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ABSTRACT

There have been many studies on the dynamics of infectious diseases

considering the age structure of the population. This study analyzes the dynam-

ics when the population is stratified by size. This kind of models are useful

in the spread of a disease in fisheries where size matters, for microorganism

populations or even human diseases that are driven by weight. A simple size-

structured SIR model is introduced for which a threshold condition, R0, equi-

libria and stability are established in special cases. Hethcote’s approach is used

to derive, from first principles, a parallel ODE size-structure system involving

n-size classes.The specific case of n = 2 is partially analyzed. Constant effort

harvesting is added to this model with the purpose of exploring the role of con-

trols and harvesting. Different harvesting policies are proposed and analyzed

through simulations.
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CHAPTER 1

INTRODUCTION

This research focuses in the study of size-structured epidemic models dy-

namics and the role of harvesting in it. Size is an important variable to describe

population dynamics for many species, such as microorganisms, fish, plants and

humans. In plants the size affects the exposure that a plant has to the sunlight.

Size is also important in human diseases because a bigger person has higher

chances of contact with other individuals, but also because a heavier person can

have higher susceptibility to diseases given that the body has to work harder to

do the regular functions and therefore it may affect the immune defense system.

For example, the Center for Disease Control and prevention (CDC) has obesity

as primary risk factor for diabetes. The Diabetes Prevention Program, a federal

study, showed that people at high risk for diabetes can delay or prevent the dis-

ease by losing a small amount of weight.

In fisheries it has been extensively studied that fish of different size have different

susceptibilities to some diseases (Becker, Speare and Dohoo 2005 [2]; Perelberg,

Smirnov, Hutoran, Diamant, Bejerano and Kolter 2003 [23]; Aranguren, Tafalla,

Novoa and Figueras 2002 [1]; Bowser, Wooster and Earnest-Koons 1997 [3];

LaPatra, Groberg, Rohovec and Fryer 1990 [20]). Becker at. al. [2]studied

the effect of feeding ratio and fish size on transmission of Loma salmonae in
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salmonids. With survival analysis, which consists of using the time until first

appearance of the disease as comparison measure, they analyzed their results.

The experiment performed to determine the effect of fish size consisted of 300

salmonids placed in seven tanks, one control with no pathogen and two of each

size class (small, medium and large). Significant differences were detected;

small fish developed disease faster and as size increased disease susceptibility

decreased.

Another experiment performed by Perelberg et.al. [23] in spring of 1998

when a new disease was causing high mortality on common carps in Israel

showed that small young fish were more susceptible to the disease. In 2002,

Aranguren at al. [1] studied the transmission of encephalopathy and retinopathy

in sea beam. They observed that onset of the disease occurred earlier for smaller

sea beams than bigger ones and mortality was higher for smaller fish. Bowser

et. al. [3] in 1997, were also interested in the effects of fish age, specifically in

the transmission of Wallaye Dermal Sarcoma in Wallayes. They injected tumor

filtrates on fish for 25 weeks and observed more infections on 12-week old fish

than in 1-year old fish. In all of these cases the environment is also affected

by size, then it is assumed that vital rates such as mortality, fertility and growth

rates are dependent on size. The size in fish also determines harvesting policies
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because it is desired to catch big fish instead of very small ones. Then if there

is higher susceptibility for smaller fish and harvesting is targeted towards bigger

fish that leaves more infections in the areas. It is also alarming that harvested

fish are usually replaced with small fish, which are more susceptible to the dis-

eases. By common sense this explains how the usual harvesting policies may

cause bigger outbreaks, and by implementing different strategies can eradicate a

disease or lower endemic levels.

In this dissertation we will present the epidemiological applications of the size-

structured model. We will use as motivation the studies on fish populations, as

these populations are a great example of populations were size matters. And

since the underlying motivator fish we will explore how harvesting (generalized

size-specific predation) affects the dynamics of a disease. We will start with

a model of partial differential equations for which we will perform analysis of

non-uniform steady state distributions, basic reproductive number, and local sta-

bility in special cases. And by using a comparable model involving an arbitrary

number of ordinary differential equations we will explore with simulations the

effect of different harvesting strategies. Finally, we will study a control theory

problem and we will compare the results with the ones obtained from the simu-

lations of the ODE model under different parameter regimes.
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This dissertation introduces a size-structured model for the dynamics of a fish

population in Chapter 2. The disease-free stable size distribution and a unique

endemic steady state distribution are identified. Further in Chapters 3, we in-

troduce and analyze an SIR model that could be used to describe communica-

ble diseases in, for example, fish populations. The basic reproductive numbers,

infection-free steady distributions and endemic steady distributions are identi-

fied and conditions for local stability (infection-free case) are determined using

exponential perturbations. In Chater 4, an ordinary differential equations model

is derived from first principles and some simulations are performed to explore

the effect of different harvesting strategies. Chapter 5 describes the study of

harvesting in the size-structured model when the populations include sick in-

dividuals. In this work, we are considering constant effort harvesting which

basically assumes that the harvesting rate depends on the number of individuals

in the population. First, it is assumed that the harvesting rates are only depen-

dent on size and not time. For this case numerical simulations are performed to

determine the critical harvesting rate in order to control a disease. Time depen-

dent harvesting is analyzed where a maximum and minimum are set with the aid

of ”controls”. Two different harvesting strategies are used as methods of con-

trol of the disease for a population divided into just two-size groups. The first
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strategy uses harvesting as control, but the elements of the population harvested

are not replaced, therefore the harvesting keeps reducing the population as time

goes on. In the second strategy, the individuals harvested are replaced with sus-

ceptible new comes of minimal size. The cases analyzed include low and high

harvesting rates and combinations of low and high maximum harvesting rates.
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CHAPTER 2

SIZE STRUCTURED EPIDEMIC MODEL

Population heterogeneity is a factor in the study of the population dynam-

ics. Studies of many species in the past have considered age and size structure;

Busenberg, S. et al. [6], Castillo-Chavez, C. [8], Castillo-Chavez et al. [4] [9],

Hethcote, H.W. [13], Hoppensteadt, F. [14], Kato, N. [16], Kato, N. et al. [17],

Nisbet, R.M. [22], Sanchez, D.A. [25] [26], Sinko, J.W. [27]. This dissertation

studies the epidemiological applications of the size-structured models and intro-

duces harvesting in this context. The first chapter makes on some observations

on size-structured models in the presence and absence of harvesting in disease-

free populations.

2.1. IBV problem for Size-Structured Population

This section starts from the Gurney-Nisbet one-sex population model [22]

with per capita growth rate g, per capita fertility function f , and per capita death

rate θ , all size-specific, i.e. dependent only on m. Furthermore,η(t,m), the den-

sity of individuals is naturally dependent on size. Changes in the size distribution

are assumed to be due to death and/or growth only. The resulting dynamics are
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represented by the following initial boundary value problem (IBVP).

∂η(t,m)
∂ t +g(m)∂η(t,m)

∂m =−θ(m)η(t,m)

η(t,m0) =
∫

∞

m0
f (m′)η(t,m′)dm′

η(0,m) = η0(m) (2.1)

where η(t,m0) represents new borns per unit of time with m0 being the size at

birth and η(0,m) is the inital size density. The definitions of parameters and

parameter functions are listed in Table 1. Model rates and functions description

with units are as follows:

Symbol Definition Units
g(m) growth function size/(time · individual)
f (m) fertility function individuals/(time · individual)
θ(m) death rate individuals/(time · individual)

η(t,m) size density of individuals individuals
η(t,m0) recruitment density individuals

TABLE 1: Model Rates and Functions

This model is given by a linear homogeneous partial differential equation

with initial conditions and boundary conditions that depend on the unknown

density. Using well known results (see Castillo-Chavez, C. [9]) it is known that

every solution η(t,m) approaches a separable solution as time approaches infin-

ity uniformly on compact sets. Hoppenstead [14] and Langlais et al [18] there
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are theorems (including Tauberian theorems) that guarantee that all solutions for

systems of the type (2.1) approach a separable solution as t → ∞ are cited or

noted. As Hoppenstead describes in [14], the proportion in any size ”bracket”

approaches a constant value as t → ∞ and, it is in this sense that the size dis-

tribution of the population approaches the so called ”stable size” distribution

[eqtM(m)].

Theoretical results make it possible to explicitly identify the stable size

distribution [M(m)] through a search for separable solutions. If we let η(t,m) =

eqtM(m) in (2.1) then the stable size distribution are determined as follows:

qeqtM(m)+g(m)eqtM′(m) = −θ(m)eqtM(m)

g(m)M′(m) = −θ(m)M(m)−qM(m)

M′(m)
M(m)

= −θ(m)+q
g(m)

ln
M(m)
M(m0)

= −
∫ m

m0

θ(m′)+q
g(m′)

dm′

M(m) = M(m0)e
−
∫ m

m0
θ(m′)+q

g(m′) dm′
. (2.2)

The last expression for M(m) is what we referred to as the stable-size distribu-

tion. The steady state size distribution is naturally an exponentially decaying

function with decay factor (
∫ m

m0

θ(m′)+q
g(m′) dm′) since individuals get ”heavier” or

die (Castillo-Chavez [9]). The term e
−
∫ m

m0
θ(m′)+q

g(m′) dm′ represents the probability of

8



surviving from size m0 to size m. Using the boundary condition in (2.1) we get

eqtM(m0) =
∫

∞

m0

f (m)eqtM(m)dm

and the substitution of (2.2) leads to

M(m0) =
∫

∞

m0

f (m)M(m0)e
−
∫ m

m0
θ(m′)+q

g(m′) dm′
dm.

Under the critical (obvious) assumption that M(m0) > 0 we arrive at the follow-

ing transcendental equation

1 =
∫

∞

m0

f (m)e−
∫ m

m0
θ(m′)+q

g(m′) dm′
dm =: F(q). (2.3)

Equation (2.3) is the so-called Lotka characteristic equation, discovered

by Lotka in 1922 in the context of age-structured populations. This equation

allows us to define the population reproduction number as

R̂ = F(0) =
∫

∞

m0

f (m)e−
∫ m

m0
θ(m′)
g(m′) dm′

dm. (2.4)

The function F(q) has the propeties that F ′(q) =
(
−
∫ m

m0
1

g(m′)dm′
)

F(q) < 0,

limq→∞ F(q) = 0, for all q ∈ (−∞,∞), and F(0) = R̂. Thus, the equation (2.3)

has a unique solution q∗> 0, i.e., F(q∗) = 1 if F(0) > 1 [q∗< 0 if 0 < F(0) < 1].

Furthermore, the real solution q∗ of the equation (2.3), is the unique dominant

one in the sense that if q = a + ib is a complex solution (b 6= 0) then a ≤ q. In
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order to verify the last statement, we let H =
∫ m

m0
b

g(m′)dm′ and observe that if

a+ ib is a root then

1 = F(a+ ib) = |F(a+ ib)|

= |
∫

∞

m0

f (m)e−
∫ m

m0
θ(m′)+a+ib

g(m′) dm′
dm|

= |
∫

∞

m0

f (m)e−
∫ m

m0
θ(m′)+a

g(m′) dm′[cos(H)− isin(H)]dm|

≤ F(a)|cos(H)− isin(H)|

= F(a). (2.5)

It follows that F(a)≥ F(q∗). Since F ′(q) < 0, we have a≤ q∗

Thus, we have obtained the following result.

Result 1 If R̂ < 1 then q∗ < 0 and there is exponential decay in the population,

whereas if R̂ > 1 then q∗ > 0 and there is exponential growth. If R̂ = F(0) = 1

then q = 0, in which case the population remains constant for all t.

If we compare these results with those for age-structured models, we ob-

serve that the only difference is the presence of a non-constant function g(m). In

fact, a change of variable would bring us back to the age-structured framework

(see Castillo-Chavez [9]). However, here I decided to write it all up explicitly in

terms of g(m). Recall the definition of g(m) = dm
dt , thus g(m) is a nonnegative

function and represents the per capita change in size per unit time when the indi-
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vidual has size m. In other words, how much the organism’s growth rate depends

of the size of the organism with the probability of surviving from size m′ to size

m is e
−
∫ m

m′
θ(m′)+q

g(m′) dm′ , with m′ ≥ m0 and m′ ≤ m.

Vital and transmission rates are dependent on size as well. Since, for exam-

ple smaller organisms may have less movement and therefore contacts possibly

causing less or more infections. If these organisms grow slow, transmission will

be lower (faster) than if they grew fast. If they move less then they may live in a

place where mobility is reduced by population density or behavior. In the case of

age structure the survival probability is only dependent on the death rate, which

is a function of age. Depending on the rate at which organisms die, in the differ-

ent age groups, determines the life expectancy. In the case of size structure, with

the function g, it is not just how they die at different size groups, but how they

get to those size groups. If organisms grow faster then they may be more prone

to survive to maximal size and therefore it is a different picture than growing

slow.

2.2. Size Structure with Harvesting

In the size-structured model with harvesting considered in this section, it

is assumed that the harvesting rate is a linear function of the population and that
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the harvesting effort is size-dependent as it was done in age-structured models

by Sanchez [25]. This is a common assumption in fisheries where the number of

fish caught per unit time is proportional to the effort expended in fishing. In our

case, we consider the following size-structured model for a ”fish” population in

which the effort function, denoted by H(m), depend on the size of the individuals

dη

dt
+g(m)

dη

dm
= −θ(m)η−H(m)η (2.6)

η(t,m0) =
∫

∞

m0

f (m′)η(t,m′)dm′

η(0,m) = η0(m).

Many studies on the effect of harvesting in the population have been done us-

ing models without a size structure. Sanchez [25] [26] studied age-structured

models and harvesting. Here I follow Sanchez in order to investigate how size-

dependent harvesting may affect the structure of the population. This allows

for a comparison of the stable size distributions of the system with and without

harvesting.

To analyze the system (2.6), we first consider the equation in the absence

of harvesting and solve it using the method of characteristics. In this case the

characteristics are the lines t =
∫ m

m0
1

g(x)dx+c where c is a constant. We make the

same assumptions on g(m) as in Castillo-Chavez [9] that guarantee the existence

of non-intersecting characteristics for all time.

12



For t >
∫ m

m0
1

g(x)dx, the function η(t,m) describes the number of sur-

vivors to size m of the individuals η(0, t −
∫ m

m0
1

g(x)dx) that were born at time

t−
∫ m

m0
1

g(x)dx. To find an expression for η(t,m) in this case, let k(m) = η(m, t) =

η(m,
∫ m

m0
1

g(x)dm+ c). Then from

g(m)
dk
dm

= ηt +g(m)ηm, and ηt +g(m)ηm =−θ(m)η

we get

g(m)
dk
dm

=−θ(m)k and
dk
dm

=
−θ(m)
g(m)

k,

from which we have

k(m) = k(m0)exp
[
−
∫ m

m0

θ(x)
g(x)

dx
]

and

η(m, t) = η

(
m0, t−

∫ m

m0

1
g(x)

dx
)

exp
[
−
∫ m

m0

θ(x)
g(x)

dx
]
. (2.7)

Consider next the case when t ≤
∫ m

m0
1

g(x)dx, η(t,m) is the number of

survivors to size m of the individuals η0(
∫ m

m0
1

g(x)dx− t) who where of size∫ m
m0

1
g(x)dx− t at time zero. Let again k(t) = η(m, t) and let

∫ m
m0

1
g(x)dx = z(m).

Then t = z(m); and thus, m = z−1(t). Hence, k(t) = η(m, t) = η(z−1(t), t). Note
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that

g(m)
dk
dt

= g(m)ηm +ηt

=⇒ g(z−1(t))
dk
dt

= g(m)ηm +ηt

=⇒ g(z−1(t))
dk
dt

= −θ(m)η

=⇒ g(z−1(t))
dk
dt

= −θ(z−1(t))k

(2.8)

Thus,

dk
dt

=
−θ(z−1(t))
g(z−1(t))

k

from which

k(t) = k(0)exp
[
−
∫ t

0

θ(z−1(x))
g(z−1(x))

dx
]

and

η(m, t) = η(z−1(z(m)− t),0)exp
[
−
∫ t

0

θ(z−1(x))
g(z−1(x))

dx
]
.

For the above derivation we have used the fact that m = z−1(−c) for t = 0 and

that from t = z(m)+c we have −c = z(m)− t. Thus x = z−1(z(m)− t) for t = 0.

Let B(t) = η(t,m0) denote the number of births at t. Then, the solution

of (2.1) is given by

η(m, t) =


η0(z−1(z(m)− t)exp

[
−
∫ t

0
θ(z−1(x))
g(z−1(x)) dx

]
if
∫ m

m0
1

g(x)dx≥ t

B
(

t−
∫ m

m0
1

g(x)dx
)

exp
[
−
∫ m

m0

θ(x)
g(x) dx

]
if
∫ m

m0
1

g(x)dx < t.
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Note that θ and f are independent of t. Then, B(t) satisfies the integral equation

B(t) =
∫

∞

t
F0(x, t)dx+

∫ t

m0

B
(

t−
∫ x

m0

1
g(α)

dα

)
K(x)dx (2.9)

where

F0(t,m) = f (m)η0(z−1(z(m)− t))exp
[
−
∫ t

0

θ(z−1(x))
g(z−1(x))

dx
]
,

K(m) = f (m)exp
[
−
∫ m

m0

θ(x)
g(x)

dx
]
. (2.10)

The equation for B(t) is the well-known renewal equation (see Hoppenstead

[14]). Note that
∫

∞

t F0(m, t)dx is a function of t only, which we will denote

by ψ(t). Then, the renewal equation (2.9) can be written as

B(t) = ψ(t)+
∫ t

m0

B
(

t−
∫ x

m0

1
g(α)

dα

)
K(x)dx. (2.11)

If we consider solutions of the form B(t) = B∗ept in (2.11). Note that

ψ(t)→ 0 as t→ ∞. Then, we get

B∗ = B∗
∫

∞

m0

exp
(
−p

∫ x

m0

1
g(α)

dα

)
K(x)dx.

Thus if B∗ > 0 then the lotka-characteristic equation becomes

1 =
∫

∞

m0

exp
(
−p

∫
∞

m0

1
g(α)

dα

)
K(x)dx

with the right hand side, a function of p ∈ C, defined as K̃(p).
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We observe that K̃(0) gives the reproduction ratio ℜ,

K̃(0) =
∫

∞

m0

f (m)exp
[
−
∫ m

m0

θ(α)
g(α)

dα

]
dm = ℜ (2.12)

Further K̃′(p) < 0 for all p ∈ (−∞,∞) with limp→∞K̃(p) = 0. It follows (as it

was done before) that the equation K̃(p) = 1 has a unique real solution p0. More-

over, p0 > 0 if ℜ > 1, and p0 < 0 if ℜ < 1. Similarly it can be shown that p0

is the dominant root. That is, all other roots of this transcendental equation will

have the real part less than p0. Therefore, in the absence of harvesting, the pop-

ulation tends to a stable size distribution and in fact every solution approaches a

separable solution

η(t,m) =⇒ ep0tB0 exp
(
−
∫ m

m0

θ(m′)+ p0

g(m′)
dm′
)

, as t→ ∞, (2.13)

in compact sets (Hoppensteadt [14]). Next, we consider the model with harvest-

ing, i.e., H(m) > 0. The harvesting function is written as

H(m) = hχ[c,∞](m) (2.14)

where h is a constant and

χA(m) =


1 if x ∈ A

0 otherwise.

The solution of the model in this case is obviously formally the same as that

without harvesting, except that the function θ(m) is now be replaced by θ(m)+
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hχ[c,∞](m). The functions B, Φ and K are also replaced by B1, Φ1 and K1, leading

to the characteristic equation K1(p) = 1 with

K1(m) = f (m)exp
[
−
∫ m

m0

θ(x)+hχ[c,∞](m)
g(x)

dx
]
. (2.15)

Therefore, it can be shown that there is a unique dominant real eigenvalue, de-

noted by pc, such that pc < 0 (> 0) if R < 1 (> 1). Thus, every size distribution

approaches the separable solution

η(m, t)→ epctBc exp
(
−
∫ m

m0

θ(α)+hχ[c,∞](α)+ pc

g(α)
dα

)
, as t→ ∞. (2.16)

uniformly in compact sets. Here, Bc = B1(0) and thus the stable size distribution

is determined from

Bc exp
(
−
∫ m

m0

θ(α)+hχ[c,∞](α)+ pc

g(α)
dα

)
. (2.17)

Following Hoppensteadt [14] , if we let

v(m, t) = η(m, t)exp
[

pc(t)+
∫ m

m0

θ(α)
g(α)

−
hχ(c,∞)(α)

g(α)
+

pc

g(α)
dα

]
−Bc (2.18)

we see that the function v satisfies

∂v
∂ t

+g(m)
∂v
∂m

= 0,

v(m0, t) = η(m0, t)epct−Bc.

Given the definition of η(m, t), v(m0, t)→ 0 as t → ∞ and v(m, t) is constant

along the characteristic lines, for any fixed m̂ > 0,
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max0≤m≤m̂ ‖v(m, t)‖→ 0 as t→ ∞.

Given ε > 0, choose T so large that ‖v(m0, t)‖< ε for t ≥ T . Then ‖v(m, t)‖< ε

in the entire triangular region 0≤ m≤ t−T provided t ≥ T . Therefore,

−epct
η(m, t)→ Bc exp

(
−
∫ m

m0

θ(α)+hχ[c,∞](α)+ pc

g(α)
dα

)
(2.19)

as t→ ∞,

If we compare the stable size distributions of the system without and with

harvesting, we observe that the effect is reflected on p0 and hχ[c,∞](α)+ pc in

equations (2.13) and (2.16), respectively.

2.3. Conclusions

In this chapter, we re-introduce a size-structure model in the context of

”fish” populations. We re-stated the corresponding work in Castillo-Chavez,

C. [9], Sanchez [25], and Hoppensteadt [14] using an explicit representation of

g(m) in models with and without harvesting. For the model without harvesting

we calculated the basic reproductive number and the stable size distribution.

In the model with proportional harvesting, we also identified the limiting size

distributions of the population are compared following the approach of Sanchez

[25], [26]. This chapter sets up the theoretical framework where epidemiological

models will be built, analyzed and explored in the next chapters.
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CHAPTER 3

SIR MODEL

In the previous chapter we presented some observations of the partial dif-

ferential equations system for size-structured model with and without harvest-

ing. In this chapter we will describe and analyze the size-structured version of

the SIR model and SI model that paralleled those developed using age-structure

models [Hethcote, H.W. [13], Brauer, F. and Castillo-Chavez, C. [4]]. Later in

Chapter 4 we will introduce an ordinary differential equations system for SIR

and SI derived from first principles as well.

As in the classical SIR model, S denotes the susceptible individuals who

are not infected but capable of contracting the disease; I denotes the infected

individuals who are contagious; and R denote the recovered individuals who are

not infectious any more and have acquired immunity againt further infection.

More precisely
∫ m+∆m

m S(m′, t)dm′ ≈ S(m, t)∆m, represents the susceptible indi-

viduals with size in [m,m + ∆m] at time t. It is assumed that there is no vertical

transmission so that all births will enter the susceptible class. It is also assumed

that all transition rates can be size-dependent. Then, the initial-boundary-value

problem for the simple size-structured SIR model with size-specific infection

rate λ (m), size-specific death rate θ(m) and size-specific recovery rate γ(m) is

given by the following nonlinear hyperbolic system of partial differential equa-
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tions

∂S
∂ t

+g(m)
∂S
∂m

= −λ (t)b(m)S−θ(m)S (3.1)

λ (t) = β

∫
∞

m0

b(m′)
I(t,m′)
η(t,m)

dm′ (3.2)

∂ I
∂ t

+g(m)
∂ I
∂m

= λ (t)b(m)S− γ(m)I−θ(m)I (3.3)

∂R
∂ t

+g(m)
∂R
∂m

= γ(m)I−θ(m)R (3.4)

S(0,m) = S0(m), I(0,m) = I0(m), R(0,m) = R0(m) (3.5)

S(t,m0) = ρ, I(t,m0) = 0, R(t,m0) = 0 (3.6)

where ρ represents the assumed constant birth rate. In this model new infections

occur at a proportionately-mixed size-dependent bilinear incidence rate with

b(m) denoting the size-specific activity level. The population is asymptotically

constant, in other words, it is assumed that the total population η(t,m)≡M(m),

the stable size distribution.

3.1. The threshold quantity R0 and steady state size distributions

The basic reproduction number for the SIR model (3.1) is

R0 = β

∫
∞

m0

b(m′)
∫ m′

m0

b(α)
g(α)

exp
(
−
∫ m

α

γ(ω)
g(ω)

dω

)
dαdm′. (3.7)

In the expression for (3.7), b(m) is the size-specific activity level, 1
g(m) the size-

specific average time spent in size m, and exp
(
−
∫ m

α

γ(ω)
g(ω)dω

)
represents the
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probability of survival of an individual in the infected stage from size group α

to size m, with m0 ≤ α ≤ m. Therefore R0 represents the effective contacts of

individuals from size m0 to the highest size (here taking as ∞ for mathematical

convenience) with infective individuals of all sizes.

Following the procedure described in Castillo-Chavez et al. [9], we can

show that System (3.1) supports a disease-free non-uniform steady state dis-

tribution and endemic distributions. The disease free non-uniform steady state

distribution is

S♦(m) = ρ exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
)

, (3.8)

I♦(m) = 0,

R♦(m) = 0.

If we denote an endemic non-uniform steady state distribution by S̃(m), Ĩ(m) and

R̃(m) with Ĩ(m) > 0 then at this state

λ̃ = β

∫
∞

m0

b(m′)
Ĩ(m′)
η̃(m)

dm′. (3.9)
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Further if there exists a λ̃ > 0 satisfying (3.9) (see Appendix A) then

S̃(m) = ρ exp

(
−
∫ m

m0

λ̃b(m′)+θ(m′)
g(m′)

dm′
)

(3.10)

Ĩ(m) = λ̃ρ exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
)∫ m

m0

b(m′)
g(m′)

exp

(
−
∫ m′

m0

λ̃b(α)
g(α)

dα

)
exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
dm′ (3.11)

R̃(m) = η̃(m)− S̃(m)− Ĩ(m). (3.12)

where

η̃(m) = ρ exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
)

(3.13)

and λ̃ is given in (3.9). Substituting Ĩ(m) into equation (3.9) we obtain

λ̃ = λ̃β

∫
∞

m0

b(m′)
∫ m′

m0

b(α)
g(α)

exp
(
−λ̃

∫
α

m0

b(ω)
g(ω)

dω

)
exp
(
−
∫ m

α

γ(ω)
g(ω)

dω

)
dαdm′. (3.14)

Under the assumption λ̃ 6= 0, from (3.14) we obtain the characteristic equation:

1 = β

∫
∞

m0

b(m′)
∫ m′

m0

b(α)
g(α)

exp
(
−λ̃

∫
α

m0

b(ω)
g(ω)

dω

)
exp
(
−
∫ m

α

γ(ω)
g(ω)

dω

)
dαdm′. (3.15)

Let H(λ̃ ) denote the function on the RHS of equation (3.15). Then H ′(λ̃ ) =(
−
∫

α

m0

b(ω)
g(ω)dω

)
H(λ̃ ) < 0 for λ̃ ∈ (−∞,∞) and lim

λ̃→∞
H(λ̃ ) = 0 (if b(ω) 6= 0).

Thus, the equation H(λ̃c) = 1 has a unique real solution λ̃c. Note that H(0) = R0.
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Figure 1: Solution of Characteristic Equation for R0 > 1

Thus, λ̃ < 0 (> 0) if R0 < 1 (> 1) (see Figure 1). Therefore, an endemic steady

state size distribution exists as long as R0 > 1 and it is unique.

3.2. Stability of steady state size distributions

Let E∗ = (S∗, I∗,R∗) denote a steady state size distribution, and let

λ
∗ = β

∫
∞

m0

b(m′)
I∗(m′)
η∗(m)

dm′. (3.16)
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Now that we know that there exists a unique λ ∗ > 0, to determine the local

stability of E∗, the following perturbations

S(t,m) = S∗(m)+ζ (t,m) (3.17)

I(t,m) = I∗(m)+ξ (t,m) (3.18)

R(t,m) = R∗(m)+ψ(t,m) (3.19)

λ (t) = λ
∗+δ (t) (3.20)

of the steady state are considered. Linearization leads (small perturbations) to

the following first order approximate model for ζ ,ξ ,ψ and δ :

dζ

dt
+g(m)

dζ

dm
= −λ

∗b(m)ζ −θ(m)ζ −δ (t)b(m)S∗ (3.21)

dξ

dt
+g(m)

dξ

dm
= λ

∗b(m)ζ − (γ(m)+θ(m))ξ +δ (t)b(m)S∗ (3.22)

dψ

dt
+g(m)

dψ

dm
= γ(m)ξ −θ(m)ψ (3.23)

δ (t) = β

∫
∞

m0

b(m′)
ξ (t,m′)
η∗(m′)

dm′ (3.24)

ζ (t,m0) = ξ (t,m0) = ψ(t,m0) = 0, (3.25)

ζ (0,m) = S(0,m)−S∗(m),ξ (0,m) = I(0,m)− I∗(m),

ψ(0,m) = R(0,m)−R∗(m).

See Appendix B for details on how this approximation was obtained.

We study System (3.21)-(3.25), under separable perturbations, that is,
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solutions of the form:

ζ (t,m) = ζ̂ (m)ept

ξ (t,m) = ξ̂ (m)ept (3.26)

ψ(t,m) = ψ̂(m)ept

δ (t) = δ̂ept

where δ̂ and p are constants. These solutions lead to the formal expressions

ζ̂ (m) = −δ̂ ρ exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
)

exp
(
−
∫ m

m0

λ ∗b(m′)
g(m′)

dm′
)

∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m

m′

p
g(α)

dα

)
dm′, (3.27)

ξ̂ (m) = δ̂ ρ exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
){∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

λ ∗b(α)
g(α)

dα

)
exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
exp
(
−
∫ m

m′

p
g(α)

dα

)
[

1−λ
∗
∫ m′

m0

b(α)
g(α)

exp
(
−
∫ m′

α

p
g(ω)

dω

)
dα

]
dm′
}

, (3.28)

ψ̂(m) = δ̂ ρ exp
(
−
∫ m

m0

p+θ(m′)
g(m′)

dm′
)∫ m

m0

γ(m′)
g(m′)

{∫ m′

m0

b(α)
g(α)

exp
(∫

α

m0

p
g(ω)

dω

)
exp
(
−
∫

α

m0

λ ∗b(ω)
g(ω)

dω

)
exp
(
−
∫ m′

α

γ(ω)
g(ω)

dω

)
[

1−λ
∗
∫

α

m0

b(ω)
g(ω)

exp
(
−
∫

α

ω

p
g(ε)

dε

)
dω

]
dα

}
dm′, (3.29)

δ̂ = β

∫
∞

m0

b(m)
ξ̂ (m)
η∗(m)

dm. (3.30)

From (3.28) and (3.30), assuming that δ̂ is not zero, we obtain the characteristic
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equation:

1 = β

∫
∞

m0

b(m)
{∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

λ ∗b(α)
g(α)

dα

)
exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
exp
(
−
∫ m

m′

p
g(α)

dα

)
[

1−λ
∗
∫ m′

m0

b(α)
g(α)

exp
(
−
∫ m′

α

p
g(ω)

dω

)
dα

]
dm′
}

dm, (3.31)

a transcendental equation for p.

If all solutions p Equation (3.31) have negative real parts, then all solutions of

the form (3.26) will tend to zero as t goes to infinity, and the non-uniform steady

state size distribution E∗ will be stable.

To show the stability of the endemic equilibrium Ẽ, it requires to show

that for λ ∗ > 0 the roots of Equation (3.31) have negative real parts. It turns out

that this is very difficult to show. Numerical simulations suggest (ODE parallel

system in Chapter 4) that this may be the case. The research in [9] includes the

numerical analysis of the above characteristic equation in the presence of two

activity levels and constant θ(m), seems to support our hypothesis.

For the disease-free equilibrium we have λ ∗ = 0, in which case (3.31)

becomes:

1 = β

∫
∞

m0

b(m)
{∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
exp
(
−
∫ m

m′

p
g(α)

dα

)
dm′
}

dm. (3.32)
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Let F(p) denote the function on the RHS of (3.32). It is easy to show that F is

a decreasing function of p as F ′(p) < 0. Note that F(p)→ ∞ as p→−∞ and

F(p)→ 0 as p→∞. Thus, as before, Equation (3.32) has a unique real solution,

which we denote by p∗. Note also that F(0) = R0. Thus, p∗ < 0 (> 0) if and

only if R0 < 1 (> 1).

Let p = r± is be a complex solution of (3.32). Note that

1 = F(p) = |F(r + is)|

= |β
∫

∞

m0

b(m)
∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
exp
(
−
∫ m

m′

r
g(α)

dα

)
(cos

(∫ m

m′

s
g(α)

dα

)
− isin

(∫ m

m′

s
g(α)

dα

)
)dm′dm|

≤ β

∫
∞

m0

b(m)
∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
exp
(
−
∫ m

m′

r
g(α)

dα

)
|cos

(∫ m

m′

s
g(α)

dα

)
− isin

(∫ m

m′

s
g(α)

dα

)
|dm′dm

= F(r)

Thus, F(r) ≤ F(p). Therefore, if R0 < 1 then r < p∗ ≤ 0. It follows that the

trivial steady-state is locally asymptotically stable if R0 < 1, and it is unstable if

R0 > 1. Then the summary of our results is the following:

Theorem 3.1

• If R0 < 1 then the disease-free steady state is locally asymptotically stable.
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• If R0 > 1 then the disease free steady state is unstable and an unique en-

demic seady state exists.

3.3. Conclusions

Chapter 3 builds a SIR epidemiological model under an explicit size-

structure framework. We prove the existence (under some conditions) of an

endemic state and establish the stability of the non-uniform infection-free size

distribution when R0 < 1, while showing that it becomes unstable when R0 > 1.
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CHAPTER 4

SYSTEM OF N ORDINARY DIFFERENTIAL EQUATIONS

The data available for the vital rates (fertility, growth and mortality) is

usually given for size ranges. Therefore, it makes sense to find a framework that

makes use of a finite number of size classes. A nonlinear system of ordinary

differential equations is derived from first principles that allows for the study of

the dynamics of size-structured populations that are growing or decaying expo-

nentially. The epidemiologic structure for each class consists of individuals that

are in the states of susceptible, infectious and recovered.

The approach divides the population density in n size groups defined by the size

intervals [mi−1,mi] where 0 = m0 < m1 < m2 < ... < mn−1 < mn = ∞. It is conve-

nient to let [0,m1] include all individuals with size smaller than m1 and [mn−1,∞)

all individuals over size mn−1.

We assume that the population has reached the stable non-uniform size dis-

tribution with growth g(= 0,> 0,< 0), η(t,m) = eqtM(m). We further as-

sume that death, growth and fertility rates are constant for m in [mi−1,mi] with

θ(m) = θi,g(m) = gi, f (t,m′) = fi.

The number of individuals in the size group [mi−1,mi] is given by

Ni(t) =
∫ mi

mi−1

η(t,m)dm = eqt
∫ mi

mi−1

M(m)dm = eqtNi (4.1)
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where Ni is the size of the i−th size group at time 0.

Then, from

η(t,m0) = eqtM0 =
∫

∞

m0

f (m′)η(t,m′)dm′ =
n

∑
i=1

fieqt
∫ mi

mi−1

M(m)dm =
n

∑
i=1

fieqtNi

we have eqtM0 = ∑
n
i=1 fi��eqtNi and thus

M0 =
∞

∑
i=1

fiNi.

From (2.2), integrating for m ∈ [mi−1,mi] yields

∫ m

mi−1

dM
M

=
∫ m

mi−1

−(q+θi)
gi

dm

or

M(m) = M(mi−1)exp
(
−(q+θi)

gi
(m−mi−1)

)
. (4.2)

Now, since Ni =
∫ mi

mi−1
M(m)dm, using (4.2) we have

Ni =
∫ mi

mi−1

M(mi−1)exp
(
−(q+θi)

gi
(m−mi−1)

)

= M(mi−1)gi

1− exp
(
−(q+θi)

gi
(mi−mi−1)

)
q+θi

 (4.3)
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For i = 1,2,3, ...,n−1 it is convenient to define the constants ci by M(mi) = ciNi

ci =
M(mi)

Ni
(4.4)

=
M(mi−1)exp

(
−(q+θi)

gi
(mi−mi−1)

)
M(mi−1)gi

[
1−exp

(
−(q+θi)

gi
(mi−mi−1)

)
q+θi

]
ci =

q+θi

gi exp
(

q+θi
gi

(mi−mi−1)
)
−1

. (4.5)

Integration of (2.1) in the interval [mi−1,mi] and equation (4.1) gives

∂η

∂ t
+g(m)

∂η

∂m
= −θ(m)η∫ mi

mi−1

∂η

∂ t
dm+

∫ mi

mi−1

g(m)
∂η

∂m
dm = −θi

∫ mi

mi−1

ηdm

∂
∫ mi

mi−1
ηdm

∂ t
+(giη(t,mi)−gi−1η(t,mi−1)) = −θi

∫ mi

mi−1

ηdm

dNi

dt
+(giη(t,mi)−gi−1η(t,mi−1)) = −θiNi

dNi

dt
+(eqtgiM(mi)− eqtgi−1M(mi−1) = −θiNi

dNi

dt
+(gicieqtNi−gi−1ci−1eqtNi−1) = −θiNi

dNi

dt
+(giciNi−gi−1ci−1Ni−1) = −θiNi

Thus,

dNi

dt
= −(θi +gici)Ni +gi−1ci−1Ni−1, for i = 1,2, ...,n−1 (4.6)
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More specifically, the N1 equation is

dN1

dt
= −(θ1 +g1c1)N1 + c0N0

= −(θ1 +g1c1)N1 + eqtM(m0)

= −(θ1 +g1c1)N1 +
n

∑
i=1

fiNieqt

= −(θ1 +g1c1)N1 +
n

∑
i=1

fiNi

dN1

dt
=

n

∑
i=1

fiNi− (θ1 +g1c1)N1. (4.7)

Because ci represents the transfer rate constants between successive size groups

and we are assuming n is the last age group or the “biggest” possible size, we

have cn ≈ 0. Therefore the set of n-ODE’s that represents the sized structure

population in n subgroups become:

dN1

dt
=

n

∑
i=1

fiNi− (θ1 +g1c1)N1

dNi

dt
= −(θi +gici)Ni +gi−1ci−1Ni−1, for i = 2, ...,n−1 (4.8)

dNn

dt
= −θnNn +gi−1cn−1Nn−1.

For the case of constant population the term g0 ∑
n
i=1 fiNi is just a constant that

will be called ρ from now on. It is within the above framework that we will

proceed to study disease dynamics numerically using SIR frameworks in the

next section.
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4.1. SIR: Derivation of a System of 3n Ordinary Differential Equations

Using the model described by (3.1)-(3.4), the derivation of a system of

a 3n ordinary differential equations follows the framework in Hethcote [13].

It is assume that the i−th subscript denote the S, I,R classes in the i−th size

interval [mi−1,mi]. The transmission rate is assumed to be constant in eanch

internal, i.e., b(m) = bi for m∈ [mi−1,mi]. Then, using S(mi) = ciSi, I(mi) = ciIi,

R(mi) = ciRi and boundary condition in (2.1), we can integrate (3.1)-(3.4) on

the size intervals [mi−1,mi] to obtain the initial-value problem, describe below,

for a set of 3n ordinary differential equations.

Specifically, if we let Ni = Si + Ii + Ri. then the equations for m ∈

[mi−1,mi] are given by

∂Si

∂ t
+g(m)

∂Si

∂m
= −λibiSi−θiSi, (4.9)

∂ Ii

∂ t
+g(m)

∂ Ii

∂m
= λibiSi− (γi +θi)Ii, (4.10)

∂Ri

∂ t
+g(m)

∂Ri

∂m
= γiIi−θiRi. (4.11)

Given that S(mi) = ciSi, we have

g(m)
∂Si

∂m
= giS(mi)−gi−1S(mi−1)

= giciSi−gi−1ci−1Si−1. (4.12)
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Since for m ∈ [mi−1,mi]

λi(t) = β

n

∑
j=1

b j
I j

N j
. (4.13)

we see that

dSi

dt
= gi−1ci−1Si−1− (λibi +gici +θi)Si.

As in the demographic model, the birth equation (??) becomes

S(m0) =

∫
∞

m0
η(m)dm∫

∞

m0
exp
(
−
∫ m′

m0

θ(m)
g(m) dm

)
dm′

,

c0S0 = ∑
n
i=1 Ni

∑
n
i=1 exp

(
−∑

i
j=1

θ j
g j

) = ρ, (4.14)

which is the case of constant population. Then similarly as for the demographic

model we can divide de Si epidemic classes in S1 and Si for i≥ 2, since all births

are assumed to get into this class.

dS1

dt
= c0S0− (λ1b1 +g1c1 +θ1)S1,

= ρ− (λ1b1 +g1c1 +θ1)S1. (4.15)

dSi

dt
= gi−1ci−1Si−1− (λibi +gici +θi)Si, for i≥ 2.

λi(t) = β

n

∑
j=1

b j
I j

N j
.

Similarly for the I(t,m) class, given I(mi) = ciIi,

g(m)
∂ Ii

∂m
= giI(mi)−gi−1I(mi−1)

= giciIi−gi−1ci−1Ii−1 (4.16)
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Thus from (4.10) with (4.16),

dIi

dt
= gi−1ci−1Ii−1 +λibiSi− (γi +θi +gici)Ii.

These also have to be divided into I1 and Ii for i≥ 2.

For I1, the term c0I0 = 0 because I0 = 0 given the assumption that all births get

into the S1 class. Therefore,

dI1

dt
= λ1b1S1− (γ1 +θ1 +g1c1)I1,

dIi

dt
= gi−1ci−1Ii−1 +λibiSi− (γi +θi +gici)Ii, for i≥ 2. (4.17)

Following the same logic, for R(t,m),

g(m)
∂Ri

∂m
= giR(mi)−gi−1R(mi−1)

= giciRi−gi−1ci−1Ri−1. (4.18)

From (4.11) with (cRm),

dRi

dt
= gi−1ci−1Ri−1 + γiIi− (θi +gici)Ri.

As for I1, R1 the term g1c0R0 = 0 because R0 = 0 given the assumption that all

births get into the S1 class. Therefore,

dR1

dt
= = γ1I1− (θ1 +g1c1)R1,

dRi

dt
= gi−1ci−1Ri−1 + γiIi− (θi +gici)Ri, for i≥ 2. (4.19)
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The system of 3n ordinary differential equations is then (4.15),(4.17), and

(4.19). All this done with q = 0.

dS1

dt
= ρ− (λ1b1 +g1c1 +θ1)S1,

dSi

dt
= gi−1ci−1Si−1− (λibi +gici +θi)Si, for i≥ 2,

dSn

dt
= gn−1cn−1Sn−1− (λnbn +θn)Sn,

λi(t) = β

n

∑
j=1

b j
I j

N j
,

dI1

dt
= λ1b1S1− (γ1 +θ1 +g1c1)I1, (4.20)

dIi

dt
= gi−1ci−1Ii−1 +λibiSi− (γi +θi +gici)Ii, for i≥ 2,

dIn

dt
= gn−1cn−1In−1 +λnbnSn− (γn +θn)In,

dR1

dt
= = γ1I1− (θ1 +g1c1)R1,

dRi

dt
= gi−1ci−1Ri−1 + γiIi− (θi +gici)Ri, for i≥ 2.

dRn

dt
= gn−1cn−1Rn−1 + γnIn−θnRn.

This equivalent model, (4.20), assumes proportional mixing where bi rep-

resents the size i activity level, β the probability of becoming infected per con-

tact, gi are the transfer rate between successive size groups or rate of leaving

size i, ci is a transfer scaling factor, θi is the mortality rate for size i group and

γi is the size i recovery rate. All these rates are constants, which simplifies the

analysis of the system. The function λi represents the effective contacts with
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infected organisms of size group i. Once organisms reach maximal size n, they

stay there until they die. This implies that transition rate for size n is zero. This

model groups organisms in different size groups and facilitates the process of

simulating.

4.2. SIR: Case n = 2

Given the complexity of the 3n ODE system we need to study the simplest

version of it first to observe the dynamics. For the specific case of n = 2, where

only two size classes are considered the model becomes

dS1

dt
= ρ−

(
βb2

1
N1

I1 +
βb1b2

N2
I2 +g1c1 +θ1

)
S1,

dS2

dt
= g1c1S1−

(
βb2b1

N1
I1 +

βb2
2

N2
I2 +θ2

)
S2,

dI1

dt
=

βb2
1

N1
I1S1 +

βb1b2

N2
I2S1− (γ1 +θ1 +g1c1)I1,

dI2

dt
= g1c1I1 +

βb2b1

N1
I1S2 +

βb2
2

N2
I2S2− (γ2 +θ2)I2,

dR1

dt
= γ1I1− (θ1 +g1c1)R1,

dR2

dt
= g1c1R1 + γ2I2−θ2R2. (4.21)
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4.2.1. Threshold condition, R0, for the ODE SIR model: Case n = 2

The disease free equilibrium (DFE) is (S∗1,S
∗
2, I
∗
1 , I∗2 ,R∗1,R

∗
2) =(

ρ

g1c1+θ1
, g1c1ρ

θ2(g1c1+θ1)
,0,0,0,0

)
. Then N1 = S1 + I1 + R1 = ρ

g1c1+θ1
,

N2 = S2 + I2 + R2 = g1c1ρ

θ2(g1c1+θ1)
, and the total population is represented by

N = N1 +N2 = g0ρ(g1c1+θ2)
θ2(g1c1+θ1)

.

Using the next generation matrix, the expression for the reproduction number,

R0, is

R0 =
1
2

[
βb2

1
γ1 +g1c1 +θ1

+
βb2

2
γ2 +θ2

+

√(
βb2

1
γ1 +g1c1 +θ1

+
βb2

2
γ2 +θ2

)2

+
4βb1b2θ2

(γ2 +θ2)(γ1 +g1c1 +θ1)

 .(4.22)

The biological interpretation of R0 is clear. The fraction 1
γ1+g1c1+θ1

represents

the average amount of time that a member of group size 1 spends in the infected

stage, and βb2
1 is the effective contacts or infections of members of group size

1 with members of group size 1. Therefore, βb2
1

γ1+g1c1+θ1
are the new infections

of members of group size 1 from infected organisms of that same size group.

Similarly, 1
γ2+θ2

is the average time that a member of group size 2 spends in

the infected stage and βb2
2 is the infections of members of size group 2 with

members of group size 2. Then, βb2
2

γ2+θ2
are the new infections of members of size

group 2 from members of size group 2. The expression with the square root,
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√(
βb2

1
γ1+g1c1+θ1

+ βb2
2

γ2+θ2

)2
+ 4βb1b2θ2

(γ2+θ2)(γ1+g1c1+θ1)
, represents the new infections of

members of group size 1 with those in group size 2. Since all these interactions

are counted twice the whole expression is multiplied by one half.

In order to determine the stability of the disease free equilibrium we computed

the Jacobian and found the eigenvalues. The Jacobain matrix at the infection-

free equlibrium has two negative eigenvalues, −g1c1− θ1 and −θ2, and two

other eigenvalues given by the following quadratic equation

λ
2− (βb12− (γ1 +θ1 +g1c1)+βb2

2− (θ2 + γ2))λ +(γ2 +θ2)(γ1 +θ1 +g1c1)

−βb2
1(γ2 +θ2)−βb2

2(γ1 +θ1 +g1c1)−βb1b2θ2 = 0. (4.23)

Thus, the disease free equilibrium is stable if the solutions of 4.23 have negative

real parts. Using the Routh-Hurwitz criterion the conditions are:

βb12− (γ1 +θ1 +g1c1)+βb2
2− (θ2 + γ2) < 0, (4.24)

(γ2 +θ2)(γ1 +θ1 +g1c1)−βb2
1(γ2 +θ2)

−βb2
2(γ1 +θ1 +g1c1)−βb1b2θ2 > 0. (4.25)

These conditions hold if R0 < 1. Thus, when R0 < 1 the DFE is stable and there

is no outbreak. But for R0 > 1 the DFE is unstable and there will be an outbreak.

We have been unable to establish existence of an endemic equilibrium when

R0 > 1. However, the numerical simulations in Chapter 4 suggest that this is the
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case when n = 2 and n = 2.

4.2.2. Simulations of SIR with Two Size Classes

4.2.2.1. Higher Harvesting of Larger Fish

In oder to perform the simulations we looked into gathering data from

some fish disease but we were impressed by the lack of data and interest in this

field. It seems like fish diseases and their progression is not that important for

many people because in many cases the fish diseases do not cause a major pop-

ulation bottleneck nor fish diseases affect humans. This lack of interest gave us

the opportunity to reflect about it. Disease viruses are mutating constantly and

we may get fish diseases that could affect humans. But also, it is important to

understand the ecological processes of our populations and how human inter-

ventions like the harvesting affect the disease dynamics of these populations.

In the simulations performed in this study the parameters used were assumed

from the different papers that talked about Renibacterium salmoninarum on chi-

nook salmon. Renibacterium salmoninarum is the bacteria that cause bacterial

kidney disease on this salmon population. It is well-established in the Great

Lakes of the United States and it is one of the most important bacterial diseases
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among salmonids.The following table presents the parameters used for the sim-

ulations.

Initial Conditions Value Initial Conditions Value
N1(0) 1800000 N2(0) 3200000
S1(0) 1799500 S2(0) 3199500
I1(0) 500 I2(0) 500
R1(0) 0 R2(0) 0

Parameter Parameter
b1 0.33 b2 0.30
g1 0.04 g2 0.03
θ1 0.0014 θ2 0.0008
γ1 1/6 γ2 1/6
h1 0.0001 h2 0.005
f1 0.05 f2 0.3
c1 0.05

TABLE 2: Initial Conditions and Parameters Values for Two Size Classes
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The first case considers that the population is fed with as many fish

as harvested to maintain the population constant. The fish introduced to the

population are in the smallest size group and it is assumed that they are all

susceptible. Since it is assumed that the transmission rate is higher for smaller

fish and harvesting introduces more individuals to the smallest size group,

harvesting is increasing the number of infected individuals in the endemic

steady state as observed in 2b and 2d. If we separate the infected population

by size we observe that the endemic equilibrium for the second size class is a

little smaller, but the endemic equilibrium for the first size group is substantially

bigger as observed in 2a. The final size distribution 2c switches given that the

feeding of the population has a higher effect in the dynamics than the growth.

This change in behavior of the size populations is also observed in 2e. The main

observation in this case is that harvesting increases the number of infectives due

to the way the population is fed to keep it constant.
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Figure 2: SIR Constant Population, 2 Size Classes
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The second case considers a constant feeding of the population regardless

of the number of individuals in the population and the number of individuals

been harvested. New fish are introduced to the smallest class size and it is

assumed that all of them are susceptible. Therefore, the term that expressed this

process is ∑ fnNn(0) = f1N1(0)+ f2N2(0). If the number of fish introduced is

bigger than the number of fish that leave the population by death or harvesting,

then the population grows, otherwise it decreases and goes to extinction. This is

how the harvesting policies are established. It is obvious that without harvesting

the population will stabilize in a higher number than with harvesting as observed

in 3c, 3e and 3f, and as discussed in section 2.2. For the simulation in figures 3

it was considered a constant input that produced growth in the population and

the harvesting just limited the growth. The total number of infected individuals

was reduced as observed in 3b, but we can observe in 3d and 3a that this

decrease was due to the reduction in the higher size class population given by

the harvesting, while in the smallest size class the infection grew substantially.

For this case, we can conclude that harvesting affected in a ”positive” way the

infection by reducing the number of total infections in the population.
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Figure 3: SIR Constant Input, 2 Size Classes
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The third case considers feeding proportional to the population, this is

expressed as f1(S1 + I1 + R1)+ f2(S2 + I2 + R2) where S1,S2, I1, I2,R1, and R2

are not constant. The population will grow exponentially, but it will reach a

stable size distribution in the proportion of the individuals in each size class.

The effect of harvesting in this situation depends on the rates at which the

population is been fed and the harvesting rates for the different classes. With

harvesting, the population will grow exponentially but at a slower rate as

observed in 4f. Harvesting is small in the smallest size class compared to the

biggest size class, therefore the proportion of infectives at the end will be higher

for size class one. For the second size class the final infectives proportion will

be smaller given that many individuals are harvested 4a. Overall, although the

number of infected individuals will be smaller with harvesting, the population

will be smaller too and hence the proportion of infected individuals will be

higher as shown in 4b.
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Figure 4: SIR Unbounded Population, 2 Size Classes
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4.2.2.2. Higher Harvesting of Smaller Fish

In this section an alternative way of harvesting is proposed with the

purpose of examining how a change in harvesting policy during an outbreak

affects the overall outcome of the disease. All conditions are the same as in

the previous section 4.2.2.1 for the three cases, but instead of having a higher

harvesting rate for bigger fish we are considering harvesting a bigger portion of

the smaller fish. Since the transmission rate is higher for smaller fish, this may

be a huge factor in the control of the disease.
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Figure 5: SIR Constant Population with Higher Size 1 Harvesting rate, 2 Size
Classes

The graphs of the final distribution of the population by size group

and the graph of the infectives dynamics for the two size groups are included
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because they reflect the important effect of this new policy. It can be observed

that the final population switches in numbers to more elements of the smaller

size with harvesting. This change of harvesting policy shows that infected

elements decrease fast and the system stabilizes in the disease free equilibrium.

Therefore, it will be convenient to change harvesting policy as soon as an

outbreak starts and therefore the disease it is controlled.

The second case considers when there is constant feeding of the popula-

tion, but now with higher harvesting rate in the first class than in the second.

It can be observed that this harvesting strategy decreases considerably

the population size. But it also controls the disease by reducing considerably

the number of infections in the first size class. It may be a good strategy if it

is implemented at the moment of the outbreak and for a short term since the

decrease in the population is really big.

The third case considers when there is proportional feeding to the

existing population, which produces population explosion, but with higher

harvesting rate in the first class than in the second. The graph of the infected

individuals over time 7a shows that with this strategy the infected individuals go

to the zero steady state. Again as in the constant population case with this new
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Figure 6: SIR Constant Input with Higher Size 1 Harvesting rate, 2 Size Classes
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Figure 7: SIR Unbounded Population with Higher Size 1 Harvesting Rate, 2
Size Classes
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strategy, the population proportions of size switch but in this case there will be

more elements in the second size group which makes sense since the population

is growing exponentially and the harvesting is made mostly in the first class.

In all of the cases considered for the higher harvesting rate in the first size group

presented control of the disease rapidly which means that in the case of an

outbreak it is a good strategy to harvest massively the smaller fish. This policy

can be implemented for a limited time until disease is controlled. In terms of

numbers, with multiple simulations it was found that there is a threshold value

for the harvesting rate of the first size group (h1) between 0.03 and 0.04, for

which the infectives go from endemic to extinct.

In the simulations with two size classes we observed that with the typical har-

vesting approach where larger fish are harvested in a higher rate the infections

increased regardless of the way the population was fed. This phenomenon

happens because the smaller fish population is increased since new fish come

into the population in the smallest size group and smaller fish have higher

susceptibility to disease as supported by research, [2], [23], [1], [3], [20]. The

strategy of harvesting smaller fish in a higher rate and reducing considerably

the harvesting of larger fish in all the cases produces extinction of the disease.

This strategy is recommended for a small time period since the disease goes to
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extinction fast and continuing with this strategy produces great reduction of the

population in general. Therefore, simulations suggest that harvesting smaller

fish during an outbreak is a good strategy to control de disease and once it is

eradicated from the population usual harvesting policies can be resumed.

In this section, several harvesting strategies of a fish population are dis-

cussed and their influence in both the total population size and the disease control

are presented. Two harvesting policies are considered, one with a higher harvest-

ing rate of the smaller size and the other one with a higher harvesting rate of the

larger size. Under each of the harvesting policies, three different scenarios in

terms of the feeding rate of fish into the population are examined. The impact

of harvesting is illustrated by comparing the population consequence with and

without harvesting, which are shown in Figures 2-7. The following observations

can be made. In the case of constant total population size, although a higher

harvesting rate of smaller fish makes it more likely to control the disease (see

Figures 2a and 5a) it also reduces the total population size of higher size (see

Figures 2c and 5b). The impact on the total population size when harvesting

smaller fish is much greater in the case of a constant feeding rate (see Figures 3c

and 6b). Particularly, we observe that the total population is near extinction as
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shown in Figure 6b, which suggests that this policy should be avoided. Finally,

in the case of proportional feeding, more harvesting of smaller fish will help not

only eliminate the disease (see Figures 4a and 7a) but also maintain the total

population with a higher fraction of larger fish (see Figures 4b and 7b). Thus,

the last scenario seems to be more beneficial.

4.3. Simulations of SIR with Three Size Classes

4.3.0.3. Higher Harvesting of Larger Fish

For the simulations with three class sizes or n = 3, we considered the

same three cases as with two size classes. The parameters used for the simu-

lations were again assumed from the different papers that we read through this

study. The following table presents the parameters used for the simulations.

In the first case, the population is constant and the same number of harvested

elements are introduced in the population into the first size class. Fish coming

into the population do not have the disease and transmission rate for smaller

fish is higher. Observations in this case are consistent with the simulations for

two sizes. Since harvesting is increasing the smaller size class, because inflow

into this compartment is equivalent to the total number of elements harvested

in the population, and transmission rate is higher for this class, the number of
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Initial Conditions Value Initial Conditions Value
N1(0) 1800000 N2(0) 3200000
S1(0) 1799500 S2(0) 3199500
I1(0) 500 I2(0) 500
R1(0) 0 R2(0) 0

Parameter Parameter
b1 0.33 b2 0.30
g1 0.04 g2 0.03
θ1 0.0014 θ2 0.0008
γ1 1/6 γ2 1/6
c1 0.05 c2 0.04
h1 0.0001 h2 0.002
h3 0.003 f1 0
f2 0.05 f3 0.3

TABLE 3: Initial Conditions and Parameters Values for Three Size Classes

infected individuals in the endemic steady state is increasing as well 8b, 8d. As

size increases the number of infected members in the endemic equilibrium, with

harvesting, decreases 8a. Again, final size distribution demonstrates that the way

the population is been fed has a bigger effect than the growth 8c, 8e. It can be

concluded that in this case where the incoming flow is the same as the total of

harvested elements the infection increases and the final distribution of infectives

is decreasing by size.
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Figure 8: SIR Constant Population, 3 Size Classes
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The second case, where there is a constant number of elements been in-

troduced into the population, also assumes that new fish gets into the first size

susceptible class. As in the two size simulations if the constant inflow is higher

than the number of elements leaving the population the population grows, other-

wise dies out. Population stabilizes at a higher number without harvesting than

with harvesting as discussed before and observed in 9c, 9e, and 9f. In general,

the number of infectives decreases 9b, but infection grows in the first size class

and it is reduced in the other classes due to the harvesting 9a, 9d. Therefore

we conclude that under the conditions of this case, the disease is reduced by the

harvesting.
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(f) Population dynamics.

Figure 9: SIR Constant Input, 3 Size Classes
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Third case has inflow proportional to the existing population. This popu-

lation grows exponentially and we can only analyze and observe what happens

with the proportions of the individuals in each size class with respect to the to-

tal population at that moment, which stabilizes. With harvesting the population

grows at a slower pace 10f. In contrast with the two size classes, the number of

infected individuals in the final distribution is decreased 10b, 10d. This behavior

is attributed to the different fertility rates for the different size classes.
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(f) Population dynamics.

Figure 10: SIR Unbounded Population, 3 Size Classes
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4.3.0.4. Higher Harvesting of Smaller Fish and Decreasing Rates with Size

In order to understand better the effect of the harvesting policy in the out-

break of a disease and to propose different alternatives to control an outbreak

two different harvesting approaches are presented. In this section the new har-

vesting rates propose a higher harvesting of smaller fish and decreasing rates as

size increases. All conditions are the same as in the previous section 4.3.0.3 for

the three cases.

In this first case, important changes happen on the dynamics of the population

as observed in 11a and 11b. The infectives are reduced rapidly with the new

harvesting strategy as observed in 11a. The population final distribution shows

that after some time the population is mostly of the first size group, this is given

by the way the population is fed. Therefore, as in the case of two size classes

this new policy may be a good one to control the disease.

In the second case, the increment in harvesting of the smaller fish made

a drastic effect on the population. Instead of the population growing as before

we can observe that the population is greatly reduced 12c. If the harvesting rate

for the first size group is increased more this will cause the extinction of the

population and therefore the strategy is not viable.
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Figure 11: SIR Constant Population with Decreasing Harvesting Rate as Size
Increases, 3 Size Classes
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(c) Population dynamics.

Figure 12: SIR Constant Input, 3 Size Classes
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Figure 13: SIR Constant Population with Alternating Harvesting rates, 3 Size
Classes

4.3.0.5. Higher Harvesting of Smaller Fish in Alternating Pattern

In this section the harvesting strategy proposed is an alternating rate

policy, where the smaller class has a high harvesting rate, then second size class

has a smaller harvesting rate and finally the third class has a high harvesting

rate too. In this case we observe a bigger disease outbreak in the second size

class 13b which is a consequence of the increment of the final population size

on that size group. Overall, this strategy does not seems to help in controlling

the disease outbreak.

In the second case the results were similar to the ones on 4.3.0.4 with the

strategy of decreasing harvesting rates. The population is largely affected in a
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(c) Population dynamics.

Figure 14: SIR Constant Input with Alternating Harvesting Rates, 3 Size Classes

negative way and the disease is not eradicated for which we rule out this policy

as a possibility to control the disease.

Similarly to the case with two size classes, when we consider three size

classes we observe that harvesting increases the number of infections in the

population regardless of the way it is fed. This is again attributed to the fact

that smaller fish have higher susceptibility to diseases. It is also observed that

implementing the strategy of harvesting more small fish and almost no large

fish reduces completely the disease in a short period of time, for which it is a
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good strategy to control the disease. But as in the previous case, this harvesting

policy should not be held for a long time since it reduces the overall population

considerably in the cases where population is not constant. These simulations

suggest that modifying harvesting policies during an outbreak is a good way of

controlling the disease.

In this section, several harvesting strategies of a fish population are dis-

cussed for a population stratified in three size classes. We observe their influence

in both the total population size and the disease control. Three harvesting poli-

cies are considered, one with a higher harvesting rate of the smaller size, one

with a higher harvesting rate of the larger size and one with higher harvesting or

smaller and larger fish and low harvesting of middle size class fish. Under each

of these harvesting policies, two different scenarios in terms of the feeding rate

of fish into the population are examined. The impact of harvesting is illustrated

by comparing the population consequence with and without harvesting, which

are shown in Figures 8-14. The following observations can be made. In the case

of constant total population size, although a higher harvesting rate of smaller

fish makes it more likely to control the disease (see Figures 8a and 11a) it also

reduces the population size of the bigger fish (see Figure 8c and 11b). The third
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harvesting strategy with alternating harvesting rates just produces a reduction

in the infections in the first and third size groups (see Figure 13b). The impact

on the total population size when harvesting smaller fish is much greater in the

case of a constant feeding rate (see Figures 9f and 12c). Particularly, we observe

that the total population is extremely small as shown in Figure 12c, which sug-

gests that this policy should be avoided. For the third harvesting strategy with

alternating harvesting rates, with high harvesting rate of small and large fish,

we observed similar results to the case of constant feeding where the population

is near extinction (see Figures 14). Then, this last scenario seems to be more

beneficial but for a limited time.

4.4. SI [Susceptible-Infective] ODE System

Since in many instances individuals of populations in the wild that be-

come infected may actually not recover. We proceed to simulate, using the same

ODE framework, disease dynamics on a S-I framework.

Similar to the SIR model, the i−th subscript denote the S, I classes in the ith

size interval [mi−1,mi] and transmission occurs by a proportionately-mixed size-

dependent bilinear incidence rate b(m) = bi in that size range. The initial-value

problem for a set of 2n ordinary differential equations, where n is the number of
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size groups, is:

dS1

dt
= ρ− (λ1b1 +g1c1 +θ1)S1

dSi

dt
= gi−1ci−1Si−1− (λibi +gici +θi)Si

λi(t) = β

n

∑
j=1

b j
I j

N j
(4.26)

dI1

dt
= λ1b1S1− (θ1 +g1c1)I1

dIi

dt
= gi−1ci−1Ii−1 +λibiSi− (θ1 +gici)Ii

Since this is a complex model, we tried to calculate the steady states of the case

when only two size classes are considered. But we were only able to find an

explicit solution for the disease free equilibrium (DFE) which is the same as in

the SIR:

[S1,S2, I1, I2] =
[

ρ

g1c1 +θ1
,

g1c1ρ

θ2(g1c1 +θ1)
,0,0

]
. (4.27)

Then, we proceeded to perform some simulations with the same cases taken into

consideration in 3.

4.4.1. SI Case n = 2: Simulations with Higher Harvesting of Larger Fish

In the simulations for SI we used the same parameters as in the SIR model

4.2.2.1 and 4.3.0.3. The first case considers that the population is fed with as
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many fish as harvested to maintain the population constant. The fish introduced

to the population are in the smallest size group and it is assumed that they are all

susceptible. In this case, the harvesting reduces significantly the infections in the

second size group and increase them in the first size group as observed in 15a and

15d. This is reasonable because many elements are harvested in the second size

group and same number are introduced into the first size class as susceptible.

This behavior of the infectious is driven by the behavior in the population as

observed in 15c and 15e, but the number of infections is not significantly reduced

as observed in 15b.

The second case considers a constant feeding of the population independent of

the number of individuals in the population. New fish are introduced to the

smallest susceptible class size with a term expressed by ∑ fnNn(0) = f1N1(0)+

f2N2(0).

In this case, harvesting reduced greatly the population as presented in 16c, and

16e. The second size class is reduced more than the first class by the harvesting.

This decrease in the population also determined the behavior in the infectious

population 16a, 16b, and 16d.
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Figure 15: SI Constant Population, 2 Size Classes
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Figure 16: SI Constant Input, 2 Size Classes
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4.4.2. Simulations with Higher Harvesting of Smaller Fish

In the SI model it is impossible to drive the number of infected individu-

als to zero, but we want to observe what is the effect of implementing a different

harvesting strategy. In the first case with constant population we observe that

the number of infections are reduced in both size classes; 17a, 17b. Harvesting

produces a small reduction in the second size group and increment in the first

size group 17c.

In the second case, the harvesting reduces considerably the population 18d and

same behavior is observed in the infected population 18a, 18b. This is not con-

sidered a good alternative policy because it almost exterminate the population,

but we observe that this reduced the population much more than the previous

case because here the feeding is a lot less than the harvesting in the first class

and if that class is reduced obviously the second class will get reduced too.

In the simulations for the SI model with higher harvesting rate of larger

fish produces a small reduction in the infections. In the case of constant pop-

ulation it is just an effect of the change in the population proportions. In the

case of non-constant population the infections get reduced because the harvest-

ing reduces the population significantly. In the case of higher harvesting for

smaller fish and almost no harvesting of large fish, the endemic infection lev-
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Figure 17: SI Constant Population, 2 Size Classes
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Figure 18: SI Constant Input, 2 Size Classes
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els get largely reduced because population is also greatly affected. In this case,

changing the harvesting strategy does not control completely the disease since

there is no recovery. Therefore, it is not recommended to use the strategy of har-

vesting larger amount of small fish during an outbreak of a disease from which

fish do not recover because it does not help control the disease completely and it

causes a big decrease in the population number.
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4.4.3. SI Case n = 3: Simulations with Higher Harvesting of Larger Fish

Again, in the first case the population is constant and the same number

of harvested elements are introduced in the population into the first size class.

Results are consistent with the simulations for two sizes. The harvesting reduced

the bigger size class and increases the first one 19a, 19d. And the same effect is

observed in the population dynamics 19c, 19e. Also, there is no great reduction

of infection 19b. In this second case, the results are also consistent with the

results in the two classes. The harvesting reduced the population growth 20c,

20e, 20f. And this effect in the population is reflected in the infected population

20a, 20b, 20d.
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Figure 19: SI Constant Population, 3 Size Classes
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(f) Population dynamics.

Figure 20: SI Constant Input, 3 Size Classes
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4.4.4. Simulations with Higher Harvesting of Smaller Fish and Decreasing

Rates with Size

In this strategy of harvesting more harvesting occurs in the first size class

which is the one with higher transmission rate and then the harvesting is decreas-

ing with size. As in the two classes, the total number of infections is reduced

21a because the number of infections increases in the first size class and de-

creases in the other two 21b. Which is a consequence of the same behavior in

the population by size dynamics over time 21c. In the second case, we have

constant feeding of the population and the harvesting is higher in the first size

class. Again the harvesting reduced the population and therefore the number of

infections22a, 22b, 22c.

Similar to the case of two size classes, when we consider three size

classes we observe that with higher harvesting of larger fish the infections get

reduced in a very small number given the change in behavior in the whole pop-

ulation. In the case of constant population the proportions in the population

switch to higher proportion of small fish. In the case of non-constant population,

the harvesting produces a large decrease in the infections because the population

is also decreased in a large number. With higher harvesting of smaller fish the

infections are reduced even more, but the effect in the whole population is too
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Figure 21: SI Constant Population, 3 Size Classes

79



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 107

time

To
ta

l I
nf

ec
te

d

No Harvesting
Harvesting

(a) Total infected over time.

0 − 14.6 14.7 − 26.3 26.3 − +0

1

2

3

4

5

6

7

8 x 106

Size groups

In
fe

ct
ive

s

Final Size Distribution of Infectives

No Harvesting
Harvesting

(b) Final distribution of infectives by
size group.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 107

time

To
ta

l P
op

ul
at

io
n

Behavior of the Population
No Harvesting
Harvesting

(c) Population dynamics.

Figure 22: SI Constant Input, 3 Size Classes
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drastic and since it does not eliminates the infections it is a policy that will have

to be kept infinitely to keep those infection levels. As we know this is not a

policy that can be kept for indefinite time, therefore harvesting more small fish

in an outbreak is not a good strategy in the case of an SI disease.

4.5. Conclusions

In this chapter the size-structured equation in Model (2.1) is discretized

by size using the first principles of this model. We follow the approach used

in Hethcote [13]. In Section 4.1, a similar approach is implemented to the SIR

model (3.1)-(3.6) in populations where there are no demographic changes. This

approach will give a 3n ordinary differential equations model (4.9)-(4.11), for n

number of size groups, that has the same principles as the PDE model. Section

4.2 presents the specific case of two size classes. For this case we were able

to calculate the disease free steady state and the basic reproductive number R0.

We explain the terms in the expression for R0 using the different interactions of

the two size groups. This expression takes into account the interactions between

members of the same size and between different sizes as expected.Using Routh-

Hurwitz criterion we were able to find conditions for local stability of the disease

free equilibrium and the endemic equilibrium.
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Some simulations were performed with different harvesting strategies or poli-

cies with the purpose of comparing those. For the harvesting strategies studied

we considered the following cases: constant population, were the same number

of harvested fish were reintroduced into the population in the susceptible class,

constant feeding, were the number of births was constant and in the susceptible

stage, and finally the case of proportional feeding were the number of births was

proportional to the population. First, we started by simulating higher harvesting

on large fish populations and relatively small harvesting for small fish as it is

usually done in fishing. For the case of constant population, harvesting increases

the number of infectives due to the way the population is fed to keep it constant.

For constant feeding, harvesting affected in a positive way the disease outcome

by reducing the number of total infections in the population but in a very small

number. In feeding proportional to the population, although the number of in-

fected individuals will be smaller with harvesting, the population will be smaller

too and hence the proportion of infected individuals will be higher.

Same three cases were considered for higher harvesting rate of smaller fish and

very small harvesting rate for bigger fish. In all three cases the new harvesting

policy eliminated the number of infections in the population in a very short time.

This makes us conclude that in the case of an outbreak it will be convenient to
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harvest smaller fish in a high proportion to control the disease. But this strategy

should not be implemented for longer after the disease is eradicated from the

population since it reduced the population in the cases of constant feeding and

proportional feeding. For the SIR with three classes we also performed simula-

tions and the results were similar to the ones for the two size classes.

In Section 4.4, we implemented Hethcote’s approach [13] to the SI model (??)-

(??). For the SI 2n ordinary differential equations model we performed sim-

ulations using the same two harvesting strategies as for the SIR. Results were

similar for two size classes and three size classes. When we considered higher

harvesting rates in larger fish, as in the SIR, the harvesting reduced in a very

small amount the number of infections. With higher harvesting rate in smaller

fish the infections got reduced significantly but the disease remained endemic in

a lower value. In the cases of constant feeding and proportional feeding the new

strategy reduced the population drastically. This policy should not be imple-

mented at the time of an outbreak if the disease does not have recovery because

it does not eliminates the disease from the population and it affects adversely the

population. The situation was quantitatively different but qualitatively the same

for the SI model.
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CHAPTER 5

OPTIMAL CONTROL PROBLEM

5.1. Constant Harvesting Effort, n = 2 Two Size Classes

In the previous sections we considered harvesting rates that were depen-

dent on size and independent of time. Harvesting rates were constant in each

size group. In this section we use time dependent harvesting rates that are also

size dependent, since each size group has a different time dependent function

for the harvesting. This method allows studying policies that change over

time and will support the results in the previous sections where we concluded

that changing harvesting strategy changed the outcome of the outbreak and by

implementing it for a small time will control the disease completely.

This approach is only implemented for SIR, since new harvesting strate-

gies do not control disease in the SI model.

When we consider harvesting the expression for R0 is

R0 =
1
2

[
βb2

1
γ1 +g1c1 +θ1 +H1

+
βb2

2
γ2 +θ2 +H2

(5.1)

+

√(
βb2

1
γ1 +g1c1 +θ1 +H1

+
βb2

2
γ2 +θ2 +H2

)2

+
4βb1b2θ2

(γ2 +θ2 +H2)(γ1 +g1c1 +θ1 +H1)

 .

Which is smaller than (4.22). In order to have an outbreak (4.22) has to be greater
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than one, therefore there is a critical harvesting rate at which the dynamics of

the system change from outbreak to no outbreak. The motivation is to find this

critical harvesting that can control the disease.

The next step for harvesting is running simulations considering time dependent

harvesting rates.

5.2. Optimal Time-Dependent Harvesting

The model with size-specific controls is described by the following sys-

tem of differential equations:

dS1

dt
= ρ−

(
βb2

1
N1

I1 +
βb1b2

N2
I2 +g1c1 +θ1 +H1(t)

)
S1,

dS2

dt
= g1c1S1−

(
βb2b1

N1
I1 +

βb2
2

N2
I2 +θ2 +H2(t)

)
S2,

dI1

dt
=

βb2
1

N1
I1S1 +

βb1b2

N2
I2S1− (γ1 +θ1 +g1c1 +H1(t))I1, (5.2)

dI2

dt
= g1c1I1 +

βb2b1

N1
I1S2 +

βb2
2

N2
I2S2− (γ2 +θ2 +H2(t))I2,

dR1

dt
= γ1I1− (θ1 +g1c1 +H1(t))R1,

dR2

dt
= g1c1R1 + γ2I2− (θ2 +H2(t))R2.

where the time dependent harvesting rates H1(t) and H2(t) serve as the control

measures. The control functions H1(t) and H2(t) have values between zero and

one, where one represents full effort and zero no effort implemented to control.
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The goal is to minimize the number of infectious individuals (I1(t), I2(t)) over a

finite time interval from zero to t f at a minimal cost of harvesting efforts during

a fish disease outbreak. The objective functional J is

J(H1(t),H2(t)) =
∫ t f

0
(I1(t)+ I2(t)+

B1

2
H2

1 (t)+
B2

2
H2

2 (t))dt (5.3)

The optimal control problem is to find optimal solutions

(I∗1 (t), I∗2 (t),H∗1 (t),H∗2 (t)) such that Goal:

J(H∗1 ,H∗2 ) = minΩJ(H1,H2) (5.4)

for i = 1,2, ai and bi ∈ [0,1].

Ω = {(H1(t),H2(t)) ∈ L1(0, t f )2||ai ≤ Hi(t)≤ bi, t ∈ [0, t f ])} (5.5)

subject to the state equations given by the model (5.2). Given the criterion

(5.3) and the regularity of the system of equations (5.2), the existence of op-

timal controls is guaranteed by standard results in control theory by Fleming

and Rishel [11]. The necessary conditions of optimal solutions are derived from
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Pontryagin’s Maximum Principle [24]. The hamiltonian H is given by:

H = I1 + I2 +
B1

2
H2

1 +
B2

2
H2

2

+λ1

(
ρ−

(
βb2

1
N1

I1 +
βb1b2

N2
I2 +g1c1 +θ1 +H1(t)

)
S1

)
+λ2

(
g1c1S1−

(
βb2b1

N1
I1 +

βb2
2

N2
I2 +θ2 +H2(t)

)
S2

)
+λ3

(
βb2

1
N1

I1S1 +
βb1b2

N2
I2S1− (γ1 +θ1 +g1c1 +H1(t))I1

)
+λ4

(
g1c1I1 +

βb2b1

N1
I1S2 +

βb2
2

N2
I2S2− (γ2 +θ2 +H2(t))I2

)
(5.6)

+λ5 (γ1I1− (θ1 +g1c1 +H1(t))R1)+λ6 (g2c1R1 + γ2I2− (θ2 +H2(t))R2)

The principle of Pontryagin coverts the system (5.2) into the problem of mini-

mizing the hamiltonian H. From Pontryagin’s Maximum Principle [24] we ob-

tain the following theorem.

Theorem 5.1 There exist optimal controls H∗1 (t),H∗2 (t) and corresponding solu-

tions I∗1 (t), I∗2 (t) that minimize J(H1,H2) over Ω. In order for the above state-
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ment to be true, it is necessary that there exist continuous functions λi such that:

dλ1

dt
= λ1

(
βb2

1
N1

I1 +
βb1b2

N2
I2 +g1c1 +θ1 +H1(t)

)
−λ2g1c1

−λ3

(
βb2

1
N1

I1 +
βb1b2

N2
I2

)
dλ2

dt
= λ2

(
βb1b2

N1
I1 +

βb2
2

N2
I2 +θ2 +H2(t)

)
−λ4

(
βb1b2

N1
I1 +

βb2
2

N2
I2

)
dλ3

dt
= −1+λ1

βb2
1

N1
S1 +λ2

βb1b2

N1
S2−λ3

(
βb2

1
N1

S1− (γ1 +θ1 +g1c1 +H1(t))
)

−λ4

(
g1c1 +

βb1b2

N1
S2

)
−λ5γ1 (5.7)

dλ4

dt
= −1+λ1

βb1b2

N2
S1 +λ2

βb2
2

N2
S2−λ3

βb1b2

N2
S1

−λ4

(
βb2

2
N2

S2− (γ2 +θ2 +H2(t))
)
−λ6γ2

dλ5

dt
= λ5(θ1 +g1c1 +H1(t))−λ6g1c1

dλ6

dt
= λ6(θ2 +H2(t))

subject to the transversality conditions,

λi(t f ) = 0 (5.8)

for all i = 1,2,3,4,5,6.

Proof: The existence of optimal controls follows from Corollary 4.1 of Fleming

and Rishel [11] since the integrand of J is a convex function of H1(t),H2(t) and

the state system satisfies the Lipschitz property with respect to the state vari-

ables. The following can be derived from the Pontryagin’s maximum principle
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(Pontryagin et al. [24]):

dλ1

dt
=− ∂H

∂S1
,

dλ2

dt
=− ∂H

∂S2
,

dλ3

dt
=−∂H

∂ I1
,

dλ4

dt
=−∂H

∂ I2
,

dλ5

dt
=− ∂H

∂R1
,

dλ6

dt
=− ∂H

∂R2
,

with λi(T ) = 0 for i = 1,2, ...,6 and evaluated at the optimal controls and corre-

sponding states, which results in the adjoint system (5.7). The Hamiltonian H is

minimized with respect to the controls, so we differentiate H with respect to Hi

on the set Ω, respectively, giving the following optimality conditions:

∂H
∂H1

= 0,
∂H
∂H2

= 0 (5.9)

and solving for H∗1 and H∗2 with the constraints given by (5.5), the following

characterization holds

H∗1 (t) = min(max(a1,
1

B1
(λ1S∗1 +λ3I∗1 +λ5R∗1)),b1), (5.10)

H∗2 (t) = min(max(a2,
1

B2
(λ2S∗2 +λ4I∗2 +λ6R∗2)),b2). (5.11)
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Figure 23: Infectious Individuals Without Control

If population is preserved constant by replacing the harvested individu-

als in the population by disease free individuals of size one, then we get the

following results:
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Figure 24: High levels of harvesting for both Size Groups. Disease dies out very
quickly with no increment in the infectious individuals.
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Figure 25: Low levels of harvesting for both Size Groups. Disease dies out very
quickly but the infectious individuals in group 1 increase a little bit before they
start getting reduced.
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Figure 26: High levels of harvesting for both Size Groups. Disease dies out very
quickly with no increment in the infectious individuals.
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Figure 27: Low levels of harvesting for both Size Groups. Disease dies out very
quickly but the infectious individuals in group 1 increase a little bit before they
start getting reduced.
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These simulations support the results in the previous sections, if the har-

vesting rates are not high enough then the infectious are not reduced to zero.

If the harvesting rates are very high the control code suggests to harvest to the

highest possible value on all size groups since this will reduce faster the infected.

But at the same time, it is not desired to harvest all members of the population

because that will be like replacing the population.

If low levels of harvesting are implemented in both size groups the disease can-

not be controlled, if we harvest a lot of fish in both size groups because obviously

we are replacing most of the population by uninfected fish. As in 4.1, if smaller

fish have higher harvesting rates even when larger fish have lower harvesting

rates the disease is control in a short time and then there is no need to continue

harvesting so many small fish.

5.3. Conclusions

In this chapter, we analyzed the optimal control problem implemented on

SIR model (5.2). Here we used Pontryagin’s Maximum Principle [24] to derive

the necessary conditions for optimal solutions that minimize the number of in-

fected (I1(t), I2(t)) at minimal cost of harvesting, which is given by B1 and B2.

Simulations support the results of the ODE SIR model in Chapter 5. If harvest-

94



ing rates are not high enough, specially for smaller fish, the outbreak cannot be

controlled and disease remains endemic in the population. If the harvesting rate

is high for smaller fish, then the disease is controlled faster. When high harvest-

ing rates are implemented, the disease goes to extinction fast and there is no need

to continue harvesting massively.
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CHAPTER 6

CONCLUSIONS

In this study we analyzed the effect of structuring the population by size

explicitly via a per-capita growth function g(m). Results on harvesting affects

on a size structure populations at demographic (q∗ = 0) equilibrium or changing

(q 6= 0) were revisited. The main contribution of this dissertation is through the

introduction of a SIR epidemic model with size structure; a model analyzed par-

tially at demographic equilibrium (q∗ = 0).

A 3n-epidemic SIR ODE model using the approach introduced by Hethcote [13]

in the context of age-structure populations, was introduced. A partial analysis of

the case n = 2 was carried out. Simulations that explored the role of harvesting

were carried out in the cases n = 2 and n = 3.

Since often individuals in the wild do not recover we proceeded to simulate the

n = 2 and n = 3 cases for an SI-disease. We found (as expected) quantitative

differences but not qualitative. In other words, SIR and SI models has similar

dynamics.

The different simulations performed showed that, under the assumed parame-

ters, it is good to change harvesting policies that do not provide great benefits

for the fishermen like fishing smaller fish. These changes in policy make a huge

difference in the outcome of the disease and in many cases controlled the dis-
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ease completely in a small frame of time. If this effect of the harvesting policy

changes are obtained so fast, it could be a good strategy that can be put into ac-

tion until the disease is controlled. Then usual harvesting policies can continue

and fishermen can continue getting the benefits desired.

In chapter 5, control theory was implemented with the purpose of getting opti-

mal harvesting policies to reduce a disease in an SIR model. Some of the results

in this chapter support the ones in the previous chapters. Very small harvesting

rates in all size groups do not support the control of the disease and we can ob-

serve that the disease remains endemic. Harvesting rates should be high enough

to take off enough infected elements and reduce infection in the population. The

bad side of our control-function approach is that in our approach we did not

focus on the measure that considered optimal biomass. Hence, controlling the

disease may drive the population to extinction. In other words, improvements

in the control formulation are required. Our results offer only a preliminary

perspective on their role in size-dependent harvesting.
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APPENDIX A

SOLUTION OF STABLE SIZE DISTRIBUTIONS
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∂S
∂ t

+g(m)
∂S
∂m

= −λ (t)b(m)S−θ(m)S

��ρq��eqts∗+��ρg(m)��eqt ds∗

dm
= −��ρλ

∗b(m)��eqts∗−��ρθ(m)��eqts∗

g(m)
ds∗

dm
= −(q+λ

∗b(m)+θ(m))s∗

ds∗

dm
= −q+λ ∗b(m)+θ(m)

g(m)
s∗

s∗(m) = s(m0)exp
(
−
∫ m

m0

q+λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

(A.1)

∂ I
∂ t

+g(m)
∂ I
∂m

= λ (t)b(m)S(t,m)− (γ(m)+θ(m))I(t,m)

��ρq��eqt i∗+g(m)��ρ��eqt di∗

dm
= λ

∗b(m)��ρ��eqts∗− (γ(m)+θ(m))��ρ��eqt i∗

g(m)
di∗

dm
+(q+ γ(m)+θ(m))i∗ = λ

∗b(m)s∗

di∗

dm
+

q+ γ(m)+θ(m)
g(m)

i∗ = λ
∗b(m)

g(m)
s∗

d
dm

(
exp
(∫ m

m0

q+ γ(m′)+θ(m′)
g(m′)

dm′
)

i∗
)

= λ
∗s(m0)

b(m)
g(m)

exp
(
−
∫ m

m0

λ ∗b(α)− γ(α)
g(α)

dα

)

exp
(∫ m

m0

q+ γ(m′)+θ(m′)
g(m′)

dm′
)

i∗ = λ
∗s(m0)

∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

λ ∗b(α)− γ(α)
g(α)

dα

)
dm′
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i∗(m) = λ
∗s(m0)exp

(
−
∫ m

m0

q+θ(m′)
g(m′)

dm′
)∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

λ ∗b(α)
g(α)

dα

)
exp
(
−
∫ m

m′

γ(α)
g(α)

dα

)
dm′

Since η∗(m) = s∗(m)+ i∗(m)+ r∗(m), then r∗(m) = η∗(m)− s∗(m)− i∗(m).
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APPENDIX B

LINEARIZATION OF PERTURBATIONS TO STABLE SIZE

DISTRIBUTION

104



Since ζ (t,m) = s∗(m)− s(t,m), the linearization about the steady state

size distribution p∗ = (s∗, i∗,r∗,λ ∗) of

ds
dt

+g(m)
ds
dm

= −λ (t)b(m)s(t,m)−θ(m)s(t,m)

is

dζ

dt
+g(m)

dζ

dm
= a(m)ζ (t,m)+b(m)δ (t)

where

a(m) =
d
ds

(−λ (t)b(m)s(t,m)−θ(m)s(t,m))
∣∣∣∣

p∗
=−λ

∗b(m)−θ(m),

b(m) =
d

dλ
(−λ (t)b(m)s(t,m)−θ(m)s(t,m))

∣∣∣∣
p∗

=−b(m)s∗.

Therefore,

dζ

dt
+g(m)

dζ

dm
= −λ

∗b(m)ζ −θ(m)ζ −δ (t)b(m)s∗. (B.1)

Similarly for i(t,m), where ξ (t,m) = i∗(m)− i(t,m) the linearization about the

steady state is

dξ

dt
+g(m)

dξ

dm
= c(m)ζ (t,m)+d(m)ξ (t,m)+ e(m)δ (t)
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where

c(m) =
d
ds

(λ (t)b(m)s− γ(m)i−θ(m)i)
∣∣∣∣

p∗
= λ

∗b(m),

d(m) =
d
di

(λ (t)b(m)s− γ(m)i−θ(m)i)
∣∣∣∣

p∗
=−γ(m)−θ(m),

e(m) =
d

dλ
(λ (t)b(m)s− γ(m)i−θ(m)i)

∣∣∣∣
p∗

= b(m)s∗.

Then, the linearized equation for ξ (t,m) is

dξ

dt
+g(m)

dξ

dm
= λ

∗b(m)ζ (t,m)− (γ(m)+θ(m))ξ (t,m)+δ (t)b(m)s∗.(B.2)

Finally,

λ (t) =
∫

∞

m0

b(m′)i(t,m′)dm′

λ
∗+δ (t) =

∫
∞

m0

b(m′)(i∗+ξ )dm′

��λ ∗+δ (t) =
��������
∫

∞

m0

b(m′)i∗dm′+
∫

∞

m0

b(m′)ξ dm′

δ (t) =
∫

∞

m0

b(m′)ξ (t,m′)dm′. (B.3)
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APPENDIX C

PERTURBATION
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By substituting the perturbation of the form ζ (t,m) = ept ζ̂ into equation

3.21,

dζ

dt
+g(m)

dζ

dm
= −λ

∗b(m)ζ −θ(m)ζ −δ (t)b(m)s∗

p��ept
ζ̂ +g(m)��ept dζ̂

dm
= −λ

∗b(m)��ept
ζ̂ −θ(m)��ept

ζ̂

−��ept
δ̂b(m)s∗

g(m)
dζ̂

dm
+(p+λ

∗b(m)+θ(m))ζ̂ = −δ̂b(m)s∗

dζ̂

dm
+

p+λ ∗b(m)+θ(m)
g(m)

ζ̂ = −δ̂
b(m)
g(m)

s∗

dζ̂

dm
+

p+λ ∗b(m)+θ(m)
g(m)

ζ̂ = −δ̂
b(m)
g(m)

s(m0)

exp
(
−
∫ m

m0

q+λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

d
dm

(
exp
(∫ m

m0

p+λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

ζ̂

)
=−δ̂

b(m)
g(m)

exp
(
−
∫ m

m0

q
g(m′

dm′
)

exp
(∫ m

m0

p
g(m′)

dm′
)

exp
(∫ m

m0

p+λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

ζ̂ =−δ̂ s(m0)
∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

q
g(α

dα

)
exp
(∫ m′

m0

p
g(α)

dα

)
dm′

ζ̂ (m) = −δ̂ s(m0)exp
(
−
∫ m

m0

λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

q
g(α)

dα

)
exp
(
−
∫ m

m′

p
g(α)

dα

)
dm′(C.1)
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Similarly using ξ (t,m) = ept ξ̂ into equation 3.24, we get

dξ

dt
+g(m)

dξ

dm
= λ

∗b(m)ζ − (γ(m)+θ(m))ξ +δ (t)b(m)s∗

p��ept
ξ̂ +g(m)��ept dξ̂

dm
= λ

∗b(m)��ept
ξ̂ − (γ(m)+θ(m))��ept

ξ̂

+δ̂��eptb(m)s∗

g(m)
dξ̂

dm
+(p+ γ(m)+θ(m))ξ̂ = λ

∗b(m)ζ̂ + δ̂b(m)s∗

dξ̂

dm
+

p+ γ(m)+θ(m)
g(m)

ξ̂

=−λ
∗b(m)

g(m)
δ̂ s(m0)exp

(
−
∫ m

m0

λ ∗b(m′)+θ(m′)
g(m′)

dm′
)∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

q
g(α)

dα

)
exp
(
−
∫ m

m′

p
g(α)

dα

)
dm′

+δ̂
b(m)
g(m)

s(m0)exp
(
−
∫ m
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q+λ ∗b(m′)+θ(m′)
g(m′)

dm′
)

d
dm
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exp
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)
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exp
(
−
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)
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)
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exp
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g(m′)
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b(m′)
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exp
(
−
∫ m′
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q
g(α)

dα−
∫ m
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g(α)
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)
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]

exp
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dm′
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b(m′)
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∫ m′
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ξ̂ (m) = δ̂ s(m0)exp
(
−
∫ m

m0

θ(m′)
g(m′)

dm′
)∫ m

m0

b(m′)
g(m′)

exp
(
−
∫ m′

m0

λ ∗b(α)
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)
exp
(
−
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g(α)

exp
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α
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g(ω)
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∫ m′

α
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dm′ (C.2)
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