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ABSTRACT  

   

Standardized intelligence tests are some of the most widely used tests by 

psychologists.  Of these, clinicians most frequently use the Wechsler scales of 

intelligence.  The most recent version of this test for children is the Wechsler 

Intelligence Scale for Children - Fourth Edition (WISC-IV); given the multiple 

test revisions that have occurred with the WISC, it is essential to address evidence 

regarding the structural validity of the test; specifically, that the internal structure 

of the test corresponds with the structure of the theoretical construct being 

measured.  The current study is the first to investigate the factor structure of the 

WISC-IV across time for the same individuals.  Factorial invariance of the WISC-

IV was investigated using a group of 352 students eligible for psychoeducational 

evaluations tested, on average, 2.8 years apart.  One research question was 

addressed: Does the structure of the WISC-IV remain invariant for the same 

individuals across time?  Using structural equation modeling methods for a four-

factor oblique model of the WISC-IV, this study found invariance at the 

configural and weak levels and partial invariance at the strong and strict levels.  

This indicated that the overall factor structure remained the same at test and retest 

with equal precision of the factor loadings at both time points.  Three subtest 

intercepts (BD, CD, and SI) were not equivalent across test and retest; 

additionally, four subtest error variances (BD, CD, SI, and SS) were not 

equivalent across test and retest.  These results indicate that the WISC-IV 

measures the same constructs equally well across time, and differences in an 

individual’s cognitive profile can be safely interpreted as reflecting change in the 
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underlying construct across time rather than variations in the test itself.  This 

allows clinicians to be more confident in interpretation of changes in the overall 

cognitive profile of individual’s across time.  However, this study’s results did not 

indicate that an individual’s test scores should be compared across time.  Overall, 

it was concluded that there is partial measurement invariance of the WISC-IV 

across time, with invariance of all factor loadings, invariance of all but three 

intercepts, and invariance of all but four item error variances.   
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Chapter 1 

INTRODUCTION 

Of all psychological tests, standardized intelligence tests are some of the 

most widely used by psychologists (Wilson & Reschly, 1996).  School 

psychologists in particular commonly use standardized intelligence tests as one 

component of a psychoeducational evaluation for the determination of special 

education eligibility (Suzuki & Valencia, 1997), especially for the diagnosis of 

specific learning disabilities (SLD) that affect approximately 5% of the school-

aged population and comprise over 50% of the special education population 

(Anyon, 2009).   

Historically, diagnosis and eligibility of SLD has depended on a 

discrepancy model in which a child’s ability, as measured by standardized 

intelligence tests, is compared to his/her skill in a specific academic domain as 

measured by standardized achievement tests.  Until the most recent 

reauthorization of the Individuals with Disabilities Education Act (2004), the use 

of a standardized intelligence test was required for the assessment of a SLD.  

Upon the reauthorization of IDEA other methods of identification were approved, 

such as evidence of a failure to respond to evidence based interventions.  

However, in practice, the discrepancy approach is still commonly utilized as a 

diagnostic approach for identifying learning disabilities in students (Kavale & 

Spaulding, 2008).  

Unfortunately, there are many negative outcomes associated with special 

education.  Children with disabilities have been found to fall behind their peers 
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without disabilities on multiple measures of societal attainment (Phelps & 

Hanley-Maxwell, 1997).  Those with disabilities are more likely to be delinquent, 

unemployed, and have a lower socio-economic status (Blackorby & Wagner, 

1996).  Special education services have been shown to have either a negative or a 

statistically non-significant effect on children’s reading and math skills (Morgan, 

Frisco, Farkas, & Hibel, 2010).  Additionally, special education services did not 

improve children’s externalizing or internalizing problem behaviors (Morgan et 

al., 2010).   

The use of the discrepancy approach when identifying learning disabilities 

in students necessitates the use of standardized intelligence tests; additionally, the 

diagnosis of mental retardation also requires the use of standardized intelligence 

tests.  In accordance with the American Psychological Association’s code of 

ethics (2002), the National Association of School Psychologists’ code of ethics 

(2010), and the Joint Committee on Testing Practices (2004), it is expected that 

all psychologists use tests that produce interpretable scores that are reliable and 

valid.  Reliability is defined as the degree to which test scores are consistent and 

stable across conditions (Reynolds, Livingston, & Wilson, 2009).  The Standards 

for Educational and Psychological Testing (1999) define validity as “the degree to 

which evidence and theory support the interpretation of test scores entailed by 

proposed uses of tests” (American Educational Research Association [AERA], 

American Psychological Association [APA], and National Council on 

Measurement in Education [NCME], 1999, p. 9).  As specific tests are developed 

and revised the validity of the individual test needs to be established or 
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reestablished by “accumulating evidence to provide a sound scientific basis for 

the proposed score interpretations” (AERA, APA, & NCME, 1999, p.9).   

The traditional view of validity discussed validity in terms of content, 

criterion, and construct validity (Cronbach & Meehl, 1955).  Content validity was 

defined as items that sample all aspects of a universal principle; criterion validity 

was described as test items that are related to an external criterion that can be 

measured in a concurrent manner (such as a behavior rating) or a predictive 

manner (such as SAT scores and college GPA); and finally construct validity was 

specified as test items that correlate with the theoretical structure of the construct 

being measured.  For many years this “holy trinity” was regarded as the best way 

to evaluate the validity of a test; however, Messick (1995) developed the 

Unitarian view of validity, which regards validity not as a property of the test (as 

the classical theory does) but as an argument, or an evaluative judgment, which 

one makes about the meaning of the test scores.   

Messick (1995) described six aspects of construct validity that must be 

addressed to appropriately evaluate a measure: content, substantive, structural, 

generative, external, and consequential.  The content aspect includes 

representativeness (inclusion of all aspects of the measured domain), content 

relevance, and sampling of tasks that represent all important parts of the construct 

(functional importance).  The substantive aspect includes measurement of the 

theoretical foundation of the construct through both process modeling and 

empirical evidence, indicating that the theoretical processes expected to be a 

component of the construct are in fact evident and measured appropriately.  The 
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structural aspect indicates that the structure of the known construct should be 

consistent with what a test is measuring.  The generalizability aspect addresses 

how well scores and score interpretations generalize across groups, raters, 

settings, time, and tasks.  The external aspect represents the relationship between 

the test scores and other criteria that theoretically measure similar constructs 

(convergent) as well as the relationship between the test scores and other criteria 

that theoretically measure opposing constructs (discriminant); specifically, the test 

should have strong correlations with similar constructs and weak correlations with 

discriminant constructs.  The final aspect, consequential, refers to evidence that 

the interpretations of scores are appropriate and not representative of any bias or 

unfairness.  Using all aspects of validity one can develop an argument for validity 

and thus develop evidence to support a specific test.  In accordance with the 

aforementioned guidelines, as well as best practice (NASP, 2008), it is essential 

that cognitive tests used during psychoeducational assessments, particularly those 

used in the decision making process for special education, be psychometrically 

sound (reliable and valid).      

Empirical studies of the identified components of construct validity have 

been frequently conducted with the Wechsler scales of intelligence.  Wechsler’s 

original scale of intelligence, the Wechsler – Bellevue Intelligence Scale 

(Wechsler – Bellevue; Wechsler, 1939), was created for use with the adult 

population but within a decade was modified to allow assessment of children via 

the Wechsler Intelligence Scale for Children (WISC; Wechsler, 1949).  The 

WISC was twice modified over the ensuing decades, first with the Wechsler 
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Intelligence Scale for Children-Revised (WISC-R; Wechsler, 1974) and next with 

the Wechsler Intelligence Scale for Children-Third Edition (WISC-III; Wechsler, 

1991).  All three WISC versions have been thoroughly researched (Sattler, 2008).  

Additionally, more recent research regarding evidence of construct validity has 

occurred with the Wechsler Intelligence Scale for Children-Fourth Edition 

(WISC-IV; Wechsler, 2003a).  Given the multiple test revisions that have 

occurred with the WISC, it is essential to address evidence regarding the 

structural validity of the test; specifically, that the internal structure of the test 

corresponds with the structure of the theoretical construct being measured 

(Messick, 1995).      

Intelligence as a Measurable Construct 

 Intelligence is considered to be a trait, indicating that it should be 

relatively stable across time (Hunt, 2011).  Since cognitive tests are measuring a 

stable trait it is expected that good test-retest reliability should be evident (Wright, 

2011).  Research has indicated that cognitive test scores have remained fairly 

stable from about the age of 5 through adulthood (Chen & Siegler, 2000).  

Individual differences in general intelligence (g) have been shown to remain 

highly stable over time in both average and highly select samples (Reeve & 

Bonaccio, 2011; Simonton, 2011).  For example, one longitudinal study of ability 

tests reported a test-retest stability coefficient of .66 across a 66 year interval with 

an estimated short term test-retest reliability of .90 (Deary, Whalley, Lemmon, 

Crawford, & Starr, 2000).  These findings are all indicative of intelligence being a 

stable trait that should be replicable in a test for an individual over time.  If 
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intelligence is considered to be a stable trait, then any change in the factor 

structure of a test can be interpreted as a problem with the specific test and not as 

an underlying change in the measured construct.  Therefore, if the structure of the 

test changes over time then the construct validity of the test is limited because 

test-retest score differences cannot be explicitly interpreted as reflecting changes 

in the underlying construct.   

Previous Wechsler Intelligence Tests  

The Wechsler series of intelligence tests has long been regarded as one of 

the most popular cognitive assessments among clinicians (Alfonso, Oakland, 

LaRocca, & Spanakos, 2000; Belter & Piotrowski, 2001; Pfeiffer, Reddy, Kletzel, 

Schmelzer, & Boyer, 2000).  Wechsler initially defined intelligence as “the 

aggregate or global capacity of the individual to act purposefully, to think 

rationally, and to deal effectively with his environment” (Wechsler, 1939, p. 3).  

The Wechsler intelligence tests were not initially based on a specific theoretical 

perspective.  Instead, Wechsler focused on creating a test that had content evenly 

divided between verbally loaded tasks and tasks that were primarily nonverbal 

(Zachary, 1990).  

Wechsler chose to focus on verbal and nonverbal, or performance, tasks 

not because the subtests measured different types of intelligence but to measure 

intelligence in different ways (Wechsler, 1958).  Wechsler recognized that many 

individuals were undoubtedly intelligent but appeared to have low verbal abilities 

and thus it was essential to measure both ways of expressing intelligence.  

Wechsler’s overall purpose was to measure performance as a whole or general 
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intelligence, not to measure specific abilities in isolation (Zachary, 1990).  

Continued revision of the Wechsler scales has increased the domains of cognitive 

functioning measured.  Specifically,  the measurement of  more discrete domains 

of intelligence, such as processing speed and working memory, have been added 

to better identify a person’s overall cognitive ability.  As the Wechsler scales have 

continued to be revised, concern regarding the structural validity of each version 

of the test has been apparent and has been a focus of study.  Structural validity has 

been examined in the Wechsler scales by using exploratory factor analysis (EFA).  

EFA is a statistical method that is used to help develop theories and better 

understand how theoretical constructs are structured.    

The Wechsler Intelligence Scale for Children (WISC; Wechsler, 1949) 

was composed of 12 subtests similar to the Wechsler-Bellevue Intelligence Scale, 

but modified to be age appropriate.  These 12 subtests were used to generate 

Verbal IQ (VIQ), Performance IQ (PIQ), and Full Scale IQ (FSIQ) scores.  

Research regarding the structural validity of the WISC is scarce; however, Cohen 

(1959) examined the factor structure of the WISC at three age groups (7.5, 10.5, 

and 13.5 years).  Using Thurstone’s complete centroid method (1947), a five-

factor structure was identified with a second-order general factor, g.  The five 

factors identified were Verbal Comprehension I (Information, Similarities, and 

Vocabulary), Perceptual Organization (Block Design, Object Assembly, and 

Picture Completion), Freedom from Distractibility (Digit Span and Arithmetic), 

Verbal Comprehension II (Comprehension, Vocabulary, and Picture Completion), 

and Quasi-Specific (Coding and Picture Arrangement).  When this same data was 
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reanalyzed using different techniques, such as examining the average proportion 

of the total variance attributable to unrotated factors and the Kaiser (1960) method 

of retaining as many factors as latent roots greater than one, only two identifiable 

factors (Verbal Comprehension and Perceptual Organization) were identified 

(Silverstein, 1969).   

  The Wechsler Intelligence Scale for Children – Revised (WISC-R; 

Wechsler, 1974) was composed of the same subtests and IQ scores as the WISC; 

however, adjustments were made to the age range (6 to 16 years rather than 5 to 

15 years) appropriate for this measure.  The structure of the WISC-R consisted of 

the same two factors: Verbal Comprehension (VC) and Perceptual Organization 

(PO).  Additionally, the subtests included in each factor were the same as in the 

WISC.  Using the normative sample, Wallbrown, Blaha, Wallbrown, and Engin 

(1975) found strong support of a hierarchical factor structure of the WISC-R.  

Kaufman (1975) also examined the normative sample using principal-factor 

analysis with varimax rotation of two-, three-, four-, and five-factor solutions 

across each age level.  He found that for six age groups there were two identified 

factors (VC and PO), but at the remaining age groups ( 8.5, 10.5, 13.5, and 15.5 

years) the three-factor structure (VC, PO, and Freedom from Distractibility or 

FD) was most appropriate.  The additional FD factor included the Arithmetic, 

Digit Span, and Coding subtests.  Overall, Kaufman (1975) argued that his results 

were supportive of a two-factor solution (VC and PO) as identified by Wechsler’s 

divisions of subtests.  In contrast, McMahon and Kunze (1981) found that the 

three-factor solution was appropriate for exceptional children.  The third factor 
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appeared to differ across samples and the interpretation of the factor remained 

unclear (Zachary, 1990).  However, as additional clinical studies were conducted 

the two-factor solution remained the most stable.  This factor solution has been 

shown to be relatively invariant across age (Conger, Conger, Farrell, & Ward, 

1979); sex (Reynolds & Gutkin, 1980); ethnicity (Dean, 1980; Gutkin & 

Reynolds, 1980, 1981; Reschly, 1978); and psychiatric diagnoses (Petersen & 

Hart, 1979).   

  Revision of the WISC-R produced the Wechsler Intelligence Scale for 

Children-Third Edition (WISC-III; Wechsler, 1991), which included the same 

subtests as the WISC-R with the addition of one subtest, Symbol Search.  

However, the VIQ and PIQ scores were dropped in favor of Verbal 

Comprehension Index (VCI), Perceptual Organization Index (POI), Freedom from 

Distractibility Index (FDI), and Processing Speed Index (PSI) scores.  The 

reported factor structure of the normative sample included a second-order general 

ability factor, g, (Spearman, 1904) and four first-order factors corresponding to 

the index scores: Verbal Comprehension (Information, Similarities, Vocabulary, 

and Comprehension), Perceptual Organization (Picture Completion, Picture 

Arrangement, Block Design, and Object Assembly), Freedom From Distractibility 

(Arithmetic and Digit Span), and Processing Speed (Coding and Symbol Search).  

The WISC-III factor structure was subsequently investigated in independent 

samples.  Roid, Prifitera, and Weiss (1993) analyzed the factor structure of the 

WISC-III with a nationally representative sample (n = 1,118).  Through the use of 

multiple criteria in identifying the number of factors, they replicated the four-
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factor structure found with the normative sample.  Additional analysis conducted 

with the Canadian normative sample (n = 1,100) also confirmed the four-factor 

structure (Roid & Worrall, 1997).  The four-factor structure was also found to be 

the best solution in clinical samples of psychiatric inpatients (Tupa, Wright, & 

Fristad, 1997) and children identified as eligible for special education services 

(Konold, Kush, & Canivez, 1997; Grice, Krohn, & Logerquist, 1999).  There have 

been multiple critiques of the four-factor model for the WISC-III (Carroll, 1993; 

Sattler, 1992).  These critiques were typically due to the smaller third and fourth 

factors (FD and PS).  However, in general the four-factor structure of the WISC – 

III normative sample has been accepted (Grice et al., 1999).   

Wechsler Intelligence Scale for Children-Fourth Edition   

The Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV; 

Wechsler, 2003a) was significantly different from the WISC-III.  For example, it 

was developed in alignment with current intelligence theories (Wechsler, 2003b), 

specifically the Cattell-Horn-Carroll (CHC; McGrew & Flanagan, 1998) theory of 

intelligence.  The CHC theory of intelligence regards intellectual abilities within a 

hierarchical structure consisting of three strata (general ability, broad abilities, and 

narrow abilities).  Specifically, general intellectual ability, g,  is represented on 

stratum III and ten broad cognitive abilities are represented on stratum II: Fluid 

Intelligence (Gf), Crystallized Intelligence (Gc), Quantitative Knowledge (Gq), 

Reading and Writing (Grw), Visual Processing (Gv), Auditory Processing (Ga), 

Short-term Memory (Gsm), Long-term Storage and Retrieval (Glr), Processing 
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Speed (Gs), and Decision/Reaction Time/Speed (Gt). Finally, 70 narrow abilities 

are included on stratum I.   

According to Wechsler (2003b), the alignment of the WISC-IV to the 

CHC theory of intelligence resulted in the creation of new subtests as well as the 

removal of existing subtests.  Changes to the subtest structure of the WISC-IV 

included the addition of five subtests (Word Reasoning, Picture Concepts, Matrix 

Reasoning, Letter-Number Sequencing, and Cancellation), making the 

Information subtest supplemental, and the removal of three WISC-III subtests 

(Picture Arrangement, Object Assembly, and Mazes).  Additionally, revisions 

occurred at the item level across subtests and approximately 60% of items in the 

core subtests were new or revised (Watkins, 2010).  The WISC-IV contains 15 

subtests (10 core and 5 supplementary).  The 10 core subtests include Block 

Design, Similarities, Digit Span, Picture Concepts, Coding, Vocabulary, Letter-

Number Sequencing, Matrix Reasoning, Comprehension, and Symbol Search.  

The 5 supplementary subtests include: Picture Completion, Cancellation, 

Information, Arithmetic, and Word Reasoning.  The index scores are identified as 

the Verbal Comprehension Index (VCI), Perceptual Reasoning Index (PRI), 

Working Memory Index (WMI), and Processing Speed Index (PSI).     

Psychometric properties of the WISC-IV were determined using the 

normative sample of 2,200 children (Wechsler, 2003b).  The overall sample 

yielded average internal consistency reliability coefficients across subtests 

ranging from .79 (Symbol Search and Cancellation) to .90 (Letter Number 

Sequencing), with all other subtests between .80 and .89.  Importantly, the 
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reliability coefficients of the WISC-IV subtests are substantially larger than the 

corresponding subtests on the WISC-III, indicating that the WISC-IV has better 

reliability than the previous edition.  The internal consistency reliability 

coefficients for composite scores were .88 for Processing Speed, .92 for 

Perceptual Reasoning and Working Memory, .94 for Verbal Comprehension, and 

.97 for Full Scale IQ.   

A special group was formed consisting of 661 exceptional children split 

into the following groups: Intellectually Gifted; Mental Retardation – Mild 

Severity; Mental Retardation – Moderate Severity; Reading Disorder; Reading 

and Written Expression Disorders; Mathematics Disorder; Reading, Written 

Expression, and Mathematics Disorders; Learning Disorder and Attention-

Deficit/Hyperactivity Disorder; Attention – Deficit/Hyperactivity Disorder; 

Expressive Language Disorder; Mixed Receptive-Expressive Language Disorder; 

Open Head Injury; Closed Head Injury; Autistic Disorder; Asperger’s Disorder; 

and Motor Impairment.  Approximately 5.7% of the normative sample was 

composed of children from this special group.  Reliability coefficients were 

calculated for the special groups in the same manner as with the standardization 

sample.  For subtests, the special groups sample yielded average internal 

consistency reliability coefficients ranging from .82 (Digit Span Forward) to .93 

(Letter – Number Sequencing and Matrix Reasoning).  These results indicate that 

the WISC-IV is an equally reliable measure for the cognitive assessment of 

children from the general population as well as exceptional children (those with 

clinical diagnoses).  The overall internal consistency reliability coefficients for 
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special groups across composite scores were not included in the technical manual 

(Wechsler, 2003b).   

The normative sample was also utilized to confirm evidence of test-retest 

stability.  Using 243 children, participants were twice administered the WISC-IV 

with an interval between test and retest ranging from 13 to 63 days.  Overall 

results indicated that the scores remained stable across all age groups; however, 

there appeared to be practice effects due to the short interval of time between test 

administrations (Wechsler, 2003b).  Research has found that when the test-retest 

interval exceeds one year, practice effects are not typically observed or are so 

small that it does not significantly affect the stability coefficients (Ryan, Glass, & 

Bartels, 2010).     

Structural Validity of the WISC-IV 

Normative sample.  Exploratory factor analysis (EFA) was used to 

examine the factor structure of the WISC-IV with the normative sample 

(Wechsler, 2003b).  Using the 10 core subtests of the WISC-IV, an EFA analysis 

found that the four-factor theoretical model was appropriate, with each subtest 

loading primarily on its predicted factor.  The EFA validated the following factor 

structure: Verbal Comprehension (Similarities, Vocabulary, and Comprehension), 

Perceptual Reasoning (Block Design, Picture Concepts, and Matrix Reasoning), 

Working Memory (Digit Span and Letter – Number Reasoning), and Processing 

Speed (Coding and Symbol Search).  These initial findings indicated that in the 

youngest age group (ages 6 – 7 years) Picture Concepts loaded evenly on the 

Perceptual Reasoning and Verbal Comprehension factors; however, this was only 
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evident within one age group and Picture Concepts loaded primarily on 

Perceptual Reasoning in the other age groupings.  

Confirmatory factor analysis (CFA) studies were also applied to the 

normative sample to better understand the structure of the WISC-IV (Wechsler, 

2003b).  CFA is a statistical method that allows for the investigation of 

relationships between measured variables and the underlying hypothetical 

constructs (Tabachnick & Fidell, 2007).  CFA differs from EFA because it is 

typically used to test theory rather than to develop theories (Keith, 2005).  CFA 

models have multiple components: factors, indicators, and measurement error.  

“Each indicator is a continuous variable represented as having two causes – a 

single underlying factor that the indicator is supposed to measure and all other 

unique sources of causation that are represented by the error term” (Kline, 2005, 

p. 166).  The indicators are measured variables that have direct relationships with 

a factor; these direct effects are measured by statistical estimates, typically 

regression coefficients, and are called factor loadings (Kline, 2005).   

CFA is used to further investigate proposed models as well as to test 

theories.  The simplest form of CFA stipulates that the nature of the factor 

structure underlying the data is determined in advance.  The researcher specifies 

the number of factors, which variables will load on each factor, and if factors are 

correlated or uncorrelated (Keith, 2005).  The goal of a CFA is to “confirm” that 

the hypothesized model is a good explanation of the data.  Once a model is 

proposed, CFA applies the model to the data sample.  The results of the sample 

data are then compared to the hypothesized structure that is expected to be found 
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in the population and the difference between the models is assessed.  This analysis 

results in fit statistics, which indicate how well the overall model (identified 

factor structure) fits the sample data.  Importantly, values of fit are not indicating 

that results have theoretical meaning, simply that the proposed model fits the data 

(Kline, 2005).  Using the fit statistics, the researcher is able to examine the 

accuracy of a specific factor structure by applying constraints to the solution and 

determining if the more restricted solution remains consistent with the data 

sample.  

There are many different fit statistics, or indices, described in the literature 

(Kline, 2005).  The most common goodness of fit measure is the chi-square 

statistic (χ²); which is used in conjunction with the degrees of freedom (df), which 

measure the degree to which a model is over-identified.  A small χ² combined 

with a large df indicates statistical insignificance (p > .05), and thus the model fits 

the data.  This index is actually considered to be a “badness of fit” index because 

the model’s fit is worse when the χ² value is high.  The χ² fit statistic is sensitive 

to sample size.  Specifically, large samples typically result in an underestimation 

of model fit and in small samples fit may be overestimated (Keith, 2005).  

Unfortunately, the χ² statistic assumes perfect population fit of the model and it is 

unlikely that any model will perfectly fit the data.  Thus, although the most 

commonly reported index, it is not ideal.   

Unlike the χ² index, the Tucker-Lewis Index (TLI; Tucker & Lewis, 1973) 

does not assume perfect population fit and appears to be robust in large and small 

samples.  A value of ≥ .95 on the TLI is demonstrative of good fit between the 
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theoretical model and the sample data and a value of ≥ .90 is indicative of 

reasonable fit (Hu & Bentler, 1999).  The root mean square error of 

approximation (RMSEA; Steiger, 1990) is a measure of approximation of fit 

rather than exact fit (as is the χ² index).  RMSEA is also considered to be a 

“badness of fit” index as a higher number is not indicative of good fit.  A value of 

≤ .06 for the RMSEA is demonstrative of good fit between the theoretical model 

and the sample data (Hu & Bentler, 1999) and a value ≤ .08 suggests reasonable 

fit (Browne & Cudeck, 1993).  These criteria are routinely reported, yet, not all 

researchers agree that these criteria provide enough information for decision 

making.  Bollen and Long (1983) indicated that, “The test statistics and fit indices 

are very beneficial, but they are no replacement for sound judgment and 

substantive expertise” (p. 8). 

Wechsler (2003b) investigated multiple hypothesized structural models for 

the WISC-IV ranging from one to four-factor models.  Goodness of fit indices 

indicated that the four-factor model was the best fit as compared to the null model 

across all age groups and for the overall sample (χ
2
 = 131.62 (29); TLI = .98, 

RMSEA = .04).  When conducting exploratory and confirmatory factor analyses 

with the normative sample, Wechsler (2003b) failed to evaluate a multi-level 

structure for the WISC-IV.  Hierarchical CFA models are used when there are 

hierarchical relationships within the underlying theoretical constructs.  An indirect 

hierarchical model is when a second-order factor has a direct effect on the first-

order factors and an indirect effect (through the first-order factors) on the 

indicators (Kline, 2005).  With intelligence testing, g is regarded as a higher-order 
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factor because it is indirectly measured by other factors (such as Verbal and 

Perceptual).  An additional model that has been explored within intelligence 

testing is the direct hierarchical model.  A direct hierarchical model allows the 

general intelligence factor to have a direct effect on the individual subtests and 

each of the first order factors to have a direct effect on its specific subtests with no 

indirect effects (Gignac, 2008).  There have been subsequent studies completed 

by independent investigators to correct this omission. 

The first to explore hierarchical models for the WISC-IV was Keith 

(2005), who utilized the normative sample and CFA methodologies to investigate 

the hierarchical factor structure of all 15 subtests of the WISC-IV.  Two of the 

models that were tested included a general intelligence factor; both of these 

models indicated good fit to the data.  Initially, an indirect hierarchical model 

(Gignac, 2008) was specified.  In an indirect hierarchical model, it is assumed that 

the subtests are best explained by the first-order factors (VC, PR, WM, and PS) 

and the first-order factors are best explained by the second-order factor, general 

intelligence (see Figure 1 for an illustration).   
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This model displayed good fit to the normative sample data (RMSEA =.05, χ² = 

296.93 (86), CFI = .97, SRMR = .04).  Keith (2005) also specified a direct 

hierarchical model as an alternative to the indirect hierarchical model.  A direct 

hierarchical model allows all subtests to directly load on the first-order factors 

(VC, PR, WM, and PS) as well as on the second-order factor (g).  Using this 

model there is no assumed relationship between first- and second-order factors 

(see Figure 2 for an example).  This model exhibited better fit than the indirect 

hierarchical model (RMSEA = .04, χ² = 202.6 (75), CFI = .98, SRMR = .03).   

Figure 1.  An indirect hierarchical structure of the WISC-IV.  
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Keith, Fine, Taub, Reynolds, and Kranzler (2006) also used the normative 

sample to investigate the factor structure of the WISC-IV.  They found that the 

hypothesized factor structure of the WISC-IV, according to the technical manual, 

was not the best fitting model.  Specifically, they found that by imposing an 

indirect hierarchical factor model that theoretically underlies the WISC-IV (g as 

the second order factor), the model fit worsened.  This indicated to them that the 

factor model proposed by Wechsler (2003b) is not a good explanation of the 

constructs measured.  As an alternative, they hypothesized that a theoretically 

derived structure based on the Cattell-Horn-Carroll Model (CHC; McGrew, 1997) 

would better describe the abilities measured by the WISC-IV.  The model based 

on CHC theory did yield a better fitting model with the standardization data than 

Figure 2. Direct hierarchical model of the structure of the WISC-IV. 
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the four-factor theoretical model identified in the WISC-IV technical manual.  

However, this higher order five-factor structure was the best fitting model only 

when utilizing all 15 of the subtests available on the WISC-IV (including the core 

and supplemental subtests).  Thus, it may not hold when only the core subtests are 

considered.  Clinicians traditionally exclusively use the core subtests and are 

unlikely to administer the supplemental subtests (Watkins, 2010).  By using all 15 

subtests the clinical utility of the higher order five-factor structure is substantially 

reduced.   

There were additional limitations to the CHC model specified by Keith et 

al. (2006) for the WISC-IV normative sample.  For example, this model 

abandoned simple structure and allowed cross loadings.  That is, subtests were 

allowed to load on more than one factor.  Permitting subtests to cross load creates 

difficulty in understanding the resulting factor scores.  As the subtests were 

created to measure specific areas of ability, this limits the clinical utility of the 

information provided.  Additionally, this analysis reported that the loading of the 

second-order factor (Gf) on the third-order general factor (g) was 1.00, indicating 

dependence of these two factors.  Allowing these two factors to be dependent 

indicates that the Gf factor was not necessary for model fit.  This is problematic 

because the Gf factor is an essential component of the CHC theory of intelligence. 

 Additional analysis using the nationally representative standardization 

sample was conducted by Watkins (2006), who used the Schmid and Leiman 

(1957) orthogonalization procedure to evaluate the factor structure of the WISC-

IV.  It was determined that the WISC-IV general factor accounted for 
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approximately 38.3% of the total variance in the core subtests.  The verbal 

comprehension factor (VC) explained an additional 6.5% of the total variance; the 

perceptual reasoning factor (PR) explained an additional 2.2% of the total 

variance; the working memory factor (WM) explained an additional 2.3% of the 

total variance; and the processing speed factor (PS) explained an additional 4.4% 

of the total variance.  These findings were similar to previous research conducted 

on earlier revisions of the Wechsler intelligence scales (Gustafsson & Undheim, 

1996).  Overall, Watkins (2006) found that the general factor explained more 

variance than any of the first order factors and suggested that the FSIQ is the best 

predictor of intellectual ability.   

Clinical samples.  Utilizing the stratified normative sample for structural 

analyses has limitations.  The largest limitation is the exclusion of specific subsets 

of the population; specifically, a lack of structural validity evidence for 

disabled/exceptional/clinical populations.  The Standards for Educational and 

Psychological Testing (AERA, APA, & NCME, 1999) specify that validity of 

constructs must be established in the population for which measures are created.  

As the WISC-IV is most commonly applied with an exceptional population (those 

with clinical diagnoses), it is imperative that the factor structure of the WISC-IV 

be validated across clinical populations in addition to the normative sample.   

Accordingly, several studies have been conducted with clinical samples.  

The first study included a sample of 432 students referred for evaluation for 

special education eligibility (Watkins, Wilson, Kotz, Carbone, & Babula, 2006).  

Of these participants, 65% were identified as eligible for special education under 
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the following categories: learning disabilities (37%), gifted (8%), emotional 

disabilities (7%), mental retardation (5%), multiple disabilities (6%), and speech 

disabilities (2%).  The researchers used a four-factor EFA with Schmid-Leiman 

(1957) orthogonalization, which permits the variance accounted for by the higher-

order factor to initially be extracted, followed by the residual variance accounted 

for by the group factors.  Results indicated that a four-factor solution had 

excellent fit, accounting for 62% of the total variance.  Additionally, the general 

intelligence factor explained 47% of the total variance whereas the first order 

factors accounted for significantly less variance (ranging from 1.4% (working 

memory) to 6.5% (verbal comprehension) of total variance.  Overall, this study 

found that the proposed four-factor model (Wechsler, 2003b) was appropriate for 

the referred sample of this study.  Moreover, it determined that the general 

intelligence factor accounted for a greater amount of total variance than the first-

order factors and thus the authors did not recommend interpretation of the first-

order factor scores over the reported general intelligence score.  

More recently, Bodin, Pardini, Burns, and Stevens (2009) conducted a 

CFA to examine the higher order factor structure of the WISC-IV in a clinically 

referred sample (N = 344, 217 males, M age = 10.4 years).  The sample consisted 

of children with the following diagnoses: attention deficit/hyperactivity disorder 

(20%), epilepsy (18%), learning disability (14%), traumatic brain injury (9%), 

cerebral palsy (4%), meningitis/encephalitis (3%), spina bifida (2%, in-

utero/perinatal conditions (1%), and other medical conditions (29%).  CFA’s were 

used to replicate the models tested in the normative sample (one-factor, two-
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factor, three-factor, and four-factor), and each of the multiple factor models 

included a second order factor representing general intelligence (g).  Results 

indicated that the indirect hierarchical four-factor model was preferred.  Overall, 

the general intelligence factor explained the most variance (48.3% of total 

variance); whereas, the first order factors accounted for significantly less 

variance: verbal comprehension (5.2% of total variance), perceptual reasoning 

(2.5% of total variance), working memory (0.2% of total variance), and 

processing speed (6.4% of total variance).  These findings are consistent with 

previous research regarding both the normative sample as well as referred 

samples (Wechsler, 2003b; Watkins, 2006; Watkins, et al., 2006).    

Most recently, Watkins, (2010) investigated the structure of the WISC-IV 

in a national sample of children referred for psychoeducational evaluations (N = 

355 students, 218 males; M age = 9.78 years).  The sample consisted of children 

with the following diagnoses: learning disability (41%), other health impairments 

(9%), mental retardation (7%), emotional disabilities (6%), speech disabilities 

(4%), gifted (2%), and autism spectrum disorders (1%).  Around 30% of the 

participants were not found to have a disability.  CFA methods were used with 

maximum likelihood estimation in order to evaluate six hypothesized structural 

models of the WISC-IV (one-factor, two-factor, three-factor, four-factor, indirect 

hierarchical, and direct hierarchical) (See Figures 3 – 6 for examples of one-, two-

, three- and four-factor models).   
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Figure 3. A one-factor model of the WISC-IV structure. 

 

Figure 4. A two-factor oblique model of the structure of the WISC-IV. 
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Figure 5.  A three-factor oblique model of the structure of the WISC-IV.  

 

Figure 6.  A four-factor oblique model of the structure of the WISC-IV. 
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The one-, two-, and three-factor models did not exhibit good fit, but the 

other three models did: the four-factor oblique model (RMSEA = .06, SRMR = 

.028, CFI = .981), indirect hierarchical model (RMSEA = .058, SRMR = .03, CFI 

= .98), and the direct hierarchical model (RMSEA = .058, SRMR = .028, CFI = 

.983).  Watkins (2010) concluded that “the WISC-IV general intelligence factor is 

best interpreted as a first-order breadth factor as specified in the direct 

hierarchical model” (p. 786) and determined that the first-order four-factor model 

favored by Wechsler (2003b) was not appropriate because it did not include 

general intelligence as required by the theoretical structure of the WISC-IV.  The 

direct hierarchical model was superior statistically to the indirect hierarchical 

model (df = 2, Δχ² = 6.68, p =.048).  For the direct hierarchical model, the general 

intelligence factor explained the most variance (47% of total variance); whereas, 

the first-order factors accounted for significantly less variance: verbal 

comprehension (4.8% of total variance), perceptual reasoning (3.1% of total 

variance), working memory (1.9% of total variance), and processing speed (6.1% 

of total variance).  Overall, it was found that the general intelligence factor was 

best interpreted by the direct hierarchical model (see Table 1 for a comparison of 

variance components found across factor analyses of the WISC-IV).  
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Table 1. 

 

Comparison of Total Variance Components for First- and Second- Order Factors 

Across Studies 

 

Summary of WISC-IV structural validity evidence.  EFA and CFA 

were used to examine the factor structure of the WISC-IV with the normative 

sample (Wechsler, 2003b).   Both sets of analyses validated the four-factor 

structure (VC, PR, WM, and PS).  However, Wechsler (2003b) did not investigate 

the multi-level structure of the WISC-IV.  This oversight was corrected by 

subsequent researchers.  Direct and indirect hierarchical models were examined 

and both indicated good fit, with the direct hierarchical model exhibiting better fit 

(Keith, 2005).  Subsequent research by Keith, et al. (2006) indicated that using a 

five-factor model, based on CHC theory, yielded a better fitting model than the 

four-factor model identified by Wechsler (2003b).  However, there were multiple 

limitations to this study.  Additional analysis of the normative sample determined 

that the general factor explained the most variance overall (Watkins, 2006). 

Multiple studies also investigated the structure of the WISC-IV in clinical 

samples.  A four-factor EFA with Schmid-Leiman (1957) orthogonalization 

Study 

General 

Intelligence 

(g) 

Verbal 

Comprehension 

(VC) 

Perceptual 

Reasoning 

(PR) 

Working 

Memory 

(WM) 

Processing 

Speed 

(PS) 

Watkins 

(2006) 
38.3% 6.5% 2.2% 2.3% 4.4% 

Watkins, 

et al. 

(2006) 

46.7% 6.5% 2.4% 1.4% 4.7% 

Bodin, 

et al. 

(2009) 

48.3% 5.2% 2.5% 0.2% 6.4% 

Watkins 

(2010) 
47% 4.8% 3.1% 1.9% 6.1% 
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verified that the four-factor model proposed by Wechsler (2003b) was appropriate 

for a sample of students referred for evaluation for special education eligibility 

(Watkins, et al., 2006).  Subsequent research with a clinical population indicated 

that the higher order four-factor model was the most appropriate model (Bodin et 

al., 2009).  Finally, a study consisting of children referred for psychoeducational 

evaluations examined multiple structural models of the WISC-IV and determined 

that four-factor, indirect hierarchical, and direct hierarchical models all displayed 

good fit, but the direct hierarchical model best explained the general intelligence 

factor (Watkins, 2010).   

Structural Validity of WISC Across Time 

 Previous research studies have evaluated the structure of the WISC-IV by 

conducting cross-sectional studies using subjects with ages from 6 to 16 years.  

That is, the structure found with children of a specific age was compared to 

different children of other ages.  Cross-sectional studies allow the researcher to 

investigate many participants of different ages at one time.  The researcher is then 

able to make comparisons between ages.  However, a major limitation of this 

design is that there are cohort effects.  A cohort effect is the variation that occurs 

between groups based on differences due to possible shared temporal experiences 

(such as year of birth, year the child began school, historical significance, etc.).  

The ability to study the same sample of participants across time, referred to as a 

longitudinal design (Rosenthal & Rosnow, 1991), is a more time – consuming, yet 

desirable, method to investigate the change of individuals over time because it 
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controls for any variation between groups by sampling the same individuals 

multiple times.     

Studies of cognitive assessment measures have typically used cross-

sectional designs to determine that the structure of the test remained constant 

across age groups.  For example, the study by Keith et al. (2006) of the WISC-IV 

examined the normative sample to determine if the WISC-IV subtests measure the 

same constructs across age groups.  Using multisample CFA models, Keith et al. 

(2006) constrained the variance and covariances to be equal across age groups and 

determined that this model had good fit (RMSEA = 0.05, TLI = 0.967).  There 

was little difference, on average, between the actual correlations of the WISC-IV 

subtests and the predicted correlations from the hypothesized model.  These 

findings indicated that the WISC-IV measures the same constructs across age 

groups.  Thus, Keith et al. demonstrated that the factor structure of the WISC-IV 

was similar for a large group of children aged 6 through 16 years of age but did 

not demonstrate that the factor structure of the WISC-IV was similar for the same 

group of children as they matured across time.  

 Longitudinal factor analyses of the WISC.  There have only been four 

longitudinal factor analyses of WISC scores across the past 45 years.  In the first, 

the WISC factor structure was investigated with a sample of 153 pre-school aged 

children who were administered the WISC and followed up one year later with an 

additional administration of the WISC (Osborne, 1965).  Using an EFA with 

varimax rotation, the factor structure changed from pre-school to first grade.  

Specifically, there were 8 factors for the time 1 administration and 10 factors for 
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the time 2 administration.  However, this study included children that were not of 

appropriate age for the WISC.  Additionally, the methodology of this study is 

problematic as the subtests were split into two, three, or four parts to create 

additional variables and the EFA methods were sub-optimal (Gorsuch, 2003).  

Because of these limitations, the results of this study should be regarded with 

caution.  Similar techniques and results were reported by Osborne, Anderson and 

Bashaw (1967) for the WISC with the same fatal limitations.   

 In the third study the WISC-R factor structure was examined using a 

longitudinal design with a sample (N = 322) of children eligible for special 

education services across a span of approximately 3 years (Juliano, Haddad, & 

Carroll, 1988).  This study enrolled children who were identified as either white 

or black; other ethnicities were not included.  Results indicated that for students 

who were administered the Digit Span subtest at Time 1 and Time 2 (n = 229), a 

three-factor solution was identified for all groups.  The three known factors were: 

Verbal, Perceptual, and Freedom from Distractibility.  Coefficients of congruence 

were used to quantify similarity between groups, and indicated that the three-

factor solution remained stable for children with learning disabilities across the 

three-year time span regardless of sex or ethnicity.   

 The fourth longitudinal factor analysis investigated the factor structure of 

the WISC-III with 177 students classified as a child with a specific learning 

disability (SLD), a serious emotional disability (SED), mental retardation (MR), 

or other disabilities (Watkins & Canivez, 2001).  These students were twice 

administered the WISC-III approximately 3 years apart.  Four models were 
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initially evaluated using CFA and the first-order, four-factor model was accepted 

as the best fitting model for both test and retest occurrences.  Test and retest data 

was also analyzed to test for invariance of the factor structure across time.  

Initially, all factor loadings, factor variances, factor covariances, and subtest error 

variances were constrained to be equal; however, this model had inferior fit in 

comparison to a baseline model (χ²=170 (126), p = .06).  This was likely due to 

the error variances for three subtests (Vocabulary, Coding, and Arithmetic).  

Upon releasing those constraints, the model fit was significantly improved 

(χ²=148.5 (123), p = .058).  These results indicated that the WISC-III measured 

the same constructs across time and that the constructs were manifested in the 

same way across groups.  

Using CFA for Analysis of Longitudinal Factor Structures 

Previous studies using EFA methods have provided important yet 

incomplete information regarding invariance of factor structures.  When using 

EFA methods the researcher must decide how many factors to retain, what 

method of extraction to use, and what method of rotation to apply.  Upon analysis, 

the researcher combines theory, previous research, and the current findings to 

assign names to factors based on the specific factor loadings (Keith, 2005).  When 

conducting invariance studies, EFA may allow for different factor structures 

across groups (or time).  For example, item specific variances may result in a 

factor in one group (i.e., Time 1) and not in the other group (i.e., Time 2).  

However, by using CFA methods the researcher specifies the exact model that 

best explains the factor structure of the data.  In longitudinal invariance studies 
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this is especially important as the models at Time 1 and Time 2 are constrained to 

have the same number of factors, equivalent factor loadings, and intercepts at test 

and retest (Wu, Li, & Zumbo, 2007).  Although an important variant of factor 

analysis, EFA involves a large amount of judgment, whereas CFA allows for 

comparison between specific models (based on fit indices) as they become more 

constrained.  Thus, CFA should be the method of choice for testing invariance of 

equivalent models (Brown, 1996).  

CFA methods are commonly used to analyze the longitudinal factor 

structure of tests (Stein, Lee, & Jones, 2006).  These analyses typically begin by 

investigating whether the same measured variables define each factor at both test 

and retest occasions.  If they do not, the test is not measuring similar construct(s) 

at test and retest occasions and test scores cannot therefore be meaningful 

compared across time.  This is generally considered to be the least restrictive test 

of similarity of factors across time and has been called configural invariance 

(Chen, 2007).  If configural invariance is found it posits that the overall factor 

pattern is the same at test and retest.   

Even if the same measured variables define each factor at both test and 

retest occasions, they may not do so with equivalent precision.  If, on the other 

hand, each measured variable loads equally on its corresponding factor at test and 

retest occasions then the same constructs are being measured with equal precision 

at both occasions.  This has been labeled weak factorial invariance (or metric 

invariance) and indicates that the factors have the same meaning across time 

(Byrne, 2006; Widaman & Reise, 1997).  Logically, this analysis is conducted 
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after determining that configural invariance holds.  Failure to achieve metric 

invariance indicates that the factor structure cannot be assumed to remain stable 

across time and therefore interpretation of change in test scores cannot be 

unequivocally attributed to change in the constructs being measured.  Nor can test 

scores at test and retest be compared to other variables because one unit of change 

in test scores would not be equal to one unit of change in retest scores (Chen, 

Sousa, & West, 2005).   

Configural and weak factorial invariance still allow factor means to differ 

across test and retest occasions.  Similar to use of the Kelvin temperature scale for 

the test occasion and the Celsius scale for the retest occasion, the two scales can 

be correlated but their means differ.   Thus, the factor intercepts must be tested 

and found to be equivalent before factor means can be compared.  This level of 

invariance has been called strong factorial invariance (Widaman & Reise, 1997).  

When strong factorial invariance “is achieved, it means that scores from different 

groups [or two tests from the same group across time] have the same unit of 

measurement (factor loading) as well as the same origin (intercept), and thus the 

factor means can be compared across groups [or across time].  Otherwise, it 

cannot be determined whether any difference between groups on factor means is a 

true group difference or a measurement artifact” (Chen et al., 2005, p. 475).  

Logically, this analysis is conducted after determining that configural and weak 

factorial invariance holds. 

 Configural, weak, and strong factorial invariance still allow the error 

variances of measured variables to differ across test and retest occasions.  This 
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level of invariance has been referred to as strict factorial invariance (Widaman & 

Reise, 1997).  When this level of invariance is achieved, it indicates that all 

differences between test and retest scores are solely due to group differences 

associated with the common factors.  If strict factorial invariance is not met then it 

cannot be assumed that unique error variances are not contributing to differences 

between groups.  Although some researchers have indicated that testing for the 

equality of error variances is the least important aspect of factorial invariance and 

thus not essential (Bentler, 2005), others have suggested that it is important to 

consider (Wu, Li, & Zumbo, 2007).  Wu et al. (2007) argued that invariance 

across “all four measurement-elements is a necessary condition for MI 

[measurement invariance]” (p. 4).  Thus, in the current study the proposed model 

will be examined across all levels of invariance (configural, weak, strong, and 

strict). 

Current Study 

          As intelligence is thought to be an enduring trait, tests that measure 

intelligence should produce similar factor structures over time (Horn & McArdle, 

1992).  A cross-sectional analysis of the WISC-IV supported this assumption 

(Keith, et al., 2006).  Unfortunately, cross-sectional analyses may not be adequate 

for detecting change over time (Willett, Singer, & Martin, 1998).  There is no 

evidence regarding the stability of the WISC-IV structure across time for the same 

individuals.  If the structure changes over time then WISC-IV test-retest score 

differences cannot be unequivocally interpreted as reflecting changes in the 

underlying constructs, thereby limiting the construct validity of the WISC-IV as 
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well as the appropriateness of using this measure to identify disabilities in 

children.  Therefore, this study will use confirmatory factor analysis techniques to 

examine the factor structure of the WISC-IV across time for a clinically referred 

sample.  It is hypothesized that configural, weak, strong, and strict factorial 

invariance of WISC-IV scores across time will be demonstrated for a clinically 

referred sample. 
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Chapter 2 

METHOD 

Participants 

Three hundred and fifty-two students who were twice administered the 

WISC-IV, with all ten core subtests administered at each test session, served as 

participants in the current study.  Participant ages ranged from 6.1 to 14.11 years, 

with approximately 66% males (n = 231) and 34% females (n = 121).  Of these 

participants, 3.1% were in first grade, 30.4% in second grade, 19.9% in third 

grader, 13.4% in fourth grade, 8% in fifth grade, 4.8% in sixth grade, 1.7% in 

seventh and eighth grades, and 0.6% in ninth through twelfth grades at first 

testing.  Reported ethnic breakdown of the sample was 79% White, 11% 

Hispanic, and 6% Black, with 97% of students’ primary home language being 

English.  Approximately 95% of the students were eligible for special education 

services based on their primary diagnosis: 64.5% with learning disabilities, 12.5% 

with other health impairments (including attention deficit hyperactivity disorder), 

7.5% with emotional disabilities, 4.6% with autism spectrum disorder (including 

Asperger’s disorder), 2.6% with mental retardation, 2.3% with speech and 

language impairments, and 1.0% with other disabilities (hearing impairment and 

multiple disabilities).   

Instrument 

The Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) 

is an individually administered intelligence test used for children between the 

ages of 6 and 16 years.  The WISC-IV is a revised edition of the WISC-III and 
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has been standardized with a nationally representative sample of 2,200 children 

ages 6 through 16 years.  According to the technical manual (Wechsler, 2003b), 

the WISC-IV normative sample was representative of the U.S. population of 

children aged 6 to 16 years (March 2000 Census).  Using a process of stratified 

sampling, the final normative sample consisted of 2,200 children with 100 boys 

and 100 girls in each one-year age group.  The sample was stratified according to 

race/ethnicity and parent education level and geographic region (four major 

regions: Northeast, South, Midwest, and West).  Exclusionary criteria for the 

standardization sample included previous intelligence testing within the past 6 

months, uncorrected visual impairment, uncorrected hearing loss, non-English 

fluency, nonverbal/uncommunicative, disability that affects upper extremity 

motor performance, current hospitalization (medical, mental or psychiatric), 

current use of medication that may depress performance (antidepressants, 

anticonvulsants, antipsychotics etc.), and diagnosis of physical condition/illness 

that may depress testing performance (stroke, epilepsy, traumatic brain injury, 

meningitis, etc.).  Approximately 5.7% of the normative sample consisted of 

exceptional children (children with disabilities or giftedness) in accordance to the 

current population of school age children at the time of test development.  

The WISC-IV consists of 15 subtests, 10 core and 5 supplemental, each 

with a mean of 10 with a standard deviation of 3.  The core subtests are Block 

Design, Similarities, Digit Span, Picture Concepts, Coding, Vocabulary, Letter-

Number Sequencing, Matrix Reasoning, Comprehension, and Symbol Search.  

The supplemental subtests include Picture Completion, Cancellation, Information, 
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Arithmetic, and Word Reasoning.  The 10 core subtests are used to form four 

factor indices: Verbal Comprehension Index (VCI; Similarities, Vocabulary, and 

Comprehension), Perceptual Reasoning Index (PRI; Block Design, Matrix 

Reasoning, and Picture Concepts), Working Memory Index (WMI; Digit Span 

and Letter-Number Sequencing), and Processing Speed Index (PSI; Coding and 

Symbol Search).  Each index score has a mean of 100 with a standard deviation of 

15.  A Full Scale Intelligence Quotient (FSIQ; M = 100; SD = 15) can also be 

formed from the 10 core subtests.  

The technical manual for the WISC-IV reported strong internal 

consistency reliability coefficients in both the standardization and the special 

education samples (Wechsler, 2003b).  For example, within the standardization 

sample the internal consistency coefficients for the test’s four indices are as 

follows: VCI = .94, PRI = .92, WMI = .92, PSI = .88 and FSIQ = .97.  Reliability 

coefficients for the special education sample were not reported; however, internal 

consistency reliability coefficients were reported for eight of the ten core subtests 

within the special education sample (coding and symbol search were not used in 

this analysis).  These coefficients ranged from 0.87 (Digit Span) to 0.93 (Letter-

Number Sequencing and Matrix Reasoning).  Additionally, Wechsler (2003b) 

reported strong correlation coefficients between the WISC-IV and other Wechsler 

scales including the WISC-III, the Wechsler Primary and Preschool Scale of 

Intelligence-Third Edition (WPPSI-III, Wechsler, 2002), the Wechsler Adult 

Intelligence Scale-Third Edition (WAIS-III; Wechsler, 1997), and the Wechsler 
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Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), which are indicative 

of robust convergent validity.   

Exploratory and confirmatory factor analyses indicated evidence of 

structural validity for the normative sample.  Specifically, the technical manual 

reported that the first-order four-factor oblique structure was the best fit for the 

core subtests (Wechsler, 2003b).  This structure has also been replicated by 

independent research for the normative sample (Keith et al., 2006; Watkins, 2006) 

and clinical samples (Bodin et al., 2009; Watkins, 2010; Watkins et al., 2006).  

Independent studies have also further assessed the normative sample and the 

structure of the WISC-IV by evaluating a multi-level structure.  Independent 

research has indicated that the direct (Keith, 2005; Watkins, 2010) and indirect 

hierarchical (Bodin et al., 2009) models are the best fitting models.  Additionally, 

studies have replicated that the general intelligence factor explains more variance 

than any of the first order factors (Watkins, 2006; Watkins, et al., 2006; Bodin et 

al., 2009; Watkins, 2010).   

Procedure 

 Following IRB and school district approval, seven doctoral school 

psychology students reviewed special education files and extracted relevant 

WISC-IV data from approximately 7,500 student files in two participating school 

districts.  The two participating school districts encompass forty-seven elementary 

schools, fourteen middle schools, three K-8 schools, eleven high schools, and one 

alternative school (K-12).  One district serves 33,500 students and the second 

serves 26,600 students.  School district demographics were collected from 
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information provided by the National Center for Education Statistics 

(http://nces.ed.gov/).  The first district is comprised of approximately 84% non-

Hispanic or Latino students, with 6% of their students identified as English 

Language Learners.  The second district is comprised of approximately 88% non-

Hispanic or Latino students, with 4% of their students’ identified as English 

Language learners.   

Special education files were reviewed individually to determine if a 

WISC-IV was administered to each student.  Approximately 3,111 files met this 

criterion with approximately 66% male (n = 2,059) and 34% female (n = 1,052).  

This initial sample consisted of 10.6% first graders, 15.8% second graders, 13.4% 

third graders, 14.2% fourth graders, 13.3% fifth graders, 12.5% sixth graders, 

12.5% seventh and eighth graders, and 5.7% ninth thru twelfth graders.  The 

ethnic composition of this sample was 76% White, 13% Hispanic, 5% Black, and 

2% American Indian students with 94% of students’ primary home language 

being English.   Approximately 92% of the students were eligible for special 

education services based on their primary diagnosis: 57.2% with learning 

disabilities, 12.3% with other health impairments (including attention deficit 

hyperactivity disorder), 11.9% with emotional disabilities, 3.8% with autism 

spectrum disorder (including Asperger’s disorder), 2.6% with mental retardation, 

2.3% with speech and language impairments, and 1.0% with other disabilities 

(hearing impairment and multiple disabilities).  Of those 3,111 files, 352 

contained a second WISC-IV that met all selection criteria.  Those 352 students 

http://nces.ed.gov/
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served as participants in the current study (see Tables 2 and 3 for individual 

characteristics of the overall and test-retest sample). 

Table 2 

 

Grade Level for Overall and Test-Retest Sample  

 

Grade Overall Sample Test-Retest Time 1 Test-Retest Time 2 

 Frequency 

Percent 

of 

Sample 

Frequency 

Percent 

of 

Sample 

Frequency 

Percent 

of 

Sample 

1 330 10.6 11 3.1 4 1.1 

2 492 15.8 107 30.4 5 1.4 

3 418 13.4 70 19.9 23 6.5 

4 441 14.2 47 13.4 62 17.6 

5 414 13.3 28 8.0 100 28.4 

6 390 12.5 17 4.8 82 23.3 

7 196 6.3 5 1.4 29 8.2 

8 194 6.2 1 0.3 23 6.5 

9 - 12 177 5.7 2 0.6 19 5.4 
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Table 3. 

 

Individual’s Characteristics for Overall and Test-Retest Sample 

 

Characteristic Overall Sample Test-Retest Sample 

 Frequency 
Percent of 

Sample 
Frequency 

Percent of 

Sample 

Ethnicity     

     American Indian 53 1.7 3 0.9 

     Asian/Pacific 47 1.5 4 1.1 

     Black 169 5.4 22 6.3 

     Hispanic 411 13.2 38 10.8 

     White 2354 75.7 279 79.3 

     Other/Missing Data 77 4.2 0 0 

Special Education 

Eligibility 
    

     Learning Disability 1779 57.2 227 64.5 

     Other Health 

Impairment    
383 12.3 44 12.5 

     Emotional Disability 371 11.9 27 7.5 

     Not Eligible 261 8.4 18 5.1 

     Autism Spectrum   116 3.8 16 4.6 

     Mental Retardation 81 2.6 8 2.3 

     Speech and 

Language 
73 2.3 8 2.3 

     Hearing Impaired 19 0.6 1 0.3 

     Multiple Disabilities 13 0.4 2 0.6 

Primary Language     

     English 2934 94.3 343 97.4 

     Spanish 93 3.0 4 1.2 

     Other 84 2.7 5 1.4 

 

Statistical Analyses 

Model specification.  There are a number of analyses that can be applied to 

determine if the WISC-IV is measuring the same constructs with the same 

accuracy across time.  Modern approaches evaluate invariance through multiple-

group CFA (Byrne, 2006).  However, when testing longitudinal invariance there 

is no categorization of multiple groups or samples; thus, the testing of 
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longitudinal invariance requires that separate models at each time be fit 

simultaneously to the data (Wang, Elhai, Dai, & Yao, 2010).  In accordance with 

previous empirical work and intelligence theory, three alternative models have 

been identified as best fitting and most appropriate in the normative and clinical 

samples: direct-hierarchical model, correlated four-factor model, and the indirect-

hierarchical model.  However, for the purpose of the current study, the direct-

hierarchical model will be excluded because it will not be statistically identified 

without a constraint of equality of factor loadings, which will not allow for 

subsequent invariance tests.  Thus, the remaining two models will be used for the 

first stage of analysis.   Each model will be evaluated to determine the baseline 

model for the current analysis.  A baseline model will be identified at both test 

and retest and the fit of each model (indirect-hierarchical and correlated four-

factor) will be determined.  Fit of the models will be compared to one another, 

and the best fitting model will then be used as the baseline model for further 

examination of factorial invariance.   

For the identified baseline model factorial invariance testing will ensue.  

Initially, configural invariance will be assessed (see Figure 7 for an example of 

the indirect hierarchical model and Figure 8 for an example of the correlated four-

factor model).  Test and retest factor models will be constructed with factor 

correlations estimated between data from the first administration and data from 

the second administration.  In the hierarchical model, the pairs of disturbance 

variances of the first-order factors at test and retest will be correlated; whereas, in 

the correlated four-factor model the pairs of factors will be correlated at test and 
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retest among the four factors.  Additionally, all pairs of residual error variances of 

the subtests will be correlated at test and retest because the same items were used 

to create the subtest score at both time points; more specifically, a subtest’s 

residual error variance at test will be permitted to covary with that subtest’s 

residual error variance at retest.  The metric will be set at one factor loading for 

each first-order factor and in the hierarchical model the metric will be set at one 

factor loading of the second-order factor as well as one factor loading for each 

first-order factor.  If invariance is found at this level it posits that the overall 

factor structure is the same at test and retest (configural invariance).    

Upon confirmation of configural invariance, further constraints will be 

imposed on the model and compared to the configural invariance model.  Thus, 

the fit of the proposed weak factorial invariance model will be assessed.  To do 

this, the configural invariance model will be used and the remaining factor 

loadings will all be constrained to be equal across administrations.  If the baseline 

model is a hierarchical model, then initially the first-order factor loadings will be 

constrained to be equal across time and assessed for invariance followed by the 

second-order factor loadings will be constrained to be equal across 

administrations (Chen et al., 2005).  A chi-square difference test will be used to 

assess if the constrained model (weak factorial invariance) is significantly 

different from the baseline model (configural invariance).  If the chi-square 

difference test is not significant then it is indicative that the magnitude of the 

factor loadings are the same across test and retest, satisfying weak invariance.   
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Next, the fit of the proposed strong factorial invariance model will be 

evaluated by using the weak factorial invariance model and constraining the 

intercepts to be equal across administrations.  If the baseline model is a 

hierarchical model, then initially the intercepts of measured variables (subtests) 

will be constrained to be equal across time, followed by the intercepts of the first-

order factors (Chen et al., 2005).  If invariance is found at this level, it indicates 

that the test is measuring the same construct across time with similar accuracy.   

Finally, assuming strong factorial invariance is upheld, the fit of the 

proposed strict factorial invariance model will be tested.  The strong factorial 

invariance model will be used and constraints of equal subtest error variances will 

be applied across administrations.  If the baseline model is a hierarchical model, 

then initially the first-order disturbances will be constrained to be equal across 

time followed by the residual variances of the observed variables (Chen et al., 

2005).  This sequence of invariance tests will be conducted in a similar manner to 

Grouzet, Otis, and Pelletier (2006) and Wang et al. (2010).  Confirmatory factor 

analysis as implemented in Mplus 6.11 (Muthén & Muthén, 2010) will be used to 

test these sequential levels of factorial invariance.   
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Figure 7.  Assessing configural invariance of the proposed indirect hierarchical model at Time 1 and Time 2. 
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Figure 8.  Assessing configural invariance of the proposed correlated four-factor model at Time 1 and Time 2.
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Comparison of fit between models.  For the purpose of this analysis, fit 

indices and model comparison statistics will be reported.  The following indices 

will be used to determine fit of each model: the chi-square statistic (χ²); the 

comparative fit index (CFI; Bentler, 1990), root-mean-square-error of 

approximation (RMSEA), Bayesian Information Criterion (BIC; Raftery, 1995), 

and the standardized root mean square residual (SRMR).  Fit will be determined 

to be good, acceptable, or unacceptable.  The χ² index is considered to be a 

“badness of fit” index because the model’s fit is worse when the χ² value is high.  

The CFI is an index used to evaluate model fit.  This index compares the “null” 

model, where all measured variables are uncorrelated, to the model being tested.  

Unlike the χ² index, the CFI does not assume perfect population fit and appears to 

be robust in large and small samples (Keith, 2005).  An additional fit index that is 

used is the Bayes Information Criteria (BIC; Raftery, 1995).  This fit index 

penalizes complex models by taking into account the number of free parameters.  

A lower BIC value indicates a better fitting model.  SRMR is another fit index 

that is commonly used; this index represents the overall difference in correlations 

between the observed and predicted models (Keith, 2005).  In accordance with Hu 

and Bentler (1999), a value of ≥ .95 on the CFI, a value of ≤ .06 for the RMSEA, 

and a value of ≤ .08 for the SRMR will be used to indicate good fit between the 

theoretical model and the sample data.  Acceptable fit will be indicated by a CFI 

value of ≥ .90 (Hu & Bentler, 1999), a RMSEA value ≤ .08 (Browne & Cudeck, 

1993), and a SRMR value ≤ .10 (Kline, 2005).  Values of CFI < .90, RMSEA > 

.08, and SRMR > .10 will signal unacceptable fit. 
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The χ² difference test (Satorra & Bentler, 2001) will be used to assess 

differences between models.  A significant χ² difference test is indicative of 

differences in the fit of the two models and thus would not lend evidence of good 

fit whereas a non-significant χ² difference test would indicate invariance across 

test and retest.  In order to account for potential experimentwise errors caused by 

using multiple chi-square difference tests, a Bonferroni correction was applied to 

the alpha level (p).  An initial overall significance level of p < .05 was used but 

due to multiple tests the Bonferroni correction was applied so that individual tests 

were at the p < .0125 (.05/4) level (Green, Thompson, & Babyak, 2010).  As the 

χ² difference test is sensitive to sample size (Keith, 2005), additional tests will be 

used to establish evidence of factor invariance.  Cheung and Rensvold (2002) 

identified that an alternative to using the χ² difference test is by evaluating the 

change (Δ) in another general fit index.  Based upon results of a simulation study, 

it was determined that measuring change in the comparative fit index (ΔCFI) is a 

robust statistic for testing between-group invariance of CFA models.  This study 

determined that a ΔCFI value of ≤ 0.01 is indicative of invariance.  Chen (2007) 

also supported this cutoff value for evaluating fit.  CFI difference values between 

.01 and .02 are indicative of mean differences and CFI differences >.02 indicate 

definite differences (Cheung & Rensvold, 1999, 2002).  Additionally, the 

Bayesian information criterion (BIC) difference test will be used to test models 

that are not nested.  A difference of ≥ 10 is indicative of very strong support, 6-10 

points is indicative of strong support, 2-6 is indicative of positive support, and < 2 
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is indicative of weak support, for the model with the lower BIC value (Raftery, 

1995).   
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Chapter 3 

RESULTS 

Descriptive statistics for WISC-IV subtest, factor, and IQ scores at test 

and retest for the referred special education sample are reported in Table 4.  These 

results indicate that the current sample exhibited slightly lower and more variable 

scores than the normative sample of the WISC-IV (Wechsler, 2003b).   This 

pattern of scores has been observed in similar samples of students referred for 

special education evaluations (Watkins et al., 2006). The univariate score 

distributions from the current sample appear to be relatively normal across both 

test administrations, with .43 the largest skew and .93 the largest kurtosis at test as 

well as -.48 the largest skew and .91 the largest kurtosis at retest.  Additionally, 

examination of each variable’s associated histogram indicated that the sample 

appears to generally follow the shape of a normal distribution (Tabachnick & 

Fidell, 2007).  Although the univariate skewness and kurtosis statistics indicated 

normality, subsequent analyses require multivariate normality.  The Mplus 

program provided multivariate skewness (5.71 and 5.83) and kurtosis (124.32 and 

126.49) statistics based on Mardia (1970) for test and retest occasions, 

respectively.  However, Muthén (2011) indicated that tests of multivariate 

normality are no longer as important as in the past because there are now non-

normality robust techniques that can be applied.  Consequently, the MLM robust 

estimation technique was used, rather than ML estimation, to adjust for non-

normality. 
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Table 4. 

Mean, Standard Deviations, Skewness, and Kurtosis of Wechsler Intelligence 

Scale for Children-Fourth Edition (WISC-IV) Subtest, Factor, and IQ Scores of 

352 Students Twice-Tested for Special Education Eligibility 

Variable Mean SD Skewness Kurtosis 

 Test Retest Test Retest Test Retest Test Retest 

BD  9.2 8.7 2.8 3.0 -0.07 0.24 0.05 -0.08 

SI  8.8 6.2 2.6 2.8 0.10 0.06 0.14 0.29 

DS  8.0 7.8 2.6 2.6 0.09 -0.22 0.93 0.07 

PCn  9.5 10.0 3.3 3.0 -0.20 -0.48 -0.07 0.35 

CD  8.4 7.5 3.2 2.9 0.43 0.00 0.05 -0.15 

VC  8.6 8.4 2.7 2.7 0.09 -0.07 0.17 0.14 

LN  8.1 8.2 2.8 3.1 -0.37 -0.73 -0.11 -0.10 

MR  9.1 9.1 3.0 3.1 0.19 0.01 0.33 0.16 

CO  8.9 8.9 2.7 2.6 -0.24 -0.60 0.66 0.91 

SS  8.4 8.7 3.3 3.1 -0.28 -0.18 0.02 0.26 

VCI  92.5 93.0 12.7 13.2 -0.21 -0.20 0.67 0.81 

PRI  95.5 95.4 15.0 15.7 -0.33 -0.28 0.20 0.25 

WMI  88.3 88.0 13.0 14.2 -0.23 -0.56 -0.67 0.23 

PSI  91.3 89.3 15.1 15.0 0.03 0.05 -0.08 0.10 

FSIQ  90.3 89.9 13.6 14.5 -0.39 -0.40 0.67 0.82 

Note. BD = Block Design; SI = Similarities; DS = Digit Span; PCn = Picture 

Concepts; CD = Coding; VC = Vocabulary; LN = Letter-Number Sequencing; 

MR = Matrix Reasoning; CO = Comprehension; SS = Symbol Search; VCI = 

Verbal Comprehension Index; PRI = Perceptual Reasoning Index; WMI = 

Working Memory Index; PSI = Processing Speed Index; FSIQ = Full-Scale IQ. 

 

Baseline Model Identification 

 

 Previous research indicates that the correlated four-factor, direct-, and 

indirect-hierarchical models have been identified as the best fitting and most 

appropriate models for the WISC-IV (Keith, 2005; Watkins et al., 2006; Gignac, 

2008; Bodin et al., 2009) .  However, the direct-hierarchical model was excluded 

due to a failure to achieve statistical identification.  The remaining models were 

evaluated to determine the best fitting baseline model for the current study.  Each 

model was evaluated for fit at test and retest (See Table 5 for goodness-of-fit 

indices for both models at test and retest). According to the goodness of fit 
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indices, both models indicated relatively good fit within each individual time 

point (both test and retest).   

Table 5. 

 

Goodness-of-fit indices for baseline models at test and retest. 

 

The chi-square difference test identified that at test there was no significant 

change in fit between the models; however, at retest there was a significant 

difference according to the chi-square difference test.  Since the indirect-

hierarchical model is nested within the correlated four-factor model, the 

correlated four-factor model was chosen as the baseline model as it was the 

supported model at retest based on the chi-square difference testing (See Table 6 

for model fit comparison statistics at test and retest).   

Table 6. 

 

Model fit comparison statistics at test and retest. 

 

 

Model χ² df CFI BIC RMSEA SRMR 

Correlated Four-Factor 

model at Test 
61.8 29 .97 16367.74 .06 .03 

Correlated Four-Factor 

model at Retest 
93.0 29 .96 16087.08 .08 .04 

Indirect Hierarchical 

Model at Test 
62.6 31 .97 16362.9 .05 .03 

Indirect Hierarchical 

Model at Retest 
100.1 31 .95 16089.05 .08 .05 

Model Comparisons Δχ² Δdf 
p 

value 
ΔCFI ΔBIC 

Indirect and Correlated models at 

Test 
.701 2 .70 .001 -4.85 

Indirect and Correlated models at 

Retest 
7.063 2 .03 .003 1.97 
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Factorial Invariance 

 The correlated four-factor model was used as the baseline model for 

invariance testing.  Invariance testing was conducted using Mplus 6.11 (Muthén 

& Muthén, 2010) and followed the sequence of invariance tests described by 

Wang et al. (2010).  Invariance testing was conducted across configural, weak, 

strong, and strict levels of testing for the correlated four-factor model.  Each level 

of invariance was achieved prior to continuation of invariance testing (See Table 

7 for all invariance testing results). All chi-square difference tests were conducted 

with the modified formula described by Muthén & Muthén (2010) to account for 

robust ML methods. 

Configural invariance.  The correlated four-factor model identified as the 

baseline model was tested initially for configural invariance.  Upon initial 

investigation Mplus identified a possible linear dependency among the latent 

variables associated with working memory at test and retest (WMI1 and WMI2).  

This linear dependency indicated high correlation across time.  To correct for this 

dependency, the covariance between the offending parameters (WMI1 and 

WMI2) was fixed to equal 1.  The raw data was used to check the correlation 

between WMI1 and WMI2 (r = .65) and this correlation was compared to the 

correlation between WMI1 and WMI2 with the constraint in place (r = .69).  As 

these correlations were similar, the constraint was left in place for the remainder 

of invariance testing.  Continuation of configural invariance testing resulted in 

good fit (χ² = 255.46 (133), CFI = .965, RMSEA = .051 (.042 - .061), SRMR = 
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.083, BIC = 31655.78).  These results indicate that configural invariance was 

upheld across time and thus the sequence of invariance testing can continue.     

Factor loadings.  Standardized factor loadings for the correlated four-

factor model at the level of configural invariance testing are presented in the path 

diagram in Figure 9.  All factor loadings of the observed variables were moderate 

to high and significant (p < .001) ranging from .50 to .92.  The standardized factor 

loadings for the correlations amongst the latent variables were also moderate to 

high and significant (p < .001) ranging from .31 to .92.  These results indicate that 

all observed variables loaded appropriately on the indicated factors at both test 

and retest.   
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Weak invariance. For weak factorial invariance testing, the factor 

loadings were constrained to be equal across time for the configural model.  This 

level of invariance testing indicated good fit overall (χ² = 270.59 (139), CFI = 

.962, RMSEA = .052 (.043 - .061), SRMR = .085, BIC = 31655.337).  The chi-

square difference test was not significant, meaning that there was no statistically 

significant change between the configural and weak invariance models at the a 

priori specified significance level, p = .0125, (∆χ² = 15.06 (6), p = .02).  Weak 

invariance was also supported by a CFI difference less than .01 and a BIC 

difference less than 2 (ΔCFI = .003, ΔBIC = .443).  To ensure that no individual 

indicator would significantly change the fit of the overall model, each pair of 

observed variables was unconstrained one at a time.  This check resulted in minor 

to no change in fit and thus all pair of indicators remained constrained to be 

equivalent across time.       

Strong invariance.  Next, the observed variable intercepts were 

constrained to be equal across time.  Initial results indicated acceptable fit overall 

(χ² = 349.947 (149), CFI = .942, RMSEA = .062 (.054 - .07), SRMR = .087, BIC 

= 31709.14).  The chi-square difference test was statistically significant, meaning 

that there was change between the weak and strong invariance models (∆χ² = 

80.18 (10), p < .001).  Additionally, the CFI difference was greater than .01 and 

the BIC difference was greater than 10 (ΔCFI = .02, ΔBIC = 53.803).  As these 

results indicate significant change between the models, there is no support for full 

strong invariance.  In order to evaluate for partial invariance at this stage, 

recommended modifications were obtained from Mplus on several observed 



58 

variable intercepts.  The affected variables were the Coding subtest (CD1 and 

CD2), Block Design subtest (BD1 and BD2), and Similarities subtest (SI1 and 

SI2).   

First, the previously constrained intercepts of CD1 and CD2 were 

released.  This resulted in improved fit of the model, (χ² = 317.676 (148), CFI = 

.951, RMSEA = .057 (.048 - .066), SRMR = .086, BIC = 31678.879).  However, 

the chi-square difference test comparing the weak invariance model to the current 

more constrained model (∆χ² = 47.54 (9), p < .001) remained significant, the 

difference in CFI was above .01 and the difference in BIC was above 10 (ΔCFI = 

.011, ΔBIC = 23.342), indicating that strong invariance continued to fail to be 

upheld.   

Second, in addition to the released CD1 and CD2 constraints, the 

previously constrained intercepts between BD1 and BD2 were released.  This 

model resulted in improved fit (χ² = 297.08 (147), CFI = .957, RMSEA = .054 

(.045- .063), SRMR = .085, BIC = 31660.549).  As, the chi-square difference test 

comparing the weak invariance model with the current more constrained model 

remained significant (∆χ² =  26.68 (8), p < .001), partial strong invariance was not 

upheld due to the change in BIC indicating positive support of change (ΔCFI = 

.005, ΔBIC = 5.212).   

Lastly, in addition to the released CD1, CD2, BDI, and BD2 constraints, 

the previously constrained intercepts between SI1 and SI2 were released.  This 

model resulted in improved fit (χ² = 285.53 (146), CFI = .96, RMSEA = .052 

(.043 - .061), SRMR = .085, BIC = 31651.473).  The chi-square difference test 
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comparing the weak invariance model with the current more constrained model 

was not significant (∆χ² = 14.97 (7), p = .04) indicating support of partial strong 

invariance; additionally, the change in CFI indicated support of partial strong 

invariance (ΔCFI = .002).  Although the change in BIC was above 2, indicating 

change in models (ΔBIC = 3.86), partial strong invariance was indicated in the 

model due to the non-significant results of the chi-square difference test and the 

small amount of change in the CFI value between models when the intercepts of 

the variables BD, CD, and SI were unconstrained at test and retest.  Therefore, the 

WISC-IV factor loadings and factor intercepts (with the exception of CD, BD, 

and SI) were equivalent across test and retest.  Thus, the WISC-IV exhibited both 

configural and weak invariance across time as well as partial strong invariance 

across time (with the exception of the CD, BD, and SI variables).   

Strict invariance.  The final step of invariance testing included constraint 

of the error variances associated with the observed variables to be equal across 

time.  Due to the constraints removed from the CD, BD, and SI variables in the 

previous step, testing of strict invariance allowed those variables to remain 

unconstrained and new constraints were only applied to the remaining observed 

variables’ error variances.  Results indicated good fit overall (χ² =308.85 (153), 

CFI = .955, RMSEA = .054 (.045 - .062), SRMR = .086, BIC = 31657.847).  The 

chi-square difference test was statistically significant (∆χ² = 22.8 (7), p = .002); 

additionally, the change in BIC did not support invariance at this level.  Although 

the CFI difference was less than .01, partial strict invariance was not upheld.   
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Additional modifications were recommended by Mplus on the error 

variance associated with the subtest, Symbol Search (SS); thus the previously 

constrained error variances of SS1 and SS2 were released.  Upon release of this 

constraint, partial strict invariance was achieved.  Results indicated good fit 

overall (χ² =300.64 (152), CFI = .957, RMSEA = .053 (.045 - .062), SRMR = 

.086, BIC = 31651.58).  The chi-square difference test was not statistically 

significant (∆χ² = 14.89 (6), p = .02); additionally, the change in BIC (-0.11) and 

the difference in CFI (.003) indicate that partial strict invariance is upheld.  

Therefore, the WISC-IV factor loadings, factor intercepts (with the exception of 

CD, BD, and SI), and error variances (with the exception of CD, BD, SI, and SS) 

were equivalent across test and retest.  Thus, the WISC-IV exhibited configural, 

weak, partial strong (with the exception of the CD, BD, and SI variables), and 

partial strict invariance across time (with the exception of the CD, BD, SI, and SS 

variables).   

Table 7. 

Invariance Analysis Results for the Correlated Four-Factor Model Across Test 

and Retest. 

Invariance 
Model  

df χ2 CFI 
RMSEA 

(C.I.) 
SRMR BIC Δ df Δ χ2 Δ CFI ΔBIC 

1. Conf. 

Invariance 
133 255.46 .965 

.051 

(.042-.061) 
.083 31655.78 - - - - 

2. Weak 

Invariance     
139 270.59 .962 

.052 

(.043-.061) 
.085 31655.34 6 15.06 .003 .443 

3. Strong 

Invariance   
146 285.53 .96 

.052 

(.043-.061) 
.085 31651.47 7 14.97 .002 3.86 

4. Strict 

Invariance    
152 300.64 .957 

.053 

(.045-.062) 
.086 31651.58 6 14.89 .003 -0.11 

Note.  The results for strong invariance presented here are for the model with the 

intercepts of CD1, BD1, SI1, CD2, BD2, and SI2 unconstrained.  The results for 

strict invariance presented here are for the model with residual error variances of 
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CD1, BD1, SI1, SS1, CD2, BD2, SI2 and SS2 unconstrained.  If the decrease in 

the CFI value is .01 or greater, then the global test of the invariance constraints at 

the particular step does not hold.  If the change in BIC value is 2 or greater, then 

the global test of the invariance constraints at that particular step does not hold.   

 

Summary of Findings 

 Overall, the correlated four-factor model was the best fitting model at test 

and retest.  Using the correlated four-factor model as a baseline, factorial 

invariance testing ensued.  Configural and weak invariance were achieved, 

signifying that the overall factor structure remained the same at test and retest 

with equal precision of the factor loadings at both time points.  However, strong 

invariance was not found; partial strong invariance was achieved by freeing the 

intercepts associated with the Block Design, Coding, and Similarities subtests.  

Finally, partial strict invariance was not obtained even when the errors associated 

with the Block Design, Coding, and Similarities subtests were freed and thus 

partial strict invariance was not achieved.  Additional release of the error 

associated with the Symbol Search subtest resulted in achievement of partial strict 

invariance across time.  

 

 



62 

Chapter 4 

DISCUSSION 

The goal of the current study was to investigate factorial invariance of the 

WISC-IV for a group of 352 students eligible for psychoeducational evaluations 

tested, on average, 2.8 years apart.  One research question was addressed in this 

study: Does the structure of the WISC-IV remain invariant for the same 

individuals across time in a referred sample?  It was hypothesized that the factor 

structure of the WISC-IV would remain invariant, across all levels of invariance, 

in the same individuals across time with this referred sample.  Using structural 

equation modeling methods this study found invariance across the configural and 

weak invariance levels and partial invariance at the strong and strict levels of 

invariance.  Three subtest intercepts (BD, CD, and SI) were not equivalent across 

test and retest; additionally, four subtest error variances (BD, CD, SI, and SS) 

were not equivalent across test and retest.  These results indicate that the WISC-

IV measures the same constructs equally well across time. 

Factorial Invariance 

 The identified baseline model, a correlated four-factor model, exhibited 

good fit and resulted in similar factor loadings as previous research of the WISC-

IV suggested at both time points (Wechsler, 2003b; Watkins, et al. 2006).  More 

importantly, the pattern of factor loadings remained similar across each model at 

test and retest.  The factor loadings at both testing occasions indicated that each 

individual subtest had moderate to strong factor loadings on each assigned factor.  

This indicates that the individual subtests are in fact measuring each identified 
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factor similar to the expected factor structure articulated by the author of the 

WISC-IV.  Additionally, the pattern of correlations between latent variables 

indicated that the four factors are highly correlated with one another, providing 

evidence that there is likely a higher-order factor associated with the construct of 

intelligence.  Furthermore, the pattern of correlations between latent variables 

remained similar across test and retest as well.  As each of the factors was 

correlated with one another at each time point, the same pattern was also allowed 

across time; meaning that all factors at initial testing were allowed to correlate 

with all factors at the retesting period.  The correlations between factors across 

time also followed a similar pattern to the patterns found at each testing time.  

This finding also lends evidence that there is a higher-order factor that is 

contributing to the correlations between these variables.     

Configural invariance.  The correlated four-factor model was tested for 

configural invariance and the results indicated that configural invariance was 

upheld across time.  Verification of configural invariance indicates that each 

measured variable identically loads upon its specified common factor (Gregorich, 

2006).  Specifically, this requires that the same subtests are loading on each 

respective factor across time; meaning that the overall factor pattern is the same at 

test and retest.  This indicates that the WISC-IV is measuring similar constructs at 

both test and retest occasions.  Configural invariance is considered to be the least 

restrictive test of similarity of factors across time (Chen, 2007). 

Weak invariance.   The correlated four-factor model was further tested 

for weak factorial invariance with the results indicating that weak invariance was 
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upheld. Because of the multiple significance tests, the Bonferroni correction was 

used to control the experimentwise alpha level, resulting in a significance level of 

.0125 for any single significance test.  Due to this conservative significance level, 

weak invariance was achieved with the chi-square difference test.  If the 

Bonferroni correction had not been utilized, this test would have been considered 

to be significant and thus weak invariance would not have been achieved.  

However, when completing factorial invariance testing, the chi-square difference 

test is frequently disregarded due to the chi-square’s dependence upon sample 

size if the other model comparison statistics indicate invariance (Brannick, 1995; 

Kelloway, 1995; Wu, Li & Zumbo, 2007).  Following this tradition, changes in 

CFI and BIC fit indices were not large enough to reject invariance. Thus, the 

conservative alpha level was not dispositive of weak invariance. 

The achievement of weak invariance means that corresponding factor 

loadings are equivalent across groups (Gregorich, 2006).  That is, each measured 

variable loads equivalently on each identified factor at both test and retest 

occasions.  Thus, the constructs are being measured with equal precision at both 

occasions.  This provides evidence that the identified factors of the WISC-IV 

(VC, PR, PS, and WM) have the same meaning across time.  Therefore, it can be 

assumed that the factor structure of the WISC -IV remains stable across time and 

any interpretation of change in test scores can be unequivocally attributed to 

change in the constructs being measured and not to changes in the structure of the 

test itself.  Specifically, this finding supports that average differences between test 

and retest factor scores can be compared.  This means that the overall pattern of 
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strengths and weaknesses identified by the WISC-IV can be compared for an 

individual across time points.  For example, an individual who has a strength in 

Verbal Comprehension and a weakness in Processing Speed at initial testing 

should follow a similar pattern at retest.  However, an individual’s exact factor 

scores should not be directly compared and interpreted as change in an 

individual’s cognitive ability between test and retest.  In other words, practitioners 

should attend to the overall cognitive profile of the individual rather than focus on 

the specific factor scores.   

A number of measurement researchers agree that achieving both 

configural and weak factorial invariance is enough evidence to determine that a 

measure is invariant across time, particularly in behavioral science research 

(Widaman & Reise, 1997; Horn, 1991; Bentler, 2005) and that further invariance 

testing is discretionary (Vandenbreg & Lance, 2000, Wu et al., 2007).  

Accordingly, this study continued to evaluate factorial invariance by addressing 

both strong and strict levels of invariance. 

Strong Invariance.   The correlated four-factor model was further tested 

for strong factorial invariance.  Upon initial testing there was significant change 

between the models; thus, recommended modifications were obtained from Mplus 

on three observed variable intercepts.  Partial strong invariance was achieved by 

releasing the previously constrained intercepts of the Coding, Block Design, and 

Similarities subtests.  This indicates that for the majority of the subtests, scores 

have the same unit of measurement (factor loadings) as well as the same origin 

(intercept) and thus the factor means can be compared across time.  Therefore, 
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differences between the groups on the factor means demonstrates that there are 

true differences occurring across time and that it is not due to an artifact of the test 

itself (Chen et al., 2005).  However, as the subtests (CD, BD, and SI) did not 

indicate invariance, this lends evidence that the factor means may not demonstrate 

true differences.  Meaning that for the factors measured by the variant subtests 

(Processing Speed by CD, Perceptual Reasoning by BD, and Verbal 

Comprehension by SI) the means may not be interpreted as invariant because their 

constituent indicators did not remain stable across time.   

The inability to achieve full strong invariance makes interpretation 

complicated.  The data related to the subtests Coding, Block Design, and 

Similarities indicated that the factor means did not remain stable across time.  

This could indicate that these specific subtests are not as stable across time as the 

other subtests of the WISC-IV and thus any interpretation of change in these 

subtests across time should be done with caution.  Horn (1991) indicated that 

achievement of configural and weak invariance “is a reasonable ideal for research 

in the behavioral sciences” (p. 124); verifying that the achievement of configural 

and weak invariance are necessary to support measurement invariance across 

time, but further invariance testing is not essential.  In practical applications, it is 

typically appropriate to accept partial invariance as long as less than 20% of 

parameters are freed to achieve partial invariance (Dimitrov, 2010).  Thus, it can 

be said that partial strong invariance was achieved as only 12% of parameters 

were freed to achieve partial invariance at this level.  As full strong invariance is 

not a requirement of measurement invariance we can still say that the WISC-IV 
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measures the same constructs equally well across time.  Yet, due to a failure to 

achieve full strong invariance, it cannot be said with confidence that all factor and 

subtest means can be meaningfully compared across time.  This finding indicates 

that the practice of comparing an individual’s test scores at different time points 

should be completed with caution because, although one unit of change in tests 

scores can be considered to be equivalent to one unit of change in retest scores, 

the scales are not fully invariant.   

Strict Invariance.  Although strong invariance was not fully obtained, the 

partially invariant model was used to test for strict factorial invariance.  The 

results indicated that partial strict invariance was not upheld.  The same subtests 

that did not allow strong invariance did not allow strict invariance.  Unfortunately, 

partial strict invariance was not achieved by releasing the error constraints of the 

same subtests as in the strong invariance testing (Coding, Block Design and 

Similarities) and there was need to release an additional error constraint.  

Recommended modifications were obtained by Mplus on one observed variable’s 

error term.  Partial strict invariance was thus achieved by releasing the previously 

constrained error associated with the Symbol Search subtest.   

With the exception of the Coding, Block Design, Similarities, and Symbol 

Search subtests, differences between test and retest scores across time were due to 

group differences associated with the common factors.  Thus, allowing the 

assumption that unique error variances are not contributing to differences in test 

scores across time.  The data related to the subtests Coding, Block Design, 

Similarities, and Symbol Search indicated that the unique error variances did not 
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remain stable across time.  This could indicate that these specific subtests are not 

as stable across time as the other subtests of the WISC-IV and thus any 

interpretation of change in these subtests across time should be done with caution.  

Specifically, within these subtests it cannot be assumed that unique error 

variances are not contributing to differences in test scores across time.       

As error variances of tests are not typically expected to be equal, the 

failure to obtain strict factorial invariance does not invalidate equivalence of the 

factor structure of the WISC-IV (Bentler, 2005; Byrne, 2012; Marsh, 1993; 

Watkins & Canivez, 2001).  Although it is ideal to achieve more stringent levels 

of invariance, only configural and weak invariance are required to indicate 

invariance of a measure.  Thus, these data continue to support the hypothesis that 

the WISC-IV measures the same constructs equally well across time.   

Limitations 

 As with all research, there are a number of limitations in the current study 

that should be improved upon in future studies.  The greatest of these limitations 

is the sample.  Although typically a sample of 352 students is considered to be 

large, this is a relatively small sample for completing factorial invariance testing 

of complex structures.  Ideally, a larger sample is desired when completing these 

types of analysis (Byrne, 2012).  An additional limitation of this study is the 

method of data collection.  As the data was collected from archived special 

education records, administration and recording accuracy of the individual 

psychologists who administered the WISC-IV had to be assumed.  Moreover, 
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although there was training for the graduate students who collected this data it is 

possible that data entry errors may have occurred.   

 The sample used in this study was from two school districts in central 

Arizona and thus may not be generalizable to other regions.  This sample was 

largely identified as Caucasian, non-Hispanic students (80%).  With a small 

percentage of students from a minority background, any current findings may not 

be generalizable to samples of students from other racial backgrounds.  

Additionally, the majority of the students in these school districts do not qualify 

for free and reduced lunch (94%); thus, results of this study may not be 

generalizable to different levels of socio-economic status.  Finally, the sample 

consisted largely of English speaking students (94%); however, the available data 

did not include the English language proficiency of individual students and thus 

some students’ results may have unknowingly been affected by their level of 

English proficiency even though the special education records indicated that they 

were English speakers.  There is a large body of research that indicates variability 

of scores on cognitive assessments for students with limited English proficiency 

(Anastasi & Urbina, 1997; Frisby, 1999; Hays, 2008; Schon, Shaftel, & 

Markham, 2008).  Thus, these results need to be further examined in regards to 

students that are not English language proficient.  

Furthermore, the sample consisted solely of students referred for a 

psychoeducational evaluation for special education eligibility.  The current 

sample appears to have an overrepresentation of students identified as children 

with specific learning disabilities as compared to the national average, making it a 
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very selective sample.   Due to the specificity of the current sample, it is unclear if 

the same results would apply to other referred samples of students as well as non-

referred samples of students.  Students were also excluded from this sample if 

they had not been administered the WISC-IV more than once, causing multiple 

individuals to be excluded from the study who did not qualify for special 

education at the initial test administration.  

Finally, the data sample did not consist of many WISC-IV test 

administrations with complete WISC-IV records.  In other words, few records 

indicated supplemental test scores and therefore only core subtests could be used 

in the current analyses.  Previous research indicates that clinicians are unlikely to 

administer supplemental subtests (Watkins et al., 2010); however, a limitation of 

this study is that only core subtests were used when examining the factor structure 

of the WISC-IV.  If all subtests had been administered then the direct-hierarchical 

model would have been identifiable and could have been included when 

determining the best baseline model.   

Implications for Practice.  The scope of this study was not intended to 

provide concrete recommendations for clinicians utilizing the WISC-IV, and due 

to the previously discussed limitations it is not recommended that the findings of 

this study be generalized to the entire population or even to other selected 

samples.  However, if the results of this study were to be replicated with multiple 

larger, more diverse samples that more appropriately matched the national 

population, then there are a few recommendations that could be made for 

clinician’s using the WISC-IV.  The results of this study, along with replication 
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studies, allows clinicians to be confident in interpretation of differences in an 

individual’s overall cognitive profile pattern across time as a reflection of change 

in the constructs and not as change in the measure itself.  More specifically, a 

change in a student’s subtest or index scores across test administrations could 

indicate an actual change within the individual’s ability and any such discrepancy 

should be followed up according to best practice or district policies. 

Future Research  

Additional research is needed to further understand the invariance of 

cognitive assessment scores across time.  As this study was not intended to 

determine the correct factor model of the WISC-IV, but to examine longitudinal 

factor invariance, the results of this study may not generalize across alternative 

identified factor structures of the WISC-IV and should be further examined.  

Accordingly, future research should focus on alternative identified factor 

structures of the WISC-IV (specifically, the indirect- and direct- hierarchical 

models) to determine if the current results are generalized across factor structures.  

The results of the current study indicated that there are moderate to strong 

correlations between factors across time.  This is evidence of a likely higher-order 

factor that can explain greater amounts of variance across time; it is essential that 

further evaluation occur.  As the indirect-hierarchical model has been identified as 

the best model for previous versions of the WISC (Bodin et al., 2009), this factor 

structure is especially important to examine for invariance across time.  

Additionally, further research is needed with more diverse populations as well as 
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non-exceptional children in order to determine the generalizability of the current 

results.   

Longitudinal research studies need to continue in the area of cognitive 

assessment in order to better understand the stability of the latent constructs being 

measured.  This is true for the WISC-IV, its successors, and other individual tests 

of intelligence. Without evidence to support that the constructs of individual 

assessments remain constant across time, practitioners cannot appropriately 

interpret results.  Every time a new test is revised it is essential that further 

evidence be collected regarding the construct validity of the new version of the 

test and that it is not simply assumed that the constructs remain stable.          

Conclusion 

 The Wechsler scales of intelligence are the most frequently used 

intelligence tests among clinicians (Alfonso, Oakland, LaRocca, & Spanakos, 

2000; Belter & Piotrowski, 2001; Pfeiffer, Reddy, Kletzel, Schmelzer, & Boyer, 

2000).  The most recent version of this test for children is the Wechsler 

Intelligence Scale for Children - Fourth Edition.  It is assumed by clinicians that 

the structure of the test remains invariant across time and that an individual’s 

scores are comparable across time; however, this has not previously been 

empirically verified.  The current study is the first to investigate the factor 

structure of the WISC-IV across time for the same individuals.  While the current 

study found configural and weak invariance, only partial invariance was found at 

the strong and strict levels of invariance and additional research is recommended.  

However, as only configural and weak levels of invariance are required for 
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measurement invariance to be achieved, these data support the hypothesis that the 

WISC-IV measures the same constructs equally well across time.   
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