

The Design and Analysis of Hash Families

For Use in Broadcast Encryption

by

Devon James O’Brien

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Masters of Science in Computer Science

Approved May 2012 by the
Graduate Supervisory Committee:

Charles Colbourn, Chair

Rida Bazzi
Andrea Richa

ARIZONA STATE UNIVERSITY

May 2012

i

ABSTRACT

Broadcast Encryption is the task of cryptographically securing communication in

a broadcast environment so that only a dynamically specified subset of

subscribers, called the privileged subset, may decrypt the communication. In

practical applications, it is desirable for a Broadcast Encryption Scheme () to

demonstrate resilience against attacks by colluding, unprivileged subscribers.

Minimal Perfect Hash Families () have been shown to provide a basis for

the construction of memory-efficient -resilient Key Pre-distribution Schemes

() from multiple instances of 1-resilient . Using this technique, the task

of constructing a large -resilient is reduced to finding a near-minimal of

appropriate parameters. While combinatorial and probabilistic constructions exist

for minimal with certain parameters, the complexity of constructing them in

general is currently unknown.

This thesis introduces a new type of hash family, called a Scattering Hash

Family (), which is designed to allow for the scalable and ingredient-

independent design of memory-efficient for large parameters, specifically

resilience and total number of subscribers. A general construction using

 is shown, which constructs -resilient from other of any

resilience .

In addition to demonstrating how can be used to produce , this

thesis explores several construction techniques. The initial technique

demonstrates a probabilistic, non-constructive proof of existence for . This

construction is then derandomized into a direct, polynomial time construction of

near-minimal using the method of conditional expectations. As an

alternative approach to direct construction, representing as a -restriction

ii

problem allows for the indirect construction of via randomized post-

optimization.

Using the methods defined, are constructed and the parameters’

effects on solution size are analyzed. For large strengths, constructive

techniques lose significant performance, and as such, asymptotic analysis is

performed using the non-constructive existential results. This work concludes

with an analysis of the benefits and disadvantages of based on the

constructed . Due to the novel nature of , the results of this analysis

are used as the foundation for an empirical comparison between -based

and -based . The primary bases of comparison are construction

efficiency, key material requirements, and message transmission overhead.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

GLOSSARY OF TERMS ... vii

CHAPTER

1 INTRODUCTION .. 1

Overview ... 3

2 BACKGROUND .. 5

2.1 Perfect Hashing... 5

2.2 Broadcast Encryption .. 8

2.3 Randomization and Derandomization .. 13

2.4 Post-optimization and -Restrictions ... 14

3 BROADCAST ENCRYPTION ... 17

3.1 Fiat-Naor Broadcast Encryption .. 17

3.2 Introducing Scattering Hash Families .. 20

3.3 A Broadcast Encryption Scheme Based on 22

3.4 The Construction of a ... 28

3.5 The Unconditional Security of the -Based 34

3.6 Properties of -Based .. 36

4 CONSTRUCTING SCATTERING HASH FAMILIES........................ 38

4.1 Theoretic Results on the Existence of 38

4.2 A Derandomized Construction of 42

iv

CHAPTER Page

5 EMPIRICAL RESULTS ... 47

5.1 Constructed by Derandomized Algorithm 47

5.2 Constructed by Post-Optimization 49

5.3 Analysis of Key Material and Broadcast Overheads 52

6 CONCLUSION .. 60

REFERENCES .. 62

APPENDIX .. 65

v

LIST OF TABLES

Table Page

2.1.1: A Minimal .. 7

3.1.1: A .. 18

3.1.2: Symbolic Partitions for .. 18

3.1.3: Fiat-Naor Key Distribution Pattern for 19

3.4.1: A ... 29

3.4.2: Symbolic Partitions for .. 29

3.4.4: Key Pre-distribution for and .. 31

3.4.5: Key Pre-distribution for and .. 32

3.4.6: Key Pre-distribution for and .. 33

5.1.2: Current best known values for .. 49

5.2.1: and Rows for and Minimal 50

5.3.1: Smallest known of strength .. 54

5.3.3: Overhead Comparison for .. 56

5.3.4: Comparison of for and Based Schemes 57

5.3.5: Overheads for and Broadcast Encryption Schemes 58

vi

LIST OF FIGURES

Figure Page

2.2.1: A Naïve with Large Broadcast Encryption Overhead 11

2.2.2: A Naïve with Large Key Material Overhead 12

2.4.1: Definition of -Restriction Problems .. 16

3.1.4: Final Broadcast Content for on 20

3.3.1: The Final Broadcast Content for a .. 24

3.3.2: Pre-distribution Phase of a -Based .. 25

3.3.3: Broadcast Phase of a -Based .. 26

3.4.3: Final Broadcast Content for 30

4.1.1: Definition of function .. 41

4.2.1: Deterministic Construction of in Polynomial Time 46

5.1.1: Rows of a for 48

5.3.2: Broadcast and Key Material Overheads for 55

vii

GLOSSARY OF TERMS

 – Broadcast Encryption Scheme

 – Key Pre-distribution Scheme

 – Trusted Authority

 – Perfect Hash Family

 – Scattering Hash Family

 – Exclusive-Or

 – Traitor-Tracing Scheme

 – Covering Array

 – Separating Hash Family

 – Distributing Hash Family

 – Broadcast Encryption Overhead

 – Set Identification Overhead

 – Key Material Overhead

 – Keys Per User

1

Chapter 1

INTRODUCTION

A broadcast environment is an overarching title given to any scenario in which a

central authority is attempting to communicate over a channel that cannot be

guaranteed to be private. Such an environment can be physical, as with the

distribution of DVDs or other physical media, or it can be virtual, as with radio

and network-based broadcasts. In many of these scenarios, it is desirable to limit

the ability of parties to receive a given message to a select subset of listeners

while still taking advantage of the convenience of transmitting over a broadcast

medium. Traditional symmetric encryption models do not fit this model of

communication because they tend to operate by securing individual channels of

communication between parties. This approach would result in an infeasible

amount of overhead for the central authority to send a message to potentially

tens of thousands of listeners. In pursuit of this goal, and in light of these

restrictions, the study of broadcast encryption was formed.

When broadcasting a message that is to be encrypted to some set of

listeners, there are two important factors to consider. The first is how to distribute

the key material to the listeners and the second is how the central authority

encrypts and transmits this message across the environment. As such, a

Broadcast Encryption Scheme () is defined in two phases: the key pre-

distribution phase and the broadcast phase. When the central authority is acting

as the broadcaster under these schemes, it is called the Trusted Authority ()

since it is then responsible for managing key material and encryption for its

listeners. These listeners are then referred to as subscribers based on their need

for initial interaction with the . Trivial solutions exist for broadcast encryption;

2

however, in general, optimizing key pre-distribution comes at a cost of

performance in the broadcast phase and vice versa. The goal for design is

to arrive at a secure and efficient trade-off between these phases. Additionally,

more sophisticated designs offer a security assurance to the design called

resilience. Resilience, or when a specific quantity is expressed, -resilience is a

measure of the number of misbehaving subscribers that are required to

compromise the security of a , typically by sharing their key material with one

another.

The majority of research into broadcast encryption schemes has gone into

the areas of designing 1-resilient schemes, designing standalone -resilient

schemes, and designing -resilient schemes that use 1-resilient schemes as a

base ingredient. In the 1990s, a strong relationship between and the

existence of certain combinatorial structures called hash families was established

[1], and subsequently, much research has gone into strengthening the

knowledge of these two fields. Specifically, Perfect Hash Families () have

been demonstrated to provide the basis for a construction that is efficient in

both broadcast and key material overhead. The separation property of a

allows for the construction of a -resilient from smaller instances of 1-

resilient schemes. Designing efficient algorithms for the generation of minimal or

near-minimal has been a well-studied problem in the last several decades.

However, much is still unknown about their construction in general.

While have been shown to be very efficient in constructing -resilient

schemes from 1-resilient schemes, no analogous combinatorial structure has

been created that allows for the inflation of a -resilient scheme into a similarly

efficient -resilient scheme for . Such a structure would generalize ,

3

but does not appear to be provided by the body of existing generalizations.

This thesis presents a new type of hash family, called a Scattering Hash Famiy

() that is shown to exhibit the desired inflation behavior. In addition to

providing an existential analysis for these families using a variety of techniques,

this thesis provides a direct comparison between -based and -based

 using both the broadcast and key material overheads as metrics of

performance.

Overview of this Thesis

Chapter 2 provides the basics for framing the study of hash family based

broadcast encryption. Perfect hashing is introduced to provide a foundation for

both the canonical -based as well as for the design and subsequent

analysis of Scattering Hashing.

Chapter 3 formalizes Broadcast Encryption Schemes and establishes the

relationship between these schemes and . From here, this relationship is

generalized and subsequently, Scattering Hash Families are introduced,

formalized, and analyzed for their broadcast encryption properties.

Chapter 4 details the existential conditions and construction of . The

initial constructive and probabilistic proofs of existence for this type of hash family

are provided. A randomized construction algorithm for is provided and

subsequently, using the technique of derandomization, this algorithm is used to

create an efficient deterministic algorithm for constructing .

Chapter 5 incorporates the construction techniques as a foundation for the

first empirical existential analysis for . Subsequently, these results are

utilized in constructing a comparison between -based and -based

4

on the metrics of Key Material Overhead, Broadcast Encryption Overhead, and

Information Rates.

Chapter 6 concludes this thesis with a discussion of the results and a brief

discussion of future work.

5

 Chapter 2

BACKGROUND

2.1 Perfect Hashing

Originally motivated by optimization of compiler design, the study and design of

Perfect Hash Families () have since been extended to many different

applications ranging from combinatorial design to cryptography. In addition to

expanding their uses, much research has gone into generalized constructions as

well as bounds on the various parameters [2] [3]. Of particular relevance to this

work is the construction of minimal and near-minimal and their applications

to the study of Broadcast Encryption. The relevance of perfect hashing to

broadcast encryption was established by Fiat and Naor [1] in 1994 and has stood

as one of the predominant foundations for generating -resilient provided a

minimal or near-minimal is known for the given parameters.

Formally, a is a set of functions such

that :

 { } { }

and for any subset { } with | | , such that is an injection on

 . While a perfect hash function is one that maps every element of its domain to

a unique element of its range, Perfect Hash Families can be viewed as a

relaxation of this requirement. By necessity, a perfect hash function { }

{ } would at minimum require , but in most cases, constructions

produce , which is prohibitively restrictive in application. Not only are such

functions often difficult to define on a large universe of inputs, but they also

require a large amount of memory when . By relaxing this property to allow

multiple functions with the property that at least one such function will be injective

6

for any set of elements of the domain, this overhead is greatly reduced. By

convention [3], all Perfect Hash Families in this work are denoted ,

which in the absence of a universally accepted representation is the most

common form.

At times, it is more convenient to represent a as an array of elements

subject to a separation constraint for all subsets of elements of a certain size.

When viewed as an array, a is an array

populated with symbols from where | | in such a way that for any selection

of columns of the matrix, there exists at least one row such that the symbols

contained in the intersection of this row and the selected columns are all distinct.

Both the injective property of the function definition and the requirement for

distinct elements in a row for the -subsets are different ways of stating the

separation condition. Intuitively, the separation condition is what distinguishes a

 from all other varieties of hash families. In Section 3.2, the separation

condition is generalized in an as-yet unexplored fashion in the construction of

 .

Many techniques have been developed to generate , ranging from

combinatorial construction [4], probabilistic construction [5], to direct algorithmic

approaches [6]. Each of these techniques suffers from unique drawbacks, which

prevents their sole use in generalized construction. Combinatorial

constructions tend to produce elegant, simple, and often minimal instances of

 , however, they are highly restrictive on the relationships of the parameters

of the and as such, do not generalize well. Figure 2.1.1 below depicts a

minimal that can be generated by such a method. Probabilistic

construction is a general term for two different probabilistic approaches; the first

7

of which offers a probabilistic guarantee on the separation for all -subsets [5],

while the second guarantees separation while probabilistically assuring

minimality [6]. The latter of these two approaches has produced the best known

general bound for and in Sections 4.2 and 5.1, it is the most successful

technique employed for construction in this thesis.

1 2 3 4 5 6

1 1 1 2 3 1

1 2 3 2 4 1

1 2 3 3 2 3

1 1 1 2 3 1

3 3 3 4 2 4

3 4 2 1 2 1

4 4 4 2 4 4

4 3 1 4 3 3

Table 2.1.1: A Minimal

For the applications considered in this work, probabilistic guarantees of

separation for a violate the provable perfect secrecy of utilizing these

 to determine key pre-distribution. Moreover, these structures are not even

guaranteed to be because of this property; however, some applications

can handle this weakening by accepting the risk that certain small subsets of

unprivileged users can decrypt the content [7]. that separate all (

) -

subsets but only probabilistically assure minimality are often the result of greedy

or derandomized constructions to efficiently generate . For -based

 , this allows for the possibility that users are forced to store significantly

more key material than is necessary for the scheme being deployed. These

8

properties are examined in greater detail in Section 3.1 and Section 5.3

respectively.

2.2 Broadcast Encryption

Broadcast Encryption is the cryptographic problem wherein a centralized Trusted

Authority () desires to transmit a message across a broadcast medium that is

encrypted in such a fashion that only a particular, dynamic subset of subscribed

listeners can decrypt and observe the message. Such a scheme not only needs

to protect against non-subscribed listeners, but also against valid, registered

subscribers who are not entitled to decrypt the contents of a given message.

Formally, a Broadcast Encryption Scheme is represented as ,

indicating it is a scheme on subscribed listeners with a resilience against

colluding parties of size at most . Traditionally, the broadcast message is the

encryption key to a large message that has been encrypted with a strong

symmetric algorithm such as AES [8], which is broadcast after the secure

distribution of the encryption key. For this reason, it is often the goal to restrict

the focus of designing to those in which a single message is chosen to

persist throughout a large amount of content distribution with infrequent

modifications to the privileged subset. The most famous instance of this type of

scheme is the AACS content protection scheme applied to Blu-Ray discs [8]. In

this scheme, a sufficiently large size is chosen and the is deployed to

each licensed Blu-Ray player manufacturer. Each Blu-Ray disc is encrypted with

a key and the sale combined with the ease of copying the encrypted content

on the discs is analogous to a broadcast in the traditional sense.

9

While the size of a is determined simply by the number of subscribers,

resilience is crucial, but is not so easily determined. In [9], Luby and Staddon

prove lower bounds on key material requirements and message overhead in the

circumstances of or , which are reasonable bounds for pay-per-

view TV , but not necessarily for all applications. Although it is true for most

memory efficient schemes that selecting a higher resilience results in the need

for much higher amounts of pre-distributed key material, in practice, the selection

of resilience for a is rooted deeper in procedural, practical, or economic

restrictions than it is in mathematics [9] [10]. Consider a pay-per-view TV

service’s broadcast encryption model. Subscribers are customers of the content

provider () who have registered for this service and have had a box delivered

to their house, which among other functions, serves as a tamper-proof storage

device for the subscriber’s key material. The necessary resilience in this situation

is based on a risk analysis of subscribers successfully tampering with their

boxes, spoofing registration to obtain multiple boxes, and reaching out

undetected to other parties desiring to circumvent the scheme. If these factors

can be mitigated to a nominal degree, the deployed can utilize a smaller

resilience.

 An analysis of broadcast encryption would be incomplete without

considering the varied extensions of broadcast encryption that have been

discovered since its inception. In its initial form, broadcast encryption was based

solely around the concept of providing resilience against a colluding party of

unprivileged users of at most a certain size [1]. When the colluding party exceeds

this threshold, this subset of unprivileged users is able to freely decrypt content

at will. Traitor-tracing [11] [12] [13] is a natural extension to resilience, and allows

10

the to identify some subset of the colluding party when a compromise occurs

and prevents these members from framing an innocent subscriber for their

actions. This technique is widely used in protecting against unlawful reproduction

of licensed software [14]. These schemes put members of a colluding party in

direct risk of discovery, which effectively protects against unwanted distribution

by severely de-incentivizing this behavior. Stinson, Trung, and Wei [15] provide a

detailed analysis of the use of hash families in the production of frame-proof and

traitor-tracing codes, a key ingredient in the construction of several such Traitor-

Tracing Schemes ().

 In addition to the ability to identify adversarial subscribers, it is desired that

methods of broadcast encryption include the ability to revoke a set of keys

associated with one or more subscribers. Revocation is the ability to remove a

subscriber’s ability to decrypt all future broadcasts by rendering those keys

useless. In simple , this can be performed at the by removing any

revoked subscribers from the privileged subset before broadcasting the

message. Simple , however, lack the ability to actually trace a traitor, since

the fully decrypted content is the same for all users. The AACS [8]

previously mentioned incorporates both of these concepts into an efficient trace-

revoke scheme that can not only detect the type of Blu-Ray player that has been

compromised, but will also render the class of Blu-Ray players used in this

compromise unable to play any future releases.

Formally, a is defined to be a broadcast encryption scheme

with pre-registered subscribers that must be resilient against colluding parties

of non-privileged listeners of size at most . A consists of two

phases, the first of which is the pre-distribution phase during which keys are

11

generated, arranged, and distributed to the set of subscribers . The second

phase is the broadcast phase in which a message is produced and encrypted

based on the desired privileged subset and is then transmitted across the

broadcast medium. While, in general, resilience can be defined as a

probabilistic guarantee that colluding parties cannot decrypt a particular message

[7], the scope of this thesis restricts this definition to deterministic resilience so

that, definitively, no -subset of unprivileged subscribers is able to decrypt any

broadcast message . There exist several trivial solutions to this problem [1]

[16], two of which are provided below. Each of these schemes represents one

extreme in the trade-off of key material overhead versus broadcast length. In

practice, both of these extremes are avoided in favor of schemes that provide an

efficient compromise between these two factors.

Figure 2.2.1: A Naïve with Large Broadcast Encryption Overhead

Pre-distribution Phase:

 Let 𝐾 be the set of all subscribers of the 𝐵𝐸𝑆.

 Generate 𝐾 distinct symmetric keys uniformly at random and pre-

distribute one to each subscriber 𝑠 𝐾.

Broadcast Phase:

 For broadcast message 𝑀, let 𝑃 𝐾 be the privileged subset.

 When sending message 𝑀, the 𝑇𝐴 produces |𝑃| copies of the

message and encrypts each copy with the key of a member of the

privileged subset.

 The 𝑇𝐴 broadcasts all |𝑃| encrypted versions of 𝑀 in succession:

𝐸 𝑀 𝐸 𝑀 𝐸|𝑃| 𝑀 .

12

Figure 2.2.2: A Naïve with Large Key Material Overhead

 The first method with large broadcast overhead is perhaps the most

intuitive design. Each subscriber gets one personal symmetric key that the

 uses to encrypt a copy of the message . In this scheme, the broadcast

message must be encrypted and re-broadcast for each user in the privileged

subset . This scheme’s broadcast overhead thus scales linearly with both the

size of the broadcast message as well as the size of , which is prohibitively

expensive. The second method with large key material overhead optimizes the

Pre-distribution Phase:

 Let 𝐾 be the set of all subscribers of the 𝐵𝐸𝑆.

 Generate |𝐾| distinct symmetric keys uniformly at random, each

corresponding to one possible subset of subscribers from the

set of all subsets of 𝐾, Ƥ 𝐾 .

 For every subscriber 𝑠 𝐾, let Ƥ𝑠 𝐾 denote the set of subsets

that contain subscriber 𝑠. For all 𝑠, distribute to this subscriber

every symmetric key corresponding to a subset in Ƥ𝑠 𝐾 .

Broadcast Phase:

 For broadcast message 𝑀, let 𝑃 be the privileged subset of

subscribers.

 When sending message 𝑀, the 𝑇𝐴 selects the key

corresponding to the privileged subset 𝑃 Ƥ 𝐾 and encrypts

𝑀 with this key

 The 𝑇𝐴 broadcasts the single message 𝐸𝑃 𝑀 .

13

broadcast down to a single message; however, even for small instances of this

scheme, each subscriber’s key storage is | | keys, which is, once again,

prohibitively expensive. Fiat and Naor [1], among others, demonstrated that for

broadcast encryption to be practical, an efficient trade-off between these two

factors must be obtained.

2.3 Randomization and Derandomization

Randomization is a powerful tool in the design of algorithms that, rather than

relying on making decisions on the input in a fixed, iterative fashion, instead

harnesses a secondary input of uniformly distributed random bits to govern the

operation or output of the algorithm. Randomized algorithms are split into two

major categories based on how the randomness is utilized: Monte Carlo

algorithms offer deterministic run time while only probabilistically guaranteeing

veracity of output whereas Las Vegas algorithms may fail to terminate but always

produce a correct result upon termination. Historically, the primary motivating

factor in designing randomized algorithms is the desire to obtain practical results

in an efficient manner in the absence of a known efficient deterministic technique.

Contextual evidence of this phenomenon exists in the study of primality testing of

integers [17] [18], escaping local minima/maxima during Simulated Annealing

[19], and in the construction of convex hulls and polytopes, all of which produced

efficient randomized algorithms years or even decades before deterministic

techniques of equivalent computational complexity were discovered.

The probabilistic guarantees provided by these algorithms are sometimes

undesirable in practice. Derandomization involves removing the randomness

from a probabilistic algorithm while maintaining or even improving upon its

14

performance in either solution strength or computational complexity. Of particular

importance to this work is the derandomization of probabilistic, non-constructive

proofs of existence into efficient and constructive deterministic algorithms.

Probabilistic non-constructive proofs of existence for various hash families have

been analyzed in depth [5], and in many cases yield the lowest known bounds for

minimality. While these results are useful for asymptotic analysis, applications of

these hash families require actual constructions to be utilized. Despite this fact,

the analysis of randomized algorithms may reveal core properties inherent to a

particular combinatorial problem. In certain cases, these properties can be

harnessed in a deterministic fashion as long as certain constraints are

maintained during the derandomization.

Section 4.1 describes a randomized proof of existence for that

follows a general approach shown to be successful for many other types of hash

families [6]. This proof analyzes the probability that a randomly generated array

will fail to meet the separation condition for all -subsets of columns. As the

number of rows increases, this probability decreases and once it reaches a

certain point, there must exist some array of this size that meets the separation

condition and thus, a of the current parameters must exist. By utilizing the

Method of Conditional Expectation [20], this proof is systematically derandomized

into a polynomial-time deterministic construction algorithm, which is

subsequently analyzed in Section 5.1.

2.4 Post-Optimization and -Restrictions

In combinatorial design, it is often the case that when analyzing a new structure,

the existing construction methods produce sub-optimal results. Optimality in

15

terms of hash family construction is measured in output size. The smaller the

constructed family, the stronger it is considered. Advanced techniques for

constructing small instances tend to evolve out of earlier naïve approaches [6].

For hash families as well as other array-based constraint satisfaction designs,

constructions tend to suffer from a trade-off between simplicity of construction

and runtime, guarantee of constraint satisfaction, and minimality [2] [5] [6]. When

constructing instances of these designs on large parameters, the time complexity

of the chosen algorithm becomes increasingly important. As demonstrated in the

derandomized and construction algorithms in Section 4.2, ensuring

that execution occurs in an efficient manner tends to sacrifice minimality of

design in favor of polynomial time complexity.

 Despite the fact that the constructions produced by these algorithms are in

general not minimal, these results can be refined via a technique called post-

optimization. Post-optimization is a type of combinatorial optimization approach

that operates a posteriori on the output of a separate construction for a given

combinatorial design. Essentially, it is the technique of taking a suboptimal

solution to open problems such as covering array or hash family construction and

improving upon the strength of the solution.

 Post-optimization has been shown to be highly successful for improving

known bounds of minimality for Covering Arrays () and several well-known

forms of hash families including Perfect, Separating, and Distributing Hash

Families; referred to as , , and respectively [21]. This work

defines a randomized post-optimization technique that operates on a set of

designs called -restriction problems. Each of the structures are shown to be

instances of a -restriction problem, and once represented as such, are post-

16

optimized using necessity analysis on a symbol-by-symbol basis. The

optimization on the array occurs when an entire row is determined to be

unnecessary to the structure and is discarded, thus providing a smaller instance,

which is a stronger solution. Formally, -restriction problems are defined as

follows [22]:

Figure 2.4.1: Definition of -Restriction Problems

By formalizing Scattering Hash Families as a -restriction problem and

subsequently performing -restriction-based post-optimization on known

instances, the non-minimal instances generated by the derandomized

construction in Section 4.2 are post-optimized in an attempt to strengthen the

known bounds of minimality for . The results of this post-optimization are

analyzed in Section 5.2.

1. The input is an alphabet Ʃ of size |Ʃ| q, a length 𝑚, and a set of 𝑠

possible demands: 𝑓𝑖 Ʃ
k { }, 𝑖 𝑠. For every 𝑖 𝑠, there

exists 𝑎 Ʃk so that 𝑓𝑖 𝑎 .

2. The task is to prepare a set 𝐴 Ʃm so that: For any choice of 𝑘

indices 𝑖𝑖 ⋯ 𝑖𝑘 𝑚, and a demand 𝑗, 𝑗 𝑠, there is

some 𝑎 𝐴 such that 𝑓𝑗(𝑎 𝑖 𝑎 𝑖𝑘) .

3. The smaller |𝐴| is, the higher the quality of the solution.

17

 Chapter 3

BROADCAST ENCRYPTION

3.1 Fiat-Naor Broadcast Encryption

The Fiat-Naor [1] is essentially a technique of extending a 1-resilient to

a -reslilient through the use of Perfect Hash Families. In order to

accomplish this, an arbitrary 1-reslient is selected as the base ingredient for

the larger scheme. From here, the construction requires a whose

parameters match those of the desired ; that is whose number of columns

equals the number of subscribers and whose strength corresponds to the desired

resilience of the . The innovative aspect of this technique is revealed in how

the provided is used to inflate the resiliency. The rows of the are

treated as partitions of the columns based on the symbols appearing in the .

From here, every partition of every row is assigned an independent 1-resilient

 . In their initial work [1], Fiat and Naor demonstrate several such ingredient

 . Subsequently, these schemes have been analyzed in depth [16] and other

memory-efficient alternatives have been proposed [23].

The result of applying the ingredient is that each user is assigned

keys for every partition of the in which they are present. In order to securely

broadcast a message to an arbitrary privileged subset of users, the randomly

generates components so that
 where is the number of

rows of the . The components of the message are then encrypted with the

keys in such a fashion as to allow only privileged users the ability to decrypt,

while offering no information about to colluding parties of size or smaller. A

detailed proof of this concept is given in Section 3.5 in the context of ,

however, the information-theoretic properties are the same.

18

In order to analyze the Fiat-Naor construction as well as to provide a

concrete ingredient for the construction in Section 3.3, the

following process details the key pre-distribution and broadcast protocol of a

 . In a broadcast environment consisting of subscribers, it

is desired to create a whose broadcasts are resilient against colluding

parties of unprivileged subscribers of size or smaller. The will be

constructed from the in Figure 3.1.1.

1 2 3 4 5

1 1 1 2 2

1 1 2 1 2

1 2 1 1 2

Table 3.1.1: A

Once the has been obtained, for each row , partition the

column indices based on the elements appearing in this row. Let be the label

for the partition in row . On each partition , create an instance of a 1-

resilient on subscribers where | | is the size of the partition and

distribute the keys according to this .

 { } { }

 { } { }

 { } { }

Table 3.1.2: Symbolic Partitions for

19

 Let the 1-resilient ingredient selected be the following: for each

member of partition , first distribute a Null-key to each member. The Null-

key prevents subscribers from outside of this partition from recovering the

message component to be broadcast on this partition. Then, for each

subscriber present in the partition, generate a key and distribute this key to

every member of the partition except . Repeating this for all partitions

results in the subscribers of this receiving the keys according to Table 3.1.3.

1 2 3 4 5

Table 3.1.3: Fiat-Naor Key Distribution Pattern for

 Once the pre-distribution phase has been completed, the broadcast phase

is performed as follows. Let be the privileged subset of subscribers and let

 { | } be the set of columns in partition that are disjoint from

20

 . Now, let
 represent the result of xor composition of all where .

For broadcast message , randomly generate message components

so that
 . Then, for every partition , the final computed values will

be the set of messages:

Figure 3.1.4: Final Broadcast Content for on

 The concatenation of all is the encrypted value for broadcast message

 . In the constructed above, broadcasting message with a

privileged subset { }, the broadcast would then be the concatenation of

the encrypted components in Figure 3.1.4.

3.2 Introducing Scattering Hash Families

The core motivation behind this entire thesis is the following series of questions:

If a can be used to inflate a 1-resilient into a -resilient

that is efficient in both broadcast and key material overhead, what kind of

construction can be used to inflate of resilience ? What type of

combinatorial structure assures this property while still offering strong

performance in both broadcast length and key material storage? And finally, what

21

are the advantages and disadvantages of such a scheme over existing

techniques?

 After analyzing the gamut of hash family variations, it was determined that

no existing hash family met this criteria. Among the variations, were the

closest, providing the same security as with the Fiat-Naor but with

significantly increased key material overhead. Since offer tighter

combinatorial restrictions on the -subsets to inflate weaker , this result is as

expected. Separating Hash Families (), Distributing Hash Families (),

and their variants weaken the separation condition for in such a way as to

violate the unconditional security of the inflated . Specifically, this is due to

both variants addressing partitions of -subsets and only enforcing separation

requirements between classes of partitions. Since no restriction is placed upon

the relationship between the elements within a partition itself, the

construction loses its guarantee of separation.

It then remains to determine a generalization of that takes advantage

of the higher strength of ingredient schemes yet still offers the desired security

under the provided construction model. Rather than partitioning -subsets and

redefining separation conditions based on these partitions, this generalization

needs to enforce a variable multiplicity cap on the symbols in each subset. With

these parameters in consideration, Scattering Hash Families () are

defined.

 Formally, a is a set of functions

such that :

 { } { }

22

and for any subset { } with | | , such that for each symbol

 { }, the image maps to the symbol at most times. Following the

chosen notation for , Scattering Hash Families are represented as

 . The term “Scattering” was chosen to convey the relaxation in

separation requirements from a . Within a -subset, elements can clump

together to a certain degree, but overall they need to be scattered fairly

uniformly.

When viewed as an array, a is an

 array populated with symbols from where | | in such a way that for

any selection of columns of the matrix, there exists at least one row such that

the symbols contained in the intersection of this row and the selected columns

appear or fewer times. The construction and combinatorial properties of

are covered in detail throughout Sections 4.1 and 4.2 and the scalable, ingredient

independent is the primary focus of the following section.

 Within a , let | | represent the number of occurrences of

symbol in row for every symbol { }. When, for all , ,

 , | | | |, this is called homogeneous. This is primarily an

application-driven definition placed upon this hash family, which is further

explored in Section 3.6 and utilized in the construction of a in Section

3.4.

3.3 A Broadcast Encryption Scheme Based on

As described in the previous section, were designed for the purpose of

constructing from ingredient of strength while taking advantage

of the increased ingredient strength in order to loosen the combinatorial

23

restriction on the hash family that determines the final key pre-distribution.

achieve this by generalizing the -subset separation condition from requiring

complete element distinction to enforcing a multiplicity cap per element. The

construction of the draws on the techniques used in the Fiat-Naor

construction [1] and throughout this thesis, all constructed and

analyzed utilize multiple instances of this construction for the ingredient . It

is important to note that, by its definition, the scheme itself is agnostic to the

ingredient used in construction. Any -resilient can be used in place of

the Fiat-Naor schemes used in this work. The choice to analyze only Fiat-Naor

ingredient schemes was made to provide an initial scope for the analysis of the

properties of this scheme.

Given a , the central can construct a -resilient

with | | subscribers from -resilient ingredient as follows. For all rows

of the , partition each row by the symbols present. Let be the label for

the partition in the row of the . For each partition , construct a -

resilient and deploy the symmetric keys accordingly. The is

generalized in such a way that no specific type of is required for this stage

and, moreover, the ingredient do not need to be the of same type, so long

as they are all -resilient. For the sake of selection, however, construct a -

resilient in the fashion described in Section 3.1. Now, for all construct a

 | | and from this, construct a Fiat-Naor . Then, for all

and for each subscriber , distribute symmetric keys according to this .

Once the key pre-distribution method has been deployed, the uses the

following broadcast protocol. Let be the message being broadcasted and let

 Ƥ be the privileged subset of subscribers for this broadcast. Beginning

24

with the same technique described in Section 3.1, generate random

component messages of length | | such that

where is the number of rows of the . Instead of directly encrypting each of

these message components, the breaks down the message once

more and encrypts each sub-component according to each partition’s Fiat-Naor

scheme. To do so, generate
 for all , such that

.

For every partition of the , consider the | | that

was constructed and deployed as a on this partition. Within this , retain

the original column indexing for continuity of representation. Let denote

the partition of the row of the and let { | } be the

set of columns in partition that are disjoint from . Now, let
 represent

the xor composition of all where . For each partition , construct

the set of encrypted message components:
. For

all partitions and for all partitions corresponding to each ,

the encrypted broadcast is the concatenation of all :

 :

.

 :

 :

Figure 3.3.1: The Final Broadcast Content for a

25

The formal definition of the is given in Figure 3.3.2 and Figure

3.3.3. This is the scheme that is used for the direct comparison with the Fiat-Naor

 in Section 5.3. As a step towards producing that comparison, a means

of computing the efficiency of a by measuring its information rate is

introduced.

Figure 3.3.2: Pre-distribution Phase of a -Based

Pre-distribution Phase:

 Let 𝐾 be the set of all subscribers of the 𝐵𝐸𝑆 with |𝐾| 𝑘 and let

𝑆 𝑆𝑐𝐻𝐹 𝑁 𝑘 𝑣 𝑤 𝑡 .

 For every row 𝑅𝑖 𝑖 𝑁, partition the set of columns by symbol into

partitions 𝑝𝑖𝑗, which represents the 𝑗𝑡 partition of row 𝑅𝑖.

 For each partition 𝑝𝑖𝑗, construct a 𝑃𝐻𝐹 𝑁𝑖𝑗 |𝑝𝑖𝑗| 𝑣𝑖𝑗 𝑤 and from this,

construct a Fiat-Naor 𝐾𝑃𝑆. For all 𝑝𝑖𝑗 and for each subscriber 𝑠 𝑝𝑖𝑗,

distribute keys according to this 𝐾𝑃𝑆, preserving the original column

indexing.

26

Figure 3.3.3: Broadcast Phase of a -Based

When designing Broadcast Encryption Schemes, it is useful to be able to

meaningfully compare them to one another in terms of their performance. The

information rate of a is one such metric [16]. The information rate can be

framed as the efficiency with which a distributes secret information to a user.

Formally, the information rate of a is defined as

 {

 }

Broadcast Phase:

 For broadcast message 𝑀, let 𝑃 𝐾 be the privileged subset.

 Construct component messages 𝑀 𝑀 𝑀𝑁 of size |𝑀| uniformly at

random such that 𝑀 𝑀 𝑀 𝑀𝑁.

 For every 𝑆𝑐𝐻𝐹 partition 𝑝𝑖𝑗, consider the 𝑃𝐻𝐹 𝑁𝑖𝑗 |𝑝𝑖𝑗| 𝑣𝑖𝑗 𝑤

deployed on this partition, but retain the original 𝑆𝑐𝐻𝐹 column indexing:

o The broadcast message for this partition is 𝑀𝑖, construct

components 𝑀 𝑀 𝑁𝑖𝑗such that 𝑀𝑖 𝑀 𝑀 𝑁𝑖𝑗 .

o Let 𝑝𝑎𝑏 denote the 𝑏𝑡 partition of the 𝑎𝑡 row of the 𝑃𝐻𝐹 and let

𝐿𝑎𝑏 {𝑠 | 𝑠 𝑝𝑎𝑏 𝑠 𝑃} Now, let 𝐾𝐿𝑎𝑏 represent ⨁𝐾𝑎𝑏𝑙

 𝑙 𝐿𝑎𝑏.

o For each partition 𝑝𝑎𝑏, construct the set of encrypted message

components: 𝑌𝑎𝑏 𝑀𝑖𝑎 𝐾𝑎𝑏 𝐾𝐿𝑎𝑏.

 For all 𝑆𝑐𝐻𝐹 partitions 𝑝𝑖𝑗 and for all 𝑃𝐻𝐹 partitions 𝑝𝑎𝑏 corresponding

to each 𝑝𝑖𝑗, broadcast 𝑌𝑖𝑗𝑎𝑏 𝑀𝑖𝑎 𝐾𝑖𝑗𝑎𝑏 𝐾𝑖𝑗𝐿𝑎𝑏 .

27

where is the set of all possible secret values that can be distributed to

subscriber , and is the familiar entropy function, which measures the

uncertainty associated with the random variable . Alternatively, as formalized

by Shannon [24], this value is measuring the information content missing by not

knowing value of the random variable. In this definition, it is assumed that all

keys , the Galois Field of prime or prime power order . For this

reason, has already been reduced to in the equation. In this situation,

the actual key selection method is irrelevant because the information rate being

computed is the ratio between two key entropies and therefore, the entropic

value specific to the key selection cancels out.

When constructed upon a , the information rate of a Fiat-

Naor has been shown to be:

which is directly calculable from the parameters of the deployed. In this

scheme, the amount of secret information being delivered is , where is

the key associated with the privileged subset of a given broadcast. In order to

obtain this, the scheme distributes

 keys to every user per partition of the .

Since there are partitions, the information content of the distributed key

material is:

And thus, the ratio of these information contents results in the rate:

28

Now, to determine the information rate of the , it remains to

formulate the amount of distributed key material is required by this scheme. On

a with an ingredient built on , there will

be keys distributed to each subscriber. That is, for all of the

 partitions, each user receives the amount of key material defined in

the Fiat-Naor Scheme above, specifically keys per . Due to the

relationships between the parameters of this and as enforced by this

scheme, the size of these families are related by when is chosen

minimally. The information rate for the is then:

 This value will be used as one means of measuring the storage efficiency

between the -based and the -based . The inverse value of

this ratio is defined as the Key Material Overhead (), which gives an

indication as to the number of keys distributed to each user in order to determine

the feasibility of deploying such a scheme. As demonstrated by the two naïve

 in Section 2.2, this value alone is not enough to determine the quality of a

 . Complementary to the information rate is the Broadcast Encryption

Overhead () and both of these metrics are utilized extensively in Chapter 5 to

form a meaningful comparison between the two designs.

3.4 The Construction of a

Consider the construction of a Broadcast Encryption Scheme on

subscribers with resilience against colluding parties of size at most . For

this scheme, any ingredient of resilience may be chosen,

29

however, restricts the into a and is a trivial of one

row, as demonstrated in Section 3.6. For this reason, a is a

reasonable choice in this scheme. This family is a minimal matching the

dimensions and strength requirements for the desired. The following is a

construction of a utilizing the as defined in Figure 3.3.2.

1 2 3 4 5 6 7 8 9 10

1 2 2 1 1 2 2 1 1 2

1 1 1 2 2 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2

Table 3.4.1: A

After generating the , partition the column indices of

every row , based on the symbol appearing at that location. Let

be the label for the partition in row . Note that in this , for every ,

| | . In this instance, this phenomenon is due to the fact that the selected

 is homogeneous, allowing the construction of a from a single

ingredient . In general, all partitions are not required to be of the same size;

however, lacking this property require the construction of multiple

ingredient to apply to the partitions of each dimension present.

 { } { }

 { } { }

 { } { }

Table 3.4.2: Symbolic Partitions for

30

On every partition , create a -resilient on . Let each of these be

a | | -Fiat-Naor . Each instance of these needs to be constructed

from a | | , which has precisely the parameters of the and

 constructed in Section 3.1. For each partition , and for each

partition of the applied to , distribute the set of keys where

 { } { } to the subscribers in accordance with each . The key

distribution pattern is given in Figures 3.4.3, 3.4.4, and 3.4.5. For broadcast

message and a privileged subset of subscribers , the explicit final broadcast

is given in Figure 3.4.2.

{

{

}

{

}

{

}

{

}

{

}

{

}

Figure 3.4.3: Final Broadcast Content for -

31

1 2 3 4 5 6 7 8 9 10

`

Table 3.4.4: Key Pre-distribution for and

32

1 2 3 4 5 6 7 8 9 10

Table 3.4.5: Key Pre-distribution for and

33

1 2 3 4 5 6 7 8 9 10

Table 3.4.6: Key Pre-distribution for and

34

3.5 Unconditional Security of the -Based

As demonstrated in Section 3.3, the broadcast message is broken up into

component messages and each component is encrypted and

broadcast in such a way as to deter an adversary or colluding party of

adversaries from collecting enough pieces to reassemble . In this section, the

proof of security for -based is given in detail.

To begin, assume an adversary is able to recover all for . This

adversary will be able to trivially recover by computing the xor of all these

values. Now, assume an adversary is only able to recover component

messages from . Without loss of generality, let the missing component

be . Let

denote the exclusive-or of the recoverable components of . The equation for

can then be simplified to . Exclusive-oring both sides by results

in , the familiar form of the One-Time Pad encryption scheme in

which is the plaintext, is the secret random key of bit length | |, and is

the exposed ciphertext. Following the famous information-theoretic results of

Shannon [24], this scheme has the property that the entropy of message given

the possession of ciphertext is exactly equal to the entropy of message

itself, represented traditionally as | . The implications of this

property in this construction are that not only can an adversary not recover

 in its entirety when recovering at most component messages, but also

having done so reveals not even one bit of information about to the adversary.

In order to demonstrate the security of this construction, it now

remains to show that the scheme ensures that any adversary or colluding party

35

of adversaries of at most members can recover no more than component

messages.

 For every partition of the , message component is encrypted in

the following fashion: :
 where

 represents the xor

composition of all where and the tuple iterates over all

partitions of the applied to the partition. By encrypting each

message sub-component with the keys that the disjoint set are missing,

each protects against colluding parties of size at most . Now, since the

 splits each message component in such a way that some row ensures that

no more than members of a colluding party are in the same partition for any

choice of colluding partners, this row prevents the recovery of one . As

demonstrated in Section 3.1, in order for an adversary to obtain , it is

necessary to obtain all . In turn, since these values are merely the xor

composition of all
, the following is the computation for :

 Thus, in order to obtain , an adversary must recover all

 [24]. It has been shown that there exists at least one that a

colluding party of size or smaller cannot obtain and as such, this scheme is

secure. While some broadcast encryption methods offer some probabilistic

security against colluding parties greater than the defined resilience [7], this

scheme is immediately broken upon the member entering the colluding

party. It is a necessary restriction that no more than columns be chosen since

the does not guarantee separation for subsets of any larger size, even if

many such subsets are indeed separated.

36

3.6 Properties of -Based

When starting with a fixed , constructing a from this

will obey the properties listed below. As introduced in Section 3.2, the

utilized in this construction will necessarily be homogeneous. Let the final

be represented by : .

Lemma 3.6.1: When a is constructed from a single fixed

ingredient and utilizing a homogeneous , then

 | .

Lemma 3.6.2: When a is constructed from a single fixed

ingredient and utilizing a homogeneous ,

then

Since the ingredient is fixed by choice, Lemma 3.6.1 is a direct result of

the homogenous ingredient restriction. Each row contains columns which must

be able to be partitioned into an integral number of partitions of size , thus

 | .

Lemma 3.6.2 follows from the security property of the scheme. By

definition, for each -subset of , there must exist at least one row in which no

symbol appears more than times. Accordingly, the applied to each

partition must be resilient against colluding parties of size at least .

Assume to the contrary that . Let represent the row of that

guarantees separation for the -subset . If any of the elements located at

 are repeated times, as allowed by the parameters of , the applied

37

to the partition containing these elements does not secure against colluding

parties of size and as such, the message component encrypted by this

partition is no longer provably unrecoverable. Using the notation presented in

Section 3.5, this message component corresponds to , the singular message

component that is required to be unrecoverable to prevent recovery of . The

assumption thus violates the security property of the proven

Section 3.5 and so it must be that .

38

 Chapter 4

CONSTRUCTING SCATTERING HASH FAMILIES

4.1 Theoretic Results on the Existence of

Following are theorems pertaining to the existence of Scattering Hash Families

for various restrictions of parameters. A formalization of the generalization

claims for is given in Theorem 4.1.1. As was proven for [3], there

exist certain conditions under which a can be trivially constructed in one

row. Theorem 4.1.2 provides bounds for the existence of these trivial

which are demonstrated via constructive proof. Theorems 4.1.3 and 4.1.4 provide

some introductory insight into the existence of minimal under specific sets

of parameters. Finally, Theorem 4.1.5 is a -specific result that follows from

the work of Stein [25], Lovász [26], and Johnson [27] that lay the framework for

generalized hash family bounds. This theorem relies on properties of randomly

generated arrays and is the primary focus of the derandomization in Section 4.2.

Theorem 4.1.1: are a subclass of . By enforcing a multiplicity cap of

 , the separation condition for a enforces every -subset to be mapped

to distinct symbols in some row of the structure. As such, any construction of a

 is a construction of a with .

Proof: Let be a Scattering Hash Family. By definition,

is a set of functions such that :

 { } { }

and for any subset { } with | | , such that for each symbol

 { }, the image maps to the symbol at most times. In this

39

instance, and accordingly, the image of any -subset is a set of elements

whose symbols are repeated at most once. Therefore, all elements of this image

are distinct, providing the necessary separation condition for to be a

 . □

Theorem 4.1.2: When or , a exists on 1 row.

Proof: Let be a sequence of elements from the set { }. For some

 , populate in the following fashion:

 { }

This array contains elements, in which no element is repeated more than

times. Trivially, no subset of size has any symbol repeated

more than times. Moreover, for any subset of size of , no symbol can be

repeated more than times as well. This construction is therefore a

 . Additionally, for any subset of size , it is impossible for any

symbol to repeated more than times, so for all , the same construction

applies. □

Theorem 4.1.3: If a exists where , then there is some

 for which a exists.

Proof: Let be a Scattering Hash Family. By the array

definition of , this family is a array and has the property that for any

 -subset, there exists a row such that the symbols appearing in this row and the

column indices appear no more than times. Let { } be the set of

40

elements appearing in one such -subset. Let be the symbol with the highest

occurrence among elements . Now, for any subset of these elements of

size , where , either
 in the case that is the unique

symbol of highest frequency and a copy of was removed, or in the

case that a different symbol was removed and is therefore still the most

frequent. Since, by definition of , , it is the case that
 and as

such, there exists some . In this instance, provides

existence for , however, since the size of subsets being considered has

decreased, it may be possible to express in fewer rows, thus . □

Theorem 4.1.4: If a exists, then there is some for

which a exists.

Proof: The proof of this follows that of Theorem 4.1.3. Let

be a Scattering Hash Family. is an array of symbols from the set

{ }. Let { } be the set of elements appearing in any -subset of

columns. Let be the symbol with the highest occurrence among elements .

The inequality is necessary for to be a and so it is trivially the

case that . Since this holds for any -subset of elements in the array,

 is therefore a . As with Theorem 4.1.3, this existence is

proven for , but a smaller instance may exist due to the relaxed separation

requirements and so . □

In Section 3.3, the method was shown for constructing from ,

but it remains to demonstrate the existence of these hash families for reasonable

41

parameters. As an initial step in this effort, a non-constructive proof of existence

for is provided in Theorem 4.1.5. The core property of this proof is that it

harnesses the probabilistic separation of a randomly generated -subset to

determine an upper bound on the number of rows required to ensure that for

some array of this size, all -subsets are -separated and thus a of

these parameters necessarily exists. In order to determine the expected

separation, the procedure is defined as follows.

Figure 4.1.1: Definition of function

Theorem 4.1.5: For any nonnegative integers , if:

 (

) (

)

then there exists a . The function is defined in

Figure 4.1.1.

input: 𝑣: Size of the set of symbols

 𝑡: The number of positions being filled with symbols

 𝑤 Maximum number of times a symbol can appear

output: The number of ways that a set of 𝑡 positions can be populated by

symbols from { 𝑣} in such a way that no symbol is repeated

more than 𝑤 times. Specifically, this is the number of ways a 𝑡-
subset will meet the 𝑆𝑐𝐻𝐹 separation condition.

procedure 𝑠𝑒𝑝𝑆𝑐𝐻𝐹 𝑣 𝑤 𝑡 :
begin

 if 𝑣 and 𝑡 then
return 0

else if 𝑣 then
return 1

else

return (𝑡
𝑖
) 𝑠𝑒𝑝𝑆𝑐𝐻𝐹 𝑣 𝑤 𝑡 𝑖

min 𝑤 𝑡
𝑖

end

42

Proof: Let be a array consisting of symbols chosen uniformly at random

from { }. Consider any -subset of columns { }. Since the

elements are chosen randomly, the expectation that this -subset is separated in

a given row is simply the number of ways to separate this -subset divided by all

possible row values. The procedure is a recursive routine that computes

the number of ways to arrange at most copies of a symbol into distinct

positions, known commonly as the multiset coefficient. This is precisely the

number of possible ways to -separate a subset of size . There are ways

to populate this row, so the quantity

 is then the complement of

the expectation of separation for a -subset for a given row. More specifically, this

is the expectation that this -subset is not separated in one row. By raising this

value to the power, this value represents the expectation that a -subset is

not separated in independent trials, which correspond the rows in this scenario

since each element is generated at random. Multiplying this total expectation for

an arbitrary -subset by the total number of -subsets, (

), yields a bound on the

expectation that no -subset is separated. Since the number of separations is an

integral value, if this expectation is less than 1, then it means that there exists

some array with symbols that is a . □

4.2 A Derandomized Construction of

In order to derandomize the non-constructive existence proof provided in

Section 4.1, this technique is first formalized for the construction of . This

result is used to generalize to an algorithm that, when incorporated with the

proper separation condition, will deterministically construct a wide variety of hash

43

families. The separation conditions of are then applied to this general

algorithm, resulting in a deterministic construction algorithm for . The

technique used to derandomize the probabilistic construction in this work is the

Method of Conditional Expectation [20]. This method removes the random choice

in a probabilistic proof or algorithm by computing the conditional expectation of

success for each possible value of this choice and deterministically selecting a

value among these that meets or exceeds the expectation of success. This

approach for efficiently and deterministically constructing combinatorial structures

using a density-based algorithm was first put forth for pairwise testing [28] and

Covering Arrays [29] and subsequently demonstrated for [30]. Since

generalize , this technique is a natural choice for constructing initial bounds

on this type of family.

In order to utilize the density-based algorithmic approach, it is first

necessary to define the conditional expectation in terms of the choice being

derandomized. For a , the conditional expectation is the expected number of

 -subsets newly separated by fixing an as-yet undetermined entry to a symbol

 { }. The formalization of this expected separation and subsequently, the

conditional expected separation is as follows.

 Let be a -subset of elements of a particular row of a consisting

of fixed symbols and/or undetermined entries denoted by . Without loss of

generality, the -subset can be arranged as follows:

where | | and consists of undetermined entries and fixed entries. In

order to compute the expected separation of this -subset, first check for

separation condition violations. In the case of a , a separation condition

44

violation is simply a collision: such that . If a violation

exists, the expected separation of this -subset is necessarily 0 since no

completion of this -subset will prevent this violation. If there does not exist a

collision in the populated elements, however, the computation of the expectation

is as follows.

For the remaining entries to be filled, there are ways to fully populate

the undetermined entries. Since it is known that all are unique, there are

 ways to choose a valid symbol for , ways to choose

a valid symbol for , and so on. Thus, the expectation that this subset be

separated from all possible remaining completions of this subset is:

∏

In fact, this is shown to be a generalization of the formula for the probability

that a -subset consisting entirely of undetermined entries is separated. In this

situation, and the formula simplifies as follows:

∏

∏

Moreover, once this formula is obtained, the analogue to the non-

constructive existence proof can be expressed. By the same argument as

the proof of Theorem 4.1.5, if, for any nonnegative integers , the following

inequality holds:

 (

)

45

then there necessarily exists a . A naïve attempt at forming a

construction from this proof of existence is to create an array matching a set of

parameters satisfying the above inequality and populate the entire array

uniformly at random. At each stage, check to see if the structure produced is a

 and if not, generate it again until the separation conditions are satisfied.

This approach is a randomized algorithm in the Las Vegas style since any output

necessarily satisfies all separation constraints, however, the algorithm is not

guaranteed to terminate.

Consider, for the purposes of derandomization, the Las Vegas style

randomized algorithm used to construct instances of whose existence are

proven by the inequality in Theorem 4.1.5. Instead of generating an entire row or

even an entire array at random, consider the selection of a single element. If, for

the selection of every element in the array, the expected number of separations

is at least as high as before fixing this symbol, then as the row is filled, this

expectation becomes the actual number of separations. As mentioned

previously, this technique was formalized for other combinatorial structures by

Colbourn and Bryce [28] [30] and is now modified to construct .

 Let be an array initially populated entirely with , denoting

undetermined entries. Select the leftmost entry of the topmost row that is still a .

For all ways of fix this to a symbol { }, calculate the conditional

expected separations of fixing this entry to . Rather than selecting the optimal

choice at every point, selecting one that is as good as average will suffice. Thus,

the expected separation of the row after each selection is at least as high as it

was previously and as each row is completed, the actual number of -subset

separations increases with the same rate as theorized by the inequality from

46

Theorem 4.1.5 upon iterating over . When all rows have been

completed, the has been constructed. The technique of reaching down and

computing the expected separation for all possible choices for a given decision is

precisely the desired approach for the Method of Conditional Expectation.

Moreover, in this instance, it has been demonstrated to produce an efficient

deterministic algorithm for actually constructing from what started as a

purely non-constructive existential proof. This algorithm is presented in full detail

in Figure 4.2.1.

Figure 4.2.1: Deterministic Construction of in Polynomial Time

Input: 𝑘: The number of columns for the 𝑆𝑐𝐻𝐹

𝑣: The size of the set of symbols

𝑡: The size of subsets needing to be separated
 𝑤 The number of times a symbol can appear in a 𝑡-subset
Output: 𝑆𝑐𝐻𝐹 𝑁 𝑘 𝑣 𝑤 𝑡

procedure 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑆𝑐𝐻𝐹 𝑘 𝑣 𝑤 𝑡 :
begin

 Initialize 𝐴 to empty array

 Initialize 𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠 to (𝑘
𝑡
)

 while 𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠

 Initialize 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 to expected separation of current row state
 Add row { 𝑘} to bottom of 𝐴

Initialize 𝑑 to 𝑡
 while there remain any in new row

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≔ expected number of 𝑡-subsets separated by
randomly completing the remainder of this row

 Select index of leftmost in row, call this 𝑖
 for all 𝑣 ways to fix this symbol to 𝑠 { 𝑣}

 for all (𝑘
𝑡

) subsets containing this index

Compute each of these 𝑡-subset’s expectation

of separation when setting 𝑖 to 𝑠

Add to sum 𝛿𝑠 of all (𝑘
𝑡

) expectations for 𝑠

 if some 𝛿𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 then

 set 𝑖 to 𝑠
Subtract number of newly separated 𝑡-subsets from

𝑢𝑛𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠
 return 𝐴
end

47

Chapter 5

EMPIRICAL RESULTS

5.1 Constructed by Derandomized Algorithm

The algorithm presented in Figure 4.2.1 has been shown to deterministically

construct in polynomial time. Due to the unexplored nature of these hash

families, this algorithm will be used to generate the first general results, giving a

baseline for the overall bounds of the size of these arrays with respect to the

parameters. An important caveat to the runtime of this algorithm is that, while it is

polynomial in terms of the size parameters, it is exponential in terms of the

strength . For this reason, the constructions will be limited to instances of

moderately small strengths. For the purposes of the analysis, however,

existential bounds will suffice, and as such, the examined data points can be

extended to larger strengths.

 Figure 5.2.1 demonstrates the most noticeable property of when

compared to : they exist on very small numbers of rows. The relaxation of

the separation condition is such that any element can separate a row in any of

the (

) -subsets in which it is present even when multiple instances of that

symbol already exist. Even for multiplicity caps as low as , these families

are extremely small. Using this simple construction method, for column sizes up

to 1,000,000,000, no more than 1,000 rows are required to ensure -

separation up to , which is the highest calculable strength for which the

expected separation calculation does not overflow a long integer in C/C++ during

computation of with the specified parameters.

48

Figure 5.1.1: Rows of a for ,

In consideration of the application-specific analysis to follow, the results of

this initial analysis are extremely positive. The derandomized construction was

able to produce for all 100,000,000 and in under 800 rows, which

as Table 5.2.1 demonstrates, is surpassed by size for on similarly

restrictive parameter choices. The row values corresponding to were

extrapolated from the existence proof due to infeasibility of runtime. Appendix A

has the remaining tables of results for all ; however, Table 5.1.2 represents

the tightest constraints on separation and as such are the largest instances

produced.

 The impact of the size of these data structures suggests that due to the

relaxation of the separation property by increasing the multiplicity cap, naïve

construction techniques actually yield results that are far closer to minimality. In

support of this concept as described in the following section, techniques such as

post-optimization will be significantly less likely to succeed in significantly

reducing the size of the solutions generated. Furthermore, the -specific

implications of extremely small is explored in detail in Section 5.3.

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9

N

log(k)

t=4

t=5

t=6

49

 3 4 5 6 7 8 9 10 11 12

100 9 33 40 159 141 662 473 2610 1564 10043

1000 14 53 65 265 239 1139 825 4618 2803 18245

10000 19 72 90 370 335 1609 1172 6592 4021 26285

100000 24 92 115 475 432 2079 1519 8564 5236 34309

1000000 29 111 139 580 529 2549 1865 10536 6451 42332

10000000 34 131 164 684 625 3019 2212 12507 7666 50355

100000000 39 151 189 789 722 3488 2558 14478 8881 58377

Table 5.1.2: Current best known values for , (

)

5.2 Constructed by Post-Optimization

Don’t-care post-optimization has been shown to be successful in measurably

reducing the smallest known instances of , , and other types of hash

families [21]. By identifying elements of the hash family that are used in no

unseparated -subset, the algorithm slowly marks a row into don’t care positions

until it can be determined that no element in the row is used in any separation,

and as such can be entirely discarded. Due to the large number of rows for a

 of sufficient size and strength, after identifying a primary row, each

subsequent row is expected to separate progressively less and less subsets

when scanning for separations from this point. While it is not guaranteed that a

given row can be eliminated, this algorithm employs a randomized local-minima

escape strategy when too many failed iterations have occurred. What’s more is

that this algorithm can be stopped at any time and the output will still maintain its

combinatoric properties, since the only modifications made are the removals of

unnecessary elements.

50

A very notable property of is that, even for small values of which

is the closest a can get to being a without actually being one, the

structures are extremely small when compared to . Since every must

have , setting and (

) is placing the most constricting

separation conditions possible on the family. Analyzing other choices of the

parameters may produce different results; however, this choice was made to limit

the scope of the potential variations to be studied to a set of restrictive

conditions. Table 5.2.1 demonstrates the respective size of each structure under

these conditions for . In these instances, post-optimizing a single row

would represent between a much larger overall reduction in size compared to a

 . Were this to happen, it would be a massive improvement in design,

however, the fact that rows must be removed in integral steps combined with the

very low number of rows causes this technique to fail to identify candidate rows

for removal much more often.

T

3 9 20

4 33 71

5 40 176

6 159 1087

Table 5.2.1: () and Rows for and Minimal

 It is important to note that the used for this comparison were not

generated in an optimal fashion. These are all outputs of the derandomized

construction method, which for other hash families, is demonstrably suboptimal.

The small number of rows observed here becomes a crucial element in the

performance of any post-optimization technique.

51

Due to the success with other forms of hashing, the don’t-care post-

optimization technique was applied to in an attempt to improve upon the

minimality of the constructed produced by the derandomized algorithm.

Despite the success of this algorithm elsewhere, the post-optimization of the

 generated using the techniques proposed by this thesis did not

significantly reduce row count in the constructed instances. Initial analysis of

these results suggest that this due to a property that can informally be referred to

as “row weight”. Specifically, this is the expected amount of separations that

each row adds to the . Massive instances of exist on very few rows,

and more importantly, despite the fact that many other separations have been

made, the last row is still expected to cover a massive number of subsets.

demonstrate a significantly higher row weight than , which could attribute to

the observed behavior. When performing the don’t-care post-optimization on

these structures, the detection mechanism designed to avoid entering local

minima triggered on every single execution. When disabling this feature of the

algorithm, execution did not terminate after more than 36 hours of runtime on

high multiplicity .

As an additional performance metric for this post-optimization technique,

the percentage of elements within a candidate row that were identified as don’t-

care positions were tracked. As an example, for , the

highest percentage of a row to be identified as don’t-care was approximately

26%. Greater success was found for families of multiplicity . These families

are the closest in separation restriction to and as such have the highest

row counts. For , , post-optimization reduced up to 12% of rows,

but not in any predictably reliable fashion. Due to the intermittent results of this

52

approach, the values analyzed for purposes represent the instances

generated in Section 5.1. While the lack of success of optimization was not the

desired outcome, Section 5.3 describes how the initial near-minimality of

created by even naïve techniques are actually competitive in their performance

as constructions for

5.3 Analysis of Key Material and Broadcast Overheads

As previously described, for the purposes of analyzing the overheads associated

with each scheme, all 1-resilient s built utilize the same basic scheme. This

decision, along with several other simplifying assumptions, was made to reduce

the search space for constructing a . Despite this simplification, however, the

veracity of the comparison remains; the parameters limited are ones that could

potentially represent a as performing worse than its ideal possible

performance. Using a , the parameters and are pre-defined by the

 constraints, and is a function of , , and . Thus, the only variable

parameter to consider in terms of changing design overhead is .

For a , and are also pre-defined, but there is both the number

of symbols to consider as well as the initial strength that is being

constructed and deployed. Restricting the number of symbols to such

that | gives all for a given , that can be constructed from a uniform

ingredient . Non-uniform ingredients massively increase the search space,

and by restricting the consideration to a subset of possible

and then selecting the best instance will only overestimate the minimal

construction, not underestimate it. For every , , the analysis considers

all , . This yields all possible starting strengths except for those

53

for which would be constructing a (and thus be trivially equal to the to

which this scheme is being compared). Finally, since the ingredient is itself

a -based scheme, the equality: is enforced. This is the most

restrictive case for a , and once again provides a pessimistic estimation that

can only strengthen claims made based on these results. If any

 can be constructed more efficiently by using a pessimistic estimation for

 overhead than by using a ’s overhead, then the advantage over the

previous scheme can still be claimed. In this analysis, efficiency is defined with

respect to required number of broadcasts and average keys stored per user.

In addition to the message component broadcasts required by each

scheme, there is a separate broadcast overhead that has not been considered.

This overhead is the cost of broadcasting to all users the composition of the

privileged subset . It can be assumed that as subscribers join the , they are

given a unique identifier, starting at 1 and increasing to . Representing any

subset Ƥ can be done in | | bits by transmitting a binary string in which a

 represents a subscriber’s presence in the privileged subset and a

represents his or her absence. Accordingly, all subscribers are able to identify

yet only the privileged members can compute all portions of the key.

The two broadcast overheads are distinguished from one another as the

Set Identification Overhead (and the Broadcast Encryption Overhead (),

based on the function each overhead performs [1]. The Set Identification

Overhead is absent from the compared overheads due to the fact that between

schemes, the exact same identification must occur.

54

 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 3 4 4 4 5 6 6 7 7 7

- 1 5 5 8 8 8 11 12 14 15 16 17

- - 1 3 6 8 11 13 16 21 26 32 35

 16 17 18 19 20 21 22 23 24 25 26 27 28

7 8 8 9 9 9 9 9 9 9 9 9 10

19 20 22 23 24 26 27 28 29 30 31 32 33

39 44 49 53 57 61 64 68 71 74 78 82 85

 29 30 31 32 33 34 35 36 37 38 39 40 41

10 11 12 12 12 12 12 12 13 13 13 13 13

34 35 36 37 38 39 40 40 41 41 41 41 41

88 90 94 97 100 104 104 108 110 114 116 119 121

Table 5.3.1: Smallest known of strength

Instrumental in this analysis is a compilation of minimal instances of

to use as ingredients for the final [31]. Not only are minimality constraints

better known for smaller constructions, but they will also provide for a more

accurate analysis of the overheads of the -based scheme.

In order to efficiently compare the overheads associated with both the

and the scheme, the values from Table 5.3.1 were written into a tool

named Broadcast Encryption and Key Material Overhead () that rapidly

generates broadcast encryption instances when provided with the appropriate

55

hash families as input. The comparative results of this section are based on the

output of .

An immediate finding in this comparison is the set of instances in which a

 out-performs a in the construction of a

 . Consider a on 500 subscribers with a desired resilience of 6.

Figure 5.3.2: Broadcast and Key Material Overheads for

Figure 5.3.2 charts the various options for selecting a for the Fiat-Naor

Scheme. While there is no specific metric forcing this decision, selecting a

close to the intersection of the two plots will give a moderate compromise

between the two overheads. The output of the used in this instance are the

smallest known instances for their respective parameters. From this, an accurate

comparison can be made. Table 5.3.3 gives the parameters associated with the

best choice for each scheme built from instances generated by the

derandomized construction. The solution in this situation is a trivial breakdown of

0

200

400

600

800

1000

1200

1400

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20 30 40 50 60 70 80 90 100

B
ro

ad
casts

K
e

ys

v
PHF Keys Per User PHF Broadcasts

56

the scheme into various components. Due to utilizing a on one row, it is not

harnessing the inherent separation property across multiple to great effect.

Lowest Broadcast

Overhead
Lowest Keys per User

 : B = 480, KpU ≈ 8000 B = 960, KpU ≈ 6000

 : B = 156, KpU ≈ 4316 B = 540, KpU ≈1494

Table 5.3.3: Overhead Comparison for

In general, the information rate of -based broadcast encryption is well

known. Stinson demonstrated that following the Fiat-Naor construction, the

scheme produces an information rate:

indicating that in order to compute the single key associated with the privileged

subset for a given broadcast, a user must obtain times as many keys.

Similarly, due to the recursive nature of the , the information rate for

this scheme built from ingredient is:

when is chosen minimally and so, it is clear that the information rate, and

therefore the key material overhead for the is dependent on the

relationship between the size of the solution and the size of its ingredients.

If, for any size instance,
 holds, then the

provides a higher information rate to the subscribers. Using on schemes

that were created by general methods that perform well asymptotically, a

comparison between non-trivial instances of the schemes follows:

57

Semi-Optimized

K N
Info.
Rate

Broadcasts N
Info.
Rate

Broadcasts

10 142 1/1420 710 14 1/140 70

20 247 1/4940 1235 57 1/1140 285

30 304 1/9120 1520 90 1/2700 450

40 343 1/13720 1715 119 1/4760 595

K N
Info.
Rate

Broadcasts

10 12 1/240 144

20 21 1/1260 378

30 26 1/3120 624

40 29 1/4640 696

Table 5.3.4: Comparison of for and Based Schemes

When operating on minimal instances of , the performance of the

 -based out-performs the scheme, however, the problem with this

comparison is that the larger the hash families, the less is known about their

minimality in general. The in this method were generated using the same

derandomized technique that produced the . Once a certain threshold of

strength and size is passed, this has been shown to be the best general

construction for . When comparing these schemes, it can be seen that

 constructed by the same method offer a moderate key material savings.

58

Despite this fact, the broadcast overhead tends to be comparable between the

schemes as the size increases up to a certain threshold. As an additional factor

of consideration, on very large , partition sizes increase with

 and the

ingredient will begin to suffer from the same drop-off as the original

scheme. Should the constructions improve as time goes on, these results

will improve accordingly.

Scheme Broadcast Encryption Overhead Key Material Overhead

 ((

)) ((

))

Table 5.3.5: Overheads for and Broadcast Encryption Schemes

The comparison of both overheads between the two schemes is given in

Table 5.3.5. The scheme contains an additional logarithmic scaling,

resulting from the overhead depending on both the solution size as well as

the ingredient solution size. While these results provide the asymptotic

behavior of each scheme, the empirical construction of the schemes

demonstrates that the constant coefficient on size of the solutions is a non-trivial

factor for small instances. Moreover, should be defined as a function of

in both schemes, the additional scaling of the scheme drops out entirely

and they are equivalent asymptotically.

Further analysis into the overhead suggests that there exists a break-even

point for which -based schemes with independent of begin to drop off

due to their asymptotic behavior. As demonstrated in Section 5.1, easily

59

computable instances of are significantly smaller than on equal

columns and strength, but since the constructed from these scale

with an additional (

) factor, there is some size for which these schemes

yield overheads greater than similarly generated -based schemes. Creating

schemes larger than this size favors other methods; however, should this point

occur for parameters far exceeding practical demands, then the -based

scheme offers a strict improvement. Determining this point requires a more in-

depth analysis than the big-O asymptotes provided by this work. The constant

factors affecting and that are ignored by this analysis are necessary

to ascertain the point of equivalence.

60

Chapter 6

CONCLUSION

By generalizing upon a well-known construction for broadcast encryption

that inflates 1-resilient into -resiliency, this thesis has provided the

fundamental rationale as well as the combinatorial basis for a new type of hash

family. Scattering Hash Families generalize Perfect Hash Families and in order to

analyze the properties of these families, techniques are formalized for their

construction. Initial theoretic bounds have been given for these families as well,

laying the foundation for more advanced approaches.

In practice, a simple deterministic construction provided excellent results

for the construction of . The method used to create this construction draws

from a derandomization approach that creates strong instances of other types of

hash families, however, when applied to , the results appear to produce far

smaller solutions for computable instances. Due in part to this near-minimality,

the level of performance of post-optimization in practice does not carry over from

other known related combinatorial structures.

While both the -based and the -based have closely

bound overhead behaviors, the -based scheme is able to exploit well-known

minimal instances of in situations in which the -based is relying on

a non-minimal solution. This allows the newly defined scheme to provide

comparable, and in some situations, better performance. In addition to the

explicit benefit analysis of key material and broadcast overheads, the

allows for an explicit, scalable design that can be efficiently constructed using

simple deterministic methods.

61

 Due to their novel nature, there is great potential for future work in the area

of Scattering Hash Families. More efficient constructions that can handle larger

strengths may allow for a better understanding of these structures in general.

Additionally, the only security parameter considered in the scope of this thesis is

the resilience of the scheme being deployed. Combining this parameter with

features such as traitor-tracing and frame-proofing would strengthen the

schemes in practice; however, determining the combinatorial requirements to

obtain these properties was beyond the scope of this work. Such expansion has

ultimately led to a wide application of modern broadcast encryption techniques,

and applying these techniques to this new scheme might provide insight into

 schemes or variants thereof.

62

REFERENCES

[1] A. Fiat and M. Naor, "Broadcast Encryption," Lecture Notes in Computer
Science, vol. 773, pp. 480-491, 1994.

[2] M. Atici, S. S. Magliveras, D. R. Stinson and W. -D. Wei, "Some Recursive
Constructions for Perfect Hash Families," Journal of Combinatorial Designs,

vol. 4, pp. 353-363, 1996.

[3] C. J. Colbourn and J. H. Dinitz, "Perfect Hash Families," in Handbook of
Combinatorial Designs, Second Edition, Chapman and Hall, 2007, pp. 556-
568.

[4] S. Martirosyan and T. Trung, "Explicit constructions for perfect hash
families," Designs, Codes, and Cryptography, vol. 46, no. 1, pp. 97-112,

2008.

[5] S. R. Blackburn, "Perfect hash families: probabilistic methods and explicit
constructions," J. Comb. Theory Ser. A, vol. 92, no. 1, pp. 54-60, 2000.

[6] D. Deng, P. Li, G. v. Rees and Y. Zhang, "The Stein-Lovasz Theorem and Its
Applications to Some Combinatorial Arrays," Journal of Combinatorial
Mathematics and Combinatorial Computing, vol. 77, pp. 17-30, 2011.

[7] M. Ramkumar, "Broadcast Encryption Using Probabilistic Key Distribution
and Applications," Journal of Computers, vol. 1, no. 3, 2006.

[8] J. L. Jin Hongxia, "Unifying Broadcast Encryption and Traitor Tracing for
Content Protection," in Annual Computer Scecurity Applications Conference,

Honolulu, 2009.

[9] M. Luby and J. Staddon, "Combinatorial Bounds for Broadcast Encryption,"
in EUROCRYPT, Espoo, 1998.

[10] P. D'Arco and D. R. Stinson, "Fault Tolerant and Distributed Broadcast
Encryption," in RSA, San Francisco, 2003.

[11] M. Naor and B. Pinkas, "Threshold Traitor Tracing," in CRYPTO, Santa
Barbara, 1998.

[12] E. Gafni, J. Staddon and Y. L. Yin, "Efficient Methods for Integrating
Traceability and Broadcast Encryption," in CRYPTO, Santa Barbara, 1999.

[13] J. N. Staddon, D. R. Stinson and R. Wei, "Combinatorial properties of
frameproof and traceability codes," Faculty of Mathematics, University of
Waterloo, Waterloo, 2000.

63

[14] D. Stinson and P. Sarkar, "Frameproof and IPP Codes," in Lecture Notes in
Computer Science, Berlin, Springer, 2001, pp. 117-126.

[15] D. R. Stinson, T. v. Trung and R. Wei, "Secure Frameproof Codes, Key
Distribution Patterns, Group Testing Algorithms and Related Structures,"
Journal of Statistical Planning and Inference, vol. 86, no. 2, pp. 595-617,

1998.

[16] D. R. Stinson, "On Some Methods for Unconditionally Secure Key
Distribution and Broadcast Encryption," Designs, Codes and Cryptography,

vol. 12, pp. 215-243, 1996.

[17] R. M. Solovay and V. Strassen, "A fast Monte-Carlo test for primality," SIAM
Journal on Computing, vol. 6, no. 1, pp. 84-85, 1977.

[18] M. Rabin, "Probabilistic algorithm for testing primality," Journal of Number
Theory, vol. 12, no. 1, pp. 128-138, 1980.

[19] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.

[20] J. H. Spencer, Ten Lectures on the Probabilistic Method, Montpelier: SIAM,
1994.

[21] P. Nayeri, C. J. Colbourn and G. Konjevod, "Randomized Postoptimization of
Covering Arrays," in Combinatorial Algorithms, Berlin, Springer-Verlag, 2009,

pp. 408-419.

[22] N. Alon and D. Moshkovitz, "Algorithmic construction of sets for k-
restrictions," ACM Transactions on Algorithms, vol. 2, pp. 153-177, 2006.

[23] D. Naor, M. Naor and J. Lotspiech, "Revocation and Tracing Routines for
Stateless Receivers," in CRYPTO, Santa Barbara, 2001.

[24] C. Shannon, "Communication Theory of Secrecy Systems," Bell System
Technical Journal, vol. 28, no. 4, pp. 656-715, 1949.

[25] S. K. Stein, "Two combinatorial covering theorems," Journal of Combinatorial
Theory, vol. 16, no. 3, pp. 391-397, 1974.

[26] L. Lovász, "On the ratio of optimal integral and fractional covers.," Discrete
Math, vol. 13, no. 4, pp. 383-390, 1975.

[27] D. S. Johnson, "Approximation Algorithms for combinatorial problems,"
Journal of Computer and System Sciences, vol. 9, pp. 256-278, 1974.

[28] R. C. Bryce and C. J. Colbourn, "The density algorithm for pairwise
interaction testing," Software Testing, Verificaton, and Reliability, vol. 17, pp.

64

159-812, 2007.

[29] R. C. Bryce and C. J. Colbourn, "A density-based greedy algorithm for higher
strength covering arrays," Software Testing, Verification, and Reliability, vol.

19, pp. 37-53, 2009.

[30] C. J. Colbourn, "Constructing Perfect Hash Families using a Greedy
Algorithm," in Coding and Cryptology, Y. Li, S. Ling, H. Niederreiter, H. X.

Wang, C. P. Xing and S. Y. Yang, Eds., World Scientific, pp. 109-118.

[31] R. A. Walker. II, "PHFtables," [Online]. Available: http://phftables.com.
[Accessed 23 Jan 2011].

[32] M. Abdalla, Y. Shavitt and A. Wool, "Key management for restricted
multicast using broadcast encryption," Networking, IEEE/ACM Transactions
on, vol. 8, no. 4, pp. 443-454, 2000.

65

APPENDIX

 FROM NON-CONSTRUCTIVE PROOF OF EXISTENCE

66

 , :

 3 4 5 6 7 8 9 10 11 12

100 9 33 40 159 141 662 473 2610 1564 10043

1000 14 53 65 265 239 1139 825 4618 2803 18245

10000 19 72 90 370 335 1609 1172 6592 4021 26285

100000 24 92 115 475 432 2079 1519 8564 5236 34309

1000000 29 111 139 580 529 2549 1865 10536 6451 42332

10000000 34 131 164 684 625 3019 2212 12507 7666 50355

100000000 39 151 189 789 722 3488 2558 14478 8881 58377

 , :

 3 4 5 6 7 8 9 10 11 12

100 1 8 19 56 36 88 317 131 354 1553

1000 1 12 31 94 61 151 553 231 634 2821

10000 1 17 43 130 86 214 786 330 909 4064

100000 1 21 54 167 111 276 1018 429 1184 5305

1000000 1 26 66 204 135 338 1251 527 1458 6546

10000000 1 30 78 241 160 401 1483 626 1733 7786

100000000 1 34 90 278 185 463 1715 725 2007 9026

67

 , :

 3 4 5 6 7 8 9 10 11 12

100 1 1 7 14 30 82 34 66 150 514

1000 1 1 11 23 51 140 60 116 269 933

10000 1 1 15 33 71 198 85 165 386 1343

100000 1 1 20 42 92 256 109 214 502 1753

1000000 1 1 24 51 112 313 134 264 618 2163

10000000 1 1 28 60 132 371 159 313 735 2573

100000000 1 1 32 69 153 429 184 362 851 2983

 , :

 3 4 5 6 7 8 9 10

100 1 1 1 7 12 21 42 108

1000 1 1 1 11 20 36 73 191

10000 1 1 1 15 27 51 104 273

100000 1 1 1 19 35 66 135 355

1000000 1 1 1 23 43 81 165 436

10000000 1 1 1 27 51 96 196 518

100000000 1 1 1 30 58 111 226 599

