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ABSTRACT

This doctoral thesis investigates the predictabditaracteristics of floods
and flash floods by coupling high resolution préeifpon products to a distributed
hydrologic model. The research hypotheses aredtesteultiple watersheds in
the Colorado Front Range (CFR) undergoing warmesepgecipitation. Rainfall
error structures are expected to propagate intootygic simulations with added
uncertainties by model parameters and initial coors. Specifically, the
following science questions are addressed: (1) Whiaie utility of Quantitative
Precipitation Estimates (QPE) for high resolutigriologic forecasts in
mountain watersheds of the CFR?, (2) How doesaiméall-reflectivity relation
determine the magnitude of errors when radar obsiens are used for flood
forecasts?, and (3) What are the spatiotemporékliof flood forecasting in
mountain basins when radar nowcasts are used oigirdouted hydrological
model?.

The methodology consists of QPE evaluations asitieg(i.e., rain gauge
location), basin-average and regional scales, arahfQative Precipitation
Forecasts (QPF) assessment through regional ggddoverification techniques
and ensemble basin-averaged time series. The porréisig hydrologic
responses that include outlet discharges, dis&ibuinoff maps, and streamflow
time series at internal channel locations, are usédht of observed and/or
reference data to diagnose the suitability of fuagirecipitation forecasts into a

distributed model operating at multiple catchments.



Results reveal that radar and multisensor QPEsttead improved
hydrologic performance compared to simulationsetriwith rain gauge data
only. In addition, hydrologic performances attaitgdsatellite products preserve
the fundamental properties of basin responsesjdimal a simple scaling relation
between the relative spatial variability of runaffd its magnitude. Overall, the
spatial variations contained in gridded QPEs addevéor warm-season flood
forecasting in mountain basins, with sparse da¢am éthose products contain
some biases. These results are encouraging anchepeavenues for forecasting
in regions with limited access and sparse obsemsti

Regional comparisons of different reflectivity -afall (Z-R) relations
during three summer seasons, illustrated significanfall variability across the
region. Consistently, hydrologic errors introddid® the distincZ-Rrelations,
are significant and proportional (in the log-logsp) to errors in precipitation
estimations and stream flow magnitude. The usmefationalZ-Rrelations
without prior calibration may lead to wrong estimatof precipitation, runoff
magnitude and increased flood forecasting errdngs Juggests that site-specific
Z-Rrelations, prior to forecasting procedures, agreble in complex terrain
regions.

Nowcasting experiments show the limits of floodefoaisting and its
dependence functions of lead time and basin s8atess the majority of the
basins, flood forecasting skill decays with leadej but the functional relation
depends on the interactions between watershed piegoand rainfall
characteristics. Both precipitation and flood f@sting skills are noticeably



reduced for lead times greater than 30 minutede®spendence of hydrologic
forecasting errors demonstrates reduced predittiabilintermediate-size basins,
the typical scale of convective storm systems. @\;ghe fusion of high
resolution radar nowcasts and the convenient ghipabilities of the
distributed hydrologic model provide an efficierdrhework for generating

accurate real-time flood forecasts suitable forrapenal environments.
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Chapter 1

INTRODUCTION

MOTIVATION

Floods, one of the deadliest natural hazards artwndorld, are known
by their rapid occurrence and subsequent limitggbdpnity for early warning
preparation. Only in the United States, duringghst 30 years, floods have
claimed on average 200 lives per year (Droegenegial. 2000; Ashley and
Ashley 2008), leaving property damages of approtemgab1.5 billion per year.
Around 75% of all U.S. presidentially declared matwlisasters involve floods
(Fread 1995). Flash-floods, typically occurringniountain basins, during warm-
season precipitation periods, are particularlyicift to predict due to their
localized occurrence and the short time basin resgthat reduce the chances to
timely and accurately issue forecasts.

Challenges in flash-flood forecasting in topography complex areas can
be divided in two types, according with the seqeenicprocesses leading to their
generation. First, the small spatial scales and $ifetimes of convective
precipitation events make them difficult to predisttheir high spatio-temporal
variability limits the preservation of correlatistructures with forecasting time
(Ganguly and Bras 2003; Sharif et al. 2004; LialeR005). Typically, the higher
potential for convective systems formation duringser, combined with the
fact that irregular topography forces atmosphdrimutation, constitute the
essential ingredients for flood-leading storm depetent (Warner et al. 2000;

Bongioannini et al. 2005; Nikanen 2008). Secohd,ihherent variability
1



imprinted by basin properties in a mountain blakk this including topography,
exposed and fractured bedrock, soil and vegetaegb@rogeneities, snow melting
processes, aquifer characteristics and antecedsat m the system (including
that of long residence times) play a determinale oo the runoff production and
the time it takes to be delivered to the channelak. Together, basin
properties can interact to add significant uncetyaio the attempts of flood
forecasting, regardless of that carried by thenmm estimation (in time and
space) of the rainfall solely.

Hydrologic science is challenged to demonstrateisignt advances
towards accurate modeling and forecasting of flamus$ flash floods by using
Quantitative Precipitation Estimates (QPE) and €asts (QPF) from multiple
sources, when fused with the new capabilities sifrithiuted hydrologic models.
Traditionally, operational river forecasts wereyobased on the precipitation
already measured on the ground (Collier and Kzytpyswicz 2000), with the
implicit assumption of zero rainfall beyond the éirof the last observation, a
dangerous supposition in the middle of a sevemenstadditionally, the use of
empirical or lumped hydrologic models limited thapacity to track evolution of
the flood wave, and the distributed potential fasf floods and associated risks
(landslides, debris flows, etc). Lumped, conceptuatiels, traditionally used in
operational settings, present advantages with cespasimplicity for aggregated
predictands such as the outlet streamflow. Howeweully utilize the
information readily available by satellite, weathadar observations and
extrapolations and Numerical Weather Prediction&/@ in a hydrological
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forecast, a need arises for more complex distrbsystems (Pessoa et al. 1993;
Garrote and Bras 1995; Arduino et al. 2005; Barttesl and Todini 2005). The
introduced complexity is compensated by the knogdeaind quantification of
different hydrologic variables (e.g. runoff, soibrsture, evapotranspiration,
groundwater table) and their spatiotemporal evotust internal and nested
locations within the watershed (Ivanov et al. 20Réed et al. 2004; Smith et al.
2004).

The use of a distributed model in flood forecastsglso justified by the
better understanding of hydrologic processes innteon areas, as physically
meaningful parameters are selected into the moaeldwork and multiple scale
processes are possible to represent with detaitd@aand Bras 1995). For
example, runoff generation and streamflow accunangtrocesses leading to
flood wave propagation are determinants of locatseptibility to floods that can
be quantified with distributed models. Additionalphysical controls on the scale
dependence relations of flood forecasting can biéittted through a distributed
approach (Mascaro et al. 2010). Thereby, differemeceesponses and model
forecasting dispersion can be explained accordirgpil, vegetation or channel
network properties. The use of distributed modelses with the representation
of the intricate characteristics of rainfall andbseiquent watershed responses. A
recent DIMP (Distributed Model Intercomparison}iaiive investigated the role
of spatial variability of landscape characteristosl of meteorological forcing on
hydrologic response (Le Lay and Saulnier 2007) uReslemonstrated that (i) the
role of rainfall spatial variability (Winchell et.dl998; Koren et al. 1999; Arnaud
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et al. 2002), initial soil moisture conditions (&eét al. 2005) and catchment
characteristics (Saulnier et al. 1997) are all @onted by threshold effects on
runoff generation, hence suggesting difficulty xtr@polate results to other
catchments (Le Lay and Saulnier 2007).

Although complex models have received criticismigithe past decades
principally due to their overparameterization (Grary et al. 2002), they provide
confidence in representing the leading physicat@sses conducting to replicate
observed predictands with accuracy. Yet, prior wiorkelecting the most
impacting parameters and initial conditions forteparticular modeling exercise
is fundamental to avoid unnecessary complexitissaAesult, burdening of the
model by multiple parameterizations can be redulezligh prior simplification
of its degrees of freedom but preserving spatioteaistructures of hydrologic
response. Further reduction in computational denmattained in a continuous
forecasting environment, where distributed modelsidt require calibration of
its initial condition since tracking of vadose aaturated zones is maintained in
time.

In the forecasting chain, uncertainties are usiglfyplied by several
sources including the rainfall estimates and fostechut also by hydrologic
models through their difficulty in representing essthed conditions, a
challenging task in mountain basins (Zappa et@02 When radar data are used
for short term predictions, QPE using reflectivityservations have been found to
introduce significant amount of uncertainty (Habttal. 2008; Schroter et al.
2011). Some of the reasons that produce those taird@érs include both technical

4



and atmospheric difficulties such as the radar lag@muation, anomalous
propagation, beam blockage, ground clutter, haitamination, spurious returns
and the inappropriate use of a reflectivity-raihfalation. The last has been
found to be crucial in obtaining correct represgataof the rainfall fields (Pessoa
et al. 1993; Baek and Smith 1998; Habib et al. 2008 the other hand, QPF
might carry additional uncertainties as they argeldeon readily available QPE
and the correlation structures between QPF and t@Q#PBveak for large lead
times. Further sources of uncertainty in hydrolagmdeling are provided by the
model structure, model parameter values, and limitiadition. Quantification of
hydrologic uncertainty and partitioning of its cooments remain a challenging
task. Model structural uncertainties, for exampla not be easily distinguished
from parameter and initial condition errors, unlassther calibrated model is
available at the moment of an intercomparison egeré&inally, further
limitations in ground data availability (e.g. rand stream gauges), that are
commonly few and sparse in areas of evident contglempose serious
constraints in terms of the calibration and valwlabf actual precipitation fields
and hydrologic responses. Thus, lack of good gugtibund information can
result in decreased hydrologic performance.

The Front Region in Colorado is an ideal settingttaly the origin and
development of flood events due to the availabdityhydro-meteorological
information, the sampling of a broad range of laage characteristics and the
presence of convective storm events during the samseason. In the past, this
region has experienced several major flash floadsiag fatalities and losses
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over 4 billion dollars present money (Peterser.et39; Chen et al. 2001). The
presence of recurrent flooding events in these ¢exgnvironments encourage
the coupling of precipitation predictions to distried hydrologic forecasts. The
Triangulated Irregular Network (TIN)-based Realdiintegrated Basin
Simulator (tRIBS) is adopted as a hydrologic veation tool. The model
explicitly accounts for spatial variations in topaghy, land surface
characteristics and channel network structure,edsag spatiotemporal
meteorological forcing (lvanov et al. 2004, Vivatial. 2007a).

The work developed here intends to fill voids ie firesent and future of
operational flood forecasting chain when both Qs QPFs are fully utilized,
accounting for the introduced uncertainties and f®pagation from the rainfall
estimation to the simulated hydrological respohsé¢he following paragraphs a

brief description of the dissertation chaptersrisved.

OUTLINE OF CHAPTERS 2-5

Chapter 2 provides an initial examination to thkigaof current high
resolution QPEs (hourly, 4-km) in four study basifishe CFR using a calibrated
distributed hydrologic model as verification tolshprovements in flood
predictions are expected as the quality of radattisensor and satellite
observations improves. To evaluate QPE skill, wagare the precipitation
properties at the site (i.e., rain gauge locatibakin-average and regional scales
and evaluate their influence on the simulated basponse, including the outlet
discharge, runoff mechanisms and seasonal watent®l We also analyze the

value of gridded QPEs with respect to uniform fogcderived from rain gauges.
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We find that radar and multisensor QPEs lead taawgd hydrologic model
performance compared to simulations driven with gauge data only with
respect to the observed streamflow. Satellite Q#dBghit lower overall
streamflow simulation skill compared with estimadesived from radar-based
QPEs, but are preferable to assuming uniform fgréiom nearby rain gauges in
the mountain settings studied here. One demormtrafithis is the fact that
satellite QPEs preserve the fundamental propesfidse basin response,
including a simple scaling relation between thatreé spatial variability of
runoff and its magnitude. As a result, satelliteEQitoducts open new avenues
for forecasting in regions with limited access apdrse observations.

In chapter 3, we outline the importance of usingppropriateZ-R
relation that translates radar reflectivity intinfall intensities, prior to
developing regional QPF intended to be used imidiged hydrologic models to
predict floods and flash floods. Nonetheless, taggy remains in the use of the
reflectivity-rainfall Z-R) relation, in particular for mountainous regionisere
ground validation stations are often lacking, landace datasets are inaccurate
and the spatial variability in many features ishhig/e assess the propagation of
rainfall errors introduced by differedtR relations on distributed hydrologic
model performance for four mountain basins in tiéo€do Front Range. To do
so, we compare spatially-integrated and distribudéafall and runoff metrics at
seasonal and event time scales during the warnois@asen convective storms
dominate. Results reveal that the basin simulatiwagjuite sensitive to the
uncertainties introduced by t@eR relation in terms of streamflow, runoff
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mechanisms and the water balance components. dpagation of rainfall errors
into basin responses follow power law relationstinzg link streamflow
uncertainty to the precipitation errors and strédamimagnitude. Overall,
differentZ-Rrelations preserve the spatial distribution offall relative to a
reference case, but not the precipitation magnjttides leading to large changes
in streamflow amounts and runoff spatial pattetrseasonal and event scales.
Furthermore, streamflow errors from theR relation follow a typical pattern that
varies with catchment scale where higher uncerésmxist for intermediate-
sized basins. The relatively high error valuesoeticed by two operationZtR
relations (WSR-57 and NEXRAD) in terms of the stnlaw response indicate
that site-specifiZ-Rrelations are desirable in this complex terragiaoe,
particularly in light of other uncertainties in thedeling process, such as model
parameter values and initial conditions.

Chapter 4 is dedicated to investigate the predidiabharacteristics of
floods and flash floods using quantitative preeipin forecasts from radar
nowcasts when used for distributed hydrologic pigals, at eleven mountain
watersheds undergoing warm-season precipitatioa.efiects of lead time,
rainfall distribution and basin area on the floodetasting skill are quantified by
means of regional grid-to-grid verification anadiydrologic integrated and
distributed responses and the identification ofdgipatterns in the predictability
and error dispersion functions during two signific§torms in 2004 and 2006.
We find that flood forecasting skill decreases viéhad time but functional
relationships depend on the interactions betwedaralzed properties (soils,
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topography, and vegetation) and rainfall charasties. Across the majority of
basins, flood forecasting skill reduces noticedbfylead times greater than 30
minutes. Error structures introduced by rainfaligm#éude and spatial distribution
characteristics propagate into streamflow foreaasertainties in a manner that is
controlled by changes in local runoff productioatthnd their most critical point
at intermediate-sized scales. The effect of modedieter uncertainties during
an independent validation is tested and found tsidp@ficant (on the same order
of magnitude) when compared to the hydrologic uadeaties introduced by
forecasted rainfall.

Chapter 5 presents general conclusions of the giregehapters and
provides insight into future directions. Chapte @orrespond to either
published, submitted or in preparation articles sehtitles and authors appear
below:

Chapter 2: Moreno, H.A., Vivoni, E.R., Gochis, R012a. Utility of
guantitative precipitation estimates for high resioh hydrologic forecasts in
mountain watersheds of the Colorado Front Rahgeydrol.438-439, 66-83.

Chapter 3: Moreno, H.A., Vivoni, E.R., Gochis, D2012b. Propagation
of errors from the reflectivity-rainfall relatiomto simulated streamflows in
mountain watersheds during summer convectityarol Process.(revisions after
submission).

Chapter 4: Moreno, H.A., Vivoni, E.R., Gochis, D2012c.

Spatiotemporal limits to flood forecasting in maaintcatchments under summer



convection using radar nowcasting and a distribbiggttologic modelJ.
Hydrometeorol.(in preparation).

The unifying theme of the dissertation circumscsibedistributed
hydrologic modeling for flood forecasting duringnsmer convection in mountain
regions. The thesis expands the current body oiviedge with the following
novelties: (1) A methodology to evaluate differ@RE in multiple mountain
basins by using both direct comparisons with raiagges and hydrologic
verifications through observed streamflows. (2)rAgedure for deriving the
reflectivity rainfall relation from ground rain gges and its verification through
hydrologic measurements in multiple catchmentss Enicourages the testing of
the radar-rainfall conversion expressions befoeein® the operational
forecasting chain. (3) The use of radar nowcag#rgniques coupled to a
distributed hydrologic model to explore the boumekof flood forecasting
prediction in multiple catchments. Results discdgeehis thesis remark the need
for the use of distributed forcing in distributeddels for flash flood warning
procedures. This promising alternative provides matationally efficient and
accurate forecasts of the spatio-temporal strustofeainfall and runoff in areas
where watershed and rainfall complexities challethgepower of current

prediction systems.
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Chapter 2
UTILITY OF QUANTITATIVE PRECIPITATION ESTIMATES FORHIGH
RESOLUTION HYDROLOGIC FORECASTS IN MOUNTAIN

WATERSHEDS OF THE COLORADO FRONT RANGE

INTRODUCTION

Evaluations of Quantitative Precipitation Estimai@®PEs) from weather
radar or satellite retrievals are typically perfedrthrough comparisons to rain
gauges at individual sites or over regional scddespite progress in the
development and use of remotely-sensed QPE progtuctsnplex terrain
regions, significant uncertainties still exist (e gangl et al. 2008; Germann et al.
2009). One promising alternative for QPE evaluatfomountain settings is
through the use of calibrated hydrologic modelsagfication tools (e.g.,
Gourley and Vieux 2005; Vivoni et al. 2007b). Thppeaal of hydrologic
verification lies in the relative availability ofreamflow data in mountain regions
which are collected for flash flood alerts and watgpply estimates. The spatially
and temporally integrating characteristics of wstterds serve to organize or
filter’ precipitation events from a measurementgmective. Both real watersheds
and distributed model representations of thes¢haresensitive to the timing,
intensity and geographic details of the precipiafiorcing (e.g., Carpenter and
Georgakakos 2004; Vivoni et al. 2006; Collier 2007)

Most QPE products have origins in radar reflegfivitnfrared and passive
microwave satellite data, and multisensor algorglmmmbining these sources.

Historically, rain gauges have been the primaradaturce, but these only
11



provide a point measurement of a distributed inpgather radars offer a high
spatial coverage and resolution, but include aetaof errors, (e.g., beam
attenuation, mixed-phase hydrometeor effects,iteblackage), especially during
warm-season convection in mountainous areas (Dedtial. 2000; Grassotti et
al. 2003; Lee and Zawaski 2005; Morin et al. 200&bib et al. 2008). Satellite-
based estimates are a complementary approachabetweaker relations
between the observed radiances and rainfall r&esfield and Kuligowski 2003;
Sapiano and Arkin 2009; Gochis et al. 2009; Yutelle2011). Multisensor
estimates combine data sources through numerid¢auistic algorithms (Fulton
et al. 1998; Seo et al. 1999; Young et al. 200@; etial. 2005). Despite their
promise, the underlying accuracy is tied to thegprtoes of each product, inter-
platform consistency and the particular algoritheedi(Wang et al. 2008). Thus,
inherent shortcomings of different QPE products diflectly influence the
rainfall errors in mountainous landscapes wheratsuiial rainfall variability is
present (Menabde et al. 1996; Kang and Ramirez;2087g| et al. 2008).
Previous studies have evaluated QPE products edhect to rain gauges
and hydrologic data at the basin scale. For exangmerley and Vieux (2005)
found that modeled streamflows using rain gauga dat not provide sufficient
coverage for an accurate hydrologic simulationa@e the use of sparse rainfall
data may lead to significant differences in rurfiduction and the integrated
basin response as compared to spatially-varyindymts (e.g., Yilmaz et al.
2005). To alleviate this issue, rain gauges haes lsed to correct biases in
distributed QPEs from other platforms, yielding noyeed simulations (Fulton et
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al. 1998; Gourley and Vieux 2005; Tobin and Ben6€9). These results have
shown that hydrologic models also help to elucidagemechanisms through
which a watershed responds to each type of QPntprc

Questions remain with respect to the use of hydiolmodels as tools for
QPE verification. Prior studies have focused omasneith high rain gauge
coverage relative to the storm spatial scale. Gandhogic models be used to
verify QPEs in sparsely-gauged, mountain areas? thoerrors from different
QPEs propagate to the simulated basin response®PiS\tha value of satellite-
based products in distributed hydrologic modelatiet to mountain rain gauges?
To address these questions, we selected the Coléradt Range (CFR) in
Colorado, USA, due to its physiographic complesit\arm-season convective
storms and their associated flood and flash fleaehhds, and the presence of
reasonably high quality NEXRAD radar data coveradyje.compare ten high-
resolution (4-km, hourly) QPEs in four mountainibaganging from 35 to 350
km? in area during the 2004 summer season that wasident with the North
American Monsoon Experiment (NAME; Higgins and Gisc2007).

To evaluate the QPE products, we analyze the spatporal variability
in precipitation at the local, basin and regiorwalles, and compare these to
available rain gauges using several statisticafiosetSubsequently, we assess the
QPE products through hydrological verification gsandistributed hydrologic
model, the Triangulated Irregular Network (TIN)-bd®Real-time Integrated
Basin Simulator (tRIBS), at each watershed. Theeahexrplicitly accounts for
spatial variations in watershed characteristicsraateorological forcing as well
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as represents the hydrological dynamics at intdataltions (lvanov et al. 2004;

Vivoni et al. 2007a).

METHODS

Study Area and Water sheds

The CFR is characterized by varied topography, taigs, soils, and
convective storms during the summer. Several nfigeh floods have taken place
in the region. For example, an event on 28 July71&%Spring Creek in Fort
Collins, CO, caused five fatalities and losses @@ million dollars (Petersen et
al. 1999). Thus, societal impacts associated Wotbds provide a compelling
motivation for improving hydrologic forecasts. Welideated eleven basins in the
CFR region upstream of stream gauging stationsabge by the Colorado
Division of Water Resources (CDWR; Figure 2.1). Folithese were selected for
hydrologic verification: Buckhorn Creek (BUCK, 3&f?), Fish Creek (FISH, 41
km?), Ralston Creek (RALS, 117 Knand South Saint Vrain River (SVRAIN, 35
km?). This selection was based on the availabilityairi gauge data, and the
sampling of a range of landscape properties alomgyth-to-south gradient.
Figure 2.2 shows the distributions of vegetatiailsselevation and hydrography
in each basin. Hourly weather stations recordingdvépeed, pressure, and air and
dew point temperatures are also collocated witifdherain gauges. As in other
applications, the extrapolation of station datardkie basins likely contributes to

uncertainty in the meteorological forcing.
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Figure 2.1. Colorado Front Range (CFR) location, elevationritiigtion and
boundaries of eleven study watersheds. Four basinselected for this study:
Buckhorn Creek (BUCK), Fish Creek (FISH), Southn®afrain Creek
(SVRAIN) and Ralston Creek (RALS). Four hourly rgi@muge and weather
stations are shown: RSOC2, ESPC2, LTER and PKLC2.

The set of mountain catchments are characterizgutdyyounced elevation

gradients with generally east-facing aspects, maualeys, and dendritic channel

networks. There is a prevalence of sandy loam, laathexposed bedrock as the

main soil types, and forests and grasslands agaimenant land cover. Table 2.1

summarizes the major characteristics of the fosmsa

Quantitative Precipitation Estimates

We compiled rain gauge, weather radar, satelliteranltisensor rainfall

estimates from multiple sources.
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Figure 2.2. Spatial distributions of elevation contours, hygtaphy, vegetation
and soil classes in the four study basins. Raiggaweather and stream gauge
stations are also shown.

Table 2.2 presents the characteristics and soofdbe precipitation
datasets, which include ten QPE products (Leveéthge Ill, Stage IV, A-E, H-E,
H-Erad, GMSRA1, GMSRAZ2, Blend, PERSIANN) and foamrgauges
(RSOC2, ESPC2, LTER, PKLC2). These were selecteddan data availability

in summer 2004 and a reasonably high spatiotempesalution (4-km, 1-hr).
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Table 2.1 Topographic, soil and vegetation characteristichefstudy

watersheds.
Propert Buckhorn Fish South Saint Ralston
perty Creek Creek Vrain Creek Creek
ID BUCK FISH SVRAIN RALS
Stream Gauge ID BUCRMVCO FISHESCO SSVWARCO RALCRKCO
Rain Gauge Name RSOC2 ESPC2 LTER PKLC2
Total Area[km?] 350.5 40.8 35.1 117.3
Length of main
channel [km] 45.6 9.7 12.6 25.8
Slope of main
channel [m/km] 26.2 70.5 42.3 32.1
Mean elevation [m] 2418 2858 3455 2517
Minimum/maximum — ; 5g5/356g 2284/3473 2858/4087 1847/3204
elevations[m]
Std. Elevation [m] 482 333 344 387
Mean slope [%] 28.0 28.2 30.0 29.2
Std. Slope [%] 16.3 19.9 26.7 17.9
Major soil class 1 Sandy loam Sandy loam Sandy loam Loam
(% areaq) (74.6) (86.7) (44.1) (45.5)
Major soil class 2 Loam Bedrock Loam Sandy Loam
(% area) (21.2) (6.9) (30.6) (34.4)
Major soil class3 Bedrock Loam Bedrock Loamy sand
(% area) (3.1) (4.6) (25.2) (13.0)
Major vegetation
class 1 (% area) Forest (70.4) Forest (76.2) Forest (43.1) Forest (77.8)
Major vegetation Grassland Shrubland Grassland Grassland
class2 (% area) (27) (13.8) (22) (14.6)
Major vegetation Agriculture Grassland Shrubland Shrubland
class3 (% area) (1.4 (5.1) (19.4) (7.1)

For PERSIANN, rainfall depths were aggregatedrimetirom 30-min to

1-hr intervals. Data gaps of hourly rain gauge @iatan May through September

(MJJAS) accounted for less than 3% of the pericallioases. Neighboring

hourly stations were used to estimate missing dRedar reflectivity data was

obtained from a mosaic of the WSR-88D Level Il ‘NEXD’ radars at Denver,

CO (KFTG), Pueblo, CO (KPUX) and Cheyenne, WY (KGYs8er minimum

and maximum volume scan altitudes of 3-km and 6+laspectively.
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Table 2.2 Summary of main characteristics of rain gauge, nadatellite and
multisensor QPEs.

Data Set Type Full Name Brief description References
RedSF‘,g’:E’ Estes Steenburgh
RSOC2, Long Term Hourly rain gauges from 2003;
ESPC2, . . Horel et al.
LTER Rain gauge Ecological Mesowest and 2002:
i Research Site at AMERIFLUX networks ’
PKLC2 . : Lazarus et al.
Niwot Peak, Pickle
2002.
Gulch
NWS WSR-88D
Level 11 Radar Level Il at 1-km NWS Doppler Radar  Kelleher et al.
Network 2007.
and 4-km
Young et al.
Mult!sgns_or Mosaicked radar scans and .2000;
. Precipitation : . Xie et al.
Stagelll Multisensor . mean field bias )
Estimator adiustment 2005;
NEXRAD Stage Il ) ' Wang et al.
2008.
Multisensor Fulton et al
Precipitation National mosaicked o
. . 1998;
StagelV Multisensor Estimator product from hourly .
. o Mitchell et al.
NEXRAD Stage  multisensor precipitation.
IV 2004.
Brightness temperatures
. . from GOES Infrared Vicente et al.
AE Satellite Auto-Estimator (IR). Radar screening of 1998, 2002.
no-rain pixels.
Brightness temperatures
from GOES IR
Hydro-Est!mator modulated by c_I_oud Scofield and
. Hydro-Estimator evolution, stability, . .
H-E, H-Erad Satellite . i . Kuligoswki
with radar atmospheric moisture.
: 2003.
screening Radar and local
topography used to adjust
rates.
Combined information
GOES T atrements with
GMSRAL Satellite Multispectral two different algorithms Ba and Gruber
GMSRA2 Rainfall for analvzin b?i hoss 2001,
Algorithms V1, V2 yzIng brig
temperatures for day and
night time.
Naval Research Histogram-matching Turk and
Blend Satellite Laboratory calibration of IR to .
. ; Miller 2005.
Blended Technique  merged microwave.
P_r ecipitation Adaptive Neural Hong et al.
Estimation From . ) )
_ Remotely Sensed Network calibration of 2004;
PERSIANN Satellite ; ; GOESS and TRMM Hong et al.
Information using ,
e using a cloud 2007.
Artificial Neural

Networks classification system.
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Reflectivity values were transformed to 5-min, 1-kasolution rainfall
rates by applying Z-Rrelation and accumulating to hourly depths (Leyel I
1-km product). The rainfall-reflectivity coefficieand exponent, Z = 708R
were obtained from a multi-criteria optimizationtmed that minimized the Root
Mean Square Error (RMSE) and maximized the CritRatcess Index (CSI)
between the observed time series at seven houmlygaages and the radar
estimates at collocated pixels (Moreno et al. 201Pbe Level 1l 1-km product
was aggregated to 4-km resolution for comparisaatellite QPEs, which
include several algorithms that derive rainfalesatrom infrared cloud top
temperature and were resampled to 4-km, hourlfugso (Table 2.2). Two of
the products (Stage lll, Stage 1V) are classifisaraltisensor precipitation

estimates.

Distributed Hydrologic Modeling
Model Overview

In this study, we apply tRIBS for continuous flolmilecasting using
precipitation from multiple sources. Prior studiesre demonstrated effective use
of the model for flood forecasting in basins wiiffatent characteristics (lvanov
et al. 2004; Vivoni et al. 2007b; Mascaro et all@Q including mountain areas
(Mahmood and Vivoni 2008; Vivoni et al. 2009; Nikpbulus et al. 2011). The
model accounts for spatial heterogeneities in itgrkeegetation and soil
properties, and atmospheric forcing to reproduessiface-time hydrologic
evolution of a basin. Simulations of the coupledate-subsurface response are

performed by tracking infiltration fronts, watebta fluctuations and lateral
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moisture fluxes. Surface runoff is triggered thriougfiltration-excess, saturation-
excess, perched return flow and groundwater exffittn mechanisms, while
routing is performed through hydrologic overlanaifland hydraulic channel
routing. Evapotranspiration consists of soil evagion, plant transpiration and
evaporation of intercepted rainfall. An importarael characteristic is the use of
a TIN to represent a basin and reduce the numbssroputational nodes relative
to the original data with minimal loss of informati (Vivoni et al. 2004).
Computational time savings in this study are furthehieved through a parallel
computing approach based on sub-basin partitioantjthe use of a high
performance computing (HPC) platform. The modektpsses, computational
framework and parallelization capabilities are give full detail in lvanov et al.
(2004) and Vivoni et al. (2011).
Model Parameters

As a distributed-parameter model, tRIBS requirediafly-varying input
fields including topography, soils, vegetation, aogifer characteristics. We
obtained a 30-m Digital Elevation Model (DEM) fraire National Elevation
Dataset (Gesch et al. 2002) for the CFR regionevghed delineation was based
on creating depressionless DEMs, deriving the amerflow directions along the
steepest paths, and computing the upslope areaslabutlet. Channel networks
were delineated from constant-area thresholds taseldssify DEM points as
stream cells (e.g., O’Callaghan and Mark 1984; dtmb et al. 1991). For each
study basin, a TIN was generated by minimizingrthmber of computational
nodes and the Root Mean Squared Error (RMSE) vel#di the original DEM
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following the methods of Vivoni et al. (2004). Thiessulted in an optimum
horizontal point density (d m/ng, wheren, is the number of TIN nodes anglis
the number of DEM cells) of: BUCKI(= 0.47,n; = 122,050 nodes), FISHI &€
0.27,n; = 22,231 nodes), SVRAINI(= 0.46,n; = 19,672 nodes), and RALS £
0.43,n; = 52,231 nodes). As shown by Vivoni et al. (20@H¢, TINS preserve
terrain characteristics, the channel network stimecand the basin boundary.
Voronoi polygons are constructed from the derivéldsTand used as the finite-
volume domain for mass balance and flux computation

Soil texture maps were derived from the Soil Sur@&pgraphic
(SSURGO) database at 1:24,000 scale, with gaps fill the State Soil
Geographic (STATSGO) database at a scale of 1:480Nost soils in the CFR
region are sandy loam, loam and exposed bedrod#e Pal and Figure 2.2
provide details on the major soil classes for esally basin. Soil texture is used
in tRIBS to derive the soil parameters listed itbl€a2.3, including soil hydraulic
and thermal properties. As an example, feasiblgasuof reference (or
uncalibrated) soil parameter values are provideddndy loam in Table 2.3.
Hydraulic characteristics of the underlying aquiee described by the depth
variation of soil properties, particularly throutite ratio of horizontal to vertical
hydraulic conductivities (anisotropie;), the hydraulic conductivity decay
parameterf§ and the depth to bedrocR)( To avoid model overparameterization,
soil classes such as unweathered and weathereackeaird stones were grouped
into a single class. Similarly, soils classifiedstightly decomposed plant
material were grouped into the dominant sandy lokass.
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Table 2.3 Soll (*), vegetation (+), routing (%) and aquiféy) (parameters in the
tRIBS model with minimum, reference and maximumuesl for sandy loam and
forest classes.

Par ameter Units Symbol Min. Ref. Max.
Sat. hydraulic conductivity* [mm/h] Ks 0.36 10.9 36
Soil moisture at satur ation* [-] o 0.271 0.412 0.608
Residual soil moisture* [-] g 0.024 0.041 0.106
Por e size distribution index* [-] Ao 0.14 0.378 2.0
Air entry bubbling pressure* [mm] 17/ -454.7 -146.6 0
Conductivity exponent decay* [-] f 0.00035 0.008758 0.05
Sat. and unsat. anisotropy ratios* [-] a 1 223 1000
Por osity* [-] n 0.351 0.453 0.611
Thermal conductivity* [ImisiK? Ks 0.825 1.65 2.475
Volumetric heat capacity* [ImPKY Cs 1360715 2721430 4082145
Freethroughfall coefficient+ [-] p 0.15 0.25 0.65
Canopy field capacity+ [mm] S 0.525 1.05 1.575
Canopy drainagerate coefficient+ [-] K 0.1 0.12 0.25
Canopy drainagerate exponent+ [-] b2 3.2 3.7 4.3
Albedo+ [-] a 0.102 0.205 0.307
Vegetation height+ [m] H, 14 20 35
Optical transmission coefficient+ [-] K 0.15 0.3 0.45
Canopy ave. stomatal resistance+ [s/m] rs 87.5 175 262.5
Vegetation fraction+ [-] \% 0.5 0.7 0.8
M anning coefficient% [-] Ne 0.03 0.04 0.07
Kinematic routing velocity coeff.% [-] C, 125 25 37
Non-linear discharge exponent% [ r 0.2 0.4 0.45
Channel width coefficient% [-] ag 0.568 1.1357 1.7036
Channel width exponent% [-] bg 0.2273 0.4546 0.6819
Bedrock depth” [m] B 0.25 2 3

In a similar fashion, vegetation maps were obtaineah the USGS
National Land Cover Dataset (Homer et al. 2004 miD@ant vegetation types in

the basins are forests and grasslands, followesiraller fractions of glaciated
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terrains, agricultural and urban areas (see Tafilard Figure 2.2 for details).
Both deciduous and evergreen forests were groupedisingle forest class.
Vegetation types are used in the model to derivdathinterception and
evapotranspiration parameters. As an example, TaBlpresents reference
vegetation parameter values for a forest covet.&hol vegetation classes are
mapped directly to Voronoi polygons (lvanov etZl04) and are associated with
an attribute table with the corresponding paramsaised in the energy and mass
continuity equations. To avoid the potential fordaboverparameterization,
parameter values are not allowed to vary withith @od vegetation classes, only
between classes.

Model parameterization also includes aquifer anding properties. A
range of spatially-uniform bedrock depths in thiéedent basins was inferred
from seven soil catenas constructed by Birkelarad. ¢2003) along a transect in
the CFR. Parental rocks are broadly uniform witthicontents of feldspar,
guartz, biotite and hornblende. The mean deptletisdrk determines the aquifer
thickness and thereby the amount of water thabeastored and moved through
the subsurface (Ilvanov et al. 2004). Routing pataraecontrol runoff through
hillslope flow paths and the stream network. Chanmeghness and hillslope
routing parameters were obtained from prior stufiqow 1959; lvanov et al.
2004), while a geomorphic relation between chamnéth (win m) and
contributing areaA in kn) was derived from field measurements taken by the

CDWR from 2003 through 2008 at the eleven basiosvehn Figure 2.1,
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resulting inw =1.14A%* (http://www.dwr.state.co.us). Table 2.3 reportetof
reference routing parameters.
Model I nitialization

As in most surface-subsurface models, tRIBS requreinitial condition
determined by the spatial distribution of soil watentent. Lacking direct
observations, the initial soil moisture can beiirdd from the depth to
groundwater table due to the assumption of hydtiestguilibrium (Ivanov et al.
2004). Following Vivoni et al. (2007a), we conduteedrainage experiment for
each basin to derive a rating curve linking simedabasin outlet dischargeQy)
to model-based estimates of the spatial mean degtoundwaterN,:). The
experiments start with a fully-saturated basin thailowed to drain for a long
period (~10 years) without any weather forcing, iegdo hydrographs that are
controlled by geomorphology, channel geometry amidosoperties (e.g., Vivoni
et al. 2008). A maximum expected depth to bedrd&km was used to provide a
wide range of initialization cases. Feasible saesg0 per basin from dry to
wet) for the initialN,: were extracted from the rating curve through theukated
Qv that correspond to percentiles of the exceederatgpility of the observed
discharge at each stream gauge for summers 2QIB& Using the exceedence
probability of observed discharge provides realistreamflow values that are
uniquely related to spatially distributed groundsvatepths. Figure 2.3a

illustrates the groundwater rating curves for iar foasins.
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Figure 2.3. Selection of initial condition for calibration bfdrologic model. (a)
Discharge rating curves from drainage experimenBl K, FISH, SVRAIN

and RALS. Symbols illustrate the dry, intermediatel wet cases derived from
percentiles from historic flow duration curvégy is the mean groundwater table
depth below the surface, a@d is outlet baseflow discharge. (b) Observed (solid
line) and uncertainty envelope (shaded area) ofithelated hydrographs at
FISH along with the mean areal precipitation (MABpatial distribution of the
initial depth to groundwater as dictated by thedfg), (d) intermediate and (e) wet
cases for FISH.

Percentiles at 0.05, 50 and 99.5% are shown t@sept three possible
initial scenarios: dry, intermediate and wet. FIBH, these initial), states
correspond to maps of groundwater depth shownguarEi2.3c-e. Based on the
sampling of the initial conditions, we conductedlpninary runs for FISH using
reference (uncalibrated) parameter values (TaBlef@ uniform sandy loam

soils, and found the uncertainty envelope in FiguBb.The wide spread in the
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discharge indicates that the initialization shdaddconsidered in the calibration
approach, as described in the following. As we @aetl snow processes in the
simulations (Rinehart et al. 2008), their impactstnreamflow in SVRAIN was
handled by a higher basin water storage in thetlanitial condition. Thus, the
aquifer is expected to slowly release water inshitan that mimics the summer
snowmelt contribution.
Calibration Strategy

Identifying a set of reasonable initial conditicarsd parameter values in
the CFR basins is challenging due to the complekdiggic processes in the
region. Our approach combines the advantages ofiahand automatic
procedures by first evaluating the importance cheaodel parameter in a One-
At-a-Time (OAT) sensitivity analysis, followed by @ptimization method using
the Shuffled Complex Evolution (SCE) algorithm (Dt al. 1993). OAT
analyses were carried out in FISH and RALS usiradialby-uniform classes that
represented dominant soil and vegetation typessd basins were selected to
represent summer conditions without a major snowomhponent, as observed
at SVRAIN, to reduce parameter dependence on theraelt period. Soil,
vegetation and routing parameters were varied withinges found in the
literature (Chow 1959; Bear 1972; Rutter et al. ZL%awls et al. 1982;
Shuttleworth 1988; Birkeland et al. 2003; lvanowakt2004; Mitchell et al. 2004,
Todd and Mays 2005), although estimated guessesgreliminary model runs
were incorporated to improve those ranges whemigelil number of values were
available from other studies (e.g., conductivitgaleexponent). OAT results
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indicated that the outlet streamflow response weasrolled by: air entry bubbling
pressure ¢4), non-linear hillslope discharge exponent pore size distribution
index (o), soil moisture at saturatiolj, hydraulic conductivity decay)(
saturated hydraulic conductivitiK{) and depth to bedrocB). These results are
considered relevant for all study basins duringstinamer season, but might vary
for other locations, time periods or target obseovs. The seven parameters
resulting from the OAT analysis were subsequergbdufor model calibration.
Based on the selected model parameters and icatalitions, the SCE
method was used to minimize the RMSE between teergbd and simulated
hydrographs. Initial groundwater distributions fr¢ine drainage experiments
were included in the automated optimization. Thepeeters identified in the
OAT analyses and the initial conditions constitutesl search space for the
optimization routine. The SCE algorithm combines fiatures of multiple
complex shuffling and competitive evolution, leagiio an efficient exploration
of the feasible parameter space. The model caloratas based on the hourly
Level Il 1-km product obtained from tlZeR relation derived using rain gauge
measurements, as this constituted one of the bagtble products in the region.
Level Il 1-km has the highest spatiotemporal resmfuover CFR (5-min, 1-km)
and was adjusted to replicate time series at semmauges. Naturally, the Level
Il 1-km forcing itself may contain estimation ersatue to issues of mountain
beam blockage and hail contamination as well asi@ioties in th&-R relation,
among others. Comparisons between observed anthsgdwutlet streamflows

may also vary due to uncertainties in the obsesuaatthemselves. Minor gaps in
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the observed streamflow at FISH (2% of the fullorely, SVRAIN (2.9%) and
RALS (1.4%) were filled in using simple interpotaii Measured hydrographs are
based on discharge-stage relations with poterdtahation errors caused by
channel geometry changes, overbank storage aneaaystiow (Herschy 1995).
Figure 2.4 presents the observed hydrographs ansirtiulations derived
from the calibration exercise for each basin alaith RMSEand Nash-Sutcliffe
efficiency (NS scores. A subset of model parameter values nammthe
RMSEbetween observed and simulated hydrographs avensinoTable 2.4 and
correspond to the ‘modeled’ series. Note that treamflow response varies
considerably in time and among each basin, refigdtie nature of the
meteorological forcing, landscape properties aedrtftial conditions. The
distributed model is able to capture the differ@sponses fairly well witRMSE
ranging from 0.09 fits to 0.66 n¥s. Calibrated parameter values and initial water
table depths presented in Table 2.4 are not the sanoss all basins but they fall
within realistic ranges. Certainly, parameters ewdegrees of freedom to
compensate for model errors in a manner that difi@reach basin. To consider
the uncertainty introduced by the calibration pescd-igure 2.4 also presents an
envelope of the top 10% of the tested parametesriséérms oRMSE In most
cases, the observed streamflow lies within the iaitgy envelope. Notice that
the model is unable to reproduce the high basefioc8VRAIN due to snowmelt,

as verified from a Landsat image on June 2004<ghotvn).
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Figure 2.4. Observed (black lines) and simulated hydrograplask(gray lines)
resulting from model calibration in each basin,nglavith NS and RMSE skill
scores. Mean areal precipitation (MAP) in eachrb&siderived from the hourly,
1-km Level II product. Uncertainty in parameterued and initial conditions is
depicted by the light gray envelopes.

The remaining discrepancies can be explained byehstdictural error
and the uncertainties introduced through precipitaforcing and streamflow
data. Note that this effort considered each compésin independently and

calibrated the model for the entire summer basefmmng from small-scale

convective precipitation systems (Yates et al. 2@@&hley and Ashley 2008).

Parallel Model Experiments

Efficient fully-distributed modeling is achieved this study through the
use of a High Performance Computing (HPC) facaityArizona State University.
The parallel capabilities of tRIBS are based oomain decomposition using a
sub-basin partitioning of each watershed (VivoraleR011). Individual sub-
basins are assigned to computer processors thiaamgye surface and subsurface

fluxes along the channel network and across adiagenndwater boundaries.
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Table 2.4. Summary of calibrated parameter values and ircoaditions.z(Nw)
is the mean depth to the groundwater table in bas.

Par ameter BUCK FISH SVRAIN RALS
Sandy Loam Sandy Bedrock Sandy Loam Loam Sandy
loam loam loam loam
Ks[mm/h] 7.96 30.29 17.18 2.04 8.16 22.38 25.76 18.64
al-] 0.32 0.37 0.35 0.07 0.57 0.56 0.52 0.58
Ao[-] 0.81 1.46 1.47 0.06 1.48 0.58 1.67 1.19
¢ [mm] -244.22 -704.46 -84.36 -221.89 -21.71 -804.97 3B5. -324.37

f[mm?]  0.033364 0.025288 0.00222 0.03063 0.000364 0.0009%636551 0.008452

r 0.4459 0.4491 0.4074 0.4340
B [m] 1.26 1.05 2.84 1.66
LNy [M] 1.17 1.01 0.169 1.28

Domain partitioning is achieved by a connectivdaple assigning each
sub-basin to a processor. The connectivity tableéeh basin was generated
through METIS (Karypis and Kumar 1999), a graphipaning software that
properly balances the computational workload. Rerain times were
significantly reduced, in average by a factor wéfiwhich enhanced the
capability to execute a larger number of modehiiens for the calibration efforts

and to test the multiple QPE products in each basin

RESULTSAND DISCUSSION

Multi-scale Comparison of Quantitative Precipitation Estimates

The spatiotemporal distribution of warm-season ipition derived from
the different QPE products was analyzed with resfoethe entire CFR region, at
each rain gauge site and within the study basins.spatial variability of total

seasonal precipitation shown in Figure 2.5 is r@tévor assessing the flood

30



potential in the region during 2004 (JJAS) and carimg the characteristics of
the different QPE products. For this analysis, tamyporal gaps for a particular
QPE were filled in with rainfall estimates from thevel Il product at hourly, 4-
km resolution, whose time series is complete andlwshould, in general, impart
a positive impact to the product skill evaluatioveg its gauge-calibrated nature.
At the seasonal aggregation scale, a recognizabitall pattern in all QPE
products was the presence of higher rainfall inethstern portion of CFR at lower
elevations. Furthermore, QPEs that incorporate lvezatidar estimates (Level I,
Stage lll, Stage IV) share common features, indgai high spatial meap) and
standard deviatioro]. Certain areas in the Level Il product have mdrke
differences with Stage Ill and IV (north and souatsteregions) due to corrections
in the multisensor estimates not incorporated théZ-Rrelation. Of the satellite
QPE products, only A-E exhibits magnitudes andiappatterns resembling the
radar and multisensor products. Most satellite QiPEE, H-Erad, GMSRAL,
GMSRAZ2 and PERSIANN) show lower means and smodatpatial variations,
except for Blend that has high rainfall amounts ttueutliers in June. Additional
analyses confirmed that Level Il has the highestimer of rainy hours, an
indication of the presence of a larger number ddlsaccumulation precipitation
events. Seasonal comparisons over the CFR wereleorapted by inspecting
hourly rainfall at each rain gauge site and thellocated pixel values from each

QPE product.
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Figure 2.5. Spatial distribution of summer season (JJAS in rmatumulated
precipitation in 2004 in the CFR region from eadhty, 4-km QPE product.
Watershed divides for 11 basins (Fig. 2.1) areaegiin black. Spatial mean and
standard deviations are also shown.

Figure 2.6 presents an example for the LTER siteaasubset of QPEs,
while Table 2.5 provides statistical evaluationalbtain gauge sites and all
QPEs. The comparisons reveal that Level Il, Stdg&tage 1V and A-E provide
the best estimates of the total rainfalbgRand its temporal distribution at the rain
gauge sites. In Figure 2.6, Level Il 4-km show®adyperformance that
represents well the timing and magnitude of stoffhss is in part due to the use
of seven rain gauges in the calibration of ZhRR relation. For the LTER site,

Stage Il and Stage IV tend to underestimate rdjnfdnile the satellite QPEs

exhibit weaker relations with rain gauge data.
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Figure 2.6. Hourly precipitation (mm) at (a) LTER rain gaugelahe collocated
pixels for (b) Level Il at 4-km, (c) Stage IlI, (&tage IV, (e) A-E, (f) H-E, (g)
GMSRAL1, and (h) PERSIANN.

This is consistent with studies comparing grounia ¢ia satellite
precipitation retrievals (Scofield and KuligowskKi@3; Sapiano and Arkin 2009;
Yucel et al. 2011). While rain occurrences aregaably captured by satellite
QPEs, they tend to overestimate rainfall amountkeérearly summer and
underestimate them for the rest of the seasoremergl, all QPEs underestimate

rainfall with respect to rain gauges, as evidermethe Bias scores less than

unity for most cases.
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Table 2.5. Statistical evaluation of rainfall estimates froamnrgauges and
collocated pixelspandR are the Pearson and Spearman rank correlatigns

the seasonal rainfall accumulation. Bias is thie @itthe mean forecast and mean
observation values (Wilks, 2006).

Precipitation ESPC2 (Pt = 355.2 mm) RSOC2 (Pit = 248.0 mm)
Product
[rztr";]] o R Bias Ffr“:rﬁf [ritrf’;] o R Bias Ffr“:rﬁf

Level Il 320.0 024 048 090 121 1732 058 044 070 0.43

Stagelll 4034 037 063 114 109 1109 0.36 0.36 045 0.50

Stage IV 4291 045 062 121 1.03 1170 036 029 0.47 0.50

A-E 199.6 0.26 0.38 056 1.07 2204 023 029 089 0.59

H-E 953 0.22 028 0.27 1.08 111.7 024 021 045 0.6

H-Erad 926 0.23 028 026 1.08 1087 0.24 021 0.44 056

GMSRA1 146.6 025 026 041 1.08 149.2 0.27 0.16 0.60 0.56
GMSRA2 1920 0.2 019 054 110 1826 0.16 0.09 0.74 0.59
Blend 649.4 006 024 183 213 6509 0.02 010 262 2.00
PERSIANN 1366 0.05 0.11 038 1.13 1567 0.10 0.08 0.63 0.59

PK L C2 (P = 323.1 mm) LTER (Pi = 352.9 mm)
Level 11 214.0 055 0.49 0.66 0.61 2506 0.32 047 0.71 0.80
Stagelll 249.0 0.38 0.50 0.77 0.62 2875 052 056 0.81 0.62
Stage IV 308.8 045 0.48 0.96 0.69 275.7 0.37 0.53 0.78 0.76
A-E 1940 0.47 0.32 0.60 0.59 267.4 0.20 0.30 0.76 0.84
H-E 76.3 037 0.16 0.24 0.62 158.0 0.13 0.20 0.45 0.87
H-Erad 75.0 037 0.16 0.23 0.62 158.0 0.13 0.20 0.45 0.87

GMSRA1 1219 041 019 038 062 1928 0.11 022 055 0.84

GMSRA2 170.3 0.38 0.140 053 0.65 2254 0.11 0.18 0.64 90.8
Blend 693.3 0.10 023 215 206 7578 0.10 025 215 2.08

PERSIANN 1015 0.18 0.17 031 064 1315 0.23 0.11 0.37 0.69

Multiple factors could explain the underestimatioaluding diurnal
sampling uncertainties, tuning of the precipitat@dgorithm for other regimes, the
comparatively small spatial scale of CFR stormgyrarsual surface or
atmosphere properties that QPE algorithms do noéctly interpret (Smith et al.
2006). There is also scale mismatch effect betvpeari and point measurements

that translates into lower rainfall estimates prelp(Boushaki et al. 2009). For
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most sites, the Pearson and Spearman rank cooredatre larger for Level I,
Stage lll, Stage IV and A-E products, suggestirag these QPEs contain the
most accurate depiction of rainfall at these vaiadelocations. Figure 2.7 shows
event distributions of hourly, basin-averaged @irfbr non-zero periods. In
addition, the number of rain hours is presentedicating when rainfall occurred
at any site in the basin area. The lower numbeaiofhours for the rain gauges is
related to two factors. First, rain gauges havesalution of 0.1 mm, while QPE
algorithms do not curtail rainfall below a threshdbecond, rain gauges measure
at a single site where the likelihood of rainfalkmaller than for all pixels in a
basin. These two factors lead to a higher mediafialafor rain gauges and
larger outliers at FISH, SVRAIN and RALS. In mosses, the Level Il 4-km
product has the highest number of rainfall houis the lowest median
accumulations. Since this is a basin-averagejrtipies that Level Il contains a
large number of small rainfall events distributecach basin. The Stage Ill and
Stage IV products show similar behavior, but temtave a lower number of
events, in particular for BUCK where seasonal aadations were low. In
general, satellite QPEs exhibit similar event disttions among themselves and
are characterized by low medians, reduced numbeirfall hours and a low
number of outliers. Consistent with prior analyges; has properties closest to
radar and multisensor QPEs, while Blend preserttemithat affect its ability to

capture the site, basin-average or regional rdidistributions.
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Figure 2.7. Box-and-whisker plots of hourly basin-averagedmi¢éation (mm)

in each basin from the QPE products and closesigaige. Each plot presents
the median (horizontal line), lower and upper glestbox) and the outliers
beyond the 1.5 interquartile range (circles). Nurala the top represent the total
number of hourly (non-zero) rainfall values consatkefor each case.

Hydrological Intercomparison using I ntegrated M easures

The simulated basin responses resulting from tfierdnt QPE products
are compared in terms of the outlet streamflow eulythg runoff mechanisms
and water balance components. Streamflow erroricsedre obtained from two
reference hydrographs based on stream gauge didi@ simulated response from
the Level Il 1-km forcing used for model calibratid-igure 2.8 presents the

simulated hydrographs in each study basin for albeuraf representative QPEs
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(Level I, Stage Ill, PERSIANN) as well as simutats obtained using spatially-
uniform rain gauge forcing from the nearest gawugesaich basin (i.e., ‘Rain
Gauge’). Results for all QPE products are presentd@ble 2.6 through the use
of evaluation metricsd, R, NS, Bias, RM3EThe Pearson and Spearman Rank
correlation coefficientsdandR) indicate the degree of agreement over all values,
while the Root Mean Squared Err&®&NSE and Nash-Sutcliffe efficiencyNS
weight streamflow peak errors more heavily.

To aid in the comparison, Figure 2.9 shows theetdlischarg&MSE
between the simulations and the observed streaméswell as, thRMSE
between each case and the simulations obtainedhathevel Il 1-km forcing.
Rain gauge forcing tends to overestimate simulstesamflow in each basin
relative to both observations and Level Il 1-kmliaions. These errors are due
to the assumption of spatially-uniform rainfallaach watershed where, in reality,
summer storms or the principal rain cores of clsystems are smaller in scale
relative to the basin size. As a result, RMSEof the rain gauge simulations are
greater than most of the QPEs (except Blend) wbempared against
observations and Level Il 1-km forcing (Figure 2:Bhis has important
implications for the different QPE products as these is superior to assuming

uniform rainfall conditions from nearby rain gauges
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Figure 2.8. Simulated outlet streamflow (black lines) for thén gauges and
selected QPEs (Level I, Stage Ill, PERSIANN) icledasin. Observed (dark
gray) and reference hydrographs (light gray) derivem the Level Il 1-km

forcing are shown for reference.

Based on the various statistical metrics, the QMEssuperior

performance in terms of the outlet discharge aeddhowing for each basin (in

order): BUCK (Level Il 4-km, Stage Ill), FISH (Stadll, Stage 1V, Level Il 4-

km), SVRAIN (Stage lll, Stage 1V, A-E) and RALS &gk 1lI, Stage 1V,

PERSIANN). Over most basins, Stage Il providesrtiust reliable simulations,

though highRMSEs are present at BUCK due to low rainfall in northareas

(Figure 2.5). Good hydrologic performance of thdtisensor products suggests

that merging radar and rain gauge data, as achlgvéae Stage Il algorithm, is

valuable for mountain areas.
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Table 2.6. Statistical evaluation of streamflow simulationsnfr multiple QPEs
relative to the observed and simulated hydrograehised from the Level Il 1-
km forcing (in parentheses)Sis the Nash-Sutcliffe efficiency (Legates and

McCabe, 1999).

Basin BUCK FISH

Precipitation p R Bias NS  RMSE p R Bias NS RMSE
Product [] [] [] [1 _ [m% [] [] [] [1  [m
Raingauge 0.76 0.72 223 -414 082 057 073 194 -507 0.30
(0.64) (0.62) (2.14) (-4.40) (0.86) (0.67) (0.81) (2.71) (-6.73) (0.31)
Level I 072 071 122 0.05 035 074 075 057 030 0.10
(0.93) (0.94) (1.18) (0.67) (0.21) (0.92) (0.93) (0.79) (0.80) (0.05)
Stagelll 08¢ 082 029 013 039 080 086 112 037 0.10
(0.74) (0.76) (0.28) (-0.19) (0.40) (0.94) (0.91) (1.56) (0.39) (0.09)
Stage |V 004 023 037 -040 043 072 080 072 041 0.09
(0.23) (0.54) (0.36) (-0.33) (0.43) (0.90) (0.89) (1.00) (0.80) (0.05)
A-E -0.13 006 142 519 090 025 044 028 -062 0.15
(0.08) (0.42) (1.36) (-4.07) (0.84) (0.51) (0.72) (0.40) (-0.06) (0.11)
H-E -0.17 -002 069 -131 055 -006 011 017 -1.01 0.17
(0.06) (0.32) (0.66) (-1.07) (0.54) (0.17) (0.44) (0.23) (-0.46) (0.13)
H-Erad -0.15 -0.02 056 -093 050 -005 014 016 -102 0.17
(0.0) (0.32) (0.54) (-0.77) (0.49) (0.18) (0.48) (0.23) (-0.46) (0.13)
GMSRA1  -0.08 009 054 -066 047 023 032 020 -0.81 0.16
(0.13) (0.54) (0.52) (-0.41) (0.44) (0.54) (0.64) (0.27) (-0.23) (0.12)
GMSRA2  -003 0.17 097 -191 062 008 -005 022 -082 0.16
(0.16) (0.30) (0.93) (-1.31) (0.57) (0.36) (0.23) (0.31) (-0.26) (0.12)
Blend -0.13 0.01 63.66 -36527 69.36 0.02 056 1248 -2645 6.29
(- (0.36) (61.20) (- (69.33) (0.03) (0.72) (17.4) (- (6.30)

0.07) 34709) 3192)
PERSIANN -0.03 023 026 -055 045 072 054 017 -064 0.16
(0.19) (0.59) (0.25) (-0.48) (0.45) (0.77) (0.70) (0.23) (-0.14) (0.12)

SVRAIN RALS

Raingauge 057 082 109 -038 113 048 067 142 -164 020
(0.68) (0.87) (1.43) (-1.12) (1.08) (0.47) (0.67) (1.76) (-1.07) (0.21)
Level I 079 092 0.77 0.53 066 022 027 069 -038 0.15
(0.99) (0.99) (1.01) (0.97) (0.13) (0.91) (0.96) (0.85) (0.77) (0.07)
Stage 11 081 092 0.79 0.57 063 049 056 106 -0.01 0.13
(0.96) (0.97) (1.04) (0.93) (0.20) (0.63) (0.70) (1.32) (0.32) (0.12)
Stage IV 079 091 084 0.58 062 039 052 086 -0.08 0.13
(0.95) (0.96) (1.11) (0.87) (0.26) (0.78) (0.85) (1.07) (0.61) (0.09)
A-E 080 091 081 0.58 062 012 032 077 -051 015
(0.96) (0.96) (1.06) (0.91) (0.22) (0.46) (0.62) (0.96) (0.15) (0.14)
H-E 0.77 092 0.70 0.42 073 -0.09 023 028 -074 0.16
(0.94) (0.96) (0.92) (0.87) (0.27) (0.12) (0.32) (0.35) (-0.22) (0.16)
H-Erad 0.77 092 0.70 0.42 073 -0.09 018 027 -076 0.16
(0.94) (0.96) (0.92) (0.87) (0.27) (0.13) (0.41) (0.33) (-0.22) (0.16)
GMSRAL 079 092 0.75 0.52 066 0.06 033 047 -069 0.16
(0.96) (0.97) (0.99) (0.91) (0.22) (0.56) (0.71) (0.59) (0.25) (0.13)
GMSRA2 0.77 087 0.77 0.50 068 0.02 023 055 -067 0.16
(0.94) (0.92) (1.01) (0.87) (0.26) (0.54) (0.49) (0.68) (-0.25) (0.13)
Blend 032 089 222 -50.27 6.88 -003 -0.08 396 -29751 214
(0.28) (0.90) (2.92) (- (7.03) (- (0.55) (49) (- (21.4)

88.41) 0.04) 20819)
PERSIANN  0.77 0.88 0.74 0.47 070 030 041 031 -033 0.14
(0.89) (0.93) (0.97) (0.79) (0.34) (0.74) (0.78) (0.38) (0.30) (0.12)
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Figure 2.9. Outlet streamflolRMSEbetween simulations with different QPEs
and observed data (black bars) and simulated hyajpbg obtained using the
Level 1l 1-km forcing (white bars). Note the vargitogarithmic scale on the
RMSE for each basin.

This also holds for the Level Il product that useldmited number of rain
gauges to derive &Rrelation. Errors in the Level Il 4-km simulatiowith
respect to the 1-km forcing show that spatial aggtien has a substantial effect
on the simulations relative to the calibrated molfist satellite QPEs (except
Blend) tend to underestimate the outlet dischaayeme as indicated by the low
Bias with respect to the observations and Levéikim forcing (Table 2.6). In

addition,RMSEs are larger than the radar and multisensor predhat lower

than rain gauge forcing. Since satellite QPEs eklutver rainfall magnitudes
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and smoother fields, the resulting streamflow satiahs are characterized by
lower volumes and reduced variability, as shownMBRSIANN in Figure 2.8.
For certain basins, however, some satellite QPE$ase performances that
approach those obtained from the radar and musisgoroducts (e.g., A-E in
SVRAIN and PERSIANN in RALS). Nevertheless, pogrerformances of these
products in other basins (e.g., A-E in RALS and BEERRAN in BUCK) suggest
that their use in streamflow simulations acrossGR& should be done with
caution and perhaps with some kind of additionaslmorrection. These results
indicate that satellite QPEs can serve as an eféealternative to uniform rain
gauge forcing, but not for radar and radar-baseltisensor products.

Differences in space-time rainfall behavior in e@fPE may also
condition the runoff mechanisms composing the beessponse. Figure 2.10
presents the fraction of the outlet streamflow wadufrom each runoff type. Basin
properties and model parameters yield differenceanoff composition across
the basins, with BUCK and RALS consisting of infition-excess (INF) and
saturation-excess (SAT) runoff, SVRAIN composedafundwater exfiltration
(GW) and SAT; and FISH having a mixture of all tgp€learly, the properties of
each QPE lead to some variations in runoff mechasias each basin. Radar and
multisensor QPEs with good performance relativetteamflow data exhibit
similarities in runoff types. In most basins, Stédgand IV have higher fractions
of SAT as compared to Level Il, indicating thatsiéequent and lower magnitude
rainfall pulses (Figure 2.7) favor this runoff tyf@es expected based on prior
studies (Vivoni et al. 2007a).
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Figure 2.10. Fractions of runoff mechanisms for each QPE andysbasin for:
infiltration excess (INF), saturation excess (SA39rched return flow (PER) and
groundwater exfiltration (GW).

Rain gauge input also favors SAT as compared t@lLikvn most basins,
except in FISH where GW and INF are enhanced witform forcing. Overall,
the satellite QPE products induce variations iroffitypes relative to Level Il
that are comparable to rain gauge and multisensalupts (except Blend at
SVRAIN). This indicates that while satellite QPEg@ucts lead to discrepancies

in outlet streamflow, they do not fundamentally i@ the nature of the runoff

types underlying the model response.
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The seasonal water balance may also vary accotdlithge precipitation
forcing from each QPE. Figure 2.11 presents themzdlance components for
the simulation period (1 June to 30 September 2004,4 mon) as

AS/ At = P-ET -Q, whereAS is change in basin water storage estimated from

the basin-averaged precipitatid?) @nd evapotranspiratiok|), and streamflow
at the outlet@). In three of the four basins (except SVRAIR)is partitioned
primarily intoET, asQ is less than 25% d?. For most QPEs in these basiBg,

is greater than or comparableRpindicating that warm-seas&T is high and
that a fraction of water in storage is consumed@&byluring the summer, leading
to negativedS. At the low to mid altitudes of FISH, BUCK and R&LhighET
occurs in response to elevated air temperaturebraad forest cover. SVRAIN
has a different seasonal behavior, with relatively ET, highQ and negativelS
indicating that the high altitude basin drainsntster storage and precipitation
input. This occurs in response to wet initial cdiotis imposed in the basin to
account for snowmelt inputs in the early summeddand multisensor QPEs
with good performance relative to streamflow obaéons have similarities in
water balance components. DifferenceP @re compensated by variations48
andET, with their proportional changes varying for edelsin (i.e. A4S
compensations in BUCKET compensations in FISH). In most cases, uniform
rain gauge forcing is similar to the Level Il 4-kand multisensor products. One
notable difference is high€} in the rain gauge simulations observed when either
P is larger or smaller than in the Level Il forcingyplying that spatially-uniform

forcing has prominent effects on basin runoff anteun
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for the satellite QPEs,

Figure 2.11. Seasonal water balance components for each QP& @y basin
Overall,

for: precipitation P), streamflow Q), evapotranspiratiorET) and change in

storage AS).
storage losses from the basins (more negal8eWhen precipitation is severely

underestimated (e.g., H-E at BUCK, RALS), low amsuwf available soll
moisture also begins to limT. Other than these discrepancies, the satellite
QPEs are similar to radar and multisensor produath,the exception of Blend
that has a higR that is partitioned into streamflow with limitehpacts on

storage or evapotranspiration.



Hydrological Intercomparisons using Distributed M easur es

The spatiotemporal variability of rainfall from ¢aQPE product may also
influence the distributed basin response. For &éasm and product, hydrographs
at internal sites, runoff maps and the relatiortgsben the spatial variability in
rainfall and runoff are compared. Figure 2.12 pnésan example of the
intercomparison for a significant storm event orl®8August in BUCK (Figure
2.4) for a selected set of QPEs (Rain gauge, Uédekm and 4-km, Stage Il
and PERSIANN). Although Level Il 1-km and uniforaim gauge inputs do not
possess the same effective spatial resolution,ibeg been added to this analysis
for comparison purposes. For each QPE, the 24uffiatband 87-hr runoff
accumulation maps are shown. To derive the ruredffimulation, the hourly
runoff amounts at individual sites prior to routiaige aggregated in time. In
addition, hydrographs at four channel sites shaerival streamflow variations
that are associated with the mean areal precipitatithin upstream areas.

Cleary, the spatial aggregations of rainfall hawéndluence on the runoff
patterns at the storm scale. Rain gauge forcirgdgléalow and nearly uniform
runoff production, while Level Il 1-km identifiesstorm cell in the western
region that concentrates rainfall and runoff int #a@a, with minor amounts
elsewhere. As a result, the rain gauge hydrogrdiffes from Level Il 1-km as
well as the observed discharge, with underestimatat the storm location and
overestimations at the outlet. In contrast, LeVvdtkm captures the runoff
response well with only minor variations at intdrsites and coarsening of the
runoff map.
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Figure 2.12. Spatial distribution of rainfall (left panels) anghoff (middle
panels) accumulations in BUCK for selected QPEsn(gauge, Level Il 1-km,
Level Il 4-km, Stage Ill, PERSIANN) for an eventooered in August 18, 2004.
Sub-basin averaged precipitation and streamflotirae nested locations and the
basin outlet are presented in the right panel.
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This indicates that aggregation effects of Levelrd not severe, though
outlet discharge metrics are somewhat impactedi(€ig.9). At BUCK,
multisensor and satellite QPEs underestimate Hgifgading to poor
comparisons at internal sites relative to Levdl-Km. For example, PERSIANN
has a low and nearly uniform rainfall, thus genagainsufficient runoff. Stage
lIl, on the other hand, is able to depict betterthinfall and runoff distributions
in the basin, though the observed discharge atutlet is underestimated. This is
consistent with the low reported rainfall valuesSigge Il at BUCK. Thus, radar
and multisensor QPEs that preserve small storrativelto the basin size have
advantages in runoff prediction over QPEs with tmwo spatial variations.

The impact of the spatial rainfall distributioneisplored for all QPEs in
Figure 2.13 for the three most significant eventsach basin. Table 2.7
summarizes the rainfall start times and total edemations. In these analyses, the
spatially-uniform rain gauge forcing is used asfanence and there are 132 QPE
simulations based on eleven products, four basidgtaee events. For example,
Figure 2.13a illustrates tHRMSEof outlet discharge for each QPE relative to the
observed discharge versus the equivaRiMSEobtained from the rain gauge
forcing. For most cases, the QREISE are below the 1:1 line (except for one
storm in RALS), indicating that QPEs have smalleslperrors compared to those
from rain gauge simulations. The degree of improseinachieved by distributed
forcing is shown in Figure 2.13b as the percentdgavents for which QPEs have

a lowerRMSE

47



10 100
= Lovel ke - - j; (b)
z * Stage Iv o X 80
o) OAE Q-
£ 1|oHE X % Eg
~— A H-Erad A : c 60
w % GMSRA1 A 5 o
] X GMSRA2 Qg o
= - Blend ﬂ g8 ox >§
o 0.1 + PERSIANN _; g (¢] 40
w U 0":
o S0
a o Q20
o o
> [
00] 0 £ = > W w P o= o T 4
0.01 0.1 1 10 §§E’,;<IE§§§§
Rain Gauge RMSE (m3/s) 2= 3 g + 2 22 3
o 0 v & o O w
3 3
- 1.6
s } ()
— _ “9' 1.2
v 4 ©
= g 0.8
& p 3 =
g 2 n " c
n o= + o 04
= - 2 . g
O % y 2
0 !‘ Wg [ & 0 B - e
0 2 4 6 EES 33238335 %
Rain Gauge Bias (-) = 3 g3 ¥ 2 2 a é
g g a5 o O w

Figure 2.13. Comparison of QPE product skill relative to raauge simulations
for three selected storms in all study basinsOfat)et discharg&@MSE (b)
Frequency of improved performance using QPEs. (tleDdischarge bias. (d)
Mean ratio of QPE bias to rain gauge bias.

A similar analysis based on the streamflow volumiegs)g theBias, is
presented in Figure 2.13c. QPE simulations hawsvarBiasthan equivalent rain
gauge simulations (except for five events for B)efidthus, thenean bias ratio
shown in Figure 2.13d, defined as the bias of a @Rtalation divided by the
bias of a rain gauge simulation, shows values ldhen unity for most products.

This indicates that distributed QPESs, includingBi¢-based products, have

improved streamflow volumes relative to the unifaam gauge forcing.
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Table 2.7. Three selected events in each basin, includingahdall start time
(month/day/hour) in 2004 and the total event darath), including rainfall and
runoff periods.

BUCK FISH SVRAIN RALS
Event Start Duration Start Duration Start Duration Start Duration
timein [h] timein [h] timein [h] timein [h]
2004 2004 2004 2004

1 07/22/02 110 07/18/08 40 06/26/17 150 07/15/00 167
2 08/18/10 87 07/21/06 370 07/30/10 150 08/17/15 50
3 08/25/06 210 08/17/08 100 09/01/18 250 08/26/12 100

A further distributed comparison of the QPE produstcarried out by
qguantifying the spatial coefficient of variation\(Cof the rainfall CVrain) and
runoff (CVrunof) fields for each hour with non-zero valu®y.(CV is obtained as
the spatial standard deviation of the quantityntdriest divided by the basin-
average quantity. The meti@Vratio= CVrunoff/CVrainis defined to compare
the relative spatial variability of the runoff fieto the rainfall field, with larger
values implying a more variable runoff distributidfigure 2.14 presen@Vratio
for the four basins and a selected number of QB&se( Il 1-km and 4-km, Stage
[l and PERSIANN) as a function of the hourly ruhidtio (p= Q/P) averaged
over the basin. For each case, therd\avalues corresponding to the hours with
coincident runoff and rainfall in each basin. Id@idn, a power law regression of
the formCVratio = c¢' is shown for each case, wittanda as the coefficient and
exponent, respectively. Sin@/ratio is undefined for uniform rain gauge forcing
(CVrain = 0), the ranges of values gffor the rain gauge simulations are shown

as reference.
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Figure 2.14. Relation betweelViaio and runoff ratio ¢ for all basins and
selected QPEs (Level 1l 1-km, Level Il 4-km, StalgePERSIANN). Regressions

shown as power laws (solid lineg}V,,,, =c¢®, with c anda indicated for each
caseN is the sample siz&he shaded region represents the ranggfof the rain

gauge simulations.

Clearly, the spatial variation in runoff is typialarger than the
corresponding variation in rainfalC{/ratio > 1), as represented by values above
the dashed horizontal line. This is due to sevacbrs, including the landscape
properties (terrain, soils, vegetation) that indspatial runoff variations at scales
smaller than precipitation forcing. For examplejezal runoff types induce

patterns that follow the linear channel networkueas, which are smaller than
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individual QPE pixels (Figure 2.12). The high€tratio are observed for the
lowest@and vice versa, indicating that the hourly periatts lower runoff
(relative to rainfall) have proportionally greatenoff variability in space, likely
due to the delayed runoff contributions from growater that occur near
channels. This effect is due to an interactiorhefgpatial rainfall variability,
which exhibits greater variation with higher magdes (not shown), with the
watershed properties in each basin. Interestinigé/slope of the relation between
CVratio andghas limited range a = -0.25 to -0.4 across all basins and QPE
products, suggesting that a single scaling relatamexplain spatial patterns
across a wide range of basin conditions For a fewsin each basin, boti> 1
andCVratio < 1, indicating that major runoff events with loglative spatial
variability in runoff are infrequent. These eveh&ve both storm event and pre-
event groundwater contributions to the total runlefding top> 1. Note the
ranges of values apfor the rain gauge simulations are either smalian or at
the middle of the QPE range. This is consistert aitalyses indicating
overestimation of rainfall by the uniform forcingdatheir corresponding runoff

underestimation.

SUMMARY AND CONCLUSIONS

In this study, we compared a set of Quantitativecipitation Estimates
(QPEs) in the Colorado Front Range for their aptfit serve as forcing to a
distributed hydrologic model that can issue flootetasts. The region is known

to generate warm-season convective storms witgtapotential for flood and
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flash flood events in individual basins. Given fparse rain gauge data in the
mountain region, we postulated that a distributedl@hcould be used to verify
QPEs from radar, multisensor and satellite algor#hHydrologic simulations in
the mountain setting are challenging due to theptexnnature of the basin
characteristics as well as the small-scale of s@rants. In evaluating the QPEs,
we focused on the rainfall properties at the &igsin-average and regional scales
and its propagation to the hydrologic responsdudiog the outlet discharge,
runoff mechanisms and seasonal water balance canfgorn addition, an
emphasis was placed on identifying the value afdgd QPESs with respect to
uniform forcing from rain gauges and to compareutations against observed
streamflows. Results indicate the following:

1) The timing, distribution and magnitude of wargason precipitation
are similar in the radar and radar-based multisgmsmucts and can be captured
well by some satellite QPE products (e.g., A-E)efall, satellite products tend to
underestimate rainfall at the site, basin-averangkeragional scales. One satellite
QPE (Blend) exhibited poor performance in rainésfimation. Basin-averaged
forcing from mountain rain gauges results in oviemgegtions in total volume and
underestimations in the number of low accumulatan events within a
watershed.

2) The timing and magnitude of outlet streamflowhia four basins varies
depending on the QPE forcing indicating its usedafnas a verification tool.
Radar and multisensor products have good perforesaratative to the stream
gauge observations and the Level Il 1-km forcingduduring model calibration.
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Satellite QPEs, on the other hand, underestimé&édscharge volume and
introduce errors from their smoother and lower nitagie rainfall fields.
However, as compared to uniform forcing from rastuge data, most satellite
QPEs exhibit improved abilities to capture streamflicross mountain basins
with different land surface properties.

3) Individual watershed characteristics and inivakness states condition
the response in terms of the runoff generationgygrel water balance
components. Relative to Level Il 1-km, each QPRiges modifications to the
runoff and water balance partitioning. SatelliteE3Rhat underestimate rainfall
lead to greater storage changes to meet evapoirainsp demand; while rain
gauges tend to produce more streamflow. Overallieglver, QPESs do not
fundamentally change the nature of the runoff orewhalance partitioning that
underlies the model response

4) The spatial variability of precipitation impadtee distributed basin
response, including storm runoff patterns and disgh at interior channel
locations, with clear effects of the spatial agatem of QPE products. Relative
to rain gauge forcing, radar and multisensor QPRBspreserve small storms
relative to the basin area have advantages in tefmsoff prediction. Satellite
QPEs also show better performance than rain gauglesespect to streamflow
timing and volume for most cases, indicating theiue for hydrologic
forecasting in mountain areas.

5) A scaling relation@Vratio = c¢f) was found between the relative

spatial variability of runoff and the runoff rateeross all study basins and QPE
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products. This indicates that periods with low rlimatios exhibit higher spatial
variations in runoff relative to precipitation patts, and vice-versa. The exponent
of the relation was found to vary within a narramge,a = -0.25 to -0.4,
suggesting that is applicable across a wide rahfgasin conditions. Rain gauge
forcing exhibits smaller runoff ratios than QPEsnsistent with other uniform
forcing analyses.

The results of this study are based on the usaldtabuted hydrologic
model calibrated during one summer season usingdbsdy, Level Il 1-km
product. Given the differences among basins, mealdration was based on
merging manual and automated methods independentiach watershed. Good
model performance relative to the outlet streamftdservations and realistic
model behavior for the given conditions in eachiibaspport the use of the
distributed model. The model was then used to stiveypropagation of the radar,
multisensor and satellite QPEs and the uniform gaunge forcing into the
response of each study watershed. Simulationsthitmultisensor and satellite
QPEs are considered independent of the calibrafiont, while the rain gauges
were used to derive theRrelation for the Level Il 1-km product. Despitésth
advantage, spatially-averaged rain gauge simukatoa not comparable in skill
to those obtained from the gridded products. Thdsciates that spatial variations
present in gridded QPEs add value for flood fort#egsn mountain areas with
sparse data even if those products contain sorsedi&ince the rain gauges were
critical in calibrating the radar QPESs, our resdlbsnot suggest that in situ data do
not have value since these are essential for grbutiting remote sensing
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products. In contrast, this study highlights theaadages and disadvantages
associated with ground measurements and QPEs dédrora remote sensing.
Clearly, these conclusions need to be further exatliin other basins and for
additional summer periods in the region.

The results of this study are encouraging in thdar, multisensor and
satellite QPEs offer a new window to study hydradagprocesses of mountain
areas. At varying degrees of ability, gridded QREm these platforms are able
to depict spatiotemporal rainfall patterns thatareurate with respect to their
streamflow forecasts at individual gauging sitesrébver, the QPEs and their
error sources do not appear to fundamentally Hieesimulated processes in
particular basins. As a result, this study suggistsadvances in mountain flood
forecasting are possible by using high-resoluti®E®, including those from
satellite platforms that more readily observe piation in regions with complex
topography. For operational applications, the dsgidded QPE products should
be superior to the assumption of uniform forcingrirrain gauges in mountain
areas, where the scale of warm-season storms Igesithan the basin area.
Furthermore, the use of a distributed hydrologideidor flood forecasting with
gridded QPEs opens new avenues to study the mdatat characterize spatial
patterns in precipitation and runoff generatione Bimple scaling relation
presented here that links relative spatial runaffability and magnitude across

the distinct watersheds also warrants further atten
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Chapter 3
PROPAGATION OF ERRORS FROM THE REFLECTIVITY-RAINFAL
RELATION INTO SIMULATED STREAMFLOWS IN MOUNTAIN

WATERSHEDS DURING SUMMER CONVECTION

INTRODUCTION

Accurate flood and flash flood predictions usingtdbuted hydrologic
models rely upon the underlying quality of the falhinput (Moulin et al. 2009;
Krajewski et al. 2010; McMillan et al. 2011; Schepet al. 2011). This premise is
particularly relevant in mountain catchments urgienmer convective storms
where terrain features add complexity to the rdlintanoff transformation (e.g.,
Zappa et al. 2011; Moreno et al. 2012a). Weatrsarsaare widely used for
guantifying precipitation at fine spatial and temgdaesolutions by measuring the
power of the return echo or reflectivity)(to derive rainfall ratesR) using a
power law,Z=AR’, whereA andb depend on radar and precipitation
characteristics (Collier 1996; Habib et al. 2008ajkwski et al. 2010).
Frequently, a singl&-Rrelation is used for estimating rainfall fields
conditions as they offer operational advantage$idod forecasting (Habib et al.
2008; Alfieri et al. 2010) and retain storm chaeaistics important for seasonal
modeling (Yoo et al. 2010).

Difficulty arises when the lack of a calibratioropedure from rain gauges
or disdrometer data for a particular area resolthé assumption of an
operationalZ-Rrelation, such as the WSR-5Z=200R-°, Marshall and Palmer

1948) or the NEXRAD relationZE300R*, Fulton et al. 1998; Krajewski et al.
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2010). Use of an operational or climatologiZaR derived for other sites and
climatic conditions, is not ideal as paramet@&randb, are known to vary with
many factors, most prominently the drop size dstion (DSD). DSD has been
found to vary between climatic regions, temporaragations and types of
precipitation (Lee and Zawadzki 2005; Habib e808; Mapiam and
Sriwongsitanon 2009). As a result, precipitatiotinegtion errors can be
introduced from the assumé&dR relation, as shown by Morin et al. (2006) for
summer storms in Arizona. One approach to overdhimsdimitation is through
the derivation of a seasorn&aR valid for particular storm types (i.e., convective
stratiform) which attempts to maximize the simifaiof the radar product with
rain gauges in a region or season of interest.

Precipitation estimates from weather radars alffersiitom a range of
other uncertainties including beam attenuationybyeteor melting or so-called
bright band effects, anomalous propagation, beawkbge, ground clutter, hail
contamination and other spurious returns (BaeckSanih 1998; Krajewski et al.
2010). Many of those factors are difficult to avaglthey depend on the physics
of the interaction between the beam signal, thedmdteors and the surrounding
environment. However, th&-Rrelation has been shown to be a crucial factor in
obtaining a correct spatial and temporal represientaf rainfall (Pessoa et al.
1993; Baek and Smith 1998; Habib et al. 2008). fdr@ameters of this relation
depend on the time scale of calibration (minutesays; Mapiam and
Sriwongsitanon 2009; Alfieri et al. 2010), typerainfall (convective, snow,
stratiform; Pratt and Barros 2009), topographitirsgt(flat or mountain areas;
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Baeck and Smith 1998) and the parameter estimatathod from measured
DSDs or rain gauges at known locations (Yoo €2@10; McMillan et al. 2011).
Therefore, theoretically, coefficient and exponefithe Z-Rrelation should
reflect their variation through spatio-temporal eleggence functiong; =f(t,s) and
b: <=g(t,s) that could constitute the basis for ensemble mesnbea stochastic
framework approach. In operational meteorologyydwer, a practical
assumption is frequently made by keeping thosenpetexrs deterministic across
broad regions for seasonally characteristic rdityales.

Quantification of the uncertainties introduced ¥-R relation on the
hydrologic response of mountain watersheds renaacisallenging question.
Numerous studies have evaluated the impaZtfderived radar rainfall fields
on the accuracy of hydrologic models, but relagivielv have focused on
mountain catchments. For example, Habib et al.§2@@plores the sensitivity of
streamflow simulations in a 35 Krbasin in Louisiana to differe@R relations
using DSD as calibration dat&-Rrelations at different temporal aggregations
showed large variations between storms and witiersame storm. A combined
method for estimating th&-R parameters, that maintained a constant expdnent
for the summer season but adjusted coeffickefur each event, was found to be
more practical and similar in accuracy as comp&vavent-specific parameters
for storms in Arizona and Louisiana (Morin et &08; Habib et al. 2008).

The use of a distributed hydrologic model allowgeistigating the spatial
characteristics of the hydrologic response (Hab#l.€2008) while also assessing
the impact of th&-Rrelation on spatial processes. In principle, go&fion

58



errors introduced by the specification of &xR relation propagate to the
hydrologic model, interacting with catchment pra@s. Compared to other error
sources, such as parameter values or initial dongitseveral studies have
concluded that rainfall errors dominate the hydyaloesponse (Sharif et al.
2004; Germann et al. 2009; McMillan et al. 2011niSter et al. 2011; Zappa et
al. 2011). Essentially, flood forecast errors sdalg¢pend on how the
precipitation forcing interacts with the spatiattpens of catchment properties
(e.q., soil, vegetation, terrain and channel netyvdfor example, Mascaro et al.
(2010b) provided a physical explanation for floodefcasting error dispersion
across different catchment scales by comparingdaiehment properties
affected the sub-basin responses.

Given the complexity in translating precipitaticstination errors into
simulated hydrologic responses, questions remgiarding the effect of errors
introduced by an incorrect sampling of the paransetétheZ-Rrelation, or the
assumption of an operational relation, on the fltmvdcasting skill. For example,
how do reflectivity-rainfall sampling errors projzg to the streamflow response?
How does the sampling of differeAtR relations translate into spatial patterns of
runoff production? Are there characteristic strdamfand flood forecasting error
dependencies across aggregated spatial scalesifiesa these questions, we
selected the Colorado Front Range (CFR) as a ¢elstibe to its complex
topography, the presence of reasonably close nargéher radars, the frequency
of convective storms during the summer season arappareciable flood and
flash flood risk (Moreno et al. 2012a). We evaluhte uncertainty introduced by
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differentZ-Rrelations applied to 1-km, hourly radar fielddanr mountain
basins (35 to 350 kfin area) during the 2004 summer season that wasident
with the North American Monsoon Experiment (Higgared Gochis 2007).

In the following, we first derive a seasoiZaR relation Z=700R"3) for
the CFR during summer 2004 with respect to seviengauges. Subsequently, we
assess the propagation of rainfall errors introdumedifferentZ-R relations
using the Triangulated Irregular Network (TIN)-bddeeal-time Integrated Basin
Simulator (tRIBS) calibrated in each basin. The el@kplicitly accounts for
spatial variations in watershed characteristicgdgwaphy, soils, vegetation) as
well as rainfall forcing from weather radars (elganov et al. 2004; Vivoni et al.
2007a). tRIBS includes parameterizations of raimfékrception,
evapotranspiration, infiltration with continuouslsuoisture accounting, lateral
moisture transfer in the unsaturated and satumdeds, and runoff routing. The
model stresses the role of topography in lateridhsoisture redistribution
accounting for the effects of heterogeneous arsb&oipic soil. Spatially
distributed surface-subsurface hillslope runofhiggrated by channel network
routing. As a result, it is an excellent tool tadst the propagation of precipitation
errors into streamflow simulations and the distidlouhydrologic response. The
model allows exploration of the effects of the eeflvity-rainfall sampling on the
types and spatial distribution of triggered runttie components of the seasonal
water balance and the uncertainty introduced byfahiat different catchment

scales.
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METHODS

Study Region and Water shed Properties

The CFR was selected for testing the hydrologiceuamty of radar
precipitation fields for several reasons. Firsg Haried topography and its range
of vegetation and soil types result in complex, htygvariable watershed
responses when forced with summer convective sto8asond, the region has
reasonably good radar coverage and a number ofgeaiges, weather stations,
and streamflow measurements despite its mountaisetisg. Fig. 3.1 presents
the locations of these observations within the CERven headwater basins
upstream of river gauging stations operated byuSeGeological Survey and the
Colorado Division of Water Resources were delingae a part of an ongoing
research effort. Four of these basins were seldoteithis hydrologic evaluation:
Buckhorn Creek (BUCK, 350 ki) Fish Creek (FISH, 41 ki) Ralston Creek
(RALS, 117 knd) and South Saint Vrain Creek (SVRAIN, 35%nirhis selection
was based on the sampling of different drainagasaaed a variety of landscape
properties along a north-to-south gradient inclgdime presence of snow melting
processes during summer stream flows. Thus seleatthments constitute an
excellent test bed for purposes of multiple hydgatoverification. Fig 3.2 shows
the spatial distribution of vegetation and soil smagross the CFR region, while
Table 3.1 summarizes types and sources of the logicoinformation used in

this study.
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Figure 3.1. CFR location, elevation distribution and boundaéeleven
watersheds. Four basins are selected here: BUGH,FRALS and SVRAIN.

Seven hourly rain gauge and weather stations aerstRFRC2, RSOC2,

ESPC2, LTER, BTAC2, PKLC2 and CEKC2. Three weathdars KCYS,
KFTG, KPUX and their 150 km coverage umbrellasdapicted.

The CFR is characterized by large elevation grasjesiescending from
west to east, which is dissected with narrow vallend dendritic channel
networks, resulting in a series of west-east ritdgsl and north- and south- facing
slopes. The soils are predominantly sandy loamml@nd exposed bedrock

structure while prevalent vegetation types are ftosd by forests and

grasslands, as illustrated by the Figure 3.2.
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Figure 3.2. Spatial distributions of (a) soil types and (byettion classes across
the CFR. Elevation contours and basin stream né&tayor the selected
watersheds are also shown.

Regional Radar Rainfall Data and Z-R Relations

Radar volume scan reflectivity observations werioled from the
NEXRAD WSR-88D radars at Denver, CO (KFTG), Puekl® (KPUX) and
Cheyenne, WY (KCYS). Level Il conical scans werertltonverted to constant
altitude plots over minimum and maximum scan atétsi of 3-km and 6-km,

respectively.
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Table 3.1 Description of hydrologic model inputs and sources.
I nformation

Resolution Source References
type
D|g|t::\1jkl)iéi\|/atlon 30m National Elevation Dataset Gesch et al. (2002)
Soil Texture 30m Soil Survey Geographic, State Wang and Melesse
Maps Soil Geographic (2006)
. USGS National Land Cover
Vegetation Types 30m Dataset Homer et al. (2004)
Rain Gauge and Mesowest and AMERIFLUX Steenburgh (2003),
Weather Data 1 hour networks Horel et al. (2002),
Lazarus et al. (2002)
WSR-88D 5 min
NEXRAD Level 1 km’ NWS Doppler Radar Network Kelleher et al. (2007).
Il
Streamflow Data 1 hour Colorado Division of Water

Moreno et al. (2012a)
Resources

Reflectivity values from the 3 radars were then andeed together and
transformed to 5-minute, 1-km resolution rainfaltes by selecting differe@-R
relations from feasible ranges Afandb found in the literature (see Table 3.2;
Morin et al. 2006; Nykanen et al. 2007; Habib et2&l08; Vieux et al. 2009) and
accumulated to hourly amounts. A hail threshold58fdBZ was applied and
reflectivity values below 10 dBZ were designatedhasing a rain rate equal to
zero. Hourly rain gauge data from seven sites wsexl to compute error and
skill metrics at collocated pixels with the radaoguct for summer (JJAS) 2004.

A subsequent analysis was conducted to derive th& appropriat&Z-R
relation by minimizing the sum of Root Mean Squ&teors RMSH and
maximizing the mean Critical Success Indexeé3SIl( (Wilks 2005) of

precipitation series at the seven rain gauges aewklLll collocated pixels.

Equation (3.1) defineBRMSE

64



Table 3.2 List of Z-Rrelations found in the literature.

Z-R Source
Z=200R"® Marshall and Palmer (1948)
Z=300R"* Fulton et al. (1998)
Z=300R"* Joss and Waldvogel (1970)
Z=79.1R*® Alfieri et al. (2010)
Z=250R"? Vieux and Bedient (1998)
Z=421R*"7=111R"*!7=58R""",
Z=165R"*17=303R*8 7z=246R**, Habib et al.(2008)
Z=280R*Z=156R"*® z=337R*
Z=250R*Zz=75R""® Bouilloud et al. (2009)
Z=486R*7=31R"",Z=313R* Prat and Barros (2009)
Z=655R* Morin et al. (2006)
Z=250R"? Vieux et al. (2009)
18 Y
RMSE :\/N;(Pt' -R) (3.)

where P! and R' denote respectively Level Il and rain gauge sinmetas
observations, at hourand rain gauge site Complementarily, Equation (3.2)
defines CSI from contingency tables that allow &sting categorical variables.

CSl - h (3.2)
- (h+f+m)

whereh; fi andm represent the number of successes, false alarmsnases
when Level Il precipitation values are used to miethe occurrence or not of
rainfall at specific rain gauge sitesThe objective functionl), represented by

equation (3.3),
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|(Ab)=L|[1-SUMRMSE) ) [ meardCSl)
72|17 max@um(RMSE) ) | max(mear{CSl,)) (3.3)

[(Ab) =2 [F,(AD)+ £,(AD)]

is thus maximized to obtain the best fit valuesAoandb. | balances the two
metrics sinceRMSE weights the presence of large precipitation déffiees,
whereasCSl emphasizes the number of matching events. Thatiars offy, f,
and | with A andb are presented in Fig. 3.3 as two-dimensional aonpdots
(This type of plot is used frequently in subsequamalyses). Notice how tHe
surface gradient decreases as bd#ndb grow. Additionally, the range df is
smaller tharf; and depends primarily dm The exponenb controls the rate of
change of theZ-R transformation in the logarithmic space and is wmmly
related to the type of originating rainfall systdeg., summer convective or
winter stratiform; Morin et al. 2006; Habib et 2D08). The two functionf and

f, exhibit a complementary behavior. High values lodé Z-R coefficient and
exponent result in [oMRMSE but at the expense of an increased number of fals
alarms and thus loweCSl This is due to the prevalent overforecasting
characteristic of small-depth precipitation eveloysLevel Il that are rather not

captured by the rain gauges.

We replicated this exercise for summers (JJASPBE2and 2006 using
the same rain gauges and found a similar functismdce fol. The consistency
among summers suggests that an appropriate se@s&ralation might be in the

region of 60 A< 700 and 1.k b<1.4.
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Figure 3.3. Contour lines of (afy, (b)f, and (c)l functions for different
combinations of coefficienty) and exponentd) for summer 2004 relative to
hourly rain gauges in the CFR.

As a result, a single seasonal relatibn700R 3 was selected as a
“reference” case to generate rainfall fields far @FR region and calibrate the
hydrologic model. We acknowledge that the seleatibthis referenc&-R
relation is influenced by the objective functiordghat different functions may
well lead to different ‘optimal’ values. Howevearfthe purposes of this study,
this procedure provides a fairly simple, quantvtand objective method from
which we can explore the impact of rain rate edfiomaerrors on simulated
hydrologic responses. Several other reasons sutiy@ouse of a singl&-R
seasonal relation: (1) Single relations are of fozakapplications by river
forecasting centers, (2) the similar topographid lamdcover characteristics in a
compact mountain block, (3) the capture of bothrstand inter-storm periods
that are important in hydrologic modeling, (4) firesence of summer convection
as one of the main rainfall generation mechanismis(8) the establishment of a

fair comparison between reference and default oipeia Z-Rs.
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Distributed Hydrologic M odeling

We use the tRIBS distributed hydrologic model tovestigate the
uncertainty introduced by differe@tR relations in four headwater basins. tRIBS
has been tested for continuous flood forecastingjffierent regions (e.g., Vivoni
et al. 2007b; Mascaro et al. 2010; Nikolopoulusle?011), including the CFR
(Moreno et al. 2012a). The model is able to inggsttially-varying terrain, soll
and vegetation fields (e.g. Table 3.1) as well astewrological forcing to
represent the surface-subsurface moisture dynamuiithin a system of
interconnected hillslopes and channel reaches.rdteadistributed nature, tRIBS
recognizes non-uniform surface properties represehy model parameters, per
information layers (e.g. soils, vegetation, top@img channel network) that drive
the energy and water balance equations at eachutatigmal element. Elements
consist of sloped columns of heterogeneous, aoisitisoil with an exponential
decay in saturated hydraulic conductivity (Bever82;,9Vivoni et al. 2007a).
Vadose zone dynamics is represented through atfin fronts, water table
fluctuations and moisture losses due to evapotraigm. A kinematic
approximation for unsaturated flow is used to cotapafiltration and propagate
moisture fronts in the soil column (Cabral et #@92; Garrote and Bras, 1995;
Ivanov et al. 2004; Vivoni et al. 2007a). Laterabisture redistribution in the
vadose zone and shallow aquifer are driven by grasli in surface and
groundwater topography. Water table dynamics isprdged from groundwater
fluxes, vertical recharge and exfiltration. Surfacenoff is produced by
infiltration-excess (INF), saturation-excess (SAgmpundwater exfiltration (GW)
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and perched return mechanisms, while routing igiedhrout by hydrologic
hillslope and hydraulic channel approaches. An ingra model characteristic is
the use of a TIN to represent a complex basin aulae the number of
computational nodes relative to the original datéhwwminimal loss in terrain
information (Vivoni et al. 2004). Additional detaibn the model characteristics
and formal numerical framework are provided in loaret al. (2004), Vivoni et
al. (2004), Vivoni et al. (2005) and Vivoni et 2007b).

Model parameters describing the solil, vegetatibanael network and
subsurface aquifer control the hydrologic respdaosgorm and interstorm
periods. Table 3.3 describes the basin topograguilg, vegetation and their
associated model parameters obtained from Moreab €012a), who conducted
a calibration strategy using a combination of maand automated approaches.
Calibration was made independently for each basimguthe Level Il product and
the reference relatioZ=700R">. The calibration method minimized tRMSE
of observed and simulated outlet hydrographs atijhdme steps. Fig. 3.4
presents calibrated and observed cumulative hydpbgrin each basin. RMSE
and Nash-Sutcliffe Efficiency (NS) values confirhat the distributed model is
able to capture the different basin responses/faiell, with positive NS obtained
at BUCK (0.48), FISH (0.50) and SVRAIN (0.53), hedtigh weaker values are
found at RALS (-0.54). Negative NS values are asegnence of model structural

errors and uncertainties introduced by the rairiéatiing and streamflow data.
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Table 3.3. Terrain and channel network characteristics atiiraded (*)
parameter values for the watersheds.

Buckhorn . South Saint Ralston
Pr operty/Par amet¢ Fish Creek .
perty Creek Vrain Creek Creek
ID BUCK FISH SVRAIN RALS
Stream Gauge |D BUCRMVCO FISHESCO SSVWARCO RALCRKCO
Total Area[km?] 350.5 40.8 35.1 117.3
Length of main
channel [k 45.6 9.7 12.6 25.8
Slope of main
channel [m/km] 26.2 70.5 42.3 32.1
Mean elevation [m] 2418 2858 3455 2517
Minimum/maximum 1583/3268 2284/3473 2858/4087 1847/3204
elevations[m]
Std. Elevation [m] 482 333 344 387
Mean slope [%] 28.0 28.2 30.0 29.2
Std. Slope [%] 16.3 19.9 26.7 17.9
Non-linear discharge 0.4459 0.4491 0.4074 0.4340
exponent, r [-]*
[an?,[ ock depth, B 1.26 1.05 2.84 1.66
Mean depth to
groundwater, U(Ny) 117 1.01 0.169 1.28
[m]*
Soloover 06  loam LA igam Bedrock TG loam  Loam Y
(75%) o (87%) 0 (44%) 0 % (34%)
Sat. hydraulic
conductivity, Ks 7.96 3029 17.18 2.04 8.16 22.38 25.76 18.64
[mm/h]*
Soil moisture at 032 037 035 0.07 057 056 052 058
saturation, &[-]*
Poresize
distribution index, 0.81 1.46 1.47 0.06 1.48 0.58 1.67 1.19
Aol |
Airentrybubbling /5 7045 8436 -221.80 -21.71 -804.97 -385.3B24.37

pressure, ¢[mm]*
Conductivity
exponent decay, f
[mm]*

0.0334 0.0253 0.00222 0.03063 0.00037

0.00096 B®36.00845
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Figure 3.4. Observed (black lines) and simulated cumulativérbgraphs (dark
gray lines) resulting from model calibration in bdrasin, with NS and RMSE
skill scores. Mean areal precipitation (MAP) isided from the hourly, 1-km
Level Il product using the referenZeR relation.

RESULTSAND DISCUSSION

Sensitivity of Integrated Hydrologic Response
The watershed responses resulting from the sampiBdrelations are
compared in terms of the outlet streamflow, theeaulythg runoff mechanisms

and the water balance components. Fig. 3.5 pretfemtzerformance of the outlet
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streamflow against the observed hydrographs asowoorines of three skill
metrics in theA and b space: Root Mean Square Error (RMSE), streamflow
Volume Bias and Pearson Correlation Coefficienthddigh it is well known that
the Z-R transformation obeys to a non-linear relation,rbjatic responses could
not necessarily preserve both error and correlatomctures when compared to
rainfall estimations independently. Three poirdsdnbeen added for comparison
purposes: the reference (rain gauge calibraZed00R>), WSR-57 Z=200R"9)
and NEXRAD Z=300R% relations. A few simulations in BUCK with low
values ofA are missing due to the excessive computationaladds for cases
with unreasonably high runoff generation (and edetlifrom further analysis).
The three metrics are complementary and help iiyetite impact of theZ-R
relation on the integrated basin response: RMSE wleeghts streamflow peak
errors more heavily, Volume Bias that provides tiac of simulated to observed
seasonal discharge volumes and the CorrelationfiCieet that indicates the
degree of temporal agreement of simulated and wbdenydrographs over the
entire time series.

In general, white areas and the dashed boxes irBEgorrespond to
good performances for each metric (i.e., low RM8&ume Bias near unity,
high Correlation). Better performance is found iregion in the vicinity of highf\
andb that tend to produce smaller runoff volumes (B&ss than one). In
contrast, areas with darker shades associatedtepperformance are generally
linked to a combination of low and lowb values with excessive streamflow that
overestimate total discharge volumes (Bias muchtgrehan one).
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Figure 3.5. Contour lines of streamflow metrics at BUCK, FISRALS and
SVRAIN for differentA andb values. Locations of the reference (circle), WSR-
57 (triangle) and NEXRAD (square) relations arevato

The resulting hydrologic uncertainties and skdarespond well to the
objective function I) of the radar rainfall errors (Fig. 3.3c) for @ifent Z-R
relations, in particular for streamflow RMSE andlMoe Bias. In most cases, the
reference (circle), WSR-57 (triangle) and NEXRARjWare) relations lie near
areas of good performance, but the WSR-57 and NEXRf\ations overestimate
discharge volume (Bias greater than unity) and hmaer performance (higher

RMSE) than the reference relation, except in SVRMMere snowmelt drives the

basin response (Moreno et al. 2012a). This basialysis suggests that
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operationalZ-R relations are capable of introducing consideralvieertainty in
flood forecasts for the CFR.

Differences in the magnitude and spatial distritnutof rainfall from each
Z-R relation may also condition the runoff mechanismghe basins. Fig. 3.6
presents the fraction of the outlet streamflow wodufrom each runoff type. The
triangular legend shows combinations of the thremidant mechanisms (with
vertex colors): INF (red), SAT (green) and GW (BluBifferences in basin
properties and model parameters yield variatiorthénrunoff composition across
basins, with BUCK and RALS consisting primarily iNF and SAT, SVRAIN
composed of GW and SAT, and FISH having a mixtdrallotypes but mostly
GW and SAT (Moreno et al. 2012a). The precipitatiorcing from eachZ-R
relation leads to variations in the contributedgamtions. Generally, low values
of A andb, resulting in large rainfall volumes, tend to ingeasaturation-excess
runoff (SAT) as the wetter systems develop shallowater tables that interact
with the surface, particularly near channels. Intcast, high values &k andb do
not seem to introduce large changes in runoff geiter mechanisms at BUCK,
SVRAIN and RALS, indicating that rainfall underesttion is not a significant
factor for changing the type of prevalent runoffamanism in these basins. At
FISH, however, high values @&f andb lead to a slight decrease of both INF and
GW due to less intense rainfall events and a dsheul recharge. Across all
basins, the reference and operatiodaR relations (WSR-57 and NEXRAD)
produce similar runoff mechanism proportions, desgheir differences in
streamflow RMSE.
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Figure 3.6. Fractions of runoff mechanisms for eatiR relation at the four
basins represented by color combinations. Contoes Icorresponding to RMSE
are shown for reference. Except in FIS&50,b=1) where it reaches 99%, the
perched return contribution is <3% and is excluded.

The seasonal water balance may also vary accotditig precipitation
forcing from the differenE-Rrelations. Fig. 3.7 presents contour lines of wate
balance componentA%/At = P — ET - R as a function oA andb for the
simulations At = 4 months), wherdSis the change in storage estimated from
basin-averaged precipitatioR)( evapotranspiratiori(T), and outlet streamflow
(R). Reference values for each water balance compaoerespond to black
circles in Figure 3.7. Due to the increased enargylability during the summer
season at low and mid elevation lands (e.g. BUCBH;IRALS), ET.s tend to

present similar or slightly larger values thag. A hus, negative changes in

storage are required to supply a fraction of tiyh litmospheric demand.
75



BUCK FISH RALS SVRAIN

SNV, Y \ W\ \

i . \\\ \

4 A SO X '
i S

1+ r 1
50100 200 300 400 500 600 70050100 200 300 400 500 600 70050100 200 300 400 500 600 70050100 200 300 400 500 600 700

A A A

T T T — C T T T T LT T T T [T T T
P(mm)100 265 500 1000 1300 P(mm)220 310 500 2000 4500 P(mm) 160 210 800 24003000 P(mm) 162 4001000 2400 3000
PP, 04 1 19 38 49 PP, 07 1 16 64 145 PP, 08 1 38 114142 PP, 09 23 57 165 171

Precipitation (mm)
o
=

= i 2
£ E \b \3 N !s S: L 1.9
E 1.8
5 | % 1.7
= . 16
S bis 15b
[*} 14
]
5 13
2 1.2
ol 1.1
1= = - Fq
:>: 50100 200 300 400 500 600 70050100 200 300 400 500 600 70050100 200 300 400 500 600 70050100 200 300 400 500 600 700
A A A A

[T T — [T T e — [ [ T
ET(mm) 336 339 346 356 360 ET(mm) 265 309 390 430 ET(mm) 265 282 340 400 430 ET(mm) 76 79 130 170 190
ET/ET, 0.99 1 1.02 1.05 1.06 ET/ET,0.86 1 1.26 1.39 ET/ET, 094 1 1.21 142152 ETET, 0.96 1 1.64 2.152.40

1.9
1.8
17
A )
15b
" 1.4
1.3
12

1
100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700
A A A

Runoff (mm)

[T T T - (T T (LT (T —
R(mm) 2.6 10 150 500 850 R(mm)7.523 600 1600 4000 R(mm) 3.2 7 400 1200 2200 R(mm) 246 400 1200 2200 3200
RR, 026 1 15 50 85 RIR, 03 1 261 69.6 1739 RR, 0.5 1571 1714 3143 R/R, 09 1.4 43 79 114

o
@

W
: \ \s |

1
100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700
A A A A

(T L — (T — [T — (T LI —
AS(mm)-135 -84 0 100 350 AS(mm)-50 20 80 200 280 AS(mm).110 -50 200 350 500 AS(mm)-440 -360 -280 -120 -60
ASIAS,, 16 1 0-1.2 -42 ASIAS, 25 -1 -4 -10 -14 ASIAS, 1.4 0.6 -25-44 63 AS/AS,, 24 2 15 06 03

1

Change in Storage (mm)
>

Figure 3.7. Contour lines of seasonal water balance comporientsfferent @,

b) combinations: precipitatiorPj, evapotranspiratiorE(T), runoff (R) and change

in storage AS). Two gray scales are provided: actual valuesnfim) and fraction

of the reference (ref) value (-). Contour lines lateeled with the actual values.
Consistently, values d?¢; show that, except by SVRAIN where snow

melting processes prevail aRd: exceed$ e, runoff production during the

summer season is, in average, smaller E#kg by one order of magnitude.
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Variations ofP andRin theA andb space follow the patterns identified in the
streamflow evaluation: (1) overestimationfo&indR for low A andb, and (2)
underestimation d? andR for highA andb. This is more clearly observed by
inspecting the scale /Pt andR/Reet, WhereP,es andR.es are values for the
reference relation. Overdi/P. ratios are one order of magnitude smaller than
R/Ref showing that changes in precipitation induced lffetBntZ-R are
significantly magnified by watershed changes ieatnflow. Variations ifeT
exhibit different patterns for each basin and adovange of differenceE{l/ET,es
ranges from 0.86 to 2.40 across basins) in thesstam settings. As a results
is typically positive in areas of oy andb (water is accumulating in the
subsurface during season) and negative in regibniglo A and b (subsurface
water is decreasing). SVRAIN has a different betigwvith relatively lowET,
highR and negative!S as this high-altitude basin has a strong snowmelt
component during the summer (Moreno et al. 2022&f), typically cooler
summer temperatures and, generally, a lower evapem@emand. An inspection
of the operationaZ-Rrelations indicates that WSR-57 and NEXRAD relasio
exhibit increasedP that is seldom completely consumedilyand whose

remnant is converted inl® and4S.

Radar Rainfall Error Propagation to Hydrologic Response

The propagation of errors introduced by tHeR relation into the
hydrologic response of each basin is assessedveetatthe reference case. Fig.
3.8 presents the variation of a streamflow metgg, obtained as the outlet

discharge RMSE between eaffR relation and the reference case with a rainfall
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metric, m,, defined in a similar fashion for the mean areacppitation. Thus,
each point represents the error of eZeR relation with respect to the reference
case,used here as a point of comparison since it waseatkria calibration with

rain gauges. For each basin, a power law regressitire formqg, =Um’ is fitted

to N points above a threshold in hydrologic uncertaiy, represented by the
dashed lines. Points excluded from the regresdiefoy the threshold lines),
whoseq; are smaller or equal than values provided by d¢ferenceZ-R relation,
produce hydrographs that can be divided into twaugs: (1) those with a small
m, sinceA andb are close to the reference case, and (2) thoseaniargenmm
due to highA andb values, but whose streamflow errors are dampegeaddulel
parameters and initial conditions. For the remarihpoints, a simple scaling
regression that minimizes residual errors betwedinsted line and raw data,
indicates that rainfall uncertainties are logariitaiy transmitted to streamflow
errors. The slope of the relation betwesrandg, has a limited range of= 1.18
to 1.51 across all basins despite their differemdttions. Values o¥ greater than
unity indicate that hydrologic uncertainty (e.greamflow errors introduced by
the Z-R relation) is amplified relative to the rainfallrers, with a greater
nonlinearity above the threshaldpresent for the higher valueswin RALS and
the lowest nonlinearity at SVRAIN.

Since hydrologic uncertainties are typically larg@rflood events, it is

useful to identify how streamflow errors vary wittscharge magnitude.
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Figure 3.8. Scatterplots and power law regressions betweenlRM$nean areal
precipitation (n) relative to the reference camed RMSE of outlet streamflow
(o) relative to the reference case foandb combinations. Horizontal dashed
lines are drawn to separaeR relations that do not represent large changes in
streamflow errors. Values below that thresholdrereconsidered.

Fig. 3.9 presents scatterplots of the daily (24thgamflow errorsgya,, of
threeZ-Rrelations (WSR-57, NEXRAD and an extreme casg=sf00R° that
overestimates precipitation) with respect to tHeremnce case. Streamflow errors
are organized as a function of the maximum dasglgargeg., such that each
point represents a different day in the seasorei@émathematical adjustments

were tried but as data paiig,( 024) Span several orders of magnitude, power law

regressions resulted in better performances tteréi@se two variables..
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Figure 3.9. Scatterplots and power law regressions betweemgx@mum daily
discharge @) and the daily RMSE of reference and simulateddghphs ¢4
using NEXRAD (black), WSR-57 (red) and an extrerasegZ=200R"° (blue).

Parametersi(¢g) of relations in the forny,, = Aq? are found for each-

R that minimize residual errors between data andsaelfl regressions (see Table
3.4). The data suggest that the streamflow unegytatroduced by th&-R
relations follows a power law regression with but whosd?? evidence data
dispersion and poor adjustments in several cagesgefor FISH where, is a
good predictor of daily errors consistently acrédRrelations). Overall, data
distribution indicates that errors introduced bg ZhR relation increase when

forecasting floods of higher magnitudes duringgshienmer season.
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Table 3.4. Coefficients §) and exponentsy of the power law regressions of the
daily uncertainty and the maximum daily dischargg, (= Aq%). The number of

data points) and coefficient of determination of regressi&) (are also
reported.

Oy = A0
A p N R

BUCK

A=300,b=1.4 3.245 1.099 110 0.37
A=200,b=1.6 3.355 1.053 110 0.27
A=200,b=1.0 3432 0594 110 0.17
FISH

A=300,b=1.4 2362 0917 111 0.81
A=200,b=1.6 2290 0.870 112 0.80
A=200,b=1.0 2825 0901 113 0.59
RALS

A=300,b=1.4 1.103 1.017 92 0.67
A=200,b=1.6 0570 0764 99 041
A=200,b=1.0 81.08 1483 104 047
SVRAIN

A=300,b=1.4 0.140 0942 121 0.50
A=200,b=1.6 0.263 0.784 121 0.45
A=200,b=1.0 1324 0.696 121 0.35

Note that the WSR-57 and NEXRAD relations proviumilar errors
across the, range with exponentg) ranging narrowly from 0.78 to 1.1 in all
basins (thus similar slopes). The extreme c2s€@OR"") has the largest
streamflow errors and most dissimilar exponentesscthe basins. OthgrR
relations that overestimate rainfall are expecteldethave similar to the extreme
case. These results support the notion that r&ifiadrs introduced by th&-R
relation propagate in a nonlinear fashion to tiheashflow response, with higher

impacts for larger flood events.
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Distributed Hydrologic Response Errors at Seasonal and Event Scales

The spatiotemporal rainfall variability derived fesichZ-R relation should
also influence the distributed basin response wbarhbe assessed in terms of the
spatial patterns of runoff and the streamflow petliat internal locations. Fig.
3.10 shows correlation diagramsg of the spatial distribution of time-averaged
runoff rate (mm/hr) between eaZhR relation and the reference case in each
basin (Note that the lower number of points in BUSKue to a sparser sampling
of theA andb space due to computational limitations for thgdst basin). The
time-averaged runoff rate is obtained for periott®mrunoff is produced during
the simulation (lvanov et al. 2004). Positive ctatiens over the majority of the
A andb space in all basins demonstrate that diffefeRtrelations produce
similar time-averaged runoff patterns. High corielas (o > 0.5) tend to follow
the patterns identified for the streamflow met(iegy. 3.5) with a better match in
the upper left to the lower right portions of theandb space. Weaker correlations
(0 <p<0.2) are found at lovx andb for BUCK, RALS and SVRAIN indicating
that spatial variations in runoff production océor Z-Rrelations that
overestimate rainfall. Similarly, FISH and RALS éxbweaker correlations for
high values oA andb, where rainfall is underestimated with respedhto
reference case. Negative correlations in FISH desetere changes in the

presence of runoff patterns for Icdvandb as evidence of opposite spatial tends.
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Figure 3.10. Correlation matrices between the spatial distiing of the time-
averaged runoff rate from different combination@&a@indb and the reference
relation at the four study basins.

Discrepancies in the spatial runoff distributionyniee due to either subtle
variations in the geographic distribution of ralhfavents for differentZ-R
relations or, more likely, changes in the rainf@hgnitude for similar rainfall
patterns. For example, the operational WSR-ZZ200R® and NEXRAD
(Z=300R"*) relations show correlation values near unity egtdn FISH wherg
is somewhat lower, while the extreme cas&=200R"% has large spatial

differences in time-averaged runoff rate relativéhte reference case.
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Differences in runoff generation introduced b¥-& relation can also lead
to streamflow errors at internal channel locatitingt are characterized by an
upstream basin area (Vivoni et al. 2007b). Fig.13dresents streamflow
differences, as a specific error (SE), in termsanfRMSE between simulated
hydrographs of the NEXRAD relation (selected aegaample) and those of the
reference case, normalized by the basin afgagnd mean areal precipitation
(MAP) as:

£ RMSE
AMAP

(3.4)

Selected sites have upstream areas ranging frolrkébto the total
basin area across a variety of different catchrpesperties. The scale
dependence of SE reveals interesting patternanatli # (0.01 to ~1% of total
area), the low specific error is due to relatidelgge MAP that is unaffected by
areal smoothing and a limited RMSE between thedwym@iphs forced by different
Z-Rrelations. At intermediaté; (up to ~10% of total area), increasing mean
specific errors are observed along with largeratanns that measure dispersion
across basins of similar size. Intermediate-sizeins present a higher and more
variable RMSE between the NEXRAD and refereAdRrelations, as well as a
wider range of MAP as a result of areal smoothihgtorms whose size typically
does not cover the entire upstream area. At tlale scatchment properties play a
determinant role in either amplifying or dampenprgcipitation errors (Mascaro

et al. 2010Db).
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Figure 3.11. Seasonal relations between Specific Error anchlzasia in the four
study basins. Raw data (gray circles) were binayed (black dots and vertical
bars ast1 standard deviation). The symbol size indicatesstasonal mean areal
precipitation (MAP).

At large A; (10% to total area), low specific errors are cdysemarily by

how RMSEs are reduced due to the integration ptiggeof large basins where

the channel network transfer of the flood wave dwtes the flood forecast skill
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(Vivoni et al. 2006; Mascaro et al. 2010b). A semibutcome was obtained when
comparing the WSR-57 and the reference case (ootrgh

To further investigate the error scale dependeifig, 3.12 shows a
comparison of rainfall and runoff distributions astdeamflow hydrographs for a
storm event on 18-19 August, 2004, in BUCK. Resutse shown for the
reference, NEXRAD, WSR-57 and extreifieR relations. For each case, spatial
distributions correspond to the accumulations ofh2dinfall and 87-h runoff
production. In addition, hydrographs at four chdnleations show internal
variations associated with the mean areal pretipitan upstream areas, along
with the basin outlet. EacHl-R relation produces comparable spatial rainfall
patterns with maximum depths at storm cores on Mlestern part of the
watershed. Runoff production follows rainfall patte well since BUCK has
primarily infiltration-excess runoff (INF) with soencontributions of saturation-
excess runoff (SAT) along stream channels. Note tha flood forecasts at
internal sites follow anticipated increases inatnédow for larger areas. Internal
hydrographs are quite sensitive to @& relation. For example, the NEXRAD
relation exhibits 1.7 times more rainfall than tieéerence case, but 3 to 4 times
greater streamflow for internal sites. Spatial etéihces in rainfall magnitudes
introduced by th&-R relation can be significant, as shown by the ex¢rease.
These results indicate that, while sampling tHeR relation may not
fundamentally alter the spatial rainfall pattetre variations in rainfall magnitude
can generate large runoff differences that are ifieghldownstream in terms of
their errors relative to the reference case.
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Figure 3.12. Spatial distribution of rainfall and runoff acculations in BUCK
for selected-Rrelations for 18-19 August, 2004 event. Mean apeetipitation
and streamflow at three internal locations andbilitet are shown along with
available observed hydrographs.

Lastly, Fig. 3.13 presents the variation of SE viadisin area for the same

storm event in BUCK.
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Figure 3.13. Storm relation between Specific Error and basaador the August
18-19, 2004 event in BUCK. Raw data (gray circlegsje bin-averaged (black
dots and vertical bars a4 standard deviation). The symbol size indicates th
storm mean seasonal precipitation (MAP).

Three selected-Rrelations are shown (NEXRAD, WSR-57 and extreme
cases). At the event scale, the influence of MARSERS more clearly observed,
as internal basins receive variable rainfall dutimg event, thus influencing the
specific error. The characteristic patterns obthifoe the seasonal case (Fig.
3.11) are replicated here, with higher SE for imtediate-sized basins and
relatively lower SE for small and large areas. Hosvea separate type of scale
dependence can be distinguished for a small clo$tsub-basins that retain a low
SE over all areas. Thus, there are specific bagjions that not affected by the
spatial rainfall distribution or have catchmentgedies that dampen the
propagation of rainfall errors. Mascaro et al. @®)1found a similar behavior in a
different study site and attributed the effectub-®asin properties that reduce
peak runoffs such as high permeability, low slojpes] forested areas. When

aggregated seasonally, however, the scale dependé®E exhibits a smoother

variation.
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SUMMARY AND CONCLUSIONS
In this study, we investigated the propagation esfors from the

specification of theZ-R relation to distributed flood forecasts in four méain
basins in the Colorado Front Range. The regiomank to exert terrain controls
on summer convection and possesses an appreciabiben of flood events.
Given the widespread use of radar-derived rairgatiducts by the hydrologic
forecasting community, we postulated that use ob@erationalZ-R relation may
introduce errors that decrease flood forecastingl sk outlet and internal
locations. In evaluating the reflectivity-rainfatelations, we focused on the
rainfall properties at rain gauge sites in the CBR;the integrated hydrologic
response, including the outlet discharge, runoftima@isms and seasonal water
balance; and on the distributed streamflow resporadeinternal locations. An
emphasis was placed on identifying how distributagidfall errors propagate to
the distributed basin response by identifying tRkiestence of relations with the
mean areal precipitation, maximum daily dischange @atchment scale. This was
performed to generalize our results beyond singlarjzation radar observations
in the anticipation of new techniques or correctimethodologies (e.g., dual-
polarization radar). The results from the studydate the following:

(1) Calibration of the reflectivity-rainfall relan using ground rain gauges
resulted in an adequate rainfall performance ovenge ofA andb values. We
found a seasonal-R relation, Z=700R"3, that is valid for summer convective

events in the CFR over the three tested seasons.
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(2) The rainfall properties of eachR relation impact the basin response
in terms of the outlet streamflow, runoff mecharssand the seasonal water
balance. Rainfall differences in the WSR-57 and IRRD relations, relative to
the reference case, result in higher streamfloargygradual transitions in runoff
mechanisms, and large changes in the water balsiuée calibrating the model
to a differentZ-Rrelation may mitigate this behavior to some degoee analysis
supports this finding since the refere@c® case used was objectively selected.

(3) Errors in mean areal precipitation propagatesti@amflow errors
following a power law regression beyond a particullareshold. Similarly,
streamflow uncertainty is described by a power kagression with discharge
magnitude. Both relations indicate that errorsodtrced by th&-R relation into
the basin response are exacerbated for large ltaonfédooding events.

(4) TheZ-Rrelation impacts the spatial distribution of thesim response,
including time-averaged and event runoff patteraswell as the discharge at
interior locations. Examples from the WSR-57, NEXRAnd extreme case
relations indicate increased spatial runoff progunctand higher streamflow at
both internal and outlet locations, relative to teéference case.

(5) A characteristic pattern was revealed for tales dependence of
specific errors in the thre&Rrelations relative to the reference case for seso
and event time scales. Intermediate-sized basime hegher and more variable
SE due to the similar spatial storm scale andrifieence of catchment properties

on the propagation of rainfall errors into streamwfl
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The results of this study are based on the useltabuted hydrologic
model calibrated during a summer season usinggdespolarization Level Il
NEXRAD 1-km, hourly product with a reflectivity-nafiall relation obtained from
comparisons to rain gauges. Since hydrologic diffees exist between the study
basins, model calibration was performed indeperigénmt each watershed. While
the model calibration was conditioned on the refee€-Rrelation, the
sensitivity to precipitation forcing is sufficiegtstrong to outweigh the
confounding effects of uncertainty in the modelgmaeters and initial conditions.
The distributed model was then used to study tbpaaation of errors introduced
by sampling differenZ-Rrelations relative to observed streamflows and a
reference simulation considered as the spatiadiriduted “ground truth”.
Overall, the study illustrates that a distributgdiologic model can serve as a
useful verification tool of quantitative precipiat estimates (Moreno et al.
2012a), in this case focused on the appropda®yelation for this mountain
setting. We highlight that specific streamflow esrexhibit a pattern in scale
dependence and that the use of an inapproi&teelation primarily impacts
intermediate-sized internal basins as compared télspatial scale of the
precipitation events. Such scaling behavior mayngheasomewhat for different
types of precipitation events in this and otheiarg, but presents insights into
the prediction the flood forecast errors as a fionodf basin area. We conclude
that flood forecasting efforts with radar forcimgmountain watersheds benefit
from establishing a site-speciffcRrelation for the season of interest using
comparisons with local observations. Use of a lgeadlibratedZ-R relation,
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even if derived from a few seasons of data, shsigidificantly reduce the
precipitation uncertainties associated with ZhR relation and how these

propagate to the basin response.
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Chapter 4
SPATIOTEMPORAL LIMITS TO FLOOD FORECASTING IN MOUNAIN
CATCHMENTS UNDER SUMMER CONVECTION USING RADAR

NOWCASTING AND A DISTRIBUTED HYDROLOGIC MODEL

INTRODUCTION

Flood predictability in mountain watersheds is tvajing due to our
limited capacity to accurately forecast precipgatin time and space, the short
response time of watersheds, and the inherent tamaiges present in hydrologic
modeling. Nevertheless, the use of Quantitativeipitation Forecasts (QPFs) in
hydrologic models of these settings can potentialigrove streamflow
predictions, as in other regions (Pessoa et aB;1@&rner et al. 2000; Collier
2000; Berenguer et al. 2005; Vivoni et al. 2006ia0f et al. 2007; Collier et al.
2007). When QPFs are unavailable, the maximumtiessifor flood warnings is
the basin response time, a value dependent onatersiied characteristics and
antecedent soil moisture conditions. Nonethelégsekpected hydrologic gains
in prediction time from QPFs are limited by the lijyaof forecasted fields. Under
warm-season convection, the short life span and ewlution of these systems
dictates the accuracy of rainfall forecasts ateddht lead times (e.g., Ganguly
and Bras 2003; Lin et al. 2005; Sharif et al. 2004\us, uncertainty about future
rainfall distribution could limit our ability forlbod forecasting due to the
sensitivity of runoff production to rapidly-changiprecipitation fields (Vivoni et

al. 2006; Reed et al. 2007; Moreno et al. 2012a).
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For warm-season convective systems, radar nowatastsort lead times (0
to 3 h) are often found to be the most skillful hoet for producing QPFs at high
spatiotemporal resolutions (e.g., Collier 1991;dday 2000; Ganguly and Bras
2003). The term radar nowcasting refers to a nurabdifferent algorithms that
utilize sequences of rainfall fields to derive stanotion vectors applied to
subsequent imagery (e.g., Dixon and Wiener 1998gGlg and Bras 2003;
Bowler et al. 2004; Li and Lai 2004; Vivoni et @D06; Van Horne et al. 2006;
Mass 2012). Several techniques are able to congpora growth, movement and
dissipation, while providing quantitative measuvéprecipitation amounts. The
availability of weather radar networks has exparnttiedapplications of
nowcasting techniques, primarily for regions whits@ errors from Quantitative
Precipitation Estimates (QPEs) are well unders{@matenguer et al. 2005; Sharif
et al. 2006). In mountainous areas, however, angdle remain in the derivation
of radar-based QPEs (e.g., Yates et al. 2001; Vertal. 2007; Moreno et al.
2012a) and thus in the use of radar nowcastingitquabs for predicting the
timing, location and magnitude of precipitationigsut to hydrologic models.
Uncertainties inherent in QPFs are a consequentte dfifficulty to forecast
rainfall fields for extended periods given thatragblation functions lose their
correlation structures at large lead times (e lgaribet al. 2006; Vivoni et al.
2007).

Distributed hydrologic models are designed to aardlly ingest high-
guality rainfall estimates and forecasts, allowiogreal-time flood forecasting
using information about future rainfall (GarrotedaBras 1995; Liu et al. 2005;
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Vivoni et al. 2006; Collier 2007). Evidently, asany other type of model, prior
calibration plays a fundamental role in maintainimyglrologic uncertainties small
during a flood forecasting exercise. Thus, theritisted nature of these types of
hydrologic models permits exploring the spatialgandies of the basin response
relative to the spatiotemporal evolution of pretpon forcing. For example, the
streamflow properties can be assessed as a furaftivatershed area to
understand the scale-dependence of the flood fstrekd! (e.g., Vivoni et al.
2007a,b). In addition, distributed modeling offarsopportunity to quantify the
propagation of rainfall errors into the spatial tgldgic response and how these
interact with basin properties. As a result of llde spatial data on topography,
soil and land cover properties, differential bagisponses to meteorological
forcing can be assessed over a range of conditicmsegion (Germann et al.
2009; Mascaro et al. 2010b; Schroter et al. 2011).

Previous studies have explored the limits to flpoedictability through the
use of distributed hydrologic models. For examBlesenguer et al. (2005),
Vivoni et al. (2006) and Sharif et al. (2006) usdying rainfall-runoff models to
evaluate radar nowcasting techniques in differetitrgys. The authors coincide in
finding a decrease in the flood forecasting skithwainfall forecast lead time, in
accordance with theoretical models (Lin et al. 20T the other hand, while
flood scaling theory is advanced in hydrology (e@gden and Dawdy 2003;
Gupta 2004), only a few attempts have been maderayzing the scale-
dependence of flood forecasting skill by inspectiesults at a range of internal
watershed sites. For example, Benoit et al. (2g0@ntified hydrologic errors of
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radar nowcasts at 23 nested sites for a major #vedt, while Vivoni et al.

(2006) investigated the flood forecast skill froadar nowcasts at 15 internal sites
during two separate flood events. Both studiesadein observing a reduction

in the total forecasting error with increasing bamiea as a result of the
integration of different hydrologic processes ia thatershed. Despite these prior
efforts, the spatial and temporal limits to floa@giictability in mountain
catchments experiencing summer convection are ralyrenknown.

This study seeks to quantify flood predictabilising the TIN-based Real-
time Integrated Basin Simulator (tRIBS, Ivanov let2004a, Vivoni et al. 2007a)
as a tool to generate flood predictions using radarcasting QPFs. With these
coupled simulation tools, we quantify the relatafrflood forecasting skill with
lead time in a set of mountain basins that spaaratwerders of magnitude in
catchment scale. We pose the following questioe: fRrods at certain catchment
scales more predictable due to the integratiorhgéigal processes and rainfall
errors with contributing aredfso, then differences in runoff production resgt
from varying hydrologic processes at different esaletermine flood
predictability in mountain catchments. We condugatwork in a set of headwater
basins in the Colorado Front Range (CFR) due tphysiographic complexities
and recurrent warm-season convective storms amdassociated flood hazards.
We analyze the skill of ensemble precipitation éass in light of observed
rainfall fields derived from a calibrated radar guat for two storm events.
Subsequently, we investigate the distributed flmydcasting skill and its
dependence with lead time and catchment scal&éoetnsemble rainfall fields. In
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addition, we investigate how precipitation errams ansmitted to streamflow
uncertainty at internal nodes as a flood wave gsggs downstream. We find
characteristic patterns in flood predictability goved by the varying watershed
characteristics in the CFR through an analysisefstcale-dependence of flood
forecast errors. Finally, we discuss the limit$lobd forecasting with radar

nowcasting in mountain environments.

METHODS

Study Region and Water shed Char acteristics

The Colorado Front Range in the north-central Galor U.S.A, was
selected for its availability of hydrometeorolodigg#ormation and historical
potential for floods during the summer season (@gtersen et al. 1999; Ashley
and Ashley 2008). Regional data include high resmusub-hourly to hourly)
information from stream gauges (11 in total), ig@uges and meteorological
stations (7 in total) and NEXRAD weather radarsm(8tal), as shown in Figure
4.1. Large summer convective storms from May tdyeaeptember in the CFR
originate from air mass interactions with the maumenvironment. Moisture for
summer convection can have its source in the spicttbAtlantic, subtropical
Pacific or from precipitation recycling (e.g., Jrand Costa 1988; Collins et al.
1991). Storm events with larger intensities an@laegtents are more likely to

occur at mid and low elevations in CFR (Jarret @aohlinson 2000).
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Figure4.1. Colorado Front Range (CFR) location, elevationritigtion and
boundaries of eleven study watersheds: BuckhorelCf@UCK), North Fork Big
Thompson River (NFORK), Big Thompson River (BTHOM)sh Creek (FISH),
Little Thompson River (LTHOM), North Saint Vrain €&k (NVRAIN), Middle
Saint Vrain Creek (MVRAIN), South Saint Vrain Cre€R/RAIN), Middle
Boulder Creek (MBOUL), Coal Creek (COAL) and Rafstoreek (RALS). 30-m
Digital Elevation Model (DEM) was obtained from tNational Elevation
Dataset (Gesch et al. 2002). Seven hourly raingamng weather stations are
shown: RFRC2, RSOC2, ESPC2, LTER, BTAC2, PKLC2 @atkC2 with data
from the AMERIFLUX and Mesowest networks (Steentu2903). The
associated geographic coverage of QPF producttharttiree weather radars

(KCYS, KFTG, KPUX) and their 150 km coverage umiaelare shown.
As a result, eleven headwater basins distributettherast-facing slope of
the CFR, northwest of the Denver urban corridomenselected to quantify the
flood forecasting skill obtained from radar nowaagt Table 4.1 summarizes the

major characteristics of the selected basins wiindge areas ranging between

37.2 and 359.5 kfin The watersheds have considerable relief with mean

elevations from 2287 to 3455 m.

98



[yl

v0°€ 69'T L0'T 8S'T 89'T €91 65t 90'T L9°T see 0r1°s TSR ———
(1L) (8'8) e (r61) (€12 ((1540] (s°0) (1°9) (e o1 (Cay) (Bare %) ¢
pueiqniyS  puejqniys puejssein puejqniyg puejqniys pue[qniys pueiqniys pue[ssein) pue[sseln  pue[qnuiy§ IMnOuSY  SSB[D U0NEBIIZIA JolefA
(Cx20)] (€6 (€80 (T0) (€'L2) (192 (6°8t) (8€1) (Len (6'01) (L2 (vaae %) ¢
pue[sseln)  pue[ssein) pueqnIys pue[ssein pue[ssein pue[ssein 189101 pUBR[QNIYS ~ PUB[qNIYS  PUR[SSEID)  PUE[SSEID)  SSEI UONEIISIA Joley
(8°LL) (8°08) (876) (Teh)  (gopmoog T3 (1'09) (ToL) (6'59) (Lee) (roL) (va1e %) |
182104 18210 182104 182104 182104 pue[ssein 18210 18310,] 182104 182104 SSE[D UonE)IZIA Jole A
0€n
i : : ' 3 : i BIE ©
pues (sv1) 'z (Tso) (€50) (9Tn () opmeo] (gpueoy 7Y (r'¢) (vaxe %)
fureo] Yooipag YooIpag Yooipog yooipag weo| Yooipag weo| yooIpag € SB[ [10s Joley
FAC 6'1%) (9°09) o) F09 (L opuoy 69 g9 (90 @10 (waxe )
Apuesg Aweo weo weo| Apueg YooIpag yoolpag yooIpag Yooipag weo| T ssepd [1os aolepy
. (6°6€) . . (9°¢9) (€°LL) . . (rvL) (9tL)
Mmmw_ww Lol EmMN_ Mww_mm Emw_ \_Mwwsm (8¢) weoy Heol Heol “ mwwwm«o_ & WWW_MMB Heol Heol I ssep __AMM HMHN.WN_
Kpueg Kpueg Kpueg Kpueg Kpueg : ’
6Ll 80T v'€C L'9T L0g 6T 1'61 6'61 ¥'6T €61 €91 [%] adojS ‘pS
6T e €ve 0°0¢ €0 v'6¢€ L0g T8¢ v op 8'6¢ 0'8T [%] adoys ueay
L8€ L81 LEE re 620% LT (114 (4313 81v £sey 8 [w] wonesd[q ‘pIs
[w] suoneadp
YOTE/LYST — €81E/E661  SLOV/S6YT — L80V/SS8T  STTY/SEIT  ¥YEP/LTST — 09VE/S6ST  ELYE/H8TT  €vEP/L8TT  OTIP/SLYT  89TE/E8ST P ————
L1ST 60ST ySI¢E SShe S 743 20€€ L8TT 8687 ¥80¢ YLLT 811C [w] woneAdp ULy
. . . ) ) . o ) . ) ) [wny/w]
1'ze 06 v'8y C 6'€S L'6S LT S0L L9 v'8 79T N —
. . . ) ) . . . ) . [uny] Puuweyd
ST 8Pl 6l 91 9| L'ST |82 L6 (3 6'S¢ 95t R
CLIT TLE §'s6 I's¢ 66t 6’88 $'85T 80b §'65¢ L'0TT S0S¢ [;uni ] eaxy w30l
OOMAD TV 00dddD0D 0DdIndDod ODUVMASS ODdLSAIN OONATVLS ODANVIILT ODSHHSIA 00Ssd4gvld [O0): (CEERK:| ODANIONE ew-_xU wedns
STVI TVOD  TAOdIN NIVIAS NIVIAIN NIVIAN JWOHLT HSIA NOHLd >MIOAN ONd £yaadoag

"SpaysIajem Aprys ayj Jo SONSLIdNORIBYD UONEIdFaA pue [10s ‘orydeisodo] [ 'p dqel,

99



Given that some portions of their terrains are tedat high altitude, six
of the basins (NFORK, BTHOM, NVRAIN, MVRAIN, SVRAINMBOUL) have
a direct influence of snowmelt processes in themsanseason. The mean slopes
vary between 28 and 40% with high standard dewviatinduced by the presence
of vast areas of steep bedrock and the sudden ebamderrain features. Sharp
slopes, narrow valleys and predominant dendrititepas in the channel networks
often lead to rapid runoff responses and shortgiofeconcentration (see Table
4.1). Figure 4.2 presents the spatial distributibsoils and vegetation types,
elevation and stream channel networks in the wiagels Overall, the watersheds
are characterized by a heterogeneous mixture basdivegetation conditions.
Dominant soils across the watersheds are sandy, loam and bedrock, while
vegetation is characterized by the prevalence péumontane, subalpine and

alpine forest followed by lower montane grassland shrubland.

Quantitative Precipitation Estimates and Event Char acteristics

High resolution QPEs from volume scan reflectivatyservations were
obtained from the NEXRAD radars at Denver, CO (KF,TlRueblo, CO (KPUX)
and Cheyenne, WY (KCYS) over minimum and maximurure scan altitudes
of 3-km and 6-km, respectively. power law of the fornz = 70@R*® was
selected to convert reflectivity) to 5-min, 1-km resolution rainfall rateR)(
following an optimization procedure that minimizgsors with collocated pixels
at seven rain gauges (Moreno et al. 2012b). Sulesgiguthe QPEs were time
aggregated to 15-min, 1-km rainfall depths for @F bounding box region

shown in Figure 4.1.
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(a) Soil Types (b) Vegetation Types
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Figure 4.2. Spatial distributions of (a) soil types and (bysttion classes in the
CFR. Elevation contours and basin stream netwarkthe selected watersheds
are also shown. 30-m soil texture and vegetatipe tyaps were obtained from
the Soil Survey Geographic State Soil Geographiar(yand Melesse 2006) and
USGS National Landcover Dataset (Homer et al. 2004)

Two periods with warm-season precipitation in sums#904 (17-22
August) and 2006 (6-14 July) were selected for aotidg simulations using the
radar nowcasting and distributed hydrologic modgtwols. These storm periods
were chosen due to: (1) the simultaneous presdraaeserved streamflows across
most of the watersheds, (2) the development angigiation of intense
convective cells in different areas, (3) the presesf multiple rainfall events
leading to superimposed basin responses, andg4¢katively low contribution

of the snowmelt to the streamflow response. Théadistribution of cumulative

rainfall depth for the two storm periods is showrrigure 4.3.
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(b) Jul 6-14, 2006 Storm depth
W, (mm)
- .ﬂq

Figure 4.3. Spatial distribution of cumulative precipitatiom a) August 17-22,
2004 and (b) July 6-14, 2006, as measured by tkellleproduct at 5-min, 1-km
resolution over the CFR.

The simulation windows were defined in a mannet tihe observed
precipitation and hydrograph responses are fulbturad across watersheds. The
first period, henceforth called “Storm 2004, ssairt Aug 17, 2004, 09 LST and
consists of several showers occurring during thoesecutive days over different
areas that triggered streamflow responses extefridingearly 125 hours in the
largest watersheds. A series of thunderstorms mireetd west to east and caused
heavy precipitation during the afternoon hourst28 LST), while scattered
convection was also observed in the lower zonglseohorthernmost basins
independently of the main storm cores. Most oftteavy rainfall was
concentrated in the northern basins (BUCK, NFORKHBM, FISH, LTHOM),
although observed hydrographs show responses ¢atalhments. The second

storm period began on Jul§62006, 22 LST (“Storm 2006") and consisted of
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three main cores of convection occurring durindedént days primarily in the
afternoons and some rain extending into the eveimings. A prevalent storm
motion direction was observed from the south. Tlseen sequences generated
flood responses in most of the study basins extgngip to 160 hours in some
cases and were more evident in NVRAIN, MVRAIN, SVRAMBOUL, COAL

and RALS located in the southern region.

Quantitative Precipitation Forecasts and Radar Nowcasting M ode

The NCAR Thunderstorm Identification, Tracking, Ayss, and
Nowcasting (TITAN; Dixon and Wiener 1993) algorithwas used to generate
short-term radar nowcasting QPFs over the CFR .aldnarithm allows for real-
time automated identification, tracking, and shertn forecasting of
thunderstorms based on volume-scan weather ratiarAla optimization scheme
was employed to match observed storms at one tistarice with those at a
following time, with geometric operations to deattwmergers and splits. The
short-term forecasts of both position and sizebaised on a weighted linear fit to
the storm track history data. This methodology mtes the framework necessary
to identify storms within three-dimensional radataland to track them as
physical entities (Dixon and Wiener 1993; Joe e2@04). Due to the number of
parameters used in TITAN for controlling forecasigerties, we generated a set
of nowcasting ensembles consisting of 27 membarfopecast lead time.
Ensemble QPFs were produced at a fine resolutim(115-min) for lead times
between 15 and 180 minutes (15, 30, 45, 60, 90, 12@nd 180 min). We varied

the following TITAN model parameters within feagbbnges to generate each
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ensemble for each lead time: (1) minimum storm €lfe 20, 30 krf), (2)
tracking forecast weight rates (0.1, 0.25, 0.5y @) reflectivity dual thresholds
(5, 25, 45 dB).

The extended-lead forecast mode proposed by Viepal. (2006) was
used to generate QPFs using available radar oligsrsaln this mode, we
eliminate the assumption of no future rainfall wg\pding nowcasting fields at a
single rainfall lead timeT() over a flood forecasting window defined betweles t
start of observed precipitatiof, andt; + Tg, the flood forecast end time. As
shown in Figure 4.4, the forecasting tine)(is discretized intd/Attime steps,
whereAt represents the time step at which forecasts sveds As an example,
Figure 4.4 show3r = 2T, for clarity. Normally, manyf, intervals are contained
within Tg. Thus, a forecast starting at the tiifer a lead time T ) uses th& /At
most recent historical data (QPES) to extrapolageptecipitation field
continuously forAt steps until reachingjr (At is 15-min here). Rainfall forecasts
(QPFs) of the same lead timEg ) are assembled in a continuous manner
separated byt intervals. This ensures that each available QREtiapolated
into a QPF with the same skill specified by an ta lead time (Vivoni et al.
2006). By increasingy, the time displacement between the QPEs and magult
QPFs is enlarged. Precipitation forecasts thatghanth lead time are expected

to influence flood forecast skill at basin outlatsl at internal watershed sites.
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Figure 4.4. Schematic of radar nowcasting using the extendad-forecast
mode. Gridded QPFs are continuously available et &me step\t over the
forecast periodr. In this example, nowcasts are issued with a leadTi = 4At
by using theTg/At most recent QPEs. Dashed arrows have horizomgiHé

Distributed Hydrologic Modeling and Numerical Experiments
Model overview

We apply the tRIBS model to investigate the impactsadar nowcasting
on the flood forecasting skill in the study waterd$ in the Colorado Front
Range. The distributed model was developed fordfll@oecasting using
precipitation inputs at fine spatiotemporal resols and has been tested in
different mountainous regions (e.g., Vivoni et2807b, 2009; Nikolopoulus et al.
2011, Moreno et al. 2012a). tRIBS uses Voronoi gohs, derived from a
Triangulated Irregular Network (TIN), to represeasin characteristics with a
reduced number of nodes relative to the origing @divoni et al. 2004).
Surface-subsurface moisture dynamics at each catiqodl node are resolved
by tracking infiltration fronts, water table flu@tions and lateral redistribution in
the hillslope and channel system. Surface runafindustorm events is produced
by infiltration-excess, saturation-excess, perateddrn flow and groundwater

exfiltration mechanisms, while flood routing is flemed through hydrologic
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overland flow and hydraulic channel routing (elganov et al. 2004a). The
kinematic wave approach is used to model watespairt and dispersion in
natural channels whose geometry is defined thrgegimorphic relationships.
Water losses to the atmosphere occur through saydaration, plant transpiration
and evaporation of intercepted water.

As a physically-based model, tRIBS is able to ingpstially-varying
terrain, soil and vegetation properties, as wel@iotemporal meteorological
forcing, to reproduce hydrologic process evoluticales ranging from
hillslopes to large river basins. tRIBS can util@PFs from radar nowcasting to
generate streamflow forecasts at the basin outlbbainterior or nested sites. As
a result, improvements in flood forecast skill slddoe expected as the rainfall
nowcast lead time is added to the watershed resgans, a convenient
advantage for purposes of early flood warningstHeausrgains in computational
efficiency of ensemble simulations can be achidhieaugh the use of parallel
computations that assign interior sub-basins teiht computer processors in a

high performance computing cluster (Vivoni et &112).

Model parameters and initialization

The distributed model requires parameters desgrithia surface,
subsurface, vegetation and channel charactertbt<ontrol the hydrologic
response to storm and interstorm periods. Sodrmaters describe hydraulic and
thermal properties at the soil surface and theiatian with depth. Primary soil
parameters are the saturated hydraulic conduciiifyand its decay exponent

with depth {), the ratio of horizontal to vertical conductieisi A), soil moisture at
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saturation @), residual soil moisture conteré), pore-size distribution index
(Ao), air entry bubbling pressuréH), thermal conductivityKr), volumetric heat
capacity Cs) and the depth to bedrocR)( In addition, vegetation parameters
control interception and evapotranspiration proeggsr different land cover
types. Characteristic vegetation parameters aeetfimughfall coefficienty),
canopy field capacityg), drainage rate coefficienK], drainage exponeng), and
average stomatal resistancg),(surface albedaj, optical transmission
coefficient Ky), and vegetation heighitl() and fraction ). Model
parameterization also includes specifying hillslape channel properties
controlling routing: Manning roughness coefficiénd), hillslope velocity
coefficient C,) and exponent}, and channel width-area coefficiemts] and
exponent ().

In addition, the model requires specification cditsqly-distributed initial
conditions that characterize the soil moistureestéhese are particularly critical
for flood forecasting as the effect of initializati is not dissipated in short
simulation periods. An assumption of hydrostatiaikorium allows inferring soil
moisture profiles from the depth to the groundwédéte (lvanov et al. 2004a,b).
This can be derived using a number of approacheasid study, a long-term
drainage experiment was conducted in each watefsheding the procedure
outlined by Vivoni et al. (2007a). Drainage expeznts start with fully-saturated
basins that are allowed to drain for a long pe(id@tyears) without weather or
rainfall forcing, leading to hydrographs that arequely controlled by soil,

channel network and geomorphic characteristicadi¥idual watersheds. As a
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result, the simulated instantaneous outlet dis@saf@,) are related to model-
based estimates of the spatial mean depth to gnated (N, through rating
curves relating those variables (e.g., Vivoni e2@D8; Moreno et al. 2012a). The
availability of multiple groundwater depth mapsasated with specific outlet
discharges allowed selecting a set of feasibleagoan (10 per basin from wet to
dry conditions) folN,: corresponding to percentiles of the exceedendaafibty

of the observed discharge at each basin streanegaugummers 2003-2006.
The use of exceedence probability of the obseriszhdrges offers a set of
realistic streamflow values that are uniquely edato spatially distributed

groundwater depths.

Model calibration and testing strategy

Hydrologic processes occurring in mountain catchsharerit a careful
analysis of model parameters and initial conditianthe storm event scale. The
approach in this study first evaluated the relaitmportance of individual model
parameters and initial condition during One-at-A€&i(OAT) analysis in several
watersheds (Moreno et al. 2012a). Results indicdiatoutlet streamflow
responses were principally controlled by a limised of parameters including the
initial conditions (Table 4.2). We found the initédepth to groundwategaNyy))
played an important role due to the relatively Elvalaquifer (Birkeland et al.

2003) and the presence of snow processes in sdasials.
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Parameters, other than those listed in Table 4ePe assigned to reference
values from the literature (e.g., Chow 1959; Be&®f2l Rutter et al. 1977; Rawls
et al. 1982; Shuttleworth 1988; Birkeland et alD20lvanov et al. 2004b;
Mitchell et al. 2004; Todd and Mays 2005). The Sleu€omplex Evolution
(SCE) algorithm (Duan et al. 1993) was then usesltomatically find values for
selected parameters and initial conditions witeiasible ranges of variation
reported in prior studies. Storm 2004 was seletdgubrform the calibration
through objective functions that minimized the Rbt®an Squared Error (RMSE)
between the observed and simulated streamflowct leasin outlet over the
defined period. Through the selection of Storm 2884 calibration event, the
distributed model parameters are tailored for fleme@casting purposes under
summer convective storms. Table 4.2 summarizesghees for the calibrated
parameters at each basin during Storm 2004, alatingte RMSE and Nash-
Sutcliffe (NS) efficiency scores, relative to theserved streamflow. Calibrated
parameter values differ among watersheds due bouhigue terrain, soil and
vegetation characteristics, and initial conditiansl fall within realistic ranges.
Unavoidably, parameters provide degrees of freedooompensate for model
uncertainties in a manner that differs from basibdsin. In addition to
comparisons with streamflow data, flood forecasshilj was assessed with
respect to the simulated hydrographs resulting f@Pf forcings that contain no

rainfall forecast errors.
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Figure 4.5. Observed (black lines) and simulated hydrograghsk(gray lines)
resulting from the model calibration at six selédbasins at 15-min intervals.
Mean Areal Precipitation (MAP) in each basin isided from the 15-min, 1-km
Level Il product. Uncertainty in parameter values a@nitial conditions is
represented by the light gray envelopes.

Figure 4.5 presents the observed hydrographs amdagions derived
from the calibration exercise at BUCK, LTHOM, NVRWJ FISH, MBOUL and
RALS as representative watersheds for both largeo, LTHOM), medium
(RALS) and small (FISH) basins and some with tHiiénce of snow processes
(NVRAIN, MBOUL). Similar results were obtained ftre remainder of the
basins. The top 10% of the parameters sets obt#medgh the SCE procedure
for each basin are represented by the gray enveliagle plots. Note that the
model is able to reproduce the distinct hydrolggtierns resulting from the
combination of rainfall forcing, watershed propestand initial conditions in each

individual catchment. For example, compare the éomgsponse times and
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extended recessions at large basins (e.g. BUCK. @R M), with the faster
time to peak discharge in small catchments (e §HRInd RALS). Furthermore,
note the important role of wet initial conditioleat amplify the total discharge
and delay recession times in watersheds with a fmsnowmelt signal (e.qg.
NVRAIN and MBOUL). Model calibration provides cod&nce to test the
science hypothesis relative to QPE forcing. Theselts indicate that the
distributed model is able to capture the differ@sponses fairly well with RMSE
ranging from 0.09 to 1.44 s, depending on the particular properties of
individual watersheds. The largest streamflow ersoe found in BTHOM and
NFORK where the model is unable to replicate tlyh tiase flows from summer
snowmelt processes not represented in this apiplicétut, see Rinehart et al.
2008). The remaining discrepancies can be expldgedodel structural
uncertainties, precipitation forcing and streamfioasurement errors. Flood
forecasts for Storm 2006 constitute an independerfication exercise that tests
the robustness of the calibrated parameters attrtessatersheds. During these
experiments, no parameters will be calibrated ang the initial condition will

be adjusted for the different year.

Nowcasting experiments

Rainfall and flood forecasts generated by the TITaM tRIBS models in
the extended-lead forecasting mode accounted ®niidel runs (8 lead times
and 27 ensemble members) per storm period in ezsih,dor a total of 4752
forecasts. The duration of each forecasting pgfiedwas 125 and 170 hours,

while the startt() and end{+T) times were August 1709 LST to August 2%
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14 LST, 2004 and July’"622 LST to July 1% 00 LST, 2006, respectively. A
hydrologic restart mode, at hours 75 and 30 forr8$a2004 and 2006, was used
in a manner that initial conditions and QPE forsingere preserved during the
ensemble forecasting periods. In addition, efficfeily-distributed hydrologic
modeling was achieved through the use of a higfopaance computing facility
at Arizona State University. The parallel capaieiitof tRIBS were used to assign
a relative low number of processors to each basin {otal). For the largest
watershed in this study, tRIBS issued flood foréxas a rate of 2.5 forecasting
hours per minute of computational processing. Haxeon average, the model
issued flood forecasts for the next 24 hours inomaute of computational time.
Thus, the parallel performance suggests that tregehwan be used in operational

forecasting environments.

RESULTSAND DISCUSSION

Regional Evaluation of Quantitative Precipitation Forecasts

The spatiotemporal properties of nowcasting QPfes the CFR are
assessed using two types of grid-to-grid verifmatinethods. These consider
ensemble members for each lead time in catega@@hluantitative analyses that
help elucidate the regional properties of the QRS respect to radar QPEs. The
first approach introduces a probabilistic analysiterms of the Probability of
Detection (POD), False Alarm Rate (FAR) and Crlt@access Index (CSl) from
contingency tables for distinct forecast thresh@@anguly and Bras 2003; Wilks

2006; Gochis et al. 2009).
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Figure 4.6. Radar nowcasting QPF skill as derived from corgimzy tables for
storm periods in 2004 (top row) and 2006 (bottom)rover the CFR relative to
the radar QPEs. Different precipitation threshatlies (horizontal axis) were
tested for various lead times (colored lines). Gatieal verification metrics
include the mean ensemble Probability of DetectiR@D, left panels), False
Alarm Ratio (FAR, middle panels) and Critical Susséndex (CSI, right panels).
Figure 4.6 illustrates the different evaluation nostfor the storm periods
in 2004 and 2006. A threshold of zero rainfall cades the success or failure of
the forecast given that rainfall is observed, iredefent of its magnitude. For
subsequent thresholds, successes are only acliidoegtasted precipitation is
greater or equal than the specified value. Botimsmeriods exhibit similar
results with lower forecast skill (low POD, high RAlow CSI) as lead time
increases at all threshold values. Nowcasting dkilériorates at a faster rate for
short lead times (e.g., between 15 and 45-minpagpared to the performance

change for longef, (e.g., from 120 to 180-min). The POD of rainfatcarrence

(when the threshold equals zero) is 0.6 in 20040akdn 2006, on average for all

114



lead times. However, a decrease in the forecaésskirres occurs for larger
events. The magnitude of this decrease depend=adrtiime, but 5 mm appears to
be the value after which no further decreasesilhaske observed. The underlying
cause for the rainfall forecast skill decreases witeshold value is the difficulty
to accurately estimate high magnitude precipitatieents that have less frequent
occurrences in the region. The second approaclasdd to quantify the
reduction in rainfall forecasting skill with leaidnie using the Root Mean Square
Error (Pr), Correlation CoefficientGC) and Mean Ensemble DifferendlEF)

between the QPF members and corresponding QPHsedefs:

DIFF :%i(ﬁ” ~QPE,) Oi=(1.2,3,..27}, (4.1)

i=1
where overbars represent spatial meaissthe forecast time,is the ensemble
member ana is the total number of membeBIFF can be interpreted as the
average difference representing under- or overasitoim of precipitation over the
region. Figure 4.7 presents these metrics as difunaf lead time for the two
storm periods in the form of boxplots that captime ensemble distributions. A
similar pattern in the variation of each metrichwigad time is observed in the
two storm periods, though differing magnitudes@esent. With higher lead
time, an asymptotic increase in foreddstand an asymptotic reduction@C are
found. In general, the spread among ensemble mandkrger for smaller lead
times for thePg andCC metrics. This is not the case DIFF where under- or

overestimations can average out to small standarhtions at small lead times.
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Figure4.7. Boxplot diagrams of ensemble precipitation foseckill as a
function of lead time for the Storms 2004 and 2060ér the CFR. Metrics include
the space-time averaged Root Mean Square Ergdr @@rrelation Coefficient
(CC) and Mean Ensemble Difference (DIFF).

The most noticeable decrease in forecast skill iscioayond the 30-min
lead time, the limit at which forecasts become les=ful. On the other hand, the
limit at which predictions no longer worsen appdarbe 150-min.The positive
values oDIFF and their increase with lead time indicates tadar nowcasts
tend to overestimate precipitation, thus increaiimgnumber of false alarms,
especially for large lead times. Precipitation tagting uncertainties are expected

to propagate into the hydrologic predictive slal, explored in the following

sections.

Lead Time Dependence of Flood For ecasting Skill
The rainfall error structures with nowcast leaddiare expected to be

reflected in the flood forecasting skill acrossiundual watersheds. Watershed
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characteristics, specified through the model don@anameters and initial
conditions, however, are anticipated to play a nolde hydrologic response so
that rainfall errors are not transmitted identigadi the streamflow forecasts
across the different basins. Figure 4.8 presertfidld forecasting skill at four
selected watershed and storm pairs through the Reah Square ErroQg),
Nash-Sutcliffe coefficientNS and Mean Ensemble DifferendelEFg),

evaluated at basin outlef3IFFq is defined as:

DIFF, =%Zn:(QSEJ ~QSE) O ={1,2,3,..,27}, (4.2)

whereQSFandQSEare the instantaneous forecasted and estimatest outl
streamflows at the time stegor thei™ ensemble memben;is the total number
of forecasted time steps. These watershed and g@nsexhibit representative
behaviors for other basins, whose patter@4mNSandDIFFq will be discussed
next. As a general rule, the flood forecastingl slécreases with lead time across
the metrics, although an asymptotic behavior isneaessarily observed for all
watersheds. This results from the variability ireamflow response for QPFs
with different errors due to the basin effects lmod timing and magnitud€r
andNSillustrate similar patterns for the same waterséed storm, but a slightly
different behavior is presented ByFFq with larger ensemble spreads at small
lead times. Consistent with prior analyset;Fqhas positive values in all cases

as a result of regional rainfall overestimation.
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Figure 4.8. Boxplot diagrams of ensemble flood forecast sglla function of
lead time for four selected watersheds (LTHOM, NKORVRAIN, SVRAIN)
during the Storms 2004 and 2006. Metrics inclugesgpace-time averaged Root
Mean Square Error (), Correlation Coefficient (CC) and Mean Ensemble
Difference (DIFk).

Both Qr andNSindicate that flood forecasting skill is no bettiean the
mean value as a forecablS< 0) for lead times greater than 30-min. This is
consistent with the QPF skill dependence on lead tindicating the critical role
of nowcasting errors on flood forecast skill. Twaeptions are SVRAIN and

MBOUL in Storm 2006 that preseNiSbelow zero after the 60-min lead time as a

result of the snowmelt influence on streamflow. dendifferent patterns are
118



observed for the variation of streamflé, NSandDIFFq with lead time. (1)
The ensemble mean grows asymptotically and intetifpieange increases with
lead time as observed for LTHOM and NFORK in St@®04 and is replicated in
12 of the 22 studied cases. This behavior occuenwainfall predictability exerts
a clear influence on flood forecasting skill, thpreserving similar functional
relations with lead time. Increases in ensemblpeatson are due to variations in
streamflow responses induced when precipitatiomtsvexceed hydrologic
thresholds, such as infiltration capacity. (2)ilrefof the studied cases, a similar
overall pattern is observed as in (1), but aftpadicular lead time (e.g. 120-min
for NVRAIN in Storm 2006), the interquartile randecreases slightly, possibly
due to a reduction in rainfall ensemble spreaddividual watersheds. (3) In the
remaining cases, a similar pattern to (2) is olesrexcept that both the
ensemble mean and interquartile ranges decreageaafertain lead time (e.g. 60-
min in SVRAIN in Storm 2006). This case occursdarall catchments under low
rainfall amounts or snowmelt-dominated basins wireeases in lead time do
not necessarily translate into streamflow errosummary, QPF errors play a
significant role on the functional relations betwd®od forecasting skill and lead
time that translate into their limited utility bayd 30-min, except in basins where
snowmelt is a major driver. However, watershedahitonditions and properties
induce different ensemble responses that shagertbBonal relations for long
lead times, no longer preserving the asymptoti@bien observed in rainfall

only. In the next section, the flood forecast skilassessed as a function of
catchment area to identify potential spatial limd$predictability.
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Scale Dependence of Flood For ecasting Skill

The impacts of warm-season rainfall variabilitythe CFR region are
explored through distributed measures of runoff iaternal channel discharges
to elucidate the potential relation between flooedgctability and basin scale.
Figure 4.9 shows examples of the spatial distrdsuaf total precipitation and
runoff from the QPE forcing along with the meanemble differences from the
QPF forcing at two lead times (60 and 180-min)Stsrm 2004 in LTHOM. Note
the location of storm cores in the north-centrat pathe basin might favor
increased runoff, but the maximum runoff amountsdbnecessarily overlap.
This indicates that basin properties (e.g., terséope, soil hydraulic conductivity,
initial soil wetness) play a critical role in thadin susceptibility to flooding. The
mean ensemble differences in rainfall and runa#farmarily positive in the
basin, indicating a general overestimation of g&iion and runoff amounts by
the QPFs and the flood forecasts derived from thesexpected, larger positive
differences in rainfall and runoff occur for lardead times (180-min versus 60-
min). More interestingly, the changes in the spadlistribution of forecasted
precipitation (Figs. 4.9 ¢ and e) with lead time arore dramatic than in runoff
(Figs. 4.9 d and f), as watershed characteristicd to dampen the rainfall
forecast errors. Thus, while the spatial distrimotand magnitude of QPFs show
changes with lead time, the expected differencémgin response are mostly
reflected in runoff magnitudes, while the spatiafterns remain constant in

response to static basin properties.
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Figure 4.9. Spatial distribution of total (a) rainfall and (noff at LTHOM
during Storm 2004, using QPE forcing; mean ensemiiffierence of precipitation
for (c) 60-min and (e) 180-min lead times; and measemble differences of

runoff for (d) 60-min and (f) 180-min lead times.
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These results suggest that rainfall forecast eam@ ot the only driver of
flood forecast skill across mountain watershedgHersame lead time. To
investigate this issue further, we selected chalmcakions corresponding to
different contributing areas within and downstreafnthe major storm cores in
2004 and 2006. Two basin groups were created ganeling to the major storm
locations for each period: 2004 (BUCK, NFORK, BTHOMSH, LTHOM) and
2006 (NVRAIN, MVRAIN, SVRAIN, MBOUL, RALS, COAL). kgure 4.10
presents the spatial scale-dependence of RMSHEendsted precipitationPg)
and runoff Qg) relative to the QPE and its derived flood foréc@ike symbols
represent the ensemble mean, while the vertical depict the ensemble standard
deviation. Three different basins (NFORK, LTHOM,\3&N) and two lead
times (60 and 180-min) were selected as representamples.

Results reveal that, althou@ir andQg increase with lead time in most
basins, a clear pattern is not present betviRgeand catchment areAd) that can
explain the growing dependence of the ensemble iQgamd its standard
deviation (or ensemble spread) wih Furthermore, no compensating or
amplifying behaviors in the ensemble mean or spagadbserved fdPr with
basin area that supports the scale-depender@g dhe growing trends iQr
with A are instead due to the dependence of the strearfdlecast errors on
flood magnitudes, which naturally increase withibasea, as noted by Moreno et

al. (2012b).
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Figure4.10. Rainfall and streamflow error propagation wittsinearea for three
basins and two lead times (60 and 180-min) duriiogn$ 2004 and 2006.
Symbols represent the ensemble mean, while theeakipiars are the ensemble
standard deviation.

This evidence points to the need to integrate platia characteristics of
rainfall forecasts and the corresponding patternsmoff production, that are

linked to watershed properties, to obtain a futktypie of the flood predictability in

space.

Scale Dependence on Ensemble Properties of Streamflow Errors
Spatial differences in streamflow errors due toiatams in rainfall and
basin properties can be assessed through the Bpe&cibr SB), defined as

(Moreno et al. 2012b):

SE= ﬁ , (4.3)

whereQg is the Root Mean Square Error in forecasted stileanrelative to
QPE-forced simulation at internal channel sitegatiarized by an upstream area

(Ac) and mean areal precipitatiodAP).
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(a) BTHOM Storm 2004

(b) LTHOM Storm 2004
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Figure 4.11. Relation between Specific Errd8E) and catchment aread in four
selected basin and storm pairs for a lead time36frhin. Gray circle size depicts
MAP, while dots and vertical bars show the ensemblamamdt1 standard
deviation of SE at each location.

Figure 4.11 presen8Eas a function oA at four representative
watershed and storm pairs for a lead time of 180-ifine selection of this lead
time enhances the visualization of the scale-degreryd though similar patterns
are observed at other lead times. Selected inteh@ainel locations span a range
of catchment areas and are nested along a dowmspaih from the storm cores
to the outlet in each basin. As illustrated in theases, the scale dependence of
SEreveals interesting patterns across all watersivtisa bell-shaped variation

with A.. This trend tends to be clearer in large basifidHBM, NFORK,

LTHOM, BUCK), whose watershed area can entirelytaggpthe occurrence of
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typical convective storms. Note tHdiAP (gray circle size in Fig. 4.11) can have
larger values at small and intermediate spatidescaut decreases with basin
area beyond approximately 100 %ras a result of the smoothing of precipitation
fields when integrated over large areas. Resullisate the presence of reduced
SEproperties at small scales, subsequent increasee mean and dispersion of
SEat intermediate-sized basins and posterior redingtnSEat the basin outlets.
We believe this pattern is intimately linked wittetspatial distribution of runoff
production within the watershed as dictated bytyipecal size of convective
systems over the mountains and the underlying slag¢er properties (see
Appendices E and F).

To help interpret these results, Figure 4.12 sh®kSE,.x and their
correspondingd ¢gmax values, for the same watersheds in Fig. 4.11, thigh
different symbols representing distinct lead tin®s/SEaxis the ratio between
the SEand the maximurBE (Sk.y) across scalder the same lead time and
watershed-storm paiSE/Skaxvalues are normalized and preserve the patterns
with Ac shown previously. The estimation gfg..xfollows an analogous
description for each basin-storm pair and lead .timeinteresting pattern is
observedwhich is in accordance with preliminary observasiam runoff
production areas and rainfall distributi®@E/SEk..xhas a proportional relation
with @ gnaxthat is replicated for all lead times. Thus, alieake watershed with
¢ gmaxclose to 1 that present high runoff productionsltenexhibit higher errors

and more limited flood predictability.
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(a) BTHOM Storm 2004 (b) LTHOM Storm 2004
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Figure4.12. Normalized Specific ErrolSE/SE.y) as a function of normalized
runoff coefficient ¢ ¢nay for all lead times in four selected basin andratpairs.

These cases occur for intermediate scales wherkiltrgeographic cover
of the storms is superimposed on the basin aregsAppendix E). Conversely,
low and intermediated ¢hax Values can be attributed to small and large basin
areas, whose errors are smoothed by watershed ctérdstics, the spatial
aggregation occurring in the mean areal precipitatand the more limited
presence of runoff production in these areas. d@iverplize the patterns across

watersheds, Figure 4.13 compiles the ensemble fidaand standard deviation

(o) of normalizedSE for three different basin groups organized by Eimareas
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for coincident storm periods. These results indichat at smal”; (0.1 to 1% of
total area) a lows and o are present. This due to a relatively larg®AP that is
unaffected by areal smoothing and by the si@allas watershed characteristics
mitigate the impact of QPF errors. At intermediatgup to 5 or 10% of the total
area, depending of the basin), increageahd o are observed as this scale range
corresponds to the typical size of warm-season ecixe systems in the region
that lead to intensified runoff production in theseas (see Appendices E and F).
Sub-basins of this size present a higher and mar&éahle Qz under heavy
precipitation. Under these conditions, watershearatteristics, such as areas of
low permeability and high slopes, trigger varialbdenoff and streamflow
responses. At largé. (from 10% to total area), lowex and o are caused
primarily by a significant reduction iQr due to the integration effects of the
channel network as the flood wave propagates (Viebal. 2006; Mascaro et al.
2010a), but also by the reduced fraction of rupoéfducing zones as a fraction of
total area, which also decreases the total unogytal\s a result, the typical size
and organization of warm-season convection as alithe watershed runoff
production characteristics play a fundamental methe scale dependence of
specific errors in streamflow. We might expect tbtiter type of rainfall systems

or basins have a different functional relation ew these normalized quantities.
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Figure 4.13. Relation between normalized Specific Er8E(SE..y properties
(ensemble meag, and ensemble standard deviatiopnand the normalized
catchment area( in %) in three watershed groupings with similar siaed
behaviors.

Residual Errorsfrom Model Structural and Parametric Uncertainty
While flood forecasting skill clearly decreases tmw€PF errors, other
sources of model uncertainties also affect the totacast error with respect to
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observed streamflows. Figure 4.14 presents thex@rieenearRMSEof the

flood forecasts with (1) the model simulations dnwith QPESRMSkyeg, gray
bars) and (2) the observed streamfloRMSEs black bars) at each basin outlet
for two lead times (15 and 180-min). Clearly, thagmitude of both type of errors
increases with lead time in all basins. As exped®dSEysare typically greater
than or equal tRMSkype. If we consider the total hydrologic uncertainybe
compound by three terms such thatX,+X3=100% and whose terms represent
the model parameter uncertainties)(Xhe model structural errors £Xand the
rainfall input uncertainties (3}, we can conduct an analysis of relative error
contributions with lead time during both stormBor each basin and lead time,
differences betweeRMSEs andRMSkype can be considered as residual errors
caused by model structural or parametric uncegtgdi+X5,) that we will call

X12. Residual errors (%) tend to be small for Storm 2004 as a result efrtiodel
calibration, but grow substantially for Storm 20@&aching values that exceed
the magnitude dRMSEkype (X3) in some basins (e.g. BUCK, BTHOM, LTHOM,
NVRAIN, SVRAIN, MVRAIN, MBOUL, COAL, RALS, for a lead time of 15
minutes). Up to certain point we could considerdesl errors in storm 2004
dominated by model structural uncertaintieg)(Xvhile errors in 2006 are a
consequence of model parameter, initial conditeoms structural errors ¢X).
During storm 2004, flood forecasting errors arenaniilly due to QPF uncertainty
as evidenced by the reduction of;&nd the overall increase insKetween the 15
and 180-min lead times. In-depth analysis allowaactuding that X>X1, for

lead times beyond 30 to 45 minutes in Storm 200dszcall watersheds.
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Figure 4.14. Comparison of streamflow errors at basin outletsved from flood
forecasts relative to observed hydrographMISE,s black bars) and simulations
using QPESRMSkyeg, gray bars) for lead times of 15 and 180-min facle
storm period.

Meanwhile, the verification period in Storm 2006#its larger X, at the
15-min lead time, as compared to the calibratiampedue to the presence of
model structural and parameter uncertainty for élisnt. Interestingly, residual
errors are significantly reduced at a lead tim&&d-min for Storm 2006 at the
expense of an increase in uncertainty introduce@mBif errors (%) in some
watersheds but at different threshold lead timée Watersheds and lead times at

which X3>Xj, in Storm 2006 are presented next: BUCK(60 minT,HBM (45

min), FISH(45 min), LTHOM(90 min), COAL(30 min) arRIALS(45 min).
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Conversely, snow dominated watersheds (NVRAIN, MVYRASVRAIN,

MBOUL) are consistent to show; X3 across all lead times as another
demonstration of parameter and structural erroridante on the total hydrologic
uncertainty.

As a result, we can conclude that uncertaintyesiother than
nowcasting errors can worsen flood forecast skiinaall lead times for
verification periods. Undoubtedly, these differeneee less notable at larger lead
times since precipitation forecasting errors inseedonetheless, in some basins,
residual errors continue to be the largest contoibto total flood forecast errors
during the verification exercise, suggesting thsingle-event model calibration
introduces additional sources of uncertainty eviear ¢ghe initial condition has

been adjusted.

SUMMARY AND CONCLUSIONS

In this study, we investigated the propagationaolar nowcasting errors
into distributed flood forecast skill in eleven nmvain watersheds and their
internal locations during two storm periods in 2@ 2006 in the Colorado
Front Range. This region is known for its propgnsitsummer convective
precipitation that triggers significant floods mdividual basins. We utilized high-
resolution radar observations to produce nowcasts the NCAR TITAN
algorithm for lead times ranging from 15 to 180 utas. Using the tRIBS model,
we quantified the resulting flood forecast skillaaBinction of lead time and
catchment area. The distributed model allowed diegi¢che spatial patterns in

basin response that explain local differencesaadlforecast skill introduced by
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the distributions of rainfall and watershed prosttFor this purpose, we
evaluated regional QPF errors relative to the rdaed QPEs, quantified the
dependence of flood forecasting skill on lead tahéasin outlets, and identified
the scale dependence of flood forecast errorsstédesub-basins with different
upstream areas. An emphasis was placed on obtardetailed picture of the
rainfall-runoff error propagation through normatizeetrics that removed the
effect of the basin area and mean areal precipitatVe also quantified how
rainfall forecast errors interacted with parameama structural uncertainty
through comparisons of the calibration and verifaaperiods. The results of the
study indicate the following:

(1) Radar nowcasting skill decreases with lead ame rainfall magnitude
across the CFR, with the most noticeable reductidarecast skill occurring
between 15 and 45-min lead times. For both stomogeg, the radar nowcasts
tend to overestimate precipitation values, incregadine number of false alarms,
in particular for large forecast lead times.

(2) Flood forecasting skilllso decreases with lead time, but the functional
forms follow a different pattern as a result of thieraction with watershed
properties, in particular when rainfall intensiteesceed hydrologic thresholds.
For these storm periods, flood forecasting skitia$ better than the forecasted
mean for lead times greater than 30-min. Snownitidated basins have a
more limited impact of rainfall uncertainties ore thredicted discharges.

(3) Watershed properties in conjunction with sta@tmaracteristics play a
determinant role on the differential susceptibitiyhigh runoff production and
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flooding. Rainfall-runoff maps show that, despitanges in the spatial
distribution of QPFs with lead time, only variatgom runoff magnitude are
triggered. Analyses of precipitation and streamflwors also indicate a low
correspondence between those variables acrossediffecales, suggesting that
the scale-dependence of streamflow errors is pilyndwme to increasing flood
magnitudes.

(4) A characteristic pattern was revealed in ttedesdependence of
specific error §F) at different lead times. Basin areas coincidintp\the typical
size of convective storms experience the highestfforecast errors with the
largest differences among ensemble members. Timesniediate-sized basins
have more limited flood predictability. Watershaderties dictate the shape of
the scale-dependence as they control rainfall @mapagation downstream and
modulate the ensemble dispersion across watersimediead times. Although
MAP is removed from the analysis, precipitation pattdrave a principal role in
the differential runoff responses.

(5) In comparison to rainfall forecast errors, timeertainties related to
model parameters and structural errors can reaalasiorders of magnitude in
particular for small lead times. At large lead tsn®PF errors tend to reduce
flood forecasting skill more significantly in mosatersheds, though residual
errors can remain important in some cases when Instdetural and parametric
uncertainties amplify the disparities in forecasdestharges.

The results of this study are based on the usalatabuted hydrologic
model that was calibrated during a storm perio?d@4, independently for each

133



basin using a Level Il 1-km, 15-min radar prodiMbteno et al. 2012b). Initial
conditions were then adjusted for a verificationquin 2006. While single-
event model calibration is not ideal for operatics®itings, it offers the
possibility to quantify the errors introduced bynfall forecasts, independent of
model structural and parametric uncertainty. Resarke primarily shown relative
to model simulations forced with QPEs that we coeisas the ground truth. We
demonstrated the benefits of using distributed dipdjic models to produce flood
forecasts from radar nowcasting since these alttamtifying spatial runoff errors
and their scale dependence along the channel netwa found that the
interaction of QPF and watershed characterist&d te a distinct patterns in
flood predictability with greatest errors in intexthate-sized basins. High mean
areal precipitation and watershed features temddoce the flood forecast
uncertainties in small catchments, while channeling and the areal aggregation
of storm systems are responsible for reduced eimdesge basins. This scale
dependence illustrates the spatiotemporal limitoaid predictability in

mountain catchments under summer convection. Axfditistudies on this
dependence in different environments and precipitaegimes are needed to

generalize these findings.
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Chapter 5
SYNTHESIS AND FUTURE WORK

This study presents quantitative analyses basethserved and modeled
data, intended to improve the current body of kmalgke on flood forecasting in
mountain catchments undergoing summer convectiese&ch findings are
applied to the Front Range region in Colorado e¥eh watersheds, whose high
availability of hydrologic and meteorological infoation provides opportunities
for exploring gains and shortcomings of the curaard future operational
capabilities. Our efforts combined the collectigap-referencing, and evaluation
of ten QPEs (1 h, 4 km) from different sourcesl(idag rain gauges) for
summer 2004, the mosaicking and production of regib-min, 1km)
NEXRAD-Level Il precipitation fields, whos&-Rrelation was calibrated using
hourly rain gauge time series at multiple sitedwmithe CFR, and the production
of ensemble precipitation fields for two storm gyss in 2004 and 2006, for
different lead times, using the NCAR- Thunderstddentification, Tracking,
Analysis, and Nowcasting (TITAN; Dixon and Wien&9B) algorithm. Through
all the chapters, quantitative analyses of preaijpih are accompanied by
hydrologic simulations using the Triangulated luksg Network (TIN)-based
Real-time Integrated Basin Simulator (tRIBS; Ivamtal. 2004), a physically
based model that was calibrated to provide conéiden results. Use of a
distributed model provided gains in tracking thatsptemporal evolution of
watershed responses, water balances, runoff messhaniainfall error
propagation, scale and land surface effects orc&steng uncertainties, and flood
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wave propagation through the channel network. Hetenmarize the main

findings from this research and identify directidosfurther work.

UTILITY OF QPESFOR FLOOD FORECASTING

The analysis presented in Chapter 2 constitutexsamsive inter-
comparison effort, in terms of the number of gridl@PE products (ten) from
different sources (e.g. satellites, radar, mulssenrain gauges) with posterior
hydrologic verification at multiple mountain watkesls. Both QPE and their
distributed runoff responses presented criticdedtinces that are linked to the
inherent characteristics from the type of sensdr@ecipitation estimation
methodology in a region of manifest complexity fijdrologic modeling
purposes.

The hydrologic utility of the various QPEs was éekin terms of point
rain gauges and hydrologic simulations based @inagauge calibrated
NEXRAD product that we considered as “ground trutRésults are definitive to
outline the convenience of using distributed priéafjpn products into distributed
hydrologic models, as the spatio-temporal varigbdf streamflow responses is
adequately captured by this coupling. Relativeatn gauge forcing, radar and
multisensor QPESs that capture intensity and spadiaability of precipitation,
especially intense localized storms, show advastageerms of runoff
prediction. This capability is due to the fact tredar systems, the base for
multisensor and NEXRAD data, scan vertical proftleet describe storm
morphology, attaining better accuracies when esiimgaainfall fields througtz-

R relations. On the other hand, satellite produwelgse cloud top temperature-
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rainfall intensity relations are weak and do néhirereflectivity values at
different atmospheric levels, tend to present simnaBes that translate in
underestimation. Nonetheless, most satellite esomscapture relatively well
the spatial distribution of rainfall, an importaattribute for flash-flood
forecasting purposes. This is reflected in the tiaat despite that satellite QPEs,
underestimate total discharge volume and intro@duac@s from their smoother
and lower magnitude rainfall fields, they show eefierformance than rain
gauges with respect to geographically localizeglastiflow responses, timing and
volume for most cases, indicating their value fgdriologic forecasting in
mountain areas. The reason why rain gauges dataat ¢the best hydrologic
skills when used over vast areas of high spatiahldity of precipitation is the
assumption of uniform rainfall over the basin thaginates false flood alarms in
locations without much runoff but, most dangerouatlyderestimation of
streamflows in areas where intense-localized st@maoccurring. The described
effect also influences the timing and magnitudereficted hydrographs at the
basin outlet, commonly overestimated by rain gau@#ser findings in this
chapter reveal that QPEs preserve the seasonalspaturrences of different
runoff mechanisms and the magnitude of the compsradfrthe water balance. A
scaling relation between spatial rainfall and rdipobduction CV;atio = c¢f)
across watersheds suggested its applicability a@agsde range of basin
conditions and illustrated the profound differenbetwveen distributed and rain

gauge types of inputs for distributed hydrologicdmaling. Although findings in
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this study are clear for summer 2004, new studie®avisioned that include

more summer seasons in the analysis.

IMPORTANCE OF USING SITE SPECIFIC Z-R RELATION IN RADAR
NOWCASTING

Despite radar-based products are one of the mostate sources of high
resolution precipitation, constituting the basismadst nowcasting systems, they
are still expected to carry significant uncertaidtying the prediction of floods.
This research section dealt with the quantificabbnncertainties introduced in
hydrological forecasts when using a radar produsise rainfall generating
algorithm has not been adequately calibrated Bpegific region. The
reflectivity-rainfall relation Z-R) is the fundamental expression to convert radar
sensing into rainfall intensity, but that has bdemonstrated to change between
regions and storm types. We show the convenienoetaising default
operational relations and instead we propose aodetbgy based on seasonal
rain gauge calibration (that includes periods affedl and no rainfall) during
multiple summer seasons whose hydrologic resutifiroo its benefits for
hydrologic forecasting. We conclude that floodefmasting efforts with radar
forcing in mountain watersheds benefit from estdilig a site-specific relation
Z-R (e.g.Z=700R") for the season of interest using comparisons lwithl
observations. We show that the use of an arbiZaRrelation impacts the basin
response in terms of the outlet streamflow, runaéthanisms and the seasonal
water balance. As a consequence, rainfall diffexsmic the WSR-57 and

NEXRAD relations, relative to the reference cassutt in higher streamflow
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errors, gradual transitions in runoff mechanismsgl, large changes in the water
balance.

A distributed analysis of hourly simulations atfovatersheds during
summer 2004 demonstrated that the use of an int@+R generate profound
changes in the estimation of rainfall intensitidgak lead to streamflow error
generation at different zones in the basin. Diffiess in rainfall translate into
uncertainties in streamflow that follow power laxpeessions beyond a particular
threshold. Similarly, streamflow uncertainty is deised by a power law
regression with discharge magnitude. Both relatindgate that errors
introduced by th&-Rrelation into the basin response are exacerbatddrige
rainfall or flooding events. Another encouraginglfng of this chapter relates to
the behavior of specific streamflow errors (SE) sdmagnitudes are exacerbated
principally at intermediate-sized basins by the afs@appropriateZ-R relations.
This finding coincides with the preliminary remaiks the importance of
capturing the spatial distribution of localized Intense precipitation systems and

its relevance for accurate flood forecasts.

SPATIOTEMPORAL LIMITSOF FLOOD FORECASTING IN
MOUNTAIN BASINS

In Chapter 4, interesting results were found reigarthe predictability of
flash floods in multiple watersheds under heavym@mprecipitation. The scale
and lead time dependence of forecasting skill wasstigated by means of
ensemble radar nowcasts into a hydrologic mode&imgronment whose

extended lead mode allowed having a continuousrigiien of the rainfall-runoff
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fields during consecutive storm systems, a critasgdect when predicting
multiple peak or superimposed floods. The studywvof storm systems in
summers 2004 and 2006 allowed recognizing typmeddasting error patterns in
precipitation and streamflows that are due tankapacity of nowcasting models
to correctly predict the evolution of rainfall inountains and the added
complexity of watershed properties in the re-dittion of runoff, determined by
soils, vegetation, aquifer and channel routing atiaristics.

Results indicate that using a physically-based dipdic model with
distributed rainfall predictions, provides a vamgpint for recognizing spatial
patterns that explain local susceptibility to flsahd provide an opportunity to
guantify error propagation from the occurrencehef storms and subsequent
basin responsesn independent rainfall analysis allowed concludinat
probability of predicting precipitation decreasafimiead time and rainfall
magnitude. Across the CFR region, the most notieeddcrease in prediction
skill occurs between 15 and 45 min. Consistentygrblogic simulations revealed
that, except by some small-size, snow-dominatethbafood forecasting skill is
not better than forecasted mean for lead timedgréaan 30 minutes in most of
the cases. Flood forecasting skilko decreases with lead time, but the functional
forms follow a different pattern as a result of thieraction with watershed
properties, in particular when rainfall intensiteesceed hydrologic thresholds.

Storm scale characteristics play a determinantaolthe differential
susceptibility to high runoff production and floadi Rainfall-runoff maps show
that, despite changes in the spatial distributio@®Fs with lead time, only
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variations in runoff magnitude are triggered. Arsaly of precipitation and
streamflow errors also indicate a low corresponddretween those variables
across different scales, whereas that the scalendiemce of streamflow errors is
primarily due to increasing flood magnitudes.

The consideration of forecasted ensemble membengeanal channel
locations permitted the quantification of specdicor (SE and its dispersion that
follow a characteristipattern with basin area across watersheds at elifféead
times.We found thatatchment areas that coincide with the typical size
convective storm systems experience the highestremmd disperse values 8E
making predictability more dificult at these scalgsncipally due to an increase
in runoff production that result in larger runotiefficients. In addition,we
attribute to soil hydraulic characteristics, topgty, vegetation interception and
channel routing processes the bell-shaped patferormalizedSEin function of
total area, as they control the propagation of#nefall errors and moderate the
forecasting dispersion across watersheds andilead.t

Overall, the unifying theme of this research “fldodecasting in mountain
basins under summer convection” was developed gfrthuree independent but
complementary analysis: (1) exploration of theitytibf different QPE in multiple
mountain basins by using hydrologic verificationsough observed streamflows;
(2) study of the influence of the reflectivity-ré&atl relation on hydrologic
simulations in multiple catchments; and (3) analgs the scale and lead time
dependence of flood forecasting skill during sigraiht events in multiple
mountain catchments. Consistently through the Graptesults pointed out the
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need for considering spatial variations in rainfiaiuts for improving the
accuracy, in time and magnitude, of the streamflan@casts. Three examples of
this are (1) the fact that satellite observatioh®se distributed nature might
overcome the presence of volume biases for hydiokmulations, (2) the need
for regional calibration of the Z-R relation whasénfall structures are
determinant of the prediction error magnitudes, @)dhe fact that at large lead
time QPF commonly distort the actual spatial disttion of precipitation leading
to serious limitations in hydrologic forecastingraernal and outlet locations.
Another important conclusion remarked the high terapvariability in the
occurrence of rainfall that was linked to theirthgpatial intermittency as another
limiting factor for prediction. As a result the noasting model was unable to
issue accurate forecasts beyond 30 minutes in waistsheds, a demonstration
of a chaotic evolved field with low persistencytiime. Two final elements
outcrop as common denominators in this analysie ®the obvious influence of
watershed characteristics in triggering differemtaff mechanisms and
differential runoff production that determines geagghic flood susceptibility
inside a watershed, which is more clearly explaine@hapter 4. The second is
the scale of summer precipitation occurrence iNAGRR determines the de degree
of uncertainty of flash-flood forecasting at dift@t basin scales. Two clear
examples of this were presented in Chapters 3 ahobdgh seasonal and event
scale analyses of specific error functions (SEpsxcumulative basin areas in

multiple watersheds.
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FUTURE WORK

Future work section is divided in elements for +eakld applicability of
discussed methodologies and further research apptes. The procedures and
approaches used through this research work capdea in other applications to
advance this field with the upcoming potential amputational (supercomputing)
and sensing instruments (dual-polarization radd#sSA satellites).

First, QPE verification methodologies can be addptet only to evaluate
summer QPE products but also long-term time sénegsinclude winter and
spring precipitation events that are equally sigaiit in terms of the hydrologic
responses. We encourage the testing of QPE in mbams over the globe
whose propensity to flooding is year-long. Onehaf tinavoidable prior steps
before this type of verification is the existendaaelatively high number of rain
gauges (at 1-hour time resolution or finer) pernmgtia fairly good representation
of the spatial variability of rainfall over the ieg. Ideally, ground stations are
expected to be installed at different elevatioasdtover types and micro-
topographic characteristics (e.g. windward or laeMiaces) according to the
general circulation patterns in the region. Setectf study watersheds must
follow the presence of high resolution stream gau@geéleast 1 hour time
resolution), soils, landcover and aquifer charasties. It is recommendable that
the hydrologic verification is done in multiple sizvatersheds at different
elevations, so that distinct hydrologic dynamias taken into account. OQutcomes
from these analyses can lead to potential use & @WBducts for areas with
sparse rain gauge or no-rainfall information wigtdfologic similarity. Some
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drawbacks of this methodology involve the fact thiaas of low rain gauge or
streamflow coverage are very unlikely to suppor tipe of studies as the high
spatial variability of rainfall determines the oaktraccuracy of results.

Second, the methodology developed to determingianal Z-R relation
is straightforward to implement in areas whose ggsence of rain gauge
stations guarantees the capture the spatial vhtyadi rainfall. As discussed
before, for practical purposes, we recommend aoseasalibration procedure so
that both dry and wet periods are considered irattadysis. The approaches
combine the use of available high resolution timees of precipitation and
streamflow at multiple catchments within a sameaegvith weather radar
coverage. Benefits from the application of thsthhedology can be summarized
in more accurate QPE from radar measurementsrdraglates in improvement of
QPF. This all translates in better hydrologic repregations and predictions in
terms of runoff and streamflow production at intdrand outlet locations. Some
of the limitations of this methodology are the fHwt it is only possible in areas
where multiple rain gauges are present, multipleevgaeds are instrumented
(streamflow gauges) and usage in areas of mediwgrgphic coverage,
depending on the rainfall variability and physiqgrec conditions (e.g. mountain
block like the CFR, or a flat area with similar hglbgic characteristics).

Third, the applicability of coupled nowcasting tacfues and distributed
hydrologic models is a feasible task given (1)nbe capabilities of
supercomputing facilities that make computatiors$ éd efficient, (2) the
improvement of distributed hydrologic models aniadfell prediction algorithms,
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(3) the availability of distributed ground datag(esoils, vegetation, channel
networks, groundwater systems, etc), (4) the autiaataon of techniques to
calibrate and quality control model outputs andtk®) new capabilities for real-
time observations using telemetry and satellita ¢zt help substantiate
predictions. The cost of a coupled precipitatiosiibuted model setup like this
one becomes insignificant if we take into accohetlienefits in preventing floods
with billions in damages. Additionally, advantadi&s the knowledge of
watershed dynamics at internal locations and tihareced prediction capabilities
at nested basins turn this system in a real baakélternative for issuing flood
forecasts. As in lumped models, questions dealiiy parameter calibration and
adjustment of the initial condition will need to bensidered by the appropriate
personnel operating the system. Some of the drawgh@copportunities for
improvement can be the design of techniques tolgympodel
overparameterization, the need of supercomputistesys and the mounting of
an expert platform and team that deals with hydyiclsssues of model
uncertainties and real-time issuing of watches.

The results obtained in this study encourage theldpment of new
research topics in seek of generalization of figdjrexploration of new particular
cases and the modeling of future flood forecastcenarios under climate and
land cover changes. | summarize eleven possibleavewues of work, although
many more can be foreseen by other researchers:

1. As the availability of precipitation data fragatellites is dramatically
increasing and will continue to do so with the n@atforms such as the Global

145



Precipitation Mission (GPM) and the National Pdabiting Environmental
Satellite System (NPOESS), new hydrological veaiilen studies will be needed,
at different types of watersheds (e.g. subtropralintains and plains, tropical
forests, agricultural, urban areas, etc) so tpatational communities get
directions on the value of using those productatmurate hydrologic
estimations.

2. Due to its coarse space-time resolutions, sament and upcoming
satellite QPE show a lack of spatial structuregtviheduces the accuracy of
hydrologic simulations in medium to small-size tebents. An approach to
overcome this limitation is the use of statistidalvnscaling models that are able
to reproduce the statistical properties of finelescainfall fields with minimal
parameterization. Downscaling techniques have besognized to reproduce
rainfall variability in different regions (Deidda al. 1999; 2004; Badas et al.
2006; Mascaro et al., 2008; Forman et al. 2008¢. U$e of orographic
modulating functions to distribute rainfall accargito elevation gradients
controlled by the diurnal cycle of precipitationfroduces a topographic-diurnal
organization framework to the downscaled rainfalisimilar manner as shown
by Badas et al. (2006). Hydrologic model can belwesea verification of
downscaled fields.

3. This study showed the value of multisensor atellste products for
high resolution hydrologic simulations. However,mneffort is needed in new
techniques to correct local biases that improve thetability for flood
forecasting in mountain areas. This task can be ¢hgrutilizing current ground
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information (or rain gauge calibrated radar fieldhst serve to correct QPE at
collocated pixels to extract elevation and diualle dependence functions that
allow correcting for systematic volume biases. Wil make satellite products
applicable to areas of no other information.

4. The type of approach used for deriving the ZRtron constitutes one
feasible method to obtain it at the seasonal sbalsgd on the optimization of one
objective function composed of two weighted ernad akill metrics. An
opportunity to test many more types of objectivections and preference
structures (weighting) could be adopted to testdeistness of its derivation.
Also, a sensitivity analysis can be conducted $ottee influence of considering
different number of rain gauges on the groundhat & panoramic of Z-R
sensitivity is revealed in terms of both readilagable information and type of
optimization function.

5. Flood forecasting skill functional relationshigth lead time should be
tested for other types of precipitation (e.g. wirdieatiform) at the study basins.
In this case we demonstrated that forecasting d&éks not have further
worsening beyond 120 minutes lead time. So, Natidreather Prediction
(NWP) models like WRF, whose smaller lead time fe6rs are expected to have
low utility for the case of flood forecasting. Hoves, in other geographic
regions, where precipitation fields show largersgtency (Great Plains under
winter precipitation), NWP models can be testeteteal their validity for high

resolution rainfall forecasts.
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6. Residual errors in the forecasting chain (thseided by model
structure and parameters) need to be separateguamntified by their
compounding fractions through model inter-comparisgperiments with the
same setup in terms of forcing, basin charactesistibserved streamflows, and
calibration procedures. In the end, if models Hasen correctly calibrated they
are able to issue flood forecasts with a good aegf@ccuracy, but only those
whose conceptual framework is solid will be introshg smaller amount of
uncertainty in the simulation of floods. A subseafustep will test the model
uncertainty introduced by behavioral parametemratby taking the top 10% of
best parameter sets. In other words, introductfdheuncertainties by the
presence of non-uniqueness of solutions throudhreiit combination of
parameter sets will allow quantifying its error trlsution. Total error is thus the
combination of both parameter uncertainty and mettektural errors. Having
both types of uncertainties computed, the diffeedmetween the two errors (from
the behavioral analysis and calibration) can beneséd in both models to
estimate the effect of parameter uncertaintiesealon

7. Recent forest fires in the north CFR (in Jung2@nvision a change in
the hydrologic patterns that might involve an imsed propensity to floods.
Given that this study provides a base simulatiatf@tm, new studies are
envisioned on the effect of this land cover chamgéhe hydrologic response to
significant summer storm events. Objectives camestdtopics like the

importance of land cover to mitigate floods, thetslwin runoff mechanisms,
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changes in the partitioning of the water balanatthe forecasting dispersion
introduced by drastic cover changes in mountaiasare

8. We foresee more research on the specific ewration SE) and its
possible presence in geographically distinct watsis under different rainfall
types. Additionally, we expect interestiSgtrending patterns under heavier
precipitation scenarios and landcover changes. ¥geat that this relation
increase in magnitude as large storms and urbamiztztke place in future
scenarios.

9. For larger watersheds involving reservoirs, iRHlBas great challenges
to improve its current modeling capabilities byluding operation schemes and
lake routing when floods occur in large-scale bageg. Verde, Salt, Grande,
Colorado or Mississippi Rivers). In doing so, dapeators will play a significant
role in mitigating flood avenues by following thiensilations projected by the
hydrologic model.

10. In urban areas the coupling of nowcasting amitfdiogic models is
possible by including the details of artificiallyeated channel networks (e.g.
streets, waysides and storm retention structuses)edl as the hydrologic
complexities that determine timing and magnitudeotdl response. Exhaustive
work on feasible values for land cover and soibpagterization in urban
environments is needed. Challenges for the raifdadicasts might not be as
difficult as in mountain systems. However urbanenedlogy, including urban
island effects on precipitation can impose limdas to the correct prediction of
rainfall distribution.
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11. Distributed values of rainfall, soil types, e¢gtion coverage and
coupled vadose-saturated zone interactions fomsai$ture development are a
great opportunity to landslide forecasting. Disitéd hydrologic models can now
be seen as platforms for development of associatksl However, significant
amount of work is envisioned in testing the modetxperimental steep slope
watersheds under slide vulnerability particulanyidg persistent rainfall periods.

12. Floods have demonstrated to be one of the impstrtant producers
of erosion and sediment transport in rivers. Changehe fluvial geomorphology
are expected to affect the ecosystem dynamics yahllogic responses
themselves. So, coupling of tRIBS with distribugedliment transport models are
envisioned to predict changes in the channel nétwmrphology and sediment

equilibrium induced by significant streamflow vadue
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This appendix compiles the full sets of hydrometéagical data either

observed or forecasted that was used in this daldtogsis. The Table A.1 briefly

describes the types of data and the main charsiitsrin terms of digital format,

coverage and spatiotemporal resolution.

Table A.1 Hydrometeorological dataset.

Type

Folder

name

Description

Quantitative
Precipitation
Estimations

Quantitative
Precipitation
Forecasts

QPE

QPF

QPE folder contains information for the 10 QPE
products considered in Chapter 2 with the following
characteristics:

- Temporal coverage: From May 15 to September 30,
2004. Gaps were filled with Level Il 4km data.

- Spatial resolution: 4 km. Level lI-1km that has 1 km
resolution.

- Temporal resolution: 1h

- File format: ASCII

QPF ensemble members after running TITAN for the
two storm events described in Chapter 4. The following
is the description of each folder.

- Folders of interest: Clipped_QPF_2004 and
Clipped_QPF_2006

- Prototype subfolders: "M.S.S_10 L.T 0.1 D.T_5-
1000m_FT_15min_LeadTime_15min". Where M.S.S,
L.T. and D.T. are the three parameters in TITAN to
produce ensemble members. LeadTime_15min is the
lead time used for each simulation, in this example 15
min.

Each of the ensemble members contains ASCII matrices
from the start to the end of each storm system, with the
following characteristics:

- Temporal resolution: 15min

- Saptial resolution: 1km

- Coverage: CFR

- Lead times:{15, 30, 45, 60, 75, 90, 120, 150, 18} m

QPE comparative datasets are contained in two folders:
- Folders of interest: clipped_QPE_2004 and
clipped_QPE_2006.

- Spatial resolution: 1km

- Temporal resolution: 15min

- Coverage: CFR
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Streamflow time series Streamflow

Weather time series

Level Il data for
different Z-R relations

Weather

Z-R data

Stream flow time series of discharge stations within the
CFR. The acronyms correspond to the following
watersheds:

Big Thompson River at Estes Park: BTABESCO

Fish Creek Near Estes Park: FISHESCO

North Fork Big Thompson River at Drake: BTFDRCO
Little Thompson River Near Berthoud: LTCANYCO
Buckhorn Creek Near Masonville: BUCRMVCO

North Saint Vrain Creek Near Allens Park: STALENCO
Middle Saint Vrain Creek Paceful Valley: MIDSTECO
South Saint Vrain Creek Near Ward: SSVWARCO
Middle Boulder Creek at Nederland: BOCMIDCO

Coal Creek Near Plainview: COCREPCO

Ralston Creek ab. Reservoir near Golden: RALCRKCO

- Time resolution: 15 minutes. For NVRAIN and FISH it
is1 hour.

- Columns correspond to Year, Month, Day, Hour, Min,
Stage(ft), Discharge (cfs).

- Data commonly start in May of each year.

- Years reported are 2003, 2004, 2005, 2006.

Weather folder contains information for the seven
meteorological stations used in this thesis.

- Temporal Coverage: Summers 2004 and 2006.

- Temporal resolution: 1 hour

- Variables or columns: Y, M, D, H, PA, TD, XC, US,
TA,IS

YEAR, MONTH, DAY, HOUR, ATMOSPHERIC
PRESSURE, DEW POINT TEMPERATURE, CLOUD
COVER, WIND SPEED, AIR TEMPERATURE,
INCOMMING SOLAR RADIATION

- Temporal coverage: From June to September 2004 and
2006.

- File format: ASCII

Level Il hourly precipitation data as a result of the
different Z-R relations for the entire CFR. Each folder
contains 3250 matrices with rainfall values.

- Temporal coverage: May 15 to September 30, 2004
- Temporal resolution: 1 hour

- Spatial resolution: 1 km
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This appendix compiles the main sets of GIS daawlas used in this
doctoral thesis. The Table B.1 briefly describesrtietadata and file format for
each geo-spatial layer.

TableB.1 GIS dataset.

Type Folder name Description*
False color Landsat image of the CFR taken in June
Landsat image Landsat 2004 with 30 m resolution.

Original landcover data from National Landcover
Dataset in 2001. Inside this folder, a folder named
"Definitive_map" contains the 30m-ASCII with the
definitive classes studied in the thesis.

National_Landco

Landcover data ver_2001

Digital Elevation Model from the National Elevation
Digital NED DEM Dataset at 30m resolution for CFR that was used to
Elevation Model - generate the TINs.

North American Regional hydrography of the CFR extracted from the

Hydrography Atlas Water North American Atlas Water at high resolution.
Shape files with the geographic location of radars
Radar stations Radar location within CFR.
Rain gaude Locations of daily and hourly rain gauge stations within
Rain Gauges gaug CFR.
stations
SSURGO and STATSGO databases. Inside this folder,
. . a folder named "Definitive_map" contains the 30m-
Soil types Soils

ASCII with the definitive classes studied in the thesis.

Shape files with the location of the eleven stream

Streamgauge_stati
gauges.

Stream gauges ons

Shape files with the watershed divides and channel
Divides and Water_divides_U networks at each basin. As in soils and vegetation,
channel network TM13 UTM13 is the default coordinate system.

Shape files with the watershed divides and channel
networks at each basin. WSG84 if the coordinates
system.

Dividesand  Watershed_divide
channel network S_automatic

* All data layers geo-referenced to same coordisggtem UTM13
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This appendix compiles the entire set of simulaiand outputs obtained

with different QPE and QPF forcing. Additionallyl&5 source code has been

added and need to be compiled in specific Linuxhirec The Table C.1 briefly

describes the type of information inside each fold&e directories are organized

so that the tRIBS model can be run from the hasHl dith any major changes.

TableC.1 Model simulations.

Type

Folder names

Description

QPE setup

QPF setup

QPE Outputs

This folder contains the model setups for runs in
Chapters 2 and 3 of thesis. Calibrated soil and input
parameters are located in each of the subfolders
corresponding to each watershed (BUCK, SVRAIN,
FISH or RALS). The traditional directory order
including GWinit, Input, Weather, Output, etc., is

Seasonal_calibrationpresent in each folder. Metis partitioning files are

Event_calibration
Event_validation

Outputs_QPE

attached to each folder. Additionally, jobscript files (sh)
are included within each subfolder to run each basin in
an independent manner in the Saguaro Supercomputer
at ASU.

These folders contain the model setups for runs in
Chapter 4 of thesis regarding the storm 2004
(event_calibration) and storm 2006 (event_validation).
Event calibrated soil and input parameters are located
in each of the subfolders corresponding to each
watershed. The traditional directory order including
GWinit, Input, Weather, Output, etc. is present in each
folder. Metis partitioning and restart files are attached
to each subdirectory. Additionally, jobscript files (sh)
are included within each subfolder to run each basin in
an independent manner in the Saguaro Supercomputer
at ASU.

This folder contains the model outputs when forced
with the different types of QPEs at the seasonal scale.
Subfolders are organized in a manner that the four
study basins contain Input information and a folder
called "Output_QPESs" that contains the outputs of each
calibrated basin when forced with the QPEs.
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This folder contains the model outputs when forced
with the different QPF and corresponding QPE for the
two storm systems in 2004 and 2006. Below is a short
description of the folders:

- QPE2004 and QPE2006: Contain hydrologic
OUTPUTS at each basin when forced with 15-min,
1km Level Il data.

- QPF2004 and QPF2006: Contain hydrologic
OUTPUTS at each basin by forcing the model with the
different QPF described in Appendix A. Ensemble
results are organized in a similar manner to QPF (e.g.
M.S.S 10 L.T 0.1 D.T _5-
1000m_FT_15min_LeadTime_15min), where, in this
case, LeadTime_15min means the hydrologic
simulation was conducted for one member whose lead
time is 15min.

QPF Outputs Outputs_QPF

This folder contains tRIBS source code and compiled
versions of tRIBS and ptRIBS. Also METIS and
MESHBUILDER utilities have been added in case
parallelization of the model domain is needed.

tRIBS Code tRIBS

Calibrated soil parameters for each of the simoihetiare added next.
Tables C.2 to C.5 compile the .sdt files at the &rasonally calibrated basins
used in Chapters 2 and 3. Tables, C.6 to C.16 dertipm soil parameters for the

eleven basins as calibrated for Chapter 4.
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Table C.2 Calibrated soil parameters for BUCK for summer 2004

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

37.9569 0.31892 0.041 0.806842 -244.21824 0.0323284223 0.453 1.65 2721430
4 30.29011 0.372754 0.027 1.459604 -704.4577 08238 25 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

71.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 01436314507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 7.9569 0.31892 0.041 0.806842 -244.21824 0.08336 223 0.453 1.65 2721430
17 7.9569 0.31892 0.041 0.806842 -244.21824 0.08338 223 0.453 1.65 2721430
18 7.9569 0.31892 0.041 0.806842 -244.21824 0.08338 223 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

Table C.3 Calibrated soil parameters for FISH for summer 2004

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

317.1765 0.3479 0.041 1.4681 -84.3614 0.00222233).453 1.65 2721430
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 2.0449 0.0692 0.005 0.0638 -221.8953 0.030632770.015 1.7 3516925
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 2.0449 0.0692 0.005 0.0638 -221.8953 0.03063222/0.015 1.7 3516925
16 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222233.453 1.65 2721430
17 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222233.453 1.65 2721430
18 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222233.453 1.65 2721430
19 2.0449 0.0692 0.005 0.0638 -221.8953 0.0306322/0.015 1.7 3516925
20 2.0449 0.0692 0.005 0.0638 -221.8953 0.030632770.015 1.7 3516925
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Table C.4 Calibrated soil parameters for RALS for summer 2004

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 18.6430 0.585587 0.041 1.1940 -324.3684 0.0082829145 220.9145 0.453 1.65 2721430
4 25.7587 0.521075 0.027 1.6689 -385.3706 0.0369919287 690.9287 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

71.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 01436314507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 18.6430 0.585587 0.041 1.1940 -324.3684 0.00822620145 220.9145 0.453 1.65 2721430
17 18.6430 0.585587 0.041 1.1940 -324.3684 0.0082620145 220.9145 0.453 1.65 2721430
18 18.6430 0.585587 0.041 1.1940 -324.3684 0.0082620145 220.9145 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

Table C.5 Calibrated soil parameters for SVRAIN for summe®20

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 8.165027 0.567575 0.041 1.481371 -21.706406 B®DA23 223 0.453 1.65 2721430
4 22.377413 0.55928 0.027 0.575623 -804.967404005825 25 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143035441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 8.165027 0.567575 0.041 1.481371 -21.70640@660223 223 0.453 1.65 2721430
17 8.165027 0.567575 0.041 1.481371 -21.70640@660223 223 0.453 1.65 2721430
18 8.165027 0.567575 0.041 1.481371 -21.7064060660223 223 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925
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Table C.6 Calibrated soil parameters for BTHOM for Storm 2004

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 30.688503 0.584432 0.041 1.185196 -187.17441068D234.629 234.629 0.453 1.65 2721430
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

71.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 3.181246 0.02284 0.005 0.190892 -209.3545480%0.001168 1.001168 0.015 1.7 3516925
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 01436314507

15 3.181246 0.02284 0.005 0.190892 -209.354548080.001168 1.001168 0.015 1.7 3516925
16 30.688503 0.584432 0.041 1.18519 -187.17441158D234.629 234.629 0.453 1.65 2721430
17 30.688503 0.584432 0.041 1.18519 -187.174418582D234.629 234.629 0.453 1.65 2721430
18 30.688503 0.584432 0.041 1.185196 -187.17441582D234.629 234.629 0.453 1.65 2721430
19 3.181246 0.02284 0.005 0.190892 -209.35454808€0.001168 1.001168 0.015 1.7 3516925
20 3.181246 0.02284 0.005 0.190892 -209.3545480$0.001168 1.001168 0.015 1.7 3516925

Table C.7 Calibrated soil parameters for BUCK for Storm 2004.

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 7.9569 0.31892 0.041 0.806842 -244.21824 0.033284223 0.453 1.65 2721430
4 30.29011 0.372754 0.027 1.459604 -704.4577 08238 25 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.50.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143035441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 7.9569 0.31892 0.041 0.806842 -244.21824 0.08336 223 0.453 1.65 2721430
17 7.9569 0.31892 0.041 0.806842 -244.21824 0.08338 223 0.453 1.65 2721430
18 7.9569 0.31892 0.041 0.806842 -244.21824 0.08336 223 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925
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Table C.8 Calibrated soil parameters for COAL for Storm 2004.

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 84.295979 0.362755 0.035 0.6143 -160.969 0.013977185221 791.1852 0.436 1.75 2637693
322.275336 0.380271 0.041 1.65553 -21.188365 6MB91.2306 691.2306 0.453 1.65 2721430
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

71.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 22.275336 0.380271 0.041 1.65553 -21.1883 0.62332306 691.2306 0.453 1.65 2721430
17 22.275336 0.380271 0.041 1.65553 -21.1883 0.62332306 691.2306 0.453 1.65 2721430
18 22.275336 0.380271 0.041 1.65553 -21.1883 0.6233230653 691.2306 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

Table C.9 Calibrated soil parameters for FISH for Storm 2004.

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

30.411234 0.605368 0.041 1.590181 -92.009039 26H849.071695 649.071695 0.453 1.65
2721430

4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014865 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 3.318567 0.054697 0.005 0.109262 -489.4633436686 1.551745 1.5517 0.015 1.7 3516925
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 3.318567 0.054697 0.005 0.109262 -489.4633436686 1.551745 1.5517 0.015 1.7 3516925
16 0.411234 0.605368 0.041 1.590181 -92.00903%9Q.6@9.0716 649.0716 0.453 1.65 2721430
17 0.411234 0.605368 0.041 1.590181 -92.0090390.689.0716 649.0716 0.453 1.65 2721430
18 0.411234 0.605368 0.041 1.590181 -92.009039Q.689.0716 649.0716 0.453 1.65 2721430
19 3.318567 0.054697 0.005 0.109262 -489.46334366.0.551745 1.551745 0.015 1.7 3516925
20 3.318567 0.054697 0.005 0.109262 -489.46334366.0.551745 1.551745 0.015 1.7 3516925
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Table C.10 Calibrated soil parameters for LTHOM for Storm 2004

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

34.779431 0.571403 0.041 1.42123 -172.458864 Q581883.006 683.006 0.453 1.65 2721430
4 7.164652 0.371416 0.027 0.292137 -838.8864 04%100.3839 110.3839 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 4.779431 0.571403 0.041 1.42123 -172.45886420381683.006 683.006 0.453 1.65 2721430
17 4.779431 0.571403 0.041 1.42123 -172.4588640381683.006 683.006 0.453 1.65 2721430
18 4.779431 0.571403 0.041 1.42123 -172.4588640381683.006 683.006 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

Table C.11 Calibrated soil parameters for MBOUL for Storm 2004

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 35.508438 0.415959 0.041 1.195471 -75.35507106.894.1260 394.1260 0.453 1.65 2721430
4 6.490654 0.343446 0.027 1.186388 -20.813372 83687.2150 647.2150 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143035441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 35.508438 0.415959 0.041 1.195471 -75.355074068394.126 394.126 0.453 1.65 2721430
17 35.508438 0.415959 0.041 1.195471 -75.355074068)394.126 394.126 0.453 1.65 2721430
18 35.508438 0.415959 0.041 1.195471 -75.355074068394.126 394.126 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925
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Table C.12 Calibrated soil parameters for MVRAIN for Storm 200

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 31.580143 0.537309 0.041 0.811409 -342.805928560275.271 275.271 0.453 1.65 2721430
4 13.086015 0.578902 0.027 1.008146 -179.5783 0B 752.136 752.136 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 31.580143 0.537309 0.041 0.811409 -342.805%628.275.271 275.271 0.453 1.65 2721430
17 31.580143 0.537309 0.041 0.811409 -342.805%628.275.271 275.271 0.453 1.65 2721430
18 31.580143 0.537309 0.041 0.811409 -342.805%628.275.271 275.271 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

Table C.13 Calibrated soil parameters for NFORK for Storm 2004

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01433 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 35.829778 0.364747 0.041 1.380734 -27.033417308/1.274.661 274.661 0.453 1.65 2721430
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.50.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0143035441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 1.275242 0.067312 0.005 0.248532 -580.6974818376 1.5495 1.5495 0.015 1.7 3516925
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 1.275242 0.067312 0.005 0.248532 -580.6974818376 1.5495 1.5495 0.015 1.7 3516925
16 35.829778 0.364747 0.041 1.380734 -27.033411308274.661 274.661 0.453 1.65 2721430
17 35.829778 0.364747 0.041 1.380734 -27.033411308274.661 274.661 0.453 1.65 2721430
18 35.829778 0.364747 0.041 1.380734 -27.033411308¥ 274.66 274.66 0.453 1.65 2721430
19 1.275242 0.067312 0.005 0.248532 -580.6974818626 1.5495 1.5495 0.015 1.7 3516925
20 1.275242 0.067312 0.005 0.248532 -580.6974818676 1.549 1.549 0.015 1.7 3516925
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Table C.14 Calibrated soil parameters for NVRAIN for Storm 200

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

311.146845 0.41770 0.041 0.5319 -29.68379 0.0887/P7120 887.97120 0.453 1.65 2721430
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 014462 2826100

56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.687778 0.023478 0.005 0.287777 -70.86525206®1.870805 1.870805 0.015 1.7 3516925
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.687778 0.023478 0.005 0.287777 -70.86525206/81.870805 1.870805 0.015 1.7 3516925
16 11.146845 0.417708 0.041 0.53139 -29.68379480H887.971 887.971 0.453 1.65 2721430
17 11.146845 0.417708 0.041 0.53139 -29.6837948000887.971 887.971 0.453 1.65 2721430
18 11.146845 0.417708 0.041 0.53139 -29.6837948000887.971 887.971 0.453 1.65 2721430
19 0.687778 0.023478 0.005 0.287777 -70.8652520681.870805 1.870805 0.015 1.7 3516925
20 0.687778 0.023478 0.005 0.287777 -70.8652520661.870805 1.870805 0.015 1.7 3516925

Table C.15 Calibrated soil parameters for RALS for Storm 2004.

2012

1117.8 0.417 0.020 0.694 -72.6 0.007 65 140 01433 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 24.418749 0.570053 0.041 1.732439 -387.2702130.091.6214 191.6214 0.453 1.65 2721430
4 24.219558 0.398956 0.027 0.824442 -680.25516230.80.9402 80.9402 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 01524 2805166

6 6.50.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0143035441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 24.418749 0.570053 0.041 1.732439 -387.2702430%191.621 191.621 0.453 1.65 2721430
17 24.418749 0.570053 0.041 1.732439 -387.2702430%191.621 191.621 0.453 1.65 2721430
18 24.418749 0.570053 0.041 1.732439 -387.27041280@.191.621 191.621 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925
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Table C.16 Calibrated soil parameters for SVRAIN for Storm 200

2012

1117.80.417 0.020 0.694 -72.6 0.007 65 140 01483 2595825

2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 2637693

3 10.553752 0.340788 0.041 1.622464 -343.198010168743.762 743.762 0.453 1.65 2721430
4 20.253409 0.37092 0.027 0.099609 -444.638144)6.022.641 122.641 0.461 1.42 2826100
56.50.486 0.015 0.234 -207.9 0.00650 65 140 015Pd 2805166

6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 01584 2742364

7 1.00.432 0.040 0.177 -325.6 0.00680 50 140 01402 2951705

8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 014863 2909836

9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 01328 2826100

10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140001487 2847034

11 0.50.423 0.056 0.15 -341.9 0.00700 50 140 0143@35441

12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0143614507

13 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0143614507

15 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

16 10.553752 0.340788 0.041 1.622464 -343.19801698)743.762 743.762 0.453 1.65 2721430
17 10.553752 0.340788 0.041 1.622464 -343.19800016.743.762 743.762 0.453 1.65 2721430
18 10.553752 0.340788 0.041 1.622464 -343.19800016.743.762 743.762 0.453 1.65 2721430
19 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925

20 0.350.01 0.005 0.165 -1.0 0.006884 227 22750104 3516925
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APPENDIX D

SOFTWARE DEVELOPMENT
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This appendix compiles major software developmaeining this thesis.
Scripts and programs were all constructed in R (wwvpkoject.org) a free
environment for statistical computing and graphidse Table D.1 briefly
describes scripts functionality. Additional helpynize found at the first lines of
each script file.

TableD.1 Software development.

Type Folder names Description

Visual tRIBS V1.3 and Watershed Processing.
Computational tool for DEM processing and
watershed-channel network extraction. It is also useful
for visualizing and exporting multiple serial and
parallel outputs of tRIBS (triangulated Real-time
Integrated Basin Simulator) including time series and
spatial outputs of multiple variables, friendly
programmed in R. You have to install R (free
programming language) in your O.S. (LINUX, MAC or

Visual_tRIBS Windows), execute it by typing R on the terminal and
install the following packages, using
install.packages("name_of the package"):playwith, sp,
akima, maptools, fields, plotrix. Some users had to
update their R libraries by typing
"update.packages(checkBuilt=TRUE)" within the R
console.

VisualtRIBS
V1.3

This folder contains two subfolders organized by type

of calibration:

- Event_calibration: That contains the scripts that were
used to calibrate the eleven watersheds during the storm
period in 2004 using the Shuffle Complex Evolution.

- Seasonal_calibration: Than contains the scripts and
results after calibrating the four watersheds during the
summer 2004, using the Shuffle Complex Evolution.

SCE optimized

S SCE_tRIBS* Within each basin folder several R-scripts and
calibration

subroutines to run the SCE in a fail-safe mode can be
found. Some output examples are included in each
folder, so that the user gets familiarized with the type of
outputs expected from these runs. The scripts are able
to run the calibration from a local computer sending
jobs to a supercomputer using X number of processors
and store the "best" behavioral parameterizations in a
local folder called "Behavioral".
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Four R-scripts that run tRIBS continuously in a parallel
fashion at the Saguaro Supercomputer by using
Additional Codes_to_run_tRIBS different forcing and storing outputs in an external
coding _in_cluster folder (maybe Saguaro itself). This is convenient to run
when testing different Z-R relations, QPE products or
ensemble QPFs.

* The actual code is printed below.

SCE MAIN CODE
The following is an example of SCE coding for tlase of BTHOM for
the event calibration. This code can be modifiethatinput section to work in

different basins.

# This script runs the SCE algorithm from the DE€¥Twhich runs ptRIBS in the cluster by using "qsub
fish_parallel_part.sh". CAVEATS:

# 1. Need to connect the cluster folder as a diglour computer called "cluster" using sshfs. See:
http://embraceubuntu.com/2005/10/28/how-to-mourgraete-ssh-filesystem-using-sshfs/

# 2. Need to generate automatic password for sebdh ssh key authentication: keygen, etc:
http://www.youtube.com/watch?v=R65HTJeObkl (SSHregvithout passwords)

# 3. This script needs to be saved on a deskt@p folder: /media/D/SourceCodes/SCE_tRIBS/SCE

# 4. Do not forget to modify the "fish.par.part_&as' file for calling the corresponding Metis gaon
base_flow_#nodes.reach" correspondign to the nupfi@ocessors, as well as the absolute path&igootitput, weather,
rain...etc folders. This base file has spaces medes to modify the routing pars. Need to chamgeriame of the iterative
file (e.g svrain_par_part_iterative.in) but no néednodify it inside. It only serves as a writafile.

# 5. The sdt file must contain exaclty 20 (or mar@nplete rows. No blank lines or with spacesadleeved at the end of
the file.

# 6. Review the job script (.sh file) to check thenber of processors that must correspond to tine s& the variable
called "processors" here and the number of hourgdmllel computation. This .sh file needs tdriséde the path "ruta".
Aso check the executable path and .in file thatlfed. Make sure you change the jobname (e.g "Eadlh).

# 7. The outputs are written in the "rutal"” folder.

# 8. You can run this script by typing on a termhifraCMD BATCH
tRIBS_SCE_parallel_optimize_soils_from_Desktop_tlus&r.R, or simply by openning R and typing: se(rc

# "/media/D/Sourc......... ")

# 9. If this script fails or there is an electiatage please use the re-start system

# 10. Remember to create a folder called GWinitretadl tge GW init cases are saved. For instaneedse :
GW_1056_fish, GW_1450 fish, etc. The first casiéswettest

## Running tRIBS ####H#

rm(list=Is(all=TRUE)) # INITIAL RUN..
require(audio)

options(scipen = 6) # avoid using 1e-x notation

# INPUT

*kkkkkkk

## Interpreting simulations ##tHHTHHIBHHHIHHITHHEHEHHEHTHEH
init<<-1  #Inital analysis hour for plotting and-er estimation. This is useful when we have sgirtime. Usually it is =1
or721

d<<-200 #2190 duration of the simulation in foodrime from the *.in file.. 2910 including june

year<<-2004 # Starting year for plotting and egalculation

month<<-8 # STARTING MONTH for plotting and errcalculation

day<<-14  # STARTING DAY for plotting and error calculation

hour<<-6 # STARTING HOUR for plotting and error 18 lcalculation



minu<<-0

observed_PATH<<-"/media/D/Hernan/Research/Moren® HAthesis/Additional_Information_CFR/Stream
gaging/BigThompson/15 min/5_15min_Stage_Disch/athfo the observed discharges
obs_name<<-"BTABESCO_MJJAS 2004 _H-D_FILLED.txt" otyserved. It may start at any month and timea#
stage and discharge

Qobs_int<<-0.25 # original time resolution of ebsed streamflowsn named in obs_name

mean_hourly<<-1 # 0 for not averaging hourly deted and observed streamflows, 1 does it.

Qinterv<<-0.25 # in fractions of 1-hour (e.g®i& 15 minutes).. it is the desired interval falcalating error metrics. it
still works even if mean_hourly=0.. taking instargaus data
cluster_simulation_folder<<-"/home/hamoreno/Eveatibzation/Bthom/"
parallel_jobscript<<-"bthom_parallel_part.sh"

## SCE ##

ruta<<-"/media/cluster/Event_calibration/Bthom# simulation folder name
base_name<<-"bthom" bage name
infile<<-"bthom_par_part_base.in" #.in file for the parallel run

iterative_in<-paste(base_name,"_par_part_iteratit,gsep="")

processors<<-16 # number of processors that melee the same as the .reach file called ny thiein
rutal<<-"/media/D/SourceCodes/SCE_tRIBS/SCE/Evaiibmtion/BTHOM/" # path to the R-script and wlé¢he
"SCE_for_cluster" folder is.

Output_Behav<<-"OUTPUTS_BEHAV" #Folder to save aedame the output files mrf, rtf and gout fromteatthe
simulations. This folder is inside rutal

GWecal<<-1 # 1 =if calibrating GWinit; 0 if not

GWfolder<<-"GWinit/" # name of folder within rufar GWinit scenarios if GWcal=1.

if (GWcal==1) listaGW= dir(path=paste(ruta,G\Wifer,sep=""),all.files=FALSE,full.names=FALSE,resive=FALSE)

Routing<<-1 # # 1 = if calibrating routing parsif @ot

Routing_pars<<-c(54,164) # 57=Manning; 48=Kinermaft=48, 54=flowexp; coeff_w-A_rel=63; exp_w-A_ré&6;
Bedrock_depth=164

Routing_ref<<-c(0.4,2) # reference values for thesen routing parameters

lower_routing<<-c(0.3,0.25) # lower limits foretmuting pars

upper_routing<<-c(0.45,3)  # upper limits foe thuting pars

# The soil parameters to optimize:
# x=[Ks, Qs, Qr, m, Ksi, f, As, Au, n, Ks, Cs]
# x=[x1, x2, x3, x4, x5, x6, X7, x8, x9, x10, 11

soil_types<<-c("3","13") # soil types to calibrate
choose_soils<<-¢(1,2,4,5,6,7) # Choose the vimsab iterate from ref="1=Ks" "2=Qs," "3=Qr" "426=Ksi" "6=f"
“7=As" "8=Au" "9=n" "10=Ks" "11=Cs"

consider_A_same=1 # Consider anysotropy rates#me? Unsaturated = saturated, As=Au? 1= yesd
#values<<-  c(varl,var2,var3,var4,var5,var6,waB...etc) in order of soil types...

values_soils<<-¢(10.9,0.412, 0.378, -146.6, 08718, 223, 0.35, 0.01, 0.165, -1, 0.@64.5) #vector of initial
conditions of the selected variables (choosev Ik §gies) in order. For example in the case of 4 pize first 4 values are
the corresponding to the first soil class and dlleWing four are for the second soil type. Thet ifsparemeters that will
not be calibrated need to be prescribed at thdilsdt

lower_soils<<-c(0.36, 0.271, 0.140, -454.7,008, 1, 0.0036, 0.01, 0.037, -1000, 0)A) #lower boundaries
for the variables range

upper_soils<<-¢(36, 0.608, 2.0, 0, 50.01000, 3.6, 0.1, 0.293, 0, 0.2 #upper boundaries for the
variables range

complejos<<-5

tolerance<<-0.00001 # tolerance for consecutivati@ens

decim<<-6 # digits for the output and the sdtsfile

walltime<<-700 #mins... Time after which a new ghould be sent, as the current is taking too nimed. This time must
be at least 20 minutes before the walltime usetérjobscript to the cluster.

longdurationRMSE<<-10 # RMSE for a simulatiordofation > walltime

## OPTIONAL SETTINGS NNANNNNNNNNANNNNNNNNNNNNNNNNNNNANNNNNN

# If the user has less than 12 and different omgainin of classes do not worry, only assign 0 (g@ymew_groups and this
condition does not make effect.

new_groups<<-2 # The number of new groups of patara that will have the same parameterizationekample the
classes (13) Unweathered Bedrock,(15)Stones, (18Weed Bedrock,(20) Fragments could have the same
parameterization. Those will conform a new group. 182



groupl<<-c(13,15,19,20) # the first componerthdd vector is the independent class that appedtseivector
"soil_types"

nl<<-length(groupl) #this line must accomptrgyline before

group2<<-c(3,16,17,18) # the first componenthig vector is the independent class that appedtivector
"soil_types"

n2<<-length(group?2) #this line must accomptrgyline before

# ... Continue to name as many groups as spedifietew_groups. For example if there are four grabpgourth group
will be group4 and the base class will be base4

bases<<-c(groupl[l],group2[1l]) #include herefilst elements of the number of groups that yaveh
groups<<-c(groupl,group2) #include here the nurobgroups you have
length_groups<<-c(nl1-1,n2-1) #include here the lmemof n's you have minus one in all of them

## Programmed cluster shutdowns

startingshut<<-c(2012,3,19,22) # enter the yeamtin day, military hour of the cluster shutdowm & will pause
n_hours_shut

n_hours_shut<<- 60 # number of hours that the prognust be paused

## END OF OPTIONAL SETTINGS MAANMAANMAANANNBNNNN

## END OF INPUT SECTION
R
#
*kkkkkk

vec_routing=rbind(c(57,"Manning"),c(48, "Kinematétgc(54,"Flowexp"),c(63,"a_W-A"),c(66,"b_W-
A"),c(164,"Bedrock")) # These numbers should cgpmnd to the lines to replace in the iterativelan f

if (Routing==1) {
lower_soils=c(lower_soils,lower_routing)
upper_soils=c(upper_soils,upper_routing)

}

if (GWcal==1) {
lower_soils=c(lower_soils,1)
upper_soils=c(upper_soils,length(listaGW))
}

tiempo<<-as.character(Sys.time())
nbehaviorals=complejos*((2*(length(values_soils)+EGAM(Routing*length(Routing_pars))))+1)

status_before<-"I" # Initial status

path_to_sce_alg<<-paste(rutal,"SCE_for_clustep=¥g#"/media/cluster/SCE/"
logtxt<<-paste(base_name,"_log.txt",sep=")

node<<-rep(1:3,10000) # 3 computational nodessto.. if one is broken

soilparameters<<-
c("Sat.Hyd.Cond_","Sat.SMC","Res.SMC","PorelndeRirEntryPress_","DecayPar_","Anis.Rat_","Anis.Rat'Tot.Por
0s._","Vol.Heat.Cond_","SoilHeat.Cap_")

vars<<-soilparameters[choose_soils]

name_vars<<-rep(NA,length(values_saoils))
for (v in 1:length(soil_types)) {
empiece=((v-1)*length(choose_soils))+1
name_vars[empiece:(empiece+length(choose_€Qispaste(vars,rep(soil_types[v],length(choosels¥psep=")

}

if (Routing==1) {
for (vv in L:length(Routing_pars)){
cual=which(as.numeric(vec_routing[,1])==Routingrgpav])
name_vars=c(name_vars,vec_routing[cual,2])
}
}

if (GWcal==1) name_vars=c(name_vars,"GWinit")

# Complete soils information ##

table_sdt<<-read.table(paste(ruta,"Input/",base enasut"’,sep="),skip=1) # Initial values for th@lparameters

refe<<-matrix(NA,length(soil_types),12)
for (u in 1:length(soil_types)X
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refe[u,]=as.numeric(table_sdt[as.numerid(sppes[u]),1:12]) # the soil type and all 11 pasters

base_input<<-paste(base_name,".sdt",sep=")

hyd_PATH<<-paste(ruta,"Output/hyd/",sep=""

iter=1

salga<<-matrix(NA,1,(GWcal+3+length(values_soil§yo(ting*length(Routing_pars)))) # number of expeédterations
colnames(salga)=c("iter","FunctValue","Date-Timelhne_vars)
write.table(salga,paste(rutal,logtxt,sep="),quBf=SE,col.names=TRUE,row.names=FALSE)
save(list=Is(all=TRUE)file=paste(rutal,"all. Rdat®Ep="))

#setwd(ruta) # important because the tRIBS outprgésgyoing ro be written in this path

if (Routing==1) values_soils=c(values_soils, Rogtiref)
if (GWcal==1) values_soils=c(values_soils, 1) fuge the soils with the GW inint condition. stawish the wettest
condition

## Rosenbrock Banana function

RMSES <- function(x){
longjob<<-0

# check for programmed shutdowns
pa= substring(tiempo, 1:nchar(tiempo), 1:nftfenpo))
yearshut=as.numeric(paste(pa[1],pa[2],pa[Blpsep="))
monthshut=as.numeric(paste(pa[6],pa[7],sep=")
dayshut=as.numeric(paste(pa[9],pa[10],sep="))
hourshut=as.numeric(paste(pa[12],pa[13],spp="
if (yearshut==startingshut[1] & monthshut==$itagshut[2] & dayshut==startingshut[3] & hourshustartingshut[4]) {
cat(paste("R went to sleep at ",tiempo, " floster shutdown during ",n_hours_shut," hours",$gfit=TRUE)
Sys.sleep(n_hours_shut*3600)

#
cat("now trying: x=",fill=TRUE)
cat(x,fill=TRUE)
solosuelos<<-x[1:(length(x)-GWcal-(Routing*leh@gRouting_pars)))]
for (w in 1:(length(soil_types))) {
fir=((w-1)*length(choose_soils))+1
refe[w,((choose_soils[1:length(choose_sgid)]]=round(solosuelosffir:(fir+length(choose_spil§],digits=decim)
# try to decrease the number of digits

}

if (consider_A_same==1) refe[,9]=refe[,8]
values_soils<<-x

if (iter==1) onset<<-as.character(Sys.time())

#0Opens the .sdt file and writes values
iter<<-iter+1
cat("Line 186" fill=TRUE)
wait(system(paste("ls /media/cluster/ >" ,rutadehaname,"_zj.txt",sep="")),timeout=5)
infor00<-file.info(paste(rutal,base_name,"_zj,sep=""))
if (as.numeric(infor00[1])==0){
source(paste(rutal,"function1_cluster_link.Bfs")) # script to check cluster link connection
QO(iter)
}

#start writing the sdt file
yup= read.fwf(paste(ruta,"Input/”,base_input,s@pvidth=200) # reads fixed-width data
yum=as.matrix(yup)

for (u in 1:length(soil_types){
yum[as.numeric(soil_types[u])+1]=paste(refé[\," refe[u,2]," ",refe[u,3]," " ,refe[u,4]," ",re[u,5]," ",refe[u,6],"
" refe[u,7]," “,refe[u,8]," ", refe[u,9]," *, refe[d0]," ",refe[u,11]," ",refe[u,12],sep=""
#optional grouping runs here
if (new_groups>0){
if (any(bases==refe[u,1]){

cual=which(groups==refe[u,1])
bas=which(bases==refe[u,1])
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for (j in (cual+1):(cual+length_groups[bas])){

yum[groups]jj]+1]=paste(groups[jj]," ",refe[u,2];,refe[u,3]," ", refe[u,4]," ",refe[u,5]," " ,refa[,6],"
" refe[u,7]," ",refe[u,8]," ",refe[u,9]," ",refe[d0]," ",refe[u,11]," ",refe[u,12],sep="")

}

}
}
}

yum_da_fr=as.data.frame(yum)
# writes the sdt file
write.table(yum_da_fr,paste(ruta,"Input/",base_ndrsét",sep="),quote=FALSE,col.names=FALSE,row.eanFALSE)

# start writing the .in files
yupin= read.fwf(paste(ruta,infile,sep=""),whet85 fill=TRUE) # reads fixed-width data as aafeame
yui2=scan(paste(ruta,infile,sep=""),what="@wer") # reads many characters
for (i in L:dim(yupin)[1]) { # within yuiZhe first dim(yup)[1] values are put
yui2[i]=as.character(yupin[i,1])

}
yui3=yui2[1:dim(yupin)[1]] #makes yui3 ongqual to the first dim(yup)[1] values

for (gu in 1:length(Routing_pars)){
yui3[Routing_pars[gu]]=values_soils[length(soloasg+gu]

# writes the in file

Pre <- file(paste(ruta,iterative_in,sep=i)}) # open an output file connection
cat(yui3, file = Pre, sep ="\n") #writiesthat file

close(Pre) # closes the connection

cat("Line 238" fill=TRUE)
wait(system(paste("ls /media/cluster/ >" rutagdhaname,"_zj.txt",sep="")),timeout=5)
infor00<-file.info(paste(rutal,base_name,"_zj,sep=""))
if (as.numeric(infor00[1])==0){
source(paste(rutal,"functionl_cluster_link.Bf;s")) # script to check clulster link connection
QO(iter)
}

# extract and copy the GW case

if (GWcal==1){

GWcase<<-round(values_soils[length(values_gpils

file.copy(paste(ruta,GWfolder,listaGW[GWcaseps™),
paste(ruta,"Input/",base_name,".iwt",sep=""),oveétewTRUE)

#

cat("Line 252" fill=TRUE)

wait(system(paste("ssh hamoreno@saguaro.fultereds /usr/bin/gsub ",cluster_simulation_foldergtiai_jobscript," >
"rutal,base_name,"_ fj.txt",sep=""),intern=FALSgnore.stderr = FALSE,wait=FALSE),timeout=10)

inforO<<-file.info(paste(rutal,base_name,"_fj.fxép=""))

if (as.numeric(inforO[1])==0){

source(paste(rutal,"function2_ssh_broken_pipedR%")) # script to check clulster link conneutio

Q1(iter)

jobid<<-as.character(read.table(paste(rutal,masee,"_fj.txt",sep=""))[1,1])
cat(jobid,fill=TRUE)

auxcount<-0
for (counterr in 1:10000){

auxcount<-auxcount+1

counterr<-counterr

cat("Line 266" fill=TRUE)

#sj<-wait(system(paste("ssh hamoreno@saguarofifaku.edu /usr/local/bin/gstat -a >
"rutal,base_name," salgaex.txt",sep=""),intern=BELignore.stderr = FALSE,wait=FALSE),timeout=10)
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sj<-wait(system(paste("ssh hamoreno@saguaro.fasaredu /usr/bin/gstat ",jobid," >",
rutal,base_name," salgaex.txt",sep=""),intern=FALi§Eore.stderr = FALSE,wait=FALSE),timeout=10)
infor<-file.info(paste(rutal,base_name,"_salgagksep=""))

# In case of communication fails for gstat -
if (as.numeric(infor[1])==0) {
source(paste(rutal,"function3_gstat_failure.RI5S¥® # script to check gstat fail
Q2(infor)
}

SAL=read.table(paste(rutal,base_name," salgaezdagt""),skip=2)
status=as.character(SAL[1,5])

if (status=="C" & status_before=="Q"){ # Insmof the error when the job is canceled after @dere-
submit another job
cat("Line 281... Completed without running.. abmal (C)...sending a new jobscript" fil=TRUE)
wait(system(paste("ssh hamoreno@saguaro.fuforedu /usr/bin/qsub
",cluster_simulation_folder,parallel_jobscript,” yutal,base_name,"_fj.txt",sep=""),intern=FALSEnore.stderr =
FALSE,wait=FALSE),timeout=10)
inforO<-file.info(paste(rutal,base_name,"_f.xép=""))
if (as.numeric(inforO[1])==0){
source(paste(rutal,"function2_ssh_brokere.Rifisep=")) # script to check clulster link cention
Q1(iter)
}
auxcount<-1
jobid<<-as.character(read.table(paste(rutag b@ame,"_fj.txt",sep=""))[1,1])
cat(jobid,fill=TRUE)
}

cat("Line 294... Job is taking too loongstart.. deleting and starting a new one..." fill TR

wait(system(paste("ssh hamoreno@saguarmnfaksu.edu /usr/bin/qdel ",jobid,sep=""),intern=F34,
ignore.stderr = FALSE,wait=FALSE),timeout=10)

Sys.sleep(15)

wait(system(paste("ssh hamoreno@saguarmnfalsu.edu /usr/bin/qsub
",cluster_simulation_folder,parallel_jobscript,” yutal,base_name,"_fj.ixt",sep=""),intern=FALSgnore.stderr =
FALSE,wait=FALSE),timeout=10)

Sys.sleep(15)

Sys.sleep(15)
if (as.numeric(infor0[1])==0){
source(paste(rutal,"function2_ssh_broken_Rigep="")) # script to check clulster link
connection
Q1(iter)
}
auxcount<-1
jobid<<-as.character(read.table(paste(rbtek_name,"_fj.txt",sep=""))[1,1])
cat(jobid,fill=TRUE)
}

cat("Line 311... Job is taking too long.nceling and assigning the longdurationRMSE" fill-J1R)

wait(system(paste("ssh hamoreno@saguarmnfaku.edu /usr/bin/qdel ",jobid,sep=""),intern=F34,
ignore.stderr = FALSE,wait=FALSE),timeout=10)

Sys.sleep(15)

longjob<<-1

break

}

if (status=="C") {

break

}else {

cat(paste("waiting for completed status_",auxc@umins status: “,status,"....time:
",as.character(Sys.time()),sep=""),fill=TRUE)

status_before=status

Sys.sleep(50) 186



}
if (longjob==0){

tiempo<<-as.character(Sys.time())
source(paste(path_to_sce_alg,"Q_out_Q_obs_RairS&E.r",sep="))
Q(d,year,month,day,hour,hyd_PATH,observed_PATEl,0lame,init)
cat("---",sep="")
cat("---- x=",x,"--Function_value=",sqrt((sSum(SEEIX1))/(n)),"..iteration=",iter-1,"..",
tiempo,"..Started at..",onset,fill=TRUE)
salga[l,1]=iter-1
salga[1,4:(3+length(values_soils)-GWCcal)]=rourad@es_soils[1:(length(values_soils)-GWcal)],digidssim)
if (GWcal==1) salga[1,length(values_soils)+3]enal(values_soils[length(values_soils)])
salga[1,2]=round(sqrt((sum(SEE_PIX1))/(n)),digit}
salga[1,3]=tiempo
#salgai=rbind(salgai,salga)
#if (iter==2) {
save(list=Is(all=TRUE),file=paste(rutal,"RMSESa®al',sep=""))
write.table(salga,paste(rutal,logtxt,sep="),appd RUE,quote=FALSE,col.names=FALSE,row.names=FALSE
if (iter==2) {
RMSESold<<-sqrt((sum(SEE_PIX1))/(n))
}else {
RMSESold<<-c(RMSESold,sqgrt((sum(SEE_PIX1))/(n)))

}

pad= substring(d, 1:nchar(d), 1:nchar(d))

if (length(pad)==1) durm=paste("000",d,sep="")
if (length(pad)==2) durm=paste("00",d,sep=""

if (length(pad)==3) durm=paste("0",d,sep="")

if (length(pad)>=4) durm=d

if (iter < (nbehaviorals+1))}{
cat("Copying files",fill=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name,durf0.mrf",sep=""),
paste(rutal,Output_Behav,"/" iter,"_",base_namendur00.mrf",sep=""),overwrite=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name,durfo.rft",sep=""),
paste(rutal,Output_Behav,"/" iter," " ,base_namentur00.rft",sep=""),overwrite=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name,"tl@gout",sep=""),
paste(rutal,Output_Behav,"/"iter," " base_nameytlgd.qout”,sep=""),overwrite=TRUE)
if (iter>2){
if (sqrt((sum(SEE_PIX1))/(n))<min(RMSESold[1€it2)])) {
cat("Optimum found" fill=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_nameaydlr00.mrf",sep=""),
file.copy(paste(ruta,"Output/hyd/",base_nameydlr00.rft",sep=""),
paste(rutal,Output_Behav,"/",1," ",base_name,dur®d.tt",sep=""),overwrite=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_namelitl€.qout",sep=""),
paste(rutal,Output_Behav,"/",1," ",base_name," éaiut",sep=""),overwrite=TRUE)
}

}else {
if (sqrt((sum(SEE_PIX1))/(n))<min(RMSESold[1:(it)])) {
cat("Optimum found" fill=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name,durfQ.mrf",sep=""),
paste(rutal,Output_Behav,"/",1," ",base_name,du®d.mrf",sep=""),overwrite=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name,durf.rft",sep=""),
paste(rutal,Output_Behav,"/",1," ",base_name,dur®d.tft",sep=""),overwrite=TRUE)
file.copy(paste(ruta,"Output/hyd/",base_name," I@igout",sep=""),
paste(rutal,Output_Behav,"/",1," ",base_name," édgiut",sep=""),overwrite=TRUE)

}

sqrt((sum(SEE_PIX1))/(n)) #

}else {

salga[1,1]=iter-1
salga[l,4:(3+length(values_soils)-GWcal)]=rourad@es_soils[1:(length(values_soils)-GWcal)],digidssim)
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if (GWcal==1) salga[1,length(values_soils)+3]enal(values_soils[length(values_soils)])
salga[1,2]=longdurationRMSE
salga[1,3]=tiempo
save(list=Is(all=TRUE),file=paste(rutal,"RMSESaral',sep=""))
write.table(salga,paste(rutal,logtxt,sep="),appd RUE,quote=FALSE,col.names=FALSE,row.names=FALSE
RMSESold<<-c(RMSESold,longdurationRMSE)
longdurationRMSE
}

}

source(paste(path_to_sce_alg,"SCEoptim_tRIBS.R=$Ep

ans <- SCEoptim(RMSES, values_soils,lower= loweits sgpper = upper_soils,control = list(trace = 2dale=1,
reltol=tolerance,tolsteps=7,maxtirmé,ncomplex=complejos))

str(ans)
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APPENDIX E

STORM SCALE ANALYSIS
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This Appendix constitutes additional material foe interpretation of
Figures 4.11, 4.12 and 4.13 in Chapter 4 that pettstth the typical scale of
mountain storms as the main responsible of theeas®d uncertainty at middle
size basins. Estimations of the typical size ofvemtion systems are dictated by
the presence of distinguishable storm cores. TherEiE.1 represents the spatial
coverage of main precipitation cores during Stof@42at BUCK, NFORK,
BTHOM, LTHOM and Storm 2006 at NVRAIN, MVRAIN, SVRIA, MBOUL,
COAL, RALS, as percent of total basin area (blaakspand actual scale (km
red bars). This analysis was performed for thréferdint precipitation thresholds
(Pr) of 0.8, 0.5 and 0.3 times the maximum cumulapixecipitation (Ray) at
each individual watershed. In other words, the efzgorm cores is determined
by different percentiles of the maximum precipiatin the watershed. Evidently,
Pr differs among basins and has been added at thef #ach bar for purposes of
comparison. The Figure 4.3 can be used as supptahaad for visualizing the
distribution of rainfall and maximum values at edesin. The selection of P
0.3Rnax (Figure E.1e,f) results in large storm coverageitsignificant flooding
responses across watersheds, as the selectedtdrisstuite low for
representing storm cores. On the other hand,(P5R,.x(Figure E.1c,d)
decreases the coverage of the storm, but still doesapture storm cores
correctly. Finally, P> 0.8Rax(Figure E.1a,b) represent areas of significant
precipitation (larger than the 80 percentile) thiatduce flooding across most of

the basins and correspond well with the storm cobserved in Figure 4.3. If we
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compare the range of increased uncertainty in Eigut3 (1 to 10% of 4 with
the typical coverage of the storms in this grougyFe E.1a) we can conclude
that convection systems causing of hydrologic uagaly range approximately
between 2 and 20 Knin the CFR (see Figure E.1b). In summary incre&®adt
intermediate scale coincide with the typical sizeanvection systems whose
storm cores cover an overlapping geographic fraaiathe basin area.
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Figure E.1. Spatial coverage of Storm 2004 at BUCK, NFORK, EJW,

LTHOM and Storm 2006 at NVRAIN, MVRAIN, SVRAIN, MBOL, COAL,
RALS, as dictated for three precipitation threskdlé) in kn’ (red bars) and as a
fraction of the total basin area (blackbars).
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APPENDIX F

RUNOFF SCALE ANALYSIS
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This Appendix constitutes additional material foe interpretation of
Figure 4.12 in Chapter 4 that postulated that eses in the runoff coefficient in
areas that are fully covered by the storm coreshereesponsible for rises in
prediction uncertainty as expressed by SE. We aadlye behavior of the spatial
distribution of cumulative runoff (Storm event anmuiations) averaged per sub-
basin area. Selected internal locations match teeleeted in Chapter 4, from
Figures 4.10 to 4.13. The Figure F.1 summarizesehults for one testing
watershed (LTHOM) whose spatially-varying runoffpsavere produced and
shown in Figure 4.9. The Figure F.1 shows the titaim runoff per sub-basin
scale with standard deviation bars representingligpgersion from ensemble
members, while Figures F.2a,b summarize mean andatd deviation from
Figure F.1. A careful analysis to Figure F.1 regehht runoff production patterns
are analogous to those found in Figure 4.11 for OMHwith increasing values at
spatial scales ranging between 1 and 10 Kiikewise, Figures F.2a,b recall
similar patterns found in Figure 4.13 for the samagershed. These results show
that areas directly below storm cores, whose scalegide with the preliminary
storm size analysis (between 2 and 2G)kame the responsible for increased flood

forecasting uncertainty through an average incrgaee runoff production rates.
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Figure F.1. Mean and standard deviation of cumulative ensemivleff
production per sub-basin areas)& LTHOM for Storm 2004.
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FigureF.2. (a) Mean and (b) standard deviation of cumulagieemble runoff
production per sub-basin scales)(& LTHOM for Storm 2004.
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