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ABSTRACT  
   
 

During the last decades the development of the transistor and its 

continuous down-scaling allowed the appearance of cost effective wireless 

communication systems. New generation wideband wireless mobile systems 

demand high linearity, low power consumption and the low cost devices. 

Traditional RF systems are mainly analog-based circuitry. Contrary to digital 

circuits, the technology scaling results in reduction on the maximum voltage 

swing which makes RF design very challenging. Pushing the interface between 

the digital and analog boundary of the RF systems closer to the antenna becomes 

an attractive trend for modern RF devices. In order to take full advantages of the 

deep submicron CMOS technologies and digital signal processing (DSP), there is 

a strong trend towards the development of digital transmitter where the RF up-

conversion is part of the digital-to-analog conversion (DAC). This thesis presents 

a new digital intermediate frequency (IF) to RF transmitter for 2GHz wideband 

code division multiple access (W-CDMA). The proposed transmitter integrates a 

3-level digital IF current-steering cell, an up-conversion mixer with a tuned load 

and an RF variable gain amplifier (RF VGA) with an embedded finite impulse 

response (FIR) reconstruction filter in the up-conversion path. A 4th-order 1.5-bit 

IF bandpass sigma delta modulator (BP ∑∆M) is designed to support in-band 

SNR while the out-of-band quantization noise due to the noise shaping is 

suppressed by the embedded reconstruction filter to meet spectrum emission mask 

and ACPR requirements. The RF VGA provides 50dB power scaling in 10-dB 
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steps with less than 1dB gain error. The design is fabricated in a 0.18µm CMOS 

technology with a total core area of 0.8 x 1.6 mm2. The IC delivers 0dBm output 

power at 2GHz and it draws approximately 120mA from a 1.8V DC supply at the 

maximum output power. The measurement results proved that a digital-intensive 

digital IF to RF converter architecture can be successfully employed for W-

CDMA transmitter application. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and application 

With the increasing demand for high linearity, power efficient and wide-

bandwidth mobile devices, RF systems will benefit from moving the interface 

between the digital to analog domains closer to the antenna. Furthermore, in order 

to take advantages of the deep submicron CMOS technologies and digital signal 

processing (DSP), there is a strong trend towards the development of digital 

heterodyne architectures where the digital baseband signal is up-converted to 

intermediate frequency (IF) in the digital region, and RF up-conversion is part of 

the digital-to-analog conversion (DAC). 

The digital to RF up-conversion methods included current- steering DAC 

cells [2-4], multi-bit  noise shaped IF [2], and the inherently linear single-bit 

RFDACs [3]. The digital heterodyne transmitter has the advantages of higher 

integration level and power efficiency, improved I/Q matching and EVM 

performance, and adaptive modulation of the transmitted signal bandwidth 

without the need of external IF SAW filter [1]. In addition, the problems 

associated with conventional homodyne transmitters including DC-offset and LO 

leakage, are greatly reduced because there is no analog gain stage in the baseband. 

The RF DAC presented in [2] shows better signal-to-noise ratio (SNR), lower 

power consumption and reduced hardware complexity compared to the 

conventional DAC-Mixer architecture. In this architecture, higher SNR is 

achieved by using multi-bit (8-level) M with high sampling frequency of 
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514MHz. However, the multi-bit DAC could require additional mismatch 

reduction techniques, such as dynamic element matching, which could increase 

the system complexity and power consumption. The architecture of RFDAC 

presented in [3] offers advantages in terms of high integration due to digital-

intensive design and higher linearity.  The impact of flicker noise up-conversion 

due to the DAC’s current sources is reduced by alternating the operation point of 

the rail device from accumulation to inversion. Also jitter masking technique is 

employed to minimize IF jitter impact, which ensures that the current source is off 

during the DAC bit switching transition. However, the design shows some 

limitations, which make it hard to be used in the wideband transmitter 

applications. One limitation is inadequate filtering of the out-of-band quantization 

noise. In most wireless standards high adjacent channel power suppression and 

strict spectral emission requirements are enforced. In order to meet the spectrum 

emission mask and ACPR requirements, a more complex FIR filter is required to 

suppress the out-of-band quantization noise. Another limitation is the use of 

single-ended local oscillator (LO) that drives the gate of the rail device, which 

leads to higher LO leakage compared to that of the conventional Gilbert-cell 

mixer.  

This objective of this work is to research a digital IF to RF transmitter 

(DRFTx) architecture which can be utilized in the wide-band transmitter 

applications with high linearity, circuit simplicity and low power consumption. 

The DRFTx architecture presented in this thesis is a digital heterodyne transmitter 

which utilizing a 3-level digital IF to RF DAC up-converter, followed by a RF 
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variable gain amplifier with an embedded band-pass reconstruction filter to take 

the advantages of RFDAC [3] while overcome its limitations so that the idea of 

RFDAC presented in [3] can be successfully extended to the real world W-

CDMA transmitter application.   

 

1.2   Outline of the thesis 

This thesis consists of eight chapters with the introduction as the first one.   

Chapter 2 presents the surveys of the transmitter architectures including the 

conventional super-heterodyne, homodyne, and the recent digital heterodyne 

architecture, followed by the proposed the digital IF transmitter architecture. 

Chapter 3 analyzes the system requirements of the proposed architecture which 

provides the baseline requirements on the design of the reconstruction FIR filter, 

RFDAC and RF VGA.  Chapter 4 shows the circuit level implementation of the 

major building blocks of the proposed architecture including RFDAC with 

embedded FIR reconstruction filter and Chapter 5 demonstrates the design of 

discrete-power-step RF VGA.  Chapter 6 illustrates the measurement results 

which demonstrate that the proposed architecture is feasible for W-CDMA 

transmitter application. Chapter 7 presents the potential extended applications, 

and the conclusions are drawn in Chapter 8. 
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CHAPTER 2 

TRANSMITTER ARCHITECTURES 

The objective a radio transmitter is to up-convert the baseband signal and 

amplify it to the desired power level before delivering it to the transmit antenna. 

For a transmitter that is designed for wide-band mobile or wireless 

communication systems, especially for W-CDMA transmitter, high dynamic 

range, high linearity, low power consumption and low cost are the most important 

properties. W-CDMA class III mobile transmitters are targeted for a maximum 

power of +24dBm and a minimum of -50dBm at the antenna end which leads to a 

minimum of 74dB dynamic range requirement. In the W-CDMA standard, the 

transmitter linearity requirement can be transferred to the W-CDMA transmit 

waveform quality which is specified by the Adjacent Channel Leakage Ratio 

(ACLR) or Adjacent Channel Power Ratio (ACPR) and the RMS Error Vector 

Magnitude (EVM).  For W-CDMA systems, ACLR is defined as the ratio of the 

integrated signal power in the adjacent channel to the integrated signal power in 

the main channel; the standard demands minimum 33dBc and 43dBc at the first 

channel (5MHz) and the second channel (10MHz) offset respectively [5]. EVM is 

a measure of how much the deviation of the transmitted constellation construction 

to the ideal one which is generated at the base band. W-CDMA transmitter 

specifies RMS EVM to be less than 17.5% at all output power levels greater than 

20dBm [5]. The low power consumption property is very crucial for maximizing 

the battery life time which is an important factor for mobile devices. The low 

product cost is the most important figure from the end customers point of view, 
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which is determined by the technology, the integration level and the number of 

the external components needed to guarantee the transmit waveform quality.  

 To gain better insight of in the different tradeoffs, first the existing 

transmitter architectures will be overviewed and discussed, including super-

heterodyne and homodyne transmitter architectures.  Next, the digital heterodyne 

transmitter will be highlighted. Finally, the digital-intensive digital intermediate 

frequency (IF) to RF digital-to-analog (DAC) transmitter topology targeted for 

W-CDMA application is proposed.  

 

2.1  Overview of transmitter architectures  

The choice of transmitter architecture has a significant impact on the 

operation of the system. In general, there are two types of common transmitter 

architectures: super-heterodyne and homodyne (zero-IF or direct conversion).  

Each of these architectures has its own inherent advantages and disadvantages. 

However, many of the potential issues of the individual architecture can be solved 

with smart topology and / or circuit design techniques.   

2.1.1 Super-heterodyne transmitter architecture 

For W-CDMA transmitters, super-heterodyne architecture has been 

around for many decades, and still the most common architecture reported today 

[6]–[11]. Figure 2.1 demonstrates the traditional super-heterodyne transmitter 

architecture.  
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Figure 2.1:   Traditional super-heterodyne transmitter architecture 

 

In the baseband, the in-phase and quadrature-phase (I/Q) digital bit 

streams are converted to the analog signals through the baseband digital-to-analog 

converter (DAC). After proper low-pass filtering to reject any high frequency 

aliasing generated during the digital-to-analog conversion process, the signals are 

mixed with the first local oscillator (LO) signal and up-converted to intermediate 

frequency (IF) and combined to generate single-sideband IF signal. Typically the 

combined IF signal will experience some gain variation stage and the band-pass 

filtering stage to reduce spurs and further reject any aliasing residues from the 

DAC, and then mix with the 2nd. LO and up-converted to the radio frequency 

through RF mixer. Finally, the up-converted signal is sent to the RF variable gain 

amplifier (VGA) followed by RF band-pass filtering and then delivered to the 

power amplifier (PA) or PA driver. Since the base-band signal is up-converted to 

the radio frequency in two steps, the super-heterodyne architecture offers many 

advantages. First of all, the 74dB power control demanded by W-CDMA standard 

can easily be distributed to the IF VGA and RF VGA stages to relax the limited 
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substrate isolation impact on the achievable transmit dynamic range. Moreover, 

the waveform quality is superior mainly due to the following two reasons:  1) The 

LO leakage is a minor issue because the LO1 and LO2 are far from the transmit 

band, and their leakages can be suppressed at the IF BPF and RF BPF stages;   2) 

The quadrature modulation is performed in the intermediate frequency stages 

which are relative low frequencies. Therefore the transmit coupling between the 

in-phase and quadrature-phase paths can be minimized, and the superior matching 

between I/Q paths can be achieved, leading to almost ideal RMS EVM 

performance. 

However, the good quality waveform offered by the super-heterodyne 

architecture does come with some high prices. First, it requires an external IF 

bandpass filter [6]–[9] and an external RF bandpass filter [12] to reject the 

unwanted spurs and the sidebands, thus driving the overall chip cost, size and 

power consumption up. Second, since it utilizes two-step up-conversion, two sets 

of synthesizes are required, leading to a complicated, area and power inefficient 

designs. In general, the super-heterodyne transmitter architecture is a bulky, 

power-hungry and high cost approach. 

Recently, there are some works called variable-IF heterodyne architectures 

[10] [11] with the main efforts to eliminate the bulky and expensive IF BPF and 

insist one synthesizer as shown in Figure 2.2. Figure 2.2(a) implements the 

variable IF transmitter using on-chip IF and RF BPFs, while Figure 2.2(b) 

demonstrates alternative variable IF transmitter approach by adopting on-chip 

complex-IF filters. Note that none of the variable IF transmitters require an off-
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chip IF band- pass filter and only one synthesizer is utilized to generate main LO  

 

 (a):  Variable IF transmitter architecture with on-chip IF and RF BPF  

 

 

 (b):  Variable IF transmitter architecture with on-chip complex-IF BPF  

Figure 2.2:  Variable IF transmitter architectures 

 

signal. The IF and RF LOs are just the divided-down versions of the main LO. 

Therefore, the variable IF architecture offers advantages in terms of lower power 
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consumption and lower cost compared to the traditional super-heterodyne 

architecture.  For the W-CDMA transmit application, since the up-conversion is 

still implemented in two steps (IF and RF stages), the wide power variation 

requirement is not an issue for the variable-IF approach.  However, the variable IF 

arhcitectures shown in Figure 2.2 are more sensitive to I/Q  mismatches compared 

to the traditional super-heterodyne architecture because the quadrature 

modulations are now implemented either at high IF frequency (~ 800M) or at RF 

(2GHz).    

2.1.2 Homodyne transmit architecture 

Apart from the two-step up-conversion transmitters described above, 

homodyne transmitter architectures draw a lot of attenuation these days. Figure 

2.3 demonstrates a conventional homodyne transmitter. In this architecture, the 

baseband digital I and Q bit streams are converted to the analog signals through 

the baseband DACs.  After baseband low-pass aliasing filtering, the filtered 

signals mix with the only LO and up-converted to the radio frequency, and then 

the RF I and Q signals are merged and drive PA or PA driver through RF variable 

gain amplifier and RF band-pass filter.  

As shown in Figure 2.3,  the homodyne transmitter up-converts the 

baseband signal to radio frequency in a single step, therefore it completely 

eliminates the IF band-pass filter and IF synthesizer. As such it offers high 

integration level, low power consumption and low cost compared to the 

heterodyne counterpart.  

One big issue associated with the traditional homodyne transmitter is that 
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LO is operating at the exact same frequency as the PA where the strong PA output 

could couple to the LO and result in the degraded output waveform. This issue is 

known as LO pulling. One remedy is to offset LO frequency from the operating 

frequency of the PA as shown in Figure 2.3. By this way, the LO frequency will 

never overlap the desired transmit band and the LO-pulling issue can be resolved 

with the cost of increased power consumption due to the higher LO frequency 

generation. 

 

Figure 2.3:  Conventional homodyne transmitter architecture 

 

Even though the LO pulling can be removed from the problem list, 

another issue is hard to be solved.  For W-CDMA transmitter application, the 

74dB power variation is hard to implement solely at the RF stage due to the 

limited substrate isolation, thus the baseband variable gain amplification stage is 

inevitable.  Since there is no ac-coupling in the baseband paths, the dc-offset due 

to the base-band gain variation stays in the up-conversion path and will sit in the 

transmit band and degrade the output waveform as shown in Figure 2.4. 
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Moreover, the LO/2 (LO divided down by 2) leakage signal will directly feed 

through to the output due to the finite substrate isolation and other non-ideality 

factors, and ultimately degrade the quality of the output waveform as well [13]. In 

addition, in the homodyne architecture, since the quadrature modulation is 

implemented at radio frequency, I/Q mismatches are expected to be higher 

compared to the heterodyne architecture.  

 

Figure 2.4:  Homodyne transmitter architecture issue 

 

2.1.3 Digital heterodyne transmitter architecture 

As mentioned before, the homodyne architecture shows the advantage of 

the circuit simplicity, however, it is not a desired approach to transmit W-CDMA 

signal due to the performance issues associated with the dc-offset and the LO 

leakage. Super-heterodyne architectures offer performance benefits in terms of 

high linearity, high dynamic range and superior waveform, but they consume 

more power consumption,  require more off-chip filters and more chip area which 

shortens the battery life time and drives the devices cost high, therefore it is not an 

attractive approach either.  

Some recent works propose heterodyne transmitters using digital IF 
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modulator to remove the IF band-pass filter from the transmitter and keep only 

one synthesizer in the up-conversion path as shown in Figure 2.5 and Figure 2.6. 

In these transmitter systems, the first up-conversion is implemented the digital 

domain, hence the digital heterodyne transmitter.  

In Figure 2.5, the base-band digital data (running at the chip rate of 

3.84MHz) are first upsampled and interpolated, filtered by the following low-pass 

filter, multiplied with the first quadrature LOs, and then the IF in-phase and 

quadrature signals are summed together to generate the single-ended IF signal 

before reaching the DAC. In general, implementing digital modulator requires 

numerical oscillators (for example, direct digital synthesizer) and multipliers,  

 

Figure 2.5:  Digital heterodyne transmitter architecture proposed in [1]  

 

Figure 2.6:  Digital IF to RF DAC transmitter architecture proposed in [14] 
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which could be complicated and power hungry. However, the work in [10] 

chooses the IF frequency (fIF) to be a quarter of the DAC clock update rate (fclk), 

thus the IF LO signals become a bit stream sequence representing values of +1, 0, 

or -1. Therefore, the IF digital modulation is just a simple sign-bit-flipping logic, 

which considerably eases the circuit complexity and reduces the power 

consumption.  

Since the quadrature up-conversion is implemented completely in the 

digital domain, the perfect matching between the in-phase and quadrature-phase 

paths can be obtained, hence the superior EVM performance.   The transmitter 

shown in Figure 2.6 also adopts the similar idea of digital IF modulation, 

therefore the excellent waveform quality can be expected as well. 

The differences between the two transmitters in Figure 2.5 and Figure 2.6 

are mainly demonstrated in the second up-conversion phase. Multi-bit DAC 

followed by a higher-order low-pass filtering method is implemented in Figure 

2.5, while the single-bit DAC with embedded semi-digital reconstruction band-

pass filtering topology is employed in Figure 2.6. As shown in Figure 2.5, the 

single-ended digital IF signal is sent to the 8-bit DAC with the clock update rate 

of 253.44MHz to guarantee the in-band signal-to-noise ratio (SNR), and the 

second-order-hold DAC attenuates the spurs and rejects the clock images to meet 

the W-CDMA spurious emission requirements. Since there are two variable 

amplifiers both in the IF and RF stages, the 74dB dynamic range demanded by the 

W-CDMA transmitter can easily be achieved, while the dc offset due to IF gain 

variation can be removed by the ac-coupling capacitor before the second up-
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conversion.  However, the multi-bit DAC usually requires additional matching 

schemes, such as dynamic element matching, to maintain good linearity. 

Moreover, the aggressive attenuation offered by the second-order-hold DAC 

could distort the in-band signal, thus the digital correction is needed to recover the 

transmitting waveform. The additional matching scheme and the digital correction 

increase the system complexity and drive the ultimate chip area and power 

consumption up. Different from the multi-DAC approach in [1], the digital 

transmitter in [14] utilize the single-bit DAC to take advantage of its inherent 

linearity, no matching for DAC linearity is required. A single-bit 4th-order band-

pass sigma-delta modulator (BP SDM) is used to generate 1-bit IF bit streams 

with high in-band SNR, while the out-of-band quantization noise due to the noise-

shaping is suppressed by the embedded linear-phase finite impulse filter (FIR) in 

the second up-conversion. Thanks to the single-bit digital-to-analog conversion, 

the digital IF to analog RF conversion and the following reconstruction filtering 

are successfully merged into a single circuit block, leading to a more compact and 

digital-intensive transmitter design as shown in Figure 2.6. However, the 

transmitter in [14] shows some drawbacks which are hard for wide-band 

transmitter applications. One limitation is the inadequate filtering of the out-of-

band quantization noise. In order to meet the spectrum emission mask and ACPR 

requirements, a more complex FIR filter is required to suppress the out-of-band 

quantization noise. Another limitation is the use of single-ended local oscillator 

(LO) that drives the gate of the rail device, which leads to higher LO leakage 

compared to that of the conventional Gilbert-cell mixer.    
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In general, the digital heterodyne transmitter exhibits the circuit simplicity 

of the homodyne architecture while inherits the superior performance of the 

super-heterodyne architecture with proper design.  

So far, the three transmitter architectures have been overviewed and 

discussed. Their circuit characteristics, advantages and disadvantages are 

summarized in Table 2.1  

 

2.2 Proposed digital transmitter architecture 

As shown in Table 2.1, the digital heterodyne transmitter surpasses the 

traditional super-heterodyne and homodyne transmitters in terms of circuit 

simplicity and good performances. Therefore, it is more suitable for the future 

generation of wide-band mobile transmit terminals where size, cost and power 

consumption are the key factors. With the fast development on the CMOS 

technology, there is a strong trend to push more circuits used to be implemented 

in the analog region to the digital domain to take advantage of the CMOS 

technology scaling and the fast-and-flexible digital signal processing (DSP), thus 

the digital heterodyne transmitter in [14] excels the transmitter in [1] in terms of 

more intense digital implementation in transmit path and the low-cost CMOS 

technology used.  However, the work in [14] shows some limitations which have 

already been addressed. In order to extend the idea presented in [14] to the wide-

band transmitter applications, a modified digital IF to RFDAC transmitter needs 

to be developed.  

Figure 2.7 demonstrates the proposed digital transmitter architecture 
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implemented in CMOS technology. It consists of 1.5-bit band-pass  Modulator, 

a wideband digital IF to RF up-conversion DAC followed by a RF VGA with a 

reconstruction filter embedded in the up-conversion stage. The architecture 

performs RF up-conversion, mixing the LO signal with 3-level digital IF bit 

streams, while the quantization noise is suppressed by the semi-digital FIR filter. 

In the proposed architecture, the digital IF signal is noise-shaped via a 4th-order 

1.5-bit BP M to improve in-band SNR, while the out-of-band quantization 

noise due to noise-shaping is suppressed by the semi-digital FIR filter and analog 

image reject filter. In this work, the out-of-band quantization noise suppression is 

designed to meet W-CDMA spectrum emission mask and ACPR requirements 

[5]. 74dB dynamic range demanded by the W-CDMA standard [5] is distributed 

to M stage and RF VGA to overcome substrate isolation limitation.   

At the baseband I/Q signals generated from the base-band DSP block are 

first interpolated and up-sampled from 3.84MHz (W-CDMA chip rate is 

3.84Mcps) to  fs=253.44MHz, and then digitally up-converted to the intermediate 

frequency (IF)      at fIF=fs/4= 63.36MHz. By choosing a sampling frequency fs 

within the range from250MHz to 260MHz, digital images will be out of the W-

CDMA transmitter and receiver bands [1], thereby relaxing the requirements on 

the reconstruction filter after the DAC. The digital band-pass IF signal is 1.5-bit 

noise-shaped via the 4th-order band-pass (BP)  Modulator. The 3-level IF 

signaling reduces the transient glitch and the quantization noise level compared to 

a 2-level DAC and still maintains good linearity. Also the in-band SNR can be 

improved by approximately 5dB due to the additional half bit with the same  
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Table 2.1:  Summary of transmitter architectures 

Architecture 
No. of up-
conversion 

No. of 
synthesizers/ 
off-chip IF 
filter  

Pros Cons 

Super-
heterodyne 

2 2 / 1 

High linearity 
High DR 
Wide bandwidth 
Good EVM 
ACPR 

Bulky 
High 
power  
High cost 

Homodyne 1 1 /0 
Simple   
Low power  
Low cost 

DC offset  
LO leakage 
Degraded 
EVM  

Digital 
heterodyne 

2 1 /0  

High linearity 
High DR 
Wide bandwidth 
Good EVM  
ACPR 
Digital intense 
Low power 

-- 

 

oversampling ratio and the loop-filter order [15]. Moreover, the lower 

quantization noise level could result in a lower order of the reconstruction filter. 

From the system level simulations, 1.5-bit 4th-order BP M is enough to provide 

in-band SNR with the sampling frequency of 253.44 MHz and the 40-tap BP FIR 

filter is sufficient to attenuate the out-of-band quantization noise and meet the W-

CDMA spectrum emission mask and ACPR requirements. Higher order FIR filter 

could provide more out-of-band noise suppression, however it leads to higher 

quiescent power consumption. Figure 2.8 shows the W-CDMA IF spectrum after  
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Figure 2.7:  Proposed CMOS digital-IF transmitter 
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Figure 2.8:  WCDMA IF spectrum after 40-tap BP FIR filtering (fs=250 MHz)   
 
 
 

the 40-tap FIR filtering. The zoom-in spectrum is shown on the upper-right corner 

of the figure. The gray line shows the W-CDMA mask. 
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One big advantage of the proposed architecture is that the traditional 

transmitter image issue is resolved by maintaining the signals in quadrature 

format from the baseband to the radio frequency. The accuracy of the single-

sideband modulated signal is mainly determined by the first up-conversion 

quadrature mixers which are implemented in the digital domain in the proposed 

architecture.  

The major building block of RFDAC+Mixer+BP filter of the proposed 

architecture is illustrated in Figure 2.9. The 1.5-bit noise-shaped digital IF signal 

generated by the BP M feeds to the 40-tap FIR delay line, and the FIR delayed 

3-level IF signals drive individual IF switch cell. The FIR coefficients (a1 to a20) 

due to the 40-tap BP FIR filtering are embedded in the IF switching stages and 

modulate the IF tail currents. The current-mode DAC outputs are summed, mixed 

with the LO and up-converted to radio frequency through the RF double- 

sideband (DSB) mixer. The mixer is loaded with an LC band-pass filter. 

 

Figure 2.9:  The RFDAC+Mixer+BP Filter block of the proposed RFDAC 

modulator 
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The entire block provides four functionalities: digital-to-analog 

conversion, frequency up-conversion, FIR reconstruction filtering, and the analog 

out-of-band image rejection filtering.  

By adopting the proposed DRFTx architecture, the digital IF to RF 

converter can be extended for W-CDMA transmitter application with the benefits 

of circuit simplicity, high linearity and low power consumption. 
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CHAPTER 3 

SYSTEM DESIGN OF THE PROPOSED TRANSMITTER 

The design of the proposed W-CDMA transmitter is not straight-forward. 

First, the linearity requirement of the individual block including RFDAC and 

RFVGA needs to be derived based on the system level link budget analysis to 

avoid design randomness. Second, the IF band-pass sigma-delta modulator has to 

provide enough in-band signal-to-noise (SNR) while keeping the loop filter order 

as low as possible to ease circuit complexity and reduce power consumption. 

Finally, the out-of-band quantization noise generated at the BP SDM stage must 

be suppressed by the reconstruction filter down to the level where the adjacent 

channel signals are not affected. In this chapter, the system design of the proposed 

architecture will be presented including the transmitter linearity analysis, IF band-

pass sigma-delta modulation and the FIR reconstruction filtering.  

 

3.1   W-CDMA transmitter link budget analysis 

3.1.1 System linearity requirement 

In this section linearity and noise analysis of the proposed architecture 

based on W-CDMA transmitter link budget analysis is derived. The RFDAC non-

ideality due to the finite output impedance is analyzed in order to give the lowest 

boundary for sizing FIR current sources.  

Table 3.1 lists the major specifications of W-CDMA transmitter (class III). 

Table 3.2 lists the W-CDMA spectral emission mask requirements [5]. 

W-CDMA is a full duplex system where the transmitter and receiver  
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Table 3.1 W-CDMA transmitter specifications 

Frequency band  1920MHz – 1980MHz 

Channel spacing  5MHz 

Chip rate 3.84 Mbps 

Modulation QPSK 

Max. Power at antenna 24dBm  (+1dB/-3dB) 

Max. Power at PA output  28dBm ** 

RMS EVM  < 17.5% 

ACPR  -33dBc @ 5MHz offset 

-43dBc @ 10MHz offset 

 

Table 3.2 W-CDMA spectral emission mask requirement [5] 

∆f  in MHz Relative Requirement in dBc Measurement BW  

2.5 – 3.5 -35 -15*(∆f /MHz -2.5)  30kHz 

2.5 – 7.5 -35 -1*(∆f /MHz -3.5) 1MHz 

7.5 – 8.5 -39 -10*(∆f /MHz -7.5) 1MHz 

8.5 – 12.5 MHz -49 1MHz 

 

operate simultaneously at different frequencies. The nonlinear distortion 

generated by a mobile transmitter can spill over into the adjacent channel, or the 

receive band and impact received signal bit error rate (BER). Therefore digital 

cellular standards restrict the amount of emissions permitted in the adjacent and 

alternate channels. Usually, adjacent channel power arises from the spectral re-

growth due to inter-modulation distortions (IMDs) from the transmitter.  
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In general, the ACPR at the first channel offset is dominated by the 3rd-

order inter-modulation distortion (IMD3), while the ACPR at the second channel 

offset is mainly determined by the 5th-order inter-modulation distortion (IMD5). 

For the W-CDMA transmit signal which occupies a bandwidth of 5MHz, a multi-

tone test [16] [17] is required to predict accurate distortion in the adjacent and 

alternate channels which is not an easy task in the transmitter system analysis due 

to long and complicated simulations required.  Based on the narrow-band 

approximation and with a periodic modulating waveform assumption, the 

modulated W-CDMA signal issue can be treated as a conventional two-tone test 

[18]. With this approach, ACPR requirements can be translated to conventional 

IMD3 or OIP3 specifications. 

The proposed transmitter can be modeled as a non-linear block in the 

transmitter analysis using the setup as shown in Figure 3.1. In this setup, an ideal 

W-CDMA baseband signal drives the non-linear transmitter and ACPR  

 

Figure 3.1:  Non-linear transmitter analysis setup 
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performances are evaluated at the output using a spectrum analyzer. The nonlinear 

transmitter includes RFDAC with mixer, RF VGA, RF BPF and PA in cascade. 

The relationship between ACPR at the first channel offset and OIP3 of the 

transmitter including PA can be approximately expressed based on the two-tone 

test as follows: 

      








BW

BW
COIPPACPR ACP

TXTXTX 100,3 log109)(2                  (3.1) 

where  3*85.00  PARC , PAR is the peak-to-average ratio of the transmitted 

signal which is 3.28dB for /4-QPSK modulated signal. ACPRTX, PTX, OIP3,TX are 

the ACPR performance, the transmitted power and OIP3 at the transmitter output 

respectively. BWACP represents the measuring bandwidth for the adjacent channel 

power which is 3.84MHz for W-CDMA signal, and BW is the desired transmitted 

signal bandwidth after taking the roll-off factor of 0.22 into account [19].   

According to the standard, the ACPR at 5MHz and 10MHz offsets from the center 

of the main channel must be less than  -33dBc and -43dBc, respectively [5].  

Figure 3.2 shows the ACPR and OIP3 of the transmitter based on the equation (1) 

with the transmitted power of 25dBm which is targeted to the W-CDMA band I 

class III power level (when taking additional 2dB loss due to duplexer at the 

antenna end).  From the Fig. 3.2, to achieve better than -33dBc ACPR at 5MHz 

offset, the minimum transmitter OIP3 is required to be at least +36.7dBm. In the 

proposed design, OIP3 of 38dBm at the PA output is chosen as a design target to 

leave 3 to 4dB margin for ACPR at first channel offset.  Fig. 3.3 shows the output 

of the spectrum with different OIP3s which emphasizes how the linearity of the 



  25 

transmitter impact on the ACPR performances.  

 

Figure 3.2:  Plot of transmitter OIP3 vs. ACPR at 5MHz offset 

 

 

Figure 3.3:  WCDMA output spectrums with two TXs’ OIP3s  
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3.1.2. DAC +FIR linearity 

In the proposed architecture, the transmitter linearity in terms of OIP3 or 

IMD3 is determined by the RFDAC, the VGA, RF BPF and the PA. The overall 

transmit linearity specification can be expressed by equation (3.2) [19]. Since the 

linearity of the RF BPF is usually close to ideal, the equation (3.2) can be 

simplified as equation (3.3).  From equation (3.3), in order to relax linearity 

requirements on the RFVGA and PA, the FIR DAC and mixer linearity must be 

optimized.  

      PABPF

PA

VGA

PABPF

RFDAC

PABPFVGA

TX OIPOIP

G

OIP

GG

OIP

GGG

OIP 3

1

3

1

3

*

1

3

**

1

3

1


   
             (3.2) 

      PAVGA

PABPF

RFDAC

PABPFVGA

TX OIPOIP

GG

OIP

GGG

OIP 3

1

3

*

1

3

**

1

3

1


                      (3.3)
 

where OIP3TX, OIP3RFDAC, OIP3VGA, OIP3PA are the output 3rd order intercept 

points of the transmitter, RFDAC and mixer, RF VGA and  PA, respectively. 

GVGA and GPA are the power gains of the RF VGA and PA. GBPF is the loss of the 

RF BPF. 

   Using a commercial PA MAX2291 [11] (ACPR of -38dBc at the first channel 

offset with Pout = 28dBm which translates into OIP3PA = 42.2dBm, GPA = 27dB) 

and with the designed RF VGA targeted for OIP3 of +16dBm and the maximum 

power gain of 10dB, the OIP3 of the RFDAC and mixer should be at +14.3dBm 

from equation (3.3) with 2dB loss due to RF BPF.  

The major source of nonlinearity of current steering DACs is the finite 
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output impedance of DAC current sources [21]. In order to better understand how 

the output impedances of FIR based DACs impact on the linearity of the 

transmitter, the up-conversion switching quad is considered ideally linear. 

Therefore, nonlinear behavior of the RFDAC is analyzed using the simplified 

model of Figure 3.4, where a1 to aN are the coefficients of the FIR filter. I1 to IN 

are the FIR-scaled current sources with finite output impedances Ro1 and RoN. 

Moreover, S1 to SN are the IF switches and RL is the equivalent mixer’s output 

load resistance at the resonance frequency of 2GHz which is set by the LC tank in 

Figure 3.4. Since the mixer is ideal, the nonlinearity from the FIR DAC will 

directly appear at the mixer output, and mixer switches are neglected in the 

simplified circuit. 

 

Figure 3.4:  Simplified RFDAC circuit 

 

Defining I0 as the normalized current and g0 as the normalized 

conductance related to I0, we have    

                      a1 = I1/I0 =1, a1 = I2/I0 ,   … , aN = IN/I0                                (3.4) 

              go1 = 1/ Ro1,  go2 = 1/ Ro2, …, goN = 1/ RoN;  gL = 1/RL                        (3.5) 
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where a1, a2, … , aN are the FIR coefficients. go1, go2, … , goN are the conductances 

of the current sources I1 to IN, respectively.  

For a sinusoidal output Vout each of the DAC switches is either ON or OFF 

at a given time [20].  

                           
  1 sin

2on

t
s t


  ,    1 sin

2off

t
s t


                          (3.6) 

The total output conductance when the N switches are “on” is  

 onNLonout tsgaaagg )()...( 021,   

                                    



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
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
 

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iL

t
gag

1
0 2

sin1 
                              (3.7) 

and the total complementary output conductance is 

                  

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
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The differential output voltage is  

               tgFFggg

tIFg
V

NNLL

NL
diffuto 


22

0
2

0
2

0
, sin144

sin4




               (3.9) 

where 
1

N

N i
i

F a



 
is the sum of the normalized FIR coefficients.       

 Assigning  sinx t (a single-tone excitation)  

yields 

                        22
0

2
0

2
0

,
144

4

xgFFggg

xIFg
V

NNLL

NL
diffout 


  

                                    = 
)1(1 2xQ

xH


                                                       (3.10) 



  29 

where   
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Using Taylor expansion, 
 

                                    
3

, 1 3   out diffV A x A x                                     (3.11) 

Since the fundamental tone and the third-order components have the following 

relationship [12] 
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The OIP3 of the FIR DAC is         

     

RFDACOUTRFDACIN
RFDAC

RFDACRFDAC P
IMD

P
IMD

GOIP ,, 2

3

2

3
3             (3.13) 

where GFIRDAC is the gain of the FIR DAC in dB, PIN,RFDAC and POUT,RFDAC are the 

input and output power of the RFDAC. Since the OIP3 of RFDAC is at least 

14.3dBm, and the POUT,RFDAC is designed to be maximum of -10dBm, the 

minimum IMD3 of RFDAC is set to be about 49dB based on equation (3.13).  

Figure 3.5 shows the impact of the finite output impedances of 40-tap FIR 

current sources on the IMD3 of the RFDAC. In order to achieve -38dBc ACPR at 

5MHz offset, IMD3 of the RFDAC needs to be at least 49dB, which translates to 

the minimum unit current source output impedance of 600k.   
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Figure 3.5: RFDAC IMD3 vs. normalized current source resistance 

 

3.2 System design of IF band-pass sigma-delta modulator 

The design of 1.5-bit IF band-pass sigma-delta modulator is mainly 

targeted for the high in-band SNR while keeping the loop-filter order as low as 

possible. In order to ease the design of the following DAC and eliminate extra 

matching circuitries, 1.5-bit quantizer is chosen.  Compared to the inherent linear 

1-bit DAC, 3-level DAC reduces the transient glitch and the quantization noise 

level and still maintains good linearity. Also the in-band SNR can be improved by 

approximately 5dB due to the additional half bit with the same oversampling ratio 

and the loop-filter order [21]. Moreover, the lower quantization noise level could 

result in lower order of the reconstruction filter.  

From the wave quality requirement of W-CDMA, in-band SNR needs to 

be at 36dB (equivalent to 6-bit ENOB).   With the quantizer bit is fixed at 1.5-bit 
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level, the order of the filter needs to be derived to provide minimum 36dB in-band 

SNR. For the sigma-delta modulator with the same quantizer bit, the higher the 

order the higher the SNR can be achieved based on the following equation [22]: 

                       

122 )(*)12(*)12(
2

3  n
P

OSR
nBSNR




                                (3.14) 

where the SNRP is the full-scale SNR, B is the quantizer bit, n is the loop-filter 

order, OSR is the over-sampling ratio.  

However as shown in Figure 3.6, the higher loop-filter order results in 

higher out-of-band quantization noise level due to the more aggressive noise-

shaping. In order to suppress the out-of-band noise below the required ACPR 

levels, the higher order reconstruction filter order is required and will ultimately  

 

Figure 3.6:   The relationship between the in-band SNR and out-of-band noise  

with different loop-filter orders ( same quantizer bits) 
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complicate the design and drive the circuit power consumption high. On the other 

hand, if the filter order is low, even though the out-of-band quantization noise 

level is low compared to the higher-order ones, it might not provide enough in-

band SNR and degrade the ultimate W-CDMA wave quality. Therefore there is 

trade-off among in-band SNR, the sigma-delta loop filter order and the following 

reconstruction filter order.  

For the current design, the IF is fixed at 62.5MHz with the digital LO 

frequency at 250MHz due to the image issue explained before. Therefore, the 

sampling frequency fs is equal to 250MHz, and the signal bandwidth fBW is equal 

to 5MHz, the OSR is about 25 using the following equation [15]: 

                                              BW

S

f

f
OSR

2/


                                                  (3.15) 

Up to now, the minimum SNR, the quantizer bit and OSR are given, the 

order of the loop filter can be derived from the simulations using different loop-

filter order. Table 3.3 lists the simulated SNR with OSR =25 and the signal BW 

of 5MHz.  From the table, 2nd.-order loop filter can only provide marginal in-band 

SNR, when taking the degradation happening along the following upconversion 

path, approximately 38dB in-band SNR is absolutely not enough. From the 

simulation results, a 4th.-order bandpass sigma-delta modulator is chosen based on 

the decent in-band SNR it offers.  Figure 3.7 shows the W-CDMA IF signal after 

the 1.5-bit 4th-order band-pass sigma-delta modulator.  
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Figure 3.7:  W-CDMA IF signal after 4th.-order BP sigma-delta modulator 

 

Table 3.3:  Simulated SNR with signal BW of 5MHz with OSR = 25 

Loop filter order Quantizer bits SNR (dB) 

2nd. – order (BP) 1.5 ~ 38 

4th – order (BP) 1.5 ~ 62 

 

3.3 System design of band-pass FIR reconstruction filter 

W-CDMA transmitter demands minimum 33dBc and 43dBc ACPR at the 

first channel (5MHz ) and the second channel (10MHz) offset, while the 3-level 

IF signals contain high out-of-band quantization noise due to the noise-shaping 

from the IF band-pass sigma-delta modulator. Without proper filtering the out-of-

band noise, it is impossible for the proposed transmitter to meet the ACPR 
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requirements. 

The main purpose of the using FIR filter as reconstruction filter is its 

linear-phase property which is critical to maintain linearity of the transmit signal 

after filtering. Moreover, the FIR coefficients can be easily programmed to fit 

different transmit standards, therefore, it has the potential for the reconfigurable 

multi-band transmitter applications.   

The general structure of band-pass FIR filters is illustrated in Figure 3.8, 

and the equation representing the structure can be expressed as [23] 

       
n

n
n

nFIR zazazaazH )(*)(*...)(*)( 212
1

2
10




           (3.16) 

where the a0, a1, a2, …, an-1, and an are the FIR coefficients, and -z-2 is the band-

pass delay unit, and n is the filter order. From equation (3.16), the filter frequency  

response is determined by the FIR coefficients and the filter orders.     

 

Figure 3.8:  Band-pass FIR filter structure 

 

In order to meet the W-CDMA ACPR requirement while keeping low the 

filter order, different types of windows are examined, including Rectangular, 

Kaiser, Triangler and Hann. With the multiple iterations, a 36-tap FIR filter using 
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Kaiser window and Beta equal to 3 is found to meet the W-CDMA emission mask 

requirements for the clock rate of 250MHz.  For real circuit implementation, the 

exact coefficients are hard to achieve. Therefore, the rounded FIR coefficients are 

used. Taking the FIR coefficient rounding effect and the real silicon non-ideality 

into account, 40-tap FIR filter is more realistic to meet the target.  Figure 3.9 

shows the 40-tap band-pass FIR filter frequency response without rounding, and 

its phase frequency response is shown in Figure 3.10. 

As mentioned before, one reason to pick the FIR filter for the signal 

reconstruction is its programmability. With the same FIR filter order and different 

FIR coefficients, the filter can be used as the reconstruction filter for other 

transmit band, for instance, the 2.4GHz WLAN 802.11g band.  Figure 3.11 plots 

the 40-tap FIR frequency response for 2GHz WLAN transmit band, and its phase 

frequency response is shown in Figure 3.12.  Figure 3.13 shows the magnitude 

frequency response for both W-CDMA and WLAN 802.11g on the same plot to 

have better view of 40-tap FIR filter for both transmit bands in terms of 

bandwidth, notches and out-of-band roll-off. 
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Figure 3.9:   40-tap band-pass FIR magnitude response for W-CDMA  

 

 

Figure 3.10:   40-tap band-pass FIR phase response for W-CDMA  
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Figure 3.11:  40-tap FIR filter magnitude response for 2.4GHz WLAN band 

 

 

Figure 3.12:  40-tap FIR filter phase response for 2.4GHz WLAN band 
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Figure 3.13:  40-tap FIR filter magnitude responses for both W-CDMA and 

WLAN 802.11g bands 

 

3.4   Summary 

In the chapter the linearity requirements of each individual blocks 

including RFDAC and RFVGA have been derived based on the system link 

budget analysis and will be used as the guideline for the circuit implementations. 

From the linearity analysis in order to meet target ACPR of -38dBc at the first 

channel offset, OIP3 of RFV GA needs to be at least +14.3dBm at the maximum 

gain of 10 and the minimum unit current source resistance has to be greater than 

600k. A 1.5-bit 4th-order band-pass sigma-delta modulator has given based on 

the trade-off in terms of in-band SNR, out-of-band quantization noise level and 

the reconstruction filter order.  The FIR reconstruction filter has been designed to 
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meet W-CDMA transmitter emission requirements. Also the programmability of 

the FIR filter has been demonstrated using 2.4 GHz WLAN 802.11g band as an 

example. 
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CHAPTER 4 

DESIGN AND IMPLEMENTATION OF IF TO RF DAC    

The proposed digital IF to RFDAC transmitter has been integrated in a 

four-metal 0.18m CMOS technology. The chip includes major circuits of digital 

IF to RF converter with embedded band-pass reconstruction FIR filter, RF VGA, 

clock buffers and frequency dividers. In this chapter, the design and 

implementation of the FIR reconstruction filter and RFDAC core are presented.  

The critical design specifications are given based on the W-CMDA transmitter 

system analysis in chapter 3. Since the RF VGA is a standalone block, the design 

of RF VGA will be demonstrated in the chapter 5 separately. 

 

4.1 Top-level implementation of IF to RF upconversion 

Fig.4.1 shows the top level schematic of digital IF to RF converter with 

embedded BP FIR filter. It includes a current-steering DAC, 1.5-bit digital IF 

switching cells, FIR filter and Gilbert-cell up-converter. Since 40-tap BP FIR 

filter is adopted for this design, there are 20 delay cells each of which realizes 

inverse of two unit delays based on –z-2 in the digital domain, hence 20 IF 

switching cells each of which is driven by the delayed 3-level digital noise-shaped 

IF signal. The 20 non-zero FIR coefficients a1 to a20 are embedded in the current 

sources of the IF switching stages. The output currents from all IF switching 

stages are summed and sent to the LO quad and then up-converted to the desired 

frequency of 2GHz. By absorbing FIR coefficients into the current sources of IF 

switching stages, the RFDAC, up-conversion mixer and BP FIR filter are merged 
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Figure 4.1: Top-level schematic of digital IF to RF converter with BP 

reconstruction filter 

 

into a compact block. 

The three-level IF signaling is achieved in the DAC path by adding a 

current dump path to the two-level DAC. Therefore there is a positive path 

corresponding to +1, a negative path corresponding to -1, and a dump path related 

to 0.  As shown in Fig. 4.1for each current source there is an IF switch cell which 

consists of three NMOS devices to implement the 3-level DAC signaling. Each 

tap from 1 to 20 has a different DC current weighted by the FIR filter coefficients, 

therefore the DC current in the conducting device of the IF switches will be 

different for each tap.  For the circuit level implementation of the FIR filter 

coefficients, DC current sources are used. The DC current sources are 

implemented using NMOS transistors, and sizes of the transistors are scaled by 
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the filter coefficients.  The length of the current source devices is chosen such that 

they can achieve the desired output impedance. The output impedances of the 

current sources should be greater than the value derived in Chapter 3.  The widths 

of NMOS devices consist of multiples of a unit device size for good matching 

between current sources and the multiples are actually the scaled filter 

coefficients. The device sizes are symmetrical around the center to maximize 

phase linearity, so there are only 10 different filter coefficients. The gate voltage 

of the NMOS devices is biased through a constant-gm current bias circuit.  The 

design and implementation trade-offs of each individual sub-blocks including FIR 

reconstruction filter, 3-level DAC input signal generation, IF switch cell and RF 

mixer will be covered from section 4.2 to 4.5. 

 

4.2 Design of FIR reconstruction filter 

There are two sets of current source arrays as shown in Figure 4.2. 

Depending on the standard of operation (W-CDMA or WLAN) one set is turned 

ON or the other. The selection circuit connects or disconnects the gate of the 

NMOS current sources to a bias voltage or to ground. 

The FIR filter coefficients are implemented by the DC current sources as 

shown in Figure 4.2, which applies for both sets of current sources. The widths 

W1 to W10 are different for two modes. The NMOS transistors with 

Length=0.72um (3 times the minimum length of the process) are used in order to 

get high output resistance current sources which directly affects the linearity. The 

widths of NMOS devices consist of multiples of a unit device size for good 
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Figure 4.2 The DC current sources forming the FIR filter response (W-CDMA or 

WLAN) 

 

matching between current sources and the multiples are actually the filter 

coefficients. The device sizes are symmetrical around the center (W1=W20, 

I1=I20). The gate voltage of the NMOS devices is biased through a constant-gm 

current bias circuit “Vb” as shown in Figure 4.2. The bias voltage is grounded by 

Cp which is about 4pF to filter noise that is coupled to the bias circuitry. In order 

to avoid oscillation which may occur in bond-wire inductors of the DC ground 

and the Cp and also the parasitic capacitors, a damping resistor Rp=10 Ω is added 

in series to the CP and a high resistor Rs=3.6KΩ is added in series to the gate 

bias. 

 

4.3 A 1.5-bit IF DAC input signal generation 

The DAC operates as 1.5-bit DAC (3-level DAC). There are two inputs to 

the DAC, M and N as shown in Fig.4.3. A three level quantizer is used in noise 
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shaping and two inputs are taken from the ∑Δ modulator, M and N as shown in 

Figure 4.3. The addition of the third level is achieved quite simply by adding a 

dump path to the existing two-level DAC and some simple digital decoding. The 

DC currents of each unit current source of the current steering DAC have three 

paths, positive, negative and a dump path. Since the FIR filter is a bandpass filter 

with factor 2 of interpolation, there is going to be Z-1 and –Z-2 blocks, where Z-1 is 

implemented by a pseudo-NMOS DFF and the –Z-2 by two DFFs following by an 

inverting block.  3-level DAC logic is defined in Table 4.1.   

 

Figure 4.3:  1.5-bit DAC signal generation 

 

Table 4.1: The logic used for DAC 

X Y Transmitted number 

1 0 +1 

0 1 -1 

0 0 0 

1 1 NA ( not transmitted) 
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4.4 IF switching cell 

As mentioned before, for each FIR current source there is an IF switch cell 

which consists of three NMOS devices out of which only one is ON (in 

saturation) and the other two are off at each time. The DC current of each tap 

from 1 to 20 are different and modulated by the FIR filter coefficients, therefore 

the DC current in the conducting device of the IF switches will be different for 

each tap. In order to maintain the same current density in the IF switches of all 

taps, the switches are scaled with currents or FIR coefficients. The unit size is 

designed to optimize for best operation point, allowing highest swing and high 

gm, and the multiples are used to scale the sizes according to the coefficients. 

However there are two possibilities for current value in each tap, 

corresponding to the two standards. Since the IF switches are shared between 

WCDMA and WLAN modes, the average of the size needed in each mode is used 

to minimize the change in current density in the saturated NMOS’s. Figure 4.4  

L

W
F sw

N  L

W
F sw

N  L

W
F sw

N 

 

Figure 4.4:  The IF switch cell for Nth tap 
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shows the Nth tap consisting of positive (+1), negative (-1) and dump current path 

(0) with device sizes scaled by FN for the Nth tap as explained above. 

 

4.5 Gilbert-cell Mixer 

The up-conversion mixer is realized using a double-balanced fully 

differential Gilbert-cell mixer that offers low LO leakage to the output as shown 

in Fig. 4.5.  In order to have an option for the WLAN band operation, a tunable 

LC load is designed with variable Cmixer and the fixed Lmixer.   

 
Figure 4.5: The Gilbert-cell based RF up-conversion mixer  

 

4.6 Frequency Divider and Clock Buffer  

As explained in [1], in order to push the digital images out of the receiver 

bands, the LO frequency is chosen to be around 2GHz and the sampling 

frequency fs is no less than but close to 250MHz.  The on-chip clock of 250MHz 

is generated by the LO frequency divided down by 8.  The frequency divider is 

shown in Fig. 4.6. It consists of three 2 stages and refreshing buffers. The output 

of the last divider is re-clocked by the input signal at 2GHz. The last DFF is 
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placed next to the input LO to minimize the on-chip layout length and the delay as 

shown in the dashed line in Fig. 4.6.  The clock buffer is designed to drive a large 

number of the digital gates. In order to achieve equal length for all the digital 

paths, the clock buffer layout is in a tree form. 

 

Fig. 4.6:  Frequency divider with division ratio of 8 

      

4.7 Summary 

The IF to RF DAC presented in this chapter consists of a current-steering 

3-level DAC, 1.5-bit digital IF switching cells, FIR filter and Gilbert-cell up-

converter. Different form the traditional way of implementation of DAC 

following RF mixer and then RF band-pass filtering, it merges the DAC, mixer 

and the reconstruction filter into a single block to reduce circuit complexity and 

power consumption. The DAC design is based on the linearity requirement 

derived from Chapter 3. The design details of each individual sub-blocks 

including the 40-tap FIR filter, 3-level DAC input signal generation, 1.5-bit IF 

switching cells, RF mixer as well as the clock divider and buffer are demonstrated 

with the main focus on the design trade-offs.  Also the design of IF to RF DAC 

provides an option for WLAN 802.11g application with different sets of WLAN 

FIR coefficients and tunable RF mixer load to potentially maximize the circuit 
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reuse.  

The designed IF to RF upconverter with embedded FIR reconstruction 

filter is implemented using 0.18µm IBM7RF CMOS technology. It consumes 

approximately 67mA current from 1.8V DC supply and occupies about 0.61µm2 

dies area. 
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CHAPTER 5 

DESIGN OF RF VARIABLE GAIN AMPLIFIER 

According to W-CDMA standard, the base station should receive equal 

power from each other. Therefore, the transmitters need to be regulated based on 

the different locations and distances from the base station. The minimum 74dB 

dynamic range is demanded in the W-CDMA mobile transmitter standard [5]. The 

power control could be done entirely at the RF power amplifier (PA) stage, but it 

requires super linear and high power PA which makes not only the design of the 

RF PA extremely challenging but also less benefits on the power consumption 

and linearity (W-CDMA transmitter employs linear modulation scheme [32] ). 

Instead, by distributing the 74dB power variation to the several blocks before the 

PA could actually relax the design requirements on the PA and result in a power-

efficient transmitter. Therefore RF variable gain amplifier (VGA) becomes an 

essential block for W-CDMA transmitter to achieve the demanding power-

variation task. In this work the required transmitter power control range can be 

achieved in two separate stages with 50dB from RF VGA and the rest from the 

sigma-delta IF stage.  The design specifications for the RF VGA are listed in 

Table 5.1. Note that the 2.4GHz WLAN 802.11g band is also included in RF 

VGA design specifications. Since the WLAN 802.11g transmitter band is not far 

from W-CDMA transmit band and it requires less power variation compared to 

that of the W-CDMA, by adding some tunable circuits, one RF VGA can easily 

support two standards which could potentially be useful for multi-band multi-

mode software defined transmitters.  
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Table 5.1:  RF VGA design specifications  

Parameters Specifications 

Operation frequency bands 
1920 – 1980MHz   (W-CDMA ) 

2400 – 2483.5MHz  (WLAN 802.11g )* 

Maximum output power  0dBm (with 5dB back-off) 

Power range  -50dBm to 0dBm 

Power step   10 dB 

Dynamic range  50dB from -40dB to 10dB 

Power step tolerance  +/- 2dB 

Temperature variation  +/- 2dB 

Output impedance 
100 ohm matching to 50 ohm load using off-

chip 2:1 balun. 

     (* WLAN is optional.) 

 

Recently many VGA designs have been reported [24]-[28]. The VGAs in 

[24]-[27] are realized using bipolar transistors (BJT) while the VGA in [28] is 

implemented in the CMOS technology. Except for the VGA in [4], which utilizes 

the so-called current-bleeding method, the implementations of the linear gain 

range are achieved unanimously by using variable gm topology. By changing the 

bias current Ib of the input transistor or transistor pair, the transconductances gm of 

these transistors are changed accordingly. Because the gain of the VGA is 

proportional to gm, the gain variation is obtained by modulating the devices 

transconductances. In this approach, the key for a wide linear-in-dB gain range is 

to keep the BJTs operating in the active region and the CMOS transistors in the 
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subthreshold region. Indeed, when the transistors work in those regions, the bias 

current Ib, can be generated by a variable voltage Vctrl and follows an exponential 

relationship: 

                             Ib  exp(Vctrl)                                                    (5.1) 

Note that gm of the transistor is proportional to the bias current Ib. Therefore, gm is 

proportional to exp(Vctrl) and the gain is linear with Vctrl in the log scale. The 

advantages of this topology are the low supply voltage and the low power 

consumption. However, for high-speed applications, such as RF VGA at GHz 

range and beyond, the CMOS implementation does not perform well because of 

the poor ft (MOSFET transition frequency ) of subthreshold MOS transistor. 

Therefore the CMOS variable gm topology is only limited to the intermediate 

frequency (IF) applications.  

In order to meet specifications listed in Table 5.1 while keeping the design 

compact, a new CMOS RF VGA topology needs to be developed to support the 

specifications. In this work a single-stage discrete-power-step VGA for two 

frequency bands is proposed. The design strategy is shown in Fig. 5.1. 

As the RF VGA is a part of a digital transmitter, the gain-control signals 

are preferred to be done in digital domain to take advantage of digital signal 

processing in the baseband. In order to utilize one VGA for two frequency bands 

rather than two standalone variable gain amplifiers, switches are introduced in the 

input and output tunable LC networks to adaptively select the impedance values 

to match desired center frequencies, which is a similar scenarios used in [29]. To 

achieve a wide dynamic range, the VGA needs to adaptively attenuate large input  



  52 

 

Figure 5.1:   VGA design strategy 

 

signal coming from the RF DAC/Mixer. This can be done by using resistor 

degeneration combined with current bleeding technique. Resistor degeneration is 

a common approach in VGA design to boost linearity. It can be realized by using 

MOS transistor, where the resistor value is controlled by the input signal at the 

gate [25] [30]. However, the control signal is analog. In this work a switchable 

poly resistor bank Rtune is adopted to replace the linear MOS resistors. In this way, 

the resistor value is controlled by the digital signals applied to the switches. The 

current bleeding technology is another attractive way to linearly attenuate the 

input signal. It has been reported in [22][24][28]. However, the control signals in 

[22][24][28] are still in the analog domain. In order to realize gain control signals 

all digital, switches are again introduced to selectively turn on and off transistor 
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pairs to control the amplitude of the output signal. Ideally the resistor 

degeneration approach should provide a large gain variation, however, in real 

circuitry implantation, it can only achieve limited attenuation due to the parasitics 

from the drain of the current source IBias and the switches used in the Rtune. By 

combining the switchable current bleeding and the resistor degeneration together, 

the desired attenuation can be achieved while the gain control signals are 

performed completely in the digital domain. As mentioned in Table 5.1, the VGA 

should not be sensitive to temperature variation, and constant-gm biasing [12] is 

famous for its robustness in temperature and simple to implement, therefore it has 

been used to bias the current source IBias in Fig. 5.1.  

In summary, the design strategies of the proposed RF VGA can be 

highlighted as follows: 

1) The operation frequency of W-CDMA band or WLAN band is determined by 

the input and output tunable impedances.  

2) 50dB dynamic range is achieved by using the resistor degeneration method 

combined with the current-bleeding scheme. The gain step is controlled by the 

digital inputs.  

3) A minimum gain variation over a large temperature range is guaranteed by a 

constant-gm biasing topology.  

 

5.1 RF VGA frequency band selection 

A tunable LC tank which performs 1st.-odrder band-pass filtering is used 

to select the desired center frequency. Higher-order filter could provide better 
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band selection, however for the CMOS technology used for this project it might 

not provide good performance due to the loss in the CMOS inductors and MOS 

switches in series with the capacitors. Moreover, higher-order filters result in 

bulky devices that either collect or inject disturbances from and through the 

substrate. Also, it consumes more die area. Therefore, a 1st-order LC band-pass 

filter is the optimal solution to perform the band selection task in monolithic 

applications for the current process. Theoretically, by either changing inductor 

and/or capacitor values, the resonant frequency will be changed accordingly. 

However, the design of variable capacitors is easier to implement compared to the 

design of variable inductors, either by using varactor (one MOS transistor) or 

switchable capacitors (capacitor bank). Therefore in this work variable capacitor 

method is adopted and the frequency band selection is realized by adjusting 

capacitor values while keeping the inductance at a fixed number as shown in Fig. 

5.2(a).  The frequency response of the tunable LC tank is illustrated in Fig. 5.2(b). 

From Fig.5.2, the smaller capacitance is, the higher resonant frequency will result. 

Note that the inductor value is not chosen arbitrarily. Indeed, monolithic inductors 

with different values and geometries have different quality factors (Q–factor). It is 

well-known that Q-factor of the LC tank at the resonant frequency defines the 3-

dB signal bandwidth (BW) [31]. In order to have enough BW, Q-factor is chosen 

to be close to 10. In the real circuitry, there are other devices around the LC tank. 

Unfortunately, these devices contribute parasitics as well. At the resonant 

frequency, the capacitor in the LC tank should absorb all the parasitic 

capacitances both at the input and output, in other words, at the resonant 
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frequency the input and output impedances only see their real parts. 

 

Figure 5.2:  (a) Tunable LC tank   (b) Frequency response of tunable LC tank 

 

5.2 Wide linear dynamic range 

In order to amplify the signal with little or no distortion, the VGA needs to 

be a linear amplifier. For an ideal linear system, the input and output signals have 

the following relationship 

                                      )(*)( txkty                                             (5.2) 

where x(t) and y(t) are the input and output signals respectively, and k is a 

constant. It means that the input and output signals keep the same shape. When 

plotted in time-domain, it should demonstrate a straight line with a certain slope 

as shown in Fig. 5.3. However, the amplifier can be modeled as a linear block 

only under the condition of the small-signal input. When the input signal gets 

larger, the small-signal assumption might not be true any longer and the gain of 

the amplifier starts to drop. This effect can be described as “1-dB compression 

point” [12] as shown in Fig. 5.4. When plotted the output and input signals on a  
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Figure 5.3:  Graphic interpretation of a linear system  

 

 

Figure 5.4: 1-dB compression point  

 

log-log scale, at the 1-dB compression point, the output signal level drops 1dB 

from its linear value. 

By using a variable resistor degeneration together with a cross-coupled 

current bleeding as shown in Fig. 5.5, the VGA not only shows good linearity but 

also achieve very wide dynamic range, which will be analyzed in detail in the 

following.  
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Figure 5.5:  Resistor degeneration with the cross-coupled current bleeding 

 

When only applying the resistor degeneration while deactivating current 

bleeding paths as shown in Fig. 5.6, the input voltage is converted to the ac 

current Id by the transistors M1 and M2 following the equation 

                  Vin+ - Vin- = Vgs1 + Rtune* Id – Vgs2                                   (5.3) 

Since  

                                        Vgs1 = -Vgs2 = 
1m

d

g

I  = 
2m

d

g

I                                           (5.4) 

where gm1 and gm2 are the transconductances of M1 and M2 respectively, and gm1= 

gm2.  When substituting equation (5.4) into (5.3), 

              Vin+ - Vin- = dtune
mm

IR
gg

*)
11

(
21

                                    (5.5) 
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Figure 5.6:  Resistor degeneration 

 

and   

          Vo+ - Vo- = dL IZ *                                          (5.6) 

therefore,  

   Gain_v = 







inin

oo

VV

VV
 = 

tune
mm

L

R
gg

Z


21

11
                     (5.7) 

From equation (5.7), the voltage gain Gain_v of the VGA is just an 

impedance ratio. Under the small-signal input condition, gm1 and gm2 are constant, 

and the output impedance ZL and the degeneration resistor Rtune are also signal 

independent, so Gain_v is not dependent on the input signal, which means that the 

VGA is linear.     

For a fixed input voltage, since the transconductances of M1 / M2 and ZL 

are constant, the drain current Id decreases with the increase of Rtune. As a result, 

the output voltage decreases accordingly due to less current flowing into the 

output load. Ideally, the resistor degeneration should provide very large gain 
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variation if the current source IBias shown in Fig. 5.1 and switches used in the Rtune 

were ideal. However, in reality the finite output impedance and parasitic 

capacitance of the current source limit the achievable gain variation range. Also 

the parasitics from the switches used for Rtune selection further shrink the gain 

range. In order to expand the gain variation transistors M5 and M6 are introduced 

to the cascoded differential pair and connected in a cross-coupled way as shown 

in Fig. 5.5. The advantage of using these two transistors is to provide additional 

signal cancellation paths to further reduce the ac current flowing into the output 

load, which could result in a huge attenuation. As illustrated in Fig. 5.5, when M5 

and M6 are activated, the drain current of M1 and M2 is still Id, which is equal to 

the sum of the drain current Id1 of M3/M4 and the drain current Id2 of M5/M6,  

                Id = Id1 + Id2                                         (5.8)  

Due to the cross-coupled structure, the total output current Ido is  

     Ido = Id1 – Id2                                       (5.9) 

which can approach zero when Id1 is equal to Id2, in other words, the infinite 

attenuation could be achieved as long as the drain currents Id1 and Id2 are the same.  

The current bleeding method is inherently linear as the final output current Ido is 

just a scaled version of Id. The general gain equation for the RF VGA can be 

described as follows: 

                                              

tune
m

L
VGA

R
g

Z
NvG




2
*_                                  (5.10) 

where N is the attenuation factor from the current-bleeding scheme. By applying 

both the resistor degeneration and the cross-coupled current bleeding, the required 
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attenuation can be achieved without linearity degradation. 

 

5.3 gm insensitive to temperature variation (constant gm biasing) 

The constant-gm biasing circuit with the VGA current source and the 

input transistor is illustrated in Fig. 5.7. To simply the analysis, a single-ended 

version of VGA is presented. In this circuit, the transistors M1 to M4 and the 

resistor Rext  

 

Figure 5.7:  Constant-gm biasing circuit for RF VGA 

 

make a constant-gm biasing circuitry. The transistor M5 is used as a current 

source of the VGA, and the M6 is the VGA input transistor. As shown in the Fig. 

5.7, the transistors M2, M5 and M6 are K, N1 and N2 times larger than the transistor 

M1 respectively. The current Iref  is given by  
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Since  

         refd INI *1                                                         (5.12) 

and the transconductance of M6 is 

                  doxnm ILWNCg )/(*2 26                                  (5.13) 

When substituting equations (5.11) and (5.12) into (5.13),                     

         refoxnm ILWNNCg )/(**2 216                           
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*2 21                                                (5.14) 

From equation (5.14), the transconductance of the input transistor gm6 is 

determined by the transistor size ratios and Rext rather than the transistor 

parameters and the supply voltage. If Rext is temperature independent, then gm6 is 

robust to temperature variation. Since on-chip resistors are more sensitive to 

temperature and process variations than the off-chip ones, an off-chip resistor is 

used to implement Rext in the design.  

 

5.4 RF VGA circuit implementation 

In the previous sections, RF VGA band selection, linear gain dynamic 

range and the temperature behavior have been analyzed.  Fig. 5.8 shows the 

schematic diagram for the circuit implementation of the proposed VGA (constant-

gm biasing is not shown). Note that NMOS switches are used in the degeneration 

resistor bank while PMOS switch is used to control the current-bleeding path. For 
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the W-CDMA band, CVGA is set about 1.13pF and is reduced down to 0.85pF at 

the WLAN band.  

 

Figure 5.8:  Schematic diagram of the proposed VGA 

 

5.5 RF VGA simulation results and layout 

5.5.1 Input and output LC tank frequency response 

Figs 5.9 and 5.10 show the frequency response of the tunable LC tanks at 

the RF VGA input and output respectively. As mentioned before, at the resonate 

frequency the tank impedances only see their real parts where the imaginary parts 

are completely cancelled out. In Fig. 5.9, the imaginary of the input impedance 

approaches to zero at the designed frequencies of 1.95GHz for W-CDMA band 

and 2.42 GHz for WLAN band. Fig.5.10 shows that the VGA output return losses 



  63 

are more than 12dB for both frequency bands, which guarantees a fair reasonable 

output matching to 50ohm load.  

5.5.2 Linearity (OP1dB plot) 

The OP1dB of RF VGA in the W-CDMA mode is illustrated in Fig. 5.11. 

From the plot, the OP1dB of 6.5dBm can be achieved, which means the designed 

VGA is linear at the targeted maximum 0dBm output power, and leaves enough at 

least 6dB margin for power back-off as well. RF VGA for WLAN mode is 

ignored here because as long as the RF VGA satisfies the linearity requirement 

for WCDMA, it will guarantee the linearity requirement for 2.4 GHz WLAN with 

no effort.  

5.5.3 Power steps for different input bit settings at 27C 

The power steps vs. different bit inputs are shown in Fig. 5.12. In the plot, 

B1 to B3 are the digital control signals applied to the switches used in the resistor 

bank and the cross-coupled current bleeding part as shown in Fig. 5.8. From the 

plot, 50dB linear gain range is clearly demonstrated. Also the simulated power 

steps just slightly deviate from their ideal values, but still within the range of +/-

1dB. The power steps at 2.42 GHz are almost 2dB higher than those at 1.95 GHz, 

which means that less input power is required to achieve 0dBm for the WLAN 

band 
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Figure 5.9: RF VGA Input frequency response (imaginary part only) 

 

 

Figure 5.10: RF VGA Output return loss based on 50 ohm load matching 
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Figure 5.11:  OP1dB of RFVGA for W-CDMA  

 

5.5.4 RF VGA output power variation over temperature   

The temperature simulation results are plotted in Figs. 5.13. Since only W-

CDMA requires stringent power steps, the power steps over temperature 

simulation is recorded only for the W-CDMA. Thanks to the constant-gm biasing 

topology, the power-step deviations are kept within +/-1 dB at 1.95 GHz over the 

temperature range from -31C to 85C compared to those at 27C. 
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Figure 5.12: Power steps vs. different bits  

 

Figure 5.13: Power step vs. control bits at -31C, 27C, 85C (W-CDMA) 
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5.5.5 RF VGA chip layout 

The chip is fabricated using 0.18µm IBM7RF CMOS technology. Fig. 

5.14 shows the layout of the designed RF VGA. The VGA itself consumes about 

0.83µm2 die area.   

 

 

Figure 5.14:  Layout of designed RF VGA 

 

From Fig. 5.14, the input and output inductors located on the top occupy a 

big chunk of the VGA area.  This is due to the 0.18µm CMOS technology used 

for this work. If 0.13µm CMOS technology or more advanced technologies were 

used, the inductor layout area would be much smaller. 

 

5.6 Summary  

The simulated performances of the proposed RF VGA are summarized in 

Table 5.2.  The RF VGA is an essential block for wireless transmitters utilizing 

linear modulation scheme, such as WCDMA and WLAN transmitters. In this 

chapter a new compact CMOS RF VGA for W-CDMA with an option for WLAN  
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Table 5.2:  RF VGA performance summaries 

Parameters Simulation Results 

Operation frequency  1.95 GHz for W-CDMA 

2.42 GHz for WLAN 

Power supply voltage 1.8 V 

Current consumption  < 36 mA at max. output power  

Maximum output power 6.5 dBm  

Output power range  -50 to 0dBm 

Power step   10dB   

Dynamic range  50dB from -40dB to 10dB 

power step deviation Max. +/- 1dB 

Temperature variation  Max. +/- 1dB 

Output impedance 50 ohm 

    Current consumption 53mA @ 0dBm 

 

802.11g is proposed based on the comparison of the VGAs in recent papers. The 

VGA utilizes the resistor degeneration and the cross-coupled current bleeding to 

achieve a wide linear dynamic range to satisfy the demanding linearity 

requirement mainly from the 2GHz W-CDMA transmitter. Tunable input and 

output impedances are adopted to selectively cover W-CDMA or WLAN transmit 

frequency bands. Constant-gm biasing is used to minimize gain variation over a 

large temperature range of -31C to 85C. By using MOS switches in the 

degeneration resistor bank and the current bleeding paths, the gain control signals 
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are performed completely in the digital domain. Simulation results shows that the 

proposed VGA can provide 50dB dynamic range with 10dB step with the 

maximum step deviation of +/- 1dB. Fine gain control of 1-dB step is obtained in 

the Δ digital IF generator to minimize phase and gain discontinuity in the 

modulated signal. Also the design is robust to temperature variation. The VGA 

achieves an output 1dB compression point as high as +6.5dBm and OIP3 of 

16dBm at the maximum gain of 10. With the rest of dynamic range from the 

digital IF stage, a total of 74dB dynamic range demanded by 2GHz W-CDMA 

can be achieved. The designed RF VGA utilizes 0.18µm IBM7RF CMOS 

technology and it consumes approximately 53mA at the maximum gain of 10 and 

utilizes 0.83µm2 die area.  
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CHAPTER 6 

EXPERIMENTAL RESULTS 

The proposed transmitter design is fabricated on a 0.18m CMOS process. 

The chip measurement setup with die photo is shown in Figure 6.1. The design 

occupies a 1.28-mm2 die area. In order to minimize the coupling between the 

digital and analog signals, the digital inputs are located at the opposite end of the 

IC with respect to the RF output and LO inputs are orthogonal to the RF VGA 

output as shown in Figure 6.1. Moreover, multiple ground bonding wires are used 

to reduce parasitic inductance impact on circuit stability and performance. As 

shown in Figure 6.1, the digital IF bits are externally supplied and re-timed with 

an internal clock, which is derived from the LO frequency. The input LO signal is 

a single-tone at 2.027GHz and applied to the chip through an off-chip impedance 

matching network. The differential RF output is transformed to the single-ended 

signal through an on-board 2:1 balun, and then applied to the 50 instrumentation 

inputs through the 50 microstrip transmission line.   

Figure 6.2 shows the ideal FIR frequency response along with filtered BP 

sigma-delta spectrum and compared to the measured carrier at 2.06GHz. A 

minimum 40dB out-of-band quantization noise suppression can be achieved after 

FIR filtering. Figure 6.3 shows the two-tone test performance. A two-tone digital 

IF signal is applied with 1MHz offset. The measured IMD3 is -52dBc, which 

meets the specifications according to the calculation and simulations in the 

transmitter link budget analysis in Section 2.  Figure 6.4 shows the image 

rejection of -33dBc can be achieved.  
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Figure 6.1:  Measurement setup for the proposed design 

 

Figure 6.2:  Ideal BP FIR response, BP  modulated signal and measured single-tone 

spectrum 
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Figure 6.3:  Measured IMD3 performance based on the two-tone test 

 

 

Figure 6.4:  Measured image rejection result 
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The total power control provided by this work is about 74 dB which 50-dB 

gain control is from RF VGA and the rest is provided by the digital IF stage. The 

RF VGA controls the output power with 10-dB step with the accuracy of ±1 dB.  

The fine power control is implemented by scaling the digital IF at the RF DAC 

input to minimize the parasitic effect on the phase. A 10-dB maximum power 

control range is achieved without degradation on the linearity. The power control 

characteristic of the RFDAC transmitter is shown in Figure 6.5.   

Figure 6.6 shows the measured W-CDMA output spectrum centered at 

2.0626 GHz. The chip achieves -35dBc ACPR at 5MHz offset and -50dBc at 

10MHz offset, which meets the W-CDMA ACPR requirements. The measured 

rms EVM result is less than 4.8% as shown in Figure 6.7.  The measured ACPR 

performance at the first channel offset is close to -33dBc specification, this is 

partially due to the non-linearity of the bench board. If the bench board is 

probably characterized, a 2 to 3dB improvement at 5MHz offset can be achieved. 

The further noise reduction at first channel offset can be improved by optimizing 

FIR filter coefficients and/or using longer FIR filter to provide sharper roll-off at 

the first and second side lobes to leave more safety margin for the RF PA stage. 

Table 6.1 summarizes the performances of the proposed digital IF to 

RFDAC transmitter for 2GHz W-CDMA band. Table 6.2 lists the major 

specifications and performances of the RFDAC architectures reported to date.    
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Figure 6.5:  Measured power variation of the proposed transmitter (CONTROL is 

from the DSP in the transmitter)   

 

 

Figure 6.6:  Measured W-CDMA ACPR performances 
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Table 6.2:  Summaries of the specifications and performances of the RFDAC 
architectures 

Publication Ref. [4] Ref. [2] Ref. [3]  This work 

Process CMOS 0.13m 
CMOS 

0.18m 

CMOS 

0.25m 
CMOS 0.18m 

Supply voltage 

(V) 
1.2 1.8 2.5 1.8 

Center Freq 

(GHz) 

1.9  (WCDMA) 

2.4   (WLAN ) 
0.9 1 2  (WCDMA) 

Mode  Dual Single Single Single 

Main Blocks 
Digital RF 

Modulator 

Digital RF 

Modulator 

Digital RF 

Modulator  

+ FIR Filter 

Digital RF 

Modulator  

+ FIR Filter  

+ RF VGA 

DAC Bits 8 8 1 1.5 

Sampling Freq 

(MHz) 
-- 514 125 250 

SNR (dB) 
60  (WCDMA) 

44  (WLAN) 
53 67 50  

Bandwidth 

(MHz) 

60  (WCDMA) 

100  (WLAN) 
17.5 10 50 

Pout (dBm) 
-10  (WCDMA) 

-23.6  (WLAN) 
-- -- 0 

Power 

consumption 

(mW) 

65 18 125 223 

Die area    

(mm2) 
0.7 -- 0.23 1.28 
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CHAPTER 7 

EXTENDED APPLICATIONS 

A highly digital-intensive sigma-delta modulated IF to RF DAC 

transmitter has been presented in the previous chapters. The presented 

architecture not only shows good linearity and low power consumption but also 

features architectural flexibility which could potentially be reconfigured for other 

wide-band wireless mobile standards, such as 2.4GHz WLAN 802.11g, with 

maximum circuit reuse.  

The circuit reconfigurability has already been demonstrated in chapter 3, 

chapter 4 and chapter 5 in terms of FIR filter, RF upconverter and RF VGA. 

Moreover, the SDM-based digital transmitter can be potentially extended from the 

Cartesian to polar coordinates to make on-chip CMOS high-power amplification 

for wide-band wireless mobile standards possible which is the main focus of this 

chapter.         

 

7.1 Introduction 

With the increasing demand for high data-rate transmission in recent 

mobile communications, the base band modulations have evolved from constant 

modulation schemes ( such as GMSK used in the GSM standard) to the non-

constant envelop modulation schemes (such as /4-QPSK used in W-CDMA and 

64-QAM used in WLAN ). Non-constant modulation schemes increases the 

spectral efficiency with enhanced data rate but traditionally they require linear 
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amplifiers such class A, class B or class AB amplifiers to boost the transmitted 

signal power with minimum distortion, which results in a low efficient device and 

a lot of power is wasted in the power amplification stage.  Envelope elimination 

and restoration (EER) technique provides a way to use high efficient non-linear 

amplifier such as switch-mode class E, class F amplifiers, while maintain 

qualified spectrum at the radio frequency. Basically EER is a technique belongs to 

the polar transmitter category. Recently many works published based on the polar 

transmitter architecture, such as supply modulator and digital polar transmitter 

[33][34][37]. Supply modulator has the advantage of improved linearity with 

large power back-off, but the drawback of this architecture is the limited signal 

bandwidth (around 1MHz) due to the analog low-pass filter in the envelope path. 

Moreover, there is a low-frequency inductor which is still realized off-chip due to 

the technology limitation. Digital polar transmitter reported in [34] provides a 

solution for wide-band signal amplification but it complicated the design of power 

amplifier stage, especially in order to reduce digital images, linear interpolation is 

adopted which results in a large number of power amplifiers. Furthermore, the 

architecture still utilizes an off-chip balun which increases power consumption, 

cost and area. In order to overcome the drawbacks in [34][37], a highly integrated, 

high efficiency, low-voltage wide-band transmitter solution for wireless 

communication using CMOS technology is proposed. This is achieved through 

digital polar modulator and parallel amplification technique to reduce circuit 

complexities with added power efficiency. The proposed architecture can take full 

advantage of CMOS scaling and low cost digital CMOS process. 
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7.2 Proposed digital polar transmitter 

Figure 7.1 shows the proposed digital polar transmitter architecture. The 

baseband I /Q signals are first decomposed into baseband amplitude and phase 

information through rectangular to polar transformation. Then, the baseband 

amplitude signal sends to the 1-bit oversampled sigma-delta analog to digital 

converter (ADC) to generate single-bit envelope bit streams. The out-of-band 

quantization noise due to the sigma-delta noise-shaping is suppressed by the 

embedded semi-digital FIR filter which is composed of a delay line, gain ( FIR 

coefficients ) and summing stages. The delay line is located in the envelop path, 

and the order of the FIR filter determines the number of the power amplifiers 

being used. The FIR coefficients and the summing stage are embedded in the PA 

stages as well as their matching networks. The 1-bit SDM bit streams feed to the 

FIR delay line to form a FIR-delayed single-bit envelop bits. The baseband phase 

information is up-converted to RF and then passes through a limiter to generate 

constant-envelope phase-modulated RF signal to drive a parallel power amplifiers 

which are modulated by the FIR-delayed envelope bit streams. The envelope and 

phase are restored at the PA stage. The output of the individual PA is summed to 

drive 50 ohm load directly.   Since the envelop information is located in the low 

frequency range, a low-pass sigma-delta ADC is utilized in the envelope path. 

Single bit is adopted to take full advantage of its inherent linearity. The order of 

the ADC and the oversampling ratio (OSR) are determined based on the in-band 

SNR requirement. Since the ADC is only one bit, the OSR will be increased to 

meet the same SNR requirement compared to the multi-bit case if the same order 
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Figure 7.1:  Proposed digital polar transmitter architecture 

 

is used. But if a multi-bit ADC is used, the OSR can be reduced with the same 

loop filter order, but the linearity in the envelop path will be degraded and the 

number of the power amplifiers will be increased by the factor of 2N, where N is 

the quantizer bit number [34].  With the CMOS technology further scaling down, 

we believe single-bit SDM with relatively high OSR is an attractive approach.  

The proposed architecture offers four advantages as follows: first of all, it 

can use the parallel amplification technique to boost output power with reduced 

drain voltage of individual amplifier, thus allowing to use low-cost low-voltage 

CMOS transistor in the final stage of high power amplification (for example, 

transmitted power of +26dBm).  Second, in this architecture, the number of power 
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amplifier is equivalent to the filter order, therefore, the number of PA can be 

extremely reduced if we can keep the filter order low without sacrificing the 

performance, which makes the individual power matching at the output of each 

PA possible, hence improved power efficiency due to low power enhancement 

ratio in each matching circuit [36].  Third, as individual impedance transformation 

is allowed at the output of each of the power amplifier, a LC-balun can be used 

on-chip to eliminate a standalone off-chip one, which improve the integration 

level [35]. Fourth, as high oversampling frequency is adopted in the envelope 

path, the digital images are pushed far away from the transmission band. 

Moreover, with embedded FIR filtering, the digital images which could be located 

in the receiver bands are null out due to FIR filter frequency response. 

 

7.3 System design of the proposed digital polar transmitter 

In this section, the system design of the proposed digital polar transmitter 

is presented in terms of wide-band single-bit sigma-delta modulator, 5-tap FIR 

filter and on-chip high efficient power combining. 

7.3.1 Wideband single-bit sigma-delta modulator 

Linearity in the digital envelope path is crucial for the overall linearity of 

the transmitter. From the system level simulation, in-band signal-to-noise ratio 

(SNR) in the envelope path needs to be at least 36 dB if a 5MHz-channel 

bandwidth W-CDMA signal is adopted, which is equivalent to at least 6-bit 

resolution.  Single-bit oversampling sigma-delta modulator (OS SDM) has the 

advantage of inherent linearity while the SNR is determined by the order and the 
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oversampling ratio of the SDM.  Another advantage of single-bit OS SDM is that 

it provides a way to reduce the complexity in the digital power amplifier 

implementation and allow efficient on-chip power combining. However, for 1-bit 

OS SDM, in order to achieve min. 36 dB SNR, one can either use large SDM 

order with low oversampling ratio (OSR) or vise verse. Since stability is always 

an issue for higher order OS SDM, one needs to keep SDM order low as low as 

possible. In the propose architecture, a 1-bit 4th-order SDM is preferred which 

will be explained next.  

In order to take the advantage of high-efficient on-chip individual power 

matching at each power amplifier output and to save die area, one needs to keep 

the number of power amplifiers low, hence low FIR filter order. If the signal 

bandwidth of SDM is set close to channel bandwidth, higher order FIR filter is 

inevitable to reduce the out-of-band quantization noise otherwise ACPR 

performance will be degraded. There is always a trade-off between FIR filter 

order and ACPR and spurious emission performance. In order to keep low FIR 

filter order while maintain ACRP and spurious emission within standard margin, 

the signal bandwidth of the SDM needs to be extended. For example, for UMTS 

W-CDMA transmitted signal with channel bandwidth of 5MHz, the SDM signal 

bandwidth is expanded close to 30MHz which is half of W-CDMA band. As long 

as high SNR is maintained during the 30MHz span, the FIR filter design is just to 

take care of out-of-band quantization noise and spurs, thus reduced order is 

achieved.  In order to achieve high signal bandwidth, a 4th-order 1-bit SDM is 

adopted to expand the signal by adding zeros in the signal transfer function. Fig. 
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7.2 shows the potential single-bit 4th.-order low-pass sigma-delta modulator using 

resonator feedback topology.  In Fig. 2, g1 and g2 are in the feedback path to 

generate optimized zeros in the noise transfer function (NTF) and expand in-band 

signal bandwidth. The NTF of Fig. 2 can be expressed as follows: 

                                                                                                                        (7.1) 

 

               (7.2) 

 

Fig. 7.3 illustrates the NTF frequency response of the sigma-delta 

modulator shown in Fig. 2 and expanded signal bandwidth is clear shown. Fig. 

7.4 illustrates the simulated result of 1-bit wide-band SDM shown in Fig. 2. It can 

achieve the signal bandwidth of 33 MHz and SNR of 46.7 dB which is capable for 

W-CDMA digital polar transmitter application.  

 

Figure 7.2:  1-bit 4th-order low-pass sigma-delta modulator with OSR = 5 
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Figure 7.3:  1-bit 4th-order SDM Chebyshef NTF response 

 

 

Figure 7.4:  1-bit wide-band sigma-delta modulator frequency response (signal 

bandwidth = 33 MHz, SNR = 46.7 dB) 
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7.3.2 5-tap FIR reconstruction filter 

Single-bit SDM provides the advantages of inherent linearity and required 

in-band SNR, but it also brings high level out-of-band quantization noise due to 

noise shaping.  This high level could violate spurious emission mask demanded 

by the standards even after band selection saw filter and duplex filter between the 

PA and the antenna. In order to relax analog filtering and meet spurious emission 

mask, an embedded FIR filter is adopted in the proposed architecture to suppress 

the noise level first.  As analyzed before, in order to reduce the number of power 

amplifiers, keeping low FIR filter order is a must. FIR filter order can be derived 

based on spurious emission requirement of specific standard.  For example, for 

W-CDMA signal, 5th-order FIR filter is enough to reduce the out-of-band 

quantization noise, and spurious emission mask can be met together with band 

selection SAW filter and duplex filter. 

Figure 7.5 illustrated a 5-tap FIR frequency response and the filtered W-

CDMA spectrum using the 1-bit oversampled SDM is illustrated in Figure 7.4.   

From Figure 7.6, W-CDMA ACPR requirements are met with some safety 

margin.  Since the FIR filter order is only five in this example, the total power 

amplifier number becomes five also which extremely ease the design of PA stage, 

and on-chip individual matching is feasible due to the low number of PA with 

relatively increased die area. 
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Figure 7.5:  5-tap FIR filter frequency response 

 

 

Figure 7.6: 5-tap FIR filtered WCDMA RF spectrum 

 

-2 -1 0 1 2

x 108

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency  ( Hz )

M
ag

ni
tu

de
 (

dB
)

5-Tap FIR Filter Frequency Responses

 

 

After Coef Rounding
Before Coef Rounding



  87 

7.3.3 Concept of high-efficient on-chip power combining 

For the high power amplifier design, the loss in the on-chip passive 

impedance transformation and power combining network places an important role 

in the total power efficiency, therefore, they deserve special attention. In order to 

overcome the low breakdown voltage of the silicon transistors, these passive 

networks are inevitable for the high power amplification. If only a single on-chip 

impedance transformation circuit is used, then high loss in this circuit will result. 

The loss in the single impedance transformation circuit can be reduced by using 

the multi-section parallel impedance transformation networks. For example, as 

shown in Figure 7.7, the current I is flowing through a lossy impedance 

transformation network where the loss is represented by Rloss. The power at the 

load end and the power lost in the impedance transformation network can be 

represented by equations (7.3) and (7.4) respectively, 

                                  load
load

load
out RI

R

V
P *2

2

                                                (7.3) 

                                   lossloss RIP *2
1,                                                        (7.4)  

If the output current I is split into I1 and I2 and each of the split currents is flowing 

into the same individual impedance network as shown in Figure 7.8. 

 

Figure 7.7:  One-section lossy impedance transformation network 
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Figure 7.8:  Two-section lossy impedance transformation network 

 

Since I = I1+ I2, the same power is delivered to the output for the same load, but 

the loss will be different as expressed in equation (7.5) 

                losslosslossloss RIIRIRIP *)(** 2
2

2
1
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12,                       (7.5) 

When rewriting equation (7.4), we get 

losslossloss RIIRIP *)(* 2
21

2
1,   

                                           lossRIIII *)**2( 21
2

2
2

1                             (7.6) 

Comparing the equations (7.5) and (7.5), it is obvious that the loss is 

reduced by the amount of two times I1*I2*Rloss when delivering same power with 

the same load resistance if the PA output current I split into two currents I1 and I2.  

The loss in the transformation network could be reduced as high as 50% if the 

current is equally split. It can be concluded that by splitting the PA output current 

down to several small currents, the reduced loss in the impedance transformation 

networks can be achieved, thus the enhanced power efficiency can be achieved. 

The only drawback is the increased die area required. 

In the proposed architecture as shown in Fig.7.9, parallel amplification is  
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Figure 7.9:  Lossy on-chip multi-section FIR power combining 

 

utilized to overcome the low transistor breakdown voltage due to CMOS 

technology and low loss can be achieved using on-chip multi-section impedance 

transformation and power combining network. The total 5-tap FIR modulated 

output power with lossless power combining network can be expressed as 
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where RL/B1 = a1 , … , RL/Bn = an, n is the FIR filter order or the number of 

power amplifiers, and a1 to an are the FIR coefficients.  Total efficiency for the 
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lossy n-tap FIR (unit FIR coefficient) multi-section LC balun power combining 

network can be demonstrated in equation (7.8) 
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where ma is the power efficiency of the matching network itself, RLm is the loss 

due to finite inductor quality factor QL of 10, E is the total power enhancement 

ratio of the whole impedance transformation network, and n is the FIR filter order 

or the number of power amplifiers.  Figure 7.10 shows the power efficiency of 1-

tap to 5-tap FIR power combining network with unit FIR coefficient as the 

function of the power enhancement ratio (E).  The power enhancement ratio is 

defined by [36], [38].   It takes the loss of the impedance transformation network 

into account, and is defined as the ratio of the RF power delivered to the load with 

the lossy transformation network in place, Pout, to the power delivered to the load 

if this load is directly connected to the power amplifier,Pout,0 , 

                                               
0,out

out

P

P
E                                                            (7.9) 

From the Figure 7.10, the 5-tap FIR power combining network provides 

highest power efficiency.  Also from the plot, one can conclude that the 4-tap or 

5-tap FIR power combining networks could provide the optimal power efficiency. 

4-tap FIR implementation could save on-chip area compared to the 5-tap case, 

however, 5-tap FIR offers better out-of-band quantization noise suppression due 

to single-bit SDM noise-shaping. Therefore, 5-tap FIR power combining 
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surpasses 4-tap one in terms of satisfying the W-CDMA spectrum emission 

requirement while maintaining highest efficiency (with slightly increase on the 

die size). 

 

Figure 7.10:  Power efficiency of the impedance transformation network function 

power enhancement ratio with different sections  

 

The overall power efficiency is determined by the power efficiency in the 

power amplification stage and the power combing stage. With the extremely high 

efficiency offered by the non-linear class E PA and the boosted efficiency due to 

the parallel power combining, the overall high power efficiency can be achieved 

without the need of the off-chip balun.  

 

7.4 Summary of proposed digital polar transmitter 

A highly integrated high efficient wide-band digital polar transmitter 
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architecture targeted for W-CDMA transmitter application is proposed as an 

extension of the digital SDM-based transmitter architecture. Based on the digital 

polar modulator design and the parallel amplification technique, the proposed 

transmitter features the advantages of circuit simplicity, enhanced power 

efficiency, and a high level of integration. 

In this chapter, a 1-bit wide-band sigma delta modulator (SDM) is utilized 

in the envelope path to generate digital envelope without linearity degradation. 

The quantization noise due to 1-bit SDM is suppressed by the embedded finite 

impulse response (FIR) filter. The FIR-delayed envelop bit streams control a 

number of power amplifiers to restore the spectrum at the radio frequency (RF) 

and suppress the quantization noise simultaneously when RF powers are 

combined. The power amplifiers (PAs) are driven by the phase modulated RF 

signal and the number of PAs is equal to the order of the FIR filter. The PA 

outputs are combined using on-chip inductor and capacitor (LC) baluns and 

eliminate the need of an off-chip impedance transformation, a power combining 

network as well as a standalone balun. The conventional issue of digital image is 

inherently solved by the null locations set by the embedded FIR filter response. 

System-level simulation demonstrates that the proposed architecture can 

efficiently transmit high power using the low-voltage CMOS technology with 

5MHz or higher signal bandwidth without spectrum quality degradation. The 

proposed system takes full advantage of CMOS technology scaling, digital signal 

processing and parallel amplification to ease the circuit complexity and enhance 

the power efficiency for wide-band non-constant modulated signals. 
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CHAPTER 8 

CONCLUSIONS 

This thesis presents a highly integrated digital IF to RF transmitter (DRFTx) 

which combines a 1.5-bit current steering DAC, a semi-digital FIR filter and a RF mixer 

along with a RF VGA implemented in 0.18µm CMOS technology for W-CDMA 

mobile application. The proposed IC is designed based on the transmitter linearity 

analysis. The embedded reconstruction filter attenuates the out-of-band 

quantization noise due to ∑Δ modulator noise-shaping below the spectral 

emission mask level and ACPR demanded by the 2GHz W-CDMA transmitter. 

The design of FIR filter results from the linearity derivation and the tradeoff on 

the filter length and power consumption. 74dB dynamic range is achieved by 

scaling the power of both sigma-delta digital IF stage and RF VGA stage. The 

proposed DRFTx achieves good linearity utilizing 1.5-bit DAC. The measured 

results show that a digital-intensive digital IF to RF upconverter architecture can 

be successfully employed for W-CDMA transmitter application. The system level 

simulation shows that the proposed DRFTx has the potential to be extended to 

other wide-band transmitter application, such as 2.4 GHz WLAN 802.11g 

transmitter with maximum circuit reuse, and the concept of digital sigma-delta 

modulator based architecture can be extended from Cartesian to polar coordinates 

to make CMOS implementation of high efficient power amplification possible for 

wide-band wireless mobile transmit devices without the need of off-chip balun.       

The concept presented in the thesis could be successfully applicable for 

the next generation wide-band digital-dominant, low cost and low power 
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consumption devices with decent performances.   
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