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ABSTRACT  
   

This doctoral thesis investigates the predictability characteristics of floods 

and flash floods by coupling high resolution precipitation products to a distributed 

hydrologic model. The research hypotheses are tested at multiple watersheds in 

the Colorado Front Range (CFR) undergoing warm-season precipitation. Rainfall 

error structures are expected to propagate into hydrologic simulations with added 

uncertainties by model parameters and initial conditions. Specifically, the 

following science questions are addressed: (1) What is the utility of Quantitative 

Precipitation Estimates (QPE) for high resolution hydrologic forecasts in 

mountain watersheds of the CFR?, (2) How does the rainfall-reflectivity relation 

determine the magnitude of errors when radar observations are used for flood 

forecasts?, and (3) What are the spatiotemporal limits of flood forecasting in 

mountain basins when radar nowcasts are used into a distributed hydrological 

model?. 

The methodology consists of QPE evaluations at the site (i.e., rain gauge 

location), basin-average and regional scales, and Quantitative Precipitation 

Forecasts (QPF) assessment through regional grid-to-grid verification techniques 

and ensemble basin-averaged time series. The corresponding hydrologic 

responses that include outlet discharges, distributed runoff maps, and streamflow 

time series at internal channel locations, are used in light of observed and/or 

reference data to diagnose the suitability of fusing precipitation forecasts into a 

distributed model operating at multiple catchments. 
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Results reveal that radar and multisensor QPEs lead to an improved 

hydrologic performance compared to simulations driven with rain gauge data 

only. In addition, hydrologic performances attained by satellite products preserve 

the fundamental properties of basin responses, including a simple scaling relation 

between the relative spatial variability of runoff and its magnitude. Overall, the 

spatial variations contained in gridded QPEs add value for warm-season flood 

forecasting in mountain basins, with sparse data even if those products contain 

some biases. These results are encouraging and open new avenues for forecasting 

in regions with limited access and sparse observations. 

Regional comparisons of different reflectivity –rainfall (Z-R) relations 

during three summer seasons, illustrated significant rainfall variability across the 

region.   Consistently, hydrologic errors introduced by the distinct Z-R relations, 

are significant and proportional (in the log-log space) to errors in precipitation 

estimations and stream flow magnitude.  The use of operational Z-R relations 

without prior calibration may lead to wrong estimation of precipitation, runoff 

magnitude and increased flood forecasting errors. This suggests that site-specific 

Z-R relations, prior to forecasting procedures, are desirable in complex terrain 

regions. 

Nowcasting experiments show the limits of flood forecasting and its 

dependence functions of lead time and basin scale. Across the majority of the 

basins, flood forecasting skill decays with lead time, but the functional relation 

depends on the interactions between watershed properties and rainfall 

characteristics.  Both precipitation and flood forecasting skills are noticeably 
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reduced for lead times greater than 30 minutes. Scale dependence of hydrologic 

forecasting errors demonstrates reduced predictability at intermediate-size basins, 

the typical scale of convective storm systems. Overall, the fusion of high 

resolution radar nowcasts and the convenient parallel capabilities of the 

distributed hydrologic model provide an efficient framework for generating 

accurate real-time flood forecasts suitable for operational environments. 
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Chapter 1 

INTRODUCTION 

MOTIVATION 

Floods, one of the deadliest natural hazards around the world, are known 

by their rapid occurrence and subsequent limited opportunity for early warning 

preparation. Only in the United States, during the past 30 years, floods have 

claimed on average 200 lives per year (Droegemeier et al. 2000; Ashley and 

Ashley 2008), leaving property damages of approximately $1.5 billion per year. 

Around 75% of all U.S. presidentially declared natural disasters involve floods 

(Fread 1995). Flash-floods, typically occurring in mountain basins, during warm-

season precipitation periods, are particularly difficult to predict due to their 

localized occurrence and the short time basin responses that reduce the chances to 

timely and accurately issue forecasts.  

Challenges in flash-flood forecasting in topographically complex areas can 

be divided in two types, according with the sequence of processes leading to their 

generation. First, the small spatial scales and short lifetimes of convective 

precipitation events make them difficult to predict as their high spatio-temporal 

variability limits the preservation of correlation structures with forecasting time 

(Ganguly and Bras 2003; Sharif et al. 2004; Lin et al. 2005). Typically, the higher 

potential for convective systems formation during summer, combined with the 

fact that irregular topography forces atmospheric circulation, constitute the 

essential ingredients for flood-leading storm development (Warner et al. 2000; 

Bongioannini et al. 2005; Nikanen 2008).  Second, the inherent variability 
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imprinted by basin properties in a mountain block like this including topography, 

exposed and fractured bedrock, soil and vegetation heterogeneities, snow melting 

processes, aquifer characteristics and antecedent water in the system (including 

that of long residence times) play a determinant role on the runoff production and 

the time it takes to be delivered to the channel network.  Together, basin 

properties can interact to add significant uncertainty to the attempts of flood 

forecasting, regardless of that carried by the incorrect estimation (in time and 

space) of the rainfall solely.  

Hydrologic science is challenged to demonstrate significant advances 

towards accurate modeling and forecasting of floods and flash floods by using 

Quantitative Precipitation Estimates (QPE) and Forecasts (QPF) from multiple 

sources, when fused with the new capabilities of distributed hydrologic models. 

Traditionally, operational river forecasts were only based on the precipitation 

already measured on the ground (Collier and Kzyzysztofowicz 2000), with the 

implicit assumption of zero rainfall beyond the time of the last observation, a 

dangerous supposition in the middle of a severe storm. Additionally, the use of 

empirical or lumped hydrologic models limited the capacity to track evolution of 

the flood wave, and the distributed potential for flash floods and associated risks 

(landslides, debris flows, etc). Lumped, conceptual models, traditionally used in 

operational settings, present advantages with respect to simplicity for aggregated 

predictands such as the outlet streamflow. However, to fully utilize the 

information readily available by satellite, weather radar observations and 

extrapolations and Numerical Weather Predictions (NWP) in a hydrological 
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forecast, a need arises for more complex distributed systems (Pessoa et al. 1993; 

Garrote and Bras 1995; Arduino et al. 2005; Bartholmes and Todini 2005). The 

introduced complexity is compensated by the knowledge and quantification of 

different hydrologic variables (e.g. runoff, soil moisture, evapotranspiration, 

groundwater table) and their spatiotemporal evolution at internal and nested 

locations within the watershed (Ivanov et al. 2004; Reed et al. 2004; Smith et al. 

2004).  

The use of a distributed model in flood forecasting is also justified by the 

better understanding of hydrologic processes in mountain areas, as physically 

meaningful parameters are selected into the model framework and multiple scale 

processes are possible to represent with detail (Garrote and Bras 1995). For 

example, runoff generation and streamflow accumulation processes leading to 

flood wave propagation are determinants of local susceptibility to floods that can 

be quantified with distributed models. Additionally, physical controls on the scale 

dependence relations of flood forecasting can be facilitated through a distributed 

approach (Mascaro et al. 2010). Thereby, differences in responses and model 

forecasting dispersion can be explained according to soil, vegetation or channel 

network properties.  The use of distributed models copes with the representation 

of the intricate characteristics of rainfall and subsequent watershed responses. A 

recent DIMP (Distributed Model Intercomparison) initiative investigated the role 

of spatial variability of landscape characteristics and of meteorological forcing on 

hydrologic response (Le Lay and Saulnier 2007). Results demonstrated that (i) the 

role of rainfall spatial variability (Winchell et al. 1998; Koren et al. 1999; Arnaud 
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et al. 2002), initial soil moisture conditions (Zehe et al. 2005) and catchment 

characteristics (Saulnier et al. 1997) are all conditioned by threshold effects on 

runoff generation, hence suggesting difficulty to extrapolate results to other 

catchments (Le Lay and Saulnier 2007). 

Although complex models have received criticism during the past decades 

principally due to their overparameterization (Grayson et al. 2002), they provide 

confidence in representing the leading physical processes conducting to replicate 

observed predictands with accuracy. Yet, prior work to selecting the most 

impacting parameters and initial conditions for each particular modeling exercise 

is fundamental to avoid unnecessary complexities. As a result, burdening of the 

model by multiple parameterizations can be reduced through prior simplification 

of its degrees of freedom but preserving spatiotemporal structures of hydrologic 

response. Further reduction in computational demand is attained in a continuous 

forecasting environment, where distributed models do not require calibration of 

its initial condition since tracking of vadose and saturated zones is maintained in 

time.  

In the forecasting chain, uncertainties are usually supplied by several 

sources including the rainfall estimates and forecasts but also by hydrologic 

models through their difficulty in representing watershed conditions, a 

challenging task in mountain basins (Zappa et al. 2010). When radar data are used 

for short term predictions, QPE using reflectivity observations have been found to 

introduce significant amount of uncertainty (Habib et al. 2008; Schroter et al. 

2011). Some of the reasons that produce those uncertainties include both technical 
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and atmospheric difficulties such as the radar bean attenuation, anomalous 

propagation, beam blockage, ground clutter, hail contamination, spurious returns 

and the inappropriate use of a reflectivity-rainfall relation. The last has been 

found to be crucial in obtaining correct representation of the rainfall fields (Pessoa 

et al. 1993; Baek and Smith 1998; Habib et al. 2008). On the other hand, QPF 

might carry additional uncertainties as they are based on readily available QPE 

and the correlation structures between QPF and QPE turn weak for large lead 

times. Further sources of uncertainty in hydrologic modeling are provided by the 

model structure, model parameter values, and initial condition. Quantification of 

hydrologic uncertainty and partitioning of its components remain a challenging 

task. Model structural uncertainties, for example, can not be easily distinguished 

from parameter and initial condition errors, unless another calibrated model is 

available at the moment of an intercomparison exercise. Finally, further 

limitations in ground data availability (e.g. rain and stream gauges), that are 

commonly few and sparse in areas of evident complexity, impose serious 

constraints in terms of the calibration and validation of actual precipitation fields 

and hydrologic responses. Thus, lack of good quality ground information can 

result in decreased hydrologic performance. 

The Front Region in Colorado is an ideal setting to study the origin and 

development of flood events due to the availability of hydro-meteorological 

information, the sampling of a broad range of landscape characteristics and the 

presence of convective storm events during the summer season. In the past, this 

region has experienced several major flash floods causing fatalities and losses 
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over 4 billion dollars present money (Petersen et al. 1999; Chen et al. 2001). The 

presence of recurrent flooding events in these complex environments encourage 

the coupling of precipitation predictions to distributed hydrologic forecasts.  The 

Triangulated Irregular Network (TIN)-based Real-time Integrated Basin 

Simulator (tRIBS) is adopted as a hydrologic verification tool. The model 

explicitly accounts for spatial variations in topography, land surface 

characteristics and channel network structure, as well as spatiotemporal 

meteorological forcing (Ivanov et al. 2004; Vivoni et al. 2007a).  

The work developed here intends to fill voids in the present and future of 

operational flood forecasting chain when both QPEs and QPFs are fully utilized, 

accounting for the introduced uncertainties and their propagation from the rainfall 

estimation to the simulated hydrological response. In the following paragraphs a 

brief description of the dissertation chapters is provided.  

OUTLINE OF CHAPTERS 2-5 

Chapter 2 provides an initial examination to the value of current high 

resolution QPEs (hourly, 4-km) in four study basins of the CFR using a calibrated 

distributed hydrologic model as verification tool. Improvements in flood 

predictions are expected as the quality of radar, multisensor and satellite 

observations improves. To evaluate QPE skill, we compare the precipitation 

properties at the site (i.e., rain gauge location), basin-average and regional scales 

and evaluate their influence on the simulated basin response, including the outlet 

discharge, runoff mechanisms and seasonal water balance. We also analyze the 

value of gridded QPEs with respect to uniform forcing derived from rain gauges. 



  7 

We find that radar and multisensor QPEs lead to improved hydrologic model 

performance compared to simulations driven with rain gauge data only with 

respect to the observed streamflow. Satellite QPEs exhibit lower overall 

streamflow simulation skill compared with estimates derived from radar-based 

QPEs, but are preferable to assuming uniform forcing from nearby rain gauges in 

the mountain settings studied here. One demonstration of this is the fact that 

satellite QPEs preserve the fundamental properties of the basin response, 

including a simple scaling relation between the relative spatial variability of 

runoff and its magnitude. As a result, satellite QPE products open new avenues 

for forecasting in regions with limited access and sparse observations.  

In chapter 3, we outline the importance of using an appropriate Z-R 

relation that translates radar reflectivity into rainfall intensities, prior to 

developing regional QPF intended to be used in distributed hydrologic models to 

predict floods and flash floods.  Nonetheless, uncertainty remains in the use of the 

reflectivity-rainfall (Z-R) relation, in particular for mountainous regions where 

ground validation stations are often lacking, land surface datasets are inaccurate 

and the spatial variability in many features is high. We assess the propagation of 

rainfall errors introduced by different Z-R relations on distributed hydrologic 

model performance for four mountain basins in the Colorado Front Range. To do 

so, we compare spatially-integrated and distributed rainfall and runoff metrics at 

seasonal and event time scales during the warm season when convective storms 

dominate. Results reveal that the basin simulations are quite sensitive to the 

uncertainties introduced by the Z-R relation in terms of streamflow, runoff 
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mechanisms and the water balance components. The propagation of rainfall errors 

into basin responses follow power law relationships that link streamflow 

uncertainty to the precipitation errors and streamflow magnitude. Overall, 

different Z-R relations preserve the spatial distribution of rainfall relative to a 

reference case, but not the precipitation magnitude, thus leading to large changes 

in streamflow amounts and runoff spatial patterns at seasonal and event scales. 

Furthermore, streamflow errors from the Z-R relation follow a typical pattern that 

varies with catchment scale where higher uncertainties exist for intermediate-

sized basins. The relatively high error values introduced by two operational Z-R 

relations (WSR-57 and NEXRAD) in terms of the streamflow response indicate 

that site-specific Z-R relations are desirable in this complex terrain region, 

particularly in light of other uncertainties in the modeling process, such as model 

parameter values and initial conditions.  

Chapter 4 is dedicated to investigate the predictability characteristics of 

floods and flash floods using quantitative precipitation forecasts from radar 

nowcasts when used for distributed hydrologic predictions, at eleven mountain 

watersheds undergoing warm-season precipitation. The effects of lead time, 

rainfall distribution and basin area on the flood forecasting skill are quantified by 

means of regional grid-to-grid verification analysis, hydrologic integrated and 

distributed responses and the identification of typical patterns in the predictability 

and error dispersion functions during two significant Storms in 2004 and 2006. 

We find that flood forecasting skill decreases with lead time but functional 

relationships depend on the interactions between watershed properties (soils, 
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topography, and vegetation) and rainfall characteristics. Across the majority of 

basins, flood forecasting skill reduces noticeably for lead times greater than 30 

minutes. Error structures introduced by rainfall magnitude and spatial distribution 

characteristics propagate into streamflow forecast uncertainties in a manner that is 

controlled by changes in local runoff production that find their most critical point 

at intermediate-sized scales. The effect of model parameter uncertainties during 

an independent validation is tested and found to be significant (on the same order 

of magnitude) when compared to the hydrologic uncertainties introduced by 

forecasted rainfall. 

Chapter 5 presents general conclusions of the preceding chapters and 

provides insight into future directions. Chapters 2-4 correspond to either 

published, submitted or in preparation articles whose titles and authors appear 

below: 

Chapter 2:  Moreno, H.A., Vivoni, E.R., Gochis, D., 2012a. Utility of 

quantitative precipitation estimates for high resolution hydrologic forecasts in 

mountain watersheds of the Colorado Front Range. J. Hydrol. 438-439, 66-83. 

Chapter 3: Moreno, H.A., Vivoni, E.R., Gochis, D.J., 2012b. Propagation 

of errors from the reflectivity-rainfall relation into simulated streamflows in 

mountain watersheds during summer convection. Hydrol Process., (revisions after 

submission). 

Chapter 4: Moreno, H.A., Vivoni, E.R., Gochis, D.J., 2012c. 

Spatiotemporal limits to flood forecasting in mountain catchments under summer 
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convection using radar nowcasting and a distributed hydrologic model. J. 

Hydrometeorol., (in preparation). 

The unifying theme of the dissertation circumscribes to distributed 

hydrologic modeling for flood forecasting during summer convection in mountain 

regions. The thesis expands the current body of knowledge with the following 

novelties: (1) A methodology to evaluate different QPE in multiple mountain 

basins by using both direct comparisons with rain gauges and hydrologic 

verifications through observed streamflows. (2) A procedure for deriving the 

reflectivity rainfall relation from ground rain gauges and its verification through 

hydrologic measurements in multiple catchments. This encourages the testing of 

the radar-rainfall conversion expressions before use into the operational 

forecasting chain. (3) The use of  radar nowcasting techniques coupled to a 

distributed hydrologic model to explore the boundaries of flood forecasting 

prediction in multiple catchments. Results discussed in this thesis remark the need 

for the use of distributed forcing in distributed models for flash flood warning 

procedures. This promising alternative provides computationally efficient and 

accurate forecasts of the spatio-temporal structures of rainfall and runoff in areas 

where watershed and rainfall complexities challenge the power of current 

prediction systems. 
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Chapter 2 

UTILITY OF QUANTITATIVE PRECIPITATION ESTIMATES FOR HIGH 

RESOLUTION HYDROLOGIC FORECASTS IN MOUNTAIN 

WATERSHEDS OF THE COLORADO FRONT RANGE 

INTRODUCTION 

Evaluations of Quantitative Precipitation Estimates (QPEs) from weather 

radar or satellite retrievals are typically performed through comparisons to rain 

gauges at individual sites or over regional scales. Despite progress in the 

development and use of remotely-sensed QPE products in complex terrain 

regions, significant uncertainties still exist (e.g., Zangl et al. 2008; Germann et al. 

2009). One promising alternative for QPE evaluation in mountain settings is 

through the use of calibrated hydrologic models as verification tools (e.g., 

Gourley and Vieux 2005; Vivoni et al. 2007b). The appeal of hydrologic 

verification lies in the relative availability of streamflow data in mountain regions 

which are collected for flash flood alerts and water supply estimates. The spatially 

and temporally integrating characteristics of watersheds serve to organize or 

‘filter’ precipitation events from a measurement perspective. Both real watersheds 

and distributed model representations of these are thus sensitive to the timing, 

intensity and geographic details of the precipitation forcing (e.g., Carpenter and 

Georgakakos 2004; Vivoni et al. 2006; Collier 2007). 

Most QPE products have origins in radar reflectivity, infrared and passive 

microwave satellite data, and multisensor algorithms combining these sources. 

Historically, rain gauges have been the primary data source, but these only 



  12 

provide a point measurement of a distributed input. Weather radars offer a high 

spatial coverage and resolution, but include a variety of errors, (e.g., beam 

attenuation, mixed-phase hydrometeor effects, terrain blockage), especially during 

warm-season convection in mountainous areas (Delrieu et al. 2000; Grassotti et 

al. 2003; Lee and Zawaski 2005; Morin et al. 2005; Habib et al. 2008). Satellite-

based estimates are a complementary approach, but have weaker relations 

between the observed radiances and rainfall rates (Scofield and Kuligowski 2003; 

Sapiano and Arkin 2009; Gochis et al. 2009; Yucel et al. 2011). Multisensor 

estimates combine data sources through numerical or heuristic algorithms (Fulton 

et al. 1998; Seo et al. 1999; Young et al. 2000; Xie et al. 2005). Despite their 

promise, the underlying accuracy is tied to the properties of each product, inter-

platform consistency and the particular algorithm used (Wang et al. 2008). Thus, 

inherent shortcomings of different QPE products will directly influence the 

rainfall errors in mountainous landscapes where substantial rainfall variability is 

present (Menabde et al. 1996; Kang and Ramirez 2007; Zangl et al. 2008). 

Previous studies have evaluated QPE products with respect to rain gauges 

and hydrologic data at the basin scale. For example, Gourley and Vieux (2005) 

found that modeled streamflows using rain gauge data did not provide sufficient 

coverage for an accurate hydrologic simulation. Clearly, the use of sparse rainfall 

data may lead to significant differences in runoff production and the integrated 

basin response as compared to spatially-varying products (e.g., Yilmaz et al. 

2005). To alleviate this issue, rain gauges have been used to correct biases in 

distributed QPEs from other platforms, yielding improved simulations (Fulton et 
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al. 1998; Gourley and Vieux 2005; Tobin and Bennett 2009). These results have 

shown that hydrologic models also help to elucidate the mechanisms through 

which a watershed responds to each type of QPE forcing. 

Questions remain with respect to the use of hydrologic models as tools for 

QPE verification. Prior studies have focused on areas with high rain gauge 

coverage relative to the storm spatial scale. Can hydrologic models be used to 

verify QPEs in sparsely-gauged, mountain areas? How do errors from different 

QPEs propagate to the simulated basin response? What is the value of satellite-

based products in distributed hydrologic models relative to mountain rain gauges? 

To address these questions, we selected the Colorado Front Range (CFR) in 

Colorado, USA, due to its physiographic complexities, warm-season convective 

storms and their associated flood and flash flood hazards, and the presence of 

reasonably high quality NEXRAD radar data coverage. We compare ten high-

resolution (4-km, hourly) QPEs in four mountain basins ranging from 35 to 350 

km2 in area during the 2004 summer season that was coincident with the North 

American Monsoon Experiment (NAME; Higgins and Gochis 2007).  

To evaluate the QPE products, we analyze the spatiotemporal variability 

in precipitation at the local, basin and regional scales, and compare these to 

available rain gauges using several statistical metrics. Subsequently, we assess the 

QPE products through hydrological verification using a distributed hydrologic 

model, the Triangulated Irregular Network (TIN)-based Real-time Integrated 

Basin Simulator (tRIBS), at each watershed. The model explicitly accounts for 

spatial variations in watershed characteristics and meteorological forcing as well 
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as represents the hydrological dynamics at internal locations (Ivanov et al. 2004; 

Vivoni et al. 2007a). 

METHODS 

Study Area and Watersheds 

The CFR is characterized by varied topography, vegetation, soils, and 

convective storms during the summer. Several major flash floods have taken place 

in the region. For example, an event on 28 July 1997 at Spring Creek in Fort 

Collins, CO, caused five fatalities and losses over 200 million dollars (Petersen et 

al. 1999). Thus, societal impacts associated with floods provide a compelling 

motivation for improving hydrologic forecasts. We delineated eleven basins in the 

CFR region upstream of stream gauging stations operated by the Colorado 

Division of Water Resources (CDWR; Figure 2.1). Four of these were selected for 

hydrologic verification: Buckhorn Creek (BUCK, 350 km2), Fish Creek (FISH, 41 

km2), Ralston Creek (RALS, 117 km2) and South Saint Vrain River (SVRAIN, 35 

km2). This selection was based on the availability of rain gauge data, and the 

sampling of a range of landscape properties along a north-to-south gradient. 

Figure 2.2 shows the distributions of vegetation, soils, elevation and hydrography 

in each basin. Hourly weather stations recording wind speed, pressure, and air and 

dew point temperatures are also collocated with the four rain gauges. As in other 

applications, the extrapolation of station data over the basins likely contributes to 

uncertainty in the meteorological forcing.  
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Figure 2.1. Colorado Front Range (CFR) location, elevation distribution and 
boundaries of eleven study watersheds. Four basins are selected for this study: 
Buckhorn Creek (BUCK), Fish Creek (FISH), South Saint Vrain Creek 
(SVRAIN) and Ralston Creek (RALS). Four hourly rain gauge and weather 
stations are shown: RSOC2, ESPC2, LTER and PKLC2. 

 

The set of mountain catchments are characterized by pronounced elevation 

gradients with generally east-facing aspects, narrow valleys, and dendritic channel 

networks. There is a prevalence of sandy loam, loam and exposed bedrock as the 

main soil types, and forests and grasslands as the dominant land cover. Table 2.1 

summarizes the major characteristics of the four basins.  

Quantitative Precipitation Estimates 

We compiled rain gauge, weather radar, satellite and multisensor rainfall 

estimates from multiple sources.  
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Figure 2.2. Spatial distributions of elevation contours, hydrography, vegetation 
and soil classes in the four study basins. Rain gauge, weather and stream gauge 
stations are also shown. 

 

Table 2.2 presents the characteristics and sources of the precipitation 

datasets, which include ten QPE products (Level II, Stage III, Stage IV, A-E, H-E, 

H-Erad, GMSRA1, GMSRA2, Blend, PERSIANN) and four rain gauges 

(RSOC2, ESPC2, LTER, PKLC2). These were selected based on data availability 

in summer 2004 and a reasonably high spatiotemporal resolution (4-km, 1-hr). 
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Table 2.1 Topographic, soil and vegetation characteristics of the study 
watersheds.  

Property Buckhorn 
Creek 

Fish 
Creek 

South Saint 
Vrain Creek 

Ralston 
Creek 

ID BUCK FISH SVRAIN RALS 

Stream Gauge ID BUCRMVCO FISHESCO SSVWARCO RALCRKCO 

Rain Gauge Name RSOC2 ESPC2 LTER PKLC2 

Total Area [km2] 350.5 40.8 35.1 117.3 

Length of main 
channel [km] 

45.6 9.7 12.6 25.8 

Slope of main 
channel [m/km] 

26.2 70.5 42.3 32.1 

Mean elevation [m] 2418 2858 3455 2517 

Minimum/maximum 
elevations [m] 

1583/3268 2284/3473 2858/4087 1847/3204 

Std. Elevation [m] 482 333 344 387 

Mean slope [%] 28.0 28.2 30.0 29.2 

Std. Slope [%] 16.3 19.9 26.7 17.9 

Major soil class 1  
(% area) 

Sandy loam 
(74.6) 

Sandy loam 
(86.7) 

Sandy loam 
 (44.1) 

Loam 
 (45.5) 

Major soil class 2  
(% area) 

Loam 
 (21.2) 

Bedrock 
(6.9) 

Loam 
 (30.6) 

Sandy Loam 
(34.4) 

Major soil class 3  
(% area) 

Bedrock 
 (3.1) 

Loam 
 (4.6) 

Bedrock 
 (25.2) 

Loamy sand 
(13.0) 

Major vegetation  
class 1 (% area) 

Forest (70.4) Forest (76.2) Forest (43.1) Forest (77.8) 

Major vegetation  
class 2 (% area) 

Grassland 
 (27) 

Shrubland 
(13.8) 

Grassland 
 (22) 

Grassland 
(14.6) 

Major vegetation  
class 3 (% area) 

Agriculture 
(1.4) 

Grassland 
(5.1) 

Shrubland  
(19.4) 

Shrubland 
(7.1) 

 

For PERSIANN, rainfall depths were aggregated in time from 30-min to 

1-hr intervals. Data gaps of hourly rain gauge data from May through September 

(MJJAS) accounted for less than 3% of the period in all cases. Neighboring 

hourly stations were used to estimate missing data. Radar reflectivity data was 

obtained from a mosaic of the WSR-88D Level II ‘NEXRAD’ radars at Denver, 

CO (KFTG), Pueblo, CO (KPUX) and Cheyenne, WY (KCYS) over minimum 

and maximum volume scan altitudes of 3-km and 6-km, respectively.  
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Table 2.2 Summary of main characteristics of rain gauge, radar, satellite and 
multisensor QPEs. 

Data Set Type Full Name Brief description References 

RSOC2, 
ESPC2, 
LTER, 
PKLC2 

Rain gauge 

Redstone, Estes 
Park, 

Long Term 
Ecological 

Research Site at 
Niwot Peak, Pickle 

Gulch 

Hourly rain gauges from 
Mesowest and 

AMERIFLUX networks 

Steenburgh 
2003; 

Horel et al. 
2002; 

Lazarus et al. 
2002. 

Level II Radar 
NWS WSR-88D 
Level II at 1-km 

and 4-km 

NWS Doppler Radar 
Network   

Kelleher et al. 
2007. 

Stage III Multisensor 

Multisensor 
Precipitation 

Estimator 
NEXRAD Stage III 

Mosaicked radar scans and 
mean field bias 

adjustment. 

Young et al. 
2000; 

Xie et al. 
2005; 

Wang et al. 
2008. 

Stage IV Multisensor 

Multisensor 
Precipitation 

Estimator 
NEXRAD Stage 

IV 

National mosaicked 
product from hourly 

multisensor precipitation.  

Fulton et al. 
1998;  

Mitchell et al. 
2004. 

A-E Satellite Auto-Estimator 

Brightness temperatures 
from GOES Infrared 

(IR). Radar screening of 
no-rain pixels. 

Vicente et al. 
1998, 2002. 

H-E, H-Erad Satellite 

Hydro-Estimator 
Hydro-Estimator 

with radar 
screening 

Brightness temperatures 
from GOES IR 

modulated by cloud 
evolution, stability, 

atmospheric moisture. 
Radar and local 

topography used to adjust 
rates. 

Scofield and 
Kuligoswki 

2003. 

GMSRA1, 
GMSRA2 

Satellite 

GOES 
Multispectral 

Rainfall 
Algorithms V1, V2 

Combined information 
from visible, near-IR and 

IR measurements with 
two different algorithms 
for analyzing brightness 
temperatures for day and 

night time. 

Ba and Gruber 
2001. 

Blend Satellite 
Naval Research 

Laboratory 
Blended Technique 

Histogram-matching 
calibration of IR to 
merged microwave. 

Turk and 
Miller 2005. 

PERSIANN Satellite 

Precipitation 
Estimation From 
Remotely Sensed 
Information using 
Artificial Neural 

Networks 

Adaptive Neural 
Network calibration of 
GOESS and TRMM 

using a cloud 
classification system. 

Hong et al. 
2004;  

Hong et al. 
2007. 
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Reflectivity values were transformed to 5-min, 1-km resolution rainfall 

rates by applying a Z-R relation and accumulating to hourly depths (i.e., Level II 

1-km product). The rainfall-reflectivity coefficient and exponent, Z = 700R1.3, 

were obtained from a multi-criteria optimization method that minimized the Root 

Mean Square Error (RMSE) and maximized the Critical Success Index (CSI) 

between the observed time series at seven hourly rain gauges and the radar 

estimates at collocated pixels (Moreno et al. 2012b). The Level II 1-km product 

was aggregated to 4-km resolution for comparison to satellite QPEs, which 

include several algorithms that derive rainfall rates from infrared cloud top 

temperature and were resampled to 4-km, hourly resolution (Table 2.2). Two of 

the products (Stage III, Stage IV) are classified as multisensor precipitation 

estimates. 

Distributed Hydrologic Modeling 

Model Overview 

In this study, we apply tRIBS for continuous flood forecasting using 

precipitation from multiple sources. Prior studies have demonstrated effective use 

of the model for flood forecasting in basins with different characteristics (Ivanov 

et al. 2004; Vivoni et al. 2007b; Mascaro et al. 2010), including mountain areas 

(Mahmood and Vivoni 2008; Vivoni et al. 2009; Nikolopoulus et al. 2011). The 

model accounts for spatial heterogeneities in terrain, vegetation and soil 

properties, and atmospheric forcing to reproduce the space-time hydrologic 

evolution of a basin. Simulations of the coupled surface-subsurface response are 

performed by tracking infiltration fronts, water table fluctuations and lateral 
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moisture fluxes. Surface runoff is triggered through infiltration-excess, saturation-

excess, perched return flow and groundwater exfiltration mechanisms, while 

routing is performed through hydrologic overland flow and hydraulic channel 

routing. Evapotranspiration consists of soil evaporation, plant transpiration and 

evaporation of intercepted rainfall. An important model characteristic is the use of 

a TIN to represent a basin and reduce the number of computational nodes relative 

to the original data with minimal loss of information (Vivoni et al. 2004). 

Computational time savings in this study are further achieved through a parallel 

computing approach based on sub-basin partitioning and the use of a high 

performance computing (HPC) platform. The model processes, computational 

framework and parallelization capabilities are given in full detail in Ivanov et al. 

(2004) and Vivoni et al. (2011).  

Model Parameters 

As a distributed-parameter model, tRIBS requires spatially-varying input 

fields including topography, soils, vegetation, and aquifer characteristics. We 

obtained a 30-m Digital Elevation Model (DEM) from the National Elevation 

Dataset (Gesch et al. 2002) for the CFR region. Watershed delineation was based 

on creating depressionless DEMs, deriving the overland flow directions along the 

steepest paths, and computing the upslope areas at each outlet. Channel networks 

were delineated from constant-area thresholds used to classify DEM points as 

stream cells (e.g., O’Callaghan and Mark 1984; Tarboton et al. 1991). For each 

study basin, a TIN was generated by minimizing the number of computational 

nodes and the Root Mean Squared Error (RMSE) relative to the original DEM 
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following the methods of Vivoni et al. (2004). This resulted in an optimum 

horizontal point density (d = nt/ng, where nt is the number of TIN nodes and ng is 

the number of DEM cells) of: BUCK (d = 0.47, nt = 122,050 nodes), FISH (d = 

0.27, nt = 22,231 nodes), SVRAIN (d = 0.46, nt = 19,672 nodes), and RALS (d = 

0.43, nt = 52,231 nodes). As shown by Vivoni et al. (2004), the TINs preserve 

terrain characteristics, the channel network structure and the basin boundary. 

Voronoi polygons are constructed from the derived TINs and used as the finite-

volume domain for mass balance and flux computations.  

Soil texture maps were derived from the Soil Survey Geographic 

(SSURGO) database at 1:24,000 scale, with gaps filled by the State Soil 

Geographic (STATSGO) database at a scale of 1:250,000. Most soils in the CFR 

region are sandy loam, loam and exposed bedrock. Table 2.1 and Figure 2.2 

provide details on the major soil classes for each study basin. Soil texture is used 

in tRIBS to derive the soil parameters listed in Table 2.3, including soil hydraulic 

and thermal properties. As an example, feasible ranges of reference (or 

uncalibrated) soil parameter values are provided for sandy loam in Table 2.3. 

Hydraulic characteristics of the underlying aquifer are described by the depth 

variation of soil properties, particularly through the ratio of horizontal to vertical 

hydraulic conductivities (anisotropies, Ar), the hydraulic conductivity decay 

parameter (f) and the depth to bedrock (B). To avoid model overparameterization, 

soil classes such as unweathered and weathered bedrock and stones were grouped 

into a single class. Similarly, soils classified as slightly decomposed plant 

material were grouped into the dominant sandy loam class. 
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Table 2.3 Soil (*), vegetation (+), routing (%) and aquifer (^) parameters in the 
tRIBS model with minimum, reference and maximum values for sandy loam and 
forest classes. 

Parameter Units Symbol Min. Ref. Max. 

Sat. hydraulic conductivity* [mm/h] Ks 0.36 10.9 36 

Soil moisture at saturation* [-] θs 0.271 0.412 0.608 

Residual soil moisture* [-] θr 0.024 0.041 0.106 

Pore size distribution index* [-] λ0 0.14 0.378 2.0 

Air entry bubbling pressure* [mm] ψb -454.7 -146.6 0 

Conductivity exponent decay* [-] f 0.00035 0.008758 0.05 

Sat. and unsat. anisotropy ratios* [-] ar 1 223 1000 

Porosity* [-] n 0.351 0.453 0.611 

Thermal conductivity* [Jm-1s-1K-1] ks 0.825 1.65 2.475 

Volumetric heat capacity* [Jm-3K-1] Cs 1360715 2721430 4082145 

Free throughfall coefficient+ [-] p 0.15 0.25 0.65 

Canopy field capacity+ [mm] S 0.525 1.05 1.575 

Canopy drainage rate coefficient+ [-] K 0.1 0.12 0.25 

Canopy drainage rate exponent+ [-] b2 3.2 3.7 4.3 

Albedo+ [-] a 0.102 0.205 0.307 

Vegetation height+ [m] Hv 14 20 35 

Optical transmission coefficient+ [-] Kt 0.15 0.3 0.45 

Canopy ave. stomatal resistance+ [s/m] rs 87.5 175 262.5 

Vegetation fraction+ [-] V 0.5 0.7 0.8 

Manning coefficient% [-] ne 0.03 0.04 0.07 

Kinematic routing velocity coeff.% [-] Cv 12.5 25 37 

Non-linear discharge exponent% [-] r 0.2 0.4 0.45 

Channel width coefficient% [-] aB 0.568 1.1357 1.7036 

Channel width exponent% [-] bB 0.2273 0.4546 0.6819 

Bedrock depth^ [m] B 0.25 2 3 

 

In a similar fashion, vegetation maps were obtained from the USGS 

National Land Cover Dataset (Homer et al. 2004). Dominant vegetation types in 

the basins are forests and grasslands, followed by smaller fractions of glaciated 
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terrains, agricultural and urban areas (see Table 2.1 and Figure 2.2 for details). 

Both deciduous and evergreen forests were grouped into a single forest class. 

Vegetation types are used in the model to derive rainfall interception and 

evapotranspiration parameters. As an example, Table 2.3 presents reference 

vegetation parameter values for a forest cover. Soil and vegetation classes are 

mapped directly to Voronoi polygons (Ivanov et al. 2004) and are associated with 

an attribute table with the corresponding parameters used in the energy and mass 

continuity equations. To avoid the potential for model overparameterization, 

parameter values are not allowed to vary within soil and vegetation classes, only 

between classes. 

Model parameterization also includes aquifer and routing properties. A 

range of spatially-uniform bedrock depths in the different basins was inferred 

from seven soil catenas constructed by Birkeland et al. (2003) along a transect in 

the CFR. Parental rocks are broadly uniform with high contents of feldspar, 

quartz, biotite and hornblende. The mean depth to bedrock determines the aquifer 

thickness and thereby the amount of water that can be stored and moved through 

the subsurface (Ivanov et al. 2004). Routing parameters control runoff through 

hillslope flow paths and the stream network. Channel roughness and hillslope 

routing parameters were obtained from prior studies (Chow 1959; Ivanov et al. 

2004), while a geomorphic relation between channel width (w in m) and 

contributing area (A in km2) was derived from field measurements taken by the 

CDWR from 2003 through 2008 at the eleven basins shown in Figure 2.1, 
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resulting in w =1.14A0.45 (http://www.dwr.state.co.us). Table 2.3 reports a set of 

reference routing parameters. 

Model Initialization 

As in most surface-subsurface models, tRIBS requires an initial condition 

determined by the spatial distribution of soil water content. Lacking direct 

observations, the initial soil moisture can be inferred from the depth to 

groundwater table due to the assumption of hydrostatic equilibrium (Ivanov et al. 

2004). Following Vivoni et al. (2007a), we conducted a drainage experiment for 

each basin to derive a rating curve linking simulated basin outlet discharges (Qb) 

to model-based estimates of the spatial mean depth to groundwater (Nwt). The 

experiments start with a fully-saturated basin that is allowed to drain for a long 

period (~10 years) without any weather forcing, leading to hydrographs that are 

controlled by geomorphology, channel geometry and soil properties (e.g., Vivoni 

et al. 2008). A maximum expected depth to bedrock of 3 m was used to provide a 

wide range of initialization cases. Feasible scenarios (10 per basin from dry to 

wet) for the initial Nwt were extracted from the rating curve through the simulated 

Qb that correspond to percentiles of the exceedence probability of the observed 

discharge at each stream gauge for summers 2003 to 2006. Using the exceedence 

probability of observed discharge provides realistic streamflow values that are 

uniquely related to spatially distributed groundwater depths. Figure 2.3a 

illustrates the groundwater rating curves for the four basins.  
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Figure 2.3. Selection of initial condition for calibration of hydrologic model. (a) 
Discharge rating curves from drainage experiments at BUCK, FISH, SVRAIN 
and RALS. Symbols illustrate the dry, intermediate and wet cases derived from 
percentiles from historic flow duration curves. Nwt is the mean groundwater table 
depth below the surface, and Qb is outlet baseflow discharge. (b) Observed (solid 
line) and uncertainty envelope (shaded area) of the simulated hydrographs at 
FISH along with the mean areal precipitation (MAP). Spatial distribution of the 
initial depth to groundwater as dictated by the (c) dry, (d) intermediate and (e) wet 
cases for FISH. 
 

Percentiles at 0.05, 50 and 99.5% are shown to represent three possible 

initial scenarios: dry, intermediate and wet. For FISH, these initial Qb states 

correspond to maps of groundwater depth shown in Figure 2.3c-e. Based on the 

sampling of the initial conditions, we conducted preliminary runs for FISH using 

reference (uncalibrated) parameter values (Table 2.3) for uniform sandy loam 

soils, and found the uncertainty envelope in Figure 2.3b.The wide spread in the 
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discharge indicates that the initialization should be considered in the calibration 

approach, as described in the following. As we excluded snow processes in the 

simulations (Rinehart et al. 2008), their impact on streamflow in SVRAIN was 

handled by a higher basin water storage in the selected initial condition. Thus, the 

aquifer is expected to slowly release water in a fashion that mimics the summer 

snowmelt contribution. 

Calibration Strategy  

Identifying a set of reasonable initial conditions and parameter values in 

the CFR basins is challenging due to the complex hydrologic processes in the 

region. Our approach combines the advantages of manual and automatic 

procedures by first evaluating the importance of each model parameter in a One-

At-a-Time (OAT) sensitivity analysis, followed by an optimization method using 

the Shuffled Complex Evolution (SCE) algorithm (Duan et al. 1993). OAT 

analyses were carried out in FISH and RALS using spatially-uniform classes that 

represented dominant soil and vegetation types. These basins were selected to 

represent summer conditions without a major snowmelt component, as observed 

at SVRAIN, to reduce parameter dependence on the snowmelt period. Soil, 

vegetation and routing parameters were varied within ranges found in the 

literature (Chow 1959; Bear 1972; Rutter et al. 1977; Rawls et al. 1982; 

Shuttleworth 1988; Birkeland et al. 2003; Ivanov et al. 2004; Mitchell et al. 2004; 

Todd and Mays 2005), although estimated guesses from preliminary model runs 

were incorporated to improve those ranges when a limited number of values were 

available from other studies (e.g., conductivity decay exponent). OAT results 
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indicated that the outlet streamflow response was controlled by: air entry bubbling 

pressure (ψb), non-linear hillslope discharge exponent (r), pore size distribution 

index (λ0), soil moisture at saturation (θs), hydraulic conductivity decay (f), 

saturated hydraulic conductivity (Ks) and depth to bedrock (B). These results are 

considered relevant for all study basins during the summer season, but might vary 

for other locations, time periods or target observations. The seven parameters 

resulting from the OAT analysis were subsequently used for model calibration. 

Based on the selected model parameters and initial conditions, the SCE 

method was used to minimize the RMSE between the observed and simulated 

hydrographs. Initial groundwater distributions from the drainage experiments 

were included in the automated optimization. The parameters identified in the 

OAT analyses and the initial conditions constituted the search space for the 

optimization routine. The SCE algorithm combines the features of multiple 

complex shuffling and competitive evolution, leading to an efficient exploration 

of the feasible parameter space. The model calibration was based on the hourly 

Level II 1-km product obtained from the Z-R relation derived using rain gauge 

measurements, as this constituted one of the best-available products in the region. 

Level II 1-km has the highest spatiotemporal resolution over CFR (5-min, 1-km) 

and was adjusted to replicate time series at seven rain gauges. Naturally, the Level 

II 1-km forcing itself may contain estimation errors due to issues of mountain 

beam blockage and hail contamination as well as uncertainties in the Z-R relation, 

among others. Comparisons between observed and simulated outlet streamflows 

may also vary due to uncertainties in the observations themselves. Minor gaps in 
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the observed streamflow at FISH (2% of the full record), SVRAIN (2.9%) and 

RALS (1.4%) were filled in using simple interpolation. Measured hydrographs are 

based on discharge-stage relations with potential estimation errors caused by 

channel geometry changes, overbank storage and unsteady flow (Herschy 1995).  

Figure 2.4 presents the observed hydrographs and the simulations derived 

from the calibration exercise for each basin along with RMSE and Nash-Sutcliffe 

efficiency (NS) scores.  A subset of model parameter values minimizing the 

RMSE between observed and simulated hydrographs are shown in Table 2.4 and 

correspond to the ‘modeled’ series. Note that the streamflow response varies 

considerably in time and among each basin, reflecting the nature of the 

meteorological forcing, landscape properties and the initial conditions. The 

distributed model is able to capture the different responses fairly well with RMSE 

ranging from 0.09 m3/s to 0.66 m3/s. Calibrated parameter values and initial water 

table depths presented in Table 2.4 are not the same across all basins but they fall 

within realistic ranges. Certainly, parameters provide degrees of freedom to 

compensate for model errors in a manner that differs for each basin. To consider 

the uncertainty introduced by the calibration process, Figure 2.4 also presents an 

envelope of the top 10% of the tested parameter sets in terms of RMSE. In most 

cases, the observed streamflow lies within the uncertainty envelope. Notice that 

the model is unable to reproduce the high baseflow in SVRAIN due to snowmelt, 

as verified from a Landsat image on June 2004 (not shown). 
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Figure 2.4. Observed (black lines) and simulated hydrographs (dark gray lines) 
resulting from model calibration in each basin, along with NS and RMSE skill 
scores. Mean areal precipitation (MAP) in each basin is derived from the hourly, 
1-km Level II product. Uncertainty in parameter values and initial conditions is 
depicted by the light gray envelopes.  

 

The remaining discrepancies can be explained by model structural error 

and the uncertainties introduced through precipitation forcing and streamflow 

data. Note that this effort considered each complex basin independently and 

calibrated the model for the entire summer based on forcing from small-scale 

convective precipitation systems (Yates et al. 2000; Ashley and Ashley 2008). 

Parallel Model Experiments  

Efficient fully-distributed modeling is achieved in this study through the 

use of a High Performance Computing (HPC) facility at Arizona State University. 

The parallel capabilities of tRIBS are based on a domain decomposition using a 

sub-basin partitioning of each watershed (Vivoni et al. 2011). Individual sub-

basins are assigned to computer processors that exchange surface and subsurface 

fluxes along the channel network and across adjacent groundwater boundaries. 
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Table 2.4. Summary of calibrated parameter values and initial conditions. µ(Nwt) 
is the mean depth to the groundwater table in each basin.  
Parameter BUCK FISH SVRAIN RALS 

 
Sandy 
loam Loam Sandy 

loam Bedrock Sandy 
loam Loam Loam Sandy 

loam 

Ks [mm/h] 7.96 30.29 17.18 2.04 8.16 22.38 25.76 18.64 

θθθθs [-] 0.32 0.37 0.35 0.07 0.57 0.56 0.52 0.58 

λλλλ0 [-] 0.81 1.46 1.47 0.06 1.48 0.58 1.67 1.19 

ψψψψb [mm] -244.22 -704.46 -84.36 -221.89 -21.71 -804.97 -385.37 -324.37 

f [mm-1] 0.033364 0.025288 0.00222 0.03063 0.000364 0.000956 0.036551 0.008452 

r 0.4459 0.4491 0.4074 0.4340 

B [m] 1.26 1.05 2.84 1.66 

µµµµ(Nwt) [m] 1.17 1.01 0.169 1.28 

 

Domain partitioning is achieved by a connectivity table assigning each 

sub-basin to a processor. The connectivity table for each basin was generated 

through METIS (Karypis and Kumar 1999), a graph partitioning software that 

properly balances the computational workload. Parallel run times were 

significantly reduced, in average by a factor of five, which enhanced the 

capability to execute a larger number of model iterations for the calibration efforts 

and to test the multiple QPE products in each basin. 

RESULTS AND DISCUSSION 

Multi-scale Comparison of Quantitative Precipitation Estimates  

The spatiotemporal distribution of warm-season precipitation derived from 

the different QPE products was analyzed with respect to the entire CFR region, at 

each rain gauge site and within the study basins. The spatial variability of total 

seasonal precipitation shown in Figure 2.5 is relevant for assessing the flood 
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potential in the region during 2004 (JJAS) and comparing the characteristics of 

the different QPE products. For this analysis, any temporal gaps for a particular 

QPE were filled in with rainfall estimates from the Level II product at hourly, 4-

km resolution, whose time series is complete and which should, in general, impart 

a positive impact to the product skill evaluation given its gauge-calibrated nature. 

At the seasonal aggregation scale, a recognizable rainfall pattern in all QPE 

products was the presence of higher rainfall in the eastern portion of CFR at lower 

elevations. Furthermore, QPEs that incorporate weather radar estimates (Level II, 

Stage III, Stage IV) share common features, including a high spatial mean (µ) and 

standard deviation (σ). Certain areas in the Level II product have marked 

differences with Stage III and IV (north and southeast regions) due to corrections 

in the multisensor estimates not incorporated into the Z-R relation. Of the satellite 

QPE products, only A-E exhibits magnitudes and spatial patterns resembling the 

radar and multisensor products. Most satellite QPEs (H-E, H-Erad, GMSRA1, 

GMSRA2 and PERSIANN) show lower means and smoother spatial variations, 

except for Blend that has high rainfall amounts due to outliers in June. Additional 

analyses confirmed that Level II has the highest number of rainy hours, an 

indication of the presence of a larger number of small accumulation precipitation 

events. Seasonal comparisons over the CFR were complemented by inspecting 

hourly rainfall at each rain gauge site and their collocated pixel values from each 

QPE product.  
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Figure 2.5. Spatial distribution of summer season (JJAS in mm) accumulated 
precipitation in 2004 in the CFR region from each hourly, 4-km QPE product. 
Watershed divides for 11 basins (Fig. 2.1) are depicted in black. Spatial mean and 
standard deviations are also shown. 

 

Figure 2.6 presents an example for the LTER site and a subset of QPEs, 

while Table 2.5 provides statistical evaluations at all rain gauge sites and all 

QPEs. The comparisons reveal that Level II, Stage III, Stage IV and A-E provide 

the best estimates of the total rainfall (Ptot) and its temporal distribution at the rain 

gauge sites. In Figure 2.6, Level II 4-km shows a good performance that 

represents well the timing and magnitude of storms. This is in part due to the use 

of seven rain gauges in the calibration of the Z-R relation. For the LTER site, 

Stage III and Stage IV tend to underestimate rainfall, while the satellite QPEs 

exhibit weaker relations with rain gauge data.  
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Figure 2.6. Hourly precipitation (mm) at (a) LTER rain gauge and the collocated 
pixels for (b) Level II at 4-km, (c) Stage III, (d) Stage IV, (e) A-E, (f) H-E, (g) 
GMSRA1, and (h) PERSIANN. 

 

This is consistent with studies comparing ground data to satellite 

precipitation retrievals (Scofield and Kuligowski 2003; Sapiano and Arkin 2009; 

Yucel et al. 2011). While rain occurrences are reasonably captured by satellite 

QPEs, they tend to overestimate rainfall amounts in the early summer and 

underestimate them for the rest of the season. In general, all QPEs underestimate 

rainfall with respect to rain gauges, as evidenced by the Bias scores less than 

unity for most cases.  
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Table 2.5. Statistical evaluation of rainfall estimates from rain gauges and 
collocated pixels. ρ and R are the Pearson and Spearman rank correlations. Ptot is 
the seasonal rainfall accumulation. Bias is the ratio of the mean forecast and mean 
observation values (Wilks, 2006). 
Precipitation 

Product 
ESPC2 (Ptot = 355.2 mm) RSOC2 (Ptot = 248.0 mm) 

 Ptot 
[mm] ρρρρ R Bias RMSE 

[mm] 
Ptot 

[mm] ρρρρ R Bias RMSE 
[mm] 

Level II 320.0 0.24 0.48 0.90 1.21 173.2 0.58 0.44 0.70 0.43 

Stage III 403.4 0.37 0.63 1.14 1.09 110.9 0.36 0.36 0.45 0.50 

Stage IV 429.1 0.45 0.62 1.21 1.03 117.0 0.36 0.29 0.47 0.50 

A-E 199.6 0.26 0.38 0.56 1.07 220.4 0.23 0.29 0.89 0.59 

H-E 95.3 0.22 0.28 0.27 1.08 111.7 0.24 0.21 0.45 0.56 

H-Erad 92.6 0.23 0.28 0.26 1.08 108.7 0.24 0.21 0.44 0.56 

GMSRA1 146.6 0.25 0.26 0.41 1.08 149.2 0.27 0.16 0.60 0.56 

GMSRA2 191.0 0.2 0.19 0.54 1.10 182.6 0.16 0.09 0.74 0.59 

Blend 649.4 0.06 0.24 1.83 2.13 650.9 0.02 0.10 2.62 2.00 

PERSIANN 136.6 0.05 0.11 0.38 1.13 156.7 0.10 0.08 0.63 0.59 

           

 PKLC2 (Ptot  = 323.1 mm) LTER (Ptot  = 352.9 mm) 
Level II 214.0 0.55 0.49 0.66 0.61 250.6 0.32 0.47 0.71 0.80 

Stage III 249.0 0.38 0.50 0.77 0.62 287.5 0.52 0.56 0.81 0.62 

Stage IV 308.8 0.45 0.48 0.96 0.69 275.7 0.37 0.53 0.78 0.76 

A-E 194.0 0.47 0.32 0.60 0.59 267.4 0.20 0.30 0.76 0.84 

H-E 76.3 0.37 0.16 0.24 0.62 158.0 0.13 0.20 0.45 0.87 

H-Erad 75.0 0.37 0.16 0.23 0.62 158.0 0.13 0.20 0.45 0.87 

GMSRA1 121.9 0.41 0.19 0.38 0.62 192.8 0.11 0.22 0.55 0.84 

GMSRA2 170.3 0.38 0.140 0.53 0.65 225.4 0.11 0.18 0.64 0.89 

Blend 693.3 0.10 0.23 2.15 2.06 757.8 0.10 0.25 2.15 2.08 

PERSIANN 101.5 0.18 0.17 0.31 0.64 131.5 0.23 0.11 0.37 0.69 

 

Multiple factors could explain the underestimation including diurnal 

sampling uncertainties, tuning of the precipitation algorithm for other regimes, the 

comparatively small spatial scale of CFR storms, or unusual surface or 

atmosphere properties that QPE algorithms do not correctly interpret (Smith et al. 

2006). There is also scale mismatch effect between pixel and point measurements 

that translates into lower rainfall estimates per pixel (Boushaki et al. 2009). For 
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most sites, the Pearson and Spearman rank correlations are larger for Level II, 

Stage III, Stage IV and A-E products, suggesting that these QPEs contain the 

most accurate depiction of rainfall at these validation locations. Figure 2.7 shows 

event distributions of hourly, basin-averaged rainfall for non-zero periods. In 

addition, the number of rain hours is presented, indicating when rainfall occurred 

at any site in the basin area. The lower number of rain hours for the rain gauges is 

related to two factors. First, rain gauges have a resolution of 0.1 mm, while QPE 

algorithms do not curtail rainfall below a threshold. Second, rain gauges measure 

at a single site where the likelihood of rainfall is smaller than for all pixels in a 

basin. These two factors lead to a higher median rainfall for rain gauges and 

larger outliers at FISH, SVRAIN and RALS. In most cases, the Level II 4-km 

product has the highest number of rainfall hours and the lowest median 

accumulations. Since this is a basin-average, this implies that Level II contains a 

large number of small rainfall events distributed in each basin. The Stage III and 

Stage IV products show similar behavior, but tend to have a lower number of 

events, in particular for BUCK where seasonal accumulations were low. In 

general, satellite QPEs exhibit similar event distributions among themselves and 

are characterized by low medians, reduced number of rainfall hours and a low 

number of outliers. Consistent with prior analyses, A-E has properties closest to 

radar and multisensor QPEs, while Blend presents outliers that affect its ability to 

capture the site, basin-average or regional rainfall distributions. 
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Figure 2.7. Box-and-whisker plots of hourly basin-averaged precipitation (mm) 
in each basin from the QPE products and closest rain gauge. Each plot presents 
the median (horizontal line), lower and upper quartiles (box) and the outliers 
beyond the 1.5 interquartile range (circles). Numbers at the top represent the total 
number of hourly (non-zero) rainfall values considered for each case. 

 

Hydrological Intercomparison using Integrated Measures  

The simulated basin responses resulting from the different QPE products 

are compared in terms of the outlet streamflow, underlying runoff mechanisms 

and water balance components. Streamflow error metrics are obtained from two 

reference hydrographs based on stream gauge data or the simulated response from 

the Level II 1-km forcing used for model calibration. Figure 2.8 presents the 

simulated hydrographs in each study basin for a number of representative QPEs 
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(Level II, Stage III, PERSIANN) as well as simulations obtained using spatially-

uniform rain gauge forcing from the nearest gauge to each basin (i.e., ‘Rain 

Gauge’). Results for all QPE products are presented in Table 2.6 through the use 

of evaluation metrics (ρ, R, NS, Bias, RMSE). The Pearson and Spearman Rank 

correlation coefficients (ρ and R) indicate the degree of agreement over all values, 

while the Root Mean Squared Error (RMSE) and Nash-Sutcliffe efficiency (NS) 

weight streamflow peak errors more heavily.  

To aid in the comparison, Figure 2.9 shows the outlet discharge RMSE 

between the simulations and the observed streamflow, as well as, the RMSE 

between each case and the simulations obtained with the Level II 1-km forcing.  

Rain gauge forcing tends to overestimate simulated streamflow in each basin 

relative to both observations and Level II 1-km simulations. These errors are due 

to the assumption of spatially-uniform rainfall in each watershed where, in reality, 

summer storms or the principal rain cores of cloud systems are smaller in scale 

relative to the basin size. As a result, the RMSE of the rain gauge simulations are 

greater than most of the QPEs (except Blend) when compared against 

observations and Level II 1-km forcing (Figure 2.9). This has important 

implications for the different QPE products as their use is superior to assuming 

uniform rainfall conditions from nearby rain gauges. 
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Figure 2.8. Simulated outlet streamflow (black lines) for the rain gauges and 
selected QPEs (Level II, Stage III, PERSIANN) in each basin. Observed (dark 
gray) and reference hydrographs (light gray) derived from the Level II 1-km 
forcing are shown for reference.  

 

Based on the various statistical metrics, the QPEs with superior 

performance in terms of the outlet discharge are the following for each basin (in 

order): BUCK (Level II 4-km, Stage III), FISH (Stage III, Stage IV, Level II 4-

km), SVRAIN (Stage III, Stage IV, A-E) and RALS (Stage III, Stage IV, 

PERSIANN). Over most basins, Stage III provides the most reliable simulations, 

though high RMSEs are present at BUCK due to low rainfall in northern areas 

(Figure 2.5). Good hydrologic performance of the multisensor products suggests 

that merging radar and rain gauge data, as achieved by the Stage III algorithm, is 

valuable for mountain areas.  
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Table 2.6. Statistical evaluation of streamflow simulations from multiple QPEs 
relative to the observed and simulated hydrographs derived from the Level II 1-
km forcing (in parentheses). NS is the Nash-Sutcliffe efficiency (Legates and 
McCabe, 1999).  

Basin BUCK FISH 

Precipitation 
Product  

ρρρρ 
[-] 

R 
[-] 

Bias 
[-] 

NS 
[-] 

RMSE 
[m3/s] 

ρρρρ 
[-] 

R 
[-] 

Bias   
[-] 

NS 
[-] 

RMSE 
[m3/s] 

Rain gauge 0.76 
(0.64) 

0.72 
(0.62) 

2.23 
(2.14) 

-4.14 
(-4.40) 

0.82 
(0.86) 

0.57 
(0.67) 

0.73 
(0.81) 

1.94 
(2.71) 

-5.07 
(-6.73) 

0.30 
(0.31) 

Level II 0.72 
(0.93) 

0.71 
(0.94) 

1.22 
(1.18) 

0.05 
(0.67) 

0.35 
(0.21) 

0.74 
(0.92) 

0.75 
(0.93) 

0.57 
(0.79) 

0.30 
(0.80) 

0.10 
(0.05) 

Stage III 0.78 
(0.74) 

0.82 
(0.76) 

0.29 
(0.28) 

-0.13 
(-0.19) 

0.39 
(0.40) 

0.80 
(0.94) 

0.86 
(0.91) 

1.12 
(1.56) 

0.37 
(0.39) 

0.10 
(0.09) 

Stage IV 0.04 
(0.23) 

0.23 
(0.54) 

0.37 
(0.36) 

-0.40 
(-0.33) 

0.43 
(0.43) 

0.72 
(0.90) 

0.80 
(0.89) 

0.72 
(1.00) 

0.41 
(0.80) 

0.09 
(0.05) 

A-E -0.13 
(0.08) 

0.06 
(0.42) 

1.42 
(1.36) 

-5.19 
(-4.07) 

0.90 
(0.84) 

0.25 
(0.51) 

0.44 
(0.72) 

0.28 
(0.40) 

-0.62 
(-0.06) 

0.15 
(0.11) 

H-E -0.17 
(0.06) 

-0.02 
(0.32) 

0.69 
(0.66) 

-1.31 
(-1.07) 

0.55 
(0.54) 

-0.06 
(0.17) 

0.11 
(0.44) 

0.17 
(0.23) 

-1.01 
(-0.46) 

0.17 
(0.13) 

H-Erad -0.15 
(0.0) 

-0.02 
(0.32) 

0.56 
(0.54) 

-0.93 
(-0.77) 

0.50 
(0.49) 

-0.05 
(0.18) 

0.14 
(0.48) 

0.16 
(0.23) 

-1.02 
(-0.46) 

0.17 
(0.13) 

GMSRA1 -0.08 
(0.13) 

0.09 
(0.54) 

0.54 
(0.52) 

-0.66 
(-0.41) 

0.47 
(0.44) 

0.23 
(0.54) 

0.32 
(0.64) 

0.20 
(0.27) 

-0.81 
(-0.23) 

0.16 
(0.12) 

GMSRA2 -0.03 
(0.16) 

0.17 
(0.30) 

0.97 
(0.93) 

-1.91 
(-1.31) 

0.62 
(0.57) 

0.08 
(0.36) 

-0.05 
(0.23) 

0.22 
(0.31) 

-0.82 
(-0.26) 

0.16 
(0.12) 

Blend -0.13 
(-

0.07) 

0.01 
(0.36) 

63.66 
(61.20) 

-36527 
(-

34709) 

69.36 
(69.33) 

0.02 
(0.03) 

0.56 
(0.72) 

12.48 
(17.4) 

-2645 
(-

3192) 

6.29 
(6.30) 

PERSIANN -0.03 
(0.19) 

0.23 
(0.59) 

0.26 
(0.25) 

-0.55 
(-0.48) 

0.45 
(0.45) 

0.72 
(0.77) 

0.54 
(0.70) 

0.17 
(0.23) 

-0.64 
(-0.14) 

0.16 
(0.12) 

           

 SVRAIN RALS 

Rain gauge 0.57 
(0.68) 

0.82 
(0.87) 

1.09 
(1.43) 

-0.38 
(-1.12) 

1.13 
(1.08) 

0.48 
(0.47) 

0.67 
(0.67) 

1.42 
(1.76) 

-1.64 
(-1.07) 

0.20 
(0.21) 

Level II 0.79 
(0.99) 

0.92 
(0.99) 

0.77 
(1.01) 

0.53 
(0.97) 

0.66 
(0.13) 

0.22 
(0.91) 

0.27 
(0.96) 

0.69 
(0.85) 

-0.38 
(0.77) 

0.15 
(0.07) 

Stage III 0.81 
(0.96) 

0.92 
(0.97) 

0.79 
(1.04) 

0.57 
(0.93) 

0.63 
(0.20) 

0.49 
(0.63) 

0.56 
(0.70) 

1.06 
(1.32) 

-0.01 
(0.32) 

0.13 
(0.12) 

Stage IV 0.79 
(0.95) 

0.91 
(0.96) 

0.84 
(1.11) 

0.58 
(0.87) 

0.62 
(0.26) 

0.39 
(0.78) 

0.52 
(0.85) 

0.86 
(1.07) 

-0.08 
(0.61) 

0.13 
(0.09) 

A-E 0.80 
(0.96) 

0.91 
(0.96) 

0.81 
(1.06) 

0.58 
(0.91) 

0.62 
(0.22) 

0.12 
(0.46) 

0.32 
(0.62) 

0.77 
(0.96) 

-0.51 
(0.15) 

0.15 
(0.14) 

H-E 0.77 
(0.94) 

0.92 
(0.96) 

0.70 
(0.92) 

0.42 
(0.87) 

0.73 
(0.27) 

-0.09 
(0.12) 

0.23 
(0.32) 

0.28 
(0.35) 

-0.74 
(-0.22) 

0.16 
(0.16) 

H-Erad 0.77 
(0.94) 

0.92 
(0.96) 

0.70 
(0.92) 

0.42 
(0.87) 

0.73 
(0.27) 

-0.09 
(0.13) 

0.18 
(0.41) 

0.27 
(0.33) 

-0.76 
(-0.22) 

0.16 
(0.16) 

GMSRA1 0.79 
(0.96) 

0.92 
(0.97) 

0.75 
(0.99) 

0.52 
(0.91) 

0.66 
(0.22) 

0.06 
(0.56) 

0.33 
(0.71) 

0.47 
(0.59) 

-0.69 
(0.25) 

0.16 
(0.13) 

GMSRA2 0.77 
(0.94) 

0.87 
(0.92) 

0.77 
(1.01) 

0.50 
(0.87) 

0.68 
(0.26) 

0.02 
(0.54) 

0.23 
(0.49) 

0.55 
(0.68) 

-0.67 
(-0.25) 

0.16 
(0.13) 

Blend 0.32 
(0.28) 

0.89 
(0.90) 

2.22 
(2.92) 

-50.27 
(-

88.41) 

6.88 
(7.03) 

-0.03 
(-

0.04) 

-0.08 
(0.55) 

39.6 
(49) 

-29751 
(-

20819) 

21.4 
(21.4) 

PERSIANN 0.77 
(0.89) 

0.88 
(0.93) 

0.74 
(0.97) 

0.47 
(0.79) 

0.70 
(0.34) 

0.30 
(0.74) 

0.41 
(0.78) 

0.31 
(0.38) 

-0.33 
(0.30) 

0.14 
(0.12) 
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Figure 2.9. Outlet streamflow RMSE between simulations with different QPEs 
and observed data (black bars) and simulated hydrographs obtained using the 
Level II 1-km forcing (white bars). Note the varying logarithmic scale on the 
RMSE for each basin.  

 

This also holds for the Level II product that used a limited number of rain 

gauges to derive a Z-R relation. Errors in the Level II 4-km simulations with 

respect to the 1-km forcing show that spatial aggregation has a substantial effect 

on the simulations relative to the calibrated model. Most satellite QPEs (except 

Blend) tend to underestimate the outlet discharge volume as indicated by the low 

Bias with respect to the observations and Level II 1-km forcing (Table 2.6). In 

addition, RMSEs are larger than the radar and multisensor products, but lower 

than rain gauge forcing. Since satellite QPEs exhibit lower rainfall magnitudes 
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and smoother fields, the resulting streamflow simulations are characterized by 

lower volumes and reduced variability, as shown for PERSIANN in Figure 2.8. 

For certain basins, however, some satellite QPEs can have performances that 

approach those obtained from the radar and multisensor products (e.g., A-E in 

SVRAIN and PERSIANN in RALS). Nevertheless, poorer performances of these 

products in other basins (e.g., A-E in RALS and PERSIANN in BUCK) suggest 

that their use in streamflow simulations across the CFR should be done with 

caution and perhaps with some kind of additional bias correction. These results 

indicate that satellite QPEs can serve as an effective alternative to uniform rain 

gauge forcing, but not for radar and radar-based multisensor products.  

Differences in space-time rainfall behavior in each QPE may also 

condition the runoff mechanisms composing the basin response. Figure 2.10 

presents the fraction of the outlet streamflow volume from each runoff type. Basin 

properties and model parameters yield differences in runoff composition across 

the basins, with BUCK and RALS consisting of infiltration-excess (INF) and 

saturation-excess (SAT) runoff; SVRAIN composed of groundwater exfiltration 

(GW) and SAT; and FISH having a mixture of all types. Clearly, the properties of 

each QPE lead to some variations in runoff mechanisms in each basin. Radar and 

multisensor QPEs with good performance relative to streamflow data exhibit 

similarities in runoff types. In most basins, Stage III and IV have higher fractions 

of SAT as compared to Level II, indicating that less frequent and lower magnitude 

rainfall pulses (Figure 2.7) favor this runoff type, as expected based on prior 

studies (Vivoni et al. 2007a). 
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Figure 2.10. Fractions of runoff mechanisms for each QPE and study basin for: 
infiltration excess (INF), saturation excess (SAT), perched return flow (PER) and 
groundwater exfiltration (GW).  

 

Rain gauge input also favors SAT as compared to Level II in most basins, 

except in FISH where GW and INF are enhanced with uniform forcing. Overall, 

the satellite QPE products induce variations in runoff types relative to Level II 

that are comparable to rain gauge and multisensor products (except Blend at 

SVRAIN). This indicates that while satellite QPE products lead to discrepancies 

in outlet streamflow, they do not fundamentally change the nature of the runoff 

types underlying the model response. 
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The seasonal water balance may also vary according to the precipitation 

forcing from each QPE. Figure 2.11 presents the water balance components for 

the simulation period (1 June to 30 September 2004, ∆t = 4 mon) as 

QETPtS −−=∆∆ / , where ∆S is change in basin water storage estimated from 

the basin-averaged precipitation (P) and evapotranspiration (ET), and streamflow 

at the outlet (Q). In three of the four basins (except SVRAIN), P is partitioned 

primarily into ET, as Q is less than 25% of P. For most QPEs in these basins, ET 

is greater than or comparable to P, indicating that warm-season ET is high and 

that a fraction of water in storage is consumed by ET during the summer, leading 

to negative ∆S. At the low to mid altitudes of FISH, BUCK and RALS, high ET 

occurs in response to elevated air temperatures and broad forest cover. SVRAIN 

has a different seasonal behavior, with relatively low ET, high Q and negative ∆S, 

indicating that the high altitude basin drains its water storage and precipitation 

input. This occurs in response to wet initial conditions imposed in the basin to 

account for snowmelt inputs in the early summer. Radar and multisensor QPEs 

with good performance relative to streamflow observations have similarities in 

water balance components. Differences in P are compensated by variations in ∆S 

and ET, with their proportional changes varying for each basin (i.e., ∆S 

compensations in BUCK, ET compensations in FISH). In most cases, uniform 

rain gauge forcing is similar to the Level II 4-km and multisensor products. One 

notable difference is higher Q in the rain gauge simulations observed when either 

P is larger or smaller than in the Level II forcing, implying that spatially-uniform 

forcing has prominent effects on basin runoff amounts. 
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Figure 2.11. Seasonal water balance components for each QPE and study basin 
for: precipitation (P), streamflow (Q), evapotranspiration (ET) and change in 
storage (∆S). 

 

Overall, for the satellite QPEs, a low P and comparable ET lead to greater 

storage losses from the basins (more negative ∆S). When precipitation is severely 

underestimated (e.g., H-E at BUCK, RALS), low amounts of available soil 

moisture also begins to limit ET. Other than these discrepancies, the satellite 

QPEs are similar to radar and multisensor products, with the exception of Blend 

that has a high P that is partitioned into streamflow with limited impacts on 

storage or evapotranspiration. 
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Hydrological Intercomparisons using Distributed Measures  

The spatiotemporal variability of rainfall from each QPE product may also 

influence the distributed basin response. For each basin and product, hydrographs 

at internal sites, runoff maps and the relations between the spatial variability in 

rainfall and runoff are compared. Figure 2.12 presents an example of the 

intercomparison for a significant storm event on 18-19 August in BUCK (Figure 

2.4) for a selected set of QPEs (Rain gauge, Level II 1-km and 4-km, Stage III 

and PERSIANN). Although Level II 1-km and uniform rain gauge inputs do not 

possess the same effective spatial resolution, they have been added to this analysis 

for comparison purposes. For each QPE, the 24-hr rainfall and 87-hr runoff 

accumulation maps are shown. To derive the runoff accumulation, the hourly 

runoff amounts at individual sites prior to routing are aggregated in time. In 

addition, hydrographs at four channel sites show internal streamflow variations 

that are associated with the mean areal precipitation within upstream areas.  

Cleary, the spatial aggregations of rainfall have an influence on the runoff 

patterns at the storm scale. Rain gauge forcing leads to low and nearly uniform 

runoff production, while Level II 1-km identifies a storm cell in the western 

region that concentrates rainfall and runoff in that area, with minor amounts 

elsewhere. As a result, the rain gauge hydrographs differ from Level II 1-km as 

well as the observed discharge, with underestimations at the storm location and 

overestimations at the outlet. In contrast, Level II 4-km captures the runoff 

response well with only minor variations at internal sites and coarsening of the 

runoff map.  
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Figure 2.12. Spatial distribution of rainfall (left panels) and runoff (middle 
panels) accumulations in BUCK for selected QPEs (Rain gauge, Level II 1-km, 
Level II 4-km, Stage III, PERSIANN) for an event occurred in August 18, 2004. 
Sub-basin averaged precipitation and streamflow at three nested locations and the 
basin outlet are presented in the right panel. 
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This indicates that aggregation effects of Level II are not severe, though 

outlet discharge metrics are somewhat impacted (Figure 2.9). At BUCK, 

multisensor and satellite QPEs underestimate rainfall, leading to poor 

comparisons at internal sites relative to Level II 1-km. For example, PERSIANN 

has a low and nearly uniform rainfall, thus generating insufficient runoff. Stage 

III, on the other hand, is able to depict better the rainfall and runoff distributions 

in the basin, though the observed discharge at the outlet is underestimated. This is 

consistent with the low reported rainfall values by Stage III at BUCK. Thus, radar 

and multisensor QPEs that preserve small storms relative to the basin size have 

advantages in runoff prediction over QPEs with low or no spatial variations.  

The impact of the spatial rainfall distribution is explored for all QPEs in 

Figure 2.13 for the three most significant events in each basin. Table 2.7 

summarizes the rainfall start times and total event durations. In these analyses, the 

spatially-uniform rain gauge forcing is used as a reference and there are 132 QPE 

simulations based on eleven products, four basins and three events. For example, 

Figure 2.13a illustrates the RMSE of outlet discharge for each QPE relative to the 

observed discharge versus the equivalent RMSE obtained from the rain gauge 

forcing. For most cases, the QPE RMSEs are below the 1:1 line (except for one 

storm in RALS), indicating that QPEs have smaller peak errors compared to those 

from rain gauge simulations. The degree of improvement achieved by distributed 

forcing is shown in Figure 2.13b as the percentage of events for which QPEs have 

a lower RMSE. 
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Figure 2.13. Comparison of QPE product skill relative to rain gauge simulations 
for three selected storms in all study basins. (a) Outlet discharge RMSE. (b) 
Frequency of improved performance using QPEs. (c) Outlet discharge bias. (d) 
Mean ratio of QPE bias to rain gauge bias. 

 

A similar analysis based on the streamflow volumes, using the Bias, is 

presented in Figure 2.13c. QPE simulations have a lower Bias than equivalent rain 

gauge simulations (except for five events for Blend). Thus, the mean bias ratio 

shown in Figure 2.13d, defined as the bias of a QPE simulation divided by the 

bias of a rain gauge simulation, shows values lower than unity for most products. 

This indicates that distributed QPEs, including satellite-based products, have 

improved streamflow volumes relative to the uniform rain gauge forcing. 
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Table 2.7. Three selected events in each basin, including the rainfall start time 
(month/day/hour) in 2004 and the total event duration (h), including rainfall and 
runoff periods. 
 BUCK FISH SVRAIN RALS 
Event Start 

time in 
2004 

Duration 
[h] 

Start 
time in 
2004 

Duration 
[h] 

Start 
time in 
2004 

Duration 
[h] 

Start 
time in 
2004 

Duration 
[h] 

1 07/22/02 110 07/18/08 40 06/26/17 150 07/15/00 167 
2 08/18/10 87 07/21/06 370 07/30/10 150 08/17/15 50 
3 08/25/06 210 08/17/08 100 09/01/18 250 08/26/12 100 

 

A further distributed comparison of the QPE products is carried out by 

quantifying the spatial coefficient of variation (CV) of the rainfall (CVrain) and 

runoff (CVrunoff) fields for each hour with non-zero values (N). CV is obtained as 

the spatial standard deviation of the quantity of interest divided by the basin-

average quantity. The metric CVratio = CVrunoff/CVrain is defined to compare 

the relative spatial variability of the runoff field to the rainfall field, with larger 

values implying a more variable runoff distribution. Figure 2.14 presents CVratio 

for the four basins and a selected number of QPEs (Level II 1-km and 4-km, Stage 

III and PERSIANN) as a function of the hourly runoff ratio (φ = Q/P) averaged 

over the basin. For each case, there are N values corresponding to the hours with 

coincident runoff and rainfall in each basin. In addition, a power law regression of 

the form CVratio = cφa is shown for each case, with c and a as the coefficient and 

exponent, respectively. Since CVratio is undefined for uniform rain gauge forcing 

(CVrain = 0), the ranges of values of φ for the rain gauge simulations are shown 

as reference.  
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Figure 2.14. Relation between CVratio and runoff ratio (φ) for all basins and 
selected QPEs (Level II 1-km, Level II 4-km, Stage III, PERSIANN). Regressions 
shown as power laws (solid lines): CVratio = cφ a , with c and a indicated for each 
case. N is the sample size. The shaded region represents the range of φ for the rain 
gauge simulations. 

 

Clearly, the spatial variation in runoff is typically larger than the 

corresponding variation in rainfall (CVratio > 1), as represented by values above 

the dashed horizontal line. This is due to several factors, including the landscape 

properties (terrain, soils, vegetation) that induce spatial runoff variations at scales 

smaller than precipitation forcing. For example, several runoff types induce 

patterns that follow the linear channel network features, which are smaller than 
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individual QPE pixels (Figure 2.12). The highest CVratio are observed for the 

lowest φ and vice versa, indicating that the hourly periods with lower runoff 

(relative to rainfall) have proportionally greater runoff variability in space, likely 

due to the delayed runoff contributions from groundwater that occur near 

channels. This effect is due to an interaction of the spatial rainfall variability, 

which exhibits greater variation with higher magnitudes (not shown), with the 

watershed properties in each basin. Interestingly, the slope of the relation between 

CVratio and φ has limited range of a = -0.25 to -0.4 across all basins and QPE 

products, suggesting that a single scaling relation can explain spatial patterns 

across a wide range of basin conditions For a few hours in each basin, both φ > 1 

and CVratio < 1, indicating that major runoff events with low relative spatial 

variability in runoff are infrequent. These events have both storm event and pre-

event groundwater contributions to the total runoff, leading to φ > 1. Note the 

ranges of values of φ for the rain gauge simulations are either smaller than or at 

the middle of the QPE range. This is consistent with analyses indicating 

overestimation of rainfall by the uniform forcing and their corresponding runoff 

underestimation. 

SUMMARY AND CONCLUSIONS 

In this study, we compared a set of Quantitative Precipitation Estimates 

(QPEs) in the Colorado Front Range for their ability to serve as forcing to a 

distributed hydrologic model that can issue flood forecasts. The region is known 

to generate warm-season convective storms with a high potential for flood and 
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flash flood events in individual basins. Given the sparse rain gauge data in the 

mountain region, we postulated that a distributed model could be used to verify 

QPEs from radar, multisensor and satellite algorithms. Hydrologic simulations in 

the mountain setting are challenging due to the complex nature of the basin 

characteristics as well as the small-scale of storm events. In evaluating the QPEs, 

we focused on the rainfall properties at the site, basin-average and regional scales 

and its propagation to the hydrologic response, including the outlet discharge, 

runoff mechanisms and seasonal water balance components. In addition, an 

emphasis was placed on identifying the value of gridded QPEs with respect to 

uniform forcing from rain gauges and to compare simulations against observed 

streamflows. Results indicate the following: 

1) The timing, distribution and magnitude of warm-season precipitation 

are similar in the radar and radar-based multisensor products and can be captured 

well by some satellite QPE products (e.g., A-E). Overall, satellite products tend to 

underestimate rainfall at the site, basin-average and regional scales. One satellite 

QPE (Blend) exhibited poor performance in rainfall estimation. Basin-averaged 

forcing from mountain rain gauges results in overestimations in total volume and 

underestimations in the number of low accumulation rain events within a 

watershed.  

2) The timing and magnitude of outlet streamflow in the four basins varies 

depending on the QPE forcing indicating its usefulness as a verification tool. 

Radar and multisensor products have good performances relative to the stream 

gauge observations and the Level II 1-km forcing used during model calibration. 
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Satellite QPEs, on the other hand, underestimate total discharge volume and 

introduce errors from their smoother and lower magnitude rainfall fields. 

However, as compared to uniform forcing from rain gauge data, most satellite 

QPEs exhibit improved abilities to capture streamflow across mountain basins 

with different land surface properties.  

3) Individual watershed characteristics and initial wetness states condition 

the response in terms of the runoff generation types and water balance 

components. Relative to Level II 1-km, each QPE induces modifications to the 

runoff and water balance partitioning. Satellite QPEs that underestimate rainfall 

lead to greater storage changes to meet evapotranspiration demand; while rain 

gauges tend to produce more streamflow. Overall, however, QPEs do not 

fundamentally change the nature of the runoff or water balance partitioning that 

underlies the model response 

4) The spatial variability of precipitation impacts the distributed basin 

response, including storm runoff patterns and discharge at interior channel 

locations, with clear effects of the spatial aggregation of QPE products. Relative 

to rain gauge forcing, radar and multisensor QPEs that preserve small storms 

relative to the basin area have advantages in terms of runoff prediction. Satellite 

QPEs also show better performance than rain gauges with respect to streamflow 

timing and volume for most cases, indicating their value for hydrologic 

forecasting in mountain areas. 

5) A scaling relation (CVratio = cφa) was found between the relative 

spatial variability of runoff and the runoff ratio across all study basins and QPE 
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products. This indicates that periods with low runoff ratios exhibit higher spatial 

variations in runoff relative to precipitation patterns, and vice-versa. The exponent 

of the relation was found to vary within a narrow range, a = -0.25 to -0.4, 

suggesting that is applicable across a wide range of basin conditions. Rain gauge 

forcing exhibits smaller runoff ratios than QPEs, consistent with other uniform 

forcing analyses. 

The results of this study are based on the use of a distributed hydrologic 

model calibrated during one summer season using the hourly, Level II 1-km 

product. Given the differences among basins, model calibration was based on 

merging manual and automated methods independently for each watershed. Good 

model performance relative to the outlet streamflow observations and realistic 

model behavior for the given conditions in each basin support the use of the 

distributed model. The model was then used to study the propagation of the radar, 

multisensor and satellite QPEs and the uniform rain gauge forcing into the 

response of each study watershed. Simulations with the multisensor and satellite 

QPEs are considered independent of the calibration effort, while the rain gauges 

were used to derive the Z-R relation for the Level II 1-km product. Despite this 

advantage, spatially-averaged rain gauge simulations are not comparable in skill 

to those obtained from the gridded products. This indicates that spatial variations 

present in gridded QPEs add value for flood forecasting in mountain areas with 

sparse data even if those products contain some biases. Since the rain gauges were 

critical in calibrating the radar QPEs, our results do not suggest that in situ data do 

not have value since these are essential for ground-truthing remote sensing 
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products. In contrast, this study highlights the advantages and disadvantages 

associated with ground measurements and QPEs derived from remote sensing. 

Clearly, these conclusions need to be further evaluated in other basins and for 

additional summer periods in the region.  

The results of this study are encouraging in that radar, multisensor and 

satellite QPEs offer a new window to study hydrological processes of mountain 

areas. At varying degrees of ability, gridded QPEs from these platforms are able 

to depict spatiotemporal rainfall patterns that are accurate with respect to their 

streamflow forecasts at individual gauging sites. Moreover, the QPEs and their 

error sources do not appear to fundamentally alter the simulated processes in 

particular basins. As a result, this study suggests that advances in mountain flood 

forecasting are possible by using high-resolution QPEs, including those from 

satellite platforms that more readily observe precipitation in regions with complex 

topography. For operational applications, the use of gridded QPE products should 

be superior to the assumption of uniform forcing from rain gauges in mountain 

areas, where the scale of warm-season storms is smaller than the basin area. 

Furthermore, the use of a distributed hydrologic model for flood forecasting with 

gridded QPEs opens new avenues to study the relations that characterize spatial 

patterns in precipitation and runoff generation. The simple scaling relation 

presented here that links relative spatial runoff variability and magnitude across 

the distinct watersheds also warrants further attention. 

 

 



  56 

Chapter 3 

PROPAGATION OF ERRORS FROM THE REFLECTIVITY-RAINFALL 

RELATION INTO SIMULATED STREAMFLOWS IN MOUNTAIN 

WATERSHEDS DURING SUMMER CONVECTION 

INTRODUCTION 

Accurate flood and flash flood predictions using distributed hydrologic 

models rely upon the underlying quality of the rainfall input (Moulin et al. 2009; 

Krajewski et al. 2010; McMillan et al. 2011; Schröter et al. 2011). This premise is 

particularly relevant in mountain catchments under summer convective storms 

where terrain features add complexity to the rainfall-runoff transformation (e.g., 

Zappa et al. 2011; Moreno et al. 2012a). Weather radars are widely used for 

quantifying precipitation at fine spatial and temporal resolutions by measuring the 

power of the return echo or reflectivity (Z) to derive rainfall rates (R) using a 

power law, Z=ARb, where A and b depend on radar and precipitation 

characteristics (Collier 1996; Habib et al. 2008; Krajewski et al. 2010). 

Frequently, a single Z-R relation is used for estimating rainfall fields for all 

conditions as they offer operational advantages for flood forecasting (Habib et al. 

2008; Alfieri et al. 2010) and retain storm characteristics important for seasonal 

modeling (Yoo et al. 2010).  

Difficulty arises when the lack of a calibration procedure from rain gauges 

or disdrometer data for a particular area results in the assumption of an 

operational Z-R relation, such as the WSR-57 (Z=200R1.6, Marshall and Palmer 

1948) or the NEXRAD relations (Z=300R1.4, Fulton et al. 1998; Krajewski et al. 
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2010). Use of an operational or climatological Z-R derived for other sites and 

climatic conditions, is not ideal as parameters, A and b, are known to vary with 

many factors, most prominently the drop size distribution (DSD). DSD has been 

found to vary between climatic regions, temporal aggregations and types of 

precipitation (Lee and Zawadzki 2005; Habib et al. 2008; Mapiam and 

Sriwongsitanon 2009). As a result, precipitation estimation errors can be 

introduced from the assumed Z-R relation, as shown by Morin et al. (2006) for 

summer storms in Arizona. One approach to overcome this limitation is through 

the derivation of a seasonal Z-R valid for particular storm types (i.e., convective, 

stratiform) which attempts to maximize the similarity of the radar product with 

rain gauges in a region or season of interest.  

Precipitation estimates from weather radars also suffer from a range of 

other uncertainties including beam attenuation, hydrometeor melting or so-called 

bright band effects, anomalous propagation, beam blockage, ground clutter, hail 

contamination and other spurious returns (Baeck and Smith 1998; Krajewski et al. 

2010). Many of those factors are difficult to avoid as they depend on the physics 

of the interaction between the beam signal, the hydrometeors and the surrounding 

environment. However, the Z-R relation has been shown to be a crucial factor in 

obtaining a correct spatial and temporal representation of rainfall (Pessoa et al. 

1993; Baek and Smith 1998; Habib et al. 2008). The parameters of this relation 

depend on the time scale of calibration (minutes to days; Mapiam and 

Sriwongsitanon 2009; Alfieri et al. 2010), type of rainfall (convective, snow, 

stratiform; Pratt and Barros 2009), topographic setting (flat or mountain areas; 
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Baeck and Smith 1998) and the parameter estimation method from measured 

DSDs or rain gauges at known locations (Yoo et al. 2010; McMillan et al. 2011). 

Therefore, theoretically, coefficient and exponent of the Z-R relation should 

reflect their variation through spatio-temporal dependence functions At,s=f(t,s) and 

bt,s=g(t,s) that could constitute the basis for ensemble members in a stochastic 

framework approach.  In operational meteorology, however, a practical 

assumption is frequently made by keeping those parameters deterministic across 

broad regions for seasonally characteristic rainfall types.  

Quantification of the uncertainties introduced by a Z-R relation on the 

hydrologic response of mountain watersheds remains a challenging question. 

Numerous studies have evaluated the impact of Z-R-derived radar rainfall fields 

on the accuracy of hydrologic models, but relatively few have focused on 

mountain catchments. For example, Habib et al. (2008) explores the sensitivity of 

streamflow simulations in a 35 km2 basin in Louisiana to different Z-R relations 

using DSD as calibration data. Z-R relations at different temporal aggregations 

showed large variations between storms and within the same storm. A combined 

method for estimating the Z-R parameters, that maintained a constant exponent b 

for the summer season but adjusted coefficient A for each event, was found to be 

more practical and similar in accuracy as compared to event-specific parameters 

for storms in Arizona and Louisiana (Morin et al. 2006; Habib et al. 2008). 

The use of a distributed hydrologic model allows investigating the spatial 

characteristics of the hydrologic response (Habib et al. 2008) while also assessing 

the impact of the Z-R relation on spatial processes. In principle, precipitation 
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errors introduced by the specification of the Z-R relation propagate to the 

hydrologic model, interacting with catchment properties. Compared to other error 

sources, such as parameter values or initial conditions, several studies have 

concluded that rainfall errors dominate the hydrologic response (Sharif et al. 

2004; Germann et al. 2009; McMillan et al. 2011; Schröter et al. 2011; Zappa et 

al. 2011). Essentially, flood forecast errors should depend on how the 

precipitation forcing interacts with the spatial patterns of catchment properties 

(e.g., soil, vegetation, terrain and channel network). For example, Mascaro et al. 

(2010b) provided a physical explanation for flood forecasting error dispersion 

across different catchment scales by comparing how catchment properties 

affected the sub-basin responses. 

Given the complexity in translating precipitation estimation errors into 

simulated hydrologic responses, questions remain regarding the effect of errors 

introduced by an incorrect sampling of the parameters of the Z-R relation, or the 

assumption of an operational relation, on the flood forecasting skill. For example, 

how do reflectivity-rainfall sampling errors propagate to the streamflow response? 

How does the sampling of different Z-R relations translate into spatial patterns of 

runoff production? Are there characteristic streamflow and flood forecasting error 

dependencies across aggregated spatial scales? To address these questions, we 

selected the Colorado Front Range (CFR) as a test bed due to its complex 

topography, the presence of reasonably close range weather radars, the frequency 

of convective storms during the summer season and an appreciable flood and 

flash flood risk (Moreno et al. 2012a). We evaluate the uncertainty introduced by 
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different Z-R relations applied to 1-km, hourly radar fields in four mountain 

basins (35 to 350 km2 in area) during the 2004 summer season that was coincident 

with the North American Monsoon Experiment (Higgins and Gochis 2007).  

In the following, we first derive a seasonal Z-R relation (Z=700R1.3) for 

the CFR during summer 2004 with respect to seven rain gauges. Subsequently, we 

assess the propagation of rainfall errors introduced by different Z-R relations 

using the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin 

Simulator (tRIBS) calibrated in each basin. The model explicitly accounts for 

spatial variations in watershed characteristics (topography, soils, vegetation) as 

well as rainfall forcing from weather radars (e.g., Ivanov et al. 2004; Vivoni et al. 

2007a). tRIBS includes parameterizations of rainfall interception, 

evapotranspiration, infiltration with continuous soil moisture accounting, lateral 

moisture transfer in the unsaturated and saturated zones, and runoff routing. The 

model stresses the role of topography in lateral soil moisture redistribution 

accounting for the effects of heterogeneous and anisotropic soil. Spatially 

distributed surface-subsurface hillslope runoff is integrated by channel network 

routing. As a result, it is an excellent tool to study the propagation of precipitation 

errors into streamflow simulations and the distributed hydrologic response. The 

model allows exploration of the effects of the reflectivity-rainfall sampling on the 

types and spatial distribution of triggered runoff, the components of the seasonal 

water balance and the uncertainty introduced by rainfall at different catchment 

scales. 
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METHODS 

Study Region and Watershed Properties 

The CFR was selected for testing the hydrologic uncertainty of radar 

precipitation fields for several reasons. First, the varied topography and its range 

of vegetation and soil types result in complex, highly variable watershed 

responses when forced with summer convective storms. Second, the region has 

reasonably good radar coverage and a number of rain gauges, weather stations, 

and streamflow measurements despite its mountainous setting. Fig. 3.1 presents 

the locations of these observations within the CFR. Eleven headwater basins 

upstream of river gauging stations operated by the US Geological Survey and the 

Colorado Division of Water Resources were delineated as a part of an ongoing 

research effort. Four of these basins were selected for this hydrologic evaluation: 

Buckhorn Creek (BUCK, 350 km2), Fish Creek (FISH, 41 km2), Ralston Creek 

(RALS, 117 km2) and South Saint Vrain Creek (SVRAIN, 35 km2). This selection 

was based on the sampling of different drainage areas and a variety of landscape 

properties along a north-to-south gradient including the presence of snow melting 

processes during summer stream flows. Thus selected catchments constitute an 

excellent test bed for purposes of multiple hydrologic verification. Fig. 3.2 shows 

the spatial distribution of vegetation and soil maps across the CFR region, while 

Table 3.1 summarizes types and sources of the hydrologic information used in 

this study.  
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Figure 3.1. CFR location, elevation distribution and boundaries of eleven 
watersheds. Four basins are selected here: BUCK, FISH, RALS and SVRAIN. 
Seven hourly rain gauge and weather stations are shown: RFRC2, RSOC2, 
ESPC2, LTER, BTAC2, PKLC2 and CEKC2. Three weather radars KCYS, 
KFTG, KPUX and their 150 km coverage umbrellas are depicted. 

 

The CFR is characterized by large elevation gradients, descending from 

west to east, which is dissected with narrow valleys and dendritic channel 

networks, resulting in a series of west-east ridgelines and north- and south- facing 

slopes. The soils are predominantly sandy loam, loam and exposed bedrock 

structure while prevalent vegetation types are constituted by forests and 

grasslands, as illustrated by the Figure 3.2. 
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Figure 3.2. Spatial distributions of (a) soil types and (b) vegetation classes across 
the CFR. Elevation contours and basin stream networks for the selected 
watersheds are also shown. 
 

Regional Radar Rainfall Data and Z-R Relations 

Radar volume scan reflectivity observations were obtained from the 

NEXRAD WSR-88D radars at Denver, CO (KFTG), Pueblo, CO (KPUX) and 

Cheyenne, WY (KCYS). Level II conical scans were then converted to constant 

altitude plots over minimum and maximum scan altitudes of 3-km and 6-km, 

respectively.  
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Table 3.1  Description of hydrologic model inputs and sources. 
Information 

type Resolution Source References 

    

Digital Elevation 
Model 

30 m National Elevation Dataset Gesch et al. (2002) 

Soil Texture 
Maps 

30 m 
Soil Survey Geographic, State 

Soil Geographic 
Wang and Melesse 

(2006) 

Vegetation Types 30 m 
USGS National Land Cover 

Dataset 
Homer et al. (2004) 

Rain Gauge and 
Weather Data 

1 hour 
Mesowest and AMERIFLUX 

networks 

Steenburgh (2003), 
Horel et al. (2002), 

Lazarus et al. (2002) 
WSR-88D 

NEXRAD Level 
II  

5 min,  
1 km 

NWS Doppler Radar Network  Kelleher et al. (2007). 

Streamflow Data 1 hour 
Colorado Division of Water 

Resources 
Moreno et al. (2012a) 

    

 

Reflectivity values from the 3 radars were then mosaicked together and 

transformed to 5-minute, 1-km resolution rainfall rates by selecting different Z-R 

relations from feasible ranges of A and b found in the literature (see Table 3.2; 

Morin et al. 2006; Nykanen et al. 2007; Habib et al. 2008; Vieux et al. 2009) and 

accumulated to hourly amounts. A hail threshold of 53 dBZ was applied and 

reflectivity values below 10 dBZ were designated as having a rain rate equal to 

zero. Hourly rain gauge data from seven sites were used to compute error and 

skill metrics at collocated pixels with the radar product for summer (JJAS) 2004. 

A subsequent analysis was conducted to derive the most appropriate Z-R 

relation by minimizing the sum of Root Mean Square Errors (RMSE) and 

maximizing the mean Critical Success Indexes (CSI) (Wilks 2005) of 

precipitation series at the seven rain gauges and Level II collocated pixels. 

Equation (3.1) defines RMSE. 
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Table 3.2  List of Z-R relations found in the literature. 
Z-R Source 

Z=200R1.6 Marshall and Palmer (1948) 

Z=300R1.4 Fulton et al. (1998) 

Z=300R1.5 Joss and Waldvogel (1970) 

Z=79.1R1.81 Alfieri et al. (2010) 

Z=250R1.2 Vieux and Bedient (1998) 

Z=421R1.57,Z=111R1.61,Z=58R1.77, 
Z=165R1.41,Z=303R1.48,Z=246R1.54, 
Z=280R1.4,Z=156R1.48, Z=337R1.39 

Habib et al.(2008) 

Z=250R1.4,Z=75R1.75 Bouilloud et al. (2009) 

 Z=486R1.37Z=31R1.7,Z=313R1.25 Prat and Barros (2009) 

Z=655R1.4 Morin et al. (2006) 

Z=250R1.2 Vieux et al. (2009) 
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where Pt
i  and Rt

i denote respectively Level II and rain gauge simultaneous 

observations, at hour t and rain gauge site i.  Complementarily, Equation (3.2) 

defines CSI from contingency tables that allow extracting categorical variables. 
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where hi, fi  and mi  represent the number of successes, false alarms and misses 

when Level II precipitation values are used to predict the occurrence or not of 

rainfall at specific rain gauge sites i. The objective function (I), represented by 

equation (3.3),      
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is thus maximized to obtain the best fit values of A and b. I balances the two 

metrics since RMSE weights the presence of large precipitation differences, 

whereas CSI emphasizes the number of matching events. The variations of f1, f2 

and I with A and b are presented in Fig. 3.3 as two-dimensional contour plots 

(This type of plot is used frequently in subsequent analyses). Notice how the f1 

surface gradient decreases as both A and b grow. Additionally, the range of f2 is 

smaller than f1 and depends primarily on b. The exponent b controls the rate of 

change of the Z-R transformation in the logarithmic space and is commonly 

related to the type of originating rainfall system (e.g., summer convective or 

winter stratiform; Morin et al. 2006; Habib et al. 2008). The two functions f1 and 

f2 exhibit a complementary behavior. High values of the Z-R coefficient and 

exponent result in low RMSE, but at the expense of an increased number of false 

alarms and thus lower CSI. This is due to the prevalent overforecasting 

characteristic of small-depth precipitation events by Level II that are rather not 

captured by the rain gauges. 

We replicated this exercise for summers (JJAS) in 2005 and 2006 using 

the same rain gauges and found a similar functional surface for I. The consistency 

among summers suggests that an appropriate seasonal Z-R relation might be in the 

region of 600 ≤ A ≤ 700 and 1.1 ≤ b ≤ 1.4.  
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Figure 3.3. Contour lines of (a) f1, (b) f2 and (c) I functions for different 
combinations of coefficient (A) and exponent (b) for summer 2004 relative to 
hourly rain gauges in the CFR. 
 

As a result, a single seasonal relation, Z=700R1.3, was selected as a 

“reference” case to generate rainfall fields for the CFR region and calibrate the 

hydrologic model. We acknowledge that the selection of this reference Z-R 

relation is influenced by the objective function and that different functions may 

well lead to different ‘optimal’ values. However, for the purposes of this study, 

this procedure provides a fairly simple, quantitative and objective method from 

which we can explore the impact of rain rate estimation errors on simulated 

hydrologic responses.  Several other reasons support the use of a single Z-R 

seasonal relation: (1) Single relations are of practical applications by river 

forecasting centers, (2) the similar topographic and landcover characteristics in a 

compact mountain block, (3) the capture of both storm and inter-storm periods 

that are important in hydrologic modeling, (4) the presence of summer convection 

as one of the main rainfall generation mechanisms and (5) the establishment of a 

fair comparison between reference and default operational Z-Rs. 
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Distributed Hydrologic Modeling 

We use the tRIBS distributed hydrologic model to investigate the 

uncertainty introduced by different Z-R relations in four headwater basins. tRIBS 

has been tested for continuous flood forecasting in different regions (e.g., Vivoni 

et al. 2007b; Mascaro et al. 2010; Nikolopoulus et al. 2011), including the CFR 

(Moreno et al. 2012a). The model is able to ingest spatially-varying terrain, soil 

and vegetation fields (e.g. Table 3.1) as well as meteorological forcing to 

represent the surface-subsurface moisture dynamics within a system of 

interconnected hillslopes and channel reaches. Given its distributed nature, tRIBS 

recognizes non-uniform surface properties represented by model parameters, per 

information layers (e.g. soils, vegetation, topography, channel network) that drive 

the energy and water balance equations at each computational element. Elements 

consist of sloped columns of heterogeneous, anisotropic soil with an exponential 

decay in saturated hydraulic conductivity (Beven 1982; Vivoni et al. 2007a). 

Vadose zone dynamics is represented through infiltration fronts, water table 

fluctuations and moisture losses due to evapotranspiration. A kinematic 

approximation for unsaturated flow is used to compute infiltration and propagate 

moisture fronts in the soil column (Cabral et al. 1992; Garrote and Bras, 1995; 

Ivanov et al. 2004; Vivoni et al. 2007a). Lateral moisture redistribution in the 

vadose zone and shallow aquifer are driven by gradients in surface and 

groundwater topography. Water table dynamics is computed from groundwater 

fluxes, vertical recharge and exfiltration. Surface runoff is produced by 

infiltration-excess (INF), saturation-excess (SAT), groundwater exfiltration (GW) 
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and perched return mechanisms, while routing is carried out by hydrologic 

hillslope and hydraulic channel approaches. An important model characteristic is 

the use of a TIN to represent a complex basin and reduce the number of 

computational nodes relative to the original data with minimal loss in terrain 

information (Vivoni et al. 2004). Additional details on the model characteristics 

and formal numerical framework are provided in Ivanov et al. (2004), Vivoni et 

al. (2004), Vivoni et al. (2005) and Vivoni et al. (2007b). 

Model parameters describing the soil, vegetation, channel network and 

subsurface aquifer control the hydrologic response to storm and interstorm 

periods. Table 3.3 describes the basin topography, soils, vegetation and their 

associated model parameters obtained from Moreno et al. (2012a), who conducted 

a calibration strategy using a combination of manual and automated approaches. 

Calibration was made independently for each basin using the Level II product and 

the reference relation, Z=700R1.3. The calibration method minimized the RMSE 

of observed and simulated outlet hydrographs at hourly time steps. Fig. 3.4 

presents calibrated and observed cumulative hydrographs in each basin. RMSE 

and Nash-Sutcliffe Efficiency (NS) values confirm that the distributed model is 

able to capture the different basin responses fairly well, with positive NS obtained 

at BUCK (0.48), FISH (0.50) and SVRAIN (0.53),  although weaker values are 

found at RALS (-0.54). Negative NS values are a consequence of model structural 

errors and uncertainties introduced by the rainfall forcing and streamflow data. 
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Table 3.3. Terrain and channel network characteristics and calibrated (*) 
parameter values for the watersheds. 

Property/Parameter Buckhorn 
Creek Fish Creek South Saint 

Vrain Creek 
Ralston 
Creek 

     

ID BUCK FISH SVRAIN RALS 

Stream Gauge ID BUCRMVCO FISHESCO SSVWARCO RALCRKCO 

Total Area [km2] 350.5 40.8 35.1 117.3 

Length of main 
channel [km] 

45.6 9.7 12.6 25.8 

Slope of main 
channel [m/km] 

26.2 70.5 42.3 32.1 

Mean elevation [m] 2418 2858 3455 2517 

Minimum/maximum 
elevations [m] 

1583/3268 2284/3473 2858/4087 1847/3204 

Std. Elevation [m] 482 333 344 387 

Mean slope [%] 28.0 28.2 30.0 29.2 

Std. Slope [%] 16.3 19.9 26.7 17.9 

Non-linear discharge 
exponent, r [-]* 

0.4459 0.4491 0.4074 0.4340 

Bedrock depth, B 
[m]* 

1.26 1.05 2.84 1.66 

Mean depth to 
groundwater, µµµµ(Nwt) 
[m]* 

1.17 1.01 0.169 1.28 

Soil cover [%] 
Sandy 
loam 
(75%) 

Loam 
(21%) 

Sandy 
loam 
(87%) 

Bedrock 
(7%) 

Sandy 
loam 
(44%) 

Loam 
(31%) 

Loam 
(46%) 

Sandy 
loam 
(34%) 

Sat. hydraulic 
conductivity, Ks 

[mm/h]* 
7.96 30.29 17.18 2.04 8.16 22.38 25.76 18.64 

Soil moisture at 
saturation, θθθθs [-]* 

0.32 0.37 0.35 0.07 0.57 0.56 0.52 0.58 

Pore size 
distribution index, 
λλλλ0 [-]* 

0.81 1.46 1.47 0.06 1.48 0.58 1.67 1.19 

Air entry bubbling 
pressure, ψψψψb [mm]* 

-244.2 -704.5 -84.36 -221.89 -21.71 -804.97 -385.37 -324.37 

Conductivity 
exponent decay, f 
[mm-1]* 

0.0334 0.0253 0.00222 0.03063 0.00037 0.00096 0.03655 0.00845 
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Figure 3.4. Observed (black lines) and simulated cumulative hydrographs (dark 
gray lines) resulting from model calibration in each basin, with NS and RMSE 
skill scores. Mean areal precipitation (MAP) is derived from the hourly, 1-km 
Level II product using the reference Z-R relation. 

 

RESULTS AND DISCUSSION 

Sensitivity of Integrated Hydrologic Response  

The watershed responses resulting from the sampled Z-R relations are 

compared in terms of the outlet streamflow, the underlying runoff mechanisms 

and the water balance components. Fig. 3.5 presents the performance of the outlet 



  72 

streamflow against the observed hydrographs as contour lines of three skill 

metrics in the A and b space: Root Mean Square Error (RMSE), streamflow 

Volume Bias and Pearson Correlation Coefficient. Although it is well known that 

the Z-R transformation obeys to a non-linear relation, hydrologic responses could 

not necessarily preserve both error and correlation structures when compared to 

rainfall estimations independently.  Three points have been added for comparison 

purposes: the reference (rain gauge calibrated, Z=700R1.3), WSR-57 (Z=200R1.6) 

and NEXRAD (Z=300R1.4) relations. A few simulations in BUCK with low 

values of A are missing due to the excessive computational demands for cases 

with unreasonably high runoff generation (and excluded from further analysis). 

The three metrics are complementary and help identify the impact of the Z-R 

relation on the integrated basin response: RMSE that weights streamflow peak 

errors more heavily, Volume Bias that provides fraction of simulated to observed 

seasonal discharge volumes and the Correlation Coefficient that indicates the 

degree of temporal agreement of simulated and observed hydrographs over the 

entire time series.  

In general, white areas and the dashed boxes in Fig. 3.5 correspond to 

good performances for each metric (i.e., low RMSE, Volume Bias near unity, 

high Correlation). Better performance is found in a region in the vicinity of high A 

and b that tend to produce smaller runoff volumes (Bias less than one). In 

contrast, areas with darker shades associated to poorer performance are generally 

linked to a combination of low A and low b values with excessive streamflow that 

overestimate total discharge volumes (Bias much greater than one).  
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Figure 3.5. Contour lines of streamflow metrics at BUCK, FISH, RALS and 
SVRAIN for different A and b values. Locations of the reference (circle), WSR-
57 (triangle) and NEXRAD (square) relations are shown.  

 

 The resulting hydrologic uncertainties and skills correspond well to the 

objective function (I) of the radar rainfall errors (Fig. 3.3c) for different Z-R 

relations, in particular for streamflow RMSE and Volume Bias. In most cases, the 

reference (circle), WSR-57 (triangle) and NEXRAD (square) relations lie near 

areas of good performance, but the WSR-57 and NEXRAD relations overestimate 

discharge volume (Bias greater than unity) and have poorer performance (higher 

RMSE) than the reference relation, except in SVRAIN where snowmelt drives the 

basin response (Moreno et al. 2012a). This basic analysis suggests that 
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operational Z-R relations are capable of introducing considerable uncertainty in 

flood forecasts for the CFR.  

Differences in the magnitude and spatial distribution of rainfall from each 

Z-R relation may also condition the runoff mechanisms in the basins. Fig. 3.6 

presents the fraction of the outlet streamflow volume from each runoff type. The 

triangular legend shows combinations of the three dominant mechanisms (with 

vertex colors): INF (red), SAT (green) and GW (blue). Differences in basin 

properties and model parameters yield variations in the runoff composition across 

basins, with BUCK and RALS consisting primarily of INF and SAT, SVRAIN 

composed of GW and SAT, and FISH having a mixture of all types but mostly 

GW and SAT (Moreno et al. 2012a). The precipitation forcing from each Z-R 

relation leads to variations in the contributed proportions. Generally, low values 

of A and b, resulting in large rainfall volumes, tend to increase saturation-excess 

runoff (SAT) as the wetter systems develop shallower water tables that interact 

with the surface, particularly near channels. In contrast, high values of A and b do 

not seem to introduce large changes in runoff generation mechanisms at BUCK, 

SVRAIN and RALS, indicating that rainfall underestimation is not a significant 

factor for changing the type of prevalent runoff mechanism in these basins. At 

FISH, however, high values of A and b lead to a slight decrease of both INF and 

GW due to less intense rainfall events and a diminished recharge. Across all 

basins, the reference and operational Z-R relations (WSR-57 and NEXRAD) 

produce similar runoff mechanism proportions, despite their differences in 

streamflow RMSE.  
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Figure 3.6. Fractions of runoff mechanisms for each Z-R relation at the four 
basins represented by color combinations. Contour lines corresponding to RMSE 
are shown for reference. Except in FISH (A=50, b=1) where it reaches 99%, the 
perched return contribution is <3% and is excluded. 

 

The seasonal water balance may also vary according to the precipitation 

forcing from the different Z-R relations. Fig. 3.7 presents contour lines of water 

balance components (∆S/∆t = P – ET - R) as a function of A and b for the 

simulations (∆t = 4 months), where ∆S is the change in storage estimated from 

basin-averaged precipitation (P), evapotranspiration (ET), and outlet streamflow 

(R). Reference values for each water balance component correspond to black 

circles in Figure 3.7. Due to the increased energy availability during the summer 

season at low and mid elevation lands (e.g. BUCK FISH, RALS), ETref tend to 

present similar or slightly larger values than Pref. Thus, negative changes in 

storage are required to supply a fraction of the high atmospheric demand.   
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Figure 3.7. Contour lines of seasonal water balance components for different (A, 
b) combinations: precipitation (P), evapotranspiration (ET), runoff (R) and change 
in storage (∆S). Two gray scales are provided: actual values (in mm) and fraction 
of the reference (ref) value (-). Contour lines are labeled with the actual values.  

 

Consistently, values of Rref show that, except by SVRAIN where snow 

melting processes prevail and Rref exceeds Pref, runoff production during the 

summer season is, in average, smaller than ETref by one order of magnitude. 
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Variations of P and R in the A and b space follow the patterns identified in the 

streamflow evaluation: (1) overestimation of P and R for low A and b, and (2) 

underestimation of P and R for high A and b. This is more clearly observed by 

inspecting the scale of P/Pref and R/Rref, where Pref and Rref are values for the 

reference relation. Overall P/Pref  ratios are one order of magnitude smaller than 

R/Rref  showing that changes in precipitation induced by different Z-R are 

significantly magnified by watershed changes in streamflow.  Variations in ET 

exhibit different patterns for each basin and a lower range of difference (ET/ETref 

ranges from 0.86 to 2.40 across basins) in these mountain settings. As a result, ∆S 

is typically positive in areas of low A and b (water is accumulating in the 

subsurface during season) and negative in regions of high A and b (subsurface 

water is decreasing). SVRAIN has a different behavior, with relatively low ET, 

high R and negative ∆S, as this high-altitude basin has a strong snowmelt 

component during the summer (Moreno et al. 2012a), with typically cooler 

summer temperatures and, generally, a lower evaporative demand. An inspection 

of the operational Z-R relations indicates that WSR-57 and NEXRAD relations 

exhibit increased P that is seldom completely consumed by ET and whose 

remnant is converted into R and ∆S. 

Radar Rainfall Error Propagation to Hydrologic Response  

The propagation of errors introduced by the Z-R relation into the 

hydrologic response of each basin is assessed relative to the reference case. Fig. 

3.8 presents the variation of a streamflow metric, qr, obtained as the outlet 

discharge RMSE between each Z-R relation and the reference case with a rainfall 
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metric, mr, defined in a similar fashion for the mean areal precipitation. Thus, 

each point represents the error of each Z-R relation with respect to the reference 

case, used here as a point of comparison since it was derived via calibration with 

rain gauges. For each basin, a power law regression of the form v
rr Umq =  is fitted 

to N points above a threshold in hydrologic uncertainty (qr), represented by the 

dashed lines. Points excluded from the regression (below the threshold lines), 

whose qr are smaller or equal than values provided by the reference Z-R relation, 

produce hydrographs that can be divided into two groups: (1) those with a small 

mr, since A and b are close to the reference case, and (2) those with a larger mr 

due to high A and b values, but whose streamflow errors are dampened by model 

parameters and initial conditions. For the remaining N points, a simple scaling 

regression that minimizes residual errors between adjusted line and raw data, 

indicates that rainfall uncertainties are logarithmically transmitted to streamflow 

errors. The slope of the relation between mr and qr has a limited range of v = 1.18 

to 1.51 across all basins despite their different conditions. Values of v greater than 

unity indicate that hydrologic uncertainty (e.g., streamflow errors introduced by 

the Z-R relation) is amplified relative to the rainfall errors, with a greater 

nonlinearity above the threshold qr present for the higher values of v in RALS and 

the lowest nonlinearity at SVRAIN.  

Since hydrologic uncertainties are typically larger for flood events, it is 

useful to identify how streamflow errors vary with discharge magnitude.  
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Figure 3.8. Scatterplots and power law regressions between RMSE of mean areal 
precipitation (mr) relative to the reference case and RMSE of outlet streamflow 
(qr) relative to the reference case for A and b combinations. Horizontal dashed 
lines are drawn to separate Z-R relations that do not represent large changes in 
streamflow errors. Values below that threshold are not considered. 

 

Fig. 3.9 presents scatterplots of the daily (24-h) streamflow errors, q24r, of 

three Z-R relations (WSR-57, NEXRAD and an extreme case of Z=200R1.0 that 

overestimates precipitation) with respect to the reference case. Streamflow errors 

are organized as a function of the maximum daily discharge, qm, such that each 

point represents a different day in the season. Several mathematical adjustments 

were tried but as data pairs (qm, q24r) span several orders of magnitude, power law 

regressions resulted in better performances to relate these two variables.. 
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Figure 3.9. Scatterplots and power law regressions between the maximum daily 
discharge (qm) and the daily RMSE of reference and simulated hydrographs (q24r) 
using NEXRAD (black), WSR-57 (red) and an extreme case, Z=200R1.0 (blue).  
 
 

Parameters (λ,φ) of  relations in the form φλ mr qq =24  are found for each Z-

R that minimize residual errors between data and adjusted  regressions (see Table 

3.4). The data suggest that the streamflow uncertainty introduced by the Z-R 

relations follows a power law regression with qm, but whose R2 evidence data 

dispersion and poor adjustments in several cases (except for FISH where qm is a 

good predictor of daily errors consistently across Z-R relations). Overall, data 

distribution indicates that errors introduced by the Z-R relation increase when 

forecasting floods of higher magnitudes during the summer season.  
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Table 3.4. Coefficients (λ) and exponents (φ) of the power law regressions of the 
daily uncertainty and the maximum daily discharge ( φλ mr qq =24 ). The number of 

data points (N) and coefficient of determination of regression (R2) are also 
reported. 

φλ mr qq =24  
 λλλλ φφφφ N R2 
     
BUCK 
A=300, b=1.4 
A=200, b=1.6 
A=200, b=1.0 

 
3.245 
3.355 
34.32 

 
1.099 
1.053 
0.594 

 
110 
110 
110 

 
0.37 
0.27 
0.17 

FISH 
A=300, b=1.4 
A=200, b=1.6 
A=200, b=1.0 

 
2.362 
2.290 
28.25 

 
0.917 
0.870 
0.901 

 
111 
112 
113 

 
0.81 
0.80 
0.59 

RALS 
A=300, b=1.4 
A=200, b=1.6 
A=200, b=1.0 

 
1.103 
0.570 
81.08 

 
1.017 
0.764 
1.483 

 
92 
99 
104 

 
0.67 
0.41 
0.47 

SVRAIN 
A=300, b=1.4 
A=200, b=1.6 
A=200, b=1.0 

 
0.140 
0.263 
1.324 

 
0.942 
0.784 
0.696 

 
121 
121 
121 

 
0.50 
0.45 
0.35 

     

 

Note that the WSR-57 and NEXRAD relations provide similar errors 

across the qm range with exponents (φ) ranging narrowly from 0.78 to 1.1 in all 

basins (thus similar slopes). The extreme case (Z=200R1.0) has the largest 

streamflow errors and most dissimilar exponents across the basins. Other Z-R 

relations that overestimate rainfall are expected to behave similar to the extreme 

case. These results support the notion that rainfall errors introduced by the Z-R 

relation propagate in a nonlinear fashion to the streamflow response, with higher 

impacts for larger flood events. 
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Distributed Hydrologic Response Errors at Seasonal and Event Scales 

The spatiotemporal rainfall variability derived for each Z-R relation should 

also influence the distributed basin response which can be assessed in terms of the 

spatial patterns of runoff and the streamflow produced at internal locations. Fig. 

3.10 shows correlation diagrams (ρ) of the spatial distribution of time-averaged 

runoff rate (mm/hr) between each Z-R relation and the reference case in each 

basin (Note that the lower number of points in BUCK is due to a sparser sampling 

of the A and b space due to computational limitations for the largest basin). The 

time-averaged runoff rate is obtained for periods when runoff is produced during 

the simulation (Ivanov et al. 2004). Positive correlations over the majority of the 

A and b space in all basins demonstrate that different Z-R relations produce 

similar time-averaged runoff patterns. High correlations (ρ > 0.5) tend to follow 

the patterns identified for the streamflow metrics (Fig. 3.5) with a better match in 

the upper left to the lower right portions of the A and b space. Weaker correlations 

(0 < ρ < 0.2) are found at low A and b for BUCK, RALS and SVRAIN indicating 

that spatial variations in runoff production occur for Z-R relations that 

overestimate rainfall. Similarly, FISH and RALS exhibit weaker correlations for 

high values of A and b, where rainfall is underestimated with respect to the 

reference case. Negative correlations in FISH denote severe changes in the 

presence of runoff patterns for low A and b as evidence of opposite spatial tends.  
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Figure 3.10. Correlation matrices between the spatial distributions of the time-
averaged runoff rate from different combinations of A and b and the reference 
relation at the four study basins. 

 

Discrepancies in the spatial runoff distribution may be due to either subtle 

variations in the geographic distribution of rainfall events for different Z-R 

relations or, more likely, changes in the rainfall magnitude for similar rainfall 

patterns. For example, the operational WSR-57 (Z=200R1.6) and NEXRAD 

(Z=300R1.4) relations show correlation values near unity, except in FISH where ρ 

is somewhat lower, while the extreme case (Z=200R1.0) has large spatial 

differences in time-averaged runoff rate relative to the reference case.  
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Differences in runoff generation introduced by a Z-R relation can also lead 

to streamflow errors at internal channel locations that are characterized by an 

upstream basin area (Vivoni et al. 2007b). Fig. 3.11 presents streamflow 

differences, as a specific error (SE), in terms of an RMSE between simulated 

hydrographs of the NEXRAD relation (selected as an example) and those of the 

reference case, normalized by the basin area (Ac) and mean areal precipitation 

(MAP) as: 

                     
MAP

RMSE
SE

cA
=                    (3.4) 

Selected sites have upstream areas ranging from 0.01 km2 to the total 

basin area across a variety of different catchment properties. The scale 

dependence of SE reveals interesting patterns. At small Ac (0.01 to ~1% of total 

area), the low specific error is due to relatively large MAP that is unaffected by 

areal smoothing and a limited RMSE between the hydrographs forced by different 

Z-R relations. At intermediate Ac (up to ~10% of total area), increasing mean 

specific errors are observed along with larger variations that measure dispersion 

across basins of similar size. Intermediate-sized basins present a higher and more 

variable RMSE between the NEXRAD and reference Z-R relations, as well as a 

wider range of MAP as a result of areal smoothing of storms whose size typically 

does not cover the entire upstream area. At this scale, catchment properties play a 

determinant role in either amplifying or dampening precipitation errors (Mascaro 

et al. 2010b).  
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Figure 3.11. Seasonal relations between Specific Error and basin area in the four 
study basins. Raw data (gray circles) were bin-averaged (black dots and vertical 
bars as ±1 standard deviation). The symbol size indicates the seasonal mean areal 
precipitation (MAP). 
 

At large Ac (10% to total area), low specific errors are caused primarily by 

how RMSEs are reduced due to the integration properties of large basins where 

the channel network transfer of the flood wave dominates the flood forecast skill 
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(Vivoni et al. 2006; Mascaro et al. 2010b). A similar outcome was obtained when 

comparing the WSR-57 and the reference case (not shown).  

To further investigate the error scale dependence, Fig. 3.12 shows a 

comparison of rainfall and runoff distributions and streamflow hydrographs for a 

storm event on 18-19 August, 2004, in BUCK. Results are shown for the 

reference, NEXRAD, WSR-57 and extreme Z-R relations. For each case, spatial 

distributions correspond to the accumulations of 24-h rainfall and 87-h runoff 

production. In addition, hydrographs at four channel locations show internal 

variations associated with the mean areal precipitation in upstream areas, along 

with the basin outlet. Each Z-R relation produces comparable spatial rainfall 

patterns with maximum depths at storm cores on the western part of the 

watershed. Runoff production follows rainfall patterns well since BUCK has 

primarily infiltration-excess runoff (INF) with some contributions of saturation-

excess runoff (SAT) along stream channels. Note that the flood forecasts at 

internal sites follow anticipated increases in streamflow for larger areas. Internal 

hydrographs are quite sensitive to the Z-R relation. For example, the NEXRAD 

relation exhibits 1.7 times more rainfall than the reference case, but 3 to 4 times 

greater streamflow for internal sites. Spatial differences in rainfall magnitudes 

introduced by the Z-R relation can be significant, as shown by the extreme case. 

These results indicate that, while sampling the Z-R relation may not 

fundamentally alter the spatial rainfall pattern, the variations in rainfall magnitude 

can generate large runoff differences that are amplified downstream in terms of 

their errors relative to the reference case. 
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Figure 3.12. Spatial distribution of rainfall and runoff accumulations in BUCK 
for selected Z-R relations for 18-19 August, 2004 event. Mean areal precipitation 
and streamflow at three internal locations and the outlet are shown along with 
available observed hydrographs.  

 

Lastly, Fig. 3.13 presents the variation of SE with basin area for the same 

storm event in BUCK.  
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Figure 3.13. Storm relation between Specific Error and basin area for the August 
18-19, 2004 event in BUCK. Raw data (gray circles) were bin-averaged (black 
dots and vertical bars as ±1 standard deviation). The symbol size indicates the 
storm mean seasonal precipitation (MAP). 

 

Three selected Z-R relations are shown (NEXRAD, WSR-57 and extreme 

cases). At the event scale, the influence of MAP on SE is more clearly observed, 

as internal basins receive variable rainfall during the event, thus influencing the 

specific error. The characteristic patterns obtained for the seasonal case (Fig. 

3.11) are replicated here, with higher SE for intermediate-sized basins and 

relatively lower SE for small and large areas. However, a separate type of scale 

dependence can be distinguished for a small cluster of sub-basins that retain a low 

SE over all areas. Thus, there are specific basin regions that not affected by the 

spatial rainfall distribution or have catchment properties that dampen the 

propagation of rainfall errors. Mascaro et al. (2010b) found a similar behavior in a 

different study site and attributed the effect to sub-basin properties that reduce 

peak runoffs such as high permeability, low slopes, and forested areas. When 

aggregated seasonally, however, the scale dependence of SE exhibits a smoother 

variation. 
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SUMMARY AND CONCLUSIONS 

  In this study, we investigated the propagation of errors from the 

specification of the Z-R relation to distributed flood forecasts in four mountain 

basins in the Colorado Front Range. The region is known to exert terrain controls 

on summer convection and possesses an appreciable number of flood events. 

Given the widespread use of radar-derived rainfall products by the hydrologic 

forecasting community, we postulated that use of an operational Z-R relation may 

introduce errors that decrease flood forecasting skill at outlet and internal 

locations. In evaluating the reflectivity-rainfall relations, we focused on the 

rainfall properties at rain gauge sites in the CFR; on the integrated hydrologic 

response, including the outlet discharge, runoff mechanisms and seasonal water 

balance; and on the distributed streamflow responses at internal locations. An 

emphasis was placed on identifying how distributed rainfall errors propagate to 

the distributed basin response by identifying the existence of relations with the 

mean areal precipitation, maximum daily discharge and catchment scale. This was 

performed to generalize our results beyond single polarization radar observations 

in the anticipation of new techniques or correction methodologies (e.g., dual-

polarization radar). The results from the study indicate the following: 

(1) Calibration of the reflectivity-rainfall relation using ground rain gauges 

resulted in an adequate rainfall performance over a range of A and b values. We 

found a seasonal Z-R relation, Z=700R1.3, that is valid for summer convective 

events in the CFR over the three tested seasons.  
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(2) The rainfall properties of each Z-R relation impact the basin response 

in terms of the outlet streamflow, runoff mechanisms and the seasonal water 

balance. Rainfall differences in the WSR-57 and NEXRAD relations, relative to 

the reference case, result in higher streamflow errors, gradual transitions in runoff 

mechanisms, and large changes in the water balance. While calibrating the model 

to a different Z-R relation may mitigate this behavior to some degree, our analysis 

supports this finding since the reference Z-R case used was objectively selected. 

(3) Errors in mean areal precipitation propagate to streamflow errors 

following a power law regression beyond a particular threshold. Similarly, 

streamflow uncertainty is described by a power law regression with discharge 

magnitude. Both relations indicate that errors introduced by the Z-R relation into 

the basin response are exacerbated for large rainfall or flooding events.   

(4) The Z-R relation impacts the spatial distribution of the basin response, 

including time-averaged and event runoff patterns as well as the discharge at 

interior locations. Examples from the WSR-57, NEXRAD and extreme case 

relations indicate increased spatial runoff production and higher streamflow at 

both internal and outlet locations, relative to the reference case.  

(5) A characteristic pattern was revealed for the scale dependence of 

specific errors in the three Z-R relations relative to the reference case for seasonal 

and event time scales. Intermediate-sized basins have higher and more variable 

SE due to the similar spatial storm scale and the influence of catchment properties 

on the propagation of rainfall errors into streamflow.  
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The results of this study are based on the use of a distributed hydrologic 

model calibrated during a summer season using a single-polarization Level II 

NEXRAD 1-km, hourly product with a reflectivity-rainfall relation obtained from 

comparisons to rain gauges. Since hydrologic differences exist between the study 

basins, model calibration was performed independently for each watershed. While 

the model calibration was conditioned on the reference Z-R relation, the 

sensitivity to precipitation forcing is sufficiently strong to outweigh the 

confounding effects of uncertainty in the model parameters and initial conditions. 

The distributed model was then used to study the propagation of errors introduced 

by sampling different Z-R relations relative to observed streamflows and a 

reference simulation considered as the spatially distributed “ground truth”. 

Overall, the study illustrates that a distributed hydrologic model can serve as a 

useful verification tool of quantitative precipitation estimates (Moreno et al. 

2012a), in this case focused on the appropriate Z-R relation for this mountain 

setting. We highlight that specific streamflow errors exhibit a pattern in scale 

dependence and that the use of an inappropriate Z-R relation primarily impacts 

intermediate-sized internal basins as compared with the spatial scale of the 

precipitation events. Such scaling behavior may change somewhat for different 

types of precipitation events in this and other regions, but presents insights into 

the prediction the flood forecast errors as a function of basin area. We conclude 

that flood forecasting efforts with radar forcing in mountain watersheds benefit 

from establishing a site-specific Z-R relation for the season of interest using 

comparisons with local observations. Use of a locally-calibrated Z-R relation, 
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even if derived from a few seasons of data, should significantly reduce the 

precipitation uncertainties associated with the Z-R relation and how these 

propagate to the basin response. 
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Chapter 4 

SPATIOTEMPORAL LIMITS TO FLOOD FORECASTING IN MOUNTAIN 

CATCHMENTS UNDER SUMMER CONVECTION USING RADAR 

NOWCASTING AND A DISTRIBUTED HYDROLOGIC MODEL 

INTRODUCTION 

Flood predictability in mountain watersheds is challenging due to our 

limited capacity to accurately forecast precipitation in time and space, the short 

response time of watersheds, and the inherent uncertainties present in hydrologic 

modeling. Nevertheless, the use of Quantitative Precipitation Forecasts (QPFs) in 

hydrologic models of these settings can potentially improve streamflow 

predictions, as in other regions (Pessoa et al. 1993; Warner et al. 2000; Collier 

2000; Berenguer et al. 2005; Vivoni et al. 2006; Chiang et al. 2007; Collier et al. 

2007). When QPFs are unavailable, the maximum lead time for flood warnings is 

the basin response time, a value dependent on the watershed characteristics and 

antecedent soil moisture conditions. Nonetheless, the expected hydrologic gains 

in prediction time from QPFs are limited by the quality of forecasted fields. Under 

warm-season convection, the short life span and rapid evolution of these systems 

dictates the accuracy of rainfall forecasts at different lead times (e.g., Ganguly 

and Bras 2003; Lin et al. 2005; Sharif et al. 2004). Thus, uncertainty about future 

rainfall distribution could limit our ability for flood forecasting due to the 

sensitivity of runoff production to rapidly-changing precipitation fields (Vivoni et 

al. 2006; Reed et al. 2007; Moreno et al. 2012a). 
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For warm-season convective systems, radar nowcasts at short lead times (0 

to 3 h) are often found to be the most skillful method for producing QPFs at high 

spatiotemporal resolutions (e.g., Collier 1991; Golding 2000; Ganguly and Bras 

2003). The term radar nowcasting refers to a number of different algorithms that 

utilize sequences of rainfall fields to derive storm motion vectors applied to 

subsequent imagery (e.g., Dixon and Wiener 1993; Ganguly and Bras 2003; 

Bowler et al. 2004; Li and Lai 2004; Vivoni et al. 2006; Van Horne et al. 2006; 

Mass 2012). Several techniques are able to compute storm growth, movement and 

dissipation, while providing quantitative measures of precipitation amounts. The 

availability of weather radar networks has expanded the applications of 

nowcasting techniques, primarily for regions where the errors from Quantitative 

Precipitation Estimates (QPEs) are well understood (Berenguer et al. 2005; Sharif 

et al. 2006). In mountainous areas, however, challenges remain in the derivation 

of radar-based QPEs (e.g., Yates et al. 2001; Verbunt et al. 2007; Moreno et al. 

2012a) and thus in the use of radar nowcasting techniques for predicting the 

timing, location and magnitude of precipitation as input to hydrologic models. 

Uncertainties inherent in QPFs are a consequence of the difficulty to forecast 

rainfall fields for extended periods given that extrapolation functions lose their 

correlation structures at large lead times (e.g., Sharif et al. 2006; Vivoni et al. 

2007). 

Distributed hydrologic models are designed to continually ingest high-

quality rainfall estimates and forecasts, allowing for real-time flood forecasting 

using information about future rainfall (Garrote and Bras 1995; Liu et al. 2005; 
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Vivoni et al. 2006; Collier 2007). Evidently, as in any other type of model, prior 

calibration plays a fundamental role in maintaining hydrologic uncertainties small 

during a flood forecasting exercise. Thus, the distributed nature of these types of 

hydrologic models permits exploring the spatial properties of the basin response 

relative to the spatiotemporal evolution of precipitation forcing. For example, the 

streamflow properties can be assessed as a function of watershed area to 

understand the scale-dependence of the flood forecast skill (e.g., Vivoni et al. 

2007a,b). In addition, distributed modeling offers an opportunity to quantify the 

propagation of rainfall errors into the spatial hydrologic response and how these 

interact with basin properties. As a result of available spatial data on topography, 

soil and land cover properties, differential basin responses to meteorological 

forcing can be assessed over a range of conditions in a region (Germann et al. 

2009; Mascaro et al. 2010b; Schröter et al. 2011).  

Previous studies have explored the limits to flood predictability through the 

use of distributed hydrologic models. For example, Berenguer et al. (2005), 

Vivoni et al. (2006) and Sharif et al. (2006) used varying rainfall-runoff models to 

evaluate radar nowcasting techniques in different settings. The authors coincide in 

finding a decrease in the flood forecasting skill with rainfall forecast lead time, in 

accordance with theoretical models (Lin et al. 2005). On the other hand, while 

flood scaling theory is advanced in hydrology (e.g., Ogden and Dawdy 2003; 

Gupta 2004), only a few attempts have been made at analyzing the scale-

dependence of flood forecasting skill by inspecting results at a range of internal 

watershed sites. For example, Benoit et al. (2000) quantified hydrologic errors of 
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radar nowcasts at 23 nested sites for a major flood event, while Vivoni et al. 

(2006) investigated the flood forecast skill from radar nowcasts at 15 internal sites 

during two separate flood events. Both studies coincide in observing a reduction 

in the total forecasting error with increasing basin area as a result of the 

integration of different hydrologic processes in the watershed. Despite these prior 

efforts, the spatial and temporal limits to flood predictability in mountain 

catchments experiencing summer convection are currently unknown.  

This study seeks to quantify flood predictability using the TIN-based Real-

time Integrated Basin Simulator (tRIBS, Ivanov et al., 2004a, Vivoni et al. 2007a) 

as a tool to generate flood predictions using radar nowcasting QPFs. With these 

coupled simulation tools, we quantify the relation of flood forecasting skill with 

lead time in a set of mountain basins that span several orders of magnitude in 

catchment scale. We pose the following question: Are floods at certain catchment 

scales more predictable due to the integration of physical processes and rainfall 

errors with contributing area? If so, then differences in runoff production resulting 

from varying hydrologic processes at different scales determine flood 

predictability in mountain catchments. We conduct our work in a set of headwater 

basins in the Colorado Front Range (CFR) due to its physiographic complexities 

and recurrent warm-season convective storms and their associated flood hazards. 

We analyze the skill of ensemble precipitation forecasts in light of observed 

rainfall fields derived from a calibrated radar product for two storm events. 

Subsequently, we investigate the distributed flood forecasting skill and its 

dependence with lead time and catchment scale for the ensemble rainfall fields. In 
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addition, we investigate how precipitation errors are transmitted to streamflow 

uncertainty at internal nodes as a flood wave progresses downstream. We find 

characteristic patterns in flood predictability governed by the varying watershed 

characteristics in the CFR through an analysis of the scale-dependence of flood 

forecast errors. Finally, we discuss the limits of flood forecasting with radar 

nowcasting in mountain environments. 

METHODS 

Study Region and Watershed Characteristics 

The Colorado Front Range in the north-central Colorado, U.S.A, was 

selected for its availability of hydrometeorological information and historical 

potential for floods during the summer season (e.g., Petersen et al. 1999; Ashley 

and Ashley 2008). Regional data include high resolution (sub-hourly to hourly) 

information from stream gauges (11 in total), rain gauges and meteorological 

stations (7 in total) and NEXRAD weather radars (3 in total), as shown in Figure 

4.1. Large summer convective storms from May to early September in the CFR 

originate from air mass interactions with the mountain environment. Moisture for 

summer convection can have its source in the subtropical Atlantic, subtropical 

Pacific or from precipitation recycling (e.g., Jarret and Costa 1988; Collins et al. 

1991). Storm events with larger intensities and areal extents are more likely to 

occur at mid and low elevations in CFR (Jarret and Tomlinson 2000).  
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Figure 4.1. Colorado Front Range (CFR) location, elevation distribution and 
boundaries of eleven study watersheds: Buckhorn Creek (BUCK), North Fork Big 
Thompson River (NFORK), Big Thompson River (BTHOM), Fish Creek (FISH), 
Little Thompson River (LTHOM), North Saint Vrain Creek (NVRAIN), Middle 
Saint Vrain Creek (MVRAIN), South Saint Vrain Creek (SVRAIN), Middle 
Boulder Creek (MBOUL), Coal Creek (COAL) and Ralston Creek (RALS). 30-m 
Digital Elevation Model (DEM) was obtained from the National Elevation 
Dataset (Gesch et al. 2002). Seven hourly rain gauge and weather stations are 
shown: RFRC2, RSOC2, ESPC2, LTER, BTAC2, PKLC2 and CEKC2 with data 
from the AMERIFLUX and Mesowest networks (Steenburgh 2003). The 
associated geographic coverage of QPF products and the three weather radars 
(KCYS, KFTG, KPUX) and their 150 km coverage umbrellas are shown.  

 

As a result, eleven headwater basins distributed on the east-facing slope of 

the CFR, northwest of the Denver urban corridor, were selected to quantify the 

flood forecasting skill obtained from radar nowcasting. Table 4.1 summarizes the 

major characteristics of the selected basins with drainage areas ranging between 

37.2 and 359.5 km2. The watersheds have considerable relief with mean 

elevations from 2287 to 3455 m.  
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Given that some portions of their terrains are located at high altitude, six 

of the basins (NFORK, BTHOM, NVRAIN, MVRAIN, SVRAIN, MBOUL) have 

a direct influence of snowmelt processes in the summer season. The mean slopes 

vary between 28 and 40% with high standard deviations induced by the presence 

of vast areas of steep bedrock and the sudden changes in terrain features. Sharp 

slopes, narrow valleys and predominant dendritic patterns in the channel networks 

often lead to rapid runoff responses and short times of concentration (see Table 

4.1). Figure 4.2 presents the spatial distribution of soils and vegetation types, 

elevation and stream channel networks in the watersheds. Overall, the watersheds 

are characterized by a heterogeneous mixture of soil and vegetation conditions. 

Dominant soils across the watersheds are sandy loam, loam and bedrock, while 

vegetation is characterized by the prevalence of upper montane, subalpine and 

alpine forest followed by lower montane grassland and shrubland. 

Quantitative Precipitation Estimates and Event Characteristics 

High resolution QPEs from volume scan reflectivity observations were 

obtained from the NEXRAD radars at Denver, CO (KFTG), Pueblo, CO (KPUX) 

and Cheyenne, WY (KCYS) over minimum and maximum volume scan altitudes 

of 3-km and 6-km, respectively. A power law of the form Z = 700R1.3 was 

selected to convert reflectivity (Z) to 5-min, 1-km resolution rainfall rates (R) 

following an optimization procedure that minimizes errors with collocated pixels 

at seven rain gauges (Moreno et al. 2012b). Subsequently, the QPEs were time 

aggregated to 15-min, 1-km rainfall depths for the QPF bounding box region 

shown in Figure 4.1. 
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Figure 4.2. Spatial distributions of (a) soil types and (b) vegetation classes in the 
CFR. Elevation contours and basin stream networks for the selected watersheds 
are also shown. 30-m soil texture and vegetation type maps were obtained from 
the Soil Survey Geographic State Soil Geographic (Wang and Melesse 2006) and 
USGS National Landcover Dataset (Homer et al. 2004). 

 

Two periods with warm-season precipitation in summers 2004 (17-22 

August) and 2006 (6-14 July) were selected for conducting simulations using the 

radar nowcasting and distributed hydrologic modeling tools. These storm periods 

were chosen due to: (1) the simultaneous presence of observed streamflows across 

most of the watersheds, (2) the development and propagation of intense 

convective cells in different areas, (3) the presence of multiple rainfall events 

leading to superimposed basin responses, and (4) the relatively low contribution 

of the snowmelt to the streamflow response. The spatial distribution of cumulative 

rainfall depth for the two storm periods is shown in Figure 4.3. 
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Figure 4.3. Spatial distribution of cumulative precipitation in (a) August 17-22, 
2004 and (b) July 6-14, 2006, as measured by the Level II product at 5-min, 1-km 
resolution over the CFR. 
 

The simulation windows were defined in a manner that the observed 

precipitation and hydrograph responses are fully captured across watersheds. The 

first period, henceforth called “Storm 2004”, starts in Aug 17th, 2004, 09 LST and 

consists of several showers occurring during three consecutive days over different 

areas that triggered streamflow responses extending for nearly 125 hours in the 

largest watersheds. A series of thunderstorms moved from west to east and caused 

heavy precipitation during the afternoon hours (13 to 18 LST), while scattered 

convection was also observed in the lower zones of the northernmost basins 

independently of the main storm cores. Most of the heavy rainfall was 

concentrated in the northern basins (BUCK, NFORK, BTHOM, FISH, LTHOM), 

although observed hydrographs show responses in all catchments. The second 

storm period began on July 6th, 2006, 22 LST (“Storm 2006”) and consisted of 
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three main cores of convection occurring during different days primarily in the 

afternoons and some rain extending into the evening hours. A prevalent storm 

motion direction was observed from the south. These storm sequences generated 

flood responses in most of the study basins extending up to 160 hours in some 

cases and were more evident in NVRAIN, MVRAIN, SVRAIN, MBOUL, COAL 

and RALS located in the southern region. 

Quantitative Precipitation Forecasts and Radar Nowcasting Mode 

The NCAR Thunderstorm Identification, Tracking, Analysis, and 

Nowcasting (TITAN; Dixon and Wiener 1993) algorithm was used to generate 

short-term radar nowcasting QPFs over the CFR. The algorithm allows for real-

time automated identification, tracking, and short-term forecasting of 

thunderstorms based on volume-scan weather radar data. An optimization scheme 

was employed to match observed storms at one time instance with those at a 

following time, with geometric operations to deal with mergers and splits. The 

short-term forecasts of both position and size are based on a weighted linear fit to 

the storm track history data. This methodology provides the framework necessary 

to identify storms within three-dimensional radar data and to track them as 

physical entities (Dixon and Wiener 1993; Joe et al. 2004). Due to the number of 

parameters used in TITAN for controlling forecast properties, we generated a set 

of nowcasting ensembles consisting of 27 members per forecast lead time. 

Ensemble QPFs were produced at a fine resolution (1-km, 15-min) for lead times 

between 15 and 180 minutes (15, 30, 45, 60, 90, 120, 15 and 180 min). We varied 

the following TITAN model parameters within feasible ranges to generate each 
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ensemble for each lead time: (1) minimum storm size (10, 20, 30 km2), (2) 

tracking forecast weight rates (0.1, 0.25, 0.5), and (3) reflectivity dual thresholds 

(5, 25, 45 dB).  

The extended-lead forecast mode proposed by Vivoni et al. (2006) was 

used to generate QPFs using available radar observations. In this mode, we 

eliminate the assumption of no future rainfall by providing nowcasting fields at a 

single rainfall lead time (TL) over a flood forecasting window defined between the 

start of observed precipitation, ti, and ti + TF, the flood forecast end time. As 

shown in Figure 4.4, the forecasting time (TF) is discretized into TF/∆t time steps, 

where ∆t represents the time step at which forecasts are issued. As an example, 

Figure 4.4 shows TF = 2TL for clarity. Normally, many TL intervals are contained 

within TF. Thus, a forecast starting at the time ti for a lead time (TL) uses the TL/∆t 

most recent historical data (QPEs) to extrapolate the precipitation field 

continuously for ∆t steps until reaching TF (∆t is 15-min here). Rainfall forecasts 

(QPFs) of the same lead time (TL) are assembled in a continuous manner 

separated by ∆t intervals. This ensures that each available QPE is extrapolated 

into a QPF with the same skill specified by an identical lead time (Vivoni et al. 

2006). By increasing TL, the time displacement between the QPEs and resulting 

QPFs is enlarged. Precipitation forecasts that change with lead time are expected 

to influence flood forecast skill at basin outlets and at internal watershed sites. 
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Figure 4.4. Schematic of radar nowcasting using the extended-lead forecast 
mode. Gridded QPFs are continuously available at each time step ∆t over the 
forecast period TF. In this example, nowcasts are issued with a lead time TL = 4∆t 
by using the TF/∆t most recent QPEs. Dashed arrows have horizontal length TL..  
 

Distributed Hydrologic Modeling and Numerical Experiments 

Model overview 

We apply the tRIBS model to investigate the impacts of radar nowcasting 

on the flood forecasting skill in the study watersheds in the Colorado Front 

Range. The distributed model was developed for flood forecasting using 

precipitation inputs at fine spatiotemporal resolutions and has been tested in 

different mountainous regions (e.g., Vivoni et al. 2007b, 2009; Nikolopoulus et al. 

2011, Moreno et al. 2012a). tRIBS uses Voronoi polygons, derived from a 

Triangulated Irregular Network (TIN), to represent basin characteristics with a 

reduced number of nodes relative to the original data (Vivoni et al. 2004). 

Surface-subsurface moisture dynamics at each computational node are resolved 

by tracking infiltration fronts, water table fluctuations and lateral redistribution in 

the hillslope and channel system. Surface runoff during storm events is produced 

by infiltration-excess, saturation-excess, perched return flow and groundwater 

exfiltration mechanisms, while flood routing is performed through hydrologic 



  106 

overland flow and hydraulic channel routing (e.g., Ivanov et al. 2004a). The 

kinematic wave approach is used to model water transport and dispersion in 

natural channels whose geometry is defined through geomorphic relationships. 

Water losses to the atmosphere occur through soil evaporation, plant transpiration 

and evaporation of intercepted water.  

As a physically-based model, tRIBS is able to ingest spatially-varying 

terrain, soil and vegetation properties, as well as spatiotemporal meteorological 

forcing, to reproduce hydrologic process evolution at scales ranging from 

hillslopes to large river basins. tRIBS can utilize QPFs from radar nowcasting to 

generate streamflow forecasts at the basin outlet and at interior or nested sites. As 

a result, improvements in flood forecast skill should be expected as the rainfall 

nowcast lead time is added to the watershed response time, a convenient 

advantage for purposes of early flood warnings. Further gains in computational 

efficiency of ensemble simulations can be achieved through the use of parallel 

computations that assign interior sub-basins to different computer processors in a 

high performance computing cluster (Vivoni et al. 2011). 

Model parameters and initialization 

The distributed model requires parameters describing the surface, 

subsurface, vegetation and channel characteristics that control the hydrologic 

response to storm and interstorm periods.  Soil parameters describe hydraulic and 

thermal properties at the soil surface and their variation with depth. Primary soil 

parameters are the saturated hydraulic conductivity (Ks) and its decay exponent 

with depth (f), the ratio of horizontal to vertical conductivities (A), soil moisture at 
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saturation (θs), residual soil moisture content (θr), pore-size distribution index 

(λ0), air entry bubbling pressure (Ψb), thermal conductivity (KT), volumetric heat 

capacity (Cs) and the depth to bedrock (B). In addition, vegetation parameters 

control interception and evapotranspiration processes for different land cover 

types. Characteristic vegetation parameters are free throughfall coefficient (p), 

canopy field capacity (S), drainage rate coefficient (K), drainage exponent (g), and 

average stomatal resistance (rs), surface albedo (a), optical transmission 

coefficient (Kt), and vegetation height (Hv) and fraction (v). Model 

parameterization also includes specifying hillslope and channel properties 

controlling routing: Manning roughness coefficient (ne), hillslope velocity 

coefficient (Cv) and exponent (r), and channel width-area coefficient (αB) and 

exponent (βB). 

In addition, the model requires specification of spatially-distributed initial 

conditions that characterize the soil moisture state. These are particularly critical 

for flood forecasting as the effect of initialization is not dissipated in short 

simulation periods. An assumption of hydrostatic equilibrium allows inferring soil 

moisture profiles from the depth to the groundwater table (Ivanov et al. 2004a,b). 

This can be derived using a number of approaches. In this study, a long-term 

drainage experiment was conducted in each watershed following the procedure 

outlined by Vivoni et al. (2007a). Drainage experiments start with fully-saturated 

basins that are allowed to drain for a long period (10-years) without weather or 

rainfall forcing, leading to hydrographs that are uniquely controlled by soil, 

channel network and geomorphic characteristics of individual watersheds. As a 
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result, the simulated instantaneous outlet discharges (Qb) are related to model-

based estimates of the spatial mean depth to groundwater (Nwt) through rating 

curves relating those variables (e.g., Vivoni et al. 2008; Moreno et al. 2012a). The 

availability of multiple groundwater depth maps associated with specific outlet 

discharges allowed selecting a set of feasible scenarios (10 per basin from wet to 

dry conditions) for Nwt corresponding to percentiles of the exceedence probability 

of the observed discharge at each basin stream gauge for summers 2003-2006. 

The use of exceedence probability of the observed discharges offers a set of 

realistic streamflow values that are uniquely related to spatially distributed 

groundwater depths. 

Model calibration and testing strategy 

Hydrologic processes occurring in mountain catchments merit a careful 

analysis of model parameters and initial conditions at the storm event scale. The 

approach in this study first evaluated the relative importance of individual model 

parameters and initial condition during One-at-A-Time (OAT) analysis in several 

watersheds (Moreno et al. 2012a). Results indicated that outlet streamflow 

responses were principally controlled by a limited set of parameters including the 

initial conditions (Table 4.2). We found the initial depth to groundwater (µ(Nwt)) 

played an important role due to the relatively shallow aquifer (Birkeland et al. 

2003) and the presence of snow processes in several basins.  
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Parameters, other than those listed in Table 4.2, were assigned to reference 

values from the literature (e.g., Chow 1959; Bear 1972; Rutter et al. 1977; Rawls 

et al. 1982; Shuttleworth 1988; Birkeland et al. 2003; Ivanov et al. 2004b; 

Mitchell et al. 2004; Todd and Mays 2005). The Shuffle Complex Evolution 

(SCE) algorithm (Duan et al. 1993) was then used to automatically find values for 

selected parameters and initial conditions within feasible ranges of variation 

reported in prior studies.  Storm 2004 was selected to perform the calibration 

through objective functions that minimized the Root Mean Squared Error (RMSE) 

between the observed and simulated streamflow at each basin outlet over the 

defined period. Through the selection of Storm 2004 as a calibration event, the 

distributed model parameters are tailored for flood forecasting purposes under 

summer convective storms. Table 4.2 summarizes the values for the calibrated 

parameters at each basin during Storm 2004, along with the RMSE and Nash-

Sutcliffe (NS) efficiency scores, relative to the observed streamflow. Calibrated 

parameter values differ among watersheds due to their unique terrain, soil and 

vegetation characteristics, and initial conditions and fall within realistic ranges. 

Unavoidably, parameters provide degrees of freedom to compensate for model 

uncertainties in a manner that differs from basin to basin. In addition to 

comparisons with streamflow data, flood forecasting skill was assessed with 

respect to the simulated hydrographs resulting from QPE forcings that contain no 

rainfall forecast errors. 
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Figure 4.5. Observed (black lines) and simulated hydrographs (dark gray lines) 
resulting from the model calibration at six selected basins at 15-min intervals. 
Mean Areal Precipitation (MAP) in each basin is derived from the 15-min, 1-km 
Level II product. Uncertainty in parameter values and initial conditions is 
represented by the light gray envelopes. 
 

Figure 4.5 presents the observed hydrographs and simulations derived 

from the calibration exercise at BUCK, LTHOM, NVRAIN, FISH, MBOUL and 

RALS as representative watersheds for both large (BUCK, LTHOM), medium 

(RALS) and small (FISH) basins and some with the influence of snow processes 

(NVRAIN, MBOUL). Similar results were obtained for the remainder of the 

basins. The top 10% of the parameters sets obtained through the SCE procedure 

for each basin are represented by the gray envelopes in the plots. Note that the 

model is able to reproduce the distinct hydrologic patterns resulting from the 

combination of rainfall forcing, watershed properties and initial conditions in each 

individual catchment. For example, compare the longer response times and 
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extended recessions at large basins (e.g. BUCK and LTHOM), with the faster 

time to peak discharge in small catchments (e.g. FISH and RALS). Furthermore, 

note the important role of wet initial conditions that amplify the total discharge 

and delay recession times in watersheds with a summer snowmelt signal (e.g. 

NVRAIN and MBOUL). Model calibration provides confidence to test the 

science hypothesis relative to QPE forcing. These results indicate that the 

distributed model is able to capture the different responses fairly well with RMSE 

ranging from 0.09 to 1.44 m3/s, depending on the particular properties of 

individual watersheds. The largest streamflow errors are found in BTHOM and 

NFORK where the model is unable to replicate the high base flows from summer 

snowmelt processes not represented in this application (but, see Rinehart et al. 

2008). The remaining discrepancies can be explained by model structural 

uncertainties, precipitation forcing and streamflow measurement errors. Flood 

forecasts for Storm 2006 constitute an independent verification exercise that tests 

the robustness of the calibrated parameters across the watersheds. During these 

experiments, no parameters will be calibrated and only the initial condition will 

be adjusted for the different year. 

Nowcasting experiments 

Rainfall and flood forecasts generated by the TITAN and tRIBS models in 

the extended-lead forecasting mode accounted for 216 model runs (8 lead times 

and 27 ensemble members) per storm period in each basin, for a total of 4752 

forecasts. The duration of each forecasting period (TF) was 125 and 170 hours, 

while the start (ti) and end (ti+TF) times were August 17th 09 LST to August 22nd 
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14 LST, 2004 and July 6th 22 LST to July 14th 00 LST, 2006, respectively. A 

hydrologic restart mode, at hours 75 and 30 for Storms 2004 and 2006, was used 

in a manner that initial conditions and QPE forcings were preserved during the 

ensemble forecasting periods. In addition, efficient fully-distributed hydrologic 

modeling was achieved through the use of a high performance computing facility 

at Arizona State University. The parallel capabilities of tRIBS were used to assign 

a relative low number of processors to each basin (8 in total). For the largest 

watershed in this study, tRIBS issued flood forecasts at a rate of 2.5 forecasting 

hours per minute of computational processing. However, on average, the model 

issued flood forecasts for the next 24 hours in one minute of computational time. 

Thus, the parallel performance suggests that the model can be used in operational 

forecasting environments. 

RESULTS AND DISCUSSION 

Regional Evaluation of Quantitative Precipitation Forecasts 

The spatiotemporal properties of nowcasting QPFs over the CFR are 

assessed using two types of grid-to-grid verification methods. These consider 

ensemble members for each lead time in categorical and quantitative analyses that 

help elucidate the regional properties of the QPFs with respect to radar QPEs. The 

first approach introduces a probabilistic analysis in terms of the Probability of 

Detection (POD), False Alarm Rate (FAR) and Critical Success Index (CSI) from 

contingency tables for distinct forecast thresholds (Ganguly and Bras 2003; Wilks 

2006; Gochis et al. 2009).  
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Figure 4.6. Radar nowcasting QPF skill as derived from contingency tables for 
storm periods in 2004 (top row) and 2006 (bottom row) over the CFR relative to 
the radar QPEs. Different precipitation threshold values (horizontal axis) were 
tested for various lead times (colored lines). Categorical verification metrics 
include the mean ensemble Probability of Detection (POD, left panels), False 
Alarm Ratio (FAR, middle panels) and Critical Success Index (CSI, right panels). 

 

Figure 4.6 illustrates the different evaluation metrics for the storm periods 

in 2004 and 2006. A threshold of zero rainfall indicates the success or failure of 

the forecast given that rainfall is observed, independent of its magnitude. For 

subsequent thresholds, successes are only achieved if forecasted precipitation is 

greater or equal than the specified value. Both storm periods exhibit similar 

results with lower forecast skill (low POD, high FAR, low CSI) as lead time 

increases at all threshold values. Nowcasting skill deteriorates at a faster rate for 

short lead times (e.g., between 15 and 45-min) as compared to the performance 

change for longer TL (e.g., from 120 to 180-min). The POD of rainfall occurrence 

(when the threshold equals zero) is 0.6 in 2004 and 0.5 in 2006, on average for all 
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lead times. However, a decrease in the forecast skill scores occurs for larger 

events. The magnitude of this decrease depends on lead time, but 5 mm appears to 

be the value after which no further decreases in skill are observed. The underlying 

cause for the rainfall forecast skill decreases with threshold value is the difficulty 

to accurately estimate high magnitude precipitation events that have less frequent 

occurrences in the region. The second approach is tailored to quantify the 

reduction in rainfall forecasting skill with lead time using the Root Mean Square 

Error (PR), Correlation Coefficient (CC) and Mean Ensemble Difference (DIFF) 

between the QPF members and corresponding QPEs, defined as:  

( )∑
=
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   ∀i ={1, 2, 3,…, 27} ,                       (4.1) 

where overbars represent spatial means, t is the forecast time, i is the ensemble 

member and n is the total number of members. DIFF can be interpreted as the 

average difference representing under- or overestimation of precipitation over the 

region. Figure 4.7 presents these metrics as a function of lead time for the two 

storm periods in the form of boxplots that capture the ensemble distributions. A 

similar pattern in the variation of each metric with lead time is observed in the 

two storm periods, though differing magnitudes are present. With higher lead 

time, an asymptotic increase in forecast PR and an asymptotic reduction in CC are 

found. In general, the spread among ensemble members is larger for smaller lead 

times for the PR and CC metrics. This is not the case for DIFF where under- or 

overestimations can average out to small standard deviations at small lead times.  
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Figure 4.7.  Boxplot diagrams of ensemble precipitation forecast skill as a 
function of lead time for the Storms 2004 and 2006 over the CFR. Metrics include 
the space-time averaged Root Mean Square Error (PR), Correlation Coefficient 
(CC) and Mean Ensemble Difference (DIFF). 

 

The most noticeable decrease in forecast skill occurs beyond the 30-min 

lead time, the limit at which forecasts become less useful. On the other hand, the 

limit at which predictions no longer worsen appears to be 150-min.The positive 

values of DIFF and their increase with lead time indicates that radar nowcasts 

tend to overestimate precipitation, thus increasing the number of false alarms, 

especially for large lead times. Precipitation forecasting uncertainties are expected 

to propagate into the hydrologic predictive skill, as explored in the following 

sections. 

Lead Time Dependence of Flood Forecasting Skill 

The rainfall error structures with nowcast lead time are expected to be 

reflected in the flood forecasting skill across individual watersheds. Watershed 
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characteristics, specified through the model domain, parameters and initial 

conditions, however, are anticipated to play a role in the hydrologic response so 

that rainfall errors are not transmitted identically to the streamflow forecasts 

across the different basins. Figure 4.8 presents the flood forecasting skill at four 

selected watershed and storm pairs through the Root Mean Square Error (QR), 

Nash-Sutcliffe coefficient (NS) and Mean Ensemble Difference (DIFFQ), 

evaluated at basin outlets. DIFFQ is defined as: 
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where QSF and QSE are the instantaneous forecasted and estimated outlet 

streamflows at the time step t for the i th ensemble member; n is the total number 

of forecasted time steps. These watershed and storm pairs exhibit representative 

behaviors for other basins, whose patterns in QR, NS and DIFFQ will be discussed 

next. As a general rule, the flood forecasting skill decreases with lead time across 

the metrics, although an asymptotic behavior is not necessarily observed for all 

watersheds. This results from the variability in streamflow response for QPFs 

with different errors due to the basin effects on flood timing and magnitude. QR 

and NS illustrate similar patterns for the same watershed and storm, but a slightly 

different behavior is presented by DIFFQ with larger ensemble spreads at small 

lead times. Consistent with prior analyses, DIFFQ has positive values in all cases 

as a result of regional rainfall overestimation.  
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Figure 4.8. Boxplot diagrams of ensemble flood forecast skill as a function of 
lead time for four selected watersheds (LTHOM, NFORK, NVRAIN, SVRAIN) 
during the Storms 2004 and 2006. Metrics include the space-time averaged Root 
Mean Square Error (QR), Correlation Coefficient (CC) and Mean Ensemble 
Difference (DIFFQ). 

 

Both QR and NS indicate that flood forecasting skill is no better than the 

mean value as a forecast (NS < 0) for lead times greater than 30-min. This is 

consistent with the QPF skill dependence on lead time, indicating the critical role 

of nowcasting errors on flood forecast skill. Two exceptions are SVRAIN and 

MBOUL in Storm 2006 that present NS below zero after the 60-min lead time as a 

result of the snowmelt influence on streamflow. Three different patterns are 
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observed for the variation of streamflow QR, NS and DIFFQ with lead time. (1) 

The ensemble mean grows asymptotically and interquartile range increases with 

lead time as observed for LTHOM and NFORK in Storm 2004 and is replicated in 

12 of the 22 studied cases. This behavior occurs when rainfall predictability exerts 

a clear influence on flood forecasting skill, thus preserving similar functional 

relations with lead time. Increases in ensemble dispersion are due to variations in 

streamflow responses induced when precipitation events exceed hydrologic 

thresholds, such as infiltration capacity. (2) In five of the studied cases, a similar 

overall pattern is observed as in (1), but after a particular lead time (e.g. 120-min 

for NVRAIN in Storm 2006), the interquartile range decreases slightly, possibly 

due to a reduction in rainfall ensemble spread at individual watersheds. (3) In the 

remaining cases, a similar pattern to (2) is observed, except that both the 

ensemble mean and interquartile ranges decrease after a certain lead time (e.g. 60-

min in SVRAIN in Storm 2006). This case occurs for small catchments under low 

rainfall amounts or snowmelt-dominated basins where increases in lead time do 

not necessarily translate into streamflow error. In summary, QPF errors play a 

significant role on the functional relations between flood forecasting skill and lead 

time that translate into their limited utility beyond 30-min, except in basins where 

snowmelt is a major driver. However, watershed initial conditions and properties 

induce different ensemble responses that shape the functional relations for long 

lead times, no longer preserving the asymptotic behavior observed in rainfall 

only. In the next section, the flood forecast skill is assessed as a function of 

catchment area to identify potential spatial limits to predictability. 
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Scale Dependence of Flood Forecasting Skill 

The impacts of warm-season rainfall variability in the CFR region are 

explored through distributed measures of runoff and internal channel discharges 

to elucidate the potential relation between flood predictability and basin scale. 

Figure 4.9 shows examples of the spatial distribution of total precipitation and 

runoff from the QPE forcing along with the mean ensemble differences from the 

QPF forcing at two lead times (60 and 180-min) for Storm 2004 in LTHOM. Note 

the location of storm cores in the north-central part of the basin might favor 

increased runoff, but the maximum runoff amounts do not necessarily overlap. 

This indicates that basin properties (e.g., terrain slope, soil hydraulic conductivity, 

initial soil wetness) play a critical role in the basin susceptibility to flooding. The 

mean ensemble differences in rainfall and runoff are primarily positive in the 

basin, indicating a general overestimation of precipitation and runoff amounts by 

the QPFs and the flood forecasts derived from these. As expected, larger positive 

differences in rainfall and runoff occur for larger lead times (180-min versus 60-

min). More interestingly, the changes in the spatial distribution of forecasted 

precipitation (Figs. 4.9 c and e) with lead time are more dramatic than in runoff 

(Figs. 4.9 d and f), as watershed characteristics tend to dampen the rainfall 

forecast errors. Thus, while the spatial distribution and magnitude of QPFs show 

changes with lead time, the expected differences in basin response are mostly 

reflected in runoff magnitudes, while the spatial patterns remain constant in 

response to static basin properties.  
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Figure 4.9. Spatial distribution of total (a) rainfall and (b) runoff at LTHOM 
during Storm 2004, using QPE forcing; mean ensemble difference of precipitation 
for (c) 60-min and (e) 180-min lead times; and mean ensemble differences of 
runoff for (d) 60-min and (f) 180-min lead times. 
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These results suggest that rainfall forecast errors are not the only driver of 

flood forecast skill across mountain watersheds for the same lead time. To 

investigate this issue further, we selected channel locations corresponding to 

different contributing areas within and downstream of the major storm cores in 

2004 and 2006. Two basin groups were created corresponding to the major storm 

locations for each period: 2004 (BUCK, NFORK, BTHOM, FISH, LTHOM) and 

2006 (NVRAIN, MVRAIN, SVRAIN, MBOUL, RALS, COAL). Figure 4.10 

presents the spatial scale-dependence of RMSE in forecasted precipitation (PR) 

and runoff (QR) relative to the QPE and its derived flood forecast. The symbols 

represent the ensemble mean, while the vertical bars depict the ensemble standard 

deviation. Three different basins (NFORK, LTHOM, SRVAIN) and two lead 

times (60 and 180-min) were selected as representative examples. 

Results reveal that, although PR and QR increase with lead time in most 

basins, a clear pattern is not present between PR and catchment area (Ac) that can 

explain the growing dependence of the ensemble mean QR and its standard 

deviation (or ensemble spread) with Ac. Furthermore, no compensating or 

amplifying behaviors in the ensemble mean or spread are observed for PR with 

basin area that supports the scale-dependence of QR. The growing trends in QR 

with Ac are instead due to the dependence of the streamflow forecast errors on 

flood magnitudes, which naturally increase with basin area, as noted by Moreno et 

al. (2012b).  
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Figure 4.10.  Rainfall and streamflow error propagation with basin area for three 
basins and two lead times (60 and 180-min) during Storms 2004 and 2006. 
Symbols represent the ensemble mean, while the vertical bars are the ensemble 
standard deviation. 

 

This evidence points to the need to integrate the spatial characteristics of 

rainfall forecasts and the corresponding patterns in runoff production, that are 

linked to watershed properties, to obtain a full picture of the flood predictability in 

space. 

Scale Dependence on Ensemble Properties of Streamflow Errors 

Spatial differences in streamflow errors due to variations in rainfall and 

basin properties can be assessed through the Specific Error (SE), defined as 

(Moreno et al. 2012b): 

MAPA

Q
=SE

c

R  ,                                                      (4.3) 

where QR is the Root Mean Square Error in forecasted streamflow relative to 

QPE-forced simulation at internal channel sites characterized by an upstream area 

(Ac) and mean areal precipitation (MAP).  
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Figure 4.11. Relation between Specific Error (SE) and catchment area (Ac) in four 
selected basin and storm pairs for a lead time of 180-min. Gray circle size depicts 
MAP, while dots and vertical bars show the ensemble mean and ±1 standard 
deviation of SE at each location.  

 

Figure 4.11 presents SE as a function of Ac at four representative 

watershed and storm pairs for a lead time of 180-min. The selection of this lead 

time enhances the visualization of the scale-dependency, though similar patterns 

are observed at other lead times. Selected internal channel locations span a range 

of catchment areas and are nested along a downstream path from the storm cores 

to the outlet in each basin. As illustrated in these cases, the scale dependence of 

SE reveals interesting patterns across all watersheds with a bell-shaped variation 

with Ac. This trend tends to be clearer in large basins (BTHOM, NFORK, 

LTHOM, BUCK), whose watershed area can entirely capture the occurrence of 
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typical convective storms. Note that MAP (gray circle size in Fig. 4.11) can have 

larger values at small and intermediate spatial scales, but decreases with basin 

area beyond approximately 100 km2, as a result of the smoothing of precipitation 

fields when integrated over large areas. Results indicate the presence of reduced 

SE properties at small scales, subsequent increases in the mean and dispersion of 

SE at intermediate-sized basins and posterior reductions in SE at the basin outlets. 

We believe this pattern is intimately linked with the spatial distribution of runoff 

production within the watershed as dictated by the typical size of convective 

systems over the mountains and the underlying watershed properties (see 

Appendices E and F). 

To help interpret these results, Figure 4.12 shows SE/SEmax and their 

corresponding φ/φmax values, for the same watersheds in Fig. 4.11, with the 

different symbols representing distinct lead times. SE/SEmax is the ratio between 

the SE and the maximum SE (SEmax) across scales for the same lead time and 

watershed-storm pair. SE/SEmax values are normalized and preserve the patterns 

with Ac shown previously. The estimation of φ/φmax follows an analogous 

description for each basin-storm pair and lead time. An interesting pattern is 

observed, which is in accordance with preliminary observations on runoff 

production areas and rainfall distribution. SE/SEmax has a proportional relation 

with φ/φmax that is replicated for all lead times. Thus, areas in the watershed with 

φ/φmax close to 1 that present high runoff productions tend to exhibit higher errors 

and more limited flood predictability.  
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Figure 4.12. Normalized Specific Error (SE/SEmax) as a function of normalized 
runoff coefficient (φ/φmax) for all lead times in four selected basin and storm pairs. 
 

 

These cases occur for intermediate scales where the full geographic cover 

of the storms is superimposed on the basin areas (see Appendix E). Conversely, 

low and intermediate φ/φmax values can be attributed to small and large basin 

areas, whose errors are smoothed by watershed characteristics, the spatial 

aggregation occurring in the mean areal precipitation and the more limited 

presence of runoff production in these areas.  To generalize the patterns across 

watersheds, Figure 4.13 compiles the ensemble mean (µ) and standard deviation 

(σ) of normalized SE for three different basin groups organized by similar areas 
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for coincident storm periods. These results indicate that at small Ac (0.1 to 1% of 

total area) a low µ and σ are present. This is due to a relatively large MAP that is 

unaffected by areal smoothing and by the small QR as watershed characteristics 

mitigate the impact of QPF errors. At intermediate Ac (up to 5 or 10% of the total 

area, depending of the basin), increased µ and σ are observed as this scale range 

corresponds to the typical size of warm-season convective systems in the region 

that lead to intensified runoff production in these areas (see Appendices E and F). 

Sub-basins of this size present a higher and more variable QR under heavy 

precipitation. Under these conditions, watershed characteristics, such as areas of 

low permeability and high slopes, trigger variable runoff and streamflow 

responses. At large Ac (from 10% to total area), lower µ and σ are caused 

primarily by a significant reduction in QR due to the integration effects of the 

channel network as the flood wave propagates (Vivoni et al. 2006; Mascaro et al. 

2010a), but also by the reduced fraction of runoff producing zones as a fraction of 

total area, which also decreases the total uncertainty. As a result, the typical size 

and organization of warm-season convection as well as the watershed runoff 

production characteristics play a fundamental role on the scale dependence of 

specific errors in streamflow. We might expect that other type of rainfall systems 

or basins have a different functional relation between these normalized quantities. 
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Figure 4.13. Relation between normalized Specific Error (SE/SEmax) properties 
(ensemble mean,µ, and ensemble standard deviation, σ) and the normalized 
catchment area (Ac in %) in three watershed groupings with similar sizes and 
behaviors. 

 

Residual Errors from Model Structural and Parametric Uncertainty  

While flood forecasting skill clearly decreases due to QPF errors, other 

sources of model uncertainties also affect the total forecast error with respect to 
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observed streamflows. Figure 4.14 presents the ensemble mean RMSE of the 

flood forecasts with (1) the model simulations driven with QPEs (RMSEQPE, gray 

bars) and (2) the observed streamflows (RMSEobs, black bars) at each basin outlet 

for two lead times (15 and 180-min). Clearly, the magnitude of both type of errors 

increases with lead time in all basins. As expected, RMSEobs are typically greater 

than or equal to RMSEQPE. If we consider the total hydrologic uncertainty to be 

compound by three terms such that X1+X2+X3 =100% and whose terms represent 

the model parameter uncertainties (X1), the model structural errors (X2) and the 

rainfall input uncertainties (X3), we can conduct an analysis of relative error 

contributions  with lead time during both storms.   For each basin and lead time, 

differences between RMSEobs and RMSEQPE can be considered as residual errors 

caused by model structural or parametric uncertainty (X1+X2) that we will call 

X12.  Residual errors (X12) tend to be small for Storm 2004 as a result of the model 

calibration, but grow substantially for Storm 2006, reaching values that exceed 

the magnitude of RMSEQPE  (X3) in some basins (e.g. BUCK, BTHOM, LTHOM, 

NVRAIN, SVRAIN, MVRAIN, MBOUL, COAL, RALS, for a lead time of 15 

minutes). Up to certain point we could consider residual errors in storm 2004 

dominated by model structural uncertainties (X2), while errors in 2006 are a 

consequence of model parameter, initial conditions and structural errors (X12).  

During storm 2004, flood forecasting errors are primarily due to QPF uncertainty 

as evidenced by the reduction of X12 and the overall increase in X3 between the 15 

and 180-min lead times. In-depth analysis allowed concluding that X3>X12 for 

lead times beyond 30 to 45 minutes in Storm 2004 across all watersheds.   
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Figure 4.14. Comparison of streamflow errors at basin outlets derived from flood 
forecasts relative to observed hydrographs (RMSEobs, black bars) and simulations 
using QPEs (RMSEQPE, gray bars) for lead times of 15 and 180-min for each 
storm period. 
 
 

Meanwhile, the verification period in Storm 2006 exhibits larger X12 at the 

15-min lead time, as compared to the calibration period, due to the presence of 

model structural and parameter uncertainty for this event. Interestingly, residual 

errors are significantly reduced at a lead time of 180-min for Storm 2006 at the 

expense of an increase in uncertainty introduced by QPF errors (X3) in some 

watersheds but at different threshold lead times. The watersheds and lead times at 

which X3>X12 in Storm 2006 are presented next: BUCK(60 min),  BTHOM(45 

min), FISH(45 min), LTHOM(90 min), COAL(30 min) and RALS(45 min). 
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Conversely, snow dominated watersheds (NVRAIN, MVRAIN, SVRAIN, 

MBOUL) are consistent to show X12>X3 across all lead times as another 

demonstration of parameter and structural error dominance on the total hydrologic 

uncertainty. 

 As a result, we can conclude that uncertainty sources other than 

nowcasting errors can worsen flood forecast skill at small lead times for 

verification periods. Undoubtedly, these differences are less notable at larger lead 

times since precipitation forecasting errors increase. Nonetheless, in some basins, 

residual errors continue to be the largest contributor to total flood forecast errors 

during the verification exercise, suggesting that a single-event model calibration 

introduces additional sources of uncertainty even after the initial condition has 

been adjusted. 

SUMMARY AND CONCLUSIONS 

In this study, we investigated the propagation of radar nowcasting errors 

into distributed flood forecast skill in eleven mountain watersheds and their 

internal locations during two storm periods in 2004 and 2006 in the Colorado 

Front Range. This region is known for its propensity of summer convective 

precipitation that triggers significant floods in individual basins. We utilized high-

resolution radar observations to produce nowcasts from the NCAR TITAN 

algorithm for lead times ranging from 15 to 180 minutes. Using the tRIBS model, 

we quantified the resulting flood forecast skill as a function of lead time and 

catchment area. The distributed model allowed depicting the spatial patterns in 

basin response that explain local differences in flood forecast skill introduced by 
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the distributions of rainfall and watershed properties. For this purpose, we 

evaluated regional QPF errors relative to the radar-based QPEs, quantified the 

dependence of flood forecasting skill on lead time at basin outlets, and identified 

the scale dependence of flood forecast errors at nested sub-basins with different 

upstream areas. An emphasis was placed on obtaining a detailed picture of the 

rainfall-runoff error propagation through normalized metrics that removed the 

effect of the basin area and mean areal precipitation. We also quantified how 

rainfall forecast errors interacted with parametric and structural uncertainty 

through comparisons of the calibration and verification periods. The results of the 

study indicate the following:  

(1) Radar nowcasting skill decreases with lead time and rainfall magnitude 

across the CFR, with the most noticeable reduction in forecast skill occurring 

between 15 and 45-min lead times. For both storm periods, the radar nowcasts 

tend to overestimate precipitation values, increasing the number of false alarms, 

in particular for large forecast lead times.  

(2) Flood forecasting skill also decreases with lead time, but the functional 

forms follow a different pattern as a result of the interaction with watershed 

properties, in particular when rainfall intensities exceed hydrologic thresholds. 

For these storm periods, flood forecasting skill is not better than the forecasted 

mean for lead times greater than 30-min. Snowmelt-dominated basins have a 

more limited impact of rainfall uncertainties on the predicted discharges.  

(3) Watershed properties in conjunction with storm characteristics play a 

determinant role on the differential susceptibility to high runoff production and 
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flooding. Rainfall-runoff maps show that, despite changes in the spatial 

distribution of QPFs with lead time, only variations in runoff magnitude are 

triggered. Analyses of precipitation and streamflow errors also indicate a low 

correspondence between those variables across different scales, suggesting that 

the scale-dependence of streamflow errors is primarily due to increasing flood 

magnitudes. 

(4) A characteristic pattern was revealed in the scale dependence of 

specific error (SE) at different lead times. Basin areas coinciding with the typical 

size of convective storms experience the highest flood forecast errors with the 

largest differences among ensemble members. Thus, intermediate-sized basins 

have more limited flood predictability. Watershed properties dictate the shape of 

the scale-dependence as they control rainfall error propagation downstream and 

modulate the ensemble dispersion across watersheds and lead times. Although 

MAP is removed from the analysis, precipitation patterns have a principal role in 

the differential runoff responses.   

(5) In comparison to rainfall forecast errors, the uncertainties related to 

model parameters and structural errors can reach similar orders of magnitude in 

particular for small lead times. At large lead times, QPF errors tend to reduce 

flood forecasting skill more significantly in most watersheds, though residual 

errors can remain important in some cases when model structural and parametric 

uncertainties amplify the disparities in forecasted discharges. 

The results of this study are based on the use of a distributed hydrologic 

model that was calibrated during a storm period in 2004, independently for each 
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basin using a Level II 1-km, 15-min radar product (Moreno et al. 2012b). Initial 

conditions were then adjusted for a verification period in 2006. While single-

event model calibration is not ideal for operational settings, it offers the 

possibility to quantify the errors introduced by rainfall forecasts, independent of 

model structural and parametric uncertainty. Results are primarily shown relative 

to model simulations forced with QPEs that we consider as the ground truth. We 

demonstrated the benefits of using distributed hydrologic models to produce flood 

forecasts from radar nowcasting since these allow identifying spatial runoff errors 

and their scale dependence along the channel network. We found that the 

interaction of QPF and watershed characteristics lead to a distinct patterns in 

flood predictability with greatest errors in intermediate-sized basins. High mean 

areal precipitation and watershed features tend to reduce the flood forecast 

uncertainties in small catchments, while channel routing and the areal aggregation 

of storm systems are responsible for reduced errors in large basins. This scale 

dependence illustrates the spatiotemporal limits of flood predictability in 

mountain catchments under summer convection. Additional studies on this 

dependence in different environments and precipitation regimes are needed to 

generalize these findings.  
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Chapter 5 

SYNTHESIS AND FUTURE WORK 

This study presents quantitative analyses based on observed and modeled 

data, intended to improve the current body of knowledge on flood forecasting in 

mountain catchments undergoing summer convection. Research findings are 

applied to the Front Range region in Colorado at eleven watersheds, whose high 

availability of hydrologic and meteorological information provides opportunities 

for exploring gains and shortcomings of the current and future operational 

capabilities. Our efforts combined the collection, geo-referencing, and evaluation 

of ten QPEs (1 h, 4 km) from different sources (including rain gauges) for 

summer 2004, the mosaicking and production of regional (5-min, 1km) 

NEXRAD-Level II precipitation fields, whose Z-R relation was calibrated using 

hourly rain gauge time series at multiple sites within the CFR, and the production 

of ensemble precipitation fields for two storm systems in 2004 and 2006, for 

different lead times, using the NCAR- Thunderstorm Identification, Tracking, 

Analysis, and Nowcasting (TITAN; Dixon and Wiener 1993) algorithm. Through 

all the chapters, quantitative analyses of precipitation are accompanied by 

hydrologic simulations using the Triangulated Irregular Network (TIN)-based 

Real-time Integrated Basin Simulator (tRIBS; Ivanov et al. 2004), a physically 

based model that was calibrated to provide confidence in results. Use of a 

distributed model provided gains in tracking the spatio-temporal evolution of 

watershed responses, water balances, runoff mechanisms, rainfall error 

propagation, scale and land surface effects on forecasting uncertainties, and flood 
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wave propagation through the channel network. Here I summarize the main 

findings from this research and identify directions for further work. 

UTILITY OF QPEs FOR FLOOD FORECASTING 

The analysis presented in Chapter 2 constitutes an extensive inter-

comparison effort, in terms of the number of gridded QPE products (ten) from 

different sources (e.g. satellites, radar, multisensor, rain gauges) with posterior 

hydrologic verification at multiple mountain watersheds. Both QPE and their 

distributed runoff responses presented critical differences that are linked to the 

inherent characteristics from the type of sensor and precipitation estimation 

methodology in a region of manifest complexity for hydrologic modeling 

purposes.   

The hydrologic utility of the various QPEs was tested in terms of point 

rain gauges and hydrologic simulations based on a rain gauge calibrated 

NEXRAD product that we considered as “ground truth”. Results are definitive to 

outline the convenience of using distributed precipitation products into distributed 

hydrologic models, as the spatio-temporal variability of streamflow responses is 

adequately captured by this coupling.  Relative to rain gauge forcing, radar and 

multisensor QPEs that capture intensity and spatial variability of precipitation, 

especially intense localized storms, show advantages in terms of runoff 

prediction. This capability is due to the fact that radar systems, the base for 

multisensor and NEXRAD data, scan vertical profiles that describe storm 

morphology, attaining better accuracies when estimating rainfall fields through Z-

R relations. On the other hand, satellite products, whose cloud top temperature-
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rainfall intensity relations are weak and do not retain reflectivity values at 

different atmospheric levels, tend to present small biases that translate in 

underestimation. Nonetheless, most satellite estimations capture relatively well 

the spatial distribution of rainfall, an important attribute for flash-flood 

forecasting purposes. This is reflected in the fact that despite that satellite QPEs, 

underestimate total discharge volume and introduce errors from their smoother 

and lower magnitude rainfall fields, they show better performance than rain 

gauges with respect to geographically localized streamflow responses, timing and 

volume for most cases, indicating their value for hydrologic forecasting in 

mountain areas. The reason why rain gauges do not attain the best hydrologic 

skills when used over vast areas of high spatial variability of precipitation is the 

assumption of uniform rainfall over the basin that originates false flood alarms in 

locations without much runoff but, most dangerously, underestimation of 

streamflows in areas where intense-localized storms are occurring. The described 

effect also influences the timing and magnitude of predicted hydrographs at the 

basin outlet, commonly overestimated by rain gauges. Other findings in this 

chapter reveal that QPEs preserve the seasonal spatial occurrences of different 

runoff mechanisms and the magnitude of the components of the water balance. A 

scaling relation between spatial rainfall and runoff production (CVratio = cφa) 

across watersheds suggested its applicability across a wide range of basin 

conditions and illustrated the profound differences between distributed and rain 

gauge types of inputs for distributed hydrologic modeling. Although findings in 



  138 

this study are clear for summer 2004, new studies are envisioned that include 

more summer seasons in the analysis. 

IMPORTANCE OF USING SITE SPECIFIC Z-R RELATION IN RADAR 

NOWCASTING 

Despite radar-based products are one of the most accurate sources of high 

resolution precipitation, constituting the basis of most nowcasting systems, they 

are still expected to carry significant uncertainty during the prediction of floods. 

This research section dealt with the quantification of uncertainties introduced in 

hydrological forecasts when using a radar product whose rainfall generating 

algorithm has not been adequately calibrated for a specific region. The 

reflectivity-rainfall relation (Z-R) is the fundamental expression to convert radar 

sensing into rainfall intensity, but that has been demonstrated to change between 

regions and storm types. We show the convenience of not using default 

operational relations and instead we propose a methodology based on seasonal 

rain gauge calibration (that includes periods of rainfall and no rainfall) during 

multiple summer seasons whose hydrologic results confirm its benefits for 

hydrologic forecasting.  We conclude that flood forecasting efforts with radar 

forcing in mountain watersheds benefit from establishing a site-specific relation 

Z-R (e.g. Z=700R1.3) for the season of interest using comparisons with local 

observations. We show that the use of an arbitrary Z-R relation impacts the basin 

response in terms of the outlet streamflow, runoff mechanisms and the seasonal 

water balance. As a consequence, rainfall differences in the WSR-57 and 

NEXRAD relations, relative to the reference case, result in higher streamflow 
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errors, gradual transitions in runoff mechanisms, and large changes in the water 

balance.  

A distributed analysis of hourly simulations at four watersheds during 

summer 2004 demonstrated that the use of an incorrect Z-R generate profound 

changes in the estimation of rainfall intensities which lead to streamflow error 

generation at different zones in the basin. Differences in rainfall translate into 

uncertainties in streamflow that follow power law expressions beyond a particular 

threshold. Similarly, streamflow uncertainty is described by a power law 

regression with discharge magnitude. Both relations indicate that errors 

introduced by the Z-R relation into the basin response are exacerbated for large 

rainfall or flooding events.  Another encouraging finding of this chapter relates to 

the behavior of specific streamflow errors (SE) whose magnitudes are exacerbated 

principally at intermediate-sized basins by the use of inappropriate Z-R relations.  

This finding coincides with the preliminary remarks on the importance of 

capturing the spatial distribution of localized but intense precipitation systems and 

its relevance for accurate flood forecasts. 

SPATIOTEMPORAL LIMITS OF FLOOD FORECASTING IN 

MOUNTAIN BASINS 

In Chapter 4, interesting results were found regarding the predictability of 

flash floods in multiple watersheds under heavy summer precipitation. The scale 

and lead time dependence of forecasting skill was investigated by means of  

ensemble radar nowcasts into a hydrologic modeling environment whose 

extended lead mode allowed having a continuous description of the rainfall-runoff 
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fields during consecutive storm systems, a critical aspect when predicting 

multiple peak or superimposed floods. The study of two storm systems in 

summers 2004 and 2006 allowed recognizing typical forecasting error patterns in 

precipitation  and streamflows that are due to the incapacity of nowcasting models 

to correctly predict the evolution of rainfall in mountains and the added 

complexity of watershed properties in the re-distribution of runoff, determined by 

soils, vegetation, aquifer and channel routing characteristics.  

Results indicate that using a physically-based hydrologic model with 

distributed rainfall predictions, provides a vantage point for recognizing spatial 

patterns that explain local susceptibility to floods and provide an opportunity to 

quantify error propagation from the occurrence of the storms and subsequent 

basin responses. An independent rainfall analysis allowed concluding that 

probability of predicting precipitation decreases with lead time and rainfall 

magnitude. Across the CFR region, the most noticeable decrease in prediction 

skill occurs between 15 and 45 min. Consistently, hydrologic simulations revealed 

that, except by some small-size, snow-dominated basins, flood forecasting skill is 

not better than forecasted mean for lead times greater than 30 minutes in most of 

the cases. Flood forecasting skill also decreases with lead time, but the functional 

forms follow a different pattern as a result of the interaction with watershed 

properties, in particular when rainfall intensities exceed hydrologic thresholds.   

Storm scale characteristics play a determinant role on the differential 

susceptibility to high runoff production and flooding. Rainfall-runoff maps show 

that, despite changes in the spatial distribution of QPFs with lead time, only 
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variations in runoff magnitude are triggered. Analyses of precipitation and 

streamflow errors also indicate a low correspondence between those variables 

across different scales, whereas that the scale-dependence of streamflow errors is 

primarily due to increasing flood magnitudes.  

The consideration of forecasted ensemble members at internal channel 

locations permitted the quantification of specific error (SE) and its dispersion that 

follow a characteristic pattern with basin area across watersheds at different lead 

times. We found that catchment areas that coincide with the typical size of 

convective storm systems experience the highest and more disperse values of SE, 

making predictability more dificult at these scales, principally due to an increase 

in runoff production that result in larger runoff coefficients.  In addition, we 

attribute to soil hydraulic characteristics, topography, vegetation interception and 

channel routing processes the bell-shaped pattern of normalized SE in function of 

total area, as they control the propagation of the rainfall errors and moderate the 

forecasting dispersion across watersheds and lead times.  

Overall, the unifying theme of this research “flood forecasting in mountain 

basins under summer convection” was developed through three independent but 

complementary analysis: (1) exploration of the utility of different QPE in multiple 

mountain basins by using hydrologic verifications through observed streamflows; 

(2) study of the influence of the reflectivity-rainfall relation on hydrologic 

simulations in multiple catchments; and (3)  analysis of the scale and lead time 

dependence of flood forecasting skill during significant events in multiple 

mountain catchments. Consistently through the Chapters, results pointed out the 
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need for considering spatial variations in rainfall inputs for improving the 

accuracy, in time and magnitude, of the streamflow forecasts. Three examples of 

this are (1) the fact that satellite observations whose distributed nature might 

overcome the presence of volume biases for hydrologic simulations, (2) the need 

for regional calibration of the Z-R relation whose rainfall structures are 

determinant of the prediction error magnitudes, and (3) the fact that at large lead 

time QPF commonly distort the actual spatial distribution of precipitation leading 

to serious limitations in hydrologic forecasting at internal and outlet locations. 

Another important conclusion remarked the high temporal variability in the 

occurrence of rainfall that was linked to their high spatial intermittency as another 

limiting factor for prediction. As a result the nowcasting model was unable to 

issue accurate forecasts beyond 30 minutes in most watersheds, a demonstration 

of a chaotic evolved field with low persistency in time. Two final elements 

outcrop as common denominators in this analysis. One is the obvious influence of 

watershed characteristics in triggering different runoff mechanisms and 

differential runoff production that determines geographic flood susceptibility 

inside a watershed, which is more clearly explained in Chapter 4. The second is 

the scale of summer precipitation occurrence in the CFR determines the de degree 

of uncertainty of flash-flood forecasting at different basin scales. Two clear 

examples of this were presented in Chapters 3 and 4 through seasonal and event 

scale analyses of specific error functions (SE) across cumulative basin areas in 

multiple watersheds.    
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FUTURE WORK 

Future work section is divided in elements for real-world applicability of 

discussed methodologies and further research opportunities. The procedures and 

approaches used through this research work can be applied in other applications to 

advance this field with the upcoming potential in computational (supercomputing) 

and sensing instruments (dual-polarization radars, NASA satellites).  

First, QPE verification methodologies can be adopted not only to evaluate 

summer QPE products but also long-term time series that include winter and 

spring precipitation events that are equally significant in terms of the hydrologic 

responses. We encourage the testing of QPE in other regions over the globe 

whose propensity to flooding is year-long. One of the unavoidable prior steps 

before this type of verification is the existence of a relatively high number of rain 

gauges (at 1-hour time resolution or finer) permitting a fairly good representation 

of the spatial variability of rainfall over the region. Ideally, ground stations are 

expected to be installed at different elevations, landcover types and micro-

topographic characteristics (e.g. windward or leeward faces) according to the 

general circulation patterns in the region. Selection of study watersheds must 

follow the presence of high resolution stream gauges (at least 1 hour time 

resolution), soils, landcover and aquifer characteristics. It is recommendable that 

the hydrologic verification is done in multiple size watersheds at different 

elevations, so that distinct hydrologic dynamics are taken into account. Outcomes 

from these analyses can lead to potential use of QPE products for areas with 

sparse rain gauge or no-rainfall information with hydrologic similarity.  Some 
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drawbacks of this methodology involve the fact that areas of low rain gauge or 

streamflow coverage are very unlikely to support this type of studies as the high 

spatial variability of rainfall determines the overall accuracy of results. 

Second, the methodology developed to determine a regional Z-R relation 

is straightforward to implement in areas whose high presence of rain gauge 

stations guarantees the capture the spatial variability of rainfall. As discussed 

before, for practical purposes, we recommend a seasonal calibration procedure so 

that both dry and wet periods are considered in the analysis.  The approaches 

combine the use of available high resolution time series of precipitation and 

streamflow at multiple catchments within a same region with weather radar 

coverage.   Benefits from the application of this methodology can be summarized 

in more accurate QPE from radar measurements that translates in improvement of 

QPF. This all translates in better hydrologic representations and predictions in 

terms of runoff and streamflow production at internal and outlet locations. Some 

of the limitations of this methodology are the fact that it is only possible in areas 

where multiple rain gauges are present, multiple watersheds are instrumented 

(streamflow gauges) and usage in areas of medium geographic coverage, 

depending on the rainfall variability and physiographic conditions (e.g. mountain 

block like the CFR, or a flat area with similar hydrologic characteristics).  

Third, the applicability of coupled nowcasting techniques and distributed  

hydrologic models is a feasible task given (1) the new capabilities of 

supercomputing facilities that make computations fast and efficient, (2) the 

improvement of distributed hydrologic models and rainfall prediction algorithms, 
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(3) the availability of distributed ground data (e.g. soils, vegetation, channel 

networks, groundwater systems, etc), (4) the automatization of techniques to 

calibrate and quality control model outputs and (5) the new capabilities for real-

time observations using telemetry and satellite data that help substantiate 

predictions. The cost of a coupled precipitation-distributed model setup like this 

one becomes insignificant if we take into account the benefits in preventing floods 

with billions in damages. Additionally, advantages like the knowledge of 

watershed dynamics at internal locations and the enhanced prediction capabilities 

at nested basins turn this system in a real beneficial alternative for issuing flood 

forecasts. As in lumped models, questions dealing with parameter calibration and 

adjustment of the initial condition will need to be considered by the appropriate 

personnel operating the system. Some of the drawbacks or opportunities for 

improvement can be the design of techniques to simplify model 

overparameterization, the need of supercomputing systems and the mounting of 

an expert platform and team that deals with hydrologic issues of model 

uncertainties and real-time issuing of watches. 

The results obtained in this study encourage the development of new 

research topics in seek of generalization of findings, exploration of new particular 

cases and the modeling of future flood forecasting scenarios under climate and 

land cover changes. I summarize eleven possible new avenues of work, although 

many more can be foreseen by other researchers: 

1.  As the availability of precipitation data from satellites is dramatically 

increasing and will continue to do so with the new platforms such as the Global 
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Precipitation Mission (GPM) and the National Polar-Orbiting Environmental 

Satellite System (NPOESS), new hydrological verification studies will be needed, 

at different types of watersheds (e.g. subtropical mountains and plains, tropical 

forests, agricultural, urban  areas, etc) so that operational communities get 

directions on the value of using those products for accurate hydrologic 

estimations. 

2.   Due to its coarse space-time resolutions, some current and upcoming 

satellite QPE  show a lack of spatial structures which reduces the accuracy of 

hydrologic simulations in medium to small-size catchments. An approach to 

overcome this limitation is the use of statistical downscaling models that are able 

to reproduce the statistical properties of fine-scale rainfall fields with minimal 

parameterization. Downscaling techniques have been recognized to reproduce 

rainfall variability in different regions (Deidda et al. 1999; 2004; Badas et al. 

2006; Mascaro et al., 2008; Forman et al. 2008). The use of orographic 

modulating functions to distribute rainfall according to elevation gradients 

controlled by the diurnal cycle of precipitation, introduces a topographic-diurnal 

organization framework to the downscaled rainfall in a similar manner as shown 

by Badas et al. (2006). Hydrologic model can be used as a verification of 

downscaled fields. 

3. This study showed the value of multisensor and satellite products for 

high resolution hydrologic simulations. However, more effort is needed in new 

techniques to correct local biases that improve their suitability for flood 

forecasting in mountain areas. This task can be done by utilizing current ground 
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information (or rain gauge calibrated radar fields) that serve to correct QPE at 

collocated pixels to extract elevation and diurnal cycle dependence functions that 

allow correcting for systematic volume biases. This will make satellite products 

applicable to areas of no other information. 

4. The type of approach used for deriving the Z-R relation constitutes one 

feasible method to obtain it at the seasonal scale, based on the optimization of one 

objective function composed of two weighted error and skill metrics. An 

opportunity to test many more types of objective functions and preference 

structures (weighting) could be adopted to test the robustness of its derivation. 

Also, a sensitivity analysis can be conducted to test the influence of considering 

different number of rain gauges on the ground, so that a panoramic of Z-R 

sensitivity is revealed in terms of both readily available information and type of 

optimization function.  

5. Flood forecasting skill functional relationship with lead time should be 

tested for other types of precipitation (e.g. winter stratiform) at the study basins. 

In this case we demonstrated that forecasting skill does not have further 

worsening beyond 120 minutes lead time. So, National Weather Prediction 

(NWP) models like WRF, whose smaller lead time is 6 hours are expected to have 

low utility for the case of flood forecasting. However, in other geographic 

regions, where precipitation fields show larger persistency (Great Plains under 

winter precipitation), NWP models can be tested to reveal their validity for high 

resolution rainfall forecasts.  
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6. Residual errors in the forecasting chain (those provided by model 

structure and parameters) need to be separated and quantified by their 

compounding fractions through model inter-comparison experiments with the 

same setup in terms of forcing, basin characteristics, observed streamflows, and 

calibration procedures. In the end, if models have been correctly calibrated they 

are able to issue flood forecasts with a good degree of accuracy, but only those 

whose conceptual framework is solid will be introducing smaller amount of 

uncertainty in the simulation of floods. A subsequent step will test the model 

uncertainty introduced by behavioral parameterization, by taking the top 10% of 

best parameter sets. In other words, introduction of the uncertainties by the 

presence of non-uniqueness of solutions through different combination of 

parameter sets will allow quantifying its error contribution. Total error is thus the 

combination of both parameter uncertainty and model structural errors. Having 

both types of uncertainties computed, the difference between the two errors (from 

the behavioral analysis and calibration) can be estimated in both models to 

estimate the effect of parameter uncertainties alone.    

7. Recent forest fires in the north CFR (in June 2012) envision a change in 

the hydrologic patterns that might involve an increased propensity to floods. 

Given that this study provides a base simulation platform, new studies are 

envisioned on the effect of this land cover change on the hydrologic response to 

significant summer storm events. Objectives can address topics like the 

importance of land cover to mitigate floods, the switch in runoff mechanisms, 
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changes in the partitioning of the water balance and the forecasting dispersion 

introduced by drastic cover changes in mountain areas.  

8. We foresee more research on the specific error function (SE) and its 

possible presence in geographically distinct watersheds under different rainfall 

types. Additionally, we expect interesting SE trending patterns under heavier 

precipitation scenarios and landcover changes. We expect that this relation 

increase in magnitude as large storms and urbanization take place in future 

scenarios. 

9. For larger watersheds involving reservoirs, tRIBS has great challenges 

to improve its current modeling capabilities by including operation schemes and 

lake routing when floods occur in large-scale basins (e.g. Verde, Salt, Grande, 

Colorado or Mississippi Rivers). In doing so, dam operators will play a significant 

role in mitigating flood avenues by following the simulations projected by the 

hydrologic model. 

10. In urban areas the coupling of nowcasting and hydrologic models is 

possible by including the details of artificially created channel networks (e.g. 

streets, waysides and storm retention structures) as well as the hydrologic 

complexities that determine timing and magnitude of total response. Exhaustive 

work on feasible values for land cover and soil parameterization in urban 

environments is needed. Challenges for the rainfall forecasts might not be as 

difficult as in mountain systems. However urban meteorology, including urban 

island effects on precipitation can impose limitations to the correct prediction of 

rainfall distribution. 
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11. Distributed values of rainfall, soil types, vegetation coverage and 

coupled vadose-saturated zone interactions for soil moisture development are a 

great opportunity to landslide forecasting. Distributed hydrologic models can now 

be seen as platforms for development of associated risks. However, significant 

amount of work is envisioned in testing the model in experimental steep slope 

watersheds under slide vulnerability particularly during persistent rainfall periods. 

12. Floods have demonstrated to be one of the most important producers 

of erosion and sediment transport in rivers. Changes in the fluvial geomorphology 

are expected to affect the ecosystem dynamics and hydrologic responses 

themselves. So, coupling of tRIBS with distributed sediment transport models are 

envisioned to predict changes in the channel network morphology and sediment 

equilibrium induced by significant streamflow values. 
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APPENDIX A  

HYDROMETEOROLOGICAL DATASET 
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This appendix compiles the full sets of hydrometeorological data either 

observed or forecasted that was used in this doctoral thesis. The Table A.1 briefly 

describes the types of data and the main characteristics in terms of digital format, 

coverage and spatiotemporal resolution.  

 
Table A.1  Hydrometeorological dataset. 

Type Folder 
name 

Description 

Quantitative 
Precipitation 
Estimations 

QPE 

QPE folder contains information for the 10 QPE 
products considered in Chapter 2 with the following 
characteristics: 
- Temporal coverage: From May 15 to September 30, 
2004. Gaps were filled with Level II 4km data.  
- Spatial resolution: 4 km. Level II-1km that has 1 km 
resolution. 
- Temporal resolution: 1h 
- File format: ASCII 
 
 
 

Quantitative 
Precipitation  

Forecasts 
QPF 

QPF ensemble members after running TITAN for the 
two storm events described in Chapter 4. The following 
is the description of each folder. 
- Folders of interest: Clipped_QPF_2004 and 
Clipped_QPF_2006 
- Prototype subfolders: "M.S.S_10_L.T_0.1_D.T_5-
1000m_FT_15min_LeadTime_15min". Where M.S.S, 
L.T. and D.T. are the three parameters in TITAN to 
produce ensemble members. LeadTime_15min is the 
lead time used for each simulation, in this example 15 
min. 
Each of the ensemble members contains ASCII matrices 
from the start to the end of each storm system, with the 
following characteristics: 
- Temporal resolution: 15min 
- Saptial resolution: 1km 
- Coverage: CFR 
- Lead times:{15, 30, 45, 60, 75, 90, 120, 150, 180 min} 
 
QPE comparative datasets are contained in two folders: 
- Folders of interest: clipped_QPE_2004 and 
clipped_QPE_2006. 
- Spatial resolution: 1km 
- Temporal resolution: 15min 
- Coverage: CFR 
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Streamflow time series  Streamflow 

Stream flow time series of discharge stations within the 
CFR. The acronyms correspond to the following 
watersheds:  
Big Thompson River at Estes Park: BTABESCO 
Fish Creek Near Estes Park: FISHESCO 
North Fork Big Thompson River at Drake: BTFDRCO 
Little Thompson River Near Berthoud: LTCANYCO 
Buckhorn Creek Near Masonville: BUCRMVCO 
North Saint Vrain Creek Near Allens Park: STALENCO 
Middle Saint Vrain Creek Paceful Valley: MIDSTECO 
South Saint Vrain Creek Near Ward: SSVWARCO 
Middle Boulder Creek at Nederland: BOCMIDCO 
Coal Creek Near Plainview: COCREPCO 
Ralston Creek ab. Reservoir near Golden: RALCRKCO 
 
- Time resolution: 15 minutes. For NVRAIN and FISH it 
is1 hour. 
- Columns correspond to Year, Month, Day, Hour, Min, 
Stage(ft), Discharge (cfs).  
- Data commonly start in May of each year.  
- Years reported are 2003, 2004, 2005, 2006. 
 
 
 

Weather time series Weather 

Weather folder contains information for the seven 
meteorological stations used in this thesis. 
- Temporal Coverage: Summers 2004 and 2006. 
- Temporal resolution: 1 hour 
- Variables or columns: Y, M, D, H, PA, TD, XC, US, 
TA,IS 
YEAR, MONTH, DAY, HOUR, ATMOSPHERIC 
PRESSURE, DEW POINT TEMPERATURE, CLOUD 
COVER, WIND SPEED, AIR TEMPERATURE, 
INCOMMING SOLAR RADIATION 
- Temporal coverage: From June to September 2004 and 
2006.  
- File format: ASCII 
 
 
 

Level II data for 
different Z-R relations 

Z-R data 

Level II hourly precipitation data as a result of the 
different Z-R relations for the entire CFR. Each folder 
contains 3250 matrices with rainfall values. 
- Temporal coverage: May 15 to September 30, 2004 
- Temporal resolution: 1 hour 
- Spatial resolution: 1 km 
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APPENDIX B  

GIS DATASET 
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This appendix compiles the main sets of GIS data that was used in this 

doctoral thesis. The Table B.1 briefly describes the metadata and file format for 

each geo-spatial layer. 

Table B.1  GIS dataset. 
Type Folder name Description* 

Landsat image Landsat 
False color Landsat image of the CFR taken in June 
2004 with 30 m resolution. 
 

Landcover data 
National_Landco

ver_2001 

Original landcover data from National Landcover 
Dataset in 2001. Inside this folder, a folder named 
"Definitive_map" contains the 30m-ASCII with the 
definitive classes studied in the thesis. 
 

Digital 
Elevation Model  

NED_DEM 

Digital Elevation Model from the National Elevation 
Dataset at 30m resolution for CFR that was used to 
generate the TINs. 
 

Hydrography 
North American 

Atlas Water 

Regional hydrography of the CFR extracted from the 
North American Atlas Water at high resolution. 
 

Radar stations Radar location 
Shape files with the geographic location of radars 
within CFR. 
 

Rain Gauges 
Rain gauge 

stations 

Locations of daily and hourly rain gauge stations within 
CFR. 
 

Soil types Soils 

SSURGO and STATSGO databases. Inside this folder, 
a folder named "Definitive_map" contains the 30m-
ASCII with the definitive classes studied in the thesis. 
 

Stream gauges 
Streamgauge_stati

ons 

Shape files with the location of the eleven stream 
gauges. 
 

Divides and 
channel network 

Water_divides_U
TM13 

Shape files with the watershed divides and channel 
networks at each basin. As in soils and vegetation, 
UTM13 is the default coordinate system. 
 

Divides and 
channel network 

Watershed_divide
s_automatic 

Shape files with the watershed divides and channel 
networks at each basin. WSG84 if the coordinates 
system. 

* All data layers geo-referenced to same coordinate system UTM13 
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APPENDIX C  

MODEL SIMULATIONS 
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This appendix compiles the entire set of simulations and outputs obtained 

with different QPE and QPF forcing. Additionally tRIBS source code has been 

added and need to be compiled in specific Linux machine. The Table C.1 briefly 

describes the type of information inside each folder. The directories are organized 

so that the tRIBS model can be run from the hard disk with any major changes. 

Table C.1  Model simulations. 
Type Folder names Description 

QPE setup Seasonal_calibration 

This folder contains the model setups for runs in 
Chapters 2 and 3 of thesis. Calibrated soil and input 
parameters are located in each of the subfolders 
corresponding to each watershed (BUCK, SVRAIN, 
FISH or RALS). The traditional directory order 
including GWinit, Input, Weather, Output, etc., is 
present in each folder. Metis partitioning files are 
attached to each folder. Additionally, jobscript files (sh) 
are included within each subfolder to run each basin in 
an independent manner in the Saguaro Supercomputer 
at ASU. 
 
 

QPF setup 
Event_calibration 
Event_validation 

These folders contain the model setups for runs in 
Chapter 4 of thesis regarding the storm 2004 
(event_calibration) and storm 2006 (event_validation). 
Event calibrated soil and input parameters are located 
in each of the subfolders corresponding to each 
watershed. The traditional directory order including 
GWinit, Input, Weather, Output, etc. is present in each 
folder. Metis partitioning and restart files are attached 
to each subdirectory. Additionally, jobscript files (sh) 
are included within each subfolder to run each basin in 
an independent manner in the Saguaro Supercomputer 
at ASU. 

QPE Outputs Outputs_QPE 

 
 
 
This folder contains the model outputs when forced 
with the different types of QPEs at the seasonal scale. 
Subfolders are organized in a manner that the four 
study basins contain Input information and a folder 
called "Output_QPEs" that contains the outputs of each 
calibrated basin when forced with the QPEs. 
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QPF Outputs Outputs_QPF 

This folder contains the model outputs when forced 
with the different QPF and corresponding QPE for the 
two storm systems in 2004 and 2006. Below is a short 
description of the folders: 
 
- QPE2004 and QPE2006: Contain hydrologic 
OUTPUTS at each basin when forced with 15-min, 
1km Level II data. 
- QPF2004 and QPF2006: Contain hydrologic 
OUTPUTS at each basin by forcing the model with the 
different QPF described in Appendix A. Ensemble 
results are organized in a similar manner to QPF (e.g. 
M.S.S_10_L.T_0.1_D.T_5-
1000m_FT_15min_LeadTime_15min), where, in this 
case, LeadTime_15min means the hydrologic 
simulation was conducted for one member whose lead 
time is 15min. 
 
 
 

tRIBS Code tRIBS 

This folder contains tRIBS source code and compiled 
versions of tRIBS and ptRIBS. Also METIS and 
MESHBUILDER utilities have been added in case 
parallelization of the model domain is needed. 

 

Calibrated soil parameters for each of the simulations are added next. 

Tables C.2 to C.5 compile the .sdt files at the four seasonally calibrated basins 

used in Chapters 2 and 3. Tables, C.6 to C.16 compile the soil parameters for the 

eleven basins as calibrated for Chapter 4.  
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Table C.2  Calibrated soil parameters for BUCK for summer 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
4 30.29011 0.372754 0.027 1.459604 -704.4577 0.025288 25 25 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
17 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
18 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
 
 
Table C.3  Calibrated soil parameters for FISH for summer 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222 223 223 0.453 1.65 2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 2.0449 0.0692 0.005 0.0638 -221.8953 0.03063 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 2.0449 0.0692 0.005 0.0638 -221.8953 0.03063 227 227 0.015 1.7 3516925 
16 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222 223 223 0.453 1.65 2721430 
17 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222 223 223 0.453 1.65 2721430 
18 17.1765 0.3479 0.041 1.4681 -84.3614 0.00222 223 223 0.453 1.65 2721430 
19 2.0449 0.0692 0.005 0.0638 -221.8953 0.03063 227 227 0.015 1.7 3516925 
20 2.0449 0.0692 0.005 0.0638 -221.8953 0.03063 227 227 0.015 1.7 3516925 
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Table C.4  Calibrated soil parameters for RALS for summer 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 18.6430 0.585587 0.041 1.1940 -324.3684 0.008452 220.9145 220.9145 0.453 1.65 2721430 
4 25.7587 0.521075 0.027 1.6689 -385.3706 0.036551 690.9287 690.9287 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 18.6430 0.585587 0.041 1.1940 -324.3684 0.008452 220.9145 220.9145 0.453 1.65 2721430 
17 18.6430 0.585587 0.041 1.1940 -324.3684 0.008452 220.9145 220.9145 0.453 1.65 2721430 
18 18.6430 0.585587 0.041 1.1940 -324.3684 0.008452 220.9145 220.9145 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
 

 

Table C.5  Calibrated soil parameters for SVRAIN for summer 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 8.165027 0.567575 0.041 1.481371 -21.706406 0.000364 223 223 0.453 1.65 2721430 
4 22.377413 0.55928 0.027 0.575623 -804.967404 0.000956 25 25 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 8.165027 0.567575 0.041 1.481371 -21.706406 0.000364 223 223 0.453 1.65 2721430 
17 8.165027 0.567575 0.041 1.481371 -21.706406 0.000364 223 223 0.453 1.65 2721430 
18 8.165027 0.567575 0.041 1.481371 -21.706406 0.000364 223 223 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
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Table C.6 Calibrated soil parameters for BTHOM for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 30.688503 0.584432 0.041 1.185196 -187.174416 0.00542 234.629 234.629 0.453 1.65 2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 3.181246 0.02284 0.005 0.190892 -209.354548 0.00678 1.001168 1.001168 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 3.181246 0.02284 0.005 0.190892 -209.354548 0.00678 1.001168 1.001168 0.015 1.7 3516925 
16 30.688503 0.584432 0.041 1.18519 -187.174416 0.00542 234.629 234.629 0.453 1.65 2721430 
17 30.688503 0.584432 0.041 1.18519 -187.174416 0.00542 234.629 234.629 0.453 1.65 2721430 
18 30.688503 0.584432 0.041 1.185196 -187.17441 0.00542 234.629 234.629 0.453 1.65 2721430 
19 3.181246 0.02284 0.005 0.190892 -209.354548 0.00678 1.001168 1.001168 0.015 1.7 3516925 
20 3.181246 0.02284 0.005 0.190892 -209.354548 0.00678 1.001168 1.001168 0.015 1.7 3516925 

 

Table C.7  Calibrated soil parameters for BUCK for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
4 30.29011 0.372754 0.027 1.459604 -704.4577 0.025288 25 25 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
17 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
18 7.9569 0.31892 0.041 0.806842 -244.21824 0.033364 223 223 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
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Table C.8  Calibrated soil parameters for COAL for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 84.295979 0.362755 0.035 0.6143 -160.969 0.013177 791.185221 791.1852 0.436 1.75 2637693 
3 22.275336 0.380271 0.041 1.65553 -21.188365 0.02350 691.2306 691.2306 0.453 1.65 2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 22.275336 0.380271 0.041 1.65553 -21.1883 0.0235 691.2306 691.2306 0.453 1.65 2721430 
17 22.275336 0.380271 0.041 1.65553 -21.1883 0.0235 691.2306 691.2306 0.453 1.65 2721430 
18 22.275336 0.380271 0.041 1.65553 -21.1883 0.0235 691.230653 691.2306 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
 

 

Table C.9  Calibrated soil parameters for FISH for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 0.411234 0.605368 0.041 1.590181 -92.009039 0.009268 649.071695 649.071695 0.453 1.65 
2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 3.318567 0.054697 0.005 0.109262 -489.463342 0.006586 1.551745 1.5517 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 3.318567 0.054697 0.005 0.109262 -489.463342 0.006586 1.551745 1.5517 0.015 1.7 3516925 
16 0.411234 0.605368 0.041 1.590181 -92.009039 0.0092 649.0716 649.0716 0.453 1.65 2721430 
17 0.411234 0.605368 0.041 1.590181 -92.009039 0.0092 649.0716 649.0716 0.453 1.65 2721430 
18 0.411234 0.605368 0.041 1.590181 -92.009039 0.0092 649.0716 649.0716 0.453 1.65 2721430 
19 3.318567 0.054697 0.005 0.109262 -489.463342 0.0065 1.551745 1.551745 0.015 1.7 3516925 
20 3.318567 0.054697 0.005 0.109262 -489.463342 0.0065 1.551745 1.551745 0.015 1.7 3516925 
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Table C.10  Calibrated soil parameters for LTHOM for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 4.779431 0.571403 0.041 1.42123 -172.458864 0.042258 683.006 683.006 0.453 1.65 2721430 
4 7.164652 0.371416 0.027 0.292137 -838.8864 0.001048 110.3839 110.3839 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 4.779431 0.571403 0.041 1.42123 -172.458864 0.042258 683.006 683.006 0.453 1.65 2721430 
17 4.779431 0.571403 0.041 1.42123 -172.458864 0.042258 683.006 683.006 0.453 1.65 2721430 
18 4.779431 0.571403 0.041 1.42123 -172.458864 0.042258 683.006 683.006 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
 

 

Table C.11  Calibrated soil parameters for MBOUL for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 35.508438 0.415959 0.041 1.195471 -75.355071 0.0406 394.1260 394.1260 0.453 1.65 2721430 
4 6.490654 0.343446 0.027 1.186388 -20.813372 0.00543 647.2150 647.2150 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 35.508438 0.415959 0.041 1.195471 -75.355071 0.04068 394.126 394.126 0.453 1.65 2721430 
17 35.508438 0.415959 0.041 1.195471 -75.355071 0.04068 394.126 394.126 0.453 1.65 2721430 
18 35.508438 0.415959 0.041 1.195471 -75.355071 0.04068 394.126 394.126 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
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Table C.12  Calibrated soil parameters for MVRAIN for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 31.580143 0.537309 0.041 0.811409 -342.805928 0.01652 275.271 275.271 0.453 1.65 2721430 
4 13.086015 0.578902 0.027 1.008146 -179.578379 0.00698 752.136 752.136 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 31.580143 0.537309 0.041 0.811409 -342.8059 0.016525 275.271 275.271 0.453 1.65 2721430 
17 31.580143 0.537309 0.041 0.811409 -342.8059 0.016525 275.271 275.271 0.453 1.65 2721430 
18 31.580143 0.537309 0.041 0.811409 -342.8059 0.016525 275.271 275.271 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 

 

Table C.13  Calibrated soil parameters for NFORK for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 35.829778 0.364747 0.041 1.380734 -27.033417 0.013087 274.661 274.661 0.453 1.65 2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 1.275242 0.067312 0.005 0.248532 -580.697481 0.048326 1.5495 1.5495 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 1.275242 0.067312 0.005 0.248532 -580.697481 0.048326 1.5495 1.5495 0.015 1.7 3516925 
16 35.829778 0.364747 0.041 1.380734 -27.033417 0.01308 274.661 274.661 0.453 1.65 2721430 
17 35.829778 0.364747 0.041 1.380734 -27.033417 0.01308 274.661 274.661 0.453 1.65 2721430 
18 35.829778 0.364747 0.041 1.380734 -27.033417 0.013087 274.66 274.66 0.453 1.65 2721430 
19 1.275242 0.067312 0.005 0.248532 -580.697481 0.048326 1.5495 1.5495 0.015 1.7 3516925 
20 1.275242 0.067312 0.005 0.248532 -580.697481 0.048326 1.549 1.549 0.015 1.7 3516925 
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Table C.14  Calibrated soil parameters for NVRAIN for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 11.146845 0.41770 0.041 0.5319 -29.68379 0.00877 887.97120 887.97120 0.453 1.65 2721430 
4 3.4 0.434 0.027 0.252 -111.5 0.00625 25 125 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.687778 0.023478 0.005 0.287777 -70.865252 0.01066 1.870805 1.870805 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.687778 0.023478 0.005 0.287777 -70.865252 0.01066 1.870805 1.870805 0.015 1.7 3516925 
16 11.146845 0.417708 0.041 0.53139 -29.683794 0.008776 887.971 887.971 0.453 1.65 2721430 
17 11.146845 0.417708 0.041 0.53139 -29.683794 0.008776 887.971 887.971 0.453 1.65 2721430 
18 11.146845 0.417708 0.041 0.53139 -29.683794 0.008776 887.971 887.971 0.453 1.65 2721430 
19 0.687778 0.023478 0.005 0.287777 -70.865252 0.01066 1.870805 1.870805 0.015 1.7 3516925 
20 0.687778 0.023478 0.005 0.287777 -70.865252 0.01066 1.870805 1.870805 0.015 1.7 3516925 

 

Table C.15  Calibrated soil parameters for RALS for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 24.418749 0.570053 0.041 1.732439 -387.27021 0.0237 191.6214 191.6214 0.453 1.65 2721430 
4 24.219558 0.398956 0.027 0.824442 -680.255162 0.0032 80.9402 80.9402 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 24.418749 0.570053 0.041 1.732439 -387.27021 0.02379 191.621 191.621 0.453 1.65 2721430 
17 24.418749 0.570053 0.041 1.732439 -387.27021 0.02379 191.621 191.621 0.453 1.65 2721430 
18 24.418749 0.570053 0.041 1.732439 -387.270219 0.0237 191.621 191.621 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
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Table C.16  Calibrated soil parameters for SVRAIN for Storm 2004. 
20 12 
1 117.8 0.417 0.020 0.694 -72.6 0.007 65 140 0.437 1.93 2595825 
2 29.9 0.401 0.035 0.553 -86.9 0.007 65 140 0.436 1.75 2637693 
3 10.553752 0.340788 0.041 1.622464 -343.198011 0.00168 743.762 743.762 0.453 1.65 2721430 
4 20.253409 0.37092 0.027 0.099609 -444.638144 0.0103 122.641 122.641 0.461 1.42 2826100 
5 6.5 0.486 0.015 0.234 -207.9 0.00650 65 140 0.501 1.26 2805166 
6 6.5 0.486 0.015 0.234 -207.9 0.00700 65 140 0.501 1.34 2742364 
7 1.0 0.432 0.040 0.177 -325.6 0.00680 50 140 0.472 1.09 2951705 
8 1.0 0.390 0.075 0.242 -258.9 0.00700 50 140 0.465 1.13 2909836 
9 1.5 0.330 0.068 0.319 -280.8 0.00670 25 125 0.398 1.26 2826100 
10 0.6 0.321 0.109 0.223 -291.7 0.00700 50 140 0.430 1.17 2847034 
11 0.5 0.423 0.056 0.15 -341.9 0.00700 50 140 0.479 1 3035441 
12 0.3 0.385 0.090 0.165 -373 0.00700 50 140 0.475 1 3014507 
13 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
14 3.7 0.385 0.090 0.165 -373 0.00700 65 140 0.475 1 3014507 
15 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
16 10.553752 0.340788 0.041 1.622464 -343.1980 0.001698 743.762 743.762 0.453 1.65 2721430 
17 10.553752 0.340788 0.041 1.622464 -343.198011 0.0016 743.762 743.762 0.453 1.65 2721430 
18 10.553752 0.340788 0.041 1.622464 -343.198011 0.0016 743.762 743.762 0.453 1.65 2721430 
19 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
20 0.35 0.01 0.005 0.165 -1.0 0.006884 227 227 0.015 1.7 3516925 
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APPENDIX D 

SOFTWARE DEVELOPMENT 
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This appendix compiles major software development during this thesis. 

Scripts and programs were all constructed in R (www.r-project.org) a free 

environment for statistical computing and graphics. The Table D.1 briefly 

describes scripts functionality. Additional help may be found at the first lines of 

each script file.  

Table D.1  Software development. 
Type Folder names Description 

VisualtRIBS 
V1.3 

Visual_tRIBS 

Visual tRIBS V1.3 and Watershed Processing. 
Computational tool for DEM processing and 
watershed-channel network extraction. It is also useful 
for visualizing and exporting multiple serial and 
parallel outputs of tRIBS (triangulated Real-time 
Integrated Basin Simulator) including time series and 
spatial outputs of multiple variables, friendly 
programmed in R. You have to install R (free 
programming language) in your O.S. (LINUX, MAC or 
Windows), execute it by typing R on the terminal and 
install the following packages, using 
install.packages("name_of_the package"):playwith, sp, 
akima, maptools, fields, plotrix. Some users had to 
update their R libraries by typing 
"update.packages(checkBuilt=TRUE)" within the R 
console.  
 
 
  

SCE optimized 
calibration 

SCE_tRIBS* 

This folder contains two subfolders organized by type 
of calibration: 
- Event_calibration: That contains the scripts that were 
used to calibrate the eleven watersheds during the storm 
period in 2004 using the Shuffle Complex Evolution. 
- Seasonal_calibration: Than contains the scripts and 
results after calibrating the four watersheds during the 
summer 2004, using the Shuffle Complex Evolution. 
 
Within each basin folder several R-scripts and 
subroutines to run the SCE in a fail-safe mode can be 
found. Some output examples are included in each 
folder, so that the user gets familiarized with the type of 
outputs expected from these runs. The scripts are able 
to run the calibration from a local computer sending 
jobs to a supercomputer using X number of processors 
and store the "best" behavioral parameterizations in a 
local folder called "Behavioral". 
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Additional 
coding 

Codes_to_run_tRIBS
_in_cluster 

Four R-scripts that run tRIBS continuously in a parallel 
fashion at the Saguaro Supercomputer by using 
different forcing and storing outputs in an external 
folder (maybe Saguaro itself). This is convenient to run 
when testing different Z-R relations, QPE products or 
ensemble QPFs. 

* The actual code is printed below. 

 

SCE MAIN CODE 

The following is an example of SCE coding for the case of BTHOM for 

the event calibration. This code can be modified at the Input section to work in 

different basins. 

 

# This script runs the SCE algorithm from the DESKTOP which runs ptRIBS in the cluster by using "qsub 
fish_parallel_part.sh".  CAVEATS: 
# 1. Need to connect the cluster folder as a disk in your computer called "cluster" using sshfs. See: 
http://embraceubuntu.com/2005/10/28/how-to-mount-a-remote-ssh-filesystem-using-sshfs/  
# 2. Need to generate automatic password for ssh through ssh key authentication: keygen, etc: 
http://www.youtube.com/watch?v=R65HTJeObkI (SSH logins without passwords) 
# 3. This script needs to be saved on a desktop local folder: /media/D/SourceCodes/SCE_tRIBS/SCE 
# 4. Do not forget to modify the "fish.par.part_base.in" file for calling the corresponding Metis partition 
base_flow_#nodes.reach" correspondign to the number of processors, as well as the absolute paths for the output, weather, 
rain...etc folders. This base file has spaces necesarries to modify the routing pars. Need to change the name of the iterative 
file (e.g svrain_par_part_iterative.in) but no need to modify it inside. It only serves as a writable file. 
# 5. The sdt file must contain exaclty 20 (or more) complete rows.  No blank lines or with spaces are allowed at the end of 
the file. 
# 6. Review the job script (.sh file) to check the number of processors that must correspond to the same as the variable 
called "processors" here and the number of hours for parallel computation. This  .sh file needs to be inside the path "ruta". 
Aso check the executable path and .in file that is called. Make sure you change the jobname (e.g "Fish_cal"). 
# 7. The outputs are written in the "ruta1" folder. 
# 8. You can run this script by typing on a terminal: R CMD BATCH 
tRIBS_SCE_parallel_optimize_soils_from_Desktop_to_Cluster.R, or simply by openning R and typing: source( 
#   "/media/D/Sourc.........") 
# 9. If this script fails  or there is an electric outage please use the re-start system 
# 10. Remember to create a folder called GWinit where all tge GW init cases are saved. For instance the case : 
GW_1056_fish, GW_1450_fish, etc. The first case is the wettest 
 
 
## Running tRIBS ##### 
rm(list=ls(all=TRUE))   # INITIAL RUN.. 
require(audio) 
options(scipen = 6) # avoid using 1e-x  notation 
 
#***********************************INPUT 
*************************************************** ******** 
## Interpreting simulations   ################################################################### 
init<<-1   #Inital analysis hour for plotting and error estimation. This is useful when we have spin up time. Usually it is =1  
or 721 
d<<-200    #2190 duration of the simulation in hours. TIme from the *.in file.. 2910 including june 
year<<-2004 # Starting year for plotting and error calculation 
month<<-8  # STARTING MONTH for plotting and error calculation 
day<<-14      # STARTING DAY for plotting and error calculation 
hour<<-6    # STARTING HOUR for plotting and error calculation 



 
182 

minu<<-0 
observed_PATH<<-"/media/D/Hernan/Research/Moreno_PhD_Thesis/Additional_Information_CFR/Stream 
gaging/BigThompson/15 min/5_15min_Stage_Disch/" # path to the observed discharges 
obs_name<<-"BTABESCO_MJJAS_2004_H-D_FILLED.txt"   #  observed. It may start at any month and time. It has 
stage and discharge 
Qobs_int<<-0.25   # original time resolution of observed streamflowsn named in obs_name 
mean_hourly<<-1   # 0 for not averaging hourly simulated and observed streamflows, 1 does it. 
Qinterv<<-0.25    # in fractions of 1-hour (e.g 0.25 is 15 minutes).. it is the desired interval for calculating error metrics. it 
still works even if mean_hourly=0.. taking instantaneous data 
cluster_simulation_folder<<-"/home/hamoreno/Event_calibration/Bthom/" 
parallel_jobscript<<-"bthom_parallel_part.sh" 
 
## SCE   ## 
ruta<<-"/media/cluster/Event_calibration/Bthom/"   # simulation folder name 
base_name<<-"bthom"                               #base name 
infile<<-"bthom_par_part_base.in"                             #.in file for the parallel run 
iterative_in<-paste(base_name,"_par_part_iterative.in",sep="") 
 
processors<<-16  # number of processors that need to be the same as the .reach file called ny the .in file 
ruta1<<-"/media/D/SourceCodes/SCE_tRIBS/SCE/Event_calibration/BTHOM/"   # path to the R-script and where the 
"SCE_for_cluster" folder is. 
Output_Behav<<-"OUTPUTS_BEHAV"  #Folder to save and rename the output files mrf, rtf and qout from each of the 
simulations. This folder is inside ruta1 
GWcal<<- 1   # 1 = if calibrating GWinit; 0 if not 
GWfolder<<-"GWinit/"  # name of folder within ruta for GWinit scenarios if GWcal=1. 
             
    if (GWcal==1) listaGW= dir(path=paste(ruta,GWfolder,sep=""),all.files=FALSE,full.names=FALSE,recursive=FALSE) 
 
Routing<<-1  # # 1 = if calibrating routing pars; 0 if not 
Routing_pars<<-c(54,164)  # 57=Manning; 48=Kinematcoeff=48, 54=flowexp; coeff_w-A_rel=63; exp_w-A_rel=66; 
Bedrock_depth=164 
Routing_ref<<-c(0.4,2) # reference values for the chosen routing parameters 
lower_routing<<-c(0.3,0.25)   # lower limits for the ruting pars 
upper_routing<<-c(0.45,3)     # upper limits for the ruting pars 
 
# The soil parameters to optimize:  
# x=[Ks, Qs,  Qr,  m, Ksi, f, As, Au,  n,  Ks,  Cs] 
# x=[x1, x2, x3,  x4, x5, x6, x7, x8,  x9, x10, x11] 
 
soil_types<<-c("3","13")  # soil types to calibrate 
choose_soils<<-c(1,2,4,5,6,7)   # Choose the variables to iterate from ref= "1=Ks" "2=Qs," "3=Qr" "4=m" "5=Ksi" "6=f" 
"7=As" "8=Au" "9=n" "10=Ks" "11=Cs"  
 
consider_A_same=1   # Consider anysotropy ratios the same? Unsaturated = saturated, As=Au?  1= yes, 0 = no 
#values<<-     c(var1,var2,var3,var4,var5,var6,var7,var8...etc)  in order of soil types...   
 
values_soils<<-c(10.9,0.412,  0.378, -146.6,    0.008758, 223,   0.35,    0.01,  0.165,   -1,   0.006884, 1.5)  #vector of initial 
conditions of the selected variables (choosev x soil_types) in  order. For example in the case of 4 pars the first 4 values are 
the corresponding to the first soil class and the following four are for the second soil type. The rest of paremeters that will 
not be calibrated need to be prescribed at the .sdt file. 
lower_soils<<-c(0.36,  0.271,  0.140,  -454.7,  0.0003,  1,      0.0036,  0.01,  0.037,  -1000,  0.0003, 1)     #lower boundaries 
for the variables range 
upper_soils<<-c(36,   0.608,   2.0,     0,      0.05,    1000,    3.6,     0.1,  0.293,    0,     0.05,  2)     #upper boundaries for the 
variables range 
complejos<<-5 
 
tolerance<<-0.00001 # tolerance for consecutive iterations 
decim<<-6  # digits for the output and the sdt files 
walltime<<-700  #mins... Time after which a new job should be sent, as the current is taking too much time. This time must 
be at least 20 minutes before the walltime used in the jobscript to the cluster. 
longdurationRMSE<<-10   # RMSE for a simulation of duration > walltime 
 
## OPTIONAL SETTINGS ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^̂^^^^^^ 
# If the user has less than 12 and different organization of classes do not worry, only assign 0 (zero) to new_groups and this 
condition does not make effect. 
new_groups<<-2  # The number of new groups of parameters that will have the same parameterization. For example the 
classes (13) Unweathered Bedrock,(15)Stones, (19)Weathered Bedrock,(20) Fragments could have the same 
parameterization. Those will conform a new group. 
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group1<<-c(13,15,19,20)   # the first component of this vector is the independent class that appears in the vector 
"soil_types" 
n1<<-length(group1)       #this line must accompany the line before 
group2<<-c(3,16,17,18)    # the first component of this vector is the independent class that appears in the vector 
"soil_types" 
n2<<-length(group2)       #this line must accompany the line before 
# ... Continue to name as many groups as specified by new_groups. For example if there are four groups the fourth group 
will be group4 and the base class will be base4 
 
bases<<-c(group1[1],group2[1])     #include here the first elements of the number of groups that you have 
groups<<-c(group1,group2)  #include here the number of groups you have 
length_groups<<-c(n1-1,n2-1)  #include here the number of n's you have minus one in all of them 
 
## Programmed cluster shutdowns 
startingshut<<-c(2012,3,19,22)   # enter the year,month, day, military hour of the cluster shutdown and R will pause 
n_hours_shut 
n_hours_shut<<- 60 # number of hours that the program must be paused 
 
 
## END OF OPTIONAL SETTINGS ^^^^^^^^^^^^^^^^^^^^^^^̂̂ ^^^^^ 
## END OF INPUT SECTION 
################################################################################## 
#************************************************** ************************************************
******* 
vec_routing=rbind(c(57,"Manning"),c(48, "Kinematcoeff"),c(54,"Flowexp"),c(63,"a_W-A"),c(66,"b_W- 
A"),c(164,"Bedrock"))  # These numbers should correspond to the lines to replace in the iterative.in file 
 
if (Routing==1) { 
  lower_soils=c(lower_soils,lower_routing) 
  upper_soils=c(upper_soils,upper_routing) 
  } 
 
if (GWcal==1) { 
  lower_soils=c(lower_soils,1) 
  upper_soils=c(upper_soils,length(listaGW)) 
  } 
 
tiempo<<-as.character(Sys.time()) 
nbehaviorals=complejos*((2*(length(values_soils)+GWcal+(Routing*length(Routing_pars))))+1) 
status_before<-"I"   # Initial status 
path_to_sce_alg<<-paste(ruta1,"SCE_for_cluster/",sep="")#"/media/cluster/SCE/" 
logtxt<<-paste(base_name,"_log.txt",sep='') 
node<<-rep(1:3,10000)   # 3 computational nodes to use... if one is broken 
soilparameters<<-
c("Sat.Hyd.Cond_","Sat.SMC","Res.SMC","PoreIndex","AirEntryPress_","DecayPar_","Anis.Rat_","Anis.Rat_","Tot.Por
os._","Vol.Heat.Cond_","SoilHeat.Cap_") 
vars<<-soilparameters[choose_soils] 
   
name_vars<<-rep(NA,length(values_soils)) 
  for (v in 1:length(soil_types)) { 
    empiece=((v-1)*length(choose_soils))+1 
    name_vars[empiece:(empiece+length(choose_soils)-1)]=paste(vars,rep(soil_types[v],length(choose_soils)),sep='') 
  } 
 
if (Routing==1) { 
    for (vv in 1:length(Routing_pars)){ 
 cual=which(as.numeric(vec_routing[,1])==Routing_pars[vv]) 
 name_vars=c(name_vars,vec_routing[cual,2]) 
    } 
} 
 
if (GWcal==1) name_vars=c(name_vars,"GWinit") 
 
# Complete soils information ## 
table_sdt<<-read.table(paste(ruta,"Input/",base_name,".sdt",sep=''),skip=1) # Initial values for the soil parameters 
refe<<-matrix(NA,length(soil_types),12) 
  for (u in 1:length(soil_types)){ 
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       refe[u,]=as.numeric(table_sdt[as.numeric(soil_types[u]),1:12])  # the soil type and all 11 parameters 
  } 
 
base_input<<-paste(base_name,".sdt",sep='') 
hyd_PATH<<-paste(ruta,"Output/hyd/",sep="") 
iter=1 
salga<<-matrix(NA,1,(GWcal+3+length(values_soils)+(Routing*length(Routing_pars))))   # number of expected iterations 
colnames(salga)=c("iter","FunctValue","Date-Time",name_vars) 
write.table(salga,paste(ruta1,logtxt,sep=''),quote=FALSE,col.names=TRUE,row.names=FALSE) 
save(list=ls(all=TRUE),file=paste(ruta1,"all.Rdata",sep='')) 
#setwd(ruta)  # important because the tRIBS outputs are going ro be written in this path 
 
if (Routing==1) values_soils=c(values_soils, Routing_ref) 
if (GWcal==1) values_soils=c(values_soils, 1)    # fuse the soils with the GW inint condition. starts with the wettest 
condition 
 
## Rosenbrock Banana function 
  RMSES <- function(x){ 
    longjob<<-0 
  # check for programmed shutdowns 
     pa= substring(tiempo, 1:nchar(tiempo), 1:nchar(tiempo))  
     yearshut=as.numeric(paste(pa[1],pa[2],pa[3],pa[4],sep='')) 
     monthshut=as.numeric(paste(pa[6],pa[7],sep='')) 
     dayshut=as.numeric(paste(pa[9],pa[10],sep='')) 
     hourshut=as.numeric(paste(pa[12],pa[13],sep='')) 
    if (yearshut==startingshut[1] & monthshut==startingshut[2] & dayshut==startingshut[3] & hourshut==startingshut[4]) { 
    cat(paste("R went to sleep at ",tiempo, " for cluster shutdown during ",n_hours_shut," hours",sep=''),fill=TRUE) 
    Sys.sleep(n_hours_shut*3600) 
    } 
# 
  cat("now trying: x= ",fill=TRUE) 
  cat(x,fill=TRUE) 
   solosuelos<<-x[1:(length(x)-GWcal-(Routing*length(Routing_pars)))] 
for (w in 1:(length(soil_types))) {   
      fir=((w-1)*length(choose_soils))+1 
      refe[w,((choose_soils[1:length(choose_soils)])+1)]=round(solosuelos[fir:(fir+length(choose_soils)-1)],digits=decim)  
## try to decrease the number of digits 
  } 
 
 if (consider_A_same==1) refe[,9]=refe[,8] 
   
  values_soils<<-x 
   
  if (iter==1) onset<<-as.character(Sys.time()) 
      
  #Opens the .sdt file and writes values  
  iter<<-iter+1 
  cat("Line 186",fill=TRUE) 
  wait(system(paste("ls /media/cluster/ >",ruta1,base_name,"_zj.txt",sep="" )),timeout=5)  
  infor00<-file.info(paste(ruta1,base_name,"_zj.txt",sep="")) 
    if (as.numeric(infor00[1])==0){   
    source(paste(ruta1,"function1_cluster_link.R",sep=''))  # script to check cluster link connection 
    Q0(iter) 
    } 
 
  #start writing the sdt file 
  yup= read.fwf(paste(ruta,"Input/",base_input,sep=''),width=200)  # reads fixed-width data 
  yum=as.matrix(yup) 
   
  for (u in 1:length(soil_types)){ 
     yum[as.numeric(soil_types[u])+1]=paste(refe[u,1]," ",refe[u,2]," ",refe[u,3]," ",refe[u,4]," ",refe[u,5]," ",refe[u,6]," 
",refe[u,7]," ",refe[u,8]," ",refe[u,9]," ", refe[u,10]," ",refe[u,11]," ",refe[u,12],sep="") 
      #optional grouping runs here      
       if (new_groups>0){   
     if (any(bases==refe[u,1])){ 
       cual=which(groups==refe[u,1]) 
       bas=which(bases==refe[u,1]) 
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for (jj in (cual+1):(cual+length_groups[bas])){ 
  yum[groups[jj]+1]=paste(groups[jj]," ",refe[u,2]," ",refe[u,3]," ",refe[u,4]," ",refe[u,5]," ",refe[u,6]," 
",refe[u,7]," ",refe[u,8]," ",refe[u,9]," ",refe[u,10]," ",refe[u,11]," ",refe[u,12],sep="") 
  } 
 } 
    } 
  } 
 
  yum_da_fr=as.data.frame(yum) 
 
  # writes the sdt file 
  
write.table(yum_da_fr,paste(ruta,"Input/",base_name,".sdt",sep=''),quote=FALSE,col.names=FALSE,row.names=FALSE) 
 
  # start writing the .in files 
      yupin= read.fwf(paste(ruta,infile,sep=""),width=85,fill=TRUE)  # reads fixed-width data as a dataframe 
      yui2=scan(paste(ruta,infile,sep=""),what="character")  # reads many characters  
     for (i in 1:dim(yupin)[1]) {     # within yui2 the first dim(yup)[1] values are put  
   yui2[i]=as.character(yupin[i,1]) 
       } 
      yui3=yui2[1:dim(yupin)[1]]   #makes yui3 only equal to the first dim(yup)[1] values 
       
      for (gu in 1:length(Routing_pars)){ 
 yui3[Routing_pars[gu]]=values_soils[length(solosuelos)+gu] 
      } 
 
      # writes the in file   
      Pre <- file(paste(ruta,iterative_in,sep=''), "w") # open an output file connection 
      cat(yui3, file = Pre, sep = "\n")    #writes in that file 
      close(Pre)    # closes the connection   
 
 
  cat("Line 238",fill=TRUE) 
  wait(system(paste("ls /media/cluster/ >",ruta1,base_name,"_zj.txt",sep="" )),timeout=5)  
  infor00<-file.info(paste(ruta1,base_name,"_zj.txt",sep="")) 
    if (as.numeric(infor00[1])==0){   
    source(paste(ruta1,"function1_cluster_link.R",sep=''))  # script to check clulster link connection 
    Q0(iter) 
    } 
 
 
   # extract and copy the GW case 
    if (GWcal==1){ 
    GWcase<<-round(values_soils[length(values_soils)]) 
    file.copy(paste(ruta,GWfolder,listaGW[GWcase],sep=""), 
paste(ruta,"Input/",base_name,".iwt",sep=""),overwrite=TRUE) 
    } 
# 
 
  cat("Line 252",fill=TRUE)   
  wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qsub ",cluster_simulation_folder,parallel_jobscript," > 
",ruta1,base_name,"_fj.txt",sep=""),intern=FALSE, ignore.stderr = FALSE,wait=FALSE),timeout=10) 
  infor0<<-file.info(paste(ruta1,base_name,"_fj.txt",sep="")) 
  if (as.numeric(infor0[1])==0){   
  source(paste(ruta1,"function2_ssh_broken_pipe.R",sep=''))  # script to check clulster link connection 
  Q1(iter) 
  } 
  jobid<<-as.character(read.table(paste(ruta1,base_name,"_fj.txt",sep=""))[1,1]) 
  cat(jobid,fill=TRUE) 
   
auxcount<-0 
for (counterr in 1:10000){ 
 auxcount<-auxcount+1 
 counterr<-counterr 
 cat("Line 266",fill=TRUE)  
 #sj<-wait(system(paste("ssh hamoreno@saguaro2.fulton.asu.edu /usr/local/bin/qstat -a > 
",ruta1,base_name,"_salgaex.txt",sep=""),intern=FALSE, ignore.stderr = FALSE,wait=FALSE),timeout=10) 
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 sj<-wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qstat ",jobid," >", 
ruta1,base_name,"_salgaex.txt",sep=""),intern=FALSE, ignore.stderr = FALSE,wait=FALSE),timeout=10) 
 infor<-file.info(paste(ruta1,base_name,"_salgaex.txt",sep="")) 
          
       # In case of communication fails for qstat -a 
         if (as.numeric(infor[1])==0) { 
  source(paste(ruta1,"function3_qstat_failure.R",sep=''))  # script to check qstat fail 
  Q2(infor) 
  } 
  
 SAL=read.table(paste(ruta1,base_name,"_salgaex.txt",sep=""),skip=2) 
 status=as.character(SAL[1,5]) 
  
   if (status=="C" & status_before=="Q"){   # In case of the error when the job is canceled after Queued..re-
submit another job 
   cat("Line 281... Completed without running.. abnormal (C)...sending a new jobscript",fill=TRUE)   
   wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qsub 
",cluster_simulation_folder,parallel_jobscript," > ",ruta1,base_name,"_fj.txt",sep=""),intern=FALSE, ignore.stderr = 
FALSE,wait=FALSE),timeout=10) 
   infor0<-file.info(paste(ruta1,base_name,"_fj.txt",sep="")) 
       if (as.numeric(infor0[1])==0){   
       source(paste(ruta1,"function2_ssh_broken_pipe.R",sep=''))  # script to check clulster link connection 
       Q1(iter) 
       } 
     auxcount<-1 
     jobid<<-as.character(read.table(paste(ruta1,base_name,"_fj.txt",sep=""))[1,1]) 
     cat(jobid,fill=TRUE) 
   } 
          
       if ((status=="Q") & (auxcount==walltime)){   # Too long runs are canceled and re-submitted 
       cat("Line 294... Job is taking too loong to start.. deleting and starting a new one...",fill=TRUE)   
       wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qdel ",jobid,sep=""),intern=FALSE, 
ignore.stderr = FALSE,wait=FALSE),timeout=10) 
       Sys.sleep(15) 
       wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qsub 
",cluster_simulation_folder,parallel_jobscript," > ",ruta1,base_name,"_fj.txt",sep=""),intern=FALSE, ignore.stderr = 
FALSE,wait=FALSE),timeout=10) 
       Sys.sleep(15) 
       infor0<-file.info(paste(ruta1,base_name,"_fj.txt",sep="")) 
       Sys.sleep(15) 
      if (as.numeric(infor0[1])==0){   
      source(paste(ruta1,"function2_ssh_broken_pipe.R",sep=""))  # script to check clulster link 
connection 
      Q1(iter) 
      } 
       auxcount<-1 
       jobid<<-as.character(read.table(paste(ruta1,base_name,"_fj.txt",sep=""))[1,1]) 
       cat(jobid,fill=TRUE) 
       } 
 
      if ((status=="R") & (auxcount==walltime)){   # Too long runs are canceled and re-submitted 
       cat("Line 311... Job is taking too long.. canceling and assigning the longdurationRMSE",fill=TRUE)   
       wait(system(paste("ssh hamoreno@saguaro.fulton.asu.edu /usr/bin/qdel ",jobid,sep=""),intern=FALSE, 
ignore.stderr = FALSE,wait=FALSE),timeout=10) 
       Sys.sleep(15) 
       longjob<<-1 
       break 
       } 
 
 
    
 if (status=="C") { 
 break 
 } else { 
 cat(paste("waiting for completed status_",auxcount,"mins status: ",status,"....time: 
",as.character(Sys.time()),sep=""),fill=TRUE)  
 status_before=status 
 Sys.sleep(50) 
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 } 
} 
 
if (longjob==0){ 
 
tiempo<<-as.character(Sys.time()) 
  source(paste(path_to_sce_alg,"Q_out_Q_obs_Rain_for_SCE.r",sep='')) 
  Q(d,year,month,day,hour,hyd_PATH,observed_PATH,obs_name,init) 
  cat("---",sep="") 
  cat("---- x=",x,"--Function_value=",sqrt((sum(SEE_PIX1))/(n)),"..iteration=",iter-1,"..", 
  tiempo,"..Started at..",onset,fill=TRUE)   
  salga[1,1]=iter-1 
  salga[1,4:(3+length(values_soils)-GWcal)]=round(values_soils[1:(length(values_soils)-GWcal)],digits=decim) 
  if (GWcal==1)  salga[1,length(values_soils)+3]=round(values_soils[length(values_soils)]) 
  salga[1,2]=round(sqrt((sum(SEE_PIX1))/(n)),digits=7) 
  salga[1,3]=tiempo 
  #salgai=rbind(salgai,salga) 
  #if (iter==2) { 
  save(list=ls(all=TRUE),file=paste(ruta1,"RMSES.Rdata",sep="")) 
  write.table(salga,paste(ruta1,logtxt,sep=''),append=TRUE,quote=FALSE,col.names=FALSE,row.names=FALSE) 
  if (iter==2) { 
  RMSESold<<-sqrt((sum(SEE_PIX1))/(n)) 
  } else { 
  RMSESold<<-c(RMSESold,sqrt((sum(SEE_PIX1))/(n))) 
  } 
   
pad= substring(d, 1:nchar(d), 1:nchar(d))  
if (length(pad)==1) durm=paste("000",d,sep="") 
if (length(pad)==2) durm=paste("00",d,sep="") 
if (length(pad)==3) durm=paste("0",d,sep="") 
if (length(pad)>=4) durm=d 
   
  if (iter < (nbehaviorals+1)){ 
  cat("Copying files",fill=TRUE) 
  file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.mrf",sep=""), 
paste(ruta1,Output_Behav,"/",iter,"_",base_name,durm,"_00.mrf",sep=""),overwrite=TRUE) 
  file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.rft",sep=""), 
paste(ruta1,Output_Behav,"/",iter,"_",base_name,durm,"_00.rft",sep=""),overwrite=TRUE) 
  file.copy(paste(ruta,"Output/hyd/",base_name,"_Outlet.qout",sep=""), 
paste(ruta1,Output_Behav,"/",iter,"_",base_name,"_Outlet.qout",sep=""),overwrite=TRUE) 
 if (iter>2){   
   if (sqrt((sum(SEE_PIX1))/(n))<min(RMSESold[1:(iter-2)])) { 
   cat("Optimum found",fill=TRUE) 
   file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.mrf",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,durm,"_00.mrf",sep=""),overwrite=TRUE) 
   file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.rft",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,durm,"_00.rft",sep=""),overwrite=TRUE) 
   file.copy(paste(ruta,"Output/hyd/",base_name,"_Outlet.qout",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,"_Outlet.qout",sep=""),overwrite=TRUE) 
   } 
 } 
  } else { 
  if (sqrt((sum(SEE_PIX1))/(n))<min(RMSESold[1:(iter-2)])) { 
        cat("Optimum found",fill=TRUE) 
 file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.mrf",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,durm,"_00.mrf",sep=""),overwrite=TRUE) 
 file.copy(paste(ruta,"Output/hyd/",base_name,durm,"_00.rft",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,durm,"_00.rft",sep=""),overwrite=TRUE) 
 file.copy(paste(ruta,"Output/hyd/",base_name,"_Outlet.qout",sep=""), 
paste(ruta1,Output_Behav,"/",1,"_",base_name,"_Outlet.qout",sep=""),overwrite=TRUE) 
   } 
  } 
 
  sqrt((sum(SEE_PIX1))/(n))  # 
  } else { 
  salga[1,1]=iter-1 
  salga[1,4:(3+length(values_soils)-GWcal)]=round(values_soils[1:(length(values_soils)-GWcal)],digits=decim) 
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  if (GWcal==1)  salga[1,length(values_soils)+3]=round(values_soils[length(values_soils)]) 
  salga[1,2]=longdurationRMSE 
  salga[1,3]=tiempo 
  save(list=ls(all=TRUE),file=paste(ruta1,"RMSES.Rdata",sep="")) 
  write.table(salga,paste(ruta1,logtxt,sep=''),append=TRUE,quote=FALSE,col.names=FALSE,row.names=FALSE) 
  RMSESold<<-c(RMSESold,longdurationRMSE) 
  longdurationRMSE 
  } 
} 
 
 
source(paste(path_to_sce_alg,"SCEoptim_tRIBS.R",sep="")) 
ans <- SCEoptim(RMSES, values_soils,lower= lower_soils,upper = upper_soils,control = list(trace = 2,fnscale=1, 
                reltol=tolerance,tolsteps=7,maxtime=Inf,ncomplex=complejos)) 
str(ans) 
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APPENDIX E 

STORM SCALE ANALYSIS 



 
190 

This Appendix constitutes additional material for the interpretation of 

Figures 4.11, 4.12 and 4.13 in Chapter 4 that postulated the typical scale of 

mountain storms as the main responsible of the increased uncertainty at middle 

size basins. Estimations of the typical size of convection systems are dictated by 

the presence of distinguishable storm cores. The Figure E.1 represents the spatial 

coverage of main precipitation cores during Storm 2004 at BUCK, NFORK, 

BTHOM, LTHOM and Storm 2006 at NVRAIN, MVRAIN, SVRAIN, MBOUL, 

COAL, RALS, as percent of total basin area (black bars) and actual scale (km2, 

red bars). This analysis was performed for three different precipitation thresholds 

(PT) of 0.8, 0.5 and 0.3 times the maximum cumulative precipitation (Pmax) at 

each individual watershed. In other words, the size of storm cores is determined 

by different percentiles of the maximum precipitation in the watershed. Evidently, 

PT differs among basins and has been added at the top of each bar for purposes of 

comparison.  The Figure 4.3 can be used as supplemental aid for visualizing the 

distribution of rainfall and maximum values at each basin. The selection of Pi > 

0.3Pmax (Figure E.1e,f) results in large storm coverage but insignificant flooding 

responses across watersheds, as the selected threshold is quite low for 

representing storm cores. On the other hand, Pi > 0.5Pmax (Figure E.1c,d) 

decreases the coverage of the storm, but still does not capture storm cores 

correctly. Finally, Pi > 0.8Pmax (Figure E.1a,b) represent areas of significant 

precipitation (larger than the 80 percentile) that produce flooding across most of 

the basins and correspond well with the storm cores observed in Figure 4.3. If we 
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compare the range of increased uncertainty in Figure 4.13 (1 to 10% of  Ac) with 

the typical coverage of the storms in this group (Figure E.1a) we can conclude 

that convection systems causing of hydrologic uncertainty range approximately 

between 2 and 20 km2 in the CFR (see Figure E.1b). In summary increased SE at 

intermediate scale coincide with the typical size of convection systems whose 

storm cores cover an overlapping geographic fraction of the basin area. 

 

Figure E.1. Spatial coverage of Storm 2004 at BUCK, NFORK, BTHOM, 
LTHOM and Storm 2006 at NVRAIN, MVRAIN, SVRAIN, MBOUL, COAL, 
RALS, as dictated for three precipitation thresholds (PT) in km2 (red bars) and as a 
fraction of the total basin area (blackbars). 
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APPENDIX F 

RUNOFF SCALE ANALYSIS 
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This Appendix constitutes additional material for the interpretation of 

Figure 4.12 in Chapter 4 that postulated that increases in the runoff coefficient in 

areas that are fully covered by the storm cores are the responsible for rises in 

prediction uncertainty as expressed by SE. We analyze the behavior of the spatial 

distribution of cumulative runoff (Storm event accumulations) averaged per sub-

basin area. Selected internal locations match those selected in Chapter 4, from 

Figures 4.10 to 4.13.  The Figure F.1 summarizes the results for one testing 

watershed (LTHOM) whose spatially-varying runoff maps were produced and 

shown in Figure 4.9. The Figure F.1 shows the total storm runoff per sub-basin 

scale with standard deviation bars representing the dispersion from ensemble 

members, while Figures F.2a,b summarize mean and standard deviation from 

Figure F.1. A careful analysis to Figure F.1 reveals that runoff production patterns 

are analogous to those found in Figure 4.11 for LTHOM with increasing values at 

spatial scales ranging between 1 and 10 Km2. Likewise, Figures F.2a,b recall 

similar patterns found in Figure 4.13 for the same watershed. These results show 

that areas directly below storm cores, whose scales coincide with the preliminary 

storm size analysis (between 2 and 20 km2) are the responsible for increased flood 

forecasting uncertainty through an average increase in the runoff production rates. 
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Figure F.1. Mean and standard deviation of cumulative ensemble runoff 
production per sub-basin areas (Ac) in LTHOM for Storm 2004.  
 
 

Figure F.2. (a) Mean and (b) standard deviation of cumulative ensemble runoff 
production per sub-basin scales (Ac) in LTHOM for Storm 2004. 
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