
Service Oriented Architecture for Mobile Cloud Computing

by

Xinyi Dong

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved May 2012 by the

Graduate Supervisory Committee:

Dijiang Huang, Chair

Partha Dasgupta

Yinong Chen

ARIZONA STATE UNIVERSITY

August 2012

DEDICATION

To my family.

 ii

ABSTRACT

The Open Services Gateway initiative (OSGi) framework is a standard of

module system and service platform that implements a complete and dynamic

component model. Currently most of OSGi implementations are implemented by

Java, which has similarities of Android language. With the emergence of Android

operating system, due to the similarities between Java and Android, the

integration of module system and service platform from OSGi to Android system

attracts more and more attention. How to make OSGi run in Android is a hot topic,

further, how to find a mechanism to enable communication between OSGi and

Android system is a more advanced area than simply making OSGi running in

Android. This paper, which aimed to fulfill SOA (Service Oriented Architecture)

and CBA (Component Based Architecture), proposed a solution on integrating

Felix OSGi platform with Android system in order to build up Distributed OSGi

framework between mobile phones upon XMPP protocol. And in this paper, it not

only successfully makes OSGi run on Android, but also invents a mechanism that

makes a seamless collaboration between these two platforms.

 iii

TABLE OF CONTENTS

 Page

CHAPTER

1 INTRODUCTION .. 1

2 RELATED WORK .. 6

3 SYSTEMS AND MODELS .. 8

3.1 OSGi .. 8

 3.1.1 OSGi architecture .. 8

 3.1.2 OSGi Allience .. 9

 3.1.3 Felix OSGi ... 10

 3.1.4 Bundle explanation and bundle life cycle explanation

 ... 10

 3.1.5 Bundle manifest .. 13

3.2 Android System .. 15

 3.2.1 Android architecture ... 15

 3.2.2 Android Activity ... 16

 3.2.3 Activity Lifecycle ... 17

 3.2.4 Android Service .. 19

 3.2.5 Service Lifecycle .. 20

 3.2.6 Remote Service ... 21

 iv

3.3 XMPP .. 22

 3.3.1 What is XMPP .. 22

 3.3.2 XMPP server and according API 22

3.4 Used mechanisms/modles .. 23

 3.4.1 Java reflection ... 23

 3.4.2 Android broadcast .. 23

 3.4.3 Android context .. 24

4 SOA-MCC .. 26

4.1 Overall architecture .. 26

4.2 Explanation of each part ... 29

 4.2.1 Proposed mechanism in Android system 29

 4.2.2 Bundle description ... 31

 4.2.3 Bundle description ... 33

4.3 Solutions for problems in communication between Android

service and OSGi framework ... 36

 4.3.1 Initializing Android contect in OSGi 36

 4.3.2 Communication from Android service to OSGi 37

 4.3.3 Communication from OSGi to Android service 39

4.4 Sequence diagrams ... 41

 4.4.1 Start Felix OSGi and set Android context to BT bundle

 ... 42

 4.4.2 Send message from Android activity to XMPP server . 42

 v

 4.4.3 Receive message from XMPP server and display it at

Android activity .. 43

5 PERFORMANCE AND EVALUATION ... 44

5.1 Bundle operation performance ... 47

5.2 Application operation performance.. 47

6 CONCLUSION .. 50

 6.1 Conclusion of current work ... 50

 6.2 Future work ... 50

REFERENCES .. 52

 1

Chapter 1

INTRODUCTION

Recently, along with the increasing complexity of applications in mobile devices,

it’s necessary to reduce coding complexity when developing mobile applications

[1]. As the trend of mobile cloud computing, keeping the code reusable [2] and

manageable becomes a concern. Among current mobile device systems, Android

[3] system takes the biggest portion in market [4]. To achieve scalability and

reusability in mobile cloud computing, service oriented architecture (SOA) [5] is

regarded as a new paradigm for Android mobile devices’ application development.

OSGi [6][7] (Oriented Service Gateway initiate) is a dynamical service

framework, which is implemented in Java, designed for fulfilling SOA. OSGi

framework is a container that contains components or services in forms of bundles.

A bundle is an independent module of program codes, which can be used as basic

service components to build mobile applications running on mobile devices. So it

is reasonable to integrate an Android process, which comes in form of application

or service, with OSGi framework containing bundles running in it, and some of

the tasks that belong to Android application or service can be assigned to OSGi

bundles respectively. This approach not only increases software’s scalability [8]

since bundle’s decoupled and independent but also enhances software’s

reusability because an independent bundle could be easily transplanted to other

application. And another notable feature of OSGi is dynamicity [9], which

involving dynamic control over bundles along with dynamic bundle update

without reboot. These features ensure that OSGi serves as an ideal platform for

 2

Android SOA architecture [10]. However, OSGi is not originally designed to

provide an SOA platform for mobile devices but for PCs [11]. There are some

problems preventing us from integrating OSGi to Android. Firstly, OSGi is not

designed for Android. It is difficult to run OSGi on Android; moreover it is not

possible for current solutions allowing OSGi service modules running in Andriod

and Android non-OSGi processes to communicating with each other in bundle

level. Secondly, incorporating OSGi into Android must be able to work with

existing OSGi bundles for PCs. Some existing solutions attempted to solve these

problems, however none of them can address both above two problems effectively

and simultaneously. For example, EZdroid [12] can run OSGi framework on

Android, but it cannot support the intercommunication between OSGi bundles

and Android internal processes; mBS [13] devised by ProSyst rebuilt OSGi on

Android to support the intercommunication between OSGi bundles and Android

internal processes, but the new OSGi bundles cannot work with original OSGi

bundles. Thirdly, to build an SOA framework among mobile devices and PCs, it

is necessary to allow OSGi frameworks to interact with each other among

multiple mobile devices. None of any existing solutions provide this capability.

 3

Figure 1-1: SOA-MCC Model

To solve the above described problems, we propose SOA-MCC model. In Figure

1-1, SOA-MCC is consisted by three parts: Android, signaling and

communication service, and PC. Signaling and communication service is used to

dispatch data among signaling and communication agents.

In Android side, Felix [14] OSGi framework is used as the container to support

OSGi bundles running on Android. Felix OSGi is a light weight implementation

of OSGi on an Android device to support mobile applications. Based on it, we

developed an internal support bundle to enable the communication between OSGi

bundles and Android internal processes. The internal supporting bundle utilizes

both java reflection and Android broadcast mechanism to achieve the

communication between OSGi bundles and Android internal processes. Since

Felix OSGi does not change the original OSGi implementations, this approach

work with any OSGi bundles running on both mobile devices and PCs.

 4

To address the inter-OSGi framework communication issues, SOA-MCC adopts

an XMPP (Extensible Messaging and Presence Protocol) based solution, in which

an XMPP server is used as a signaling and communication service between

different OSGi frameworks. To enable this service within Android, a signaling

and communication agent bundle needs to be developed within Felix OSGi.

To make SoA-MCC model work in cloud environment, we put this model in

MobiCloud [15][16] system, which is a cloud system with VMs serving for

dedicated mobile phone users. As Figure 1-2 shows, each mobile phone interacts

with its dedicated VM [17] located in Mobicloud VM pool on top of OSGi

framework by signaling and communication service.

Figure 1-2: SoA-MCC model in Mobicloud System

 5

In summary, SOA-MCC has the following contributions: (1) it implements the

communication in bundle level between OSGi framework and Android native

processes; (2) it does not change OSGi original framework and thus OSGi

bundles can run in Java Running Environment (JRE) without compatibility issues;

(3) it support mobile cloud computing in that allowing OSGi bundles as cloud

services to be reused among OSGi frameworks; (4) it is a lightweight

implementation and consumes limited memory and power on mobile devices.

In the rest of this paper, we described the related work and compared with our

solution in Section Related Work. In Section Systems and Models, we introduced

Android, OSGi and XMPP to explain our architecture; also the description of

technique mechanism in these systems would be introduced in this section. We

would describe the overall architecture and technique details in section “SoA-

MCC”. And section “Performance and Evaluation” states the experimental results

and figures. The conclusion is made in section “Conclusion”.

 6

Chapter 2

RELATED WORK

To completely integrate OSGi framework with Android, there are two major

problems pending to be solved: The first is to let OSGi framework run in Android,

and the second is to enable communication between OSGi framework and

Android. Furthermore, whether existing bundles is compatible with integrated

OSGi in Android should be taken into consideration as well. And following

projects: mBS from ProSyst, EZdroid from Luminis and Bundroid+Fedroid from

Samia Bouzefrane [18] tried different approaches to tackle these two problems.

To let OSGi run on Android, mBS implemented their own design of OSGi as an

Android application, which could run on Android just like other Android

application. While EZdroid converted Felix OSGi into Dalvit VM readable

machine code, then used ADB (Android Debug Bridge) tool to push and run Felix

OSGi on Linux kernel of Android using shell command. Meanwhile

Bundroid+Fedroid wrapped Felix OSGi as java package into an Android

application by importing it, and then created an OSGi class instance inside

Android application, which is the same idea as we utilized.

To enable communication between Android and OSGi framework, since mBS

rebuilt the OSGi framework as an Android application, the communication

between Android and OSGi is actually very intuitive; they could simply call each

other's API directly. But EZdroid didn’t have a way to communicate between

Android and OSGi; their approach isolates OSGi from Android because they run

OSGi on Linux kernel of Android than on Android. Meanwhile

 7

Bundroid+Fedroid didn’t figure out a solution for communication between

Android service and OSGi framework yet. In our solution, it utilizes java

reflection mechanism to set Android context instance inside OSGi bundles to send

Android broadcast, as well as register broadcast listener inside OSGi to enable to

receive Android broadcast from Android to achieve mutual interaction between

OSGi and Android.

For compatible issue between existing bundles and integrated OSGi in Android,

mBS is not compatible with OSGi in PC because mBS has rebuilt the OSGi

framework into Android and redefined bundles. Existing bundles compatible with

original OSGi have to re-implement to run on mBS. But EZdroid is compatible

since they keep the origin of Felix OSGi running on Android, thus previous

bundles could run on integrated OSGi on Android as long as they’ve converted

into Dalvik VM readable machine code. And Bundroid+Fedroid and our solution

are the same as EZdroid since OSGi used for integration remains unaltered.

To conclude, mBS successfully solved integration OSGi into Android but

compatible issue with existing bundles remained. Although EZdroid and

Bundroid+Fedroid did comply with existing bundles, the integration with Android

was incomplete due to the lack of communication between Android and OSGi

framework. While our solution not only fulfills complete integration from OSGi

to Android but also complies with existing bundle.

 8

Chapter 3

SYSTEMS AND MODELS

3.1 OSGi

In this section it will introduce OSGi architecture, OSGi alliance, Felix OSGi, and

explain bundle, bundle life cycle and bundle manifest.

3.1.1 OSGi architecture

The Open Services Gateway initiative framework is a module system and service

platform for the Java programming language that implements a complete and

dynamic component model. An important concept in OSGi is bundle, which is a

form of applications or components in OSGi framework. Each bundle is a tightly-

coupled, dynamically loadable collection of classes, jars, and configuration files

that explicitly declare their external dependencies (if any). And bundles can be

remotely installed, started, stopped, updated and uninstalled without requiring a

reboot. Also, APIs of OSGi can mange application life cycle (start, stop, install,

uninstall, etc.), the remote downloading of management policies are allowed. The

service registry allows bundles to detect the addition of new services, or the

removal of services.

The OSGi Service Platform facilitates the componentization of software modules

and applications and assures interoperability of applications and services over a

variety of network devices. Building systems with OSGi modules will enhance

development productivity and makes them much easier to modify and evolve. The

OSGi Service Platform is delivered in many Fortune Global 100 company

 9

products and services and in diverse markets including enterprise, mobile, home,

consumer, etc.

OSGi is a framework that can be implemented in many frameworks, which

providing environment for the modularization of applications into bundles. The

architecture of OSGi is like this:

Figure 3-1: OSGi architecture

Bundles: A form of applications or components in OSGi framework, usually are

jar components with extra manifest headers.

Services: The services layer connects bundles in a dynamic way by offering a

publish-find-bind model

Life Cycle: The API for life cycle management to install, start, stop, update, and

uninstall bundles.

Models: The layer that defines encapsulation and declaration of dependencies. Ex,

how a bundle can import and export code.

Security: The layer that handles the security aspects by limiting bundle

functionality to pre-defined capabilities.

 10

 3.1.2 OSGi Alliance

The OSGi Alliance [19] is a worldwide consortium of technology innovators that

advances a proven and mature process to create open specifications that enable

the modular assembly of software built with Java technology. Modularity reduces

software complexity; OSGi is the best model to modularize Java.

The alliance provides specifications, reference implementations, test suites and

certification to foster a valuable cross-industry ecosystem. Member companies

collaborate within an egalitarian, equitable and transparent environment and

promote adoption of OSGi technology through business benefits, user experiences

and forums. The alliance also promotes collaboration among important ecosystem

players within and outside the OSGi Alliance in order to provide the market with

innovative solutions based on open standards.

3.1.3 Felix OSGi

Apache Felix is a mature OSGi framework implemented by Apache and Is the

most compact one, suitable for embedded systems. It implements Release 4.x.

Apache license. It has been successfully applied to projects like Apache

servicemix. It provides full set of services, covering all the specifications defined

in OSGi 4.2. It’s a light weight version of OSGi comparing to other frameworks.

And moreover, when integrating to Android system, it’s not necessary to hack the

root permission to run it.

 3.1.4 Bundle explanation and bundle life cycle explanation

As stated above, we choose Felix implementation as our OSGi framework, and it

is a component framework for Java. In this framework, the basic component/unit

 11

is called bundles which can be remotely installed, uninstalled, started, and stopped.

A bundle is a group of Java classes (compiled java code) and additional resources

files (.xml files, .jpeg files, etc) equipped with a detailed meta-data file

(manifest.mf) on all its contents, as well as additional services needed to give the

included group of Java classes more sophisticated behaviors, to the extent of

deeming the entire aggregate a component.

Bundles can export services or run processes, and have their dependencies

managed, such that a bundle can be expected to have its requirements managed by

the container. Each bundle can also have its own internal classpath, so that it can

serve as an independent unit. All of these are standardized such that any valid

OSGi bundle can theoretically be installed in any valid OSGi container. The

bundles in Felix OSGi follow this standard and could be migrated to other OSGi

framework as long as it has java virtual machine and implemented in Java.

In OSGi architecture, bundle lifecycle is a layer to manage bundles to install,

uninstall, start and stop, etc. The life cycle layer introduces dynamics that are

normally not part of an application. Extensive dependency mechanisms are used

to assure the correct operation of the environment. Life cycle operations are fully

protected with the security architecture.

And in a bundle’s life cycle, it has status INSTALLED, RESOLVED,

UNINSTALLED, STARTING, ACTIVE and STOPPING.

INSTALLED: The bundle has been installed into OSGi container, but some of the

bundle's dependencies have not been met. The bundle requires packages that have

not been exported by any currently installed bundle.

 12

RESOLVED: The bundle is installed, and the OSGi system has connected up all

the dependencies at a class level and made sure they are all resolved. The bundle

is ready to be started. If a bundle is started and all of the bundle's dependencies

are met, the bundle skips this state.

STARTING: A temporary state that the bundle goes through while the bundle is

starting, after all dependencies have been resolved. BundleActivator.start method

will be called and this method has not yet returned.

ACTIVE: The bundle is running.

STOPPING: A temporary state that the bundle goes through while the bundle is

stopping. The BundleActivator.stop method has been called but the stop() method

has not yet returned.

UNINSTALLED: The bundle has been removed from the OSGi container.

Figure 3-2: Bundle Life Cycle

 13

The Life Cycle of a bundle inside the OSGi Platform is defined as follows. The

bundle must first be installed. When it is required to start, the package-level

dependencies with other bundles are resolved. When all dependencies are

resolved, the bundle activator is launched: the start() method is called, and the

related code is executed. Typically, these operations consist in configuration and

publication of services.

After start() is called, the bundle is in the STARTED state. Updating, stopping

and uninstalling build the last possible operations for bundle management.

3.1.5 Bundle manifest

An OSGi bundle, which can be a JAR or web application archive (WAR) file,

contains a bundle manifest file. The bundle manifest file contains additional

headers to those in the manifest for a JAR or WAR file that is not an OSGi bundle.

The metadata that is specified in these headers enables the OSGi Framework to

process the modular aspects of the bundle. The OSGi R4.3 Framework

specification defines a set of manifest headers such as Export-Package and

Bundle-Classpath, which bundle developers use to supply descriptive information

about a bundle.

Bundle’s manifest file, which is named as META-INF or MANIFEST.MF,

contains bundle’s information which would be checked when the bundle is called

or exported.

Take one of bundles in this project as an example:

 14

Manifest-Version: 1.0

Export-Package: asu.snac.android.broadcast.sender;uses:="asu.snac.

android.broadcast.api,org.osgi.framework,android.content",asu.snac.

android.broadcast.test;uses:="asu.snac.android.broadcast.api,org.osgi

.framework,android.content"

Tool: Bnd-1.15.0

Bundle-Name: broadcastsender

Created-By: Apache Maven Bundle Plugin

Bundle-Version: 1.0.0.SNAPSHOT

Build-Jdk: 1.6.0_21

Bnd-LastModified: 1323126754077

Bundle-ManifestVersion: 2

Bundle-Activator: asu.snac.android.broadcast.sender.Activator

Import-Package: android.content,asu.snac.android.broadcast.api,org.osgi.

framework;version="[1.3,2)"

Bundle-SymbolicName: asu.snac.android.broadcast.sender.broadcastsender

There are many contents in the example, and the meaning of some important

contents in the example is as follows:

 15

Export-Package: Expresses what Java packages contained in a bundle will be

made available to the outside world.

Import-Package: Indicates what Java packages will be required from the outside

world, in order to fulfill the dependencies needed in a bundle.

Bundle-Name: Defines a human-readable name for this bundle, Simply assigns a

short name to the bundle.

Bundle-SymbolicName: The only required header, this entry specifies a unique

identifier for a bundle, based on the reverse domain name convention

Bundle-Description: A description of the bundle's functionality.

Bundle-ManifestVersion: This little known header indicates the OSGi

specification to use for reading this bundle.

Bundle-Version: Designates a version number to the bundle.

Bundle-Activator: Indicates the class name to be invoked once a bundle is

activated.

3.2 Android System

Android is an operating system initially designed for mobile phones by Google. It

’s an open source project based on Linux and is organized around multiple layers.

Each Android application runs on an independent virtual machine called Dalvit V

M to prevent from ectangling to other application once an application crashes.

3.2.1 Android Architecture

 16

Figure 3-3: Android Architecture

As the architecture shows above, Android Architecture has various layers. It has

Linux kernel as basis, then there is Android runtime provides runtime

environment for application framework. The application framework facilitates the

application development based on several components such as life-cycle

management (activity manger), GUI management (View system), data sharing

(Content providers), resource access (Resource manager), etc. And on top of

application framework, Android applications, for example, messaging, browser,

emails, runs on it.

Here are several concept explanations in Android system we used in this project:

activities, services, activity life cycle, service life cycle and remote service.

3.2.2 Activity

An activity is an application component that provides a screen with which users

can interact in order to do something, such as view a map, take a photo, and dial

phones, etc. Each activity is given a window in which to draw its user interface.

The window typically fills the screen, but may be smaller than the screen and

float on top of other windows. An application usually consists of multiple

activities that are loosely bound to each other. Typically, one activity in an

 17

application is specified as the "main" activity, which is presented to the user when

launching the application for the first time. Each activity can then start another

activity in order to perform different actions. Each time a new activity starts, the

previous activity is stopped, but the system preserves the activity in a stack. When

a new activity starts, it is pushed onto the back stack and takes user focus.

3.2.3 Activity Lifecycle:

An activity can exist in essentially three states:

Resumed: The activity is in the foreground of the screen and has user focus.

Paused: Another activity is in the foreground and has focus, but this one is still

visible. That is, another activity is visible on top of this one and that activity is

partially transparent or doesn't cover the entire screen. A paused activity is

completely alive, but can be killed by the system in extremely low memory

situations.

Stopped: The activity is completely obscured by another activity. A stopped

activity is also still alive. However, it is no longer visible to the user and it can be

killed by the system when memory is needed elsewhere.

If an activity is paused or stopped, the system can drop it from memory either by

asking it to finish, or simply killing its process. When the activity is opened again,

it must be created all over.

 18

Figure 3-4: Android Activity Lifecycle

As the figure above, there are several lifecycle’s callback methods:

onCreate(): Called when the activity is first created. This is where you should do

all of your normal static set up — create views, bind data to lists, and so on. This

method is passed a Bundle object containing the activity's previous state, if that

state was captured.

onRestart(): Called after the activity has been stopped, just prior to it being started

again.

onStart():Called just before the activity becomes visible to the user.

 19

onResume():Called just before the activity starts interacting with the user. At this

point the activity is at the top of the activity stack, with user input going to it.

onPause(): Called when the system is about to start resuming another activity.

This method is typically used to commit unsaved changes to persistent data, stop

animations and other things that may be consuming CPU, and so on. It should do

whatever it does very quickly, because the next activity will not be resumed until

it returns.

onStop(): Called when the activity is no longer visible to the user. This may

happen because it is being destroyed, or because another activity (either an

existing one or a new one) has been resumed and is covering it.

onDestroy():Called before the activity is destroyed. This is the final call that the

activity will receive. It could be called either because the activity is finishing, or

because the system is temporarily destroying this instance of the activity to save

space.

Services: A Service is an application component representing either an

application's desire to perform a longer-running operation while not interacting

with the user or to supply functionality for other applications to use. Service

facilities for the application to tell the system about something it wants to be

doing in the background; and it facilities for an application to expose some of its

functionality to other applications.

 20

3.2.4 Service Lifecycle

Figure 3-5: Android Service Lifecycle

It can be started and allowed to run until someone stops it or it stops itself. In this

mode, it's started by calling Context.startService() and stopped by calling

Context.stopService(). It can stop itself by calling Service.stopSelf() or

Service.stopSelfResult(). Only one stopService() call is needed to stop the service,

no matter how many times startService() was called. Or it can be operated

programmatically using an interface that it defines and exports. Clients establish a

connection to the Service object and use that connection to call into the service.

The connection is established by calling Context.bindService(), and is closed by

calling Context.unbindService(). Multiple clients can bind to the same service. If

the service has not already been launched, bindService() can optionally launch it.

 21

The two modes are not entirely separate. You can bind to a service that was

started with startService().

3.2.5 Remote service

Figure 3-6: AIDL Mechanism

Android remote service is a Android service implemented AIDL (Android

Interface Definition Language). In our design, we choose to implement Felix

OSGi as an Android remote service. This is because Felix has to execute as a

background task and does not need any graphical resources. AIDL defines basic

operations of OSGi bundles, like start, stop, install, uninstall bundles in OSGi

framework.

In Android platform, a service is generally a component that runs in background.

It is defined with an “.aidl” specification called Android Interface Definition

Language (AIDL) from which a Java interface is automatically generated with an

abstract Stub class. The service class is the implementation of a predefined

Service class that contains an internal class extending the Stub class. To make the

service available to other applications, the service-class name appears in the

 22

Service entry of the Manifest file. Additionally, Android introduces the activity

notion to define a treatment associated with a physical view to interact with a user.

The activity is the entry point of the application since it has a GUI. Moreover, an

Intent mechanism allows the communication between applications.

3.3 XMPP

In this section it will introduce what is XMPP, what XMPP server we are using

and XMPP APIs.

3.3.1 What is XMPP

Extensible Messaging and Presence Protocol (XMPP) is an open-

standard communications protocol for message-oriented middleware based

on XML(Extensible Markup Language).

Figure 3-7: XMPP architecture with multiple XMPP servers

 23

3.3.2 XMPP server and according API

Openfire is a real time collaboration (RTC) server licensed under the Open Source

Apache License. It uses the only widely adopted open protocol for instant

messaging, XMPP (also called Jabber). Openfire is incredibly easy to setup and

administer, but offers rock-solid security and performance.

Smackx bundle is extended APIs for XMPP communications. This bundle exports

API packages.

Smack bundle is for XMPP communication APIs. This bundle exports API

packages.

3.4 Used mechanisms/models

In this section it will introduce the used mechanisms and models: Java reflection,

Android broadcast and Android context.

3.4.1 Java reflection

Java reflection mechanism makes it possible to inspect and manipulate classes,

interfaces, fields and methods at runtime. By accessing a particular type of

metadata describing classes and objects within the JVM, Java reflection provides

runtime access to variety of class information. By knowing the name of according

class and name of methods, Java reflection can make it possible to call a method

in a class which has been instantiated as an object.

The reason to use java reflection is that in external environment, it cannot call

methods in JVM when compiling as normal function call because there isn’t

access to the function. So from outside it can only try to get access to the object

 24

instantiated from the class. And then use getmethod() and invoke to call the

function.

3.4.2 Android broadcast

In Android system, broadcast is a widely-used mechanism for message

transportation among Android applications/ services. To use Android broadcast to

send broadcast, it requires wrapping data which prepares to be broadcasted, then

sends the wrapped object out. To receive broadcast, a broadcast listener needs to

be registered at destination. After sending the object of broadcast, all registered

broadcast listener will check if the coming broadcast matches certain format, if so,

the broadcast object is received.

3.4.3 Android context

 Android context is the context of current state of the object/Android

application/Android service. It is the interface to global information about an

application environment. It allows access to application-specific resources and

classes, as well as up-calls for application-level operations such as launching

activities, broadcasting and receiving intents, etc. An instance of Context class

allows getting access to lots of managers which facilitate the applications they

manage, like ActivityManager, AccountManager, WindowManager, etc. And it

also has access to other services that are not named “managers”, like “Vibrator”,

for interacting with hardware. It also provides access to APIs: APIs for working

with permissions, cache, APIs for starting and stopping activities, etc.

 25

Chapter 4

SOA-MCC

4.1 Overall Architecture

Figure 4-1: Overall Architecture

As figure 4-1 shows, the architecture are consisted of 3 parts: Android system,

Signaling and Communication Service, and PC.

In Android system, each Android service or Android activity is on top of one

Dalvik Virtual Machine. The communication between Android service and

Android activity is based on RPC (remote procedure call) by AIDL. In

Android service, we wrap Felix OSGi framework as part of Android service.

There are two types of communication between Android service and OSGi

framework: framework level communication and bundle level communication.

Framework level communication allows Android service to manipulate OSGi

 26

Framework including installing, uninstalling, starting and stopping bundles.

While bundle level communication enables running bundles communicate

directly with Android service by implementing internal supporting bundle,

which adopts Java refection and Android broadcast mechanism to realize the

communication. To send or receive message between OSGi and signaling and

communication service, signaling and communication agent bundles are

developed in OSGi framework.

In PC, Felix OSGi framework as a java application runs on top of Java VM.

The OSGi framework contains many bundles, in which signaling and

communication bundles as a signaling and communication service agent

communicates with the signaling and communication service.

Signaling and communication service is a medium to dispatch message from

one signaling and communication agent to another. In our development we

use XMPP server located in PC as the signaling and communication service.

The signaling and communication agent bundles in OSGi framework are

actually XMPP client bundles, which communicate with other XMPP client

through the dispatching of XMPP server.

 The message transferred between XMPP client and server is in format of

XML, take an example,

 <message to='foo'>

 <body>

Hello, World

<body/>

 </message>

 27

This is a XMPP message of “Hello, World”, and the recipient of this message

is ‘foo’.

In figure 4-1, if a user sends message from Android activity to VM, it will go

through the following steps. After the message is input by user from user

interface on Android activity side, it will be sent from Android activity to

Android service through AIDL. The following paragraph describes sequence

of sending a message from Android phone to PC:

User enters the message from user interface and Android activity gets the

message and then sends the message to Android service. In Android service,

internal process implements AIDL method to fulfill the requests from Android

activity. Once receiving the message, the internal process sends the message to

internal supporting bundles in OSGi framework by mechanism of Android

broadcast. Then internal supporting bundles pass the message to signaling and

communication service. Since signaling and communication bundles set up a

communication channel with signaling and communication service, the

message in XMPP message format is redirected to signaling and

communication service. Once the signaling and communication service got

this message, it will dispatch the message to signaling and communication

bundles to other OSGi frameworks located in destination machine, which can

be an Android phone or a PC.

 28

4.2 Explanation of each part

In this section we introduce and explain our proposed mechanism in Android

system, and describe the bundles we developed and bundles dependency. At

last, the sequence diagram is present to explain the sequence of initiating and

mutual communication between Android activity and OSGi.

4.2.1 Proposed mechanism in Android system

Figure 4-2: Bundle operation from activity to service

In our design, OSGi framework is wrapped as an object in Android service,

which runs at back end of Android system consistently unless it’s explicitly

called to stop service. As former explanation, Android activity provides user

interface and thus, user can manipulate Android service through user interface.

To connect Android activity and Android service, there is an interface call

AIDL between Android activity and Android service. In our design every

Android service which will be accessed by Android activity has an AIDL

(Android Interface Definition Language) defining the interface to manipulate

bundles in OSGi framework.

 29

As figure 4-2 shows, every function call from Android Activity goes from

Android activity to Android service by RPC (remote procedure call). AIDL

defines methods for manipulations of OSGi bundles, like starting, stopping,

installing, and uninstalling bundles. And Android service implements the

methods that AIDL defines, and calls the methods defined in Felix OSGi

framework to operate the bundles. So from Android activity, it calls interface

of OSGi framework in AIDL using RPC, and then Android service call the

method of implemented interface in OSGi framework to complete the

according manipulation.

Figure 4-3: Proposed Mechanism in Android System

In our design, there are two types of communication between Android service

and Felix OSGi framework. One type of communication is framework level

communication, by which Android service calls OSGi framework APIs to

manipulate OSGi bundles to start, stop, install and uninstall bundles. In Figure

4-3, the upper dotted line between AIDL and Felix OSGi framework shows

 30

framework level communication between OSGi framework and Android

service.

The other type of communication is Bundle level communication. To enable

the bundle level communication between OSGi bundles and Android service,

we develope internal supporting bundles with mechanism of Java reflection

and Android broadcast inside OSGi framework, as well as implement internal

process inside Android service. With internal supporting bundles, which

include BL (BroadcastListener) bundle, BS (BroadcastSender) bundle, and BT

(BroadcastTest) bundle, messages sent by BS bundle or received by BL

bundle are transferred between OSGi framework and Android service using

Android broadcast.

In bundle level communication, internal process inside Android service works

as a bridge between internal supporting bundle in Felix OSGi framework and

Android activity. Internal process is the middle point of OSGi bundles and

Android activities. Once message reaches BS bundle, it will send an Android

broadcast to internal process, which has an Android broadcast listener. Then

the internal process will render this message to Android activity user interface

using AIDL. In reverse, Android activity fetches the message from user input

and calls internal process inside Android server through AIDL, after internal

process gets the message, it will send an Android broadcast to internal

supporting bundles, BL bundle specifically.

4.2.2 Bundle description

 31

There are three bundles in internal supporting bundles: BS (broadcastsender)

bundle, BL (broadcastlistener) bundle and BT (broadcasttest) bundle.

BL bundle: named as broadcastlistener bundle, this bundle is going to register

an Android broadcast listener used to listen to Android broadcast which are

sent to OSGi framework from internal process inside Android service. On

receving broadcast, BL bundle will dispatch the message to other service

running inside OSGi framework, in our case, it will be sent to XMPP client

bundle. This bundle initiates listener instance and attach the listener to context

to get action of context.

BT bundle: named as broadcasttester bundle, this bundle holds an Android

context in it. Android context is interface to global information about an

application environment. This is an abstract class whose implementation is

provided by the Android system. It allows access to application-specific

resources and classes, as well as up-calls for application-level operations such

as launching activities, broadcasting and receiving intents, etc. And the

Android context is set up at the moment Android service created through Java

reflection mechanism. After this bundle setting up the Android context field, it

provides service of getters and setters for Android context, allowing other

services to access this field.

BS bundle: named as broadcastsender bundle, this bundle is used to send

broadcast from OSGi framework to Android service. Before sending the

broadcast to Android service, the broadcastsender bundle gets the context of

destination process from broadcasttest bundle which holds the according

 32

context. With the context, BS bundle send the broadcast to destination internal

process in Android service.

There are three bundles in signaling and communication agent bundles: XMPP

bundle, smack bundle and smackx bundle.

XMPP bundle sends message to XMPP server and receive message from the

XMPP server. After receiving message, XMPP bundle will pass the message

to broadcast sender bundle to preparing for next step message transportation.

Also to send message to XMPP server, XMPP bundle gets message from

broadcast listener bundle and then sends the message to XMPP server using

according APIs which supported by smack bundle and smackx bundle.

Smack bundle wraps smack API, which provides XMPP instant messaging and

presence APIs, as a bundle. This bundle exports API packages of XMPP client

library.

Smackx bundle wraps smacks API, which is extended APIs for XMPP

communications, as a bundle. This bundle exports API packages.

4.2.3 Bundle dependency

 Dependency is the degree to which each bundle relies on each one of the

other bundles. In our design, we divide application logically into independent

modules and each module is served as a bundle in OSGi framework. Although

each module/bundle is designed to be as decoupled as possible to others,

dependency relationship between different bundles still exists. For example,

it’s harmless to run sole internal supporting bundles, but this will cause

unfeasibility to communicate with signaling and communication service due to

 33

the lack of signaling and communication agent bundles. Though each feature

could be an independent bundle, their dependency relationships still exists

regarding as whole application logic.

In our design, we separate the bundles into internal supporting bundles and

signaling and communication agent bundles by functionality. For internal

supporting bundles which serve for communication with internal process in

Android service contains BT, BS, BL bundles, while signaling and

communication agent bundles have smack, smackx and xmppclient bundles

served for communication with signaling and communication service. Figure

4-4 below defines the dependency relationships in our design.

Figure 4-4: Dependency of Bundles

Dependency Relationship Explanation:

BL Bundle  BT Bundle: BL bundle has dependency on BT bundle. Since

BT bundle holds the service to provide getter for Android context, BL bundle

 34

needs to create an Android broadcast listener and attach this listener to

Android context by using the getter service. Therefore, BL bundle is

dependent on BT bundle.

BL Bundle  XMPP Bundle: BL bundle has dependency on XMPP bundle,

because after receiving android broadcast from internal process in Android

service, BL bundle has to dispatch the message in broadcast to signaling and

communication service, while XMPP bundle serves to send message, BL

bundle will need get XMPP bundle service first and using send message

feature of this service.. This makes BL bundle has dependency over XMPP

bundle.

XMPP Bundle  BS Bundle: XMPP bundle is dependent by BL bundle

because of sending message to signaling and communication service. On the

contrary, regarding to the receiving message, XMPP bundle needs to depend

on BS bundle, since BS bundle holds service to send Android broadcast. On

purpose to send the Android broadcast which the message is wrapped into, BS

bundle should first retrieve the BS bundle service, then use it to send

broadcast to internal process in Android service.

BS Bundle  BT Bundle: BS bundle can send Android broadcast to internal

process using the Android context, since only the Android context can send

broadcast in Android. Due to that Android context is stored in BT bundle, and

 35

getter and setter service are provided by it, it’s natural that BS bundle need BT

bundle service to get Android context and use it to send broadcast.

XMPP Bundle  Smack Bundle: Smack bundle is a standard XMPP library.

XMPP bundle depends on Smack bundle and utilizes it for sign-in, sign-out,

sending message as well as receiving message.

XMPP Bundle  Smacks Bundle: Smackx bundle provides extra features for

XMPP, and XMPP bundle relies on it.

4.3 Solutions for problems in communication between Android service and

OSGi framework

To realize the integration for Android and Felix OSGi, it is necessary to

enable the communication between Android service and Felix OSGi

framework in bundle level. The following reasons explain why

communication between these two sides is necessary. Firstly, some services

published by OSGi bundles should be accessible to users, allowing them to

consume the services. Secondly, some bundles needs to render information to

users for decision, for example, if xmppbundle receives other user’s message,

it should be able to pass this message to Android-OSGi services.

Based on prior 2 considerations, we need bi-directional communications

between Felix OSGi framework and Android-OSGi Service. From Android

 36

Application to OSGi framework we use java reflection method, and in the

reversed direction we use Android context/broadcast methods.

To enable the communication between Android service and OSGi framework,

the initialization and bi-direction communication problems need to be solved.

And the following solutions solve the problems respectively.

4.3.1 Solution to initializing Android context in OSGi framework

Figure 4-5: Initialization of communication: set Android context in OSGi

Because only by setting Android context in OSGi framework can OSGi

bundles send broadcast to Android services. Thus, at the beginning, internal

process start the BT bundle with communication in framework level, with the

BT bundle running internal process set “context” instance to BT bundle by

Java Reflection. Then BT bundle this instance and provide set() and get()

method to allow other bundles access and use this instance to send or receive

broadcast.

 4.3.2 Solution to communication from Andorid service to OSGi

framework

 37

Figure 4-6: BL bundle get context before sending broadcast

In order to receive broadcast in Android, it’s necessary to register a

broadcastlistener to a context. To register the listener:

Step (1) BL bundle call getContext() in BT bundle.

Step (2) BT bundle return “context” instance.

Step (3) In BL bundle, it registers a broadcast listener to “context” instance,

the broadcast listener specifies what kind of broadcast is going to be listened

to.

Once the broadcast listener is registered, the specific broadcast will go to BL

bundle. Here is the flowchart for how Android service sends a broadcast to

XMPP bundle:

Figure 4-7: Internal process sends a broadcast to XMPP bundle
Step (1) Internal process in Android service sends a broadcast, and BL bundle

receive this broadcast.

Step (2) BL bundle checks and know this broadcast is sent to XMPP bundle,

then BL bundle dispatches the message to XMPP bundle.

 38

Step (3) XMPP bundle extracts useful information in the broadcast and wraps

the information as an XMPP message, then sends the XMPP message to

XMPP server.

4.3.3 Solution to communication from OSGi framework to Android service

Figure 4-8: Register listener on internal process

In order to receive broadcast in internal process, a listener needs to be

registered on it. Once the broadcast listener is registered on internal process,

XMPP will use the sendBroadcast() in BS bundle. Before BS bundle sends

message to internal process, BS bundle needs to get the “context” instance

from BT bundle. Then BS bundle uses “context” instance to send broadcast to

internal process. Here the flowchart.

Figure 4-9: Send broadcast from XMPP bundle to internal process

 39

Step (1) XMPP bundle received message from XMPP server.

Step (2) XMPP bundle wrap message as a broadcast instance and the received

message is included in the broadcast instance. Then XMPP bundle call BS bundle

to send this broadcast to internal process.

Step (3) BS bundle request “context” instance from BT bundle to get more

information about the broadcast and recipient of the broadcast.

Step (4) BT bundle checked according “context” instance and return it to BS

bundle.

Step (5) BS bundle use the context instance to send broadcast, and the listener

located in internal process will receive it.

 40

4.4 Sequence diagrams

4.4.1 Start Felix OSGi and set Android context to BT bundle

 41

The above diagram describes the process of initializing the communication from

Android service to OSGi. After the initializing, OSGi framework is started and

Android context is set to Broadcast Test bundle in OSGi.

From the diagram, we can see user starts the Android application through Android

activity, then Android activity starts the Android service by “startService()”. Then

Android service starts OSGi framework by framework-level communication

between Android service and OSGi. And next OSGi framework installs and starts

broadcast test bundle. Then Android service calls setContext() function by java

reflection to set its Android context to broadcast test bundle. So broadcast test

bundle holds the Android context of Android service.

After setting context into broadcast test bundle, other bundles are started at the

initialization moment. So OSGi framework also starts broadcast sender bundle,

broadcast listener bundle, and XMPP bundle, etc.

 42

4.4.2 Send message from Android activity to XMPP server

 43

This diagram shows the process of a message sending from user to XMPP server.

First user inputs a message from user interface by Android activity. Android

activity sends the message to Android service through AIDL by RPC. AIDL

passes this message to internal process, which locates in Android service and

communicates directly with OSGi. Internal process sends the message as a

broadcast, and Broadcast Listener bundle in OSGi framework listens to this

broadcast and receives it. Then Broadcast listener bundle dispatches this

broadcast to XMPP bundle. At last XMPP bundle wraps this broadcast into a

XMPP message and send it to XMPP server.

 44

4.4.3 Receive message from XMPP server and display it at Android activity

 45

This diagram describes the transferring of a message from XMPP bundle to

Android activity.

XMPP bundle gets the message from XMPP server and then wraps the XMPP

message as a broadcast. Then XMPP bundle sends this broadcast to Broadcast

Sender bundle. Broadcast Sender bundle requests Broadcast Test bundle by

method getContext() in order to get context of Android service. After Broadcast

sender bundle getting context of Android service from Broadcast test bundle,

broadcast sender bundle sends the broadcast to Android service. Then Android

service sends the broadcast to Android activity through AIDL by RPC. So user

will get the message from GUI provided by Android activity.

 46

 Chapter 5

PERFORMANCE AND EVALUATION

To implement SoA-MCC model, we established the SoA-MCC architecture in

MobiCloud system. As Figure 4-1 shows, the architecture is consisted by three

parts: mobile device, signaling and communication service and PC. For signaling

and communication service, we deployed an XMPP server in a computer, and for

PC part, we established a OSGi framework in PC and developed an XMPP client

in bundle format in OSGi framework. For mobile device part, we developed

internal supporting bundles to support the fully bundle-level integration of OSGi

framework and Android system. We also developed an application which runs on

top of OSGi framework.

This application is a bundle transferring application based on support of internal

supporting bundle and signaling and communication agent bundle. The

application can send a “Helloworld” bundle which runs properly on both Android

OSGi framework and PC OSGi framework.

To evaluate the performance of the application, I tested the responding time of

bundle operation and application operation by embedding time measuring code in

the Android application code.

The test bed for this performance evaluation is: Android Galaxy SII, Android

version 2.3.6, Kernel version 2.6.35.11, memory 700 MB.

In PC, test bed is ThinkPad X220i, Intel Core i3, memory 4GB.

 47

5.1 Bundle operation performance

Figure 5-1: Bundle operation time

Bundle Operation Average Time /ms

Start Bundle 14.8

Stop Bundle 170.45

Install Bundle 262.15

Uninstall Bundle 137.3

Felix Initialization 3302.65

Table 5-1: Bundle operation average time

We can see from figure 5-1 and table 5-1, Felix initialization time is about 3

seconds, other bundle operation time is much lesser. Felix initialization occurs

once when Android service is started. But bundle operations are quite frequent

when application runs.

 48

5.2 Application Performance Evaluation

 Figure 5-2: Application operation time

Application Operation Average Time/ms

XMPP user login 86.5

Send file (Size:4kB) 162.65

Start bundle 54.9

Send and start bundle 217.55

Table 5-2: Average application operation time

The service of this application uses memory 14MB in average in Android.

From figure 5-2 and table 5-2, we can see that the time of sending bundle

and starting the bundle in PC is less than 1 second. The internet in the test is

local area network.

 49

Chapter 6

CONCLUSION

6.1 Conclusion of current work

To solve the problem that there’s no existing solution to bundle-level

communication between OSGi bundles and Android services, we proposed a

solution that realized the communication with developing several internal

supporting bundles supporting this communication. Based on this solution, we

established the SoA-MCC architecture among mobile devices and computers.

Further, to prove that our architecture is fitful for mobile cloud environment, we

put our architecture in MobiCloud system and make OSGi framework works on

virtual machines which maintained by Mobicloud VM pool.

Our proposed model, SOA-MCC is consisted by three parts: Android, signaling

and communication service, and PC. The contribution of this thesis can be

describes as follows (1) it implements the communication in bundle level between

OSGi framework and Android native processes; (2) it does not change OSGi

original framework and thus OSGi bundles can run in Java Running Environment

(JRE) without compatibility issues; (3) it support mobile cloud computing in that

allowing OSGi bundles as cloud services to be reused among OSGi frameworks;

(4) it is a lightweight implementation and consumes limited memory and power

on mobile devices.

 50

 6.2 Further work

In further research, we will improve the current model to enable the bundle

transferring among OSGi platforms which located in different operating systems.

Also we will research on the XMPP server to fulfill group and individual

authentication of bundles which belong to different users. And also the download

of bundles from XMPP server can be considered in future work.

 51

REFERENCES

[1] Woon Yong Kim, Seok-Gyu Park, The 4-Tier Design Pattern for the

Development of an Android Application, Lecture Notes in Computer Science, 2011,

Volume 7105/2011

[2] L. Zhang and Q. Zhou, “CCOA: Cloud computing open architecture,”

in Proc. IEEE Int. Conf. Web Services, 2009, pp. 607–616.

[3] Android website, http://www.android.com/

[4] News: Android takes the largest portion in smart phone market,

http://blog.laptopmag.com/report-android-claims-largest-portion-of-smartphone-

market

[5] Tergujeff, R., Haajanen, J., Leppanen, J., Toivonen, S. Mobile SOA: Service

Orientation on Lightweight Mobile Devices, icws, pp. 1224-1225, IEEE International

Conference on Web Services (ICWS 2007), 2007

[6] About the OSGi Service Platform, Technical Whitepaper.

http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf, June, 2007.

[7] OSGI Alliance. OSGi. The Dynamic Module System for Java. www.osgi.org.

[8] S. Pack, K. Park, T. Kwon, and Y. Choi, "SAMP: Scalable Application-Layer

Mobility Protocol," IEEE Communications Magazine, no. June, pp. 86-92, 2006.

[9] Wolf B, Rosjat M. A Dynamic OSGi-based Data Stream System[C]. MDS'08:

Leuven, Belgium, 2008: 31-36.

[10] A. Ennai and S. Bose, "MobileSOA: a service oriented web 2.0 framework for

context-aware, lightweight and flexible mobile applications," EDOCW, 12th

Enterprise Distributed Object Computing Conference Workshops, pp.345-352, 2008.

[11] Erl, T. SOA: Principles of Service Design. Prentice-Hall, Englewood Cliffs

(2007)

[12] EZdroid website, http://www.ezdroid.com/

[13] mBs website, http://www.prosyst.com/index.php/de/html/content/49/mBS-

Mobile-for-Android/

[14] Felix by Apache, http://felix.apache.org/site/index.html

[15] D. Huang, X. Zhang, M. Kang, and J. Luo, Mobicloud: A secure mobile cloud

 52

framework for pervasive mobile computing and communication, in Proceedings of

5th IEEE International Symposium on Service- Oriented System Engineering, 2010.

[16] Dijiang Huang, Zhibin Zhou, Le Xu, Tianyi Xing, and Yunji Zhong, Secure

Data Processing Framework for Mobile Cloud Computing, In Proceedings of IEEE

INFOCOM’s Workshop on Cloud Computing, 2011.

[17] Dijiang Huang, Vetri Arasan. Email-based Social Network Trust. Proceeding

SOCIALCOM’10 Proceeding of the 2010 IEEE Second International Conference on

Social Computing.

[18] S. Bouzefrane , D. Huang , P. Paradinas, An OSGi-based Service Oriented

Architecture for Android Software Development Platforms, April 2012, Paris, France

[19] OSGi Alliance website, http://www.osgi.org/Main/HomePage

http://cedric.cnam.fr/index.php/labo/membre/view?id=115
http://cedric.cnam.fr/index.php/labo/membre/view?id=1260
http://cedric.cnam.fr/index.php/labo/membre/view?id=154

