increased, ultimately less than 10 m  at solution 

convergence.  

Given the spatial nature of facility location problems, it is necessary and 

crucial to incorporate GIS into the solution process. Based on GIS functionalities, 

this chapter developed a spatial optimization approach to solve the continuous 

multi-Weber problem, addressing continuous demand representation. Results 

from empirical applications showed the effectiveness of the proposed method, and 

its general applicability to support planning and decision making processes. 
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Chapter 5 

CONCLUSIONS 

Facility location models rely on spatial representations of facilities and demand in 

geographic space, either discretely or continuously. In one respect, abstraction 

using discrete points is often employed in facility location modeling as it can 

greatly facilitate model formulation and reduce computational complexity. 

However, errors and uncertainty introduced by such simplifications are well 

recognized and could lead to significant impacts on analysis results. In another 

respect, the continuous assumption is more reasonable in many practical 

situations where facilities can be located anywhere in continuous space and/or 

demand is continuously distributed over space. The issue is that continuous 

representation presents challenges to model specification and solution. 

Of interest in this dissertation are facility location problems involving 

continuous representation, including the continuous Weber problem and the 

continuous multi-Weber problem. The former considers a single facility and the 

latter concerns siting multiple facilities simultaneously. Spatial optimization 

approaches integrating optimization techniques and GIS functionality were 

proposed for both problems. Application results were provided to demonstrate the 

effectiveness of developed methods and the significance of incorporating GIS into 

solution procedures. 
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5.1 Summary 

This dissertation investigated the extensions of the Weber problem involving 

continuous demand and multiple facilities. First in Chapter 2, the implications of 

continuous surface approximation were addressed. Approaches for representing 

geographic space in a GIS environment were reviewed. In particular, spatial 

interpolation techniques are typically used to fit continuous surfaces in GIS. In 

addition, it was presented that errors in fitted surfaces through spatial 

interpolation were inevitable regardless of the interpolation approach employed. 

The empirical results showed that such errors can impact facility location analysis 

solutions, leading to cumulative errors and uncertainty in optimal facility 

locations and objective values.  

Chapter 3 then focused on solving the continuous Weber problem. Given 

various simplified assumptions regarding the continuous demand distribution, a 

spatial representation method using discrete points was proposed built upon 

asymptotic theory, easily operationalized using GIS functionality. Discrete 

demand can provide a better approximation of underlying continuous distribution 

with increased point density, and this relaxes the demand distribution assumptions 

adopted by existing methods. Based on the proposed continuous representation 

approach, a spatial optimization heuristic was developed to solve the continuous 

Weber problem. It was applied to both uniformly and non-uniformly distributed 

demand in empirical studies. The application results showed that the facility 

locations as well as the objective values converged as the demand density 

increased, indicating the effectiveness of the developed approach. 
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Chapter 4 explored solution approaches for the continuous multi-Weber 

problem. It is more complex and difficult to solve than the continuous Weber 

problem because of the consideration of both location and allocation processes. 

Similar to the solution techniques for the continuous Weber problem, existing 

approaches addressing the multi-Weber problem largely rely on assumed 

theoretical functions describing continuous demand distribution. Mathematical 

properties of such functions then can be utilized in the solution procedure. The 

issue is that these functions are never simply known or given with certainty. 

Again, based on the spatial representation approach proposed in Chapter 3, a 

spatial optimization method was developed for solving the continuous multi-

Weber problem. That is less restrictive in terms of an assumed demand 

distribution in existing approaches. Once the demand region is partitioned into 

several sub-regions, the problem is equivalent to solving the continuous Weber 

problem for each sub-region served by a single facility. The proposed method in 

Chapter 3 can then be applied. The results from the empirical applications 

involving both uniform and non-uniform continuous demand demonstrated that 

solutions obtained using the developed approach exhibited favorable 

characteristics. Futher, the solution procedure was greatly improved by 

incorporating GIS functions. 

5.2 Future Research 

Spatial representation of geographic space is a fundamental issue in facility 

location problems. By incorporating GIS functionality, this dissertation proposed 
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spatial optimization approaches for solving the continuous Weber and multi-

Weber problems, allowing for the representation of a continuous distribution 

based on known knowledge of underlying demand. While obtained analysis 

results were satisfactory, there is still room for potential improvement. 

The spatial optimization approaches proposed in Chapter 3 and Chapter 4 

can likely be improved in three respects. First, the objectives of the continuous 

Weber and multi-Weber problems are to minimize the average distance from 

demand to facilities providing service. The distance measure used in this 

dissertation is the Euclidean norm, as employed in the Weber problem. However, 

many other distance measures also can be used in practice. For example, travel 

distance or time along the road network is often used to represent geographic 

proximity to service providers. It is apparent that future research necessarily 

account for other distance measures reflecting the spatial context under study. 

Also, in both developed heuristics, the convergence criterion is based on the last 

several objective values, calculated as the sum of differences between the last 

objective value and the preceding ones. Alternatively, convergence tests using 

statistical methods can also be potential options to assess the convergence of a 

series of objective values. Further, varying demand densities for different sub-

regions are used to reflect the spatial variation of the underlying continuous 

distribution. Such spatial variation also can be demonstrated by uniformly 

distributed points with varying weights. This situation is worth exploring in the 

future to examine the spatial bias for the analysis results of continuous location 

models.  
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The proposed spatial optimization heuristics incorporated existing 

approaches to solve the problems with discrete demand likely can also be 

enhanced. Once the continuous demand is discretized using sample points, the 

continuous Weber and multiple Weber problems are equivalent to the Weber 

problem and the multi-Weber problem, solved using Weiszfeld algorithm and 

ALTERNATE heuristic, respectively. Of course, since those two discrete 

counterparts have been extensively studied, other available solution approaches 

could be applied. 
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