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ABSTRACT 

 

Climate and land use change are projected to threaten biodiversity over the 

coming century.  However, the combined effects of these threats on biodiversity 

and the capacity of current conservation networks to protect species’ habitat are 

not well understood.  The goals of this study were to evaluate the effect of climate 

change and urban development on vegetation distribution in a Mediterranean-type 

ecosystem; to identify the primary source of uncertainty in suitable habitat 

predictions; and to evaluate how well conservation areas protect future habitat in 

the Southwest ecoregion of the California Floristic Province.  I used a consensus-

based modeling approach combining three different species distribution models to 

predict current and future suitable habitat for 19 plant species representing 

different plant functional types (PFT) defined by fire-response (obligate seeders, 

resprouting shrubs), and life forms (herbs, subshurbs).  I also examined the 

response of species grouped by range sizes (large, small).  I used two climate 

models, two emission scenarios, two thresholds, and high-resolution (90m 

resolution) environmental data to create a range of potential scenarios.  I 

evaluated the effectiveness of an existing conservation network to protect suitable 

habitat for rare species in light of climate and land use change.  The results 

indicate that the area of suitable habitat for each species varied depending on the 

climate model, emission scenario, and threshold combination.  The suitable 

habitat for up to four species could disappear from the ecoregion, while suitable 

habitat for up to 15 other species could decrease under climate change conditions.  
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The centroid of the species’ suitable environmental conditions could shift up to 

440 km.  Large net gains in suitable habitat were predicted for a few species.  The 

suitable habitat area for herbs has a small response to climate change, while 

obligate seeders could be the most affected PFT.  The results indicate that the 

other two PFTs gain a considerable amount of suitable habitat area.  Several rare 

species could lose suitable habitat area inside designated conservation areas while 

gaining suitable habitat area outside.  Climate change is predicted to be more 

important than urban development as a driver of habitat loss for vegetation in this 

region in the coming century.  These results indicate that regional analyses of this 

type are useful and necessary to understand the dynamics of drivers of change at 

the regional scale and to inform decision making at this scale. 
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INTRODUCTION 

Changes in land use and climate are the two main drivers expected to greatly 

and negatively impact species’ ranges and distributions in all terrestrial 

ecosystems (Sala et al., 2000).  Globally, wildlands and semi-natural areas have 

decreased from 95% of Earth’s ice-free land in 1700, to 45% in 2000 due to 

anthropogenic transformation (Ellis et al., 2010) causing considerable loss of 

biodiversity as measured by the number and relative abundance of species that 

occur naturally in a biome (Foley et al., 2005).  During the same period land use 

for agriculture and urban settlements increased from 5% to 39% of total ice-free 

land (Ellis et al., 2010), a trend that is not implausible to continue into the future 

(Alcamo et al., 2006).  Climate change during the past century has resulted in 

changes in phenology, species ranges, and community composition, among others 

(Walther, 2010).  Considering the magnitude of land use and climate change 

impacts, it is imperative to understand their combined effect for biodiversity 

conservation at the regional scale, as studies that include only one of these factors 

are likely to inadequately assess the impacts of both on biodiversity change (de 

Chazal and Rounsevell, 2009). 

The main goal of conservation areas is to protect biodiversity from current and 

future threats.  However, the effectiveness of conservation areas in the future may 

be affected as the distribution of suitable habitat for the species currently present 

in them shift under climate change.  A number of studies predict loss of suitable 

habitat from conservation areas due to climate change, ranging from 6 to 48% 
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(Araújo et al., 2004; Hannah et al., 2005; Lemieux and Scott, 2005).  Therefore, 

the effectiveness of conservation areas needs to be assessed not only in light of 

climate change but also land use change to inform long-term conservation plans. 

Mediterranean Type Ecosystems (MTEs) are biodiversity hotspots (Myers et 

al., 2000) with some of the highest plant species richness and endemism on the 

planet and include many species with restricted ranges (Cowling et al., 1996).  

MTEs are also among the most threatened biomes, as the biodiversity in them is 

sensitive to all the main drivers of change expected to affect species ranges and 

distributions in terrestrial ecosystems by the end of the century (Sala et al., 2000).  

The range of some species in MTEs species is expected to decrease (Benito 

Garzón et al., 2008) even in areas where the Mediterranean climate extent is 

expected to increase (Klausmeyer and Shaw, 2009).  Also, the generally small 

size of conservation areas in MTEs makes the climate residence time in them one 

of the shortest of all biomes (Loarie et al., 2009).  Furthermore, urban area and 

agriculture increased by 13% and 1%, respectively, from 1990 to 2000 in MTEs 

(Underwood et al., 2009).  The ecological importance of MTEs makes it critical to 

develop more refined predictions than the ones we currently have to understand 

the effects of land use and climate change, and the role of conservation areas for 

protecting MTE biodiversity in the future. 

Species Distribution Models (SDMs) extrapolate species distribution data in 

space and time, usually based on a statistical model.  Models calibrated for 

current climate conditions can be used to create potential species distributions 
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(suitable environmental conditions maps) at different times to predict the effect of 

climate change on species and ecosystems (Franklin, 2010a).  SDMs have been 

considered one of the only tools for assessing the potential impacts of climate 

change on species distributions (Huntley, et al., 2004), and the most plausible 

means by which we can translate climate change scenarios into ecological 

outcomes (Dobrowski et al., 2011a).  Furthermore, SDMs have been widely used 

to analyze the impact of climate change on biodiversity (e.g., Huntley, et al., 

2004, Peterson et al., 2002; Thomas et al., 2004; Thuiller et al., 2011) and are 

useful as information for biodiversity conservation and management plans (see 

Kremen, 2008). 

The high floristic diversity and conservation importance of MTE have made 

them the subject of multiple studies analyzing the potential impacts of 

environmental change on species distribution.  However, the combined effects of 

land use and climate change on biodiversity protection have seldom been 

addressed at the regional level in MTEs (e.g. Bomhard et al., 2005), particularly 

using high resolution environmental and land use data.  The most comprehensive 

study using SDMs to analyze the impacts of climate change on the California 

Floristic Province concluded that up to 66% of endemic plant species would 

experience a habitat reduction of up to 80% by the end of the 21
st
 century (Loarie 

et al., 2008).  However this study did not analyze the effect of land use change, 

nor the role of conservation areas in protecting these species under climate 

change, and it used low-resolution environmental data, which can considerably 
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overestimate the suitable habitat area predicted by SDMs (Seo et al., 2009).  

Additionally, low-resolution climate data do not take into account topoclimate 

(Thornthwaite, 1954), and ground conditions, especially soil-moisture availability 

(Major, 1951), which control local differences in ecological regions and 

landscapes (Bailey, 1996).  Topoclimate, which is captured better with high 

resolution data like the one used in this study, along with edaphic drivers, defines 

the physical template that organisms experience, and thus constrains habitat 

suitable for the growth, survival, and reproduction of organisms (Dobrowski, 

2010) .  In the California Floristic Province the Southwest ecoregion (Fig. 1) is a 

region of interest because (i) urban development is extensive and projected to 

expand (Syphard et al., 2011a), (ii) high resolution environmental data applied to 

a range or climate change scenarios exist for this region and (iii) there is a well 

developed conservation planning network (Natural Community Conservation 

Planning areas, NCCP) whose effectiveness can be evaluated in light of urban 

development and climate change.  The NCCP program goal is to promote 

conservation of broad-based natural communities and species diversity by 

involving different stakeholders and key interests for addressing cumulative 

impact concerns, while continuing to allow appropriate development and growth 

in the region (California Fish and Game, 2003).  Studying the status of and threats 

(urban growth and climate change) to species covered by the NCCP network 

allows me to contribute to fill the gaps I have identified in the literature. 

While I only considered 19 species in this study, these were selected to span a 
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range of life forms, fire responses, and range sizes, and are representative Plant 

Functional Types (PFT) found in Mediterranean (Cowling and Campbell, 1980; 

Hobbs et al., 1997) and fire-prone ecosystems (Keeley, 1986).  This allowed me 

to search for patterns of predicted responses that varied with species attributes that 

would allow these results to be generalized to other species found across MTEs 

globally that share the same general characteristics with the species in this study.  

The specific questions I addressed in this study are: 

1. What is the projected effect of climate change on the distribution of 

the plant species studied, measured both by suitable habitat area 

change, and range centroid shift?  How does the effect vary by 

a. Species 

b. Plant Functional Type 

c. Range size (i.e. small range (rare) vs. large range (common) 

species? 

Based on previous studies that projected decreases I expected plant species 

to lose suitable habitat under the different climate change scenarios as 

temperature and moisture conditions change (Thuiller et al., 2005; 

Kueppers et al., 2005), and species range centroids to shift as species track 

conditions similar to their current ones  (Loarie et al., 2008).  For PFTs I 

expected resprouters (those species that resprout in response to fire) to be 

most affected by a drier future climate (Esther et al., 2010), as 

establishment of resprouter seedlings depends on wet summer conditions 
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the year after a fire (Enright and Lamont, 1992; Enright et al., 1998).  

Last, I expected rare species to lose more suitable habitat under climate 

change scenarios than common species, because rare species tend to occur 

in localized climatic conditions that have been predicted to shrink more 

than areas with dominant climate types (Ohlemüller et al., 2008). 

2. What is the extent of suitable habitat for the study species supported 

by the current network of conservation areas, individually and 

together, and how is that projected to change under climate change 

scenarios and urban growth? 

I expected that current conservation areas might be insufficient to protect a 

significant fraction of species ranges as the climate in many of these areas 

could shift in such a way that there is no habitat overlap between the 

coolest parts of the conservation area in the future and the warmest 

fraction today (Ackerly et al., 2010), and urban growth might take place in 

areas of future suitable habitat.  However, I also expected that suitable 

habitat might shift from one conservation area to another, therefore useful 

information could be gained by analyzing the predicted species habitat 

suitability in individual conservation areas.  

3. What are the major sources of uncertainty for these projections? How 

much does the use of different  

a. Thresholds applied to predicted probabilities of species 

occurrence to define suitable habitat 
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b. Climate models 

c. Emission scenarios 

influence the predicted suitable habitat of the species? 

I hypothesized that the use of different threshold criteria (Freeman and 

Moisen, 2008) and climate models (Buisson et al., 2010) would 

contribute most to the variation observed in the results.
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METHODS 

Study Area, Species, and Environmental Data 

I analyzed the effects of climate change on plant species distribution for a 

slightly modified (Syphard et al., 2011b) Southwest ecoregion (Davis et al., 1995) 

of the California Floristic Province that includes the entire Transverse Ranges, 

and the southern ranger districts of the Los Padres National Forest extending into 

northern Santa Barbara and San Luis Obispo counties (Fig. 1).  The combined 

effects of urban growth and climate change were analyzed in a subregion 

(southern portion) of the Southwest ecoregion.  This subregion included parts of 

western San Diego, western Riverside, and Orange Counties (Fig. 1).  The total 

area of this subregion is approximately 1.6 million ha.  It is in this subregion that 

the NCCP program areas are located and therefore where predictions of urban 

growth were developed.  The total area under the NCCP program in this 

subregion is approximately 1.1 million ha. 

I used spatially explicit data on occurrences for 19 plant species (Table 1) that 

was compiled from the Calflora database (http://www.calflora.org), and the 

California Department of Fish and Game’s Natural Diversity Database 

(http://www.dfg.ca.gov/ whdab/html/cnddb.html).  These species were chosen 

because they represent groups of plants found in most Mediterranean and fire-

prone ecosystems.  Plant functional types were defined by life form (herbs, and 

subshrubs) (Cowling and Campbell, 1980; Hobbs et al., 1997) and fire response 

(obligate seeders, and resprouters) (Keeley, 1981; Keeley et al., 2006; Keeley and 
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Davis, 2007).  Additionally these species span small to large range sizes (Syphard 

and Franklin, 2010).  Small-range (rare) species were designated using the 

Calflora threatened index, and a maximum estimated range size of 10,000 km
2
 

(based on the total area of sub-ecoregions within which occurrences have been 

recorded). 

I used the same combination of six climate, two terrain, and three soil 

variables as predictors to project both present and future suitable habitats.  These 

variables were selected based on their hypothesized relationship to the distribution 

of plant species in Southern California (e.g. Davis & Goetz 1990; Franklin 1998, 

2002; Franklin et al., 2000).  Bioclimatic predictors describing the current climate 

were derived from monthly climate averages for 1970-1999.  The six bioclimatic 

variables were selected from 10 initial candidate variables using a principal 

component analysis, which determined that the six selected variables were largely 

uncorrelated.  The variables selected were: maximum temperature of warmest 

period, growing days above 5 C, mean annual precipitation, temperature 

seasonality, precipitation in the warmest quarter, and an aridity index.  The aridity 

index was defined as the quotient between annual precipitation and potential 

evapotranspiration. 

Climate data (precipitation, and temperature) were downscaled to 90 m 

following a procedure described by Flint and Flint (2012).  The method of 

constructed analogs was used to statistically downscale climate data from global 

climate models to 12 km.  This approach is a deterministic linear simplification of 
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the relationship between the current weather or climate pattern (dependent 

variable) and selected historical patterns (independent variables) that describe the 

evolution of weather or climate for a future period (Hidalgo et al., 2008).  Spatial 

downscaling was used to downscale the climate data from 12 km to 4 km for bias 

correction using a model that interpolates very sparsely located climate data over 

regional domains and combines a spatial Gradient and Inverse Distance Squared 

weighting to monthly point data with multiple regressions (Nalder and Wein, 

1998) modified with a nugget effect specified as the length of the coarse 

resolution grid (Flint and Flint, 2012).  Bias correction was performed using a 

historically measured dataset, PRISM (Daly et al., 2008), with the same spatial 

resolution as the spatially downscaled parameter set.  Further spatial downscaling 

was used to develop the final 90m dataset for model application. 

Bioclimatic predictors describing the end of century climate were derived 

from monthly climate averages using downscaled simulated future climate data 

for the period 2070-2099 from the Geophysical Fluid Dynamics Laboratory 

(GFDL) model, and the Parallel Climate Model (PCM).  These two particular 

climate models were used because they realistically simulate the distribution of 

monthly temperatures and the strong seasonal cycle of precipitation that exists in 

California’s recent historical climate (Cayan et al., 2008).  Additionally, I used 

two contrasting emissions scenarios A2 (medium-high) and B1 (low) developed 

by the Intergovernmental Panel on Climate Change based on demographic and 

socio-economic development, and technological change (Nakićenović et al., 
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2000).  The A2 scenario describes a very heterogeneous world based on self-

reliance and local identities, continuously increasing global population, and 

regionally oriented and per capita oriented economic growth, resulting in an 

increase of over 20 Gt CO2/yr from 1990 levels to reach 30 Gt CO2/yr by 2100.  

The B1 scenario describes a convergent world with emphasis on global solutions 

to economic, social, and environmental issues, with a population that peaks in 

mid-century and declines thereafter, rapid economic changes toward a service and 

information economy with reductions in material intensity, and the introduction of 

clean and resource-efficient technologies resulting in an increase in CO2 

emissions that peak around mid-century and decline thereafter to levels below 

1990 by 2100.  The GFDL model has a relatively high sensitivity of global and 

regional temperature to greenhouse forcing while the PCM has relative low 

sensitivity compared to other global climate models (Cayan et al., 2008).  Both 

climate models project higher temperatures in Southern California (the region of 

study for this project) but their different sensitivity to greenhouse forcing results 

in the GFDL model projecting higher temperatures than the PCM.  Precipitation 

projections vary substantially between the two models with the GFDL predicting 

22% and 26% decrease (depending on which emission scenario is used) in annual 

precipitation by the end of the century.  On the other hand PCM predicts a 7% and 

8% annual precipitation increase (Cayan et al., 2008).  These scenarios give a 

range of climate scenarios to compare, and are well established in the literature 

(Lenihan et al., 2008; Shaw et al., 2009; Sork et al., 2010). 
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I used slope angle, and potential summer solstice solar insolation (Rich et al., 

1995), both derived from the U.S. Geological Survey 30m resolution digital 

elevation model, as the terrain variables.  The soil variables I used were soil 

depth, soil available water capacity, and soil pH and were created using the 

California State Soil Geographic Database (STATSGO).  All climate, terrain, and 

soil variables were resampled to 100m. 

 

Current (2000) and Future (2050) Urban Extent 

I used urban development as representative of land use change, as it is the 

most significant source of land use change in southern California.  Current urban 

extent was created using a national data set for the continental U.S in which 

housing density was mapped every decade from 1940 to 2000 (Hammer et al., 

2004).  Syphard et al. (2011b) converted these data into a binary urban extent 

(i.e., urban or undeveloped) for the Southwest ecoregion selecting a threshold 

where any pixel containing a density equal to or higher than 128 units/km
2
 was 

considered urban.  For future urban extent (2050), the current urban extent was 

used as the baseline layer, and urban development was simulated using SLEUTH, 

a cellular automaton model (Clarke, 2008).  SLEUTH requires six input layers 

(Slope, Land use, Exclusion (areas restricted from development), Urban extent, 

Transportation, and Hillshade) which it uses in gridded map form.  A successive 

application of rules that govern state changes over time, to the set of states 

associated with cells covering an urban area yields states beyond the initial 
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conditions.  Five parameters control SLEUTH’s behavior entirely.  These 

parameters control the random likelihood of any pixel turning urban (dispersion), 

the likelihood of cells starting their own independent growth trajectory (breed), 

the regular outward expansion of existing urban areas and infill (spread), the 

degree of resistance of urbanization to growing up steep slopes (slope) and the 

attraction of new development toward roads (road gravity).  Furthermore, these 

parameters are interrelated.  For this project federal and conservation lands were 

excluded from development, but NCCP lands were allowed to develop. 

The urban growth and climate change simulations are asynchronous.  

However using urban development for 2050 is reasonable for analyzing the 

combined effects of climate change and urban growth by the end of the century 

because the high probability development rate slowed over time and plateaus by 

2050 (for details see Syphard et al., 2011b).  Additionally, even if the urban 

growth effect is doubled between 2050 and 2080, the qualitative effect of urban 

growth vs climate change does not change (see results). 

 

Species Distribution Models 

I created suitability habitat models with three SDM methods for each species 

using present environmental conditions to calculate current habitat suitability.  I 

then used future predicted climate data to create future habitat suitability maps.  I 

used generalized additive models (GAMs), decision trees (Random Forests, RFs), 

and maximum entropy (MaxEnt) because they each fit the data differently 
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(Franklin, 2010a) and are among the best performing methods (Elith et al., 2006) 

as measured by the Area Under the Receiver Operator Curve (AUC), a threshold 

independent statistic.  Additionally, by selecting these three model approaches I 

was able to avoid averaging their predictions with those of models with low 

accuracy (low AUC) when I created the ensemble models (see below). 

GAMs are a non-parametric extension of generalized linear models in which 

the global regression coefficients are replaced by a scatter plot smoothing 

function, allowing the data to determine the shape of the species response curves 

rather than being limited by the shapes available in a parametric class (Yee and 

Mitchell, 1991).  Regression tree analysis is a technique that constructs a set of 

decision rules on the predictor variables rather than trying to determine if there is 

a pre-specified relationship between the response and the predictors (Prasad et al., 

2006).  In RF, an ensemble decision tree method, a “forest” of many trees is 

constructed with a randomized subset of predictors via bootstrapping samples 

(resampling without replacement) (Prasad et al., 2006), and then averaged to 

reduce the variance component of the output.  MaxEnt is a presence only data 

machine learning technique (Philips et al. (2004; Philips et al., 2006) that 

minimizes the relative entropy between the probability density from the presence 

data and the landscape (Elith et al., 2011).  

To fit the SDMs I used 10,000 random points for background (MaxEnt) or as 

pseudoabsences (GAM, RF) to maximize MaxEnt performance, and to not reduce 

the species prevalences in GAMs and RFs more than necessary.  I down-weighted 
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the absence data for GAM and RF so that the sum of the weighted absences was 

equal to the sum of the number of presences.  A 1:1 ratio of presence to absence 

yields an optimal balance between omission and commission errors (McPherson 

et al., 2004).  Additionally, I retained all predictors rather than using a variable 

selection technique, so all the models would have the same variables and to retain 

all temperature-related variables.  I estimated GAMs using a logit link for the 

binary response, and smoothing splines using up to four target degrees of 

freedom.  I estimated RFs from 500 trees using three randomly selected variables 

for each tree, and evaluated using averaged “out-of-bag” predictions from the RF 

models.  I created MaxEnt models using one sample without replacement 

replicate 75/25% (training/testing) instead of ten replications with no sample 

without replacement allowed because I did not find any substantial difference 

between these two methods during comparison tests.  I evaluated the predictive 

performance of individual SDMs based on 500 samples with replacement 

estimates of the AUC (Marmion et al., 2009).  I fit the models using R 

(http://CRAN.R-project.org/) for GAM and RF and MaxEnt 3.3.3a software. 

I developed consensus models for each species using the AUC-weighted 

weighted average (WA) of all models (1), which has been shown to be superior to 

Median(all), Median(PCA), and Median(AUC) (Marmion et al., 2009): 

 (1) WAi

(AUCmji mj i)
j

AUCmjij



16 

 

where mji are the probability occurrence values of the ith plant species in a given 

grid cell for a j single species model.  In consensus forecasting a measure of the 

central tendency is calculated for the ensemble of forecasts; in averaging several 

models, the ‘signal’ of interest emerges from the ‘noise’ associated with 

individual model errors and uncertainties (Araujo and New, 2007). 

From the continuous probability maps produced by the SDMs, I created 

binary maps using two thresholds (cut-off of occurrence probability value) to 

discriminate suitable versus unsuitable habitat.  This allowed me to calculate 

habitat gain, loss, and stable under climate change and land use scenarios, and 

made these results comparable to other studies (e.g., Kueppers et al., 2005; Loarie 

et al., 2008).  I used two well-established threshold criteria based on model 

performance, Maximum Sensitivity + Specificity as a low threshold and 

Maximum Kappa (MaxKappa) as a high threshold (Freeman and Moisen, 2008).  

Maximum Sensitivity + Specificity minimizes probability of total false positives 

and negatives, while MaxKappa maximizes the proportion of correctly classified 

locations after accounting for the probability of chance agreement. 

After creating the binary suitability maps, I overlaid these maps with current 

and future (2050) urban extents to analyze the independent and combined effects 

of climate and land use change.  I assumed there is no interaction between climate 

and land use change.  Additionally, I calculated the centroid of the current and 

future suitable habitat for each species and calculated the distance between the 
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two as an indicator of the displacement of the core suitable habitat.  All these 

processes were completed using ArcGIS 9.3.1 (ESRI, Redlands, CA, USA). 

 

Natural Community Conservation Planning Areas 

I analyzed change in suitable habitat for all small range (rare) species (Table 

1) in the seven NCCP areas located within San Diego, Western Riverside, and 

Orange Counties because the core habitats for these rare species are located 

within the southern portion of the Southwest ecoregion (Fig. 1).  The rare species 

in this study are all targeted for conservation within the NCCP.  I only analyzed 

the part of the San Diego County Multiple Habitat Conservation Open Space Plan 

that lies within the California Floristic Province and Southwest ecoregion 

boundaries (Fig. 1).  I compared projections for two of the plans, the San Diego 

County Multiple Species Conservation Plan and San Diego County Multiple 

Habitat Conservation Open Space Plan, versus all the other NCCP areas 

aggregated to analyze the ability of the individual and combined NCCP areas to 

provide suitable habitat for these rare species in the face of climate change and 

urban growth. 

 

Analysis 

I performed statistical tests to test if projected habitat area changes resulting 

from different climate models, emission scenarios, and thresholds, or by grouping 

the plants into PFT or range sizes (Table 1) were significantly different (  = 
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0.05).  The suitable habitat results were non-normal, and the sample sizes and 

variances were different between groups.  These conditions violate the 

assumptions for commonly used statistical tests (e.g. Kruskal-Wallis, Dunnett, or 

Tukey-Kramer); therefore I used a non-parametric procedure developed by 

Herberich, et al (2010) for comparing multiple means in unbalanced designs.  

This test makes no assumptions regarding the distribution, sample sizes, or 

variance homogeneity.  This procedure was implemented using the multicomp 

package in R. 
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RESULTS 

Species Distribution Models 

Species distribution models resulting from AUC-weighted averaging had high 

accuracy when evaluated with current distribution data (bootstrapped AUC > 0.9) 

in most cases except for four large-range species (Table 1).  I found that in 

general, precipitation and maximum temperature of the warmest period were the 

variables that contributed the most to fitting the models.  Soil variables and 

potential summer solstice solar insolation were in general the least important 

predictors, but were important for some species (Appendix A). 

 

Effects of climate on habitat distribution 

I projected between zero and nine of the species to lose suitable habitat under 

the PCM, and between one and 15 of the species to lose habitat under the GFDL 

model (Table 2).  Additionally, under climate change, I projected up to one 

quarter of the modeled species to lose their entire suitable habitat within the 

Southwest ecoregion by the end of the 21
st
 century (Table 2).  Of the species that 

were projected to maintain suitable habitat somewhere within the Southwest 

ecoregion under climate change, I projected up to two to lose their entire current 

suitable habitat (i.e., there is no overlap between predicted current and future 

distribution of habitat), with six additional species losing between 90 – 99% of 

their current habitat (Table 3).  Here and in the following results, the variation in 

area estimates arises from the use of different climate models, emissions 
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scenarios, and thresholds (see Uncertainty), and the range of species losing or 

gaining habitat is bracketed between the best (combination of PCM, low emission 

scenario and low threshold) and the worst-case scenario (combination of GFDL, 

medium-high emission scenario, and high threshold). 

 I predicted that obligate seeders could be the PFT most affected by climate 

change as all PFTs except for obligate seeders gain suitable habitat (on average) 

using the high threshold (Fig. 2).  The differences in average area change between 

obligate seeders and the other PFTs are all significant using the high threshold 

(herbs p = 0.04, resprouting shrubs p < 0.01, and subshrubs p < 0.01).  On the 

other hand, when I used the low threshold, the average suitable area of all four 

PFTs increased, with herbs gaining the smallest area (143,000 ha).  The increase 

in area for herbs (p = 0.02) and obligate seeders (p = 0.03) using the low threshold 

was significantly smaller than the increase in area for subshrubs, but not 

significantly different from that of resprouters (Fig. 2).  I predicted herbaceous 

species to be resilient to climate change as they showed the smallest predicted 

changes, with low variability, in suitable habitat under both thresholds (Fig. 2).  

These results are the average from pooling the climate models and scenarios. 

Just as I found for suitable habitat area under different combinations of 

climate change models and emission scenarios, the average predicted shift 

distance for all species suitable habitat centroids was greater using the low 

threshold than the high threshold (Fig. 3).  However the average per-species 

suitable habitat shift with the low threshold was greater for only 11 of the 19 
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species, with one species showing a negligible difference between both 

thresholds.  The largest average single suitable habitat centroid shift (average of 

the two climate scenarios and two emission scenarios under each threshold for 

each species) was 185 km, but my projections suggested that suitable habitat 

centroids could shift up to 440 km. 

Small range species seem to have higher site fidelity than large range species 

(Fig. 4).  This is evidenced by the smaller change and variability, in general, in 

area as a response to climate change.  I predicted the suitable habitat for small 

range species to increase less (low threshold) or show little change (high 

threshold) compared to large range species (Fig. 4).  The difference between small 

and large range species was significant (p = 0.006) using the low threshold for 

area prediction, but this difference is not significant using the high threshold. 

 

Climate and Land Use Change in NCCP areas 

Current suitable habitat inside the conservation areas for the study species 

ranges from ~2000 ha to 77,000 ha (Table 4).  Future suitable habitat in the same 

area ranges from ~ 3 ha to 48,000 ha.  I predicted climatically suitable habitat 

inside the conservation areas to decrease for seven species (Table 4).  However, I 

predicted three of these species to gain habitat overall, one to lose a proportional 

amount of overall and protected habitat, and the three others to contract and lose 

most of their overall habitat.  I predicted the other two species to gain suitable 

habitat overall and inside the protected areas. 
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Current urban extent in this subregion was calculated to be 266,000 ha and it 

was projected to increase by 48% to roughly 395,000 ha in 2050 (Syphard et al., 

2011b).  The projected rate of high-probability development occurs rapidly at the 

beginning but the rate slows down and levels off over time (Syphard et al., 

2011b).  These results suggest that the urban area for 2080 would be similar to 

2050.  The relative effects of climate and urban development differed among 

species.  I projected all nine small range species to lose suitable habitat in 

response to urban development; however, four species were projected to lose a 

relatively small amount (Table 5).  Additionally, I projected climate change to 

have a negative impact on seven of these species, and a positive impact on two 

(Table 5).  Of the seven species that were negatively impacted by urban growth 

and climate change, climate change was the dominant driver for five.  For the two 

species that are negatively impacted by urban growth but positively impacted by 

climate change, climate change is also the dominant driver (Table 5).  The 

combined effect of climate change and urban development was different than the 

simple addition of both effects.  For five of the species the combined effect is 

smaller than the sum of both effects, while for four of the species it is larger than 

the sum of both effects (Table 5). 

I projected an increase in the suitable habitat of two species in San Diego 

County Multiple Species Conservation Plan area (Fig. 5a).  I projected a 

considerable increase for two species and a slight increase for an additional one in 

the San Diego County Multiple Habitat Conservation Open Space Plan area (Fig. 
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5b).  The other NCCP areas collectively, were predicted to become a refuge for 

two species (Fig. 5c).  However, some of these species overlap, and the whole 

NCCP region is a refuge for only four species.  All four of these species gain a 

substantial amount of total suitable habitat; however, two of them lose on average 

30% and 78% of their protected habitat (Table 4).  I obtained these results using 

the high threshold but I observed the same general pattern when I did the analysis 

using the low threshold (Appendix B). 

 

Uncertainty 

In general, I projected a slight (high threshold) to moderate (low threshold) 

increase in species’ suitable habitat (Fig. 6).  However, this gain was mainly 

driven by a few species that gained a large amount of suitable habitat.  The 

difference between the average change in suitable habitat projected by the high 

and the low thresholds was statistically significant for all species (p < 0.001), with 

the median gain in projected habitat area near 30,000 ha for the high threshold, 

and 400,000 ha for the low threshold (Fig. 6).  When I separated the results from 

the climate models by threshold (i.e., GFDL vs. PCM using high or low 

threshold) the difference between the projected changes in suitable area under the 

two models was not significant (Fig. 7a).  But when I separated the emissions 

scenarios by threshold (i.e. A2 vs. B1 using high or low threshold) the difference 

between the suitable area change in each emission scenario was significant (p = 

0.05 for high threshold and p = 0.05 for low threshold), with the medium-high 
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emissions scenario (A2) projecting more modest suitable habitat gain (~ 2,800 ha, 

A2 high threshold) than the low emissions scenario (B1) (~ 60,000 ha, B1 high 

threshold) (Fig. 7b). 
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DISCUSSION 

Effects of climate change on species habitat suitability and distribution 

Similar to Loarie et al. (2008), I projected most of the study species to lose a 

significant percentage of suitable habitat; however, the magnitude of the loss 

differed between the two studies.  The suitable habitat areas predicted by Loarie et 

al. (2008) for the same 19 species considered in this study ranged from 3 to 468 

times larger than ours, depending on the threshold I used.  This difference cannot 

be attributed to differences in prevalence (species frequency in the training data) 

between the two studies.  Neither study had a consistently higher or lower 

prevalence, nor was there a relationship between suitable area and prevalence.  

The environmental data were four orders of magnitude finer-grained than those 

used by Loarie et al. (2008) (100 x 100 m versus ~12.5 x 12.5 km).  Using higher 

resolution data than the one I used here (e.g. 25 m) might still result in different 

amounts of suitable habitat gained or lost as fine scale models that capture the 

topoclimate effects show markedly different range loss and extinction estimates 

than coarse scale models for some species (see Randin et al., 2009; Triverdi et al., 

2009).  However, I would argue that the different results are in part due to the 

finer resolution climatic and environmental data I used (as proposed by Seo et al., 

2009) as the modeling conditions used by Loarie et al. (2008) were similar to the 

ones used in this study. 

High-resolution climate data allowed me to obtain more accurate estimates of 

present suitable habitat (Seo et al., 2009) at a scale that is appropriate for analysis 
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of the NCCP areas.  However, while my results for future suitable habitat are 

refined from those of previous studies I cannot claim higher accuracy in my 

projections.  Predictive performance of future projections from SDMs is likely to 

be lower and more variable than what the accuracy estimates for performance 

based on current distributions suggest (Dobrowski et al., 2011).  Nevertheless, 

this modeling effort using high-resolution environmental data takes into account 

the effects of topography on local climate (for both present and future), which is 

not addressed when averaging environmental variables over large areas.  Because 

topoclimate and soil conditions control the local conditions organisms experience 

(Bailey 1996; Dobrowski, 2010), the resulting predictions are more precise and 

spatially-explicit than coarse-grained predictions, although still affected by the 

uncertainties evaluated in this study. 

I found the average magnitude of projected centroid shift to be in agreement 

with that of coarser-resolution studies (e.g., Iverson and Prasad, 1998; Loarie et 

al., 2008) suggesting that data resolution does not highly influence centroid shift 

estimates.  At the same time these results suggest that predicted climate change 

patterns could alter the suitable habitat area for these 19 species by 2080.  The 

need to disperse long distances might be problematic for several of the genera 

considered, e.g. Arctostaphylos, Ceanothus, and Xylococcus, that have propagules 

that are unspecialized for widespread dispersal and whose dispersal distance is not 

much greater than the species’ own canopy diameter (Keeley and Davis, 2007). 
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Effects of climate change on different PFTs and range sizes 

I found that the PFT most affected by predicted climate change impacts was 

obligate seeders rather than resprouters, which is in contrast to my initial 

hypothesis.  While this could be a biological signal, it could also be an artifact of 

the range classification for the species in each PFT.  There are two small range 

and two large range obligate seeder species, while there are five large range and 

two small range resprouting species.  It could be that the effect of the small range 

species is not counterbalanced by the large range species for obligate seeders.  

This might account for obligate seeders being more affected than resprouters 

because as hypothesized earlier small range species tend to occur in localized 

climatic conditions that have been predicted to shrink more than areas with 

dominant climate types.  Nonetheless, it cannot be ignored that if the reduction in 

suitable habitat for obligate seeders is a biological signal, reduction in suitable 

habitat compounded with slow recruitment due to fire dependency, impacts of 

altered fire regimes (Regan et al., 2010), and short dispersal distances, make 

conservation planning for obligate seeders a priority. 

While small range species do not lose suitable habitat on average, it seems 

like the climatic conditions for them do not increase either.  On the other hand the 

dominant climate types associated with large range species seem to become more 

common possibly facilitating the expansion of the common species at the expense 

of the rare species. 
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Climate and Land Use Change in NCCP areas 

In its current configuration, the NCCP network is ineffective to protect 

climatically suitable habitat for the species that I examined.  If I only take into 

account the six rare species for which suitable habitat was not predicted to 

disappear, three of them lose protected habitat while their habitat increases overall 

but outside the protected areas.  To effectively protect species’ suitable habitat in 

the future (at least as much suitable habitat as is currently protected) currently 

ineffective conservation areas could be replaced by new ones that achieve more 

for conservation (Fuller et al., 2010) and/or additional conservation areas need to 

be created in areas that are robust to uncertainty (Carvalho et al., 2011).  

Consensus predictions like the ones I present here are well suited to inform these 

decisions as they identify areas that are selected consistently in different scenarios 

and offer the least investment risk as proposed by Carvalho et al. (2011).  An 

additional way to protect species’ suitable habitat area at a future time would be to 

implement integrated land management that allows for the protection of species 

outside of protected areas (Araújo et al., 2011).  However, the conservation of a 

particular target species needs to be done without endangering or weakening the 

communities that already exist in either new or already established conservation 

areas. 

In this study I considered the two major threats to vegetation in MTEs and to 

the Southwest ecoregion in particular -- climate change and land use change (as 

urban development).  My results are in contrast to those of Sala et al. (2000).  For 
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my study species the habitat loss due to predicted climate change impact was far 

larger than the loss due to predicted patterns of land use change.  Even though the 

land use change modeling is asynchronous with the climate change modeling, I 

propose that the difference observed is likely a difference in the effects of these 

two drivers in the region instead of an artifact of the modeling process.  The rate 

of development slows down and levels off by 2030 (see Syphard et al., 2011b) 

and even if the effects of urban growth are doubled (which is highly unlikely), 

land use change becomes the driving factor of change for only one additional 

species.  These results highlight the need to conduct regional analyses to better 

understand the relative importance of the drivers of biodiversity change and 

consequently provide better information for the creation or revision of 

conservation management plans. 

 

Uncertainty 

SDMs are correlative models built on current distributions that do not account 

for physiological tolerances, dispersal limitations or demographic processes 

affecting species’ migration (reviewed by Franklin 2010b).  Additionally SDMs 

implicitly assume equilibrium between the current distribution and the 

environment, that the variables included in the models reflect the niche 

requirement of a species, and niche conservationism (Wiens et al., 2009).  Despite 

these limitations, the relationship between climate and plant distributions is well 

established (Holdridge, 1947).  Therefore, the capacity of SDMs to use current 
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information in conjunction with the projections of climate models can inform 

decision-making by conservationists and resource managers (Wiens et al., 2009).  

I addressed the uncertainty that is introduced by using different modeling 

techniques (Pearson et al., 2006), thresholds (cut-off of occurrence probability 

value) (Thuiller, 2004), climate change models (Beaumont et al., 2008; Buisson, 

2010), and emission scenarios (Thuiller, 2004) with consensus forecasting, which 

reflects the central tendency of selected forecasts and increases the agreement 

between projected and observed range shifts (Araújo et al., 2005; Araújo and 

New, 2007; Marmion et al., 2009). 

These results were consistent with previous studies in this and other MTEs 

(Klausmeyer and Shaw, 2009; Fitzpatrick et al., 2008; Midgley et al., 2002; 

Benito Garzon et al., 2008) and the California Floristic Province (Loarie et al., 

2008) that found that the projected variation in suitable area estimates differed 

according to emissions scenarios and climate models.  I also evaluated a best (low 

threshold) and a worst (high threshold) case scenario.  However, it should be 

noted that the criterion I used for low threshold (Maximum Sensitivity + 

Specificity) can substantially overestimate the range of low prevalence species 

while the high threshold criterion (MaxKappa) has been found to portray unbiased 

estimates of species prevalence (Freeman and Moisen, 2008).  The difference 

between the high and low emission scenario was the greatest source of 

uncertainty, meaning that, depending on the trend of greenhouse gas increase by 

the end of the century we could see two very different outcomes for the 
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distribution of climatically suitable habitat for plant species in the ecoregion.  

However, current atmospheric measurements (Raupach et al., 2007; Canadell et 

al., 2007) indicate that we are on track to surpass even the medium-high emission 

scenario (A2) that was used in this study. If this is the case the projections from 

the medium-high emission scenario are more likely than those from the low 

emission scenario (B1), and would in turn become a best-case scenario since they 

could be surpassed. The combination of the more plausible high threshold 

criterion with a more likely medium-high emission scenario by the end of the 

century suggests that the most severe results (high threshold/medium-high 

emission scenario) portray the more likely picture of future conditions. 

In conclusion, my analysis, based on high-resolution environmental data and a 

consensus forecasting, provides a refinement to a study of global change risk 

factors.  In contrast to the results from the global study, these results indicate that 

the relative importance of climate change as a driver of biodiversity change in this 

region is larger (not smaller) than that of land use change.  Regional assessments 

of the dynamics of the drivers of biodiversity change would provide further 

understanding of those dynamics, and are necessary to provide useful and 

meaningful information to inform management plans at this scale.
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Tables 

Table 1.  Summary of study species and results of species distribution models.  

Obligate seeders (OS), herbs (HERB), resprouting shrubs (RESPRSHR), 

subshrubs (SUBSHR).  PFT: Plant Functional Type. AUC: Area Under the Curve. 

SPECIES 
PFT 

Class 

Range 

Size Class 

Number 

of 

Presenc

es 

AUC 

Avg. 

Mode

l 

Projected Current 

Area (ha) 

Low 

Thresho

ld 

High 

Thresh

old 

Acanthomintha 

ilicifolia 
HERB SMALL 104 0.970 810,754 15,614 

Adenostoma 

sparsifolium 
RESPRS

HR 
LARGE 374 0.954 365,445 

178,61

8 

Arctostaphylos 

glandulosa ssp. 

glandulosa 

RESPRS

HR 
LARGE 393 0.894 696,704 13,415 

Arctostaphylos 

rainbowensis 
RESPRS

HR 
SMALL 73 0.960 758,556 8,250 

Ceanothus  greggii OS LARGE 289 0.957 454,809 
107,20

2 

Ceanothus 

tomentosus 
OS LARGE 167 0.946 620,258 80,649 

Ceanothus 

verrucosus 
OS SMALL 126 0.987 312,163 30,750 

Cupressus forbesii OS SMALL 38 0.905 379,372 2,137 

Deinandra 

conjugans 
HERB SMALL 66 0.998 145,872 

105,48

9 

Delphinium 

hesperium 
HERB SMALL 45 0.979 120,783 10,509 

Eryngium 

aristulatum var. 

parishii 

HERB SMALL 99 0.983 529,382 
121,00

7 

Galium 

angustifolium ssp. 

angustifolium 

SUBSHR LARGE 132 0.816 268,690 35,340 

Hazardia squarrosa SUBSHR LARGE 637 0.870 275,525 47,948 

Keckiella 

antirrhinoides 
SUBSHR LARGE 80 0.909 928,019 27,855 

Quercus dumosa 
RESPRS

HR 
SMALL 261 0.998 72,019 13,511 
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Quercus 

engelmannii 
RESPRS

HR 
LARGE 181 0.901 742,076 90,020 

Trichostema 

lanatum 
RESPRS

HR 
LARGE 121 0.852 375,493 76,592 

Viguiera laciniata SUBSHR SMALL 35 0.969 542,326 6,772 

Xylococcus bicolor 
RESPRS

HR 
LARGE 190 0.951 352,846 77,215 
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Table 2.  Projected percent area change for 19 species in the Southwest ecoregion 

of the California Floristic Province under two different climate change models 

(PCM and GFDL), emissions scenarios (A2 and B1), and thresholds (high and 

low) applied to predicted probabilities of species occurrence to define suitable 

habitat. 

 
PERCENT AREA CHANGE BETWEEN 2000 

AND 2080 

SPECIES 

HIGH THRESHOLD LOW THRESHOLD 

GFDL PCM GFDL PCM 

A2 B1 A2 B1 A2 B1 A2 B1 

Acanthomintha 

ilicifolia 
-68 6 119 222 -65 -21 60 136 

Adenostoma 

sparsifolium 
-63 27 64 149 13 47 47 118 

Arctostaphylos 

glandulosa 

ssp. glandulosa 

-43 -55 663 389 21 62 152 148 

Arctostaphylos 

rainbowensis 
-100 -100 -100 -99 31 175 17 173 

Ceanothus  greggii -98 -62 -48 -98 45 97 102 174 

Ceanothus tomentosus -100 -71 -86 81 -76 23 -4 87 

Ceanothus verrucosus -99 -70 -99 -93 15 39 -37 54 

Cupressus forbesii -83 -40 -68 60 7 97 44 63 

Deinandra conjugans -13 278 47 -20 116 299 82 80 

Delphinium hesperium 28 175 731 122 61 94 170 98 

Eryngium aristulatum 

var. parishii 
-24 46 -32 72 -35 37 -43 53 

Galium angustifolium 

ssp. angustifolium 
-60 161 33 257 -5 78 27 160 

Hazardia squarrosa -71 44 -21 155 -49 38 29 205 

Keckiella 

antirrhinoides 
-100 -79 -94 127 108 160 104 169 



45 

 

Quercus dumosa -100 -100 -97 -94 -94 2 -48 3 

Quercus engelmannii 150 467 147 442 96 173 64 179 

Trichostema lanatum 71 30 162 197 27 30 178 158 

Viguiera laciniata 418 739 543 920 328 328 345 370 

Xylococcus bicolor -100 115 69 160 -58 66 65 128 
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Table 3.  Projected percent current area of suitable habitat that is also 

predicted to be suitable by the end of the century (stable area) for 19 species in the 

Southwest ecoregion of the California Floristic Province under two different 

climate change models (PCM and GFDL), emission scenarios (A2 and B1), and 

thresholds (high and low) applied to predicted probabilities of species occurrence 

to define suitable habitat. 

  
PERCENT STABLE AREA BETWEEN 2000 

AND 2080 

SPECIES 

HIGH THRESHOLD LOW THRESHOLD 

GFDL PCM GFDL PCM 

A2 B1 A2 B1 A2 B1 A2 B1 

Acanthomintha ilicifolia 0 9 42 92 12 32 60 81 

Adenostoma 

sparsifolium 
17 59 72 90 55 72 71 91 

Arctostaphylos 

glandulosa  

ssp. glandulosa 

6 18 83 74 55 75 90 93 

Arctostaphylos 

rainbowensis 
0 0 0 0 39 53 26 64 

Ceanothus  greggii 1 10 23 0 66 89 94 67 

Ceanothus tomentosus 0 12 6 71 11 48 43 68 

Ceanothus verrucosus 0 0 0 0 20 29 24 49 

Cupressus forbesii 1 1 3 3 37 77 62 62 

Deinandra conjugans 8 46 21 18 20 56 37 41 

Delphinium hesperium 50 48 96 52 74 77 96 81 

Eryngium aristulatum 

var. parishii 
3 4 4 11 6 14 14 42 

Galium angustifolium 

ssp. angustifolium 
8 73 43 90 41 69 56 85 

Hazardia squarrosa 14 53 34 89 21 45 39 83 
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Keckiella antirrhinoides 0 4 1 36 86 93 93 97 

Quercus dumosa 0 0 1 3 3 29 25 44 

Quercus engelmannii 37 84 57 94 64 87 71 95 

Trichostema lanatum 40 45 63 87 39 51 92 90 

Viguiera laciniata 83 97 95 99 98 98 98 100 

Xylococcus bicolor 0 74 64 85 18 74 73 89 
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Table 4.  Projected current and future suitable habitat for nine small range species 

in the Southwest ecoregion of the California Floristic Province.  Protected area is 

the portion of the suitable habitat, either present or future, inside a Natural 

Community Conservation Planning area.  Total area includes suitable habitat that 

is outside of the subregion that contains the protected areas.  The protected habitat 

percent change is the change (in percentage) of suitable habitat inside the 

protected areas between now and the end of the century. 

SPECIES 

Current Area (ha) Future Area (ha) Protected 

habitat 

percent 

change 
Total 

Protecte

d 
Total 

Protecte

d 

Acanthomintha 

ilicifolia 
15,614 13,480 20,898 10,385 -23 

Arctostaphylos 

rainbowensis 
8,250 8,225 25 3 -100 

Ceanothus verrucosus 30,750 24,487 3,022 42 -100 

Cupressus forbesii 2,137 2,124 1,403 1,369 -36 

Deinandra conjugans 
105,48

9 
69,440 

157,81

4 
48,324 -30 

Delphinium 

hesperium 
10,509 10,453 31,755 30,699 194 

Eryngium aristulatum 

var. parishii 

121,00

7 
77,237 

132,70

7 
16,872 -78 

Quercus dumosa 13,511 8,227 150 67 -99 

Viguiera laciniata 6,772 6,500 44,796 37,812 482 
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Table 5.  Average suitable habitat gained or lost by nine rare species (Table 1) 

present within the NCCP areas in the Southwest ecoregion of the California 

Floristic Province.  The average was calculated from two different climate change 

models (PCM and GFDL), emissions scenarios (A2 and B1), using the high 

threshold to predicted probabilities of species occurrence to define suitable 

habitat. 

  
Average Area (Ha) Gained or Lost due to Element of 

Change 

SPECIES 

No Change 

(Current 

Suitable 

Area) 

Urban 

Growth 

Climate 

Change 

Urban 

Growth + 

Climate 

Change 

Acantomintha 

illicifolia 
13,480 -1,709 -684 -3,095 

Arctostaphylos 

rainbowensis 
8,225 -182 -8,222 -8,222 

Ceanothus 

verrucosus 
24,487 -3,821 -24,297 -24,445 

Cupressus forbesii 2124 -4 -752 -756 

Deinandra conjugens 69,440 -30,549 -2,661 -21,117 

Delphium hesperium 10,453 -91 20,479 20,246 

Eryngium 

aristulatum var, 

parishii 

77,237 -13,862 -57,743 -60,366 

Quercus dumosa 8,227 -5,176 -8,115 -8,160 

Viguiera laciniata 6,500 -223 34,033 31,312 
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Figure 1. Map showing the location of the California Floristic Province 

(dotted black line) within the State of California (dotted black line on gray 

background) US, the Natural Community Conservation Planning areas (NCCP) 

(diagonal gray lines), and the Southwest ecoregion (solid gray) within the 

California Floristic Province.  The combined effects of climate and land use 
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change analysis (analysis shown in Table 4 and Fig. 8) were performed in the area 

within the solid black lines.
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Figure 2.  Boxplots for projected change in climatically suitable habitat area 

for 19 species in the Southwest ecoregion of the California Floristic Province 

showing the differences in projections for plants grouped by PFTs (HERB: herbs; 

OS: obligate seeder; RESPRSHR: resprouting shrubs; SUBSHR: subshrubs).  

High and Low Threshold results are shown (cut-off of occurrence probability 

value).  Each boxplot shows the smallest observation (maximum amount of 

suitable habitat loss), lower quartile (Q1), median (Q2), upper quartile (Q3), and 

largest observation (maximum amount of suitable habitat gain).  Hollow circles 

above or below the boxplot are outliers.
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Figure 3.  Boxplots showing the projected species centroid shift (km) for 19 

species in the Southwest ecoregion of the California Floristic Province under two 

different climate change models (PCM and GFDL), emission scenarios (A2 and 

B1), and thresholds (High and Low) applied to predicted probabilities of species 

occurrence to define suitable habitat.  Each boxplot shows the smallest 

observation (minimum distance the species centroid was predicted to shift), lower 

quartile (Q1), median (Q2), upper quartile (Q3), and largest observation 

(maximum distance the species centroid was predicted to shift).  Hollow circles 

above or below the boxplot are outliers.
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Figure 4.  Boxplots for projected change in climatically suitable habitat area 

for 19 species in the Southwest ecoregion of the California Floristic Province 

showing the differences in response for species grouped by range size class 

(Large/common, and Small/rare).  Each boxplot shows the smallest observation 

(maximum amount of suitable habitat loss), lower quartile (Q1), median (Q2), 

upper quartile (Q3), and largest observation (maximum amount of suitable habitat 

gain).  Hollow circles above or below the boxplot are outliers.
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Figure 5.  Projected area gained or lost by rare species in a) San Diego 

County Multiple Species Conservation Plan Area; b) San Diego County Multiple 

Habitat Conservation Open Space Plan Area; c) All other NCCP areas in the 

Southwest, in response to projected climate change by 2080.  The average and 

standard deviation were calculated from two different climate change models 

(PCM and GFDL), emission scenarios (A2 and B1), using the high threshold to 

predicted probabilities of species occurrence to define suitable habitat.
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Figure 6.  Boxplots for projected change in climatically suitable habitat area 

for 19 species in the Southwest ecoregion of the California Floristic Province, 

calculated from two different climate change models (PCM and GFDL), emission 

scenarios (A2 and B1), showing the differences in predicted area using two 

thresholds (High and Low) as cut-off of occurrence probability values.  Each 

boxplot shows the smallest observation (maximum amount of suitable habitat 

loss), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest 

observation (maximum amount of suitable habitat gain).  Hollow circles above or 

below the boxplot are outliers.
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Figure 7.  Boxplots for projected change in climatically suitable habitat area for 

19 species in the Southwest ecoregion of the California Floristic Province a) 

differences projected under GFDL vs PCM climate models, b) differences 

projected using A2 and B1 emission scenarios.  High and Low Threshold results 
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are shown (cut-off of occurrence probability value) in both figures.  Each boxplot 

shows the smallest observation (maximum amount of suitable habitat loss), lower 

quartile (Q1), median (Q2), upper quartile (Q3), and largest observation 

(maximum amount of suitable habitat gain).  Hollow circles above or below the 

boxplot are outliers.
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APPENDIX A 

AREA UNDER THE CURVE (AUC) COEFFICIENT FOR THE MODELS 

USED TO CREATE CONSENSUS MAPS TO CALCULATE SUITABLE 

HABITAT.  THE VARIABLE IMPORTANCE (BY RANK) IS SHOWN FOR 

THE VARIABLES USED TO CREATE THE MODELS.  IN GENERALIZED 

ADDITIVE MODELS (GAM) VARIABLE IMPORTANCE IS CALCULATED 

BY COMPARING THE CHANGE IN DEVIANCE BETWEEN TWO MODELS 

TO A CHI-SQUARE DISTRIBUTION WITH DEGREES OF FREEDOM 

EQUAL TO THE DEGREES OF FREEDOM BETWEEN THE TWO MODELS.  

IN RANDOMFOREST (RF) VARIABLE IMPORTANCE IS CALCULATED 

AS THE REDUCTION OF PREDICTIVE ACCURACY AFTER A RANDOM 

PERMUTATION OF THE VALUES ASSUMED BY EACH PREDICTIVE 

VARIABLE.  IN MAXENT VARIABLE IMPORTANCE IS A HEURISTIC 

ESTIMATE OF RELATIVE CONTRIBUTIONS OF THE ENVIRONMENTAL 

VARIABLES TO THE MODEL.  TMX: MAXIMUM TEMPERATURE OF 

WARMEST PERIOD, GRW: GROWING DAYS ABOVE 5  C, PPT: ANNUAL 

PRECIPITATION, TSE: TEMPERATURE SEASONALITY, PWQ: 

PRECIPITATION WARMEST QUARTER, ARI: ARIDITY INDEX, DEPL: 

SOIL DEPTH, AWCL: SOIL AVAILABLE WATER CAPACITY, PHL: SOIL 

PH, SLOPE: SLOPE ANGLE DERIVED FROM DIGITAL ELEVATION 

MODEL, SUMRAD: POTENTIAL SUMMER SOLSTICE SOLAR 

INSOLATION. 



 

 

6
0
 

      Variable Importance (rank) 

Species Model AUC TMX GRW PPT TSE PWQ ARI DEPL AWCL PHL SLOPE SUMRAD 

ACIL 

GAM 0.966 3 6 8 1 4 9 2 7 5 11 10 

RF 0.973 4 7 1 5 2 9 3 8 10 11 6 

MAXENT 0.971 4 5 8 1 6 2 10 3 9 7 11 

ADSP 

GAM 0.956 7 1 9 4 2 8 5 6 3 11 10 

RF 0.956 3 7 2 6 1 4 10 5 11 8 9 

MAXENT 0.949 4 6 8 3 1 11 7 5 2 9 10 

ARGL 

GAM 0.883 2 1 10 4 3 8 5 6 7 11 9 

RF 0.871 10 1 5 3 7 9 8 6 2 4 11 

MAXENT 0.929 2 3 1 6 4 6 5 10 8 11 9 

ARRA 

GAM 0.941 1 2 8 3 4 10 5 6 7 11 9 

RF 0.988 1 6 3 4 2 8 7 5 10 11 9 

MAXENT 0.950 7 1 2 4 8 9 6 3 10 5 10 

CEGRE 

GAM 0.961 2 4 3 7 1 5 8 6 9 11 10 

RF 0.956 2 7 1 9 5 3 8 4 11 6 10 

MAXENT 0.954 2 3 4 6 1 7 9 8 10 5 11 

CETO 

GAM 0.948 4 7 5 1 2 11 6 8 3 9 10 

RF 0.961 2 7 1 6 8 3 9 11 5 10 4 

MAXENT 0.928 4 1 6 5 3 10 7 10 2 8 9 

CEVE 

GAM 0.981 3 4 5 1 6 8 11 7 2 10 9 

RF 0.990 1 5 4 2 3 6 8 9 7 11 9 

MAXENT 0.990 8 1 6 2 10 5 11 7 2 9 4 

CUFO 
GAM 1.000 3 2 7 1 4 8 10 5 6 9 11 

RF 0.983 4 9 2 11 4 4 8 10 3 1 7 



 

 

6
1
 

      Variable Importance (rank) 

Species Model AUC TMX GRW PPT TSE PWQ ARI DEPL AWCL PHL SLOPE SUMRAD 

MAXENT 0.734 2 7 10 6 3 9 4 8 5 1 11 

DECO 

GAM 0.998 1 11 3 4 9 7 6 5 2 10 8 

RF 0.998 3 2 6 5 11 8 1 7 4 9 10 

MAXENT 0.998 2 4 5 3 11 1 5 8 9 7 10 

DEHE 

GAM 0.951 4 10 3 8 1 2 7 9 11 5 6 

RF 0.998 2 5 4 10 3 7 6 9 8 1 11 

MAXENT 0.987 6 9 2 10 1 4 7 5 8 3 10 

ERAR 

GAM 0.983 7 3 2 1 6 4 11 5 10 8 9 

RF 0.994 2 4 1 6 3 7 10 9 11 8 5 

MAXENT 0.972 4 6 5 1 11 2 9 3 8 6 10 

GAAN 

GAM 0.772 7 1 2 4 10 6 9 3 5 11 8 

RF 0.824 3 7 1 5 8 9 10 6 11 2 4 

MAXENT 0.852 9 1 5 3 10 11 7 2 6 4 8 

HASQ 

GAM 0.848 5 1 7 9 2 10 8 6 3 4 11 

RF 0.839 2 7 1 8 6 4 9 10 11 3 5 

MAXENT 0.922 9 1 8 2 7 10 4 6 5 3 10 

KEAN 

GAM 0.896 1 10 2 9 7 11 8 6 4 5 3 

RF 0.942 3 6 4 7 1 8 9 11 10 2 5 

MAXENT 0.889 1 5 2 8 6 10 4 7 9 3 11 

QUDU 

GAM 1.000 1 1 1 1 1 1 1 1 1 1 1 

RF 1.000 1 4 2 3 7 5 11 9 6 10 8 

MAXENT 0.996 9 4 1 2 5 11 10 3 7 8 6 

QUEN GAM 0.905 1 6 3 5 2 8 7 4 11 10 9 
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      Variable Importance (rank) 

Species Model AUC TMX GRW PPT TSE PWQ ARI DEPL AWCL PHL SLOPE SUMRAD 

RF 0.920 1 7 2 5 3 8 3 11 10 6 9 

MAXENT 0.877 1 7 9 4 3 11 6 5 2 8 10 

TRIL 

GAM 0.794 2 5 1 6 7 10 9 4 8 11 3 

RF 0.874 1 4 3 2 8 11 6 9 10 6 4 

MAXENT 0.890 4 2 1 10 9 11 3 5 8 6 7 

VILA 

GAM 0.927 4 1 6 2 10 9 5 7 3 8 11 

RF 0.995 4 3 6 2 9 11 5 10 6 1 8 

MAXENT 0.984 6 1 11 4 8 2 7 5 9 3 10 

XYBI 

GAM 0.942 7 5 8 2 3 9 4 6 1 10 11 

RF 0.962 2 8 1 7 5 3 11 9 4 10 6 

MAXENT 0.951 10 1 5 3 7 9 8 6 2 4 11 

Average Variable Importance 3.68 4.47 4.25 4.60 5.16 7.23 6.98 6.56 6.53 6.95 8.35 
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APPENDIX B 

PROJECTED AREA GAINED OR LOST BY RARE SPECIES IN A) SAN 

DIEGO COUNTY MULTIPLE SPECIES CONSERVATION PLAN AREA; B) 

SAN DIEGO COUNTY MULTIPLE HABITAT CONSERVATION OPEN 

SPACE PLAN AREA; C) ALL OTHER NCCP AREAS IN THE SOUTHWEST, 

IN RESPONSE TO PROJECTED CLIMATE CHANGE BY 2080.  THE MEAN 

AND STANDARD DEVIATION WERE CALCULATED FROM TWO 

DIFFERENT CLIMATE CHANGE MODELS (PCM AND GFDL) AND 

EMISSION SCENARIOS (A2 AND B1) USING THE LOW THRESHOLD TO 

PREDICTED PROBABILITIES OF SPECIES OCCURRENCE TO DEFINE 

SUITABLE HABITAT. 
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