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ABSTRACT

In modern healthcare environments, there is a strong need to create an in-

frastructure that reduces time-consuming efforts and costly operations to obtain a pa-

tient’s complete medical record and uniformly integrates this heterogeneous collection

of medical data to deliver it to the healthcare professionals. As a result, healthcare

providers are more willing to shift their electronic medical record (EMR) systems to

clouds that can remove the geographical distance barriers among providers and pa-

tient. Even though cloud-based EMRs have received considerable attention since it

would help achieve lower operational cost and better interoperability with other health-

care providers, the adoption of security-aware cloud systems has become an extremely

important prerequisite for bringing interoperability and efficient management to the

healthcare industry.

Since a shared electronic health record (EHR) essentially represents a virtu-

alized aggregation of distributed clinical records from multiple healthcare providers,

sharing of such integrated EHRs may comply with various authorization policies from

these data providers. In this work, we focus on the authorized and selective sharing

of EHRs among several parties with different duties and objectives that satisfies ac-

cess control and compliance issues in healthcare cloud computing environments. We

present a secure medical data sharing framework to support selective sharing of com-

posite EHRs aggregated from various healthcare providers and compliance of HIPAA

regulations. Our approach also ensures that privacy concerns need to be accommo-

dated for processing access requests to patients’ healthcare information. To realize our

proposed approach, we design and implement a cloud-based EHRs sharing system. In

addition, we describe case studies and evaluation results to demonstrate the effective-

ness and efficiency of our approach.
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Chapter 1

INTRODUCTION

1.1 Motivation

In modern healthcare domain, electronic health records (EHRs) [12, 10] have been

widely adopted to enable healthcare providers, insurance companies and patients to

create, manage and access patients’ healthcare information from anywhere, and at any

time. Typically, a patient may have many different healthcare providers including pri-

mary care physicians, specialists, therapists, and miscellaneous medical practitioners.

Besides, a patient may have different types of insurances, such as medical insurance,

dental insurance and vision insurance, from different healthcare insurance companies.

As a result, a patient’s EHRs can be found scattered throughout the entire healthcare

sector. From the clinical perspective, in order to deliver quality patient care, it is critical

to access the integrated patient care information that is often collected at the point of

care to ensure the freshness of time-sensitive data [22, 30]. This further requires an

efficient, secure and low-cost mechanism for sharing EHRs among multiple healthcare

providers. Particularly, in some emergency healthcare situations, immediate exchange

of patient’s EHRs is crucial to save lives. However, in current healthcare settings,

healthcare providers mostly establish and maintain their own electronic medical record

(EMR) systems for storing and managing EHRs. This kind of self-managed data cen-

ters are very expensive for healthcare providers. Besides, the sharing and integration of

EHRs among EMR systems managed by different healthcare providers are extremely

slow and costly. Such an inefficient usability and low cost-effective fashion become the

biggest obstacles for moving healthcare IT industry forward [59]. A common and open

infrastructure platform can play a key role in changing such a situation.

Cloud computing has become a promising computing paradigm drawing ex-

tensive attention from both academia and industry [41, 3]. This paradigm shifts the
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location of computing infrastructure to the network as a service associated with the

management of hardware and software resources. It has shown tremendous potential to

enhance collaboration, scale, agility, cost efficiency and availability of services. Hence,

healthcare providers along with many other software vendors are more and more will-

ing to shift their EMR systems into clouds instead of building and maintaining their

own data centers. Cloud computing, as cornerstone, not only increases the efficiency

of medical data management and sharing process, but also enables the access to health-

care ubiquitous since patients’ healthcare related data will be always accessible from

anywhere at any time. Many predict that managing healthcare applications in clouds

will make revolutionary changes in the way we are dealing with healthcare information

today.

It is promising for both healthcare providers and patients to have EHR applica-

tions and services in clouds. However, this adoption may also lead to many security

challenges associated with authentication, identity management, access control, policy

integration, trust management, data-centric security and privacy, compliance manage-

ment and so on [52, 56, 57]. If those challenges can not be properly resolved, they

may hinder the success of tapping healthcare into clouds. Among those challenges,

this work will mainly focus on addressing two issues. First, we will tackle access con-

trol issues when EHRs are shared with various healthcare providers in cloud computing

environments. Sharing EHRs is one of the key requirements in healthcare domain for

delivering quality healthcare services. However, the sharing process could be very

complex and involved with various entities in such a dynamic environment. Each EMR

system in clouds is associated with multiple healthcare practitioners with different du-

ties and objectives. A shared EHR instance may consist of several sensitive portions

of patient’s healthcare information such as demographic details, allergy information,

medical histories, laboratory test results, radiology images (X-rays, CTs), and so on.

Access control solutions must be in place to guarantee that access to sensitive infor-
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Figure 1.1: System Policies and Compliance Management

mation is limited only to those entities who have a legitimate need-to-know privilege

allowed by patients. For example, a patient may not be willing to share his medical

information regarding a HIV/AIDS diagnosis with a dentist unless a specific treatment

is required. Therefore, the access control mechanism must support the selective sharing

to allow patients to quickly and easily authorize a variety of medical affiliates to access

their sensitive records in whole or partially and access control policies from distributed

EHR sources must be accurately reflected and enforced accordingly in the integrated

EHRs.

Second, we have witnessed many healthcare providers have been suffering from

sensitive information leakage and policy violations due to the lack of systematic mech-

anisms for compliance management. For instance, recent data breach at ChoicePoint

costs more than 27 million dollars [48]. To protect patients’ privacies, Health Insur-

ance Portability and Accountability Act (HIPAA) [26] has been approved and enforced

for healthcare domain by US government. Hence, it is critical to ensure EMR systems

to be compliant with HIPAA regulations when migrating them to clouds. The conse-

quence of noncompliance is priceless including patients’ privacy disclosures, govern-

ment fines, the cost of court representation, lost reputation, brand damage, government

audits, workforce training cost and so on. As shown in Figure 1.1, all system states of an

EMR system are defined by system policies. Checking whether an EMR system is com-
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pliant with HIPAA regulations is enforced by checking whether its system policies are

compliant with HIPAA regulations. However, there are several challenges on this com-

pliance management process. First, it is a manual and labor-intensive process; Second,

it creates additional overheads to health information transactions. Third, HIPAA regu-

lations are complex and in part vague, requiring interpretation and domain knowledge;

Fourth, the complexity in implementing compliance objective can rapidly increase as

the updates of HIPAA regulations and the upscales of EMR systems. Besides, the

compliance management process will be more complex and critical when it comes to

cloud computing environments. Since a cloud is an open platform, there will be more

healthcare related information interactions among various healthcare providers. It is

more likely that sensitive healthcare information disclosure happens if those EMR sys-

tems in clouds do not comply with HIPAA regulations. In addition, more distributed

healthcare information will be aggregated and managed by large healthcare providers

for providing comprehensive and quality healthcare services in clouds. If those large

healthcare providers’ EMR systems are not HIPAA-compliant, huge amount of health-

care information could be disclosed. Therefore, it is critical to have a novel systematic

and automated approach in place to ensure EMRs to be compliant with HIPAA regula-

tions in clouds.

To address above access control and compliance management issues, we present

a secure EHRs sharing framework which securely manages the access to composite

EHRs integrated from various healthcare providers at different granularity levels and

supports HIPAA compliance management to ensure EHRs sharing to be compliant with

HIPAA regulations in clouds. More specifically, we first define a logical EHR model

to reflect hierarchical structures of EHRs from different healthcare domains. Then, an

EHR data schema composition approach is proposed to integrate different EHR data

schemas to a composite EHR data schema. Based on such a composite EHR data

schema, distributed EHR instances from various EMR systems in clouds can be ag-
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gregated into a composite EHR instance according to a three-step cross-domain EHR

instance aggregation approach. In addition, access control policies will be specified

based on a generic policy scheme to regulate the selective sharing of EHRs at different

levels of granularity not only for the EHRs residing at each local site but also for the

composite EHRs aggregated and shared on the fly. Besides, to ensure the access control

of EHRs to be HIPAA-compliant, we propose a compliance management mechanism

to bridge the gap between policies of EMR systems in clouds and HIPAA regulations.

In particular, we extract policy patterns from both HIPAA regulations and policies in

EMR systems, and then a generic policy specification scheme is formulated to accom-

modate those identified patterns. In addition, we propose a two-step transformation

approach, in which the first step is to transform both HIPAA regulations and system

policies specified in natural language into an abstract representation and the second

step is to further transform the abstract representation into a logic-based representa-

tion. Furthermore, we leverage logic-based reasoning techniques to ensure that EMR

systems are in compliance with HIPAA regulations. To realize our proposed approach,

we design and implement a cloud-based EHRs sharing system. A case study and sys-

tem performance evaluation results demonstrate the effectiveness and efficiency of our

approach.

1.2 Contributions

We summarize our contributions as follows:

• We define a unified logical EHR model to represent hierarchical structures of

EHRs from different healthcare domains such as pharmacy, primary care, clinic

lab and so on;

• We propose an EHR data schema composition approach to integrate different

EHR data schemas to a composite EHR data schema;
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• We propose a three-step cross-domain EHR instance aggregation approach which

aggregates distributed EHR instances from various EMR systems into a compos-

ite EHR instance;

• We define an access control policy scheme based on which access control policies

can be specified to regulate the selective sharing of composite EHRs;

• We propose a methodology to extract structured patterns from both HIPAA reg-

ulations and policies in EMR systems;

• We formulate a generic policy specification scheme which unifies the represen-

tation of both HIPAA regulations and policies in EMR systems;

• We develop a transformation tool which automatically transforms both HIPAA

regulations and system policies specified in natural language into an abstract rep-

resentation and further into a logic representation.

• We design and implement a cloud-based EHRs sharing system. The system pro-

vides a web interface for both healthcare providers and patients to manage EHRs

and APIs for third-party applications to leverage for EHRs’ retrieval and aggre-

gation.

1.3 Organization

The rest of this thesis is organized as follows: we give an overview of cloud computing,

current EMR systems, HIPAA regulations and Answer Set Programming in Chapter 2.

In Chapter 3, we present our proposed secure EHRs sharing framework which supports

selective EHRs sharing and HIPAA-compliant EHRs sharing in cloud computing envi-

ronments. Chapter 4 discusses the system design of our prototype cloud-based EHRs

sharing system including design goals and system architecture followed by case stud-

ies in Chapter 5. Chapter 6 presents the implementation details and system evaluation

results. Related work is highlighted in Chapter 7. Finally, in Chapter 8 we conclude
6



this work with a summary of our results and a discussion of issues that remain to be

addressed.
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Chapter 2

BACKGROUND TECHNOLOGIES

In this chapter, we describe background technologies including cloud computing, cur-

rent EMR systems, HIPAA regulations and Answer Set Programming (ASP) which is

a declarative programming paradigm oriented towards combinatorial search problems

and knowledge intensive applications.

2.1 Cloud Computing

Although cloud computing is based on a collection of many existing and few new con-

cepts in several research areas like service-oriented-architecture (SOA) [51], distributed

and grid computing [16, 17] as well as virtualization [4, 55], it has become a promis-

ing computing paradigm drawing extensive attention from both academia and industry.

This paradigm shifts the location of computing infrastructure to the network as service

associated with the management of hardware and software resources. It has shown

tremendous potential to enhance collaboration, scalability, reliability, agility and avail-

ability. Figure 2.1 presents the U. S. National Institute of Standards and Technology

(NIST) visual model of cloud computing [41]. The following two sections respectively

describe service delivery models and deployment models that have been proposed for

cloud computing.

Service Delivery Models

Along with this new paradigm, there are three most popular cloud service delivery mod-

els in terms of the type of resources provided by a cloud: Infrastructure-as-a-Service

(IaaS), which is in the bottom-most layer, provides access to collections of virtualized

computer hardware resources, including machines, network, and storage. With IaaS,

users construct their own virtual environments on which they can install, maintain, and

execute their own software stacks. Amazon Web Services (AWS) platform [2] is a
8



Figure 2.1: NIST Visual Model of Cloud Computing Definition

prominent example of IaaS. Platform-as-a-Service (PaaS), which is on the top of IaaS,

provides access to a programming or runtime environment tailored to a specific need.

With PaaS, users can develop and execute their own applications within an environment

offered by a service provider. Google App Engine [20] is an example of PaaS, which

enables us to deploy and dynamically scale Python and Java based Web applications.

The top-most layer, known as Software-as-a-Service (SaaS), delivers access to collec-

tions of software application programs. Users can access those applications through a

thin client interface such as a Web browser. Salesforce Customer Relationships Man-

agement [50] is an example of SaaS.

Deployment Models

Clouds can also be categorized based on the deployment model of the underlying infras-

tructure. The architecture of the infrastructure, location of the data centre, and specific

customer requirements influence the choice of the deployment model. Note that these

categories are orthogonal to the service models, thus one can have a private SaaS or a

public SaaS, etc. Public cloud provides access to computing resources for the general

public over the Internet. The public cloud provider allows customers to self-provision
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resources typically via a web service interface. Customers rent access to resources as

needed on a pay-as-you-go basis. Public clouds offer access to large pools of scalable

resources on a temporary basis without the need for capital investment in data cen-

ter infrastructure. Private cloud gives users immediate access to computing resources

hosted within an organization’s infrastructure. Users self-provision and scale collec-

tions of resources drawn from the private cloud, typically via web service interface,

just as with a public cloud. However, because it is deployed within the organization’s

existing data center and behind the organization’s firewall, a private cloud is subject

to the organization’s physical, electronic, and procedural security measures and thus

offers a higher degree of security over sensitive code and data. Hybrid cloud com-

bines computing resources drawn from one or more public clouds and one or more

private clouds at the behest of its users. Community cloud provides cloud infrastruc-

ture for exclusive use by a specific community of consumers from organizations that

have shared concerns around missions, policy and compliance considerations. It may

be owned, managed, and operated by one or more of the organizations in the commu-

nity, a third party, or some combination of them, and it may exist on or off premises.

All of cloud services provide users with scalable resources in the pay-as-you-

go fashion at relatively low costs. For example, Amazon’s EC2 provides on-demand

instances, reserved instances and spot instances with various configurations. The cost

of a ‘large’ type on-demand instance with 7.5 GB memory, 4 EC2 Compute Units and

850 GB instance storage is $0.34 per hour for Linux/UNIX OS and $0.48 per hour

for Windows OS. Amazon’s S3 charges from $0.055 to $0.125 per gigabyte-month,

with $0.01 per 1000 requests for moving data into and out of Amazon Web Services.

Comparing with building and managing their own infrastructures, users are able to save

their investments significantly by migrating businesses to a cloud. With the increasing

development of cost-effective cloud computing technologies, it is not hard to imagine

that more and more businesses will be adopting cloud computing in the near future.
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Figure 2.2: Paper-based Medical Records to EMRs

2.2 EMR Systems

In today’s healthcare domain, paper-based medical information records are transform-

ing into EMRs as shown in Figure 2.2. There are a lot of benefits EMRs bring to us

including improved quality of care, improved documentation and accuracy, reduced ex-

pense, reduced medical errors, better access to medical information, enhanced security,

and so on. Currently, in the United States, the Centers for Disease Control and Preven-

tion (CDC) reported that the EMR adoption rate had steadily risen to 48.3 percent at the

end of 2009 [13]. This is an increase over 2008, when only 38.4 percent of office-based

physicians reported using fully or partially EMR systems in 2008. EMR systems are

also becoming more and more popular in other regions of the world too such as Asia,

Europe and so on.

An EMR system is a software system that provides an electronic version of

a patient’s health records such as the patient’s progress, problems, medications, vital

signs, past health history, immunizations, laboratory data and radiology reports and so

on. A core EMR system consists of the clinical data repository (CDR), clinical decision

support system (CDSS), controlled medical vocabulary (CMV), computerized provider

order entry (CPOE), pharmacy management system, and the electronic medication ad-

11



ministration record (eMAR), a functionality in the electronic clinical documentation

systems of most vendors. There are a lot of commercial EMR systems as well as many

open source EMR systems such as: VistA [54], PatientOS [49], OpenMRS [45], Open-

EMR [44] and so on. We give a brief description for those open source EMR system as

follows:

• VistA is a mature health information system developed by the US Department of

Veterans Affairs. It is in place across all Veterans hospitals and clinics and has

been shown to decrease costs significantly.

• PatientOS is an industry-driven open-source system that gains revenue from ser-

vice contracts of installing and customising this system. It appears to be a front-

end implementation of openEHR.

• OpenMRS is a community-developed, open-source system led by a collabora-

tive effort of the Regenstrief Insitute (Indiana University) and Partners in Health

(Boston Philanthropic Organisation). It was intended to provide sustainable health

information technology that could be used to fight diseases most prevalent in low-

resource countries, including AIDS, tuberculosis and malaria.

• OpenEMR is an ONC-ATB Ambulatory EHR 2011-2012 certified electronic

health records and medical practice management application. It features fully in-

tegrated electronic health, records, practice management, scheduling, electronic

billing.

12



2.3 HIPAA Regulations

The U.S. HIPAA title II was enacted in 1996 for numerous reasons which include the

need for increased protection of patient medical records against unauthorized use and

disclosure. The HIPAA requires the U.S. Department of Health and Human Services

(HHS) to develop, enact and enforce regulations governing electronically managed pa-

tient information in the healthcare industry. As a result, a special committee in HHS

prepared several recommendations based upon extensive expert witness testimony from

academia, industry and government, deriving the following conclusions:

The Privacy Rule requires implementing policies and procedures to provides

federal protections for personal health information held by covered entities and gives

patients an array of rights with respect to that information.

The Security Rule specifies a series of administrative, physical, and technical

safeguards for covered entities to assure the confidentiality, integrity, and availability

of electronic protected health information.

The Enforcement Rule states the actions that must be taken by HHS to ensure

compliance and accountability under the HIPAA, including the process for reviewing

complaints and assessing fines.

The full description of the principles can be found at the U.S. Department of

HHS’s website [27]. In this work, we focus on the section §164 of HIPAA, which

regulates the security and privacy issues in the health care industry. It covers general

provisions, security standards for the protection of electronic health information, and

privacy of individually identifiable health information. We are especially concerned

with the subsection §164.506, which covers the use and disclosure of electronic health

information in carrying out treatment, payment, or health care operations.
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2.4 Answer Set Programming

ASP [36, 39] is a recent form of declarative programming that has emerged from the in-

teraction between two lines of research—nonmonotonic semantics of negation in logic

programming and applications of satisfiability solvers to search problems. The idea of

ASP is to represent the search problem we are interested in as a logic program whose

intended models, called “stable models (a.k.a. answer sets),” correspond to the solu-

tions of the problem, and then find these models using an answer set solver—a system

for computing stable models. Like other declarative computing paradigms, such as SAT

(Satisfiability Checking) and CP (Constraint Programming), ASP provides a common

basis for formalizing and solving various problems, but is distinct from others such

that it focuses on knowledge representation and reasoning: its language is an expres-

sive nonmonotonic language based on logic programs under the stable model seman-

tics [15, 18], which allows elegant representation of several aspects of knowledge such

as causality, defaults, and incomplete information, and provides compact encoding of

complex problems that cannot be translated into SAT and CP [37]. As the mathemati-

cal foundation of answer set programming, the stable model semantics was originated

from understanding the meaning of negation as failure in Prolog, which has the rules

of the form

a1← a2, · · · ,am,notam+1, · · · ,not an (2.1)

where all ai are atoms and not is a symbol for negation as failure, also known

as default negation. Intuitively, under the stable model semantics, rule (2.1) means that

if you have generated a2, · · · ,am and it is impossible to generate any of am+1, · · · ,an

then you may generate a1. This explanation seems to contain a vicious cycle, but the

semantics are carefully defined in terms of fixpoint.

While it is known that the transitive closure (e.g., reachability) cannot be ex-
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pressed in first-order logic, it can be handled in the stable model semantics. Given the

fixed extent of edge relation, the extent of reachable is the transitive closure of edge.

reachable(X ,Y )← edge(X ,Y )

reachable(X ,Y )← reachable(X ,Z),reachable(Z,Y )
(2.2)

Several extensions were made over the last twenty years. The addition of car-

dinality constraints turns out to be useful in knowledge representation. A cardinality

constraint is of the form lower{l1, . . . , ln}upper where l1, . . . , ln are literals and lower

and upper are numbers. A cardinality constraint is satisfied if the number of satisfied

literals in l1, . . . , ln is in between lower and upper. It is also allowed to contain variables

in cardinality constraints. For instance,

more than one edge(X)← 2{edge(X ,Y ) : vertex(Y )}. (2.3)

means that more than one edge(X) is true if there are at least two edges con-

nect X with other vertices.

The language also has useful constructs, such as strong negations, weak con-

straints, and preferences. What distinguishes ASP from other nonmonotonic formalisms

is the availability of several efficient implementations, answer set solvers, such as

SMODELS, CMODELS, CLASP which led to practical nonmonotonic reasoning that

can be applied to industrial level applications.
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Chapter 3

SECURE EHRS SHARING FRAMEWORK IN CLOUDS

In this chapter, we present our proposed secure EHRs sharing framework which se-

curely manages the access to composite EHRs integrated from various healthcare providers

at different granularity levels and supports HIPAA compliance management to ensure

EHRs sharing to be compliant with HIPAA regulations in clouds. Figure 3.1 shows

the overview of our framework: healthcare providers from various domains such as

primary care, pharmacy, clinic lab and emergency care host their EMRs in clouds to

achieve lower operation cost, higher interoperability, ubiquitous service delivery and

so on. They can reside in a single cloud or multiple clouds depending on their deploy-

ment needs. Different cloud types such as public cloud, private cloud, hybrid cloud are

also choices for healthcare providers according to their security and cost concerns. The

EHR Aggregator module retrieves and aggregates distributed EHRs in clouds to con-

struct virtual composite EHRs. The Reference Monitor module contains two sub mod-

ules: Access Control module provides selective EHRs sharing capability to regulate the

access of the composite EHRs with only authorized users; Compliance Management

module ensures EHRs sharing to be compliant with HIPAA regulations. Stakeholders

involved include patients, healthcare practitioners and system administrators. Patients

are the owners of EHRs who specify access control policies to control who can ac-

cess which portions of the EHRs. Healthcare practitioners are the viewers of EHRs

who submit access requests. And they are usually associated with specific healthcare

providers with various roles such as general doctors, dentists, doctor assistants, emer-

gency medical technicians (EMT), medical insurance agents and so on. Administrators

perform administrative functions such as activating or deactivating users, registering or

de-registering healthcare providers and so on.
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Figure 3.1: Secure EHRs Sharing Framework Overview

3.1 Selective EHRs Sharing

In this section, we will present our mechanism to support the selective sharing of the

composite EHRs in cloud computing environments. Hence, patients’ EHRs will be only

accessed by authorized healthcare practitioners with minimum-disclosure principle at

a fine-grained level.

Logical EHR Model

A patient’s EHRs are typically dispersed over a wide range of distributed EMR sys-

tems in cloud computing environments. Different EMR systems may have different

data schemas to define and organize logical and semantic relationships between data

elements drawn from various medical domains. Such medical domains may include

patient demographics, labs, medications, encounters, imaging and pathology reports,
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and a variety of other medical domains from primary, speciality and acute care set-

tings. To support the selective sharing of EHRs in clouds, we leverage a hierarchical

structure proposed in our previous work [29] to represent EHRs from various healthcare

domains such as pharmacies, primary care, clinic labs, healthcare insurance and so on.

Each node in the hierarchical structure is labeled and the root of the hierarchical struc-

ture represents a particular EHR instance. There are two types of nodes: field node and

group node. Field nodes are leaves of the hierarchical structure which represents ele-

mentary information regarding the EHR. Related field nodes are usually placed to each

other to form an information group node. For example, field node ‘name’, ‘address’,

‘birthday’ of a patient are very often grouped together to construct an information group

node ‘demographics’. Moreover, several related group nodes can form a super-group

node (Note that a super-group node is still considered as a group node). As an example,

the group node ‘demographics’ of a patient is likely to be grouped together with other

group nodes such as ‘allergies’ and ‘drugs’ to form a super-group node to represent an

EHR object in pharmacy healthcare domain. Thus, this bottom-up characterization re-

flects the hierarchical nature of the logical EHR model. Formally, we give the definition

of the logical EHR model as follows:

Definition 1. [Logical EHR Model] An EHR object is represented as a tuple T =

(r,V,E), where

• r is the root of the whole EHR object;

• V is a set of nodes within the whole EHR object hierarchical structure such that

V = Vf ∪Vg where V f is a set of field nodes which are leaves in the hierarchical

structure and Vg is a set of group nodes which are formed by a set of leaves or a

set of other group nodes in the hierarchical structure.

• E ⊆ V ×V is a set of links between nodes. ei j ∈ E represents the link between

node i ∈V and node j ∈V .
18



Figure 3.2 shows the EHR data schema represented in the logical EHR model

for the pharmacy healthcare domain. The root node ‘EHR instance’ consists of three

group nodes: ‘Demographics’, ‘Allergies’ and ‘Drugs’. Group node ‘Demographics’

contains five field nodes including node ‘Name’, ‘DoB’, ‘Age’, ‘Addr’ and ‘Gender’

to describe demographic information in this EHR instance. Both group node ‘Aller-

gies’ and ‘Drugs’ contain other group nodes as well as field nodes to describe medical

information regarding allergies and drugs.

Figure 3.2: Pharmacy EHR Schema

EHR Data Schema Composition

In this section, we discuss our approach for EHR data schema composition. We as-

sume all source EHR data schemas to be integrated have already been represented in

our defined logical EHR model. As shown in Figure 3.8, the input of our methodology

are multiple EHR data schemas from different healthcare domains such as pharmacy,

primary care, and clinic lab and so on. The output is the composite EHR data schema.

There are three major steps including building ontology, merging schemas and polish-

ing composite schema in our schema composition approach.

In the first step, we build a node ontology based on ISO EHR Standards [43]

shown in Table 3.1. More specifically, we identify all semantically equivalent nodes

from various EHR data schemas to be integrated and construct classes with ontology

labels referred in the ISO EHR Standard. For example, ‘Demographic’, ‘Demo’ and
19



Figure 3.3: EHR Data Schema Composition Methodology

‘Profile’ represent three different nodes from schemas to be integrated but they are se-

mantically equivalent. They are categorized into a class with a label of ‘Demographic’

since ‘Demographic’ is referred in the ISO EHR Standard. Some ontology tools such

as Knoodl [32] and NeOn [42] can be utilized in this step to build the node ontology.

Table 3.1: Node Ontology Table

Class Label Class Nodes
Demographic Demographic, Demo, Profile

Gender Gender, Sex
DoB DoB, Birthday, Birth Date

... ...

In the second step, we merge multiple EHR data schemas into a composite EHR

data schema. The general merging process is pair-based: for a set of source EHR data

schemas to be integrated, the first two EHR data schemas will be merged first. Then,

the result composite EHR data schema generated by the first two is further merged with

the third EHR data schema. We continue this process until all EHR data schemas are

processed.
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algorithm 1: MergeTwo(Ti, Tj)→ Tc

Input: Two EHR data schemas Ti, Tj
Output: A composition EHR data schema Tc

1 if Ti and Tj are empty schemas then
2 return empty schema
3 else
4 if Ti is empty schema then
5 return Tj;
6 else
7 if Tj is empty schema then
8 return Ti;
9 else

10 Td ← ChooseMergeDestination(Ti, Tj);
11 Ts ← the other one schema of (Ti, Tj);
12 insertSubSchema(Td , rd , Ts, rs);
13 /* Ts and rs respective roots of schema Td and schema Ts/
14 return Td ;
15 end
16 end
17 end
18 /* Definition of insertSubSchema function:/
19 insertSubSchema(Schema T1, Node v1, Schema T2, Node v2)
20 begin
21 if Scan T1 from v1 heading to bottom level,
22 there exist node m such that m = v2 then
23 foreach n ∈ getImmediateChild(v2) do
24 insertSubSchema(T1,m,T2,n);
25 end
26 else
27 Insert sub-schema rooted at v2 in schema T2 into T1 rooted at v1;
28 return;
29 end
30 end

The details of merging two EHR data schemas are shown in Algorithm 1. The

input are two EHR data schemas and the output is a composite EHR data schema.

The general idea is to insert sub-schemas of one schema into proper locations of the

other schema. The sub-schema may consist of one or more nodes. If both schemas are

empty, an empty schema will be returned. If one of these two schemas is empty, the

other schema will be returned. The main body of the algorithm is executed when both

schemas are not empty. In this case, we first need to choose one of the two schemas as

a destination schema. This process is based on following three rules as shown in Al-

gorithm 2: (1) if the two schemas are of different depths, the schema with more levels

is chosen as the destination schema; (2) for two schemas of the same depth, the one

with more leaf nodes is chosen as the destination schema. (3) If the two schemas have

the same numbers of depths and leaf nodes, we randomly pick one as the destination
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algorithm 2: ChooseMergeDestination(Ti, Tj)→ Td

Input: Two data schemas Ti and Tj
Output: A data schema Td which is the merging destination schema

1 /* depth(Schema Ti) is a function which returns total number of levels in schema Ti*/
2 if depth(Ti) ̸= depth(Tj) then
3 if depth(Ti) > depth(Tj) then
4 return Ti;
5 else
6 return Tj;
7 end
8 else
9 if numO f Lea f (Ti) ̸= numO f Lea f (Tj) then

10 if numO f Lea f (Ti) > numO f Lea f (Tj) then
11 return Ti;
12 else
13 return Tj;
14 end
15 else
16 return random(Ti, Tj);
17 end
18 end

schema. The destination schema is denoted by Td , and the other schema is the source

schema denoted by Ts. Our algorithm works in a up-to-bottom fashion, starting from

root to the bottom level of the schema. Sub-schemas in source schema Ts will be re-

cursively inserted to destination schema Td rooted at node v ∈VTd , if the parent node of

the sub-schema is equal to node v and node v does not have any immediate child node,

which is equal to the root node of the sub-schema. Given two EHR data schemas to

be merged, n times of insertion functions will be revoked recursively for the worst case

(n is the number of nodes in the source schema). For each insertion function, m times

of node matching operations will be conducted for the worst case (m is the number of

nodes in the destination schema). Hence, the time complexity for Algorithm 1 is O(n2)

for the worse case.

Take merging Pharmacy EHR data schema and Primary Care EHR data schema

as an example: Primary Care EHR data schema will be chosen as the destination

schema Td since it has larger depth and Pharmacy EHR data schema will be the source

schema Ts. Function insertSubSchema will be invoked and those two EHR data schemas

Ts and Td as well as their root nodes vd and vd will be passed as arguments. The core

idea of function insertSubSchema is to recursively insert sub-schemas of Ts into proper
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locations of Td . In the top level of recursion, scan Td from its root node to bottom level

to check whether there exists a node m such that m = v2 where v2 is the root node of Ts

now. The root node of Td will be found as m (m can be considered as the upper bound-

ary in Td for scanning in each recursion) since both root nodes are represented using

the same label ‘EHR instance’ and they are semantically equivalent to each other. Then

since the node v2 which is the root node of Ts now has three immediate child nodes:

node ‘Demographics’, node ‘Allergies’ and node ‘Drugs’, three insertSubSchema func-

tions will be revoked for each of those immediate child nodes and current argument m is

still node ‘EHR instance’, the root node of Td . In the recursion of node ‘Demographics’

in Ts, Td will be scanned from current m to bottom. Node ‘Demo’ in Td will be found

as current m since node ‘Demo’ and node ‘Demographics’ are semantically equivalent

to each other based on the ontology shown in Table 3.1. Then current m in this recur-

sion becomes to node ‘Demo’ in Td . Since node ‘Demographics’ has five immediate

child nodes, five insertSubSchema functions for each its immediate child node will be

revoked. In the recursion of node ‘DoB’ in Ts, Td will be scanned from current m which

is node ‘Demo’ in Td to bottom. Node ‘Birth Date’ in Td will be found as current m

since node ‘Birth Date’ and node ‘DoB’ are semantically equivalent to each other based

on the ontology shown in Table 3.1. This recursion reaches to the end since node ‘DoB’

in Ts has no immediate child any more. And no sub-schema rooted at node ‘DoB’ in Ts

will be inserted into Td since Td contains a semantically equivalent node. It is similar

with other recursions of other immediate child nodes of node ‘Demographics’ in Ts. In

the recursion of node ‘Allergies’ in Ts, Td will be scanned from current m which is node

‘EHR instance’ in Td to bottom. Since there is no semantically equivalent node m for

node ‘Allergies’, the sub-schema rooted at node ‘Allergies’ in Ts will be inserted to Td

rooted at current m which is node ‘EHR instance’, the root node of Td . Similarly, other

recursions will be conducted.

As shown in Figure 3.4, based on above EHR data schema composition ap-
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Figure 3.4: EHR Data Schema Composition Example

proach, three different EHR data schemas for pharmacy, primary care and clinic lab

healthcare domains in clouds are integrated into a composite EHR data schema. More

specifically, after identifying all semantically equivalent nodes and building an ontol-

ogy, pharmacy EHR data schema and primary care EHR data schema will be merged

first. The result EHR data schema will be further merged with clinic lab EHR data

schema. Primary care EHR data schema will be chosen as the destination schema

when merging the first two schemas. Sub-schemas of pharmacy EHR data schema

will be inserted into primary care EHR data schema. For instances, sub-schema rooted

at node ‘Allergies’ of pharmacy EHR data schema will be inserted into primary care

EHR data schema rooted at node ‘EHR instance’. Single-node sub-schemas rooted re-

spectively at node ‘ProvId’, ‘IsDiscontinued’ and ‘DisconReason’ of pharmacy EHR

data schema will be inserted into primary care EHR data schema rooted at node ‘Dru-

gOrderInstance’.

After merging process, the composite EHR data schema will be polished ac-
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Figure 3.5: EHR Instances Aggregation Procedure

cording to ISO EHR Standards and certain structures can be reorganized in the third

step. For instance, node ‘Care Info’ is added as a parent node for node ‘Encounters’,

‘Allergies’, ‘Medications’ and ‘Labs’ in the composite EHR data schema.

Cross-domain EHR Instance Aggregation

Patients’ EHR instances which carry actual medical information are usually organized

and stored in distributed EMR systems based on their EHR data schemas. As shown

in Figure 3.4, EMR systems from different healthcare sub-domains such as primary

care, pharmacy and clinic lab adopt different EHR data schemas. To support selec-

tive EHR sharing for a patient, all his related EHR instances residing in various EMR

systems need to be aggregated into a composite EHR instance. Some of those EHR in-

stances are based on the same EHR data schema if they come from the same healthcare

sub-domain. Some of them are based on different EHR data schemas if they are from

different healthcare sub-domains. Hence, we propose a three-step cross-domain EHR

instance aggregation approach: in step one, all elementary medical information from

each EMR system are retrieved and corresponding EHR instances for each EMR system

are constructed based on their domain EHR data schemas; In step two, intra-domain

aggregation is performed. EHR data instances from the same healthcare domains are
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aggregated into domain EHR instances based on their common EHR data schemas; In

step three inter-domain aggregation is conducted. All aggregated EHR instances across

different health domains are aggregated into a composite EHR instance based on the

composite EHR data schema. For example, as shown in Figure 3.5, a patient’s EHRs

are resided in 7 EMR systems. EMR 1 and EMR 2 are within the same healthcare sub-

domain Pharmacy; EMR 3, EMR 4 and EMR 5 are within the same healthcare sub-

domain Primary Care; EMR 6 and EMR 7 are within the same healthcare sub-domain

Clinic Lab. In step one, EHR Instance 1, EHR Instance 2 and so on are respectively

retrieved and constructed from their corresponding EMR systems and based on their

EHR data schemas. EHR Instance 1 and EHR Instance 2 are based the same EHR

data schema since they are from the same healthcare sub-domain. They are integrated

into the Domain Composite EHR instance 1 in step two. Similarly, Domain Composite

EHR instance 2 and Domain Composite EHR instance 3 are generated. Finally, a com-

posite EHR instance is generated from those three domain composite EHR instances

by cross-domain EHR instance aggregation in step three. The EHR data schema for the

composite EHR instance is obtained by integrating EHR data schemas of those three

healthcare sub-domains using the EHR data schema composition approach presented

in the previous section.

Access Control Policy Specification

To enable an authorized and selective sharing of patients’ EHRs in clouds, it is crit-

ical for an authorization policy to determine a subject’s access privileges for specific

portion(s) of a composite EHR instance. Our policy specification scheme is built upon

the defined logical EHR model such that access policies can be effectively defined at

different granularity levels within the structure. In this work, we assume that EHR in-

stances are virtually aggregated at the point of care for a healthcare provider to review.

Hence, we mainly focus on read-only access permission. To give a formal definition

26



of an access control policy, we need first define following concepts: Subjects, Objects,

Purposes.

In healthcare domain, patients may give the access permission of their EHRs to

identified individuals. For instance, a patient may want to indicate the following intent:

“Dr. Bruce is allowed to access my medical records”. In other situations, authorizations

can be issued to a role such as ‘dentist’, ‘general physician’, ‘pharmacist’, and ‘nurse’.

As healthcare practitioners are usually associated with certain organizations, such a

property may also be a constraint on the subject. We give the formal definition of

subjects as follows:

Definition 2. [Subject] Let U, R and O be the sets of user IDs, roles and affiliated

organizations. A subject sub is defined as a tuple sub = < u,so > or sub = < r,so >,

where u ∈U, r ∈ R, and subject affiliated organization set so⊆O. Overall, the subject

set Sub is defined as Sub = (U×2O)
∪
(R×2O).

To support the selective sharing of EHRs, the definition of objects is based on

the logical EHR model and defined as follows:

Definition 3. [Object] Let V be a set of all nodes in a given EHR instance represented

according to a EHR logical model denoted by T. An object ob jv where v ∈V is a set of

nodes in a sub-schema of T rooted at node v such that the object set Obj is defined as

Obj = 2V .

To better protect a patient’s privacy when sharing his medical information, an

attribute, purpose, is necessary to be specified in the authorization policy to confine

the intended purposes/reasons for data access in healthcare practice. Some examples

of purpose could be payment, treatment, research and so on. Formally, the purpose is

defined as follow:
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Figure 3.6: Selective Portions of Composite EHR Instance

Definition 4. [Purpose] Let P be a set of purposes for business practices in healthcare

domains. The purpose pur is a sub set of P, Pur ⊆ P.

Definition 5. [Access Control Policy] An access control policy is a tuple acp= (sub,

obj, pur, effect), where

• sub ∈ Sub is a subject;

• ob j ∈ Ob j is an object;

• pur ⊆ P is the purposes; and

• e f f ect ∈ {permit,deny} is the authorization effect of the policy.

Policies can be categorized into two types: local policy and global policy in

terms of residencies of the policy. Local policies are enforced in a specific EMR system

when it shares EHR instances with other systems. Global policies are enforced on the

composite EHR instance in a centralized way. Both types of enforcement of polices

support different granularity levels of EHRs’ disclosures. Three global access control

policy examples are given as follows:

• P1: (<GP, h1>, ob jEncounters, {treatment}, permit);
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• P2: (<SP, h2>, ob jMedications, {treatment,research}, permit);

• P3: (<Dr. Lee, h2>, ob jLabs, {research}, deny);

In P1, a patient allows all general practitioners (GP) in hospital h1 to view

encounter information of his composite EHR shown in the scope with the background

of squares in Figure 3.6 for treatment purpose; In P2, the patient allows all specialists

(SP) in hospital h2 to view medications information of his composite EHR shown in

the scope with the background of dots in Figure 3.6 for treatment or research purpose;

In P3, the patient deny Dr. Lee from hospital h2 to access his clinic lab information of

his composite EHR shown in the with the background of white space in Figure 3.6 for

research purpose.

3.2 HIPAA-Compliant EHRs Sharing

In this section, we present our compliance management workflow for EMR systems

in cloud computing environments, as shown in Figure 3.7. In particular, since system

policies define all the states the system can transit and reach to, checking whether the

system comply with HIPAA regulations can be equally transformed to check whether

system policies are compliant with HIPAA regulations. Hence, the inputs of this work-

flow are high-level HIPAA regulations and healthcare systems’ policies. The Policy

Translator module transforms both high-level HIPAA regulations and healthcare sys-

tems’ policies into an abstract representation. The Logic Translator module further

transforms the abstract representations of HIPAA regulations and healthcare systems’

policies into logic representations. Then, the Logic Reasoner module provides compli-

ance analysis service.

The reasons why we introduce a layer of abstract representation instead of di-

rectly transforming policies into the logic representation in the workflow are as follows:

First, the abstract representation facilitates the process of compliance analysis since
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Figure 3.7: Compliance Management Workflow

both HIPAA regulations and healthcare systems’ policies are uniformly represented by

using the same policy scheme; Second, the abstract representation improves the in-

teroperability, consistency, and reusability of the policies from different organizations

and resources. Third, different policy reasoning techniques can be adopted upon the

abstract representation. Hence, the compliance management will not be limited to any

specific reasoning technique.

Table 3.2: Keyword Dictionary

Class ID Class Label Key Words
Class 1 Actor covered entity(CE), healthcare provider,

individual, patient
Class 2 Action use, disclose, require, obtain, carry out,

permit, has, had, pertains, participate
Class 3 Purpose treatment, payment, health care opera-

tions, health care fraud, abuse detection,
compliance

Class 4 Object phi, consent
Class 5 Modality may
Class 6 Conditions except, if, when
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Extracting Policy Pattern

To conduct compliance analysis, both HIPAA regulations and healthcare systems’ poli-

cies should be transformed into an abstract representation. In order to define a uniform

policy scheme for the abstract representation, general policy patterns should be iden-

tified. We present an approach to achieve such a goal as shown in Figure 3.8. First,

we identify keywords from HIPAA regulations and healthcare systems’ policies. Then,

we categorize identified keywords into different classes and give a label to each class.

Regarding any new HIPAA regulation, we map each keyword from the regulation to a

class. The composition of different labels constructs a structured pattern. After ana-

lyzing all identified policy patterns, we formulate a generic policy scheme to facilitate

an abstract representation of both HIPAA regulations and healthcare systems’ policies.

Note that our approach is a general approach which is able to be applied to all HIPAA

regulations as well as various healthcare systems’ policies. Figure 3.8 demonstrates an

example for extracting policy patterns from one section of HIPAA regulations.

Figure 3.8: Approach for Policy Pattern Extraction

Table 3.2 shows the keyword dictionary we extracted from section §164.506.

It contains six classes and each class is associated with a label and several keywords.

Based on this keywords dictionary, we analyze all rules from section §164.506. Rule

examples and corresponding policy patterns are partially given as follows:

• 164.506(a) Except with respect to uses or disclosures that require an authoriza-
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tion, a covered entity may use or disclose protected health information for treat-

ment, payment, or health care operations.

Extracted Pattern: < condition >< actor >< modality >< action >< ob ject >

f or < purpose >

• 164.506(b)(1) A covered entity may obtain consent of the individual to use or

disclose protected health information to carry out treatment, payment, or health

care operations.

Extracted Pattern: < actor ><modality>< action>< ob ject > to< action><

ob ject > f or < purpose >

• 164.506(c)(1) A covered entity may use or disclose protected health information

for its own treatment, payment, or health care operations.

Extracted Pattern: < actor ><modality>< action>< ob ject > f or < purpose>

• 164.506(c)(2) A covered entity may disclose protected health information for

treatment activities of a health care provider.

Extracted Pattern: < actor ><modality>< action>< ob ject > f or < purpose>

Formulating Policy Specification

To enable compliance analysis of policies, it is essential to put a generic and uniform

policy specification in place for the abstract representations of both HIPAA regulations

and healthcare systems’ policies. Our policy specification scheme is built upon the

identified policy patterns based on the approach addressed earlier and shown as follows:

Definition 6. [Generic Policy Specification] A generic policy is represented as a 8-

tuple p = <actor, modality, action, object, purpose, condition, id, effect>, where

• actor = < D,R,O > is a 3-tuple, where D, R and O represent disseminator, re-

ceiver, and owner, respectively;
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• modality depends on the implication that a policy expresses. For instance, if the

policy expresses the concept of obligation, the corresponding modality can be

must; if the policy expresses the concept of privilege, the corresponding modality

can be may;

• action is a particular action defined by a policy, such as use, disclose, share, and

so on;

• object is a protected healthcare resource, such as patient demographic details,

medical histories, laboratory test results, radiology images (X-rays, CTs), and so

on;

• purpose is the reason for an actor to perform an action on an object;

• condition = < CD,CR,CO,CCON > is a 4-tuple, where CD,CR,CO, and CCON in-

dicate conditions on disseminator, receiver, owner and context, respectively;

• id is the citation to the portion of HIPAA regulations to which a policy refers to;

and

• effect ∈ {permit, deny} is the authorization effect of a policy.

Transformation Approach

In this section, we discuss our two-step transformation approach. In the first step, we

transform both HIPAA regulations and healthcare systems’ policies into an abstract

representation. In the second step, we transform the abstract representation into a logic

representation. The first step in our transformation is shown in Figure 3.9. It mainly

contains four sub-procedures: Establishing Word Dictionary, Natural Language Pro-

cessing, Matching and Removing Disjunction. We address the details of each procedure

as follows:
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Figure 3.9: Transformation Flow

1. Establishing Word Dictionary. The goal of this step is to categorize key words.

More specifically, we first identify keywords from the given text and categorize

identified keywords into different classes. We then assign a label to each class.

This step utilizes the word dictionary built when extracting generic policy pat-

terns. Each class is managed and stored in an arraylist data structure.

2. Natural Language Processing. The goal of this step is to divide each rule into

syntactically correlated parts of words. Some NLP techniques [38, 34], such as

sentence detection, tokenization, pos-tagging, and chunking are utilized in this

step. Sentence detection API detects how many sentences are there in the input

text. Tokenization API segments an input sentence into tokens. Tokens can be

words, punctuation, numbers and so on. Pos-tagging API marks tokens with their

corresponding word type based on the token itself and the context of the token.

And chunking API divide each rule into syntactically correlated parts of words

like noun groups, verb groups and so on. This step facilitates the next matching
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step.

3. Matching. The goal of this step is to identify each element of the generic policy

scheme including disseminator, receiver, owner, modality, action, object, pur-

pose, condition, ruleID and effect. More specifically, based on the results of

previous procedures, we compare each correlated part with dictionary words and

return the label if there exists a matching word in the word dictionary. Then

based on the label, the placement of the word in the generic policy scheme is

determined.

4. Removing Disjunction. To remove disjunction from the rules, each rule may

need to be split into several separate rules. Since the elements of receiver, action

and purpose in a rule may have multiple instances, we further split a given rule

based on those instances. More specifically, we store instances with disjunction

relationships into an arraylist data structure. Based on the length of the arraylist,

numbers of constructing rule processes will be repeated.

The following example demonstrates how our transformation approach works

with HIPAA rules in a natural language:

• Input: 164.506(c)(1) A covered entity may use or disclose protected health in-

formation for its own treatment, payment, or health care operations.

• Output: (<CE, CE, CE>, may, use, phi, treatment, N/A, 164.506(c)(1), allow)

(<CE, CE, CE>, may, use, phi, payment, N/A,

164.506(c)(1), allow)

(<CE, CE, CE>, may, use, phi, healthcare operation, N/A, 164.506(c)(1), allow)

(<CE, CE, CE>, may, disclose, phi, treatment, N/A, 164.506(c)(1), allow)

(<CE, CE, CE>, may, disclose, phi, payment, N/A, 164.506(c)(1), allow)
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(<CE, CE, CE>, may, disclose, phi, healthcare operation, N/A, 164.506(c)(1),

allow)

In this example, we can notice two actions: use and disclose and three purposes:

treatment, payment, and health care operations in the HIPAA rule represented in a

natural language. Based on the combination of actions and purposes, we obtain six

sub-rules during the transformation process.

The second step of our transformation approach is to transform the abstract

representation of policies into a logic representation for conducting reasoning analy-

sis. We adopt ASP as the underlying logic programming. This procedure interprets

the semantics of the generic policy specification in terms of the Answer Set semantics.

Based on each element of the generic policy definition, we define following ASP pred-

icates: decision(ID, EFFECT) where ID is a policy id variable and EFFECT is a policy

authorization decision variable; actor(D, R, O) where D, R and O are variables re-

spectively for disseminator, receiver, and owner; modality(M); action(A); object(OBJ);

purpose(P) and condition(C). We consider decision(ID, EFFECT) as the ASP rule head

and the rest predicates as the ASP rule body. Hence, an ASP representation of generic

policy is expressed as follows:

• decision(ID, EFFECT) :- actor(D, R, O), modality(M), action(A), object(OBJ),

purpose(P), condition(C).

The following example shows how our transformation converts a generic policy

representation into an ASP representation:

• Generic representation of a HIPAA regulation: (<CE, CE, CE>, may, use,

PHI, treatment, N/A, 164.506(c)(1)(1), permit)
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• ASP representation: decision(164506c11, permit) :- actor(ce, ce, ce), modal-

ity(may), action(use), object(phi), purpose(treatment), condition(na).

Compliance Analysis

A policy is in compliance with another policy if the same effects are obtained when

those policies are applied to the same request; Otherwise, the policy is in non-compliance

with the other policy. To apply this proposition to HIPAA analysis, we further make

this intuition more precise by defining the notion of non-compliance. With respect to

the same policy variables, if the effect of healthcare systems’ policy is allow while

the effect of HIPAA regulations is deny, we call this non-compliance case as less-

constrained non-compliance. If the effect of healthcare system is deny while the effect

of HIPAA regulations is allow, we call this case as over-constrained non-compliance.

Policy makers of the healthcare systems should strengthen the control of the policy

if less-constrained non-compliance is detected or loosen the control of the policy if

over-constrained non-compliance is detected. The compliance definition can be also

extended to analyze the compliance relations between a policy and a policy set or

between two policy sets. In practice, both healthcare systems’ policies and HIPAA

regulations contain multiple sub-policies. If the healthcare systems’ policies do not

comply with HIPAA regulations, our approach can identify the counterexamples for

compliance analysis.

After the two-step transformation, we have both ASP representations of HIPAA

regulations and local healthcare systems’ policies. Consider the ASP representation of

HIPAA regulations as privacy/security property program F and the ASP representation

of the local healthcare systems’ policies as program G. Then the problem of compliance

checking can be cast into the problem of checking whether the program

G∪F∪H (3.1)
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has no answer set using ASP solver, where H is the program expressing program

G and program F has conflicting decision results. If no answer is found, it implies that

the privacy/security property F is verified. Otherwise, an answer set returned by an

ASP solver serves as a counterexample that indicates why the program G does not

entail F [1].
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Chapter 4

SYSTEM DESIGN

In this chapter, we discuss the goals that shaped our design, then describe the system

architecture in details.

4.1 Design Goals

Our design approach is to keep our architecture as general as possible to secure the

sharing of EHRs in cloud computing environments. In order to achieve this approach,

we defined the following goals for our design:

• Fully utilize cloud infrastructure capability for cost efficiency for healthcare providers;

• Support heterogeneous healthcare systems from various domains like pharmacy,

primary care, clinic lab and so on;

• Provide a dynamic and flexible environment for healthcare providers to subscribe

and de-subscribe cloud services;

• Design in a modular fashion for better function isolation and easy system up-

dates;

• Provide an easy-to-use interface for different users including healthcare practi-

tioners, system administrators and patients.

4.2 System Architecture

Figure. 4.1 shows our system architecture. The bottom is an infrastructure layer which

provides computing and storage capabilities to host various EMR systems. This can be

achieved by several cloud computing software solutions such as XenServer [9], Open-

Stack [47], and Eucalyptus [14]. By leveraging the cloud infrastructure, healthcare

providers can tremendously reduce their cost for building and maintaining their own
39



Figure 4.1: System Architecture

data centres to host EMR systems. The middle box is the management module includ-

ing User Interface, Security Service module, EHR Manager module, Policy Manager

module and CONNECT module. The User Interface has three kinds of different views

according to users’ identities: (1) Healthcare practitioners are able to discover a pa-

tient with at least 3 characters of the patient’s name. By selecting the desired patient,

they can submit the patient’s EHRs access request. Based on the authorization re-

sult, the request will be allowed or denied; (2) Patients are able to view their EHRs

from particular healthcare providers they are associated with or the composite EHRs

aggregated from all healthcare providers they obtained services from. They can also

specify policies for certain EMRs or on the composite EHRs; (3) Administrators have

the capability to manage users and healthcare providers’ EMR systems registered in

the whole system. Security Service module consists of four sub-modules: Authenti-

cation sub-module authenticates users to make sure only legitimate users can access

the system; Access Control sub-module controls users’ access to EHRs from particular

registered EMR systems or portions of the composite EHRs based on authorization re-
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sults generated from Policy Manager; Compliance Management sub-module enforces

our proposed HIPAA compliance management approach in Section 3.2 to ensure the

system is compliant with HIPAA regulations; Other services include delegation ser-

vice, audit service and so on. EHR Manager module retrieves distributed EHRs or

the composite EHRs from CONNECT module and share them with authorized users

under the control of Access Control module. Policy Manager module consists of two

sub modules: Policy Enforcement sub-module enforces related policies when receiving

EHRs access requests from users and generates authorization results to Access Control

module; Policy Specification sub-module provides capability for patients to specify

their access control policies based on the policy scheme defined in Definition 5. CON-

NECT module includes four sub-modules: Registry Management sub-module provides

administrative functionalities on EMR systems hosted in the cloud infrastructure like

adding, deleting, listing and updating; Patient Discovery sub-module enables health-

care practitioners to discover patients from all registered EMR systems and stores dis-

covery results in a local database for caching; EHRs Retrieval sub-module retrieves all

related distributed EHRs from registered EMR systems in clouds. EHR data schemas

from various healthcare domains such as primary care, pharmacy and clinic lab are re-

alized by this module. Elemental healthcare information is retrieved and constructed

into EHR instances based on their EHR data schemas; Aggregator sub-module pro-

vides aggregation functionality to integrate all distributed EHR instances from EHRs

Retrieval module. The aggregation procedure is described in Figure 3.5.
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Chapter 5

CASE STUDY

5.1 Case Study on Selective EHRs Sharing

Scenario Description

In this section, we discuss a case study to show how our approach supports the selective

sharing of the composite EHRs. As shown in Figure 5.1, Bob is a veteran who had a

bullet wound in his abdomen during a battle before. He had a primary surgery from

a VA hospital at that time. However, due to severity of the wound, he couldn’t be

fully recovered. The bullet wound badly affects his pancreas system. Since then, he is

suffered from diabetes and needs periodically take related medicines from a pharmacy.

And he has inherited allergies to certain kinds of medicine. Hence, he has to take

a special prescription from his primary doctor. Every three months, he takes pancreas

related tests by a homecare doctor to monitor the recovery status of his pancreas system.

One day, he had a heart attack at home and was sent to a nearby VA hospital where he

usually obtains care services by an ambulance. On the way to the VA hospital, the

Figure 5.1: Emergency Healthcare Scenario
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Figure 5.2: System Workflow

emergency medical technician (EMT) tried to access Bob’ medical related information

and carried some emergency actions based on the circumstance. The EMT also reported

the information to the heading hospital. When they arrived at the VA hospital, his

primary doctor, Dr. Lee, had already collected all related medical information of Bob

and prepared a preliminary plan.

System Workflow Illustration

This scenario involves four healthcare providers from different healthcare domains:

primary care hospital, pharmacy, clinic lab and emergency. The first three manage

their EMR systems in clouds which store Bob’s EHRs since Bob obtained healthcare

related services from them before. And their EHRs are organized and stored respec-

tively based on EHR data schemas shown in Figure 3.4. Two healthcare practitioners

including Dr. Lee from the VA hospital and the EMT are involved in the workflow.

Depending on their different identities, they have different access privileges on Bob’s

composite EHRs. Figure 5.2 illustrates how this scenario can be realized in the work-
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flow of our system. After the patient Bob authenticates with Authentication module

in steps 1&2, Bob specifies access control policies on his composite EHRs in steps

3&4 using Policy Manger module. He grants a permission to access all portions of his

composite EHRs to his primary doctor Dr. Lee from the VA hospital and a permission

to access only demographics and encounters related portions to any healthcare prac-

titioners with an EMT role. Note that the subject in our policy specification defined

in Definition 5 supports both user IDs and roles. Dr. Lee is considered as a specific

user ID and EMT is a general role concept here. After Dr. Lee’s authentication in

steps 5&6, he sends a patient discovery request with Bob name in step 7. Patient Dis-

covery module queries with Registry module for all registered EMR systems in clouds

in steps 8&9. Then patient discovery results with bob’s demographic information and

information about his associated healthcare providers are sent back to Dr. Lee in step

10 and stored a copy in a local database for caching purpose. Dr. Lee may receive

multiple patient discovery results with the same patient name. Based on Bob’s other

demographic information, he selects the right one and sends an EHRs access request

to EHR Manager module in step 11. EHR Manager module sends an access decision

request to Access Control module in step 12. After Access Control module coordinates

with Policy Manager module to enforce related access control policies Bob specifies in

steps 13&14, an access decision is sent back to EHR Manager module in step 15. Sup-

pose the decision is “allowed”, EHR Manager module then sends a composite EHRs

request to Aggregator module in step 16. Aggregator module further sends an EHRs

retrieval request to EHRs Retrieval module in step 17. Based on the patient discovery

results cached before, EHRs Retrieval module retrieves all distributed EHRs of Bob

from EMR systems hosted in clouds and sends them back to Aggregator module in

step 18. Aggregator module aggregates all distributed EHRs to construct a composite

EHRs and sends it to EHR Manager module in step 19. Based the policy authorization,

EHR Manager module shares corresponding portions of the composite EHRs with Dr.
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Lee. Since Bob consents, Dr. Lee can view Bob’s entire composite EHRs. The system

workflow for the EMT’s EHRs access request is the same except that he can only view

limited potions of Bob’s composite EHRs based policies Bob specifies.

5.2 Case Study on HIPAA Compliance Management

In this section, we present a case study to demonstrate how our approach supports

HIPAA compliance management.

Policy Transformation

In [21], Grandison et al. studied 20 healthcare related service providers and gave their

policy locations. The one we chose from their study is OSF Healthcare which is owned

and operated by The Sisters of the Third Order of St. Francis, Peoria, Illinois. The

OSF Healthcare System consists of seven hospitals and medical centers, one long-term

care facility, and two colleges of nursing. Federal law requires OSF Healthcare Sys-

tem and its related health care providers and health plans to maintain the privacy of

individually identifiable health information and to provide patients with notice of their

legal duties and privacy practices with respect to such information. Accordingly, OSF

Healthcare System issues HIPAA Privacy Practices Notice which describes how med-

ical information about patients will be protected, how it may be used and disclosed,

and how patients can get access to the information. Even though OSF Healthcare Sys-

tem claims that the privacy notice they issue complies with HIPAA regulations, it is still

necessary to conduct systematic approach for further compliance evaluation. Due to the

page limitation, our discussion will not cover all policies defined in the OSF Health-

care System’s privacy notice. We only select one policy as an example to demonstrate

how our approach can check whether their privacy notice is in compliance with HIPAA

regulations. Other policies can be examined in the same way with our compliance

management approach.
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• Local Healthcare System Policy: OSF may share your information with your

doctors, hospitals or other health care providers to help them provide medical

care to you.

Using our transformation approach, the above local healtcare system policy can

be transformed into following three sub-rules represented in our policy specification

scheme:

• (<OSF, doctor, patient>, may, share, information, treatment, N/A, l11, permit)

• (<OSF, hospitals , patient>, may, share, information, treatment, N/A, l12, per-

mit)

• (<OSF, health care providers , patient>, may, share, information, treatment,

N/A, l13, permit)

Furthermore, the above three sub-rules can be transformed into corresponding

ASP rules as follows:

• decision(l11, permit) :- actor(osf, doctor, patient),

modality(may), action(share), object(information), purpose(treatment), condition(na).

• decision(l12, permit) :- actor(osf, hospitals, patient),

modality(may), action(share), object(information), purpose(treatment), condition(na).

• decision(l13, permit) :- actor(osf, hcp, patient),

modality(may), action(share), object(information), purpose(treatment), condition(na).

Terminology Mapping

In order to conduct compliance analysis, terminology mapping is an essential activity,

which entails mapping the natural language phrases in healthcare systems’ policies onto
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Table 5.1: Terminology Mapping

OSF Terminology HIPAA Terminology
OSF covered entity

doctor covered entity
hospital covered entity

health care provider covered entity
information PHI

share disclose
provide medical care to you treatment

the terminology used in HIPAA regulations. Ideally, terminology should be mapped

early during the phase system policies being made, since regulation-based compliance

requirements should be considered later on. However, for practical reason, we are deal-

ing with existing healthcare systems whose policies have been specified. These policies

may be defined before the regulations, or based on an older version of the regulations,

or specified without consideration of the regulations at all. A prerequisite of the termi-

nology mapping is to properly define two terminologies: regulation terminology and

healthcare system policy terminology. In this case study, the regulation terminology is

based on a keywords dictionary extracted from the section §164.506 in HIPAA, and the

local healthcare system’s policy terminology is based on the analysis of the policy we

chose in the OSF Healthcare system. The terminology mapping table for the case study

is shown in Table 5.1.

Compliance Checking

To make this case study more concise, we choose one HIPAA rule(§164.506(1)) to

evaluate the local healthcare system’s policy. In practice, our approach can be applied

to the whole HIPAA regulations to construct a knowledge base for compliance analysis.

Fig. 5.3 shows ASP representation for our case study. After we run this program, no

answer set is found, which means the local healthcare policy complies with the HIPAA

regulations. Suppose we have the following local healthcare system’s policy with a
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Figure 5.3: ASP Representation of the Case Study

policy ID of l12:

• decision local(l12, deny) :- actor(osf, hospitals , patient), modality(may), ac-

tion(share), object(information), purpose(treatment), condition(na).

The ASP solver can find out one answer set as follows:

• modality(may) action(share) action(use) object(information) object(phi) purpose(treatment)

condition(na) actor(osf, hospitals, patient) actor(ce, ce, ce) decision local(l12,

deny) decision hipaa(c11, permit)
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The above answer set indicates a counterexample explaining the violation of

HIPAA regulations. According to the modified version of local policy l12, the request

for OSF to share the patients’ information with hospitals for the purpose of treatment

will be denied. However, HIPAA regulations will allow the request. Hence, the local

policy l12 does not comply with HIPAA regulations.
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Chapter 6

SYSTEM IMPLEMENTATION AND EVALUATION

6.1 Implementation Details

Figure 6.1: Cloud Environment Illustration

To demonstrate the feasibility of our approach, we developed a secure cloud-

based medical data sharing system based on our design discussed in Chapter 4. Our

cloud infrastructure environment is built using Citrix XenServer 6.0 and three Dell

PowerEdge R510 rack servers with 16 cores, 30 GB RAM and 925 GB disk space

for each one. Figure 6.1 shows our cloud environment illustration through XenCenter

which is a desktop cloud management console communicating with XenServer-based

clouds. Our three rack servers construct a cloud computing resource pool which hosts

about 40 VMs. We deployed OpenMRS 1.8.2 [45] as EMR systems into each of those

VMs running on the cloud infrastructure. The core EHRs aggregation and sharing logic

is implemented using Java and presentation layer is written in JavaSever Pages(JSP)

technologies. We use MySQL Community Sever 5.5 for database sever. The imple-

mentation details including four sub-modules, corresponding functionalities and related
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Figure 6.2: CONNECT Implementation Details

APIs of CONNECT module are shown in Figure 6.2. Some of those APIs are imple-

mented based OpenMRS APIs. Registry Management module provides functionalities

to register new EMR systems, update existing EMR systems with their IP addresses and

domain types, delete EMR systems from the cloud environments and list all registered

EMR systems with their associated information. Patient Discovery module queries

each registered EMR system in clouds to discover patients healthcare practitioners are

interested in with at least three characters of patients’ names. Patient discovery results

with patients’ detailed demographic information and information about their associ-

ated healthcare providers will be returned to healthcare practitioners. This patient to

healthcare provider mapping information will be also stored in a local patient corre-

lation database for caching purpose to improve system performance. EHR Retrieval

module consists of eight sub-modules: ConfigRetrieval sub-module configures EHRs

retrieval transactions with EMR systems. In particular, it sets up the target EMR sys-

tems, identity information including user name and password. It also manages session

opening and closing with EMR systems. RetrieveEHRInstance sub-module constructs
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EHR instances based on healthcare domains they are associated with; The rest six sub-

modules respectively retrieve healthcare information regarding patients’ demographics,

encounters, observations, allergies, medical orders and clinic lab results. Aggregator

module conducts intra-domain EHR instance aggregation and inter-domain EHR in-

stance aggregation. Our system also provides a web-based interface for three different

kinds of users including administrators, patients and healthcare practitioners to perform

their corresponding actions. Figure 6.3(a) and Figure 6.3(b) respectively show an ad-

ministrator registers a new EMR system and deletes existing system users. To register

a new EMR system, healthcare provider organization name, EMR system IP address

and healthcare domain types are needed. Figure 6.4(a) and Figure 6.4(b) respectively

show a patient specifies new access control policies and displays all his policies. When

specifying policies, patients should first choose the policy type to indicate whether it is

a local policy or a global policy. Local policies are applied to a specific EMR system

and global policies are applied to the composite EHRs. Each element of policy includ-

ing subject, object, purpose and effect are needed to be specified. Figure 6.5(a) and

Figure 6.5(b) respectively present a healthcare practitioner sends a patient discovery

request and patient discovery results returned. The patient discovery request needs at

least 3 characters of a patient’s name. Based on demographic information, the health-

care practitioner can choose the right one when discovery results contain multiple en-

tries. Figure 6.5(c) and Figure 6.5(d) respectively present the healthcare practitioner

accesses patient’s EHRs from a specific EMR system and patient’s composite EHRs.

Based on policies’ authorization effects, only portions of EHRs are shared with the

practitioner.

To support polices compliance management, we also implement a transforma-

tion tool using C#, which has two major functionalities for policy transformation. The

first functionality is developed based on OpenNLP [46]. It transforms any HIPAA

regulations or healthcare systems’ policies specified in natural language into the ab-
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(a) Register EMR Systems (b) Delete Users

Figure 6.3: Administrator Interface

(a) Specify Policy (b) Show Policies

Figure 6.4: Patient Interface

stract representation. OpenNLP is an open source natural language processing project

and hosts a variety of java-based NLP tools. Some functions of our tool, such as

sentencedetecting, tokenization, postagging, and chunking, were implemented based

on OpenNLP’s APIs. The sentencedetecting can detect that a punctuation character

marks the end of a sentence or not. In other words, a sentence is defined as the longest

white space trimmed character sequence between two punctuation marks. The tok-

enization segments an input character sequence into tokens. The postagging uses a

probability model to predict the correct pos tag out of the tag set. The chunking divides

a text in syntactically correlated parts of words, like noun groups, verb groups. The

second functionality of our tool is to transform the abstract representation into ASP
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(a) Discover Patient Request (b) Discovery Patient Results

(c) Access Specific EMR System EHRs (d) Access Composite EHRs

Figure 6.5: Healthcare Practitioner Interface

(a) Abstract Representation Transformation (b) ASP Representation Transformation

Figure 6.6: Transformation Tool

representation for the purpose of logic-based policy reasoning. Figure 6.6(a) shows

an example of how our tool transforms HIPAA regulations defined in natural language

into the abstract representation. Figure 6.6(b) demonstrates how our tool transforms

HIPAA regulations with the generic policy representation into ASP representation.
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(a) EHRs Retrieval Time (b) Patient Discovery & EHRs Aggregation & Policy
Enforcement Time

Figure 6.7: System Time Overhead

6.2 Evaluation Results

In this section, we discuss our evaluation from following perspectives: efficiency and

scalability of EHRs retrieval and aggregation, policy enforcement, policy and HIPAA

regulations transformation and ASP reasoning process.

Our three Dell PowerEdge R510 rack servers with 48 cores, 90 GB RAM and

2856 GB disk space in total provide us with abundant cloud computing and storage

resources for experiments. We randomly deployed EMR systems into different VMs

in our cloud environment based on the scenario mentioned in Section 5.1. Those VMs

have various configurations in terms of CPU speed, memory and disk size to simulate

real-world healthcare domain. We create three types of VMs to satisfy the different re-

source needs of healthcare systems. The ‘small’, ‘middle’ and ‘large’ types of VM are

respectively configured with 1 core, 2 cores and 4 cores 2.40 GHz CPU, 2 GB, 4 GB

and 6 GB RAM, 100 GB, 200 GB and 200 GB disk. The healthcare datasets are ob-

tained from OpenMRS software package. The management module in Figure 4.1 has

been deployed into a ‘large’ type of VM. Figure 6.7(a) shows both composite EHRs
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retrieval time and individual EHRs without aggregation retrieval time increase as the

number of EMR systems increases. The time consumption for the composite EHRs re-

trieval is slightly larger than the time consumption for individual EHRs retrieval with-

out aggregation in terms of the same number of EMR systems. Note that the time

consumption for individual EHRs retrieval without aggregation here is equal to the

sum of time used to retrieve EHRs from every EMR systems. And when the number

of EMR systems is 2, the retrieval time consumption for composite EHRs is just about

4 seconds. When the number of EMR systems increases to 10, the time consumption

goes to around 19 seconds. Hence, we can see that the time consumption for compos-

ite EHRs is mostly due to gathering and transferring EHRs and our EHRs aggregation

process is efficient. Figure 6.7(b) shows the time consumption for patient discovery,

intra-domain EHRs aggregation, inter-domain EHRs aggregation and policy enforce-

ment when the number of EMR systems increases. The upper line shows the time used

for discovering patients is just about 78 milliseconds when the number of EMR sys-

tems is 10. The next two lower lines which respectively represent intra-domain and

inter-domain aggregation time consumptions increase very smoothly as the number of

EMR systems increases. This implies that our aggregation process has good scalability.

The policy enforcement time increases even more smoothly than both intra-domain and

inter-domain aggregation time increase. And when there are 500 policies in the system,

the policy enforcement time is just about 5 milliseconds.

Table 6.1: Reasoning Time

# of Policies: 10 20 30 40 50
# of Answer Sets: 2 4 6 8 10
Time (ms.): 12.3 42.4 104.7 305.9 917.4

As HIPAA regulations are typically complex and lengthy, the efficiency and

scalability are two critical metrics for evaluating our transformation process. We mea-

sured the time consumed by each of policy and HIPAA transformation step. The rules
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Figure 6.8: Transformation Time

to be transformed in our experiment are randomly selected from HIPAA regulations

section §164.506. Due to the limited number of rules in that section, rules may re-

peatedly appear in the transformation input. Note that the repeated rules are still valid

inputs since we focus on the time consumed by the transformation process. Figure 6.8

shows performance measurements on policy transformation and ASP transformation.

It indicates that policy transformation (from HIPAA regulations to the abstract repre-

sentation) constantly consumed the time along with the increase of HIPAA rules while

ASP transformation was quite stably performed. Also, we further evaluated the per-

formance on each sub-task under policy transformation as discussed in Section 3.2:

Natural Language Processing (sub 2) and Matching & Removing Disjunction (sub 3 &

4). We observed that Natural Language Processing consumed on average 85% of the

total transformation time. 1

Also, we measured the time consumed by ASP solver with a static number of

HIPAA rules as a knowledge base to check a local healthcare system’s policies with

the linear increase of rule size from the same healthcare system mentioned in our case
1The enhancement of Natural Language Processing procedure remains for future work since it is

beyond the scope of this work.

57



study. We chose 9 rules of HIPAA regulations from the section §164.506 as a com-

pliance knowledge base. The number of healthcare system’s policies to be checked

was increased from 10 to 50. As shown in Table 6.1, our experiments showed that the

reasoning performance was minimally affected by the increased number of healthcare

system’s policies.

To sum up, the overheads of our system are manageable and our system is

efficient and scalable well.
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Chapter 7

RELATED WORK

This chapter discusses related work from two aspects: access control for EHRs and

regulation compliance management.

In [29], Jing jin et. al. propose a unified access control scheme which supports

patient-centric selective sharing of virtual composite EHRs using different levels of

granularity, accommodating data aggregation and various privacy protection require-

ments. They also proposed a mechanism to identify and resolve the policy anomalies

in the process of policy composition from different sources. This is the closest related

work in terms of access control mechanism. However, their approach assumes that all

healthcare providers adopt a unified EHR schema. Since different healthcare providers

in clouds may utilize various EHR schemas to represent their healthcare data, such an

assumption cannot be applicable in cloud environments. In [59], Zhang et. al. have

identified a set of security requirements for eHealth application Clouds and proposed

an EHR security reference model to support the sharing of EHR. They also illustrate

use-case scenario and describe the corresponding security countermeasures and possi-

ble security techniques. In [28], Jafari et. al. propose a patient-centric digital right

management (DRM) approach to protect privacy of EHRs stored in a clouds based on

the patients preferences. Their approach protects the privacy of records from the ser-

vice provider, and also controls the usage of data after it is shared with an authorized

user. The access control mechanisms of both previous two work are not as fine-grained

as ours to accommodate selective EHRs sharing. Kilic et. al. have proposed to share

EHRs among multiple eHealth communities over a peer-to-peer network in [31]. A

super-peer is used to represent an eHealth community, which is responsible for routing

messages and adapting different meta data vocabularies used by different communi-

ties. Whereas, their approach is not cloud-based and does not consider the needs of
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EHR integration from different healthcare providers. In [35], Li et. al. propose a

novel framework of access control to realize patient-centric privacy for personal health

records in cloud computing by leveraging attribute based encryption (ABE) techniques.

To reduce the key distribution complexity, they divide the system into multiple security

domains, where each domain manages only a subset of the users. Their approach is

more from access control subject perspective to ensure PHRs can only be shared with

a selective set of users. Our approach is more focused on sharing selective portions of

access control objects with authorized users. And compared with our work, their work

also lacks of system implementation and evaluation details.

To support compliance management, many efforts have been working on logics

for specifying policies and regulations. Hilty et al. [25] have shown how to specify

future obligations from data protection policies in Distributed Temporal Logic (DTL).

They used distributed event structures to model interactions between multiple parties

involved in data access and distribution. Basin et al.[6] used an extension of LTL, Met-

ric First-Order Temporal Logic (MFOTL) for specifying security properties. Dinesh et

al. [11] have developed a logic for reasoning about conditions and exceptions in privacy

laws.

Researchers have also investigated methods to analyze security requirements

using aspects [58], goals [19, 53], problem frames [5], trust assumptions [23] and

structured argumentation [24]. More recent work focused on the rigorous extraction

of requirements from security-related policies and regulations [8, 33]. To support the

software engineering effort to derive security requirements from regulations, Breaux et

al. [7] presented a methodology to extract access rights and obligations directly from

regulation texts. They applied this methodology specifically to HIPAA Privacy Rule.

Maxwell et al. [40] presented a production rule framework that software engineers can

use to specify compliance requirements for software. They applied the framework to

check iTrust, an open source electronic medical records system, for compliance with
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the HIPAA Security Rule. This is the closet work to this work in term of motivation.

However, compared with our work, their work has some limitations: first, they formal-

ized HIPAA regulations based on production rule models. Thus, their formalization is

constrained by a specific logic programming technique. In contrast, our formalization

of HIPAA regulations is based on a generic policy specification scheme, which can

be then utilized by various logic-based reasoning techniques. Second, in their work,

users need to prepare a canonical list of compliance requirements for compliance anal-

ysis through selecting all related preconditions and then querying the production rule

model. The compliance requirements generated by less-knowledge users may be not

comprehensive enough, which can further affect the credibility of compliance analysis

results. However, our approach can automatically transforms HIPAA regulations as a

knowledge base. Third, their compliance analysis process cannot be conducted auto-

matically. For each requirement in the compliance requirements, they checked every

existing requirement represented by a template to examine whether it already opera-

tionalizes the canonical requirement by replacing legal text definitions with the appro-

priate and equivalent definitions used in the existing requirement specification. In our

work, we transform both HIPAA regulations and healthcare systems’ policies into ASP

representation as an input for ASP solver to carry out compliance analysis automati-

cally. Finally, the lack of evaluation of their approach leaves behind the ambiguities of

their solution.
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Chapter 8

CONCLUSION AND FUTURE WORK

In this work, we articulate two significant security and privacy issues in healthcare

cloud computing environments: access control on the composite EHRs and HIPAA

compliance management. To address those two issues, a novel framework based on

access control policy and logical techniques has been presented. More specifically, an

EHR data schema composition approach is proposed to generate composite EHR data

schemas. Based on the composite EHR data schema, distributed EHR instances from

various healthcare domains can be aggregated into a composite EHR instance. By en-

forcing access control policies specified by patients, selective portions of the composite

EHR instance are able to be shared with authorized healthcare practitioners. While the

selective EHRs sharing process, logical-based techniques are leveraged to ensure the

EHRs sharing is also compliant with HIPAA regulations. A prototype cloud-based

EHRs sharing system has been designed, implemented and evaluated to demonstrate

the effectiveness and efficiency of our proposed approach.

As part of our future work, we would conduct more comprehensive evaluations

on our system with more real-world healthcare datasets. We would also investigate

how to address policies composition issues and how to support fine-grained delega-

tion mechanism for EHRs in cloud computing environments. Also, in term of HIPAA

compliance, we would study how cross-referenced policies can be analyzed. In addi-

tion, we would like to apply our approach to support EHRs sharing using consumer

devices such as smart phone and tablet to cover border sections of the whole healthcare

ecosystem.
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