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ABSTRACT 

Broadcast Encryption is the task of cryptographically securing communication in 

a broadcast environment so that only a dynamically specified subset of 

subscribers, called the privileged subset, may decrypt the communication. In 

practical applications, it is desirable for a Broadcast Encryption Scheme (   ) to 

demonstrate resilience against attacks by colluding, unprivileged subscribers. 

Minimal Perfect Hash Families (    ) have been shown to provide a basis for 

the construction of memory-efficient  -resilient Key Pre-distribution Schemes 

(    ) from multiple instances of 1-resilient     . Using this technique, the task 

of constructing a large  -resilient     is reduced to finding a near-minimal     of 

appropriate parameters. While combinatorial and probabilistic constructions exist 

for minimal      with certain parameters, the complexity of constructing them in 

general is currently unknown. 

This thesis introduces a new type of hash family, called a Scattering Hash 

Family (    ), which is designed to allow for the scalable and ingredient-

independent design of memory-efficient      for large parameters, specifically 

resilience and total number of subscribers. A general     construction using 

      is shown, which constructs  -resilient      from other      of any 

resilience      .  

In addition to demonstrating how       can be used to produce     , this 

thesis explores several      construction techniques. The initial technique 

demonstrates a probabilistic, non-constructive proof of existence for      .  This 

construction is then derandomized into a direct, polynomial time construction of 

near-minimal       using the method of conditional expectations. As an 

alternative approach to direct construction, representing       as a  -restriction 
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problem allows for the indirect construction of       via randomized post-

optimization.  

Using the methods defined,       are constructed and the parameters’ 

effects on solution size are analyzed. For large strengths, constructive 

techniques lose significant performance, and as such, asymptotic analysis is 

performed using the non-constructive existential results. This work concludes 

with an analysis of the benefits and disadvantages of      based on the 

constructed      . Due to the novel nature of      , the results of this analysis 

are used as the foundation for an empirical comparison between     -based 

and    -based     . The primary bases of comparison are construction 

efficiency, key material requirements, and message transmission overhead.  
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Chapter 1 
 

INTRODUCTION 

A broadcast environment is an overarching title given to any scenario in which a 

central authority is attempting to communicate over a channel that cannot be 

guaranteed to be private. Such an environment can be physical, as with the 

distribution of DVDs or other physical media, or it can be virtual, as with radio 

and network-based broadcasts. In many of these scenarios, it is desirable to limit 

the ability of parties to receive a given message to a select subset of listeners 

while still taking advantage of the convenience of transmitting over a broadcast 

medium. Traditional symmetric encryption models do not fit this model of 

communication because they tend to operate by securing individual channels of 

communication between parties. This approach would result in an infeasible 

amount of overhead for the central authority to send a message to potentially 

tens of thousands of listeners. In pursuit of this goal, and in light of these 

restrictions, the study of broadcast encryption was formed. 

When broadcasting a message that is to be encrypted to some set of 

listeners, there are two important factors to consider. The first is how to distribute 

the key material to the listeners and the second is how the central authority 

encrypts and transmits this message across the environment. As such, a 

Broadcast Encryption Scheme (   ) is defined in two phases: the key pre-

distribution phase and the broadcast phase. When the central authority is acting 

as the broadcaster under these schemes, it is called the Trusted Authority (  ) 

since it is then responsible for managing key material and encryption for its 

listeners. These listeners are then referred to as subscribers based on their need 

for initial interaction with the   . Trivial solutions exist for broadcast encryption; 
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however, in general, optimizing key pre-distribution comes at a cost of 

performance in the broadcast phase and vice versa. The goal for     design is 

to arrive at a secure and efficient trade-off between these phases. Additionally, 

more sophisticated designs offer a security assurance to the design called 

resilience. Resilience, or when a specific quantity is expressed,  -resilience is a 

measure of the number of misbehaving subscribers that are required to 

compromise the security of a    , typically by sharing their key material with one 

another.  

The majority of research into broadcast encryption schemes has gone into 

the areas of designing 1-resilient schemes, designing standalone  -resilient 

schemes, and designing  -resilient schemes that use 1-resilient schemes as a 

base ingredient. In the 1990s, a strong relationship between      and the 

existence of certain combinatorial structures called hash families was established 

[1], and subsequently, much research has gone into strengthening the 

knowledge of these two fields. Specifically, Perfect Hash Families (    ) have 

been demonstrated to provide the basis for a     construction that is efficient in 

both broadcast and key material overhead. The separation property of a     

allows for the construction of a  -resilient     from smaller instances of 1-

resilient schemes. Designing efficient algorithms for the generation of minimal or 

near-minimal      has been a well-studied problem in the last several decades. 

However, much is still unknown about their construction in general.  

While      have been shown to be very efficient in constructing  -resilient 

schemes from 1-resilient schemes, no analogous combinatorial structure has 

been created that allows for the inflation of a  -resilient scheme into a similarly 

efficient  -resilient scheme for    . Such a structure would generalize     , 
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but does not appear to be provided by the body of existing     generalizations. 

This thesis presents a new type of hash family, called a Scattering Hash Famiy 

(    ) that is shown to exhibit the desired inflation behavior. In addition to 

providing an existential analysis for these families using a variety of techniques, 

this thesis provides a direct comparison between     -based and    -based 

     using both the broadcast and key material overheads as metrics of 

performance.  

 

Overview of this Thesis 

Chapter 2 provides the basics for framing the study of hash family based 

broadcast encryption. Perfect hashing is introduced to provide a foundation for 

both the canonical    -based     as well as for the design and subsequent 

analysis of Scattering Hashing.  

Chapter 3 formalizes Broadcast Encryption Schemes and establishes the 

relationship between these schemes and     . From here, this relationship is 

generalized and subsequently, Scattering Hash Families are introduced, 

formalized, and analyzed for their broadcast encryption properties. 

Chapter 4 details the existential conditions and construction of      . The 

initial constructive and probabilistic proofs of existence for this type of hash family 

are provided. A randomized construction algorithm for       is provided and 

subsequently, using the technique of derandomization, this algorithm is used to 

create an efficient deterministic algorithm for constructing      . 

Chapter 5 incorporates the construction techniques as a foundation for the 

first empirical existential analysis for      . Subsequently, these results are 

utilized in constructing a comparison between    -based and     -based      
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on the metrics of Key Material Overhead, Broadcast Encryption Overhead, and 

Information Rates. 

Chapter 6 concludes this thesis with a discussion of the results and a brief 

discussion of future work. 
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  Chapter 2

BACKGROUND 

2.1 Perfect Hashing 

Originally motivated by optimization of compiler design, the study and design of 

Perfect Hash Families (    ) have since been extended to many different 

applications ranging from combinatorial design to cryptography. In addition to 

expanding their uses, much research has gone into generalized constructions as 

well as bounds on the various parameters [2] [3]. Of particular relevance to this 

work is the construction of minimal and near-minimal      and their applications 

to the study of Broadcast Encryption. The relevance of perfect hashing to 

broadcast encryption was established by Fiat and Naor [1] in 1994 and has stood 

as one of the predominant foundations for generating  -resilient      provided a 

minimal or near-minimal     is known for the given parameters.  

Formally, a                                is a set of functions   such 

that     : 

  {     }  {     } 

and for any subset   {     } with | |   ,      such that   is an injection on 

 . While a perfect hash function is one that maps every element of its domain to 

a unique element of its range, Perfect Hash Families can be viewed as a 

relaxation of this requirement. By necessity, a perfect hash function   {     }  

{     } would at minimum require    , but in most cases, constructions 

produce    , which is prohibitively restrictive in application. Not only are such 

functions often difficult to define on a large universe of inputs, but they also 

require a large amount of memory when    . By relaxing this property to allow 

multiple functions with the property that at least one such function will be injective 
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for any set of   elements of the domain, this overhead is greatly reduced. By 

convention [3], all Perfect Hash Families in this work are denoted             , 

which in the absence of a universally accepted representation is the most 

common form.  

At times, it is more convenient to represent a     as an array of elements 

subject to a separation constraint for all subsets of elements of a certain size. 

When viewed as an array, a                               is an     array 

populated with symbols from   where | |    in such a way that for any selection 

of   columns of the matrix, there exists at least one row such that the symbols 

contained in the intersection of this row and the selected columns are all distinct. 

Both the injective property of the function definition and the requirement for 

distinct elements in a row for the  -subsets are different ways of stating the     

separation condition. Intuitively, the separation condition is what distinguishes a 

    from all other varieties of hash families. In Section 3.2, the     separation 

condition is generalized in an as-yet unexplored fashion in the construction of 

     . 

Many techniques have been developed to generate     , ranging from 

combinatorial construction [4], probabilistic construction [5], to direct algorithmic 

approaches [6]. Each of these techniques suffers from unique drawbacks, which 

prevents their sole use in generalized     construction. Combinatorial 

constructions tend to produce elegant, simple, and often minimal instances of 

    , however, they are highly restrictive on the relationships of the parameters 

of the     and as such, do not generalize well. Figure 2.1.1 below depicts a 

minimal              that can be generated by such a method. Probabilistic 

construction is a general term for two different probabilistic approaches; the first 
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of which offers a probabilistic guarantee on the separation for all  -subsets [5], 

while the second guarantees separation while probabilistically assuring 

minimality [6]. The latter of these two approaches has produced the best known 

general bound for      and in Sections 4.2 and 5.1, it is the most successful 

technique employed for      construction in this thesis.  

 

1 2 3 4 5 6 

1 1 1 2 3 1 

1 2 3 2 4 1 

1 2 3 3 2 3 

1 1 1 2 3 1 

3 3 3 4 2 4 

3 4 2 1 2 1 

4 4 4 2 4 4 

4 3 1 4 3 3 

 
Table 2.1.1: A Minimal              

 
For the applications considered in this work, probabilistic guarantees of 

separation for a     violate the provable perfect secrecy of      utilizing these 

     to determine key pre-distribution. Moreover, these structures are not even 

guaranteed to be      because of this property; however, some applications 

can handle this weakening by accepting the risk that certain small subsets of 

unprivileged users can decrypt the content [7].      that separate all ( 
 
)  -

subsets but only probabilistically assure minimality are often the result of greedy 

or derandomized constructions to efficiently generate     . For    -based 

    , this allows for the possibility that users are forced to store significantly 

more key material than is necessary for the scheme being deployed. These 
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properties are examined in greater detail in Section 3.1 and Section 5.3 

respectively. 

 

2.2 Broadcast Encryption 

Broadcast Encryption is the cryptographic problem wherein a centralized Trusted 

Authority (  ) desires to transmit a message across a broadcast medium that is 

encrypted in such a fashion that only a particular, dynamic subset of subscribed 

listeners can decrypt and observe the message. Such a scheme not only needs 

to protect against non-subscribed listeners, but also against valid, registered 

subscribers who are not entitled to decrypt the contents of a given message. 

Formally, a Broadcast Encryption Scheme is represented as          , 

indicating it is a scheme on   subscribed listeners with a resilience against 

colluding parties of size at most  . Traditionally, the broadcast message is the 

encryption key to a large message that has been encrypted with a strong 

symmetric algorithm such as AES [8], which is broadcast after the secure 

distribution of the encryption key. For this reason, it is often the goal to restrict 

the focus of designing      to those in which a single message   is chosen to 

persist throughout a large amount of content distribution with infrequent 

modifications to the privileged subset. The most famous instance of this type of 

scheme is the AACS content protection scheme applied to Blu-Ray discs [8]. In 

this scheme, a sufficiently large     size is chosen and the     is deployed to 

each licensed Blu-Ray player manufacturer. Each Blu-Ray disc is encrypted with 

a key   and the sale combined with the ease of copying the encrypted content 

on the discs is analogous to a broadcast in the traditional sense. 
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While the size of a     is determined simply by the number of subscribers, 

resilience is crucial, but is not so easily determined. In [9], Luby and Staddon 

prove lower bounds on key material requirements and message overhead in the 

circumstances of     or      , which are reasonable bounds for pay-per-

view TV     , but not necessarily for all applications. Although it is true for most 

memory efficient schemes that selecting a higher resilience results in the need 

for much higher amounts of pre-distributed key material, in practice, the selection 

of resilience for a     is rooted deeper in procedural, practical, or economic 

restrictions than it is in mathematics [9] [10]. Consider a pay-per-view TV 

service’s broadcast encryption model. Subscribers are customers of the content 

provider (  ) who have registered for this service and have had a box delivered 

to their house, which among other functions, serves as a tamper-proof storage 

device for the subscriber’s key material. The necessary resilience in this situation 

is based on a risk analysis of subscribers successfully tampering with their 

boxes, spoofing registration to obtain multiple boxes, and reaching out 

undetected to other parties desiring to circumvent the scheme. If these factors 

can be mitigated to a nominal degree, the     deployed can utilize a smaller 

resilience. 

 An analysis of broadcast encryption would be incomplete without 

considering the varied extensions of broadcast encryption that have been 

discovered since its inception. In its initial form, broadcast encryption was based 

solely around the concept of providing resilience against a colluding party of 

unprivileged users of at most a certain size [1]. When the colluding party exceeds 

this threshold, this subset of unprivileged users is able to freely decrypt content 

at will. Traitor-tracing [11] [12] [13] is a natural extension to resilience, and allows 
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the    to identify some subset of the colluding party when a compromise occurs 

and prevents these members from framing an innocent subscriber for their 

actions. This technique is widely used in protecting against unlawful reproduction 

of licensed software [14]. These schemes put members of a colluding party in 

direct risk of discovery, which effectively protects against unwanted distribution 

by severely de-incentivizing this behavior. Stinson, Trung, and Wei [15] provide a 

detailed analysis of the use of hash families in the production of frame-proof and 

traitor-tracing codes, a key ingredient in the construction of several such Traitor-

Tracing Schemes (    ).   

 In addition to the ability to identify adversarial subscribers, it is desired that 

methods of broadcast encryption include the ability to revoke a set of keys 

associated with one or more subscribers. Revocation is the ability to remove a 

subscriber’s ability to decrypt all future broadcasts by rendering those keys 

useless. In simple     , this can be performed at the    by removing any 

revoked subscribers from the privileged subset   before broadcasting the 

message. Simple     , however, lack the ability to actually trace a traitor, since 

the fully decrypted content is the same for all users. The AACS [8]     

previously mentioned incorporates both of these concepts into an efficient trace-

revoke scheme that can not only detect the type of Blu-Ray player that has been 

compromised, but will also render the class of Blu-Ray players used in this 

compromise unable to play any future releases.  

Formally, a           is defined to be a broadcast encryption scheme 

with   pre-registered subscribers that must be resilient against colluding parties 

of non-privileged listeners of size at most  . A           consists of two 

phases, the first of which is the pre-distribution phase during which keys are 
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generated, arranged, and distributed to the set of subscribers  . The second 

phase is the broadcast phase in which a message   is produced and encrypted 

based on the desired privileged subset     and is then transmitted across the 

broadcast medium. While, in general,     resilience can be defined as a 

probabilistic guarantee that colluding parties cannot decrypt a particular message 

[7], the scope of this thesis restricts this definition to deterministic resilience so 

that, definitively, no  -subset of unprivileged subscribers is able to decrypt any 

broadcast message  . There exist several trivial solutions to this problem [1] 

[16], two of which are provided below. Each of these schemes represents one 

extreme in the trade-off of key material overhead versus broadcast length. In 

practice, both of these extremes are avoided in favor of schemes that provide an 

efficient compromise between these two factors. 

 

 

Figure 2.2.1: A Naïve     with Large Broadcast Encryption Overhead 

Pre-distribution Phase: 

 Let 𝐾  be the set of all subscribers of the 𝐵𝐸𝑆. 

 Generate 𝐾  distinct symmetric keys uniformly at random and pre-

distribute one to each subscriber 𝑠  𝐾.  

Broadcast Phase: 

 For broadcast message 𝑀, let 𝑃  𝐾 be the privileged subset. 

 When sending message 𝑀, the 𝑇𝐴 produces |𝑃| copies of the 

message and encrypts each copy with the key of a member of the 

privileged subset. 

 The 𝑇𝐴 broadcasts all |𝑃| encrypted versions of 𝑀 in succession: 

𝐸  𝑀  𝐸  𝑀    𝐸|𝑃| 𝑀 . 
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Figure 2.2.2: A Naïve     with Large Key Material Overhead 

 

 The first method with large broadcast overhead is perhaps the most 

intuitive     design. Each subscriber gets one personal symmetric key that the 

   uses to encrypt a copy of the message  . In this scheme, the broadcast 

message must be encrypted and re-broadcast for each user in the privileged 

subset  . This scheme’s broadcast overhead thus scales linearly with both the 

size of the broadcast message as well as the size of  , which is prohibitively 

expensive. The second method with large key material overhead optimizes the 

Pre-distribution Phase: 

 Let 𝐾  be the set of all subscribers of the 𝐵𝐸𝑆. 

 Generate  |𝐾| distinct symmetric keys uniformly at random, each 

corresponding to one possible subset of subscribers from the 

set of all subsets of 𝐾, Ƥ 𝐾 .  

 For every subscriber 𝑠  𝐾,  let Ƥ𝑠 𝐾  denote the set of subsets 

that contain subscriber 𝑠. For all 𝑠, distribute to this subscriber 

every symmetric key corresponding to a subset in Ƥ𝑠 𝐾 .  

Broadcast Phase: 

 For broadcast message 𝑀, let 𝑃 be the privileged subset of 

subscribers. 

 When sending message 𝑀, the 𝑇𝐴 selects the key 

corresponding to the privileged subset  𝑃  Ƥ 𝐾  and encrypts 

𝑀 with this key 

 The 𝑇𝐴 broadcasts the single message 𝐸𝑃 𝑀 . 
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broadcast down to a single message; however, even for small instances of this 

scheme, each subscriber’s key storage is  | |   keys, which is, once again, 

prohibitively expensive. Fiat and Naor [1], among others, demonstrated that for 

broadcast encryption to be practical, an efficient trade-off between these two 

factors must be obtained.  

 

2.3 Randomization and Derandomization 

Randomization is a powerful tool in the design of algorithms that, rather than 

relying on making decisions on the input in a fixed, iterative fashion, instead 

harnesses a secondary input of uniformly distributed random bits to govern the 

operation or output of the algorithm. Randomized algorithms are split into two 

major categories based on how the randomness is utilized: Monte Carlo 

algorithms offer deterministic run time while only probabilistically guaranteeing 

veracity of output whereas Las Vegas algorithms may fail to terminate but always 

produce a correct result upon termination. Historically, the primary motivating 

factor in designing randomized algorithms is the desire to obtain practical results 

in an efficient manner in the absence of a known efficient deterministic technique. 

Contextual evidence of this phenomenon exists in the study of primality testing of 

integers [17] [18], escaping local minima/maxima during Simulated Annealing 

[19], and in the construction of convex hulls and polytopes, all of which produced 

efficient randomized algorithms years or even decades before deterministic 

techniques of equivalent computational complexity were discovered.  

The probabilistic guarantees provided by these algorithms are sometimes 

undesirable in practice. Derandomization involves removing the randomness 

from a probabilistic algorithm while maintaining or even improving upon its 
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performance in either solution strength or computational complexity. Of particular 

importance to this work is the derandomization of probabilistic, non-constructive 

proofs of existence into efficient and constructive deterministic algorithms. 

Probabilistic non-constructive proofs of existence for various hash families have 

been analyzed in depth [5], and in many cases yield the lowest known bounds for 

minimality. While these results are useful for asymptotic analysis, applications of 

these hash families require actual constructions to be utilized. Despite this fact, 

the analysis of randomized algorithms may reveal core properties inherent to a 

particular combinatorial problem. In certain cases, these properties can be 

harnessed in a deterministic fashion as long as certain constraints are 

maintained during the derandomization.  

Section 4.1 describes a randomized proof of existence for       that 

follows a general approach shown to be successful for many other types of hash 

families [6]. This proof analyzes the probability that a randomly generated array 

will fail to meet the      separation condition for all  -subsets of columns. As the 

number of rows increases, this probability decreases and once it reaches a 

certain point, there must exist some array of this size that meets the separation 

condition and thus, a      of the current parameters must exist. By utilizing the 

Method of Conditional Expectation [20], this proof is systematically derandomized 

into a polynomial-time deterministic      construction algorithm, which is 

subsequently analyzed in Section 5.1.  

 
 

2.4 Post-Optimization and  -Restrictions 

In combinatorial design, it is often the case that when analyzing a new structure, 

the existing construction methods produce sub-optimal results. Optimality in 
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terms of hash family construction is measured in output size. The smaller the 

constructed family, the stronger it is considered. Advanced techniques for 

constructing small instances tend to evolve out of earlier naïve approaches [6]. 

For hash families as well as other array-based constraint satisfaction designs, 

constructions tend to suffer from a trade-off between simplicity of construction 

and runtime, guarantee of constraint satisfaction, and minimality [2] [5] [6]. When 

constructing instances of these designs on large parameters, the time complexity 

of the chosen algorithm becomes increasingly important. As demonstrated in the 

derandomized      and     construction algorithms in Section 4.2, ensuring 

that execution occurs in an efficient manner tends to sacrifice minimality of 

design in favor of polynomial time complexity. 

 Despite the fact that the constructions produced by these algorithms are in 

general not minimal, these results can be refined via a technique called post-

optimization. Post-optimization is a type of combinatorial optimization approach 

that operates a posteriori on the output of a separate construction for a given 

combinatorial design. Essentially, it is the technique of taking a suboptimal 

solution to open problems such as covering array or hash family construction and 

improving upon the strength of the solution. 

 Post-optimization has been shown to be highly successful for improving 

known bounds of minimality for Covering Arrays (   ) and several well-known 

forms of hash families including Perfect, Separating, and Distributing Hash 

Families; referred to as     ,     , and      respectively [21]. This work 

defines a randomized post-optimization technique that operates on a set of 

designs called  -restriction problems. Each of the structures are shown to be 

instances of a  -restriction problem, and once represented as such, are post-
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optimized using necessity analysis on a symbol-by-symbol basis. The 

optimization on the array occurs when an entire row is determined to be 

unnecessary to the structure and is discarded, thus providing a smaller instance, 

which is a stronger solution. Formally,  -restriction problems are defined as 

follows [22]: 

 

 

Figure 2.4.1: Definition of  -Restriction Problems 

 

By formalizing Scattering Hash Families as a  -restriction problem and 

subsequently performing  -restriction-based post-optimization on known 

instances, the non-minimal instances generated by the derandomized 

construction in Section 4.2 are post-optimized in an attempt to strengthen the 

known bounds of minimality for      . The results of this post-optimization are 

analyzed in Section 5.2. 

  

 
1. The input is an alphabet Ʃ of size |Ʃ|  q, a length 𝑚, and a set of 𝑠 

possible demands: 𝑓𝑖 Ʃ
k  {   },   𝑖  𝑠. For every   𝑖  𝑠, there 

exists 𝑎  Ʃk so that 𝑓𝑖 𝑎   . 

2. The task is to prepare a set 𝐴  Ʃm so that: For any choice of 𝑘 

indices   𝑖𝑖  ⋯  𝑖𝑘  𝑚, and a demand 𝑗,   𝑗  𝑠, there is 

some 𝑎  𝐴 such that 𝑓𝑗(𝑎 𝑖   𝑎 𝑖𝑘 )   . 

3. The smaller |𝐴| is, the higher the quality of the solution. 
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  Chapter 3

BROADCAST ENCRYPTION 

3.1 Fiat-Naor Broadcast Encryption 

The Fiat-Naor     [1] is essentially a technique of extending a 1-resilient     to 

a  -reslilient     through the use of Perfect Hash Families. In order to 

accomplish this, an arbitrary 1-reslient     is selected as the base ingredient for 

the larger scheme. From here, the construction requires a     whose 

parameters match those of the desired    ; that is whose number of columns 

equals the number of subscribers and whose strength corresponds to the desired 

resilience of the    . The innovative aspect of this technique is revealed in how 

the provided     is used to inflate the resiliency. The rows of the     are 

treated as partitions of the columns based on the symbols appearing in the    . 

From here, every partition of every row is assigned an independent 1-resilient 

   . In their initial work [1], Fiat and Naor demonstrate several such ingredient 

    . Subsequently, these schemes have been analyzed in depth [16] and other 

memory-efficient alternatives have been proposed [23]. 

The result of applying the ingredient      is that each user is assigned 

keys for every partition of the     in which they are present. In order to securely 

broadcast a message to an arbitrary privileged subset of users, the    randomly 

generates components         so that     
       where   is the number of 

rows of the    . The components of the message are then encrypted with the 

keys in such a fashion as to allow only privileged users the ability to decrypt, 

while offering no information about   to colluding parties of size   or smaller. A 

detailed proof of this concept is given in Section 3.5 in the context of          , 

however, the information-theoretic properties are the same. 
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In order to analyze the Fiat-Naor construction as well as to provide a 

concrete ingredient     for the          construction in Section 3.3, the 

following process details the key pre-distribution and broadcast protocol of a 

                . In a broadcast environment consisting of     subscribers, it 

is desired to create a     whose broadcasts are resilient against colluding 

parties of unprivileged subscribers of size     or smaller. The     will be 

constructed from the     in Figure 3.1.1. 

 

1 2 3 4 5 

1 1 1 2 2 

1 1 2 1 2 

1 2 1 1 2 

 

Table 3.1.1: A                

 

Once the     has been obtained, for each row         , partition the 

column indices based on the elements appearing in this row. Let     be the label 

for the     partition in row   . On each partition    , create an instance of a 1-

resilient     on     subscribers where     |   | is the size of the partition and 

distribute the keys according to this    .  

 

    {     } {   }      

    {     } {   }      

    {     } {   }      

 

Table 3.1.2: Symbolic Partitions for              
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 Let the 1-resilient ingredient     selected be the following: for each 

member of partition    , first distribute a Null-key      to each member. The Null-

key prevents subscribers from outside of this partition from recovering the 

message component    to be broadcast on this partition. Then, for each 

subscriber   present in the partition, generate a key      and distribute this key to 

every member of the partition except  . Repeating this     for all partitions 

results in the subscribers of this     receiving the keys according to Table 3.1.3. 

 

1 2 3 4 5 

                 

                 

                 

             

             

                 

                 

                 

             

             

                 

                 

                 

             

             

 

Table 3.1.3: Fiat-Naor Key Distribution Pattern for              

 

 Once the pre-distribution phase has been completed, the broadcast phase 

is performed as follows. Let   be the privileged subset of subscribers and let 

    {  |          } be the set of columns in partition     that are disjoint from 



20 
 
 

 .  Now, let     
 represent the result of xor composition of all      where      . 

For broadcast message  , randomly generate message components         

so that     
      . Then, for every partition    , the final computed values will 

be the set of messages:                 
 

 

                      

                 

                 

                      

                 

                      

 
Figure 3.1.4: Final Broadcast Content for     on               

 
 The concatenation of all     is the encrypted value for broadcast message 

 .  In the           constructed above, broadcasting message   with a 

privileged subset   {   }, the broadcast would then be the concatenation of 

the encrypted components in Figure 3.1.4. 

 

 
3.2 Introducing Scattering Hash Families 

The core motivation behind this entire thesis is the following series of questions: 

If a              can be used to inflate a 1-resilient     into a  -resilient     

that is efficient in both broadcast and key material overhead, what kind of 

construction can be used to inflate      of resilience    ? What type of 

combinatorial structure assures this property while still offering strong 

performance in both broadcast length and key material storage? And finally, what 
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are the advantages and disadvantages of such a scheme over existing     

techniques? 

 After analyzing the gamut of hash family variations, it was determined that 

no existing hash family met this criteria. Among the variations,      were the 

closest, providing the same security as with the Fiat-Naor     but with 

significantly increased key material overhead. Since      offer tighter 

combinatorial restrictions on the  -subsets to inflate weaker     , this result is as 

expected. Separating Hash Families (    ), Distributing Hash Families (    ), 

and their variants weaken the separation condition for      in such a way as to 

violate the unconditional security of the inflated    . Specifically, this is due to 

both variants addressing partitions of  -subsets and only enforcing separation 

requirements between classes of partitions. Since no restriction is placed upon 

the relationship between the elements within a partition itself, the     

construction loses its guarantee of separation.  

It then remains to determine a generalization of      that takes advantage 

of the higher strength of ingredient schemes yet still offers the desired security 

under the provided construction model. Rather than partitioning  -subsets and 

redefining separation conditions based on these partitions, this generalization 

needs to enforce a variable multiplicity cap on the symbols in each subset. With 

these parameters in consideration, Scattering Hash Families (     ) are 

defined. 

 Formally, a                                    is a set of functions   

such that     : 

  {     }  {     } 
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and for any subset   {     } with | |   ,      such that for each symbol 

  {     }, the image      maps to the symbol   at most   times. Following the 

chosen notation for     , Scattering Hash Families are represented as 

               . The term “Scattering” was chosen to convey the relaxation in 

separation requirements from a    . Within a  -subset, elements can clump 

together to a certain degree, but overall they need to be scattered fairly 

uniformly. 

When viewed as an array, a                                     is an 

    array populated with symbols from   where | |    in such a way that for 

any selection of   columns of the matrix, there exists at least one row such that 

the symbols contained in the intersection of this row and the selected columns 

appear   or fewer times. The construction and combinatorial properties of       

are covered in detail throughout Sections 4.1 and 4.2 and the scalable, ingredient 

independent          is the primary focus of the following section. 

 Within a                , let |  | represent the number of occurrences of 

symbol   in row   for every symbol   {     }. When, for all  ,      , 

     , |  |  |  |, this      is called homogeneous. This is primarily an 

application-driven definition placed upon this hash family, which is further 

explored in Section 3.6 and utilized in the construction of a          in Section 

3.4.  

 

 

3.3 A Broadcast Encryption Scheme Based on       

As described in the previous section,       were designed for the purpose of 

constructing      from ingredient      of strength     while taking advantage 

of the increased ingredient strength in order to loosen the combinatorial 
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restriction on the hash family that determines the final key pre-distribution.       

achieve this by generalizing the  -subset separation condition from requiring 

complete element distinction to enforcing a multiplicity cap   per element. The 

construction of the          draws on the techniques used in the Fiat-Naor     

construction [1] and throughout this thesis, all           constructed and 

analyzed utilize multiple instances of this construction for the ingredient     . It 

is important to note that, by its definition, the scheme itself is agnostic to the 

ingredient      used in construction. Any  -resilient     can be used in place of 

the Fiat-Naor schemes used in this work. The choice to analyze only Fiat-Naor 

ingredient schemes was made to provide an initial scope for the analysis of the 

properties of this scheme. 

Given a                 , the central    can construct a  -resilient     

with   | | subscribers from  -resilient ingredient      as follows. For all rows 

of the     , partition each row by the symbols present. Let     be the label for 

the     partition in the     row of the     . For each partition    , construct a  -

resilient     and deploy the symmetric keys accordingly. The          is 

generalized in such a way that no specific type of     is required for this stage 

and, moreover, the ingredient      do not need to be the of same type, so long 

as they are all  -resilient. For the sake of selection, however, construct a  -

resilient     in the fashion described in Section 3.1. Now, for all     construct a 

        |   |        and from this, construct a Fiat-Naor    . Then, for all     

and for each subscriber       , distribute symmetric keys according to this    .  

Once the key pre-distribution method has been deployed, the    uses the 

following broadcast protocol. Let   be the message being broadcasted and let 

  Ƥ    be the privileged subset of subscribers for this broadcast. Beginning 
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with the same technique described in Section 3.1, generate         random 

component messages of length | | such that 

             

where   is the number of rows of the     . Instead of directly encrypting each of 

these message components, the          breaks down the message once 

more and encrypts each sub-component according to each partition’s Fiat-Naor 

scheme. To do so, generate                
 for all         , such that 

                  
. 

For every partition     of the     , consider the         |   |         that 

was constructed and deployed as a     on this partition. Within this    , retain 

the original      column indexing for continuity of representation. Let     denote 

the     partition of the     row of the     and let     {  |          } be the 

set of columns in partition     that are disjoint from  . Now, let       
 represent 

the xor composition of all        where      . For each partition    , construct 

the set of encrypted message components:                          
. For 

all      partitions     and for all     partitions     corresponding to each    , 

the encrypted broadcast is the concatenation of all      : 

 
   :                        

. 

  

   :                        
 

  

   :                          
 

Figure 3.3.1: The Final Broadcast Content for a          
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The formal definition of the          is given in Figure 3.3.2 and Figure 

3.3.3. This is the scheme that is used for the direct comparison with the Fiat-Naor 

        in Section 5.3. As a step towards producing that comparison, a means 

of computing the efficiency of a     by measuring its information rate is 

introduced. 

 

 

Figure 3.3.2: Pre-distribution Phase of a     -Based     

 

Pre-distribution Phase: 

 Let 𝐾  be the set of all subscribers of the 𝐵𝐸𝑆 with |𝐾|  𝑘 and let 

𝑆  𝑆𝑐𝐻𝐹 𝑁 𝑘 𝑣 𝑤 𝑡 . 

 For every row 𝑅𝑖    𝑖  𝑁, partition the set of columns by symbol into 

partitions 𝑝𝑖𝑗, which represents the 𝑗𝑡  partition of row 𝑅𝑖.  

 For each partition 𝑝𝑖𝑗, construct a 𝑃𝐻𝐹 𝑁𝑖𝑗 |𝑝𝑖𝑗| 𝑣𝑖𝑗 𝑤  and from this, 

construct a Fiat-Naor 𝐾𝑃𝑆. For all 𝑝𝑖𝑗 and for each subscriber 𝑠  𝑝𝑖𝑗, 

distribute keys according to this 𝐾𝑃𝑆, preserving the original column 

indexing. 
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Figure 3.3.3: Broadcast Phase of a     -Based     

 

When designing Broadcast Encryption Schemes, it is useful to be able to 

meaningfully compare them to one another in terms of their performance. The 

information rate of a     is one such metric [16]. The information rate can be 

framed as the efficiency with which a     distributes secret information to a user. 

Formally, the information rate of a     is defined as 

     {
    

     
      } 

Broadcast Phase: 

 For broadcast message 𝑀, let 𝑃  𝐾 be the privileged subset. 

 Construct component messages 𝑀  𝑀    𝑀𝑁 of size |𝑀| uniformly at 

random such that 𝑀  𝑀  𝑀    𝑀𝑁.  

 For every 𝑆𝑐𝐻𝐹 partition 𝑝𝑖𝑗, consider the 𝑃𝐻𝐹 𝑁𝑖𝑗 |𝑝𝑖𝑗| 𝑣𝑖𝑗 𝑤   

deployed on this partition, but retain the original 𝑆𝑐𝐻𝐹 column indexing: 

o The broadcast message for this partition is 𝑀𝑖, construct 

components 𝑀     𝑀 𝑁𝑖𝑗such that 𝑀𝑖  𝑀     𝑀 𝑁𝑖𝑗 . 

o Let 𝑝𝑎𝑏 denote the 𝑏𝑡  partition of the 𝑎𝑡  row of the 𝑃𝐻𝐹 and let 

𝐿𝑎𝑏  {𝑠 | 𝑠  𝑝𝑎𝑏  𝑠  𝑃} Now, let 𝐾𝐿𝑎𝑏  represent ⨁𝐾𝑎𝑏𝑙 

 𝑙  𝐿𝑎𝑏. 

o For each partition 𝑝𝑎𝑏, construct the set of encrypted message 

components: 𝑌𝑎𝑏  𝑀𝑖𝑎  𝐾𝑎𝑏  𝐾𝐿𝑎𝑏. 

 For all 𝑆𝑐𝐻𝐹 partitions 𝑝𝑖𝑗 and for all 𝑃𝐻𝐹 partitions 𝑝𝑎𝑏 corresponding 

to each 𝑝𝑖𝑗, broadcast 𝑌𝑖𝑗𝑎𝑏  𝑀𝑖𝑎  𝐾𝑖𝑗𝑎𝑏  𝐾𝑖𝑗𝐿𝑎𝑏 . 
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where    is the set of all possible secret values that can be distributed to 

subscriber  , and       is the familiar entropy function, which measures the 

uncertainty associated with the random variable   . Alternatively, as formalized 

by Shannon [24], this value is measuring the information content missing by not 

knowing value of the random variable. In this definition, it is assumed that all 

keys         , the Galois Field of prime or prime power order  . For this 

reason,       has already been reduced to      in the equation. In this situation, 

the actual key selection method is irrelevant because the information rate being 

computed is the ratio between two key entropies and therefore, the entropic 

value specific to the key selection cancels out.  

When constructed upon a             , the information rate of a Fiat-

Naor     has been shown to be: 

  
 

  
 

which is directly calculable from the parameters of the     deployed. In this 

scheme, the amount of secret information being delivered is      , where    is 

the key associated with the privileged subset of a given broadcast. In order to 

obtain this, the scheme distributes 
 

 
 keys to every user per partition of the    . 

Since there are     partitions, the information content of the distributed key 

material is: 

    
 

 
                

And thus, the ratio of these information contents results in the rate: 
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Now, to determine the information rate of the         , it remains to 

formulate  the amount of distributed key material is required by this scheme. On 

a                   with an ingredient     built on                 , there will 

be                 keys distributed to each subscriber. That is, for all of the 

          partitions, each user receives the amount of key material defined in 

the Fiat-Naor Scheme above, specifically            keys per    . Due to the 

relationships between the parameters of this      and     as enforced by this 

scheme, the size of these families are related by          when    is chosen 

minimally. The information rate for the          is then:  

  
     

           
 

 

      
 

 This value will be used as one means of measuring the storage efficiency 

between the    -based      and the     -based     . The inverse value of 

this ratio is defined as the Key Material Overhead (   ), which gives an 

indication as to the number of keys distributed to each user in order to determine 

the feasibility of deploying such a scheme. As demonstrated by the two naïve 

     in Section 2.2, this value alone is not enough to determine the quality of a 

   . Complementary to the information rate is the Broadcast Encryption 

Overhead (   ) and both of these metrics are utilized extensively in Chapter 5 to 

form a meaningful comparison between the two     designs. 

 

 

3.4 The Construction of a          

Consider the construction of a Broadcast Encryption Scheme on      

subscribers with resilience against colluding parties of size at most    .  For 

this scheme, any ingredient     of resilience       may be chosen, 
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however,     restricts the      into a     and     is a trivial      of one 

row, as demonstrated in Section 3.6. For this reason, a                  is a 

reasonable choice in this scheme. This family is a minimal      matching the 

dimensions and strength requirements for the     desired. The following is a 

construction of a            utilizing the          as defined in Figure 3.3.2.  

 

1 2 3 4 5 6 7 8 9 10 

1 2 2 1 1 2 2 1 1 2 

1 1 1 2 2 1 1 2 2 2 

1 1 1 1 1 2 2 2 2 2 

 
Table 3.4.1: A                  

 

After generating the                 , partition the column indices of 

every row           , based on the symbol appearing at that location. Let     

be the label for the     partition in row   . Note that in this     , for every    , 

|   |   . In this instance, this phenomenon is due to the fact that the selected 

     is homogeneous, allowing the construction of a          from a single 

ingredient    . In general, all partitions are not required to be of the same size; 

however,           lacking this property require the construction of multiple 

ingredient      to apply to the partitions of each dimension present.  

 

    {         } {          }      

    {         } {          }      

    {         } {          }      

 

Table 3.4.2: Symbolic Partitions for                  
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On every partition    , create a  -resilient     on    . Let each of these be 

a  |   |   -Fiat-Naor    . Each instance of these      needs to be constructed 

from a         |   |     , which has precisely the parameters of the     and 

    constructed in Section 3.1.  For each      partition    , and for each 

partition     of the     applied to    , distribute the set of keys        where 

  {     }  { } to the subscribers in accordance with each    . The key 

distribution pattern is given in Figures 3.4.3, 3.4.4, and 3.4.5. For broadcast 

message   and a privileged subset of subscribers  , the explicit final broadcast 

is given in Figure 3.4.2. 
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Figure 3.4.3: Final Broadcast Content for       -         
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Table 3.4.4:          Key Pre-distribution for     and     
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Table 3.4.5:          Key Pre-distribution for     and     
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Table 3.4.6:          Key Pre-distribution for     and     
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3.5 Unconditional Security of the     -Based     

As demonstrated in Section 3.3, the broadcast message   is broken up into 

component messages         and each component is encrypted and 

broadcast in such a way as to deter an adversary or colluding party of 

adversaries from collecting enough pieces to reassemble  . In this section, the 

proof of security for     -based      is given in detail.  

To begin, assume an adversary is able to recover all    for      . This 

adversary will be able to trivially recover   by computing the xor of all these 

values. Now, assume an adversary is only able to recover     component 

messages from        . Without loss of generality, let the missing component 

be   . Let  

                

denote the exclusive-or of the recoverable components of  . The equation for   

can then be simplified to        . Exclusive-oring both sides by    results 

in        , the familiar form of the One-Time Pad encryption scheme in 

which   is the plaintext,    is the secret random key of bit length | |, and    is 

the exposed ciphertext. Following the famous information-theoretic results of 

Shannon [24], this scheme has the property that the entropy of message   given 

the possession of ciphertext    is exactly equal to the entropy of message   

itself, represented traditionally as    |        . The implications of this 

property in this     construction are that not only can an adversary not recover 

  in its entirety when recovering at most     component messages, but also 

having done so reveals not even one bit of information about   to the adversary. 

In order to demonstrate the security of this          construction, it now 

remains to show that the scheme ensures that any adversary or colluding party 
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of adversaries of at most   members can recover no more than     component 

messages. 

 For every partition     of the     , message component    is encrypted in 

the following fashion:    :                  
 where     

 represents the xor 

composition of all      where       and the tuple       iterates over all 

partitions of the     applied to the              partition. By encrypting each 

message sub-component with the keys that the disjoint set      are missing, 

each     protects against colluding parties of size at most  .  Now, since the 

     splits each message component in such a way that some row ensures that 

no more than   members of a colluding party are in the same partition for any 

choice of   colluding partners, this row prevents the recovery of one    . As 

demonstrated in Section 3.1, in order for an adversary to obtain  , it is 

necessary to obtain all        . In turn, since these values are merely the xor 

composition of all             
, the following is the computation for  : 

             
            

              
  

 Thus, in order to obtain  , an adversary must recover all           

        [24]. It has been shown that there exists at least one     that a 

colluding party of size   or smaller cannot obtain and as such, this scheme is 

secure. While some broadcast encryption methods offer some probabilistic 

security against colluding parties greater than the defined resilience [7], this 

scheme is immediately broken upon the         member entering the colluding 

party. It is a necessary restriction that no more than   columns be chosen since 

the      does not guarantee separation for subsets of any larger size, even if 

many such subsets are indeed separated. 
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3.6 Properties of     -Based      

When starting with a fixed            , constructing a          from this     

will obey the properties listed below. As introduced in Section 3.2, the      

utilized in this construction will necessarily be homogeneous. Let the final      

be represented by  :                .  

 

Lemma 3.6.1: When a                is constructed from a single fixed 

ingredient             and utilizing a homogeneous                , then 

  |  . 

 

Lemma 3.6.2: When a                is constructed from a single fixed 

ingredient             and utilizing a homogeneous                , 

then     

 

Since the ingredient     is fixed by choice, Lemma 3.6.1 is a direct result of 

the homogenous ingredient restriction. Each row contains   columns which must 

be able to be partitioned into an integral number of partitions of size   , thus 

  |  . 

Lemma 3.6.2 follows from the security property of the      scheme. By      

definition, for each  -subset   of  , there must exist at least one row in which no 

symbol appears more than   times. Accordingly, the      applied to each 

partition must be resilient against colluding parties of size at least  .  

Assume to the contrary that     . Let    represent the row of   that 

guarantees separation for the  -subset   . If any of the      elements located at 

      are repeated   times, as allowed by the parameters of  , the     applied 
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to the partition containing these elements does not secure against colluding 

parties of size   and as such, the message component encrypted by this 

partition is no longer provably unrecoverable. Using the notation presented in 

Section 3.5, this message component corresponds to   , the singular message 

component that is required to be unrecoverable to prevent recovery of  . The 

assumption      thus violates the security property of the          proven 

Section 3.5 and so it must be that     . 

 

  



38 
 
 

  Chapter 4

CONSTRUCTING SCATTERING HASH FAMILIES 

4.1 Theoretic Results on the Existence of       

Following are theorems pertaining to the existence of Scattering Hash Families 

for various restrictions of parameters. A formalization of the     generalization 

claims for       is given in Theorem 4.1.1. As was proven for      [3], there 

exist certain conditions under which a      can be trivially constructed in one 

row. Theorem 4.1.2 provides bounds for the existence of these trivial       

which are demonstrated via constructive proof. Theorems 4.1.3 and 4.1.4 provide 

some introductory insight into the existence of minimal       under specific sets 

of parameters. Finally, Theorem 4.1.5 is a     -specific result that follows from 

the work of Stein [25], Lovász [26], and Johnson [27] that lay the framework for 

generalized hash family bounds. This theorem relies on properties of randomly 

generated arrays and is the primary focus of the derandomization in Section 4.2. 

 

Theorem 4.1.1:      are a subclass of      . By enforcing a multiplicity cap of 

   , the separation condition for a      enforces every  -subset to be mapped 

to distinct symbols in some row of the structure. As such, any construction of a 

    is a construction of a      with    .  

 

Proof: Let                   be a Scattering Hash Family. By definition,    

is a set of functions   such that     : 

  {     }  {     } 

and for any subset   {     } with | |   ,      such that for each symbol 

  {     }, the image      maps to the symbol   at most   times. In this 



39 
 
 

instance,     and accordingly, the image of any  -subset   is a set of elements 

whose symbols are repeated at most once. Therefore, all elements of this image 

are distinct, providing the necessary separation condition for   to be a 

            . □ 

 

Theorem 4.1.2: When       or     , a      exists on 1 row.  

 

Proof: Let   be a sequence of elements    from the set    {     }. For some 

   , populate   in the following fashion:  

  {                      } 

This array contains     elements, in which no element is repeated more than   

times. Trivially, no subset      of size       has any symbol repeated 

more than   times. Moreover, for any subset of size   of   , no symbol can be 

repeated more than   times as well. This construction is therefore a 

               . Additionally, for any subset of size  , it is impossible for any 

symbol to repeated more than   times, so for all    , the same construction 

applies. □ 

 

Theorem 4.1.3: If a                 exists where    , then there is some 

     for which a                    exists.  

 

Proof: Let                    be a Scattering Hash Family. By the array 

definition of      , this family is a     array and has the property that for any 

 -subset, there exists a row such that the symbols appearing in this row and the 

column indices appear no more than   times. Let   {       } be the set of 
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elements appearing in one such  -subset. Let   be the symbol with the highest 

occurrence    among elements   . Now, for any subset    of these elements of 

size       , where     , either   
       in the case that   is the unique 

symbol of highest frequency and a copy of   was removed, or        in the 

case that a different symbol was removed and   is therefore still the most 

frequent. Since, by definition of   ,     , it is the case that   
       and as 

such, there exists some                      . In this instance,    provides 

existence for     , however, since the size of subsets being considered has 

decreased, it may be possible to express    in fewer rows, thus     . □ 

 

Theorem 4.1.4: If a                 exists, then there is some      for 

which a                    exists. 

 

Proof: The proof of this follows that of Theorem 4.1.3. Let                    

be a Scattering Hash Family.    is an     array of symbols from the set 

{     }. Let   {       } be the set of elements appearing in any  -subset of 

columns. Let   be the symbol with the highest occurrence    among elements   . 

The inequality      is necessary for    to be a      and so it is trivially the 

case that       . Since this holds for any  -subset of elements in the array,  

   is therefore a                    . As with Theorem 4.1.3, this existence is 

proven for     , but a smaller instance may exist due to the relaxed separation 

requirements and so     . □ 

 

In Section 3.3, the method was shown for constructing      from      , 

but it remains to demonstrate the existence of these hash families for reasonable 
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parameters. As an initial step in this effort, a non-constructive proof of existence 

for       is provided in Theorem 4.1.5. The core property of this proof is that it 

harnesses the probabilistic separation of a randomly generated  -subset to 

determine an upper bound on the number of rows required to ensure that for 

some array of this size, all  -subsets are     -separated and thus a      of 

these parameters necessarily exists. In order to determine the expected 

separation, the procedure                is defined as follows.  

 

 

Figure 4.1.1: Definition of                function 

 

Theorem 4.1.5: For any nonnegative integers        , if: 

 

  (
 

 
) (  

              

  
)
 

 

 
then there exists a                 . The function                is defined in 

Figure 4.1.1. 

input:  𝑣:  Size of the set of symbols 

  𝑡:  The number of positions being filled with symbols 

  𝑤   Maximum number of times a symbol can appear 
  
output:  The number of ways that a set of 𝑡 positions can be populated by 

symbols from {    𝑣} in such a way that no symbol is repeated 

more than 𝑤 times. Specifically, this is the number of ways a 𝑡-
subset will meet the 𝑆𝑐𝐻𝐹 separation condition. 

 
procedure 𝑠𝑒𝑝𝑆𝑐𝐻𝐹 𝑣 𝑤 𝑡 : 
begin 

 if 𝑣    and 𝑡    then 
return 0 

else if 𝑣    then 
return 1 

else 

return   (𝑡
𝑖
)  𝑠𝑒𝑝𝑆𝑐𝐻𝐹 𝑣    𝑤 𝑡  𝑖 

min 𝑤 𝑡 
𝑖   

end 
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Proof: Let   be a     array consisting of symbols chosen uniformly at random 

from   {     }. Consider any  -subset of columns   {     }. Since the 

elements are chosen randomly, the expectation that this  -subset is separated in 

a given row is simply the number of ways to separate this  -subset divided by all 

possible row values. The procedure         is a recursive routine that computes 

the number of ways to arrange at most   copies of a symbol into   distinct 

positions, known commonly as the multiset coefficient. This is precisely the 

number of possible ways to     -separate a subset of size  . There are    ways 

to populate this row, so the quantity   
              

   is then the complement of 

the expectation of separation for a  -subset for a given row. More specifically, this 

is the expectation that this  -subset is not separated in one row. By raising this 

value to the     power, this value represents the expectation that a  -subset is 

not separated in   independent trials, which correspond the rows in this scenario 

since each element is generated at random. Multiplying this total expectation for 

an arbitrary  -subset by the total number of  -subsets, ( 
 
), yields a bound on the 

expectation that no  -subset is separated. Since the number of separations is an 

integral value, if this expectation is less than 1, then it means that there exists 

some     array with   symbols that is a                . □ 

 
 

4.2 A Derandomized Construction of       

In order to derandomize the non-constructive      existence proof provided in 

Section 4.1, this technique is first formalized for the construction of     . This 

result is used to generalize to an algorithm that, when incorporated with the 

proper separation condition, will deterministically construct a wide variety of hash 
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families.  The separation conditions of       are then applied to this general 

algorithm, resulting in a deterministic construction algorithm for      . The 

technique used to derandomize the probabilistic construction in this work is the 

Method of Conditional Expectation [20]. This method removes the random choice 

in a probabilistic proof or algorithm by computing the conditional expectation of 

success for each possible value of this choice and deterministically selecting a 

value among these that meets or exceeds the expectation of success. This 

approach for efficiently and deterministically constructing combinatorial structures 

using a density-based algorithm was first put forth for pairwise testing [28] and 

Covering Arrays [29] and subsequently demonstrated for      [30]. Since       

generalize     , this  technique is a natural choice for constructing initial bounds 

on this type of family. 

In order to utilize the density-based algorithmic approach, it is first 

necessary to define the conditional expectation in terms of the choice being 

derandomized. For a    , the conditional expectation is the expected number of 

 -subsets newly separated by fixing an as-yet undetermined entry to a symbol 

  {     }. The formalization of this expected separation and subsequently, the 

conditional expected separation is as follows. 

 Let   be a  -subset of elements of a particular row   of a     consisting 

of fixed symbols and/or undetermined entries denoted by    . Without loss of 

generality, the  -subset can be arranged as follows: 

                          

where | |    and consists of   undetermined entries and     fixed entries. In 

order to compute the expected separation of this  -subset, first check for 

separation condition violations. In the case of a    , a separation condition 
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violation is simply a collision:               such that      . If a violation 

exists, the expected separation of this  -subset is necessarily 0 since no 

completion of this  -subset will prevent this violation. If there does not exist a 

collision in the populated elements, however, the computation of the expectation 

is as follows. 

For the   remaining entries to be filled, there are    ways to fully populate 

the undetermined entries. Since it is known that all    are unique, there are 

        ways to choose a valid symbol for   ,           ways to choose 

a valid symbol for   , and so on. Thus, the expectation that this subset be 

separated from all possible remaining completions of this subset is: 

 

         
∏               

   

  
 

 
In fact, this is shown to be a generalization of the formula for the probability 

that a  -subset    consisting entirely of undetermined entries is separated. In this 

situation,     and the formula simplifies as follows: 

 

          
∏               

   

  
 

∏         
   

  
  

 

Moreover, once this formula is obtained, the     analogue to the non-

constructive      existence proof can be expressed. By the same argument as 

the proof of Theorem 4.1.5, if, for any nonnegative integers      , the following 

inequality holds: 

  (
 

 
)              
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then there necessarily exists a             . A naïve attempt at forming a 

construction from this proof of existence is to create an array matching a set of 

parameters satisfying the above inequality and populate the entire array 

uniformly at random. At each stage, check to see if the structure produced is a 

    and if not, generate it again until the separation conditions are satisfied. 

This approach is a randomized algorithm in the Las Vegas style since any output 

necessarily satisfies all separation constraints, however, the algorithm is not 

guaranteed to terminate. 

Consider, for the purposes of derandomization, the Las Vegas style 

randomized algorithm used to construct instances of       whose existence are 

proven by the inequality in Theorem 4.1.5. Instead of generating an entire row or 

even an entire array at random, consider the selection of a single element. If, for 

the selection of every element in the array, the expected number of separations 

is at least as high as before fixing this symbol, then as the row is filled, this 

expectation becomes the actual number of separations. As mentioned 

previously, this technique was formalized for other combinatorial structures by 

Colbourn and Bryce [28] [30] and is now modified to construct      . 

  Let   be an     array initially populated entirely with  , denoting 

undetermined entries. Select the leftmost entry of the topmost row that is still a  . 

For all ways of fix this to a symbol   {     }, calculate the conditional 

expected separations of fixing this entry to  . Rather than selecting the optimal 

choice at every point, selecting one that is as good as average will suffice. Thus, 

the expected separation of the row after each selection is at least as high as it 

was previously and as each row is completed, the actual number of  -subset 

separations increases with the same rate as theorized by the inequality from 
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Theorem 4.1.5 upon iterating over      . When all   rows have been 

completed, the      has been constructed. The technique of reaching down and 

computing the expected separation for all possible choices for a given decision is 

precisely the desired approach for the Method of Conditional Expectation. 

Moreover, in this instance, it has been demonstrated to produce an efficient 

deterministic algorithm for actually constructing       from what started as a 

purely non-constructive existential proof. This algorithm is presented in full detail 

in Figure 4.2.1.  

 

 

Figure 4.2.1: Deterministic Construction of       in Polynomial Time 

Input:  𝑘: The number of columns for the 𝑆𝑐𝐻𝐹 

𝑣: The size of the set of symbols 

𝑡: The size of subsets needing to be separated 
  𝑤  The number of times a symbol can appear in a 𝑡-subset  
Output:  𝑆𝑐𝐻𝐹 𝑁 𝑘 𝑣 𝑤 𝑡  
 
procedure 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑆𝑐𝐻𝐹 𝑘 𝑣 𝑤 𝑡 : 
begin 

 Initialize 𝐴 to empty array 

 Initialize 𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠 to (𝑘
𝑡
) 

 while 𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠    

  Initialize 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 to expected separation of current row state 
  Add row {      𝑘} to bottom of 𝐴 

Initialize 𝑑 to 𝑡 
  while there remain any   in new row 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≔ expected number of 𝑡-subsets separated by 
randomly completing the remainder of this row 

   Select index of leftmost   in row, call this  𝑖 
   for all 𝑣 ways to fix this symbol to  𝑠  {    𝑣} 

    for all (𝑘  
𝑡  

) subsets containing this index 

Compute each of these 𝑡-subset’s expectation 

of separation when setting  𝑖 to 𝑠 

Add to sum 𝛿𝑠 of all (𝑘  
𝑡  

) expectations for 𝑠 

    if some 𝛿𝑠   𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then 

     set  𝑖 to 𝑠 
Subtract number of newly separated 𝑡-subsets from 

𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠 
 return 𝐴 
end 
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Chapter 5 

EMPIRICAL RESULTS 

5.1       Constructed by Derandomized Algorithm 

The algorithm presented in Figure 4.2.1 has been shown to deterministically 

construct       in polynomial time. Due to the unexplored nature of these hash 

families, this algorithm will be used to generate the first general results, giving a 

baseline for the overall bounds of the size of these arrays with respect to the 

parameters. An important caveat to the runtime of this algorithm is that, while it is 

polynomial in terms of the size parameters, it is exponential in terms of the 

strength  . For this reason, the constructions will be limited to instances of 

moderately small       strengths. For the purposes of the analysis, however, 

existential bounds will suffice, and as such, the examined data points can be 

extended to larger strengths.  

 Figure 5.2.1 demonstrates the most noticeable property of       when 

compared to     : they exist on very small numbers of rows. The relaxation of 

the separation condition is such that any element can separate a row in any of 

the (   
   

)  -subsets in which it is present even when multiple instances of that 

symbol already exist. Even for multiplicity caps as low as    , these families 

are extremely small. Using this simple construction method, for column sizes up 

to   1,000,000,000, no more than 1,000 rows are required to ensure     -

separation up to    , which is the highest calculable strength for which the 

expected separation calculation does not overflow a long integer in C/C++ during 

computation of       with the specified parameters. 
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Figure 5.1.1: Rows of a                 for                ,       

 

In consideration of the application-specific analysis to follow, the results of 

this initial analysis are extremely positive. The derandomized construction was 

able to produce       for all   100,000,000 and     in under 800 rows, which 

as Table 5.2.1 demonstrates, is surpassed by     size for       on similarly 

restrictive parameter choices. The row values corresponding to     were 

extrapolated from the existence proof due to infeasibility of runtime. Appendix A 

has the remaining tables of results for all    ; however, Table 5.1.2 represents 

the tightest constraints on      separation and as such are the largest instances 

produced.    

 The impact of the size of these data structures suggests that due to the 

relaxation of the separation property by increasing the multiplicity cap, naïve 

construction techniques actually yield results that are far closer to minimality. In 

support of this concept as described in the following section, techniques such as 

post-optimization will be significantly less likely to succeed in significantly 

reducing the size of the solutions generated. Furthermore, the    -specific 

implications of extremely small       is explored in detail in Section 5.3. 
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    3 4 5 6 7 8 9 10 11 12 

100 9 33 40 159 141 662 473 2610 1564 10043 

1000 14 53 65 265 239 1139 825 4618 2803 18245 

10000 19 72 90 370 335 1609 1172 6592 4021 26285 

100000 24 92 115 475 432 2079 1519 8564 5236 34309 

1000000 29 111 139 580 529 2549 1865 10536 6451 42332 

10000000 34 131 164 684 625 3019 2212 12507 7666 50355 

100000000 39 151 189 789 722 3488 2558 14478 8881 58377 

 

Table 5.1.2: Current best known       values for    ,          (
 

 
) 

 

 

5.2       Constructed by Post-Optimization 

Don’t-care post-optimization has been shown to be successful in measurably 

reducing the smallest known instances of    ,     , and other types of hash 

families [21]. By identifying elements of the hash family that are used in no 

unseparated  -subset, the algorithm slowly marks a row into don’t care positions 

until it can be determined that no element in the row is used in any separation, 

and as such can be entirely discarded. Due to the large number of rows for a 

    of sufficient size and strength, after identifying a primary row, each 

subsequent row is expected to separate progressively less and less subsets 

when scanning for separations from this point. While it is not guaranteed that a 

given row can be eliminated, this algorithm employs a randomized local-minima 

escape strategy when too many failed iterations have occurred. What’s more is 

that this algorithm can be stopped at any time and the output will still maintain its 

combinatoric properties, since the only modifications made are the removals of 

unnecessary elements. 
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A very notable property of       is that, even for small values of   which 

is the closest a      can get to being a     without actually being one, the 

structures are extremely small when compared to     . Since every      must 

have      , setting     and          (
  

 
) is placing the most constricting 

separation conditions possible on the family. Analyzing other choices of the 

parameters may produce different results; however, this choice was made to limit 

the scope of the potential variations to be studied to a set of restrictive 

conditions. Table 5.2.1 demonstrates the respective size of each structure under 

these conditions for      . In these instances, post-optimizing a single row 

would represent between a much larger overall reduction in size compared to a 

   . Were this to happen, it would be a massive improvement in design, 

however, the fact that rows must be removed in integral steps combined with the 

very low number of rows causes this technique to fail to identify candidate rows 

for removal much more often. 

 

T            

3 9 20 

4 33 71 

5 40 176 

6 159 1087 

 

Table 5.2.1:      (   ) and     Rows for       and Minimal   

 

 It is important to note that the       used for this comparison were not 

generated in an optimal fashion. These are all outputs of the derandomized 

construction method, which for other hash families, is demonstrably suboptimal. 

The small number of rows observed here becomes a crucial element in the 

performance of any post-optimization technique. 
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Due to the success with other forms of hashing, the don’t-care post-

optimization technique was applied to       in an attempt to improve upon the 

minimality of the constructed       produced by the derandomized algorithm. 

Despite the success of this algorithm elsewhere, the post-optimization of the 

      generated using the techniques proposed by this thesis did not 

significantly reduce row count in the constructed instances. Initial analysis of 

these results suggest that this due to a property that can informally be referred to 

as “row weight”. Specifically, this is the expected amount of separations that 

each row adds to the     . Massive instances of       exist on very few rows, 

and more importantly, despite the fact that many other separations have been 

made, the last row is still expected to cover a massive number of subsets.        

demonstrate a significantly higher row weight than     , which could attribute to 

the observed behavior. When performing the don’t-care post-optimization on 

these structures, the detection mechanism designed to avoid entering local 

minima triggered on every single execution. When disabling this feature of the 

algorithm, execution did not terminate after more than 36 hours of runtime on 

high multiplicity      . 

As an additional performance metric for this post-optimization technique, 

the percentage of elements within a candidate row that were identified as don’t-

care positions were tracked. As an example, for                    , the 

highest percentage of a row to be identified as don’t-care was approximately 

26%. Greater success was found for families of multiplicity    . These families 

are the closest in separation restriction to      and as such have the highest 

row counts. For       ,    , post-optimization reduced up to 12% of rows, 

but not in any predictably reliable fashion. Due to the intermittent results of this 
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approach, the      values analyzed for     purposes represent the instances 

generated in Section 5.1. While the lack of success of optimization was not the 

desired outcome, Section 5.3 describes how the initial near-minimality of       

created by even naïve techniques are actually competitive in their performance 

as constructions for       

 

 
5.3 Analysis of Key Material and Broadcast Overheads 

As previously described, for the purposes of analyzing the overheads associated 

with each scheme, all 1-resilient    s built utilize the same basic scheme. This 

decision, along with several other simplifying assumptions, was made to reduce 

the search space for constructing a    . Despite this simplification, however, the  

veracity of the comparison remains; the parameters limited are ones that could 

potentially represent a          as performing worse than its ideal possible 

performance. Using a    , the     parameters   and   are pre-defined by the 

    constraints, and   is a function of  ,  , and  . Thus, the only variable 

parameter to consider in terms of changing design overhead is  . 

For a         ,   and   are also pre-defined, but there is both the number 

of symbols   to consider as well as the initial     strength that is being 

constructed and deployed. Restricting the number of symbols to       such 

that  |  gives all      for a given  ,   that can be constructed from a uniform 

ingredient    . Non-uniform ingredients massively increase the search space, 

and by restricting the consideration to a subset of possible                 

and then selecting the best instance will only overestimate the minimal 

construction, not underestimate it. For every  ,       , the analysis considers 

all  ,      . This yields all possible starting     strengths except for those 
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for which would be constructing a     (and thus be trivially equal to the     to 

which this scheme is being compared).  Finally, since the ingredient     is itself 

a    -based scheme, the equality:             is enforced. This is the most 

restrictive case for a    , and once again provides a pessimistic estimation that 

can only strengthen      claims made based on these results. If any       

    can be constructed more efficiently by using a pessimistic estimation for 

     overhead than by using a    ’s overhead, then the advantage over the 

previous scheme can still be claimed. In this analysis, efficiency is defined with 

respect to required number of broadcasts and average keys stored per user. 

In addition to the message component broadcasts required by each 

scheme, there is a separate broadcast overhead that has not been considered. 

This overhead is the cost of broadcasting to all users the composition of the 

privileged subset  . It can be assumed that as subscribers join the    , they are 

given a unique identifier, starting at 1 and increasing to  . Representing any 

subset   Ƥ    can be done in | | bits by transmitting a binary string in which a 

    represents a subscriber’s presence in the privileged subset and a     

represents his or her absence. Accordingly, all subscribers are able to identify   

yet only the privileged members can compute all portions of the key. 

The two broadcast overheads are distinguished from one another as the 

Set Identification Overhead (     and the Broadcast Encryption Overhead (   ), 

based on the function each overhead performs [1]. The Set Identification 

Overhead is absent from the compared overheads due to the fact that between 

schemes, the exact same identification must occur. 
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   3 4 5 6 7 8 9 10 11 12 13 14 15 

     
         

1 2 3 3 4 4 4 5 6 6 7 7 7 

     
         

- 1 5 5 8 8 8 11 12 14 15 16 17 

     
         

- - 1 3 6 8 11 13 16 21 26 32 35 

 

   16 17 18 19 20 21 22 23 24 25 26 27 28 

     
         

7 8 8 9 9 9 9 9 9 9 9 9 10 

     
         

19 20 22 23 24 26 27 28 29 30 31 32 33 

     
         

39 44 49 53 57 61 64 68 71 74 78 82 85 

 

   29 30 31 32 33 34 35 36 37 38 39 40 41 

     
         

10 11 12 12 12 12 12 12 13 13 13 13 13 

     
         

34 35 36 37 38 39 40 40 41 41 41 41 41 

     
         

88 90 94 97 100 104 104 108 110 114 116 119 121 

 

Table 5.3.1: Smallest known      of strength     

 

Instrumental in this analysis is a compilation of minimal instances of      

to use as ingredients for the final     [31]. Not only are minimality constraints 

better known for smaller constructions, but they will also provide for a more 

accurate analysis of the overheads of the     -based scheme. 

In order to efficiently compare the overheads associated with both the     

and the      scheme, the      values from Table 5.3.1 were written into a tool 

named Broadcast Encryption and Key Material Overhead (     ) that rapidly 

generates broadcast encryption instances when provided with the appropriate 
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hash families as input. The comparative results of this section are based on the 

output of      . 

An immediate finding in this comparison is the set of instances in which a 

                 out-performs a                in the construction of a 

         . Consider a     on 500 subscribers with a desired resilience of 6. 

 

 

Figure 5.3.2: Broadcast and Key Material Overheads for                 

 
Figure 5.3.2 charts the various options for selecting a     for the Fiat-Naor 

Scheme. While there is no specific metric forcing this decision, selecting a     

close to the intersection of the two plots will give a moderate compromise 

between the two overheads. The output of the      used in this instance are the 

smallest known instances for their respective parameters. From this, an accurate 

comparison can be made. Table 5.3.3 gives the parameters associated with the 

best choice for each scheme built from instances generated by the 

derandomized construction. The solution in this situation is a trivial breakdown of 
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the scheme into various components. Due to utilizing a      on one row, it is not 

harnessing the inherent separation property across multiple      to great effect. 

 

 
Lowest Broadcast 

Overhead 
Lowest Keys per User 

   : B = 480, KpU ≈ 8000 B = 960, KpU ≈  6000 

    : B = 156, KpU ≈ 4316 B = 540, KpU ≈1494 

 
Table 5.3.3: Overhead Comparison for             

 

In general, the information rate of    -based broadcast encryption is well 

known. Stinson demonstrated that following the Fiat-Naor construction, the 

scheme produces an information rate: 

  
 

     
 

indicating that in order to compute the single key associated with the privileged 

subset for a given broadcast, a user must obtain     times as many keys. 

Similarly, due to the recursive nature of the         , the information rate for 

this scheme built from ingredient      is: 

  

      
 

 

            
 
 
   

 
 

          
 

 

when   is chosen minimally and so, it is clear that the information rate, and 

therefore the key material overhead for the          is dependent on the 

relationship between the size of the      solution and the size of its ingredients.  

If, for any size instance,            
      holds, then the      

provides a higher information rate to the subscribers. Using       on schemes 

that were created by general methods that perform well asymptotically, a 

comparison between non-trivial instances of the schemes follows: 
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Semi-Optimized 

                

K N 
Info. 
Rate 

Broadcasts N 
Info. 
Rate 

Broadcasts 

10 142 1/1420 710 14 1/140 70 

20 247 1/4940 1235 57 1/1140 285 

30 304 1/9120 1520 90 1/2700 450 

40 343 1/13720 1715 119 1/4760 595 

 

                     

K N 
Info. 
Rate 

Broadcasts 

10 12 1/240 144 

20 21 1/1260 378 

30 26 1/3120 624 

40 29 1/4640 696 

 
Table 5.3.4: Comparison of            for     and      Based Schemes 

 

When operating on minimal instances of     , the performance of the 

   -based     out-performs the      scheme, however, the problem with this 

comparison is that the larger the hash families, the less is known about their 

minimality in general. The      in this method were generated using the same 

derandomized technique that produced the      . Once a certain threshold of 

strength and size is passed, this has been shown to be the best general 

construction for     . When comparing these schemes, it can be seen that 

      constructed by the same method offer a moderate key material savings. 
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Despite this fact, the broadcast overhead tends to be comparable between the 

schemes as the size increases up to a certain threshold.  As an additional factor 

of consideration, on very large      , partition sizes increase with 
 

 
 and the 

ingredient      will begin to suffer from the same drop-off as the original     

scheme. Should the      constructions improve as time goes on, these results 

will improve accordingly.  

 

Scheme Broadcast Encryption Overhead Key Material Overhead 

                          

      (         (
 

 
))  (          (

 

 
)) 

 

Table 5.3.5: Overheads for     and      Broadcast Encryption Schemes 

 
The comparison of both overheads between the two schemes is given in 

Table 5.3.5. The      scheme contains an additional logarithmic scaling, 

resulting from the overhead depending on both the      solution size as well as 

the ingredient     solution size. While these results provide the asymptotic 

behavior of each scheme, the empirical construction of the schemes 

demonstrates that the constant coefficient on size of the solutions is a non-trivial 

factor for small     instances. Moreover, should   be defined as a function of   

in both schemes, the additional scaling of the      scheme drops out entirely 

and they are equivalent asymptotically. 

Further analysis into the overhead suggests that there exists a break-even 

point for which     -based schemes with   independent of   begin to drop off 

due to their asymptotic behavior. As demonstrated in Section 5.1, easily 
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computable instances of       are significantly smaller than      on equal 

columns and strength, but since the      constructed from these       scale 

with an additional    (
 

 
) factor, there is some size     for which these schemes 

yield overheads greater than similarly generated    -based schemes. Creating 

schemes larger than this size favors other methods; however, should this point 

occur for     parameters far exceeding practical demands, then the     -based 

scheme offers a strict improvement. Determining this point requires a more in-

depth analysis than the big-O asymptotes provided by this work. The constant 

factors affecting      and       that are ignored by this analysis are necessary 

to ascertain the point of equivalence. 
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Chapter 6 

CONCLUSION 

By generalizing upon a well-known construction for broadcast encryption 

that inflates 1-resilient      into  -resiliency, this thesis has provided the 

fundamental rationale as well as the combinatorial basis for a new type of hash 

family. Scattering Hash Families generalize Perfect Hash Families and in order to 

analyze the properties of these families, techniques are formalized for their 

construction. Initial theoretic bounds have been given for these families as well, 

laying the foundation for more advanced approaches. 

In practice, a simple deterministic construction provided excellent results 

for the construction of      . The method used to create this construction draws 

from a derandomization approach that creates strong instances of other types of 

hash families, however, when applied to      , the results appear to produce far 

smaller solutions for computable instances. Due in part to this near-minimality, 

the level of performance of post-optimization in practice does not carry over from 

other known related combinatorial structures. 

While both the    -based     and the     -based     have closely 

bound overhead behaviors, the     -based scheme is able to exploit well-known 

minimal instances of      in situations in which the    -based     is relying on 

a non-minimal solution. This allows the newly defined scheme to provide 

comparable, and in some situations, better performance. In addition to the 

explicit benefit analysis of key material and broadcast overheads, the          

allows for an explicit, scalable design that can be efficiently constructed using 

simple deterministic methods.  



61 
 
 

 Due to their novel nature, there is great potential for future work in the area 

of Scattering Hash Families. More efficient constructions that can handle larger 

strengths may allow for a better understanding of these structures in general. 

Additionally, the only security parameter considered in the scope of this thesis is 

the resilience of the scheme being deployed. Combining this parameter with 

features such as traitor-tracing and frame-proofing would strengthen the 

schemes in practice; however, determining the combinatorial requirements to 

obtain these properties was beyond the scope of this work. Such expansion has 

ultimately led to a wide application of modern broadcast encryption techniques, 

and applying these techniques to this new scheme might provide insight into 

     schemes or variants thereof. 
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APPENDIX 

      FROM NON-CONSTRUCTIVE PROOF OF EXISTENCE 
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   ,               : 

    3 4 5 6 7 8 9 10 11 12 

100 9 33 40 159 141 662 473 2610 1564 10043 

1000 14 53 65 265 239 1139 825 4618 2803 18245 

10000 19 72 90 370 335 1609 1172 6592 4021 26285 

100000 24 92 115 475 432 2079 1519 8564 5236 34309 

1000000 29 111 139 580 529 2549 1865 10536 6451 42332 

10000000 34 131 164 684 625 3019 2212 12507 7666 50355 

100000000 39 151 189 789 722 3488 2558 14478 8881 58377 

 

 

   ,               : 

    3 4 5 6 7 8 9 10 11 12 

100 1 8 19 56 36 88 317 131 354 1553 

1000 1 12 31 94 61 151 553 231 634 2821 

10000 1 17 43 130 86 214 786 330 909 4064 

100000 1 21 54 167 111 276 1018 429 1184 5305 

1000000 1 26 66 204 135 338 1251 527 1458 6546 

10000000 1 30 78 241 160 401 1483 626 1733 7786 

100000000 1 34 90 278 185 463 1715 725 2007 9026 
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   ,               : 

    3 4 5 6 7 8 9 10 11 12 

100 1 1 7 14 30 82 34 66 150 514 

1000 1 1 11 23 51 140 60 116 269 933 

10000 1 1 15 33 71 198 85 165 386 1343 

100000 1 1 20 42 92 256 109 214 502 1753 

1000000 1 1 24 51 112 313 134 264 618 2163 

10000000 1 1 28 60 132 371 159 313 735 2573 

100000000 1 1 32 69 153 429 184 362 851 2983 

 

 

   ,               : 

    3 4 5 6 7 8 9 10 

100 1 1 1 7 12 21 42 108 

1000 1 1 1 11 20 36 73 191 

10000 1 1 1 15 27 51 104 273 

100000 1 1 1 19 35 66 135 355 

1000000 1 1 1 23 43 81 165 436 

10000000 1 1 1 27 51 96 196 518 

100000000 1 1 1 30 58 111 226 599 

 


