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ABSTRACT

Public risk communication (i.e. public emergency warning) is an integral
component of public emergency management. Its effectiveness is largedlydmas
the extent to which it elicits appropriate public response to minimize losses from
an emergency. While extensive studies have been conducted to investigate
individual responsive process to emergency risk information, the literature in
emergency management has been largely silent on whether and how emergency
impacts can be mitigated through the effective use of information trangsmissi
channels for public risk communication.

This dissertation attempts to answer this question, in a specific research
context of 2009 H1N1 influenza outbreak in Arizona. Methodologically, a
prototype agent-based model is developed to examine the research question.
Along with the specific disease spread dynamics, the model incorporates
individual decision-making and response to emergency risk information. This
simulation framework synthesizes knowledge from complexity theory, public
emergency management, epidemiology, social network and social influence
theory, and both quantitative and qualitative data found in previous studies. It
allows testing how emergency risk information needs to be issued to the public to
bring desirable social outcomes such as mitigated pandemic impacts.

Simulation results generate several insightful propositions. First, in the
research context, emergency managers can reduce the pandemic impacts by
increasing the percent of state population who use national TV to receive

pandemic information to 50%. Further increasing this percent after it res@¥es



brings only marginal effect in impact mitigation. Second, particular aftergi
needed when emergency managers attempt to increase the percent of state
population who believe the importance of information from local TV or national
TV, and the frequency in which national TV is used to send pandemic information.
Those measures may reduce the pandemic impact in one dimension, while
increase the impact in another. Third, no changes need to be made on the percent
of state population who use local TV or radio to receive pandemic information,
and the frequency in which either channel is used for public risk communication.
This dissertation sheds light on the understanding of underlying dynamics of
human decision-making during an emergency. It also contributes to the discussion
of developing a better understanding of information exchange and communication
dynamics during a public emergency and of improving the effectiveness af publi

emergency management practices in a dynamic environment.
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Chapter 1
Introduction

Public emergency management or emergency management (EM) is “the
discipline and profession of applying science, technology, planning and
management to deal with extreme events that can injure or kill large numbers of
people, do extensive damage to property, and disrupt community life” (Hoetmer,
1991, p. xvii)} Despite there are many ways to describe the importance of EM, it
hardly seems necessary today to explain the value of a discipline and profession
whose purpose is protecting lives and property in public emergencies. The
increasing number and variety of public emergencies that are plaguingride w
today promote the visibility and significance of EM.

In the United States, EM has been conceptualized as an essential role of
government (Giuffrida, 1985; Wilson & Oyola-Yemaiel, 2001). As a discipline
and profession, it emerges in the 1950s (Drabek & McEntire, 2003; Dynes &
Drabek, 1992). A command and control approach since then has been adopted as
the mainstream approach in public administration (PA) field to addE® issues.
According to this approach, the goal of EM is to regain control over the social
chaos created by an emergency and to reestablish social order (Dynes, 1983,
1989). Public EM system should be developed as a highly bureaucratic system,
which is characterized by clearly defined objectives, a formal structureiseodi

of labor, and a set of guiding policies (Schneider, 1992). Management strategies

! This dissertation focuses only on the research and practices of EM in the field of
public administration. Studies and practices of EM in private sectors are not
considered. Within this study, public emergency management can also be simply
called emergency management.



within this system mainly include centralized decision-making and
communication, and the strict implementation of pre-planned operating protocol
and procedures (Britton, 1986, 1989, 1991).

Over time many EM researchers have realized the ineffectiveness of thi
approach to address EM issues, despite its consistent and wide application. The
highly bureaucratic EM system developed under this approach is designed to
operate under stable and routine conditions (Schneider, 1992). Such a system
inevitably becomes mismatched and ineffective in the rapidly changing
circumstances of a public emergency. The dynamic nature of the environment
requires a different approach than the traditional framework. This dissertati
attempts to address some of those limitations in current EM literature iiteBA f
by focusing on public risk communication during public emergencies (i.e., public

emergency warning).

Public Risk Communication as an Important EM Issue

The crucial role public risk communication plays in EM has long been
recognized by both academics and practitioners (Garnett & Kouzmin, 2007;
Leibinger, 1980; Williams, 1964). Historical evidence has showed a community
with the help of effective public risk communication can greatly reduce the
potential consequences of an emergency (Drabek & Stephenson, 1971; Mileti &
Sorense, 1990; Perry & Lindell, 2003a). It is therefore not surprising that many
studies in the earliest research in EM area focused on the effectivenabiof p
risk communication (Drabek, 1969; Quarantelli, 1954; Williams, 1957).

Meanwhile, practicing emergency managers have also been sharply rethmmded



missteps in public risk communication by the well-documented failed attempts in
the 2001 anthrax risk communication debacle (Koplan, 2003; Reynolds & Seeger,
2005), the 2003 and 2004 flu vaccine shortages (CDC, 2004; Gilk, 2007), and the
2005 resident evacuation prior to Hurricane Katrina and subsequent flooding
(Brodie et al., 2006; Wang & Kapucu, 2007). To improve the effectiveness of
current public risk communication practices motivates this dissertation todocus
this issue among all other important issues in public emergency management.

In the EM field, the term of public risk communication is rarely used. Most
studies in this field use the term of public emergency warning or pubiiarnga
to refer to the transmission of messages to individuals, groups, or populations
which provide them with information about the existence of danger and what can
be done to prevent, avoid, or minimize the danger (Williams, 1964; Lindell &
Perry, 1992; Reynolds, 2005). This dissertation uses these three terms
interchangeably. Furthermore, the term of risk when used in studies of public risk
communication in EM can be defined as “a condition in which there is a
possibility that persons or property could experience adverse consequences”
(Lindell, Prater, & Perry, 2005, p.84).

Traditionally, public risk communication during public emergencies is
addressed through a ‘command and control’ centralized effort. Both researchers
and practitioners in this area considered public risk communication as a linear,
top-down and expert-to-lay process (Gladwin et al., 2007; Gutteling, 2001). The
main concern for them is the top-down influence on direct preparedness and

response orders, as well as the capacity and application of different



communication technologies involved. Emergency managers in practice are
preoccupied by a technical focus, particularly the interoperability of mexiani
devices, such as radio, cell phones, and satellite telephone networks. With the
successive failure of the traditional model to communicate emergency sk to t
public and to elicit their appropriate response, EM researchers are challenged t
reconsider the process of public risk communication.

To meet such a challenge, an extensive number of studies in EM have been
conducted to explore the process of public risk communication. Most of these
studies believe the most important aspect of the process lies in its social and
human component, particularly how the warning target population responds to
risk information and how public risk communication can facilitate timely and
proper response. On the one hand, empirical findings have been provided to
evaluate the traditional model emergency managers subscribe to for public risk
communication practices. On the other hand, substantial and systematic
knowledge has been accumulated regarding how individuals perceive and respond
to risk information in emergency situations. These studies also provide important
insights on the design of emergency risk information to encourage desirable
public response.

While such knowledge has significantly influenced previous public risk
communication practices in EM, some limitations remain: 1) few insigius h
been provided on how emergency risk information should be sent to the public; 2)
little is known about how individuals use information for decision-making during

their response process to emergency risk information; 3) little aiemis been



paid to how public response pattern to emergency risk information at the system
or community level emerges; and 4) few studies have considered risk
communication during emergencies as a dynamic process, through which public
sectors and the public interact with each other through information exchange.

These limitations, while not overlooked, are made persistent concerns in
public risk communication in EM, due to the methodological flaws inherent in
this stream of literature (Donner, 2006; Drabek, 1969; Gladwin et al., 2007).
Previous EM studies on public risk communication have either adopted a
traditional view and focused on its technical aspect, or engaged themselves into
the investigation of individual behavior. Methodologically, current EM studies are
preoccupied by qualitative description or post-emergency survey and simple
statistical analysis. Such research methods are not well equipped to cannecti
individual and system level while at the same time tracking the decisikimgna
process at the individual level and including a dynamic and process view.

This dissertation aims to address the first three limitations out of four as
discussed above in the public risk communication literature in EM filed, by
employing agent-based modeling to explore whether and how emergencysimpact
can be managed through the effective use of information transmission channel for

public risk communication.



Chapter 2
Literature Review

During the past decades, EM scholarship has been in a cross-road (Britton,
1999). Such a status becomes more salient with the occurrence of 9/11 attack and
Hurricane Katrina. More academic efforts since then are stindulatexplore and
develop new and revolutionary approaches to address EM issues.

This chapter summarizes previous research in the field of public
administration on how the approach to emergency management in general and to
emergency public risk communication in particular evolves in the context of ever-
changing practical and academic environment. In this chapter, what is a public
emergency is first defined. The traditional approach to emergency mamdgeme
then reviewed, including its histories, characteristics, strengths, anujzaly
its weaknesses and previous insights on how to address the weaknesses. This
chapter also purports to develop an understanding of the current literature on a
key aspect of emergency management: public risk communication. SpBgifical
shall address what has been discussed with regard to public risk communication in
emergency management literature, and what are the inherent limitatithns i
stream of literature that constrain its potential for further theorelszeelopment

and practical application.

Emergency Management Resear ch and Practice
What is a public emergency. One of the major problems that confront EM
researchers is the dissent regarding how to name and define the subject matter

Different terms have been used in EM literature to refer to the major object of



studies, including emergency, incident, hazard, disaster, catastrophes and
calamities. Some researchers attempt to distinguish these termsafrbrotker.
According to them, all terms refer to environmental events with negative
consequences on society (Lindell & Perry, 2004). They all can be called
emergencies, but come with different sizes and impacts and need different
response units (Birkland, 2006; McEntire, 2004a).

Generally speaking, small-size emergencies are often callelems;)
hazards or simply emergencies (Kapucu & van Wart, 2006). These events cause
minor consequences for a community, and can be successfully handled with the
resources of a single local governmental agency (Lindell & Perry, 2004).
Moderate-size emergencies can cause considerable losses in a coranuliaity
given the name of disaster. Although they can be entirely managed at the local
level, multiple agencies are usually required for a regional responsdjreese
they even need assistance from the state. A catastrophe or calam#tyaeféop-
level emergency, whose occurrence is “notable, rare, unique, severed, and
profound in terms of impact, effects, or outcomes” (Kapucu & van Wart, 2006,
p.290). Responding to such an event often exceeds the capacity of local
jurisdictions and needs cooperation national wide (Lindell & Perry, 2004).
Another term frequently used in EM studies is crisis. This term is even more
comprehensive than emergency when used as a general term (Shaluf, Ahmadun,
& Said, 2003). It refers to a situation or a turning point where important decisions
have to be made. It is different from any other term discussed before since both

positive and negative outcomes can result from a crisis. Based on the differences,



what interest researchers and practitioners in EM are disastersstrogdtas, not
all types of emergencies. However, the term of emergency and disastétea
used interchangeably in EM studies (Adelman & Legg, 2009).

Even for studies using the same term for the major subject, no definitive
conclusions have been achieved regarding how to define the term. For example, a
disaster has been defined from various perspectives, for example, as alphysic
happening outside society (e.qg., Fritz, 1961), as a social disruptive event (e.g.,
Kreps, 1995), or as a non-routine social occasion (e.g., Quarantelli, 1989).

In this dissertation, the definition of a public emergency adopts what Lindell
and Perry (2004) defined a disaster from the EM perspective, namely,-“a non
routine event in time and space, producing human, property, or environmental
damage, whose remediation requires the use of resources from outside the directly
affected community” (p.7-8).

Command and control approach. In United States, emergency
management as a research field emerged in the 1950s as a response to institutional
demand (Dynes & Drabek, 1992). US governments at that time were primarily
concerned with the threat of outside nuclear attacks (Wilson & Oyola-Yemaie
2001). Disasters, particularly natural disasters, were viewed assrak|-
analogues to nuclear attack situations and natural laboratories fog tbsti
possible effects of armed aggression. Funds were provided by civil defense

departments for the study of disaster and emergency management, te explor

2 Since this dissertation focuses only on research and practices of EM in public
sectors, a public emergency within this study can also be simply eatlexency.
Furthermore, following Lindell and Perry’s definition (2004), the term enmenge
and disaster can be used interchangeably throughout this dissertation.

8



civilian response to nuclear attacks, as well as how to maintain social rovder |
situations (Alexander, 2002; Kreps, 1995; Tierney, Lindell & Perry, 2001). Such
civil defense supports pressed researchers to develop a theoretical perspatti
was consistent with military pattern (Dynes, 1983; Gilbert, 1995).

Command and control emerged from this circumstance as the first model of
emergency management. It strongly reflects the wartime and natenaity
roots (Perry, 2006). In this model, disasters bear a great resemblance td harmf
attacks. They are considered as events external to a focal societyn Huma
communities are systems with essential functions. After a disastdnéggdtem,
social functions are disrupted; communities should react organically atjsnst
aggression, to restore the system back to normal.

Individuals are assumed to be inept and passive because of the social chaos
created by a disaster (Dynes, 1994; Schneider, 1992); they behave in an irrational
and anti-social way (Dynes, 1994; Britton, 1989a; Mileti, 1989). Local emergency
personnel are considered self-centered and irresponsible; they leavesteinp
the disaster situation (Dynes, 1983). Outside authorities and resources ¢herefor
become necessary, given the reduced capacity of individuals and organizations in
the local community to cope with disasters (Dynes & Drabek, 1992).

The goal of emergency management is to regain control over the social chaos
and to reestablish social order (Dynes, 1983, 1989). With this goal, the model
provides a highly bureaucratic emergency management system (Dynes, 1994;
Kapucu & van Wart, 2006). Schneider (1992) characterizes this system with four

basic features: clearly defined objectives, a formal structure, a divisiabaf |



and a set of guiding policies. Management goals are achieved through the
centralization of power and decision making (Britton, 1989a; Dynes, 1983), a
hierarchical, top-down communication and information system (Britton, 1989a,
1991; Dynes, 1983), strong paramilitary leadership (Drabek & McEntire, 2003;
Neal & Phillips, 1995), and pre-planned detailed operating protocol and
procedures (Britton, 1986, 1991; Schneider, 1992).

Management efforts are viewed effective only if they are made by public
sectors. For example, information outside of official sources is considered
inaccurate (Britton, 1989a). Ad hoc or emergent behavior, such as voluntary
rescuing behavior after a disaster, is considered counter-productive oaai tsé
prevented (Mileti, 1989). In fact, advocates of this approach contend that any
departure from bureaucratic guidelines would create problems (Neal & Phillips,
1995). When government fails in responding to a disaster, the management
system is viewed not as bureaucratic as it should be. The system therefisre nee
to be advanced toward a stricter and more centralized direction. Measuie that
usually advocated by researchers favoring this model include more detated
event planning and organizational reconstruction of government emergency
management sectors (Britton, 1989a).

Methodologically, studies within this stream of literature take an individualis
or case study approach to a specific type of disaster event (e lygueds,
hurricane, or flood) (Shaluf, Ahmadun, & Said, 2003). Researchers believe that
different types of disaster are different qualitatively from each othdreach of

them requires unique model of understanding and management (Lindell & Perry,

10



1992). As a result of this disaster-specific approach, various lines of reseagch we
developed for each type of disaster. This research strategy actiasehe

civil defense related funding priorities (Tierney et al., 2001). Studies are
descriptive in nature, and they often focus on the fact of a specific disaster,
particularly the characteristics of the disaster (e.g., magnétndeluration)

(McEntire & Marshall, 2003; Porfiriev, 1995; Quarantelli, 1981) and social-
systemic antecedents and consequences (e.g., numerical estimates o negati
disaster results) (Tierney et al., 2001; Quarantelli, 2001).

In practices, the command and control approach was subscribed by most
emergency managers (Britton, 1989b; Dynes, 1989; Siegel, 1985). The popularity
even continues till today (Neal & Phillips, 1995; Drabek & McEntire, 2003).
Some researchers attribute its wide practical application to the approach’s
simplicity and clarity, particularly to emergency managers (e.g.,lildowsky,

1995). The founding fathers of EM filed were actually civil defense directors,
who used to serve in armed forces (Drabek & McEntire, 2003; Haddow, Bullock,
& Coppola, 2008). It is therefore logical to initiate the professional with a
paramilitary approach. Many emergency managers also began theiricaree
military, and the command and control approach makes particular sense to them
(Dynes, 1983). Besides, the model is compatible with the classical management
theory that has been commonly employed in public sectors (Britton, 1989a).

Command and control, as the first model to emergency management,
influenced most of the work followed in EM field. Several models are proposed in

later studies as variants of this model, for example, the rational model (Siegel,

11



1985), bureaucratic norm model (Schneider, 1992), and the better known model
of Comprehensive Emergency Management (Sylves, 1994; Waugh, 1994).
However, all these models maintain the same basic tenets, addressingfissues
emergency management through a command and control approach. Neal and
Phillips (1995) summarized three underlying points of such an approach. “They
urge the strict use of bureaucratic structure and rules, argue that adontsc eff
lead to failed emergency response, and suggest that effective emergpoogees
occurs only through normal, rational, written bureaucratic procedures” (Neal &
Phillips, 1995, p.328). As for emergency managers, they continue their
concentration and application of classical management theory (Britton, 1999). EM
training is attuned to skill-based emergency response activitie(Bri999).
The public is considered as part of the external environment of EM, whose
behavior should be controlled (McEntire, 2004a).

Critiques. Critiques on the command and control model have been emerging
since the late 1960s. By that time, many EM researchers started te reabs
not effective to manage natural and technological disasters through a paramil
system (Alexander, 2002; Britton, 1986, 1991; Quarantelli, 1986). The approach
makes inaccurate assumptions on individual behavior in emergency situations.
Individuals do not behave irrationally or anti-socially; nor would they become
helpless and dependent (Dynes, 1989). The proposed emergency management
system as an administrative hierarchy is designed to operate undeasthble
predictable conditions (Drabek, 1985; Perrow, 1979; Rosenthal & Kouzmin,

1997). Given the rapidly changing and unpredictable nature of disaster created

12



environments, such a system inevitably becomes mismatched with the
environment and ineffective.

Considering the inherent limitations of the traditional approach, some EM
researchers attempted to explore alternative approaches of EMafoplex the
emergent human resource model (Brouillette & Quarantelli, 1971; Drabek, 1985;
Dynes, 1983), the comprehensive vulnerability management model (McEntire,
2001, 2002, 2004b), and the inter-governmental crisis management model
(Comfort, 1985, 1988, 1999). Today, the research and practice of EM is still
evolving. On the one hand, the rapid and extensive reorganization of EM system
after the trauma of the 9/11 attack de-emphasizes all hazards other thiasnterr
(Birkland, 2006). Traditional model of command and control is reinforced
(Comfort, 2006; Haddow et al., 2008; Kreps, 1990). On the other hand, the
response failure to Hurricane Katrina relentlessly revealed the #iagvs
weaknesses in current EM system (Col, 2007; Jurklewicz, 2007; Kiefer &
Montjoy, 2006; Menzel, 2006). More initiatives since then have been stimulated
to search and develop an alternative approach for EM (e.g., Garnett & Kouzm
2007; Lester & Krejci, 2007; Morris, Morris, & Jones, 2007; Wise, 2006). Four
common features identified by these efforts that should characterize the new
approach can be summarized as below:

First, the EM system should be framed as a loosely-coupled inter-
organizational system, with a flexible and networked structure (Comfort, 2005;
Neal & Phillips, 1995). Components of the system include both organizations—

public, private, and non-profit—and individuals (Kuban, 1996; McEntire, 2002).

13



These components are interdependent; they interact with each other and with the
environment, through a continuous process of information exchange and behavior
adjustment. Although public sectors bear the primary EM responsibility in this
system (Comfort, 2006, 2007; Rosenthal & Kouzmin, 1997), the dynamics of the
emergency-created environment require decentralized decision making,a&nd loc
adaptation (Kapucu & van Wart, 2006). Furthermore, the effectiveness of EM
practices depends upon the interaction among system participants, and
communication is the key to integrate the system and coordinate the actions of
multiple actors (Pijnenburg & van Duin, 1991).

Second, management strategies should be developed based upon systematic
information about how people behave in a disaster, instead of trying to control
their behavior (Dynes & Drabek, 1992; Quarantelli, 2005). When facing
emergencies, people do not become passive and do what the authority tells them
to do. They take actions based on their own decisions made in a bounded rational
way (Quarantelli, 1982, 1984). Management practices therefore can no longer be
understood as exerting control over individual behavior, but as designing and
continuously adjusting strategies based on human behavior in disasters. Besides,
the public should be viewed as resource and part of EM system, rather than what
should be prevented from management practices (Drabek & McEntire, 2003).

Third, EM is essentially a dynamic process, particularly given thdlyapi
changing environment created by a disaster. Rosenthal and Kouzmin (1997) once
argued that, a more comprehensive analysis of EM called for a more focused

understanding of the process and of the challenges the process posed for public
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management. The new approach needs to take a dynamic and process view, which
allows actors to trace the development of an emergency situation, rapidlyyidentif
and correct errors and adapt their performances.

Fourth, instead of focusing on technological knowledge and its application,
EM research and practice should be based upon efforts from multiple disciplines
(Petak, 1985; Wamsley & Schroeder, 1996). EM research and practice, by its very
nature, is multidisciplinary (Dynes & Drabek, 1992). No one discipline can help
see the big picture of disaster and emergency management; nor does lany sing
perspective provide a comprehensive understanding and explanation. Efforts
therefore should be made to develop an inter-disciplinary approach, in which
“disciplinary differences will all be melded into one overall perspective”
(Quarantelli, 1989, p.244).

The above four features have been repeatedly discussed by proponents of an
alternative approach to EM, and they believe that such an approach characterized
by these features could provide important insights on effective EM (Comfort &
Kupucu, 2006; McEntire et al., 2002; Rosenthal, 't Hart, & Charles, 1989).
Meanwhile, none of the existing EM approaches can simultaneously fulfill these

four requirements. Efforts are still needed to develop another new approach.

Public Risk Communication Research and Practicein EM

What is public risk communication in EM. In emergency management,
public risk communication or public warning has been defined as the transmission
of messages to individuals, groups, or populations which provide them with

information about the existence of danger and what can be done to prevent, avoid,
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or minimize the danger (Williams, 1964; Worth & McLuckie, 1977). Itis
conceived as a general social system consisting of three basentdeon
activities: assessment, dissemination, and response (McLuckie, 1970; Quarantelli
1983; Tierney, 1993). EM researchers usually consider the aspect of response as
the most important aspect of the total communication system, since the ultimate
goal of public risk communication is to initiate and motivate appropriate
protective response by those to whom the information is directed (Lindell et al.,
2005; Perry & Lindell, 1986; Tayag et al., 1997). Correspondingly, the
effectiveness of public risk communication is evaluated based on the degree to
which desirable public response is elicited to minimize losses from a disaste
(Worth & McLuckie, 1977). In practice, emergency risk communication systems
are complex communication systems (Sorensen, 2000). They link a variety of
specialties and organizations and the public (Mileti, 1995; Mileti & Peek, 2000).
They are also more than a technological system, and far extended beyond the
official communication systems (Sorensen & Sorensen, 2007).

Public risk communication in EM under command and control. EM
researchers have consistently demonstrated the difficulties for emgngarning
to elicit desired public response (Donner, Rodriguez, & Diaz, 2007; Quarantelli,
1984, 1990). As a result, there is often inadequate protection provided for
communities. While many efforts to mitigate the problem have been devoted to
developing and using new technologies, such a solution is considered insufficient
(Gladwin et al., 2007). It is argued that, the principle problem of public warning

response lies at the oversimplified conception of warning process held by
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emergency managers (Balluz et al., 2000; Donner et al., 2007). Such a conception
is developed under the roof of a command and control approach to EM, and
usually called the “conventional wisdom” on public risk communication (Parker

& Handmer, 1998). It includes the assumptions and model many researchers and
practitioners use in public risk communication study and practice.

Common myth on public risk communication. Over the past seven decades,
researchers have identified a set of common, but mistaken, beliefs among EM
scholars and practitioners about emergency risk communication and public
response (Drabek, 1986; Mileti & Peek, 2000; Wenger & James, 1994). Often
referred in literature as “myth”, these interrelated assumption®asidered as
the central constraining factor in improving the effectiveness of puldtic ris
communication (Dynes & Quarantelli, 1973; Sorensen, 1993).

All individuals directly receive official warnindgnformation notification is
the starting point in seeking to explain how people respond to public warnings
(Parker, Priest, & Tapsell, 2009). Since people can only respond after they receive
the warning, it plays an important role in most emergencies (Sorensen, 1993). In
EM practices, it is generally assumed that, after disseminated, eathgvar
message will directly reach all individuals (Mileti, 1995). Public officadio
believe that it is better to have a single spokesperson to distribute emergency
information (Tierney, 1993). Therefore, the authority becomes the single and only
source from which all people can directly get risk information (Sorensen, 2000).

Individuals have limited capacity to process information in emergencies

Officials are usually concerned about overwhelming the public with too much
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information (Sorensen, 2000). They believe that people’s ability to process
information is reduced by emergency situations, and therefore they will be
confused by long and detailed warning messages (Mileti, 1995). Emergency
managers usually adhere to such principles as “keep the information simple and
stupid”, in order to hold people’s attention and make the information more
understandable (Mileti, 1999; Sorensen & Sorensen, 2006).

Previous studies also find that many researchers and emergency mareagers a
worried about the so-called “cry-wolf” syndrome, which refers to the
phenomenon that repetitive false alarms may decrease the effectiokness
people’s response to a warning (Sorensen, 1992; Sorensen & Mileti, 1988). It is
believed that repeated activation of the false alarm can lead the pubke to ta
unnecessary protective actions and therefore cause needless time aral financ
cost. More important, it will reduce the credibility of a subsequent and maybe t
warning. In practice, emergency managers are sometimes too condevoethe
syndrome to inform the public timely (Lindell & Perry, 1992).

Individuals become panic and irrationdhdividuals, as emergency
managers believe, respond to warning messages in a very disorganized or
dysfunctional way (Perry, 1981; Perry & Lindell, 2003a). One assumed pattern of
individual warning response is panic, which is one of the most common myths
with regard to warnings of impending threats (Dynes & Quarantelli, 1973; Mileti
1999; Perry & Lindell, 2003b). Quarantelli (1954) defined panic as “an acute fear
reaction marked by a loss of self-control which is followed by non-social and

non-rational flight” (p.272). In other words, after receiving warning messages
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individuals are no longer able to make rational decisions and enter into an
irrational panic status.

The assumption of individual panic status has two important implications for
the practice of emergency management. Public flight has been consideagal a
problem (Perry & Lindell, 2003b). This concern prevents public officials from
providing the public with complete risk information, in order not to cause a public
panic (Mileti, 1999). The assumption also justifies the outside control from public
officials over individual behavior (Dynes & Quarantelli, 1973). Since individuals
become irrational and cannot decide for themselves what their best interest is,
they need public officials to become the Big Brother and tell them what to do
(Trainor & McNeil, 2008).

Individuals become passive and follow suggestions immediatatyher
myth as stubborn as the panic assumption is that, warning messages are received
by passive and isolated individuals, who cannot take care of themselves (Helsoot
& Ruitenbery, 2004; Parker & Handmer, 1998). As a result, they wait around for
the help from public officials (Dynes & Quarantelli, 1973). After receiving
warning messages, each person responds directly and individually to the content
of the warning and follows recommendations made in the message (McLuckie,
1970; Sorensen, 2000).

The presence of passivity may be caused by “disaster syndrome”, which is
characterized by Perry and Lindell (2003a) as “a state of shock asdowitt
docility, disoriented thinking and sometimes a general insensitivity to cues in the

immediate environment” (p.223). Put it in a simple way, potential disaster gictim
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upon receiving a warning are so stunned or shocked that they cannot adaptively
respond. Nor do they have action initiatives. They wait childlike for the authority
to tell them what to do (Dynes & Quarantelli, 1973). The presence of such
passivity and docility further consolidates the authority of public emergency
managers as commanders who give orders for the public to carry out. Moreover,
emergency mangers consider an individual's responsive decision or action as a
personal matter, which is made or taken independently (Sorensen, 1991, 1992).
These four interrelated disaster myths compose the main assumption many
EM researchers and practitioners hold for public warning response (Dynes, 1994).
They actually reflect the inaccurate assumptions the command and control
approach made on individual behavior in emergency situations. On the atder ha
they have been empirically demonstrated not just erroneous, but restrain the
effectiveness of emergency warning (Perry, Lindell, & Greene, 198, Rerr
Lindell, 2003b; Tierney et al., 2001). For example, Perry and Lindell (2003a)
argued that the myth of panic often justified emergency managers’ behavior of
withholding information from the public, which “is particularly troubling because
it has been shown repeatedly that people are more reluctant to comply with
suggested emergency measures when they are provided with vague and
incomplete information” (p.50). Similar situation can also be triggered by public
managers’ concern with people’s incapability for information processing
Moreover, since they believe the authority is the only warning source, emergency
managers may ignore the risk information from other sources. Such risk

information may be inconsistent with or contrary to the official risk in&drom,
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and the public may use minor points of inconsistency to resist suggested
protective actions (Drabek, 1999; Reynolds, 2005). What makes the influence of
such common myths more complex and worse on EM practices is that, they laid
the foundations for and qualify the traditional model used to frame the public risk
communication process and design communication strategies.

Traditional model of public risk communication. Traditionally, public risk
communication during emergencies is considered as a linear, top-down and
expert-to-lay process (Gladwin et al., 2007; Gutteling, 2001). Public sectors
identify the presence and make predictions of an extreme event and inform public
emergency officials; public emergency officials then make decisinds
disseminate risk messages to the public (Sorensen & Sorensen, 2006).

The process of public risk communication, when viewed from this traditional
approach, is nothing more than a linear transmission of risk messages from public
officials to the public (Quarantelli, 1990). The risk information flows out from its
exclusive official source down to the public, which is visualized as an aggregate
of individuals (Tierney, 1993). Upon the receipt of the information, these
individuals become passive and docile, and incapable of processing information
and making decisions. They respond directly to the risk information as suggested
by public officials in it. In essence, the risk information acts as a stimdiichw
impinges directly on all individuals, and then evokes a response as the reaction to
it (Quarantelli, 1983).

Such message transmission model to understand public risk communication

and human response is primarily based on the classic theory of persuasive
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communication (Lindell & Perry, 2006; Sorensen & Sorensen, 2007). According

to this theory, all communication messages go uni-directionally from gegerat
sources, to transmission channel, and finally to targeted receivers. The purpose of
communication is to elicit some kind of changes from the audience group (Lindell
et al., 2005). Sorensen and Sorensen (2006) described this one-way
communication process as an engineering theory of communications that most
closely resembles the defunct hypodermic effect in mass communication.

For public risk communication during emergencies, the source, medium, audience
and effect can be clearly defined. The source is an authority, the messadesinc
information about a hazard and protective actions, and the public are expected to
receive the message and take actions described in the message. As shown in
Figure 1, the public risk communication process is actually framed as & simpl
linear and strictly unidirectional model of “warning dissemination, publiapgce

and warning response” (O’Brien, 2003).

\ 4

Public

Official
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A 4
A 4
A 4

Channel Response

Figure 1.Traditional model of public risk communication in EM

Based on the model, emergency managers in practice direct their attention
towards improving the trustworthiness and expertise of official sources on the one
hand, and developing rational communication strategies on the other (Gutteling,
2001; Lindell & Perry, 1992; Lindell et al., 2005). Meteorological efforts,
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especially advancing scientific knowledge and modernizing communication
equipments, are emphasized, in order to improve the accuracy of hazard forecast
(Gladwin et al., 2007; Sorensen, 1993, 2000). Warning messages are formulated
from a technical view, typically containing quantitative information and
communicated to the public in an analytical and logical style (Gutteling, 2001).
Emergency managers believe people after receiving warnings wacesfiieir
irrational and subjective judgment with the rational and objective opinion in the
message, and take actions as suggested right away.

These two efforts are actually interrelated with each other. They both
illustrate the essence of the traditional model: we experts know and tell you
people what is important and you do whatever is told (Sorensen & Sorensen,
2006). When people fail to follow recommendations on protective actions, public
managers ascribe the ineffectiveness to the warning message; thgernesss
considered not scientific and objective enough to correct people’s misperception
and motivate them to adopt recommendations (Lindell et al., 2005; Tierney et al.,
2001). Such reasoning inevitably leads to further efforts on technical progress and
developing more rationalistic warning strategies and messages.

The message transmission model of public warning has dominated the
practice of public risk communication in EM for more than 50 years (Sorensen &
Sorensen, 2006, 2007). It is developed and widely used under the background of a
command and control approach to EM. EM scholars and practitioners are also
tempted to use this model because of its clarity and simplicity for both

explanation and management practices. However, they are at the same tim
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deluded by its oversimplification of the complex reality (Qurantelli, 1984). The
realization that the model is a deficient representation of reality motives
researchers to complement and extend the understanding of public warning
process, particularly the ways in which individuals respond to warning messages
(Lindell & Perry, 1987, 2004, Lindell et al., 2005). By now, it has formulated one
of the most important research traditions in disaster and emergency management
research (Trainor & McNeil, 2008).

Findingsfrom EM studieson public risk communication. EM researchers
have explored the process of public risk communication in emergency context for
more than six decades (Trainor & McNeil, 2008). They believe the most
important aspect of the process lies in its social or human component, particularly,
how the warning target population responds to risk information. On the one hand,
empirical studies are conducted to find evidence to evaluate those underlying
common myths held by emergency managers (Dynes, 1994; McLuckie, 1974;
Sorensen, 1991). On the other hand, a significant level of knowledge has been
developed about how individuals respond to emergency risk information in the
presence of impending threats (Aguirre, 2003; Gray, 1981).

Empirical finding of individual response to public risk information.

Official warning cannot reach everyonRrevious research has consistently
revealed that, not everyone in the public can receive risk information when it is
disseminated (Donner, 2007; Schware, 1982; Sorensen & Sorensen, 2007).
Various factors, both physical and social, may prevent individuals from hearing a

warning (Parker & Neal, 1990; Parker et al., 2009; Perry, 1985). Furthermore, the
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authority is not the only source from which people can get warned (Mileti et al.,
2004; Perry & Greene, 1983; Perry & Hirose, 1991). Individuals usually find out
the possibility of impending hazard in a variety of ways (Parker et al., 2009;
Sorensen, 1992). For Lindell et al (2005), public warning “should be represented
by a network in which multiple sources are linked to intermediate sources who
receive information and relay it to the ultimate receivers” (p.88). As shown i
Figure 2, recited from Lindell et al. (2008, p.89), ultimate receivers caivesc
information directly from the original source, or indirectly from many
intermediates which are linked to the original source. They can also gege®gssa

from each other.

Original
sourct
v v
Inter- Inter-
mediatt mediate
v . ‘ I i
Ultimate |4 »| Ultimate Ultimate |y | Ultimate Ultimate (| Ultimate
receiver receiver receiver receiver receiver receiver

Figure 2 Communication network model
(Recited from Lindell et al., 2008, p.89)

The public is “information-hungry” rather than overloadeffter receiving
warning messages, the public is rarely overloaded by too much information;
neither is their capacity to process information deteriorated by riskagess
(Sorensen, 1993, 2000). Instead, the warning information creates an information

void, which makes the public information “hungry” or “starving” (Mileti, 1995,
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1999; Mileti & Frizpatrick, 1992). People in this case usually need more and
detailed information, and want to receive it frequently. Furthermore, peojs& at r
need information from multiple sources, rather than one single source or
spokesman (Mileti & Peek, 2000; Sorensen, 2000). If the official source cannot
meet their information demand, people will turn to other sources from which in
most cases they will get inaccurate or inconsistent messages (Mileti, 1999).

For the cry-wolf syndrome, EM researchers found that repetitive false r
information did not always have a negative effect on people’s response (Mileti &
Sorensen, 1990; Sorensen, 2000; Sorensen & Sorensen, 2006). People usually
prefer to risk hearing false messages rather than not being informed after
emergencies occur (Parker & Neal, 1990). Furthermore, the syndrome mostly
occurs when emergency managers make no attempt to explain why false
information is sent (Sorensen, 2000). If the reasons are told to and understood by
the public, the integrity of subsequent risk messages and the effectiveness of
public response could not be influenced (Sorensen & Sorensen, 2006, 2007).

Individuals are bounded rational’he record of panic as a reaction to public
emergency warning could be dated back to the early 1950s (Perry & Lindell,
2003a). However, disaster research indicates the phenomenon can be evoked only
when certain circumstances, probably simultaneously, occur (Sorensen, 2000;
Sorensen & Sorensen, 2006). These circumstances include 1) there is an
immediate and severe danger, as a clear source of death, 2) there are ieadequat
exit routes that are accessible to everyone before the danger occursthemnd 3)

insufficient communication about the situation (Quarantelli, 1983, 1984; Sarense
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1993). An example of panic situation among a large group of people occurs in the
1972 Sao Paulo high-rise fire in Brazil, since these people believed it impossible
for them to get rescued (Beitel & Iwankiw, 2002). Perry and Lindell (2003a) als
argue that whether these conditions are met is based on the perception or belief of
people who are at risk, instead of what emergency managers know at the time.
Empirically, individual or collective disorganization after receiving wagni
information is rarely observed in the context of any type of disaster (Blahkchar
Boehm, 1998; Donner et al., 2007; Drabek, 1985). Potential disaster victims do
not simply break into behaviors characterized by irrational decisions, such as
panic flight, or illogical actions (Dynes & Quarantelli, 1973). Research int
different aspects of public warning response illustrates that most pothséisier
victims behave in a bounded rational way (Helsloot & Ruitenbery, 2004;
Quarantelli, 1983). They typically “rise to the occasion” (Trainor & McNeil
2008). Based on their limited understanding and available resources, they act in
the way which they believe is best for themselves and their significant others
(Perry & Lindell, 2003a). EM researchers therefore argue that emgrgenc
managers in practice should consider the issue of individual or collective panic as
an insignificant practical problem, given its rare occurrence in any emsyrg
warning context (Dynes, 1994; Quarantelli & Dynes, 1972, 1977).
People respond to risk information proactively and collectiv@yntrary to
what emergency managers believe, emergency risk information is not passive
received and followed by people’s direct, immediate and individual response

(Ikeda, 1982; Perry, 1979a, 1979b). After receiving the message, people tend to
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interpret and evaluate it in the social context at that time (Lindell & PE983;
Nigg, 1987; Perry, Lindell, & Greene, 1980). They develop their own
understanding of the message they received (McLuckie, 1970, 1973). The same
information may be perceived and interpreted by different people in different
ways. As a result, there is no such thing as a risk message for all people. For
emergency management, as Quarantelli (1983) argued, “it is necessagry to la
aside the idea that any message is in itself a warning message” (p.178)s What i
crucial is the meaning people attach to the message, which may or may not
correspond to what emergency managers intend at the first place (Mileti, 1995;
Quarantelli, 1983). It is therefore important to achieve a shared meaning of the
warning message between the public and emergency managers (Pfister, 2002).
The finding of personal understanding or perception of warning messages
also questions the rationality and validity of current public risk communication
efforts. According to Gutteling (2001), the application of a rationalistic
communication strategy may actually increase the public disbeliekof ris
messages. Peters, Covello, and McCallum (1997) also argue that the top-down
communication may decrease public trust in risk communication sources, such as
government agencies. Since emergency managers will attempt to develop more
rationalist and scientific messages when people disbelieve and do not follow their
recommendations, a vicious circle can actually be formulated. In this drele, t
public keeps questioning the risk information because its style and content, which
makes emergency managers keep changing the communication style and content

to what is more difficult for the public to believe and follow.
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Furthermore, most people upon receiving warning attempt to verify what
they heard, as well as what they understand, through the so-called “@tigirm
process” (Donner, 2006; Drabek & Stephenson, 1971; Sorensen, 1993). During
this process, people employ their personal networks to search for additional
information and discuss the warning with known others (Parker & Hand9@s,
Perry & Lindell, 2003b). The reason why people engage in such confirmative
behaviors is to see how others are interpreting and reacting to the wamings (D
& Quarantelli, 1973; Mileti, 1995; Perry & Greene, 1982). Additional information
collected from the process is then used to assess the validity of their initial
understanding and perception. The next outcome following the confirmation
process is people’s definition of their current situation, specifying whether the
believe they are personally endangered (McLuckie, 1970; Quarantelli, 1990).

Given research findings discussed above, EM researchers argue that, people
do not directly respond to risk information as soon as they receive it (Mileti &
Sorensen, 1990; Sorensen & Mileti, 1992; Sorensen & Sorensen, 2006). Time is
needed for people to understand and verify it, especially when they are facing
unfamiliar hazards (Worth & McLuckie, 1977). Neither will they respond as
individual persons. People normally respond in a social context. They interact
with each other during the confirmation process, which produces a situational
definition based upon which individuals will respond (Quarantelli, 1983). Put it
another way, the social interaction during confirmation mediates how people
interpret the warning, define their situation and respond. Therefore, both warning

interpretation and response are no longer individual matters (Donner 2007;
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Trainor & McNeil, 2008). “It is a complex and, if time and a group of people are
involved, usually a highly social process” (Wlliams, 1964, p.96).

Furthermore, even if people share the meaning of warnings with emergency
managers and have obtained the confirmation of danger, they will not blindly
follow the suggestions emergency managers propose in the warnstgr(Ff002;
Sorensen, 1993, 2000). People at risk normally react in a proactive, rather than
passive way (Dynes & Quarantelli, 1973). They do not just wait and do what the
authority asks them to do; they make decisions and undertake their own protective
actions they perceive appropriate. Besides officially advised respowuadety of
alternative responsive behavior is possible. Also, the way in which individuals
respond is affected by numerous factors, and official warning messageasgu
element among these influential factors (McLuckie, 1970; Quarantelli, 1983).

Another important finding from previous studies is that, disaster syndrome
occurs infrequently in emergency situations (Dynes, 1994; Dynes & Quarantelli,
1973; Quarantelli & Dynes, 1977). Even when it occurs, it only lasts for a
maximum of a few hours and hardly influences individuals’ capacity for decisi
making and active response (Perry & Lindell, 2003a, 2003b). This finding further
disproves the assumption that the public is passive and docile in emergency
warning situations. EM researchers actually argue the disaster syndrtahe
negligible significance for emergency operations” (Perry & Lind@D3a, p.51).

SummaryRecognizing the above empirical findings is crucial for public risk
communication. The process, according to previous research findings, is no

longer what emergency managers and policy makers normally believe and
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practice; it is a much more complex course than getting the scientific mtiorm
out and people will do what they are told. Emergency warning must be based on
accurate knowledge of likely human warning response (Perry & Nigg, 1985).
Emergency managers, instead of forcing people to change their behavior, should
adjust their strategies according to the probable behavior of people. Besides
discovering how people respond to warning messages empirically, EM
researchers also argue that, better understanding of human warning re¢gmnse
depends on better understanding of how and why individuals come to respond in
their way (Donner, 2006; Quarantelli & Dynes, 1972; Trainor & McNeil, 2008).
Emphasis is therefore placed on the development of models of individual
response to emergency risk information that can be applied to a variety of
emergency situations (Donner, 2007; Lindell & Perry, 1992; Mileti & Sorensen,
1988). Among these models there is a high degree of agreement: 1) individuals
respond to emergency warning through a social process, 2) such a process
consists of a sequence of stages, and 3) a wide range of factors could enfluenc
individual behavior at each stage. Such agreement provides a general picture of
individual emergency warning response, and will be discussed in detail as below.
I ndividual warning response as a complex social process. When researchers
first began to study individual response to emergency risk information, they
quickly found they were exploring a highly complex process (e.g., Drabek &
Boggs, 1968; Quarantelli, 1954; Williams, 1957). Quarantelli is one of the earliest
researchers studying the human aspect of disasters. In his 1983 articleg’§peopl

reactions to emergency warnings”, he summarized previous researchdinding
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individual reactions to information about possible emergency. According to him,
there is a difference between individual reaction and response to emeligkncy r
information. Reaction, as he defined, “is the broader set of activities involved in
exposure to and use of disseminated warning messages, as well as other
observations regarding a dangerous situation” (Quarantelli, 1983, p.177).
Response is “the adjustive behavioral outcome of the reaction pattern”
(Quarantelli, 1983, p.177). Individuals after receiving risk messages would first
go through a reaction process, and responsive behavior is the rahigtmbcess.

The reaction process involves sequential cognitive and behavior stages. Five
constituent stages have been identified, accepted and utilized by most EM studies
They are information receipt, understanding, believing or initial perception| socia
confirmation, and risk personalization or situational definition.

Information receiptindividual response process to emergency warning is
initiated by receiving or hearing risk information. People can recefvent
different types of channels, among which the most common is mass media
(Donner, 2006). The failure to be notified generally prevents people from or at
least postpones their responses (Donner, 2006; Mileti & Sorensen, 1990). In
public warning literature, fewer studies have focused on the hearing phase,
compared with other stages. Researchers are usually interested in when
individuals can hear the warning after it is disseminated (Drabek, 1999; Sorensen,
1991). Relatively scant empirical findings exist to document why some
individuals receive the message while others do not, and how the coverage of

warning can be maximized (Donner, 2007; Mileti & Sorensen, 1990).
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UnderstandingUpon receiving the warning, individuals develop their own
interpretation of the message. Personal understanding varies among the public and
may not conform to what emergency managers originally intend to convey.
Therefore, there is no message that is inherently a warning messad@éopsd.
Donner et al (2007) argue that there are two categories of individual warning
misunderstanding; people may misunderstand the level of risk or the geography of
the risk area. EM researchers also found that the social context in which one
receives the warning plays an important role for people to grasp the meaning of
the message (Mileti & Sorensen, 1990). During the stage, if people understand the
warning and interpret it as implying the existence of some risk, thegngkge
in the next stage; otherwise, they will ignore the message and go back to their
previous activities before hearing it.

Belief The stage following understanding is belief, during which individuals
develop their initial perception regarding whether the risk communicatedlis
In previous studies, it has been long recorded that the understanding of risk
existence triggers immediately skepticism or disbelief for most peopid€R,

1999; Drabek & Boggs, 1968; Worth & McLuckie, 1977). Instant belief may
occur, but only among a few individuals “who are psychologically set to believe
the worst in any situation or those who have recently experienced a ‘near miss’
disaster” (McLuckie, 1970, p.31). EM researchers name this phenomenon
“normal bias”, and consider it a common reaction to risk information (Okabe &
Makami, 1981; Parker et al., 2009; Rogers, 1998). The occurrence of this

phenomenon is explained in the way that there is an “everydayness” for each
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individual (Lefervbe, 1987). Since it is defined by individual routine activities, the
disruption of such “everydayness” signals that something goes wrong (Goffma
1956). However, on the part of individuals, they tend to assimilate all these
signals to normal, and deny there may be something wrong. In the context of
emergency warning, most people prefer to believe they are not endangered.
Unless further proven otherwise, conditions are evaluated as normal, even if they
receive and understand what the information is trying to convey (McLuckie,
1973, 1974). The burden of proof lies within risk communication efforts
(Tierney, 1993). Through risk communication emergency managers need to help
the public overcome normal bias and correct their tendency to act in normal.
Three types of actions can be elicited at this stage as the result ofribe deg
of belief, or skepticism, of the warning (Drabek, 1969, 1986; Worth & Mcluckie,
1977). At one extreme individuals completely deny the existence of potential
danger. The warning message is therefore ignored and people continue with their
routine activities. At the other extreme individuals completely believevéiaing,
and take protection actions immediately. Most people develop skeptical attitude
as between these two extremes and react investigatively. They atteengit to s
more information to verify their own perception. For emergency management,
both taking protective action and seeking confirmation among the public manifest
the warning has some effect on individual behavior. But whether the effect is
desired by emergency managers, or whether such attempts can aeciabasd

or eliminate personal risk, is another matter (McLuckie, 1970).
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Social confirmationlt is typically referred to as the social confirmation stage
that people seek additional information to verify their prior understanding and
perception on risk messages. Three categories of sources for confirmative
information have been found by previous studies: authority, personal contacts and
environment (Donner et al., 2007; Parker et al., 2009;). The personal contact
includes friends, neighbors and relatives, and it is constantly consideted as t
most important confirmation mechanism (Drabek & Stephenson, 1971; Mileti,
1995; Parker et al., 2009). People tend to use personal networks to get known
others’ response to risk information (Parker & Handmer, 1998). The
communication could be face-to-face, or usually via telephone (Drabek &
Stephenson, 1971). People can also substantiate the warning by making
observations on their surrounding environment. They can monitor how the
physical environment changes, such as changes in the river level before a flood
(McLuckie, 1970). Government agencies or even quasi-official organizations are
seldom contacted by individuals, unless other sources are exhausted (Perry &
Lindell, 2003b). On the other hand, people give greater credence to the
information they get from personal sources and known others than impersonal
mechanism and strangers. Therefore, the responsive action of significant others
are crucial for social confirmation.

The confirmation process actually manifests the nature of individual warning
response as a complex social process. Individuals during this stage intdract w
each other through information exchange. The warning message is not simply

handled by single individual person; it is processed by a group of others, whom
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the individual turn to for confirmation. Because of the interactive process, people
become interdependent on each other in terms of how to respond to risk
information. The social confirmation stage characterizes the procestivofiual
warning response as a matter of collective behavior.

Risk personalizatiarindividuals who have confirmed the presence of some
risk do not necessarily believe they are personally endangered (Donngr et al
2007). In fact, EM researchers found a persistent and all-too-common
phenomenon among the population at risk. Like the occurrence of normal bias,
people tend to depersonalize the risk. In other words, even if individuals can hear
a warning, understanding it and develop a high level of initial risk perception,
they still hardly believe they will be personally affected (Drabek & Bod§68;
Tinerney, 1993). Such an “it cannot happen to me” syndrome usually makes
people respond too late, or ignore the warning and not respond at all (Donner,
2006; Mileti & Sorensen, 1990).

The stage of risk personalization is also named situational definition by
Quarantelli (1983, 1990) and other disaster researchers (e.g., McLuckie, 1970;
Parker & Handmer, 1998). According to Quarantelli (1983), individuals’
situational definition, namely whether they believe themselves thesarfgedme
risk, is tightly connected with and influenced by previous two stages: belief or
initial risk perception and social confirmation. During this stage, indivicetdse
their initial beliefs to the confirmative information they collected, torgetheir

own situation. While later studies also identified other factors affectaigidual
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risk personalization, answers to whether the threat exists and what others are
doing are still considered as exerting the major influence (Donner, 2007).

Risk personalization or situational definition is also argued by EM
researchers as the central component of individual warning response process
(Quarantelli, 1983, 1990). It is actually the very fundamental assumption of
almost all efforts toward emergency warning response that, “the atéaoward
his world on the basis of how he sees it and not on the basis of how that world
appears to the outside observer” (Drabek & Boggs, 1968, p.445). Therefore, in
order to understand individual behavior in the context of emergency warning, it
would be essential to understand how they define their own situation based on the
information received and collected from previous stages (Drabek & Boggs, 1968).

ResponseAfter the reactive process, individuals enter the response stage,
during which they take protective action that they consider most appropriate to
reduce or eliminate their personal risk. Researchers found individuals ltypical
attempt to maintain their routine ways of behaving (Quarantelli, 1983, 1990).
Therefore, even if a warning is believed, socially confirmed and persedaliz
they are still reluctant to take actions. Furthermore, just as therdfaremtiated
interpretations and levels of risk perception, people respond in a variety of ways.
Generally they prefer to consider and take actions that are least disraptiee
situation (Qurantelli, 1983, 1990). The effectiveness of emergency warning is
ultimately measured by whether individuals adopt protective actions asalbffic
suggested (Worth & McLuckie, 1977). In practice there often is a difference

between whether people respond and how they respond. Certain protective
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actions other than official advices are especially more likely under some
circumstance. That people take these actions does not necessarily provide enough
protection and indicate the success of public emergency warning.

Influential factors on individual behavior during response process.

Individual behavior during the process of warning response is not free (Drabek,
1999). Although they make their own decisions and autonomously take actions,
the range of their choices is constrained. Previous studies of public risk
communication in EM have identified a wide variety of factors that can influence
individual behavior at each stage of their response process (McLuckie, 1973;
Mileti & Sorensen, 1990; Trainor & McNeil, 2008). These factors can be
generally grouped into five categories, which are sender, receivesxtaalf

event, and social-culture factors.

Receiver factorsReceiver factors are those influential factors as related to
the characteristics of people who receive risk information. They can berfurthe
divided into five groups: demographics, physical attributes, psychological
attributes, social attributes and resources (Mileti & O’Brien, 1992; Perry, 1987,
Turner et al., 1979). Table 1 summarizes the literature of public risk
communication in EM on what receiver factors are included in each group, and
how each of them influences individuals’ behavior during each stage of their

response process to emergency risk communication.
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Table 1.Influence of Receiver Factors on Individual Response Process to
Emergency Risk Information

Receive UnderstancBelieve Confirm Personalize Respond

Demographics

Age

Gendel

Race

Ethnicity

Language

Religion

Educatior

Socioeconomic statt D

Presence of dependel +
Family size

House ownershi -

Price of home -

Length of residenc +

OO0+ 0O
0000
O O+ 0

+ O

+ + 00000 +
O O lvRwAwAw;

+ O
+ OO0 OO0

Physical attributes
Impairments - -

Psychological
attributes
Cognition
Locus of contro  + + +
Stress
Fatalism -
Self-confidenct
Normalcy -
Selective perceptic D
Risk awarenes D D D

VAR,

W)

Knowledge
Hazard + - +
Protective action + - +
Emergency plan + - +

Experience
Type +
Recency +
Habituation D
Common-sense belief D

Social attributes
Association membership D D D
Social network D D D D D D

Resour ces
Physical

+
+
O
W)
O
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Social + + D D D

Economic + + D D D
Note. In this table, “+” represents a positive association between a specitir
and individuals’ tendency to take corresponding action at a given stage. “-”
represents a negative association. “D” indicates an inconclusive finding with
regard to how the factor influences individual behavior within a stage. For
example, while females are more likely to receive, personalize and respasid t
information, no consistent conclusion has been achieved when it comes to such
gender difference in risk information understanding, belief and confirmation.

First, individual demographics include age, gender, race, ethnicity, language,
religion, education, socioeconomic status, presence of dependent, family size,
house ownership, price of home and length of residence. For most ofatiess,
inconclusive, or even contradicting, findings exist in terms of their influence on
how individuals behave during certain process stage. For example, some
researchers argue people occupying marginal social position, such astlye elde
members of lower socioeconomic classes and minority ethnic groups, are less
likely to take preparative or protective actions (e.g., Drabek, 1969; Mileti &
Darlington, 1997; Parker et al., 2009). Meanwhile, empirical evidence exists
demonstrating such factors can either encourage or have no effect on individual
responsive behavior (e.g., O'Brien, 2003; Perry & Lindell, 1991).

The discussion on the influence of physical attributes is scant, but more
consistent. Physical disabilities and impairment, such as being deaf or bfind, ca
significantly constrain individuals’ ability to hear and respond to a warning
(Mileti & Sorensen, 1990, 1998).

The third group of receiver factors consists of individual psychological
characteristics. It includes: 1) cognitions such as the locus of control (S&rense
Sorensen, 2006), psychological stress level (Mileti & Sorensen, 1990), fatalism

(what will happen will happen regardless of what is done) (Sorensen, 1991), self-
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confidence (sense of personal efficiency) (Mileti & Sorensen, 1990), normalcy
(Donner, 2006), selective perception (people accept only what they want to)
(Mileti, 1999), and pre-event risk awareness (Donner, 2006; McLuckie, 1970), 2)
knowledge about the potential threat (Sorensen, 1991), about protective actions
(Mileti & Darlington, 1997), and about making emergency plans (Lir&i&lerry,
2004), and 3) the type and recency of experience with the risk (Foster, 1980;
Perry & Greene, 1983; Perry & Lindell, 1986) and pre-event habituation (Drabek,
1969) and common-sense belief (Gray, 1981; Quarantelli, 1990).

Among these psychological factors, EM researchers show more interests in
pre-event risk awareness and emergency experience. Risk awarenragemea
“the degree to which a hazard resides in the conscious awareness of the public”
(O’Brien, 2003, p.358). The salience of a risk before it occurs generally increases
the probability for warning receipt (O’Brien, 2003). However, risk awareness
does not necessarily lead individuals to believe and personalize the risk, and
respond to risk information. A case in point is Hurricane Katrina. In the field
work in Louisiana and Mississippi after the disaster, Donner (2006) found that
there was strong risk awareness among interviewees before the hurtrigeke s
the region, but few took protective actions until visible environmental cues arose.

Previous emergency experience can also help individuals hear a warning,
especially when they are facing the same type of risk that occurredlyece
(Sorensen, 1991; Trainor & McNeil, 2008). On the other hand, whether and when
experiencing a disaster does not shape people’s reaction to future events in a

predictable way (Sorensen & Sorensen, 2006). Inconsistent empirical evidence
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exists regarding the influence of disaster experience on individual undemgtandi
belief, confirmation, personalization, and response to a warning (Donner et al.,
2007; Farley et al., 1993; Perry & Greene, 1983). For example, both Parker et al
(2009) and O’Brien (2003) found that people with prior disaster experience are
more likely to respond to a warning; also, the more recent the experience, the
more likely people will respond actively. Trainor and McNeil (2008), however,
discovered the “survivor confidence” phenomenon; namely, individuals, who
have lived through a disaster or received warnings which did not develop into a
personally harmful situation, tend to react to the current situation in a less
cautious way. Therefore, people without previous hazard experience were more
likely to take protective actions and take them more quickly. For Lindell and
Perry (2004), the influence of prior experience was even not found. They argue
that the hazard experience has no affection on the warning interpretation,
information seeking, decision-making or response (Lindell & Perry, 2004).

A range of social attributes can make a difference in the warning respons
process, such as association membership and the characteristics of sooid. net
Depending on the type of association, individuals inside can be either encouraged
to or prevented from hearing, understanding, and responding to warning (Donner,
2007; Perry et al., 1981; Sorensen, 1991). Characteristics of social network can
include, for example, participation in certain type of social network (e.qg.,
involvement in the community or kinship), and the strength of social ties (e.g., the
degree of family cohesion, interaction frequency with friends). Social networks

particularly informal ones, serve as very important means of receiving and
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confirming a warning (Gray, 1981; Mileti, 1995). Generally, people who are part
of and maintain close relationships within large and well-established social
networks, both formally and informally, are more likely to receive and confirm a
warning (Landry & Rogers, 1982; Mileti & Sorensen, 1990). As a result, they are
more likely to personalize the risk and take protection actions. But the influence
of social network varies by the type of the network, like the influence of
association membership.

Finally, there are the influences of resources. Having more physical, soc
and economic resources can enhance the probability for individuals to rewgive a
understand a warning, but has a complex influence on behaviors at other
responsive stages (Waugh, 2009). For example, while these resources enable
people to undertake protection action, such as, car and enough money for
evacuation, they also create some concerns holding people back from taking any
action (Balluz et al., 2000; Drabek & Boggs, 1968; Perry, 1979b). Fear of looting
is one of such concerns consistently found by EM researchers which prevent
individuals from taking necessary evacuative behavior (Donner, 2006).

Sender factorsThe sender factors characterize how the risk information is
designed and sent to its target population. Previous research on public risk
communication in EM categorizes them into five groups: attributes of 1) the
information source, 2) the transmission channel, 3) the communication frequency,
4) the message content and 5) the message style. Table 2 shows how factors in
each category influence individual behavior at each responsive stage to

emergency risk information.
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Table 2.Influence of Sender Factors on Individual Response Process to
Emergency Risk Information

Receive Understand Believe Confirm Personalize Respond

I nformation source

Numbe + + +
Credibility + + +
Familiarity + + +

Transmission
channel
Numbe + D D D
Type D D D D
Credibility D D D D
Communication
frequency
Numbe + D D D D
Pattern + +
M essage content
Hazard + +
Location + +
Guidance + + +
Time +
Source +
Format D D
M essage style
Consistency + + D + +
Continuity +
Certainty + +

Urgency + D
Sufficiency + +
Specificity + + D + +

Clarity + + D
Accurac) + + + +

Note. In this table, “+” represents a positive association between a spacir
and individuals’ tendency to take corresponding action at a given stage. “-”
represents a negative association. “D” indicates an inconclusive finding with
regard to how the factor influences individual behavior within a stage.

An information source refers to the organization or person who disseminates
risk messages. Public agencies, scientific community and individual experts ca
all become information resources. According to previous studies, emergency

warnings are more likely to be understood, believed and responded to if they
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come from a mixed set of sources (Donner, 2007; Mileti, 1999). Regarding source
credibility, people are more likely to believe, personalize and respond to a
warning from the source they perceived more credible (Perry, 1987). iISimila
influences can also be elicited by a warning from the sources individual®sre m
familiar with (Mileti & Fitzpatrick, 1992).

A transmission channel is the medium through which a risk message is
conveyed from its source to its target recipients. Previous studies usuallydyroupe
information channels into the authority, mass media and peer, and empirically
compare which type of channel is more utilized and perceived more crediple (e.
Donner, 2006; Lindell & Perry, 1992). They find that mass media and peers are
important information channels; they are more used than the authority. However,
the authority is generally considered with higher expertise. Thesestldo find
that influential channel-related characteristics on individual warnimpnse
include the number of different types of channel used to send risk information, the
type of channel in use, and the credibility level of channel perceived by a
recipient (Donner, 2007; Mileti, 1995). These factors can influence whether
individuals hear and how they understand, believe and respond to risk informati

The third group of sender factor is communication frequency. Both the
pattern and number of times risk information is disseminated can influence
individual response process. For the former, it is defined as “the degree to which
message repetitions occur in a predictable pattern” (Mileti & Sorensed, 1.9
5). The more predictable the repetition pattern is, the more likely individuals are

to hear and respond to risk messages. For the latter, it is an important influential
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factor of individual warning hearing, understanding, believing, confirming and
responding (Trainor & McNeil, 2008). Inconsistent influences of this factor have
been found by previous studies on these individual reactions. While some EM
researchers argue for its encouraging or discouraging impact (Nigg, 1982;
O’Brien, 2003), Tierney (1993) and Mileti (1995) found a curvilineartieiahip;
there is a point of diminishing returns after which repetition of the same geessa
may be counterproductive. But the optimal number of repetitions is not known.

At last, message content and style are the characteristics of warning
information itself. Previous EM studies found individual response process can be
influenced by whether the information encompasses answers to the following
guestions: 1) what the risk and its characteristics are, 2) what geograbaaal
location is threatened, 3) what people can do to protect themselves, 4) when the
risk occurs and how much time is left before the impact, 5) who the information is
issued from, and 6) whether the information includes graphical information
besides verbal messages. By answering the first five questions, a waamning
increase the probability for individuals to understand, believe, personalize and
respond to a warning (Mileti, 1995; Mileti & Darlington, 1997; Parker et al.,
2009). For the last question, the inclusion of graphical information, such as
picture, graphics and video, has mixed influence on warning understanding and
belief (Donner, 2007; Quarantelli, 1990).

The same content in a message can be conveyed in different styles. The
influence of risk information itself is therefore not only generated by what

guestions are answered in it; how these answers are expressed and conveyed to
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recipient also matters. Previous studies have identified eight components of the
style of a risk message. They are consistency, continuity, certaiggnay,
sufficiency, specificity, clarity and accuracy. Generally, when tigeeseof each
component is enhanced for the answer to each of the six question mentioned
before, for example, the message becomes more specific about risk, logagon, ti
and guidance, people are more likely to understand, believe, personalize and
respond to the warning (McLuckie, 1970; Perry et al., 1981; Reynolds, 2005). An
exception is that inconsistent evidence is found regarding the influence of
message style factors on individual confirmative behavior. For example, while
Sorensen (1992) argues the probability of confirmation decreases with idcrease
information specificity, Donner (2007) finds receivers are more likely to ronfi
the information when it is more specific.

Contextual factorsContextual factors include the characteristics of the
context in which individuals receive and react to emergency risk messages. The
characteristics are further divided into four groups: 1) environmental agsibut
which include environmental cues, geographical proximity to threat and fead-ti
to impact; 2) social settings, which include family union, social cues, ool
social role and social activity; 3) individual psychologicalilatties in the context,
including emotional status, fear of looting and concern, and 4) decisions and
actions at previous response stages. For the influence of each contextual factor on

individual behavior at each response stage, see Table 3.
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Table 3.Influence of Contextual Factors on Individual Response Process to
Emergency Risk Information

Receive Understand Believe Confirm Personalize Respond

Environmental
attributes

Environmental
cues

Proximity to threat
Lead-time to
impact

+
+
+
+
+

Social settings
Family union
Social cues D
Socialtime D
Socialrole D D
Social activity D

+

OO0 +

Psychological
attributes
Emotional statu D
Fear of looting -
Concern + + D D

Previous
decisions & actions
Receipl +
Understandin + +
Belief +
Confirmation +
Personalizatio +
Note. In this table, “+” represents a positive association between a spacitr
and individuals’ tendency to take corresponding action at a given stage. “-”
represents a negative association. “D” indicates an inconclusive finding with
regard to how the factor influences individual behavior within a stage.

+ + +

Environmental attributes refer to the physical characteristics ofranga
setting (Mileti, 1995). In such a setting, physical cues can exist to support or
contradict what people are being warned of. For example, how individualsaeac
a flood warning they receive in a heavy rainy day is quite different from hgw the
react in a cloudless day. Supportive environmental cues therefore constitute an

important type of factor that can elicit people to understand, believe, pézsonal
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confirm and respond to an emergency warning (Donner, 2007; Perry & Greene,
1982; Worth & McLuckie, 1977). The geographical proximity to the site of
emergency has similar influence as supportive environmental cues do. Individua
who are geographically closer to the potential danger are more likely teerece
and react to risk information (Donner et al., 2007; Sorensen, 1991; Trainor &
McNeil, 2008). The third factor in this group is the length of lead-time to impact.
This factor is actually related to individuals’ perception of the situation uygenc
namely, how much time individuals believe available for them to respond before
an emergency occurs. Generally, with the increase of the lead-time length, the
sense of urgency decreases, which enhances the probability for people to confirm
a warning on the one hand, but makes them less likely to believe and respond on
the other (Mileti & Sorensen, 1990; Perry et al., 1981; Quarantelli, 1983).
Besides physical attributes, the context of public risk communication also
possesses social features. The first social feature that has beermérsis
reported by previous studies is family union, that is, whether individuals are
united with their family when risk information is received. Family union can
encourage individuals to believe, confirm and respond to a warning (Drabek,
1969; Drabek & Boggs, 1968). The second social feature concerns how others,
particularly familiar others, are seen as reacting to the warninghuwhaiso
called the social cues. Social cues can be consistent or inconsistent with the
warning message, and their influence on response process varies depending upon
their supportiveness on the potential threat (Donner, 2006; Donner, 2007;

McLuckie, 1970). Social time, social role and activities are three closklied
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factors. For social time, it refers to a community’s patterned timesftain

activities (Gray, 1981). It is different from chronological time, and gaaiaong
communities and over time. Previous EM studies found social time had important
influence on warning reception, confirmation and response (Donner, 2007;
McLuckies, 1970). The other two factors can affect what role people is playing i
the warning context, for example, whether there is care-giving respadyseuid

what people are doing, such as sleeping, working or engaging in recreatign (Gra
1981). These two factors can further exert complex influence on almost the whole
individual response process (McLuckie, 1970; Quarantelli, 1990; Trainor &
McNeil, 2008).

The psychological attributes here are different from those psychalogic
attributes in the receiver factor. The former formulate when or afterdividual
receives a warning, while the latter are pre-warning charaatsrigtithe
emergency context, individual emotional status can influence whether and to what
extent the risk information will be believed (Parker et al., 2009). Increasesedegr
of concern with safety can increase the probability for people to hear, believe,
confirm and respond to risk information (McLuckie, 1970; Quarantelli, 1983).

Lastly, decisions and actions at current reactive stage are at leedlypa
influenced by those at previous stages. Specifically, people can only understand a
warning after it is received, and a clear understanding enhances the chance t
believe the message (Mileti & Sorensen, 1990). Warning messages are more
likely to be accurately personalized by people who have formed correct

understanding, developed high level of belief and possessed confirmative
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information about the risk (Nigg, 1982, 1987; Perry & Greene, 1982). Also,
people are more likely to take responsive actions if risk information is understood,
believed, confirmed, and personalized (Mileti & Darlington, 1997; Perry &
Mushkatel, 1986; Quarantelli, 1983). The only exception regarding the influence
of these contextual factors occurs at the confirmation stage. Previoushesea
findings, to my knowledge, have not documented whether individual confirmative
behavior is influenced by previous warning understanding or belief.

Event factorsFactors of this category refer to the characteristics of an
emergency. Specific attributes associated with an emergenclgeand t
implications for management have been the major concern of geography and
other natural scientific fields (Tierney, 1993). For public risk information in EM
researchers argue that, the knowledge of individual emergency warning
responsive transcends emergency type (Lindell et al., 2005; Mileti, et al., 2004).
Individual warning response is more about the human nature, especially, how
individuals respond to a stressful situation (Worth & McLuckie, 197 heréfore,
regardless of how they vary in characteristics, “the basic social psgatailo
process that directs public response is similar across hazards” (Mileti, 1995, p.1)

On the other hand, EM researchers did find some event related factors which
have a bearing on individual warning response. For example, the level of
objective risk, which indicates based on scientific estimation the seriousikess a
destructive power of the potential danger, was weakly associated with thagvarni
recipient, belief, confirmation, personalization, and response (N&lB@rlington,

1997). There are also other factors which can influence whether and how
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individuals will respond, such as the controllability of an emergency, the length of
forewarning (rapid- or slow-onset emergencies), and the accessibilggayie

routes in the emergency (Tierney, 1993). Table 4 summarizes the influence of
each event factor on individuals’ behavior during their responsive process to
emergency risk information.

Table 4.Influence of Event Factors on Individual Response Process to Emergency
Risk Information

Receive Understand Believe Confirm Personalize Respond
Objective risk ~ + + D D +
Controllability -

Length of D
forewarning

Accessibility
of escape route

Note. In this table, “+” represents a positive association between a specifir
and individuals’ tendency to take corresponding action at a given stage. “-”
represents a negative association. “D” indicates an inconclusive finding with
regard to how the factor influences individual behavior within a stage.

D

Social-cultural factorsThe last general category of influential factors
concerns with the social and cultural characteristics of the locapateatially
impacted. Specifically, these include the culture developed in the area, spirit of
the times, features of the local public risk communication system, and local
preparedness efforts. Table 5 summarizes how these social-cultura factor
influence individual behavior at each responsive stage.

Local culture, particularly the disaster culture developed in the area,atay
important role in the whole public responsive process. It is most formulated
within a community that often experiences the same or similar risks (Mileti
Darlington, 1997). Because of such relatively high occurrence, cultural defenses

are formulated to prepare and respond to the recurrent danger. Moore refers to
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such standard coping tradition within a community for a specific hazard as
“disaster culture”, which includes “those adjustments, actual and potential, soci
psychological, and physical, which are used by residents of such areas to cope
with disasters which have struck or which tradition indicates may strike in the
future” (Moore, 1964, p.195). For public risk communication, disaster culture
shapes the way in which each individual reacts to the risk information, from the
very beginning of hearing to the final response (Donner et al., 2007; Perry &
Hirose, 1991; Perry et al., 1981). Both encouraging and depressive influence can
be generated by a disaster culture, depending on whether the standard reaction
implied by it is adequate or not for a particular risk.

Table 5.Influence of Social-cultural Factors on Individual Response Process to
Emergency Risk Information

Receive Understand Believe Confirm Personalize Respond

Culture D D D D D D
Spirit of the times D
Local warning D D D
system
Local

preparedness effc D
Note. In this table, “+” represents a positive association between a speci@r
and individuals’ tendency to take corresponding action at a given stage. “-”
represents a negative association. “D” indicates an inconclusive finding with
regard to how the factor influences individual behavior within a stage.

The spirit of the times is another aspect of the social setting. It coofsists
those anticipations and expectations that are widespread within an areaiat cer
time (McLuckie, 1970). People inside such time-space boundary are more likely
to accept any cue that is supportive of the spirit. What is relevant to emergency

risk communication is the belief by individuals. The public is more likely to
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believe messages that are warning an anticipated or expected risk, whik ig
the information against such anticipations and expectations.

For local public risk communication system, researchers argue for its
influence, but arrive at inconclusive findings. One feature of the locahsyktd
has been widely studied is its efficiency, particularly the false alatien r
Although previous studies found that the false alarm rate can influence whether
individuals believe, confirm and respond to a warning (Donner et al., 2007,
Trainor & McNeil, 2008), whether or not the influence is encouraging for
individual responsive behavior varies among different contexts. In most cases, the
response process could be exempted from the influence of false warnings as long
as efforts are made to explain why they are disseminated.

The last set of influential factors is about local or community preparedness
efforts, for example, public education and information programs. Previous
research has examined the effectiveness of pre-emergency educatramgrog
and reported inconsistent evidence in terms of whether such efforts can enhance
individual response to emergency risk information. While some studies found a
positive influence, others found the influence to be negative or make no
difference (Sorensen & Mileti, 1988). At present, EM researchers aeelikely
to agree with each other that, although the effectiveness of a good prefayerge
education or information program is in question, a poor program will not likely
have a positive influence (Sorensen, 2000; Sorensen & Sorensen, 2006). In
addition, consensus has been reached with regard to what topics should be

covered by these programs (Sorensen, 1993; Sorensen & Mileti, 1992).
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SummaryFor each influential factor, it affects individual response process to
emergency risk information in a complex way. The influence is both nonlinear
and contextual. On the one hand, the same factor can have distinct affections on
individual behavior at different stages and make its influence on the final response
sophisticated. On the other hand, whether one factor has an influence on behavior
at a specific stage and what the influence is depend on the emergency aottext
study settings (Turner, 1981; Turner, et al., 1979). What adds a further layer of
complexity is the inter-connection and interaction among these factors. in mos
cases the influence of a specific factor may be reduced, enlarged, orcateapli
by other factors, whose affections may be changed by this factor at tedisan
For instance, low economic status or poverty can make it more difficult for
individuals to understand a warning; but these difficulties can be overcome if
individuals have a large-size social network (Donner, 2006). Similarly, the gender
difference in taking protective action may fade away as females’ salutavel
and work experience get closer to that of males (Drabek, 1999). Furthermore,
both factors can simultaneously complicate the influence of other factors, such as
social time (Donner, 2007). It is self-evident that what white middle-al&ss
doing when receiving emergency warnings is quite different from thaloofea-
class African-American female, or a upper-class Asian college student
Considering such complexity, researchers argue that how specific individanals
react in an emergency warning context is influenced by very intricate
combinations of factors (McLuckie, 1970). An invisible web of constraints

actually exists that patterns individual warning response (Drabek, 1999).
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Previous studies also argue for two more interesting findings. First,
individual behavior at all stages of the warning response process, excepgianessa
receipt, is influenced by almost identical sender and receiver factgrs\deti
& Sorensen, 1990). This may be caused by the interaction among these factors.
The second finding concerns which category of factors is more influential, and
some EM studies find the context in which warning is received is more influential
in affecting individual responses (e.g., Dynes & Quarantelli, 1973).

Critiques. Over a period of several decades now, EM researchers have been
attempting to describe a more accurate picture of how individuals perceive and
respond to risk information in emergency situations. Substantial and systematic
knowledge has been accumulated. Individual response process is social and
complex, consisting of sequential stages. Individual behavior at each stage is
patterned by a series of inter-connected factors. Furthermore, theseastdge
factors are interlinked, which together produce individual responsive behavior to
emergency risk information.

Such knowledge needs to be understood and considered by emergency
managers when they plan for and respond to future emergencies. They need to
correct their unrealistic assumptions on individual response to emergency risk
information. Also, instead of making people what they are not and blaming them
for not changing themselves for the response plan, emergency managers should
understand how individuals are likely to behave and adaptively adjust their plan in
accordance with these behaviors. Previous studies also provide useful guidance

for emergency managers to design emergency communication strefegies.
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example, a certain degree of consensus has been achieved regardingkebat ma
for effective risk messages. These factors, among the wide range of factor
identified influential on individual reaction, can be utilized by emergency
managers to enhance the probability of sound public response.

While previous studies on emergency risk communication can greatly assist
emergency managers, further investigation is still needed. In curreature at
least four major limitations remain: 1) few insights have been provided on how
emergency risk information should be sent to the public; 2) little is known about
how individuals use information for decision-making during their response
process to emergency risk information; 3) little attention has been paid to how
public response pattern to emergency risk information at the system or
community level emerges; and 4) few studies have considered risk
communication during emergencies as a dynamic process, through which public
sectors and the public interact with each other through information exchange.

First, very limited insights have been provided on the effective way to issue
risk information. Sender factors are crucial for emergency risk comationc
research and practice. That is because emergency managerstogetyrelasily
manipulate these factors to influence individual response to risk information. All
the other four types of factors cannot simply be accessed and changed (e.g., such
demographics as gender and age). Among sender factors, systematic knowledge
has been developed on how to design risk information, for example, what its
content should be and how its style needs to be framed. There is little information

in term of how certain risk information should be disseminated, for example,
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which type of channel should be used and what the dissemination frequency
should be. Particularly, previous studies simply narrow all types of mass media
into one general channel type. During an emergency, most individuals reskive r
messages through a variety of mass media, such as television, newspapers, or
social media. Emergency managers can also easily change their contiminica
strategies through changing the types of mass media used for sendin@tidor
More systematic knowledge on the interaction of different types of
communication channels—patrticularly different types of mass media— and
individual warning response is needed to help public managers develop effective
risk communication strategies.

Second, the individual reactive process after warning receipt is clear in EM
literature, in terms of what stages individuals go through and how their behavior
at each stage may be influenced by various factors. However, ambiguousness
arises when it comes to how individuals behave at the social confirmation and
situational definition stage. According to previous studies, warning confnmat
almost always occurs after individuals receive an emergency wamnéhg
formulate their initial risk perception. Individuals within the two staagésmpt to
obtain additional information mainly from personal contacts, namely friends,
family and neighbors, in order to verify their initial perception. Based on
additional information collected and their initial perception, individuals then
define their own situation in terms of whether they are personally endangered.

Important information that has been missing is how individuals evaluate

collected information from diverse informal sources and assess their persiona
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based on the information. In other words, disaster researchers find what occurs at
the beginning and end of the two stages, but do not know the social process
between. Specifically, questions remain with regard to 1) what criteriadodis

use to select personal contacts for additional information, for example, isdt bas

on geographical proximity or relationship familiarity; 2) how individualdeate
information from different contacts; and 3) how they use information received

and collected to formulate their situational definition, especially when iafitom
obtained is inconsistency, or even contradicting.

Third, how emergency managers plan for and respond to an emergency need
to be based upon system-level data, rather than individual information. For
example, essential resource estimation before an emergency is community- or
group- based; seldom is it based upon an individual’'s needs. For public risk
communication, practices should start with what we know of how groups are
likely to react, rather than with what individual response might be (Quarantelli
1983). However, few studies have explored the response pattern at the system
level. Almost all studies consider it the most common and effective way for
improving warning effectives to find out empirical evidence about individual
warning response and developing individual response model. While such
knowledge can help emergency managers identify and incorporate incentives to
enhance individual warning compliance, it provides little information regarding
the system pattern of public warning response. Given the highly interactive and
collective nature of individual response, such public pattern, although closely

related to how each individual respond, cannot be easily inferred from it. What
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both researchers and practitioners need is the possible mechanism that links
individual behavior and system-level dynamics. The latter therefore céyleasi
derived through the mechanism from previous knowledge. Also, since influential
factors on public response pattern may be different from those on individual
behavior, we need to investigate what these factors are and how thetheixert
impacts at the system level.

Fourth, in emergency situations, public managers need to continuously
monitor the public’s response. Feedback must be received to indicate whether the
risk message is received and understood and how further warnings can be
developed for behavior correction if people are not responding in the desirable
way. Meanwhile, people may adjust their responses accordingly to the updating
risk messages, and the consequences of their behavioral adjustment may lead to
further modification of risk communication. Figure 3 shows such a dynamic and
interactive process, which is highly effective for public self-pridedut rarely

practiced by emergency managers.
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Figure 3.A dynamic model of emergency risk communication
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In practice emergency managers are more tempted by the uni-directional
communication model which obviously is more manageable and less time- and
resource-consuming. With regard to previous studies, the importance of a
dynamic and two-way risk communication process has been emphasized by
several EM researchers (e.g., Chowdhury, 2005; Tierney, 1993; Williams, 1964;
Worth & McLuckie, 1977). However, few of them have included the interactive
process into their empirical studies or theoretical development. Knowledge
therefore is absent in terms of how the public and emergency managers adjust to
each other during the public risk communication process. To provide more
insights for effective emergency warning, such a gap must be filled.

Although these limitations are not ignored by previous studies on public risk
communication in EM, the methodological flaws inherent in this stream of
literature make them persistent concerns (Donner, 2006; Drabek, 1969; Gladwin
et al., 2007). For example, previous studies on public risk communication in EM
have either adopted a traditional view and focused on its technical aspect, or
engaged themselves into the investigation of individual behavior. Responsive
pattern at the community level and the interaction between public sector and the
public therefore can hardly become a research focus. Furthermore, current EM
studies are preoccupied by qualitative description or post-emergency sodvey a
simple statistical analysis. Such research methods are incapable oftic@nnec
individual behavior and system-level pattern while at the same timertgacki

individual decision-making process and including a dynamic and process view.
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Chapter 3
Resear ch Design
Resear ch Question
This dissertation explores whether and how emergency impacts can be
mitigated through the effective use of information transmission channel foc publ
risk communication. To answer the research question requires addressing the
following questions:
e How do individuals make decisions regarding their response to risk
information in emergency situations?
e How do the characteristics of information transmission channel influence
individual response to emergency risk information?
e How does public response pattern to emergency risk information emerge at
the community level?
e How can information transmission channel be appropriately used by

emergency managers to mitigate emergency impacts?

Resear ch Scope

Public risk communication for a long time has been an important topic in a
variety of research and applied areas, such as environmental risk communication
(e.q., Fishoff, 1985; Fischhoff, Slovic, & Lichtenstein, 1979; Slovic, 1986),
emergency management (e.g., Quarantelli, 1954; Williams, 1957), and health
promotion and communication (e.g., Klaidman, 1985; Sharlin, 1987). This

dissertation focuses only on the research and practices of public risk
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communication in the field of EM. Studies and practices of public risk
communication in other fields are not covered.

Among all problems related to public risk communication in EM, this
dissertation focuses on how the response process to risk information at the
individual level and emergency impacts at the community level are influenced by
the characteristics of information transmission channel emergency manage
to send risk information. The key aspect of emergency public risk communication
lies in the extent to which risk information can elicit appropriate public response
to minimize losses from an emergency. Previous studies in public risk
communication in EM have identified a wide range of factors that can influence
individual response to risk information. Compared with others, emergency
managers are more easily to utilize one specific type of factord cateder factor,
to influence individual response and further emergency impacts. Sender factors
characterize how the risk information is designed and sent to its target population
Among these factors, the influence of information source and information content
and style on individual response process has been conclusive. But inconsistent
insights have been provided regarding the influence of the characteristics of
information transmission channel, including the number and type of channel used
to send risk information, and the perceived credibility and use frequency of each
type of channel. This dissertation attempts to explore whether and how
emergency impacts could be influenced by the characteristics of tesimmi

channel used to send risk information. The strategy for public risk communication

% There is a very large literature on risk communication between experts and
citizens that is not related to EM.
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in this study is only indicated by those characteristics of information trassmi
channel. Other strategy indicators for public risk communication in EM would not
be considered.

In this dissertation, the specific type of public emergency focused on is
influenza pandemit The scale of analysis is a medium-size commutriltiye

specific research context is the 2009 H1N1 influenza outbreak in Arizona.

Research Method

Methodologically different from conventional EM research on public risk
communication, this dissertation employs the computational simulation approach
of agent-based modeling (ABM) to address the research question. Arbagedt-
model is a class of computational models, which attempts to explain and
anticipate social phenomenon by simulating the interactions of interdependent
agents (Srbljinovic & Skunca, 2003). It is also called multi-agent simulation or
individual-based model. ABM as a simple concept emerged in the late 1940s.
With the development of game theory, computer science and artificial imellige
it became a research method in the 1990s. By now it has been extensively applied
in various domains.

Contrasted with more traditional mathematical models, agent-based models
are characterized by four distinguishing features. These compaesiveds

make ABM particularly well suited, or even necessary, to better understan

* Why influenza pandemic is selected as the focused type of emergency would be
explained at the beginning of Chapter 3.

®> Why a medium-size community is select as the scale of analysid beul
explained in Chapter 4.
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problems in emergency risk communication, including the research question of
this study.

ABM simulates interactions between adaptive agents. Agent-based models
consist of agents and action rules. Agents are the basic action unit; they may be
persons, organizations, or countries. An agent in ABM is programmed to be
autonomous and boundedly rational; it makes use of decision rules based on local
information. Action rules specify how agents interact with each other. These
interactions need not be physical; they can also occur through information
exchange. Because of the interaction, agents become interdependent and adaptive
to one another.

ABM is process-oriented. Agent-based models require a high degree of
precision regarding the underlying processes (i.e., mechanisms) involveg. Eve
aspect of how agents interact must be well specified. This requiremergsnabl
ABM a process-oriented approach, which can explicitly descniddrack agents’
interactions (Rakowski et al., 2010). Such feature further makes ABM inherently
dynamic, and a natural way to explore the dynamic behavior of a system.

The above two features of agent-based modeling enable this approach
framing public risk communication as a dynamic process. Individuals and public
sector can be considered as adaptive agents. During the process, they interact wi
each other through information exchange, and mutually adjust their behaviors.
The model can track each agent’s action, as well as the whole interaction.process

Insights therefore can be provided from a dynamic and process view.
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ABM is also a bottom-to-up modeling approach. Many existing analytic tools
follow top-down logic, and represent system relationships between aggregate
variables in the system (An et al., 2005). For example, regression analysig usual
attempts to do so by inductively fitting empirical data with regression Isiode
Bottom-up approach analyzes system behavior in an opposite way. It starts with
the understanding of the low-level processes, and generates aggretgate sys
pattern by simulating the individual entities in the system. ABM theretore ¢
bridge the gap between micro and macro level by generating large-scal
macroscopic phenomena from micro-level agent interactions. For public risk
communication, individual response process to risk information could be
simulated in an agent-based model, and the response pattern at the system or
community then can be automatically generated through the simulation oger tim

ABM can serve as a knowledge integrating framework. ABM can be applied
to integrate knowledge from different fields into a united framework (Gong &
Xiao, 2007). It can also integrate qualitative and quantitative data (Polhill,
Sutherland, & Gotts, 2010). Therefore, ABM can make assumptions based on
both theories and empirical data from a variety of disciplines, and cratteshrt
societies in which agents could be expressed more directly and detailedly.
Considering this feature, ABM can learn from previous studies in other research
fields than emergency management and public risk communication, to make
reasonable assumptions on how characteristics of information transmission

channel influence individual response to risk information, and how individuals
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collect confirmative information and make decisions during their response
process. These assumptions then can be included and tested in the model.
Besides being a promising approach to answer the research question, ABM
also possesses the four features previous studies have repeatedly papmsed
new approach to EM. All types of organizations and the public within EM system
can be included in an agent-based model as agents. These agents interact with
each other through communication and make their own decisions. The artificial
EM system formulated in the model therefore becomes a network-structteed i
organization system, with decentralized decision making and open
communication. Meanwhile, since agents are interdependent and adaptive to
others’ actions, public sector as one type of agent must base their actions—the
management strategy—on the action of other types of agents, for example, the
public. Furthermore, ABM’s process-oriented feature and capacity of integrat
knowledge make a dynamic and inter-disciplinary perspective to EM possible.
Another reason why ABM makes an appropriate approach to EM is that it
provides unique opportunities for social experiments. Emergencies are those
social phenomena as only occur rarely. Considering ethnical, resource and other
factors, it is very difficult to conduct experiments in real social setBhgdrtsov
et al., 2007). On the other hand, the artificial world in an agent-based model can
be fully observed, recovered and repeated. It is a convenient and very cost
effective tool to formalize, refine and conduct what-if simulation and arsafgse
EM issues. Researcher and public managers by using this modeling approach can

easily and systematically analyze different policy options at thgaosis.
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No single approach or tool is suitable for all questions, and it is certainly
unreasonable to claim ABM universal and almighty. However, the constellation
of features offered by ABM does make it a very promising approach to gain new
insights into EM in general and public risk communication in particular.

In the specific research context, agent-based simulation among other
modeling approaches has the most potential to appropriately simulate the spread
dynamics of a pandemic influenza. Previous literature identifies two kayrés
that should be simultaneously included in a computational model for pandemic
influenza simulation. First, the spread dynamics of pandemic influenza cannot be
understood without some knowledge of social network, particularly knowledge on
the underlying inter-personal contact network for virus transmission (Mollison,
1995). Researchers have realized that the way in which contact network was
parameterized in previous models for pandemic influenza simulation is
problematic (e.g., Edmunds et al., 2006). Meanwhile, empirical contact data is
considered a more appropriate base to structure and parameterizeitia artif
contact network (Keeling & Eames, 2005).

Second, the knowledge of contact network must be combined with a
modeling approach which is capable of simulating the bottom-up aggregation of
micro-interaction to macro-pattern (Eames, 2007). The impact of an influenza
pandemic at the community level emerges from the interactions between
individuals and interactions between individuals and public sectors. Therefore, the
simulation model should have the capacity of tracking the contacts of each

individual with others in the relevant contact network, and how public
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interventions influence those contacts. Meanwhile, it should be bottom-up instead
of top-down modeling, to simulate how thousands of micro-interactions in the
population contribute the emergent patterns of infection, death, and survival at the
aggregate level.

These two key features can be simultaneously included in agent-based
simulations. Other modeling approaches previously used for pandemic influenza
simulation may have addressed one of them, but rarely both at one time. An
agent-based model consists of a population of heterogeneous and autonomous
actors or agents, an environment, and a set of action rules. Modeling in
epidemiology using this approach can track the contacts of each individual, and
simulate the spread progress of a pandemic influenza through those contacts.
Rules for agent contacts and infection transmissions are explicit. Agent-base
modeling is also a bottom-up approach. The main difference between this
approach and those traditional pandemic influenza simulation models based on
differential equations lies in that the latter is used at the macro leVel théi
former bridges the gap between micro and macro level by producing emergen
global effects from local agents’ interactions. Although data collected at the
macro level are still important in agent-based simulations, they are magudiyto
compare the results from different simulation scenarios or compare modeling
results against empirical data (Gong & Xiao, 2007). Furthermore, the theory of
social network can be easily integrated into agent-based models. The nodes in a
social network can be considered as agents in an agent-based model, while

connections between nodes as interactions between agents.
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Organization of the Dissertation

This dissertation consists of six chapters. Chapter 1 briefly introduces the
background and motivation of this dissertation. Chapter 2 reviews the traditional
approach to EM in general and public risk communication during emergencies in
particular, and critiques on these approaches. Chapter 3 proposes the research
guestion, the research scope, and the research method to be employed to answer
the research question. Chapter 4 first explains why an influenza pandemic is
chosen as the focused public emergency. It then reviews previous computational
models in literature for pandemic influenza simulation, and explains how the
agent-based model created in this study can be distinguished from previous
pandemic influenza simulation models, how the model is created, and why it is
created in such a way. Chapter 5 uses a case to demonstrate how the
methodological framework developed can be used to answer the research question
in the influenza pandemic context, and utilized by emergency managers in
practice to develop effective communication strategies. Chapter 6 surasidne
answer to the research question based on the simulation results from Chapter 5.
Theoretical and practical contributions of this dissertation, as well as its

limitations and further extensions, are also discussed in this chapter.
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Chapter 4
Modeling an Emergency for Public Management

Influenza Pandemic as a Public Emer gency

The specific emergency focused on in this dissertation is an influenza
pandemic. An influenza pandemic is “a global outbreak of disease that occurs
when a new influenza virus appears or emerges in the human population, causes
serious illness, and then spreads easily from person to person worldwide” (CDC,
2012)° It is different from the seasonal epidemics of influenza, since the |ggter a
caused by those influenza viruses that already exist among people (Nicholls,
2006). Such an emergency situation is selected based on two reasons. First, as a
relatively new type of public emergency, past influenza pandemics havel cause
serious consequences on human societies, including high levels of iliness, death,
social disruption and economic loss (CDC, 2012). For example, the 1918 Spanish
flu is estimated as being responsible for the deaths of 50 million to 100 million
people worldwide (Barry, 2005). In the past century, there occurred three
influenza pandemics—in 1918, 1957 and 1968 respectively, which were followed
by the most recent 2009 H1N1 pandemic. Given the estimated high probability of
another influenza pandemic, both CDC and HHS have made it a priority to
understand its spread dynamics in communities and to develop effective spread-
control strategies (Das, Savachkin, & Zhu, 2008; Ferguson et al., 2005).

The importance of effective public risk communication becomes more salient

in the context of an influenza pandemic. Interventions for pandemic prevention

® Influenza pandemic is different from pandemic influenza. The latter reféne
influenza which causes a global outbreak of the disease.
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and control are usually grouped into two categories: pharmaceutical measures
(typically vaccination and antivirals) and physical or non-pharmaceutical
measures (typically social distance measures). Researchers etittbpess
commonly consider the former more effective than the latter (hoegal., 2004).
However, when novel pandemic strain of influenza occurs, time and production
capacities are usually insufficient to develop, produce and distribute enough
effective vaccine or antivirals to protect the general public (MniszestsHi,

2008; Monto, 2006). Whether individuals take physical measures for self-
protection in this case becomes an importance influence on the duration and
severity of the outbreakMeanwhile, previous studies found that individuals are
reluctant to take protective actions (Rodriguez et al., 2006; Rogers & Sorensen,
1989). Understanding individual response to emergency risk information and
developing effective communication strategies to encourage the public to take
protective measures therefore become one key intervention public managers can

employ for pandemic control.

Traditional Approachesfor Pandemic Influenza Simulation

Given the rare occurrence of an influenza pandemic, computational
simulation has been an efficient approach to systematically understapckeisl
and control. Simulation models enable researchers to formalize, refine and
conduct thought experiments. Conspicuous quantities of artificial data therefore

can be generated, which are hardly available in the real world because of the

" The term of pandemic when used alone in this dissertation refers to influenza
pandemic. For example, a pandemic means an influenza pandemic, and pandemic
impacts the impacts caused by an influenza pandemic.
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elevated costs or the rarity of the phenomenon. Such data further allows
researchers to do preliminary “what-if” analyses to examine sysbaiavior
when different control measures are adopted.

Compartment modelsin epidemiology. The foundations of modern
epidemiology are based upon classic compartment models, which began with a
series of studies conducted by Kermack and McKendrick (1927, 1932, 1933). In
their research, the total population, depending on their status relative to an
epidemic, is divided into three subdivisions or compartments: 1) Susceptible, the
population who are healthy and can be infected by the epidemic, 2) Infected, the
population who have been infected and are infectious to the susceptible, and 3)
Removed, including people who either recovered from the epidemic (Recovered)
or are killed by it (Died). Individuals can move from one compartment to the next,
as shown in Figure 4. Transition rates of movement between two adjacent

compartments are defined in the following set of ordinary differential emsati

dD

— =ul
a

In these equations, S, I, Re, and D refer to the number of susceptible, infected,

recovered and died individuals, respectively, in a population of size N. The other

parameters are the infection raigwhich represents the probability for a
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susceptible indiidual to get infected after a contact with an atilgus individual,
and the contact ratg, representing the average number of people eadhidnal
contacts within a time step. p is the mortalityramong infected individuals;
represents the prability for an infected individual to die at eadmé stepy is
the recovery rate, which refers to the probabflityan infected individual t
recover from thepidemicat each time step, if the individual has not c Its
reciprocal is the infecteperiod, representing the period between the monre
individual becomes symptomatic and the momentridazidual recoves from the
disease. Using this set of equations,spreadf some epidemic in a populati
is treated as a nastationary process. is dynamically simulated through t

fluctuations over time in the number of individualseach compartmel

Total population Recovery rate \ Removed )
ﬁb — | Recovered |
Susceptible Infected oo ITICIT
/K Died |

Infection rate Contact rate Mortality rate

Figure 4.SIR mrodel of an epidemic infection progress

Such a model is known as the SIR model. It is thatf reference fo
mathematical models used 'simulatingepidemic spread (Dangerfield, Ross
Keeling, 2009). Over the years, the model has leatnded to consider oth
compartments and flow parns between them, for example, BEIR, SEIRS
SEl, SEIS, Sl and Sifiode. All these models are called the determini
compartment model. They simulate the spread prarfesms epidemic through

populationbased approach. Conceptually, this appros rooted in the gener
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population model which divides a population into different segments (Perez &
Dragicevic, 2009). A system of differential equations is then developed to model
the population change in each segment.

Deterministic compartment models have been used for mathematically
modeling the spread process of a pandemic influenza for over a century. They
capture the nonlinear nature of the spread dynamics in a population. They also
simplify the factors and variables that should be considered to understand the
dynamics, and can be easily processed with a set of mathematical equations

Despite the long and successful history, the compartment model is also
criticized in that it is too simple to provide insightful information to understand
and control a pandemic, particularly considering the complex nature of the issue
(Gong & Xiao, 2007). Two limitations within the model constrain its utilitystir
compartment models fail to consider social phenomena associated with individual
interactions. Since the population is assumed homogeneously mixed and modeled
as continuous entities in compartment models, the characteristic of inter-persona
interactions are neglected (Mollision, 1995; Watts, 26®§cond, compartment
models fail to express the relationship between micro and macro levels &ong
Xiao, 2007). The spread process of a pandemic influenza at the system level is
produced by countless interactions between individuals, through which the
influenza virus is transmitted. Pandemic control measures also aim to change

individual behavior, but their effectiveness is measured at the system level

8 By homogeneous mixing, an individual is assumed to meet or contact any other
individual in the population with the same probability (Larson & Nigmatulina,
2009).
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(Eames, 2007); for example whether and by how much the vaccination reduces
the impacts of a pandemic influenza in a community. Hence, how individual
behaviors marked by local parameters translate into global patternseddiyat
global parameters is vital for understanding the spread dynamics and énticipa
the impact of control measures. Since both input and output parameters in
differential equations are at the macro level, compartment models fagdoluke
such a translation.

As Eidelson and Lustick (2004) once stated, traditional mathematical
modeling tended to consider social issues as Newtonian physics problems. The
world is fully predictable, and “comprised of traceable vectors and governed by
known laws operating at the macro level” (Eidelson & Lustick, 2004). These top-
down models are typically incapable of capturing the underlying dynamics in
most social systems where a great number of autonomous and interdependent
micro-actors interact with one another.

Social network models and massive agent-based models. Alternative
simulation models to traditional compartment models for pandemic influenza
simulation have been developed, with the main purpose of including the structure
of interpersonal contacts in the simulation. Two types of models are common
among previous studies: social network models and massive agent-based models.

Social network models have played an important role in shaping the
understanding of pandemic influenza spread process over the past decades (Hu &
Gong, 2009; Newman, 2002). In these models, individuals are considered as

nodes in a network and the links between them their contacts. Each individual has
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a set of links or connections to others, who are usually selected through cert
preference. The homogeneous population mixing assumption in traditional
compartment models therefore is avoided since individuals can only contact those
who are connected to them in the network. Infection is transmitted along links,
and individuals can only transmit infection to or get infected by those people
connected (Dangerfield et al., 2009). Current social networks models have been
integrated with a variety of other techniques for epidemic simulation, imgjudi
cellular automata (e.g., Leung et al., 2008; Pfeifer et al., 2008) and agent-based
modeling (e.g., Epstein, 2009; Yang, Atkinson, & Ettema, 2011).

Compared with social network models, agent-based modeling for pandemic
influenza simulation is more recent efforts. As described before, ABM could be
integrated with social network to simulate influenza spread. It could als@®de us
without the assistance of network (e.g., Rakowski et al., 2010; Strailid 2007).

In the latter situation, agent-based models are normally large scalel)yspatia
explicit and parameterized to construct a synthetic population to match the actual
population of the region studied. Such models are usually called massive agent-
based models. Each individual in the model has a schedule of daily activities, and
each activity has a specified start and stop time and a specified subrAocat
Possible sub-locations include households, schools, workplaces, and so on.
Infection occurs between individuals when they occupy the same sub-location at
the same time. Contact network also exists in the model, but it is not set up at the
very beginning of simulation and guides how individuals contact with each other

during the simulation. The network in massive ABM emerges as the result of
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agents’ interactions based on their action rules. That is why massive ABM is not
considered as a social network model. That is also how a social network mode
integrated with ABM is different from a massive agent-based nfodel.

Critiques on the above two types of models for pandemic influenza
simulation have been centered on how individuals contact with each other is
simulated in the model (Edmunds et al., 2006; Wallinga, Teunis, & Kretzschmar,
2006). First, disagreements have been raised in terms of the stability aftgonta
namely, whether the set of people each individual contacts is transierd,stabl
both. Edmunds et al (2006) categorized simulation models for pandemic influenza
into two groups, according to their assumptions on contact stability: those using
the mass action assumption in which contacts are independent and instantaneous,
and those in which individuals have stable contact connections. For social
network models, their initial usage for epidemic simulation is intended to capture
the permanent nature of interpersonal interactions to substitute the random mixing
assumed in compartment models (Edmunds et al., 2006). Many social network
models therefore fall into the second category; the links in the network remain
constant over time (Keeling & Eames, 2005). Each individual has a fixed set of
contacts. The focus of simulation is on how the disease spread over the static
network. For massive agent-based models, Edmunds, O’Callaghan, and Nokes
(1997) argue that they typically employ the mass action assumption, disentia
random contacts, although those random contacts are restricted to a sub-

population decided by a sub-location. According to a few of more recent studies,

® Models integrating ABM and social network can also be considered as agent-
based models. But they are different from massive agent-based models.
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interpersonal interactions should have a hierarchical structure (Grabowskia &
Kosinskia, 2005; Mikolajczyk & Kretzschmar, 2008; Read, Eames, & Edmunds,
2008). While some of individuals’ daily contacts are stable, others are cbnstant
changing. In fact, most daily encounters are random and non-repeated. Those
encounters reflect the mobility of a community; they can occur during cdimgm

or in public places. Stable and repeated contacts also exist, but with a smalle
amount than the number of random encounters. For epidemic simulation, these
studies argue that the transmission route for infection in the model should include
a strong random component, as well as a stable element (Grabowskia & Kgsinskia
2005; Mikolajczyk & Kretzschmar, 2008; Read et al., 2008).

The second concern with individual contact pattern in the two types of
models is that the epidemiologically relevant contact pattern in both casestare f
assumed and then calibrated to epidemiological data (Edmunds et al., 2006;
Mossong et al., 2008). These assumptions could be very simple, or very detailed.
For example, massive agent-based models for pandemic influenza simulation
usually demand a variety of individual behavioral assumptions, particularly those
related to individual movement. Several issues make such a way to construct
artificial contact pattern problematic. For example, there ara aftarger number
of parameters related to contact pattern that need estimation than that of
epidemiological parameters which the model can be calibrated againsir{@sim
et al., 2006). Meanwhile, Wallinga et al (2006) argued that, for specific imfiscti
diseases, particularly for the transmission of airborne infections, models

parameterized by empirical social contact data offer a bettenutestiof
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observed incidence than those that employ assumed and calibrated assumptions
on contact pattern. Following that study, there are other studies using and
demonstrating empirical data from survey can be utilized as a valid poxy f
unobservable distributions of actual at-risk contacts for respiratory infections
(Mikolajczyk et al., 2008; Mikolajczyk & Kretzschmar, 2008). Since the pattern

of contact is crucial in determining the spread of an epidemic, a reconsideration of

how it should be approximated in simulation models is needed.

A Network-based ABM for Pandemic I nfluenza Simulation

In this dissertation, a network-based ABM is created to simulate the spread
dynamics of a pandemic influenza within a community. This model integrates
both key elements identified by previous literature for pandemic influenza
simulation. It is different from compartment models in that it employs
heterogeneous mixing assumption on contact pattern instead of homogeneous
mixing, and meanwhile leverages the power of “bottom-up” instead ofdbeymn”
modeling. It is different from previous social network models, including those
incorporating agent-based simulation technique, since the contact network
included in the model for influenza transmission is based upon both social theory
and earlier empirical findings. It is also different from massive agemibas
models in how the contact pattern is assumed and structured. Table 6 shows the
difference between the dissertation model and other modeling approaekes
previous studies for pandemic influenza simulation. A more comprehensive
understanding of pandemic spread and control is expected via the usage of the

new model.
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Table 6.Differences between Dissertation Model and Other Modeling Approach
for Pandemic Influenza Simulation

Compartment Social Network Massive Dissertation
Models Models ABM Model
Assumption on Homogeneous Heterogeneous Homogeneous Heterogeneous
contact patterr Mixing Mixing Mixing Mixing
Basis for Social theory
: / / / o
assumption Empirical data
Modeling logic|  Top-down Bottom-up Bottom-up Bottom-up

An agent-based model can be best described in order of its three components:
environment, agents, and action rules (Perez & Dragicevic, 2009). The following
parts outline the design and implementation of an agent-based simulation system.
They first explain in detail for each component how it is designed based on
previous literature. The whole system is then implemented in the Netlog,tool
a multi-agent programmable modeling environment (Wilensky, 1999).

Environment. In this model, the community is simulated as a friendship
network, mainly based on two reasons. First, according to public warning
literature, most people after receiving risk message tend to seek moreaitdorm
from known others, particularly friends, to make their responsive decision
(Donner et al., 2007; Lardry & Rogers, 1982). Second, the contact between
friends constitutes an important component of individuals’ daily contacts for virus
transmission in a pandemic (Mollison, 1995). Friendship network therefore
provides the necessary basis to simulate individual communication and contact
pattern in the research context.

The friendship network is set up based on the approach developed by Hamill

and Gilbert (2008, 2009, 2010). The following part first reviews the key
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characteristics of a friendship network, and then explains why such an approach is
selected and how the friendship network is built in the model.

Key characteristics of friendship networks. In a friendship network, nodes
represent individuals, and edges represent the relationship of friend between two
individuals (nodes). Each node has an egocentric friendship network, which
represents the relationship between this node or individual and others. The
friendship network, at the macro level, is the aggregation of all egocentric
friendship networks and represents the whole set of relationships.

Key characteristics of a friendship network can be grouped into the
characteristics of egocentric networks in a friendship network and those of the
friendship network itself. For egocentric networks, they are of limited Since
the maintenance of relationship needs time and effort, people can only have
limited number of friends (Gilbert, 2006). Also, egocentric networks vary in size
among individuals, with a few individuals having a very large number of friends
and many much less so (Boissevain, 1974; Roberts et al., 2009). This
characteristic often indicates a positive-skewed, even fat-tailed, digtnlmort the
degrees of connectivity for the whole friendship network (Boase, 2008; Fischer,
1982; Wagner & Fell, 2001¥.

The third characteristic of egocentric or personal friend networks is their
dynamic feature. A dyadic friendship can decay over time (Burt, 2000).

Boissevain once noted that, “a person’s network is a fluid, shifting concept”

91n a network, a node’s degree of connectivity is its number of connections to
other nodes; the distribution of degrees of connectivity is the probability
distribution of all nodes’ degrees of connectivity over the whole network (Knoke,
2008).
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(Boissevain, 1974, p.48). As a result, the size, structure and membership of a
personal network may change over time. Such changes can be caused by
demographic reasons, such as fertility and mortality, or by geographical and
social reasons, for example, people drift apart physically or changedbiair s
behavior (Hamill & Gilbert , 2008, 2010). At the macro level, the whole
friendship network is dynamically evolving because of individual behavior at the
micro level with regard to friendship relationships and changes in their personal
networks (Zeggelink, 1995). The dynamic feature characterizes both individual
personal networks and the whole friendship network.

Besides a right-skewed distribution on the degrees of connectivity and
dynamic nature, a friendship network is also sparse and highly clusteagts,(\W
1999). The network is sparse in the sense that only a few of the potential links in
the network actually exist (Michell & Amos, 1997). The density of the whole
network therefore is low. Meanwhile, most of the few connections each individual
has are tied up in local interactions within “cliques” of individuals (Wagner &
Fell, 2001). Since members of an individual’'s egocentric network tend to know
each other, most personal networks are strongly overlapping. The presence of a
high clustered friendship network is a result of homophily, which is defined as the
principle that “a contact between similar people occurs at a highegheate
among dissimilar people” (McPherson, Smith-Lovin, & Cook, 2001, p.416). In
other words, people are more likely to be friends with others who are similar in
demographic and social characteristics, such as race, ethnicity, ageioacaiadt

gender (McPherson, et al., 2001)
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The principle of homophily also results in another key feature: positive
assortativity by degree of connectivity (Bruggeman, 2008). According to
Newman and his colleagues, positive assortativity is a key feature which
distinguishes social networks from other types of network (Newman, 2003;
Newman, Barabasi, & Watts, 2006; Newman & Parker, 2003). It refers to the
phenomenon that well-connected nodes or individuals tend to be linked with other
well-connected nodes and vice versa. Several studies have also found such a
phenomenon in friendship networks (e.g., Bollen et al., 2011; Hallinan &
Williams, 1989; Kandel, 1978). They explained its emergence as the outcome of
homophily: sociable people like other sociable people (Bruggeman, 2008).

Another characteristic of friendship networks is their short path lengths
(Wagner & Fell, 2001). The path length is the shortest routine between two nodes.
It is measured by the minimum number of links from one node to the other. With
short path lengths, individuals within the network can reach any other individual
in a few steps, even if the two are perceived to be far away (Watts, 1999). Such a
phenomenon is also called the small world effect (Milgram, 1967), or more
popularly six degrees of separation (Guare, 1990).

Community, or the existence of “giant component”, is the last characteristic
of friendship networks that have been widely discussed in previous literature. In a
network, a giant component is a group of nodes that are highly connected to each
other, directly or indirectly, but loosely connected to the nodes within other
groups (Newman, 2001). It represents the connectedness of a network, which can

be measured by “the extent to which adding ‘friends-of-friends’ would increase
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the size of agents’ personal networks” (Hamill & Gilbert, 2010, p.85). The
existence of giant components makes the friendship network highly inter-
connected, while its absence makes the network composed of tiny groups which
do not interact with each other (Hamill & Gilbert, 2010).

Given the key characteristics discussed above, the ideal model to set up a
friendship network should simultaneously have dynamically changing personal
networks with limited and varying size and a whole friendship network at the
macro level showing high clustering, low density, positive assortativity, shart pa
length and giant component.

A model for friendship network. In previous literature, four basic types of
network model are commonly used to simulate a friendship network: regular
lattice, random, scale free, and particularly small-world. While these sthnda
models fit well with some networks, researchers found none of them can
adequately reproduce the typical features of real friendship networks (Hassan,
Salgado, & Pavon, 2008; Singer, Singer, & Herrmann, 2009). For example,
personal networks within a random network normally are of the same size
(Barabasi & Bonabeau, 2003). For small-world networks, while they are
considered by some researchers as the best illustrated for friendshigkaetwo
(e.g., Wagner & Fell, 2001), they does not display giant components or positive
assortativity (Hamill & Gilbert, 2010). The scale-free network has also bee
criticized as a model for friendship network given its low clustering and zero

assortative index (Hamill & Gilbert, 2008; Newman, 2002).
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This dissertation adopts the approach developed by Hamill and t(GR2668,
2009, 2010) to set up a friendship network. The characteristics of the network
generated by this approach correspond to the key features of a friendship network.
Overall, it constrains and varies the size of personal networks, permits a right-
skewed distribution of degree of connectivity, and allows network changes over
time. The whole network has a low network density and displays high clustering.
Positive assortativity by degree of connectivity, giant components and short pat
lengths can also be found in it. Hamill and Gilbert (2009) consider this model
particularly suitable for simulations of artificial societies. Heilie used to
simulate a community, which is conceptualized as a friendship network.

Basic concepts used to set up the network include social space, social circle
and reciprocity (Hamill & Gilbert, 2008, 2009, 2010). A social space is similar as
a geographic space, but shows the social distance among people. In the social
space, two points (individuals) locate close to each other if they are closé/social
(Hamill & Gilbert, 2008). The closer they are, the stronger the relationship
between them. Social circle here is used as a metaphor (Hamill & Gilbert, 2010).
Each point (individual) within the space has a circle with itself being thterce
Within the circle are all the individuals in the map whose distance from the center
individual is less than the radius. Hamill and Gilbert (2010) called this radius
social reach, and consider all the points within the social circle as poteatids
of the center individual. Reciprocity is used to specify which potential friend
within the social reach of an individual is actually a friend. According to this idea

two individuals are permitted to link only when they can reciprocate, namely,
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when they are within each other’s social reach (Hamill & Gilbert, 2010). If A has
a larger social reach than B, then B may be in A’s social circle but not v&z ve
In this case, A knows B while B does not know A. A relationship cannot be
formulated between them.

Hamill and Gilbert (2008, 2009, 2010) implemented this network model as
an agent-based model, with agents representing individuals or nodes. Certain
number of agents is randomly distributed across an unbounded grid—which
represents the social space—to achieve a population density of 1%. All agents a
then split into two groups, with each group having a different social reach. For
each agent, personal network is formulated through creating links to other agents
who are reciprocal to each other. The whole friendship network is then formulated
as all agents’ personal networks are completed. The percent of agents within eac
group and the large and small social reach can be adjusted to change the mean and
standard deviation of the distribution of the degree of connectivity. To
accommodate the dynamic mechanism, some agents are randomly selected at
each time step to move randomly in the social space.

Simulation setup. While the original model could produce a social network
with typical characteristics of friendship networks, it does not calibrate
parameters to adjust the mean, median and standard deviation of the distribution
of degree of connectivity to reasonable values. According to Wang and Wellman
(2010), the mean, median and standard deviation of the number of personal off-
line friends in US in 2007 is 11.3, 5, and 15.23, respectively. An off-line friend

here is defined as people whom individuals contacted face-to-face and by phone
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at least weekly (Wang & Wellman, 2010). Such positive-skew distribution, where
the mean is substantially higher than the median, indicates the pattern found in
other studies on personal network size: a minority of Americans has a much larger
number of friends than the rest majority (Boase, 2008). Wang andhére(010)

also found that for individuals, friends whom they meet or speak with are
substantial. Despite the extensive usage of internet, just about 15% of people have
one or more friends who are online only (Wang & Wellman, 2010). Therefore, it

is assumed in this dissertation that the distribution of degree of connedtivity i
friendship network follows a positive skew distribution with a mean of 11, a

median of 5, and a standard deviation of 15.

To calibrate the friendship network generated, experiments are conducted on
scenarios with different values for large and small social reach. Since the
maximum size of personal friendship network is 76 and the minimum size is not 0
(Wang & Wellman, 2010), both social reach values can be adjusted from 5 to 75,
with a 5 incensement in each scenario. Totally there are 15*15 scenarios, but only
those in which the value for large reach is larger than that for small resach ar
possible. As a result, there are 105 possible scenarios. 10 experiments are
repeated for each scenario, and it is found that a large social reach of 65 and a
small social reach of 10 can produce the best results. The mean, median and
standard deviation of the distribution of degree of connectivity in this scenario are
11, 4 and 15, respectively.

Another assumption made on friendship network is that it is static, with all

connections remaining constant over time. This assumption is made provided that
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the turnover of a friendship connection is slow relative to the timescale of a
pandemic and therefore can be ignored in the context (Keeling & Eames, 2005).
Also, the population of agents is constant during the simulation. Even if they have
acquired immunity against some epidemic, they are not removed from the
population. The only exception is that, when some node dies, this node and all its
connections are removed. Table 7 shows the difference in friendship network
between Hamill and Gilbert's model and the dissertation model.

Table 7.Differences in Friendship Network between Hamill and Gilbert's Model
and Dissertation Model

Parameter values Network characteristics
Model Distribution of
Large Small . degree of connectivity
Stability
reach reach . Standard
Mean | Median o
deviation
Hamill & .
Gilbert's 35 10 Dynamic 6 4 5
Dissertation 65 10 Static 11 4 15

For modelingthe friendship network is set up at the beginning of the
simulation, in a similar way as it is in Hamill and Gilbert’s studies (2008, 2009,
2010). Certain amount of agents is randomly placed over a space to achieve a
population density of 1%. 25% of all agents are allocated with large social reach
while the rest with small one. Personal networks and the whole large friendship
network are formulated based on the rule specified by social asacreciprocity.

For each node, the size of its personal friendship network is the number of friends
it has. The nodes connected to it are called its friend nodes, and the rest nodes
stranger nodes. During the simulation, the friendship network remains stable.

When some node dies, this node and all its friendship connections are removed
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from the community; the rest part of the friendshgiwork remains unchange

Figure 5shows the friendship network created by the mc

Figure 5 Community as a friendship network

Agents. Two types of agents are crec in the model. One represents pul
sector, and the other residents or individual®i&xdommunity. The public sect
is responsible for devising public risk communioatstrategy and sending ri
information to residents accordly. Individuals are mainly charaaized by thei
contact patternhealth status and responsive behavior to thanfeskmation
received. Interactions between public sector ado/iduals through risl
communication and interactions between individtialsugh both their concts

and information exchanc¢generate the pandemic impacts atadbeamunity level
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Action rules. Action rules in an agent-based model define how agents
behave or interact with one another at each time step. In this model, the action
rule of public sector is simpler than that of individuals. At each time step, the
public sector sends risk information to individuals according to certain
communication strategy. The communication strategy is indicated by five
indicators: the number and type of channel used for sending risk information, the
frequency of each channel used for sending risk information (use frequency), the
percent of population who use each channel for receiving risk information
(percent of channel user), and the percent of population who consider the
information from each channel credible (percent of channel beliEVieoy.
example, public sector can send risk information to the community using local
television every one or two days.

Individual agents’ behavior includes both their daily contact pattern and the
biological process involved in the pandemic influenza infection. When they
receive risk information, they also go through a responsive process. Therigllowi
part would explain each type of individual behavior in detail.

Individual daily contact. Individual contact pattern refers to a description of
who have been contacted by an individual and how (Mikolajczyk & Kretzschmarr,

2008). Usually it has two indicators: the number of contacts an individual has

1 Why the first three indicators are selected to represent risk comniomicat
strategy has been explained before. The user and believer percent alegoelate

but not exactly sender factors as defined in literature. The user percent could
mediate the influence of sender factors, since it decides the number of individuals
who receive information from and are therefore affected by characeas$ti

some channel. The believer percent is related to channel credibility. Iroadditi

both indicators may be manipulated by emergency managers to some extent.
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within a time unit, which is defined as contact rate, and the type of thosetspntac
namely, whether the contact is repeated interaction or one-time encounter
(Mikolajczyk et al., 2008). In this study, one day is chosen as one time unit. The
contact rate is actually daily contact rate.

Before summarizing previous findings on the characteristics of individual
daily contact pattern and explaining how it is simulated, the concept of contact
used in the model is first clarified.

Contact vs. at-risk contach closeness of contacts is usually required for the
transmission of airborne infections (Mikolajczyk & Kretzschmar, 2008). For
pandemic influenza, most transmissions occur within 3 feet of the source, which
making close-proximity interactions highly relevant for its spread §83aGlass,
2008; Salathe et al., 2010). As a result, not all contacts are disease-causing
contacts. Here an at-risk contact or effective contact is used to refer to an
interaction that is likely to result in infection transmission. At-risk coatact
distinguished from actual contacts, which include all interactions an individual
has. Unless specified otherwise a contact in this study refers to an airiaktc

For operaionalization purpose, it is further assumed in the model that an
individual makes an at-risk contact with another individual if at least one two-way
conversation has been held between them. Such a definition of effective contact
for pandemic influenza transmission is first proposed by Edmunds et al (1997)
and then adopted by many later studies (e.g., Beutels et al., 2006; Mossong et al.,
2008). Such a definition is practical and general. It is easier for resporaents t

recall the number of a two-way conversation they have within some time unit and
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therefore easier for researchers to collect accurate empiriealltdatalso
comprehensive in that other common pandemic influenza transmission
mechanisms can be included in this definition, such as any sort of physical
touching (Mikolajczyk & Kretzschmar, 2008). Edmunds et al (1997) also
provided a detailed explanation for what is a two-way conversation. It is a
situation “(at a distance which did not require raising the voice) in which &t leas
two words were spoken by each party and in which there was no physical barrier
between the two parties (such as security screens)” (Edmunds et al., 1997, p.950).
The length of each conversation is not considered in this concept. Nor is the
number of conversation between the same pair of individuals. In other words,
multiple times of conversation an individual had with the same other individual
within one time unit are recorded as one at-risk contact for each party. The
contact rate used in the model actually indicates the number of different
individuals an individual has conversations with per day.

Characteristics of individual daily contact pattein current literature
empirical findings on individual contact pattern for the spread of airborne
infectious disease are scare, because of the difficulty in comprehgrasfieing
an at-risk contact and the considerable work to collect relevam{Batitels et al.,
2006; Salathe & Jones, 2010). Just a small number of studies have provided some
guantitative descriptions of individual daily contact rate and contact type for
airborne epidemic transmission (e.g., Edmunds et al., 1997; Edmunds et al., 2006).

Findings in these studies are summarized in Table 8.
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Table 8.Findings on Individual Daily Contact Pattern in Previous Studies

Distribution of

Ratio betweer

Author individual daily contact rate repeated to Survev sampié
(year) Mean Standard Range random y P
deviation 9 contacts
A random sample
Salathe & 10 / / / from an American
Jones (2010 .
high school
Mikolajczyk & Sample of Sudents
Kretzschmar, 10 / / / f P : L
rom an university in
(2008) G
ermany
A population-based
Mossong et al prospective survey in
(2008) 13.4 10.6 / / eight European
countries
Read et al A convenience
/ / / 1:8 sample of 49 adults i
(2008)
UK
A convenience
Beutels et al sample of 73 student]
16" / / 1:3 and personnel from
(2006) . o
an university in
Belgian
A convenience
sample of 29
Edmuntzl;oec')[Ga)ll 11 / / 1:3 undergraduate
students from an UK
university
A convenience
sample of 249
Glass & Glasg / / / 1:3 students from an
(2006) ' elementary, middle
and high-school in
us
A convenience
sample of 92 student]
Edmunds et al 16.8 8 0-40 / and their families ang
(2997) .
friends from an
university in Britain

2 The limitation of using the survey results from these studies would be discussed

in Chapter 6.

13 Beutels et al (2006) found that each individual averagely had 18 contacts in
weekdays, and 12 at weekends. 16 is the weighted mean of daily contact rate in

any day of a week.
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For example, Salathe and Jones (2010) found that the average individual
daily contact rate for airborne infection transmission is about 10. This finding is
line with several other studies (e.g., Edmunds et al., 2006; Mikolajczyk &
Kretzschmar, 2008). There are also studies which reported a high avaehage da
contact rate. Both Edmunds et al (1997) and Beutels et al (2006) found an average
daily contact of 16 or higher. Besides the mean, the variability in the number of
daily contacts among individuals is also explored. According to Edmunds et al
(1997), the number of daily contacts was approximately a normal distribution,
with a standard deviation of 8, and a range from 0 to 40. Mossong et al (2008)
reported a standard deviation of 10.6. Based on these findings, individual daily
contact rate when simulated in the model should follow a truncated normal
distribution, with a mean larger than 10 but less than 17, a standard deviation
between 8 and 11, a minimum value of 0 and a maximum value of 40.

Regarding contact type, previous studies provided three important findings.
First, casual encounters are predominantly random and irregular; mostlyehey a
first-time and non-physical contact, with very short duration (Mossong et al.,
2008; Read et al., 2008). Second, contacts of daily frequency often involve
physical interactions and are of long duration; those contacts usually occur
between individuals who are familiar with each other (Mossong et al., 2008; Read
et al., 2008). Three, the number of casual encounters within a day is significantly
greater than the number of repeated contacts which typically occur on a daily
basis; the ratio of the former to the latter reported by several studiesus 3:1

(e.g., Beutels et al., 2006; Edmunds et al., 2006; Glass & Glass, 2008). Some
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studies even found a much higher ratio (e.g., Read et al., 2008). Based on the
three findings, it is assumed in this study that there are two types of contacts
occurring per day for each individual: random encounter which is changed every
day and stable contact which is constantly repeated over time. The ratio of
random encounters to stable contacts among an individual’s daily total contacts is
at least 3:1. In other words, at least 75% of the people an individual contacts per
day are randomly selected from the population while at most 25% repeatedly
contacted each day. Such an assumption supports previous findings that
interpersonal interactions have a hierarchical structure; there are rigre da
random encounters than stable contacts (Glass & Glass, 2008; Grabowskia &
Kosinskia, 2005). It also corresponds to the call from previous studies that the
transmission routine for infection in epidemic models should include both random
encounters and repeated contacts (Mikolajczyk & Kretzschmar, 2008; Raad et
2008).

Personal & community contact netwoilhe opportunities for an epidemic to
spread within a community are given by its contact network. In this network, the
nodes represent individuals in the community, and the edges between nodes the
contacts between two connected individuals along which an infection is possibly
transmitted. All edges are symmetrical, which means infection can be tt@asmi
in either direction (Grabowskia & Kosinskia, 2005). Edges are also unweighted,
which means all contacts transit an infection with the same probabilityl{&&la
Jones, 2010). Therefore, community contact network for potential transmission of

pandemic influenza is abstracted as a non-directed and unweighted graph.
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Within the network, each node has its own personal or egocentric contact
network. An egocentric network consists of a focus node, other nodes this node
connects with, and the connection between the focus node and other nodes. The
focus node is called “ego” and other nodes connected “alters”. The set of alters of
this node is its “neighborhood”. The size of this neighborhood is the node’s
degree of connectivity.

A node’s personal contact network comprises the ego node, the nodes it
contacts with per day, and the contact connection between the egteamhdés.
The characteristics of a node’s contact network are determined by itstconta
pattern. The contact rate specifies the size of its neighborhood size. Rgdhedi
contact type, since an node’s ego-centric network is its daily transmissitine,
it should include both random encounters and stable contacts. At least 75% of
alters in individual contact network are changed every day; they are people an
individual randomly comes across. The rest 25% alters, at most, remain the same
group of people the individual constantly contacts.

Individual contact and friendship network may partially overlap given
previous findings that daily stable contacts occur between individuals and people
they are familiar with (Spoors 1995; Wasserman & Faust, 1994). In this gtudy
is assumed that those people a node repeatedly contacts over timerigredgs f

At the macro level, the community contact network emerges from all
individuals’ personal contact networks. Because of the turnover of partial
individual contact networks, the community contact network would also be

dynamically changing every time unit.
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Simulation setupTo simulate individual daily contact, the value for the
parameter of “contact capacity” is first decided for each node at thenioegof
the simulation. The value is randomly selected from a truncated normal
distribution, with a mean of 10, a standard deviation of 10.6, a minimum value of
0 and a maximum value of 40. Contact capacity represents the number of people a
node can contact per day. It is distinguished from the parameter of “com¢éct ra
which represents the number of people each node actually contacts on some day.
The former may be larger than the latter since the community size masagons
the number of people a node can actually meet. Furthermore, nodes may reduce
their daily contact rates in a pandemic situation for self-protection.

The initial personal contact network is set up for each node according to its
contact capacity and the ratio between random and stable contacts. A paodmete
“stable contact capacity” is used to represent the number of stable ceatztts
node can have daily. Its value equals to the product of contact capacity and 0.25.
If the product is not an integer, the value equals to the next integer that is larger
than the product. Similarly, a parameter of “random contact capacityédstas
represent the number of random contacts each node can have daily, and its value
equals to the difference between contact capacity and stable contadiycapac

To set up a node’s personal contact network, a number of stable contact
capacity of nodes are randomly selected from this node’s personal friendship
network. A connection is then created between this node and each selected friend
node. These selected friend nodes represent the individuals this node repeatedly

meets every day. The connection between the node and each selected node
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represents stable contact. Two situations need attention when stable contacts are
created. First, if the size of personal friendship network is larger tharatile st
contact capacity, the value for stable contact capacity is set to the valle fo
number of this node’s friends. All friends in this situation would be the node’s
stable contacts, and the value for random contact capacity increased. Second, only
one stable contact can be created between two nodes and only when the stable
contact capacities of both ends have not been achieved. If there are siaddely
contact connections connected to the node before it starts to create its stable
contacts, the number of stable contact created by itself should not be stable
contact capacity but the difference between the stable contact capatitye
number of stable-contact connections that have been connected to it. For nodes
whose stable contact capacity has been achieved, no stable-contact conaaction c
further be created for it. Therefore, when the stable contact capfoitg 0
selected friend node has been achieved, another friend node that has not been
selected should be randomly selected. If none of the friend nodes can be selected
for connection, the stable contact capacity of the node would not be achieved. The
value for random contact capacity would not be changed as well. Aimed at this
case, the model uses a parameter of “stable contact rate” to repnesamtner
of stable contacts a node has per day.

For random contacts, a number of random contact capacity of nodes are
randomly selected from all stranger nodes, and then connected with the node.
These selected stranger nodes represent those individuals the node randomly

encounters on some day, and the connections random contacts on that day. The
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special situations when random contacts are created are similar as thnse whe
stable contacts are created, and are handled by the model in the same way. A
parameter of “random contact rate” is created to represent the number of random
contacts a node has per day. Its value is not necessarily equal to the random
contact capacity.

The community contact network emerges when all nodes set up their
personal contact networks. At the beginning of simulation, the distribution of
degree of connectivity in the formulated community contact network follows a
truncated normal distribution, with a mean of 13, a standard deviation of 8, a
minimum value of 0, and a maximum value of'4Guch a distribution
corresponds to what has been proposed by previous studies.

For each individual node, the model creates a dynamic and hierarchical
structure for its personal contact network. Both stable and random contatts exi
in the network. During the simulation, the stable-contact connection remains
constant till either end dies. When a node dies, it is removed from the community,
as well as all of its contact connections. The random-contact connection is
updated per time unit; namely, all random-contact connections are removed for
each node at the end of each time step, and then recreated at the begim@ng of t

next time step.

 The distribution of degree of connectivity in the formulated community contact
network is not necessarily the same as the distribution used to decide each node’s
contact capacity, since the former is decided by each node’s contacthiatejsv

not necessarily the same as its contact capacity.
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Individual biological processinvolved in pandemic influenza infection. The
most common or basic epidemic contagion consists of a transmitter, receiver, and
transmission channel (Brodie, 1996; Comellas, Ozon, & Peters, 2000). For
pandemic influenza, transmitters are infectious individuals. Receivers are
susceptible individuals who have contacted with transmitters. The transmission
channel is the contact between them. Given the definition of a contact, the only
transmission channel in the model is the direct contact between a susceptible and
an infectious individual. As a result, the pandemic influenza is transmitted in the
model from individual to individual via a contact network.

Meanwhile, Standard compartment models, although limited in providing
insights for epidemic control, build the basis for previous studies using social
network or massive agent-based models to simulate the unconscious biological
process after susceptible individuals get infected. In this model, the disease
progression of the pandemic influenza is modeled as an SEIR inf&ttion.

The standard Susceptible-Exposed-Infected-Removed (SEIR) four-
compartment model, as shown in Figure 6, successfully captures the disease
progression process of certain type of influenza. Particularly, it consiaers t

“exposed” status individuals enter after they get infected (Li et al., 1999&Ros

15 The methodological framework developed here would be later implemented in

a specific case, to simulate the spread dynamics of 2009 H1N1 influenza in a
community of Arizona. The infection progress of this pandemic influenza has

been modeled by previous studies based on SEIR model (e.g., Balcan et al., 2009;
Halder, Kelso, & Milne, 2010). That is why SEIR model is explained here among
all other types of compartment models. If the framework is used in another case
the infection progress may be conceptualized based upon another compartment
model, depending upon the epidemiologic features of the epidemic simulated.
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Wu, 2008). Differential equations defining the transition rates between

compartments in the model are presented as follows:

ds SE’+1
dt of N
dE SE'+1 .
T
dI— E—(y+ Il
dt_c y l"l“

dRe_I

dc !

dD :

a M

Similar as in the SIR model, the first compartment includes people who are
susceptible to the disease (&)s the infection rate anlis the contact rate. Once
infected, the susceptible transit into the exposed status (E), during which
individuals may be infectious but not yet show any disease symptom. E’ in the
eguations above represents the number of exposed people who have become
infectious.o represents the progression rate from E to I; its reciprocl i6 the
latent period, the time period between exposure to the disease and the time point
the disease becomes apparent through symptoms (Perez & Dragicevic, 2009).
After the latent period ends, the exposed become infected people (I) who are both
infectious and symptomatic. The removed (R) compartment consists of people
who either recover (Re) from the disease after the infection peffddi( die (D)
when they are in the infected statuss the recovery rate, and p is the mortality
rate among infected people. Generally the recovered is assumed to actjuire ful
immunity to subsequent infection so that these individuals never re-enter the
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susceptible population (Chow et al., 2008; Boot#&ntgerguson, 2007). N is tf

total number of people in the system, excludingéwaho diec
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Figure 6.SEIRmodel of an epidemic infection progress

Simulation setupJsing the state transfer concept of SEIR model
individual biological progress involved in the iméinza infections simulated a
shown in Figure 7Each individual node in the model could have ofive
potential health states:sceptible (S), exposed (E), infected (Bcovered (Re

and died (D). Definitions of these statuses arenddfas below

Susceptible: the node is healthy, but susceptibiefection from its contact

e Exposed: the node has been exposed to infectiomdbiyet showed ar
symptom. It may be infectious, transmitting thduehza virus tdts contact

¢ Infected: the node is both infectious and symptde

e Recovered: the node has experienced the infe and recovered from it.
acquires lifetime immunity, and no longer poselradt to its contac.

e Died: the node has be killed by the infection. It will be removed fromdl

community, as well as all of its friendship and t@mh connections
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Figure 7.Individual biological progress after being infec

Over time, individual nodes’ health statuses evalag the directiol
showed by the arrow in Figure 7. Transition probiés between two adjace
states at each time step are decided by diff parameters. For the stal
transition from susceptible to exposed, this stadigpts the following formul
developed by previous studies (Eidelson & Lusti)4; Salathe & Jones, 201
to calculate the probability sg) for a susceptible node to getanted and ente

the exposed status at each time <

where Reis a susceptible node’s infection probabilityis the infection rate
which represents the probability for a susceptitlde to get infected througt
contact with a infectious nodg'is the infectious contact rate; it represents
number of nodeamong a node’s daily contacts who are infectioukil&\the
value fora is decided by the contagiousness ofinfluenzaand shared by a
susceptible nodes, values fivary among nodes, depending upon the numb
their daily contacts in normal cottions, whether they are taking protect
behavior, and the health status and protectivebhehaf the nodes the

contacted. Previous studies often make assumpdiomst how the infection ra
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varies among different types of contacts, for example, contacts with dtffere
duration, frequency, occurrence time, and social and spatial proximity
(Cauchemeza et al., 2011). However, according to Newman (2002), the variance
in infection rate does not influence the statistical properties of an epidemic
outbreak. It would spread in the population as if all contacts present an equal
chance for infection. In this study, the infection rate is set to one constant value.
This assumption also corresponds to the assumption of symmetric and un-
weighted edges in the contact network.

The concept of infection probability essentially represents the probability for
a susceptible node to get infected after it has disease-causingcwitiac
infectious individuals within one time step. It reflects the fact that lateoatacts
do not guarantee an infection (Jones & Adida, 2011). It also enables the model to
include the heterogeneity in individuals’ vulnerability and resistance to the
disease (Huang, Sun, & Lin, 2005). Nodes in the model with the same infection
probability at the same time do not necessarily all become infected, efietts
some people are more susceptible than others.

For the transition from exposed to infected status, previous literature has
employed two ways to set the value for latent period in epidemic models: the
constant-length method with all exposed individuals having the same value for
their latent period (e.g., Haber et al., 2007; Longini et al., 2005), and the random-
length method where all exposed individuals have the same progression rate from
exposed to infected status (Dunham, 2005; Easley & Kleinberg, 2010). In the

second way, the progression rate is usually calculated as the recipréeal of t
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average length of the latent period found in empirical data. Each exposed node is
randomly decided whether to have status transition based on the progression rate.
Variety in the length of latent period therefore can be created. In this dtedy, t
model uses the second way to consider the latent period, given the heterogeneity
found in empirical data in individuals’ latent period after they get infected by a
pandemic influenza (CDC, 2009a). A parameter called infected probabgity (P

is used to represent the probability for each exposed node to transit to the infected
status at each time step. Its value equals to the reciprocal of the aateage |

period empirically found for a pandemic influenza.

Similarly, previous studies also provide a constant-length way and a random-
length way to simulate the infected period (e.g., Haber et al., 2007). Considering
the variety empirically found in the infected period for a pandemic influenza
(CDC, 2009a), the model also chooses to model the infected period as random in
length, by assuming that all infected nodes have the same probability torrecove
from the influenza at each time step. This probability is called recovered
probability (Rg). Its value is equal to the reciprocal of the average length of
infected period empirically found for a specific influenza (Germann et al., 2006;
Mathews et al., 2007).

Besides recovering from the disease, infected nodes can also be killed by the
disease. The probability for them to die at each time step is defined as gnortalit
probability. Its value is equal to the value for mortality rate found in empirical

data for a pandemic influenza.
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The above staged process reflects the rule that governs the disease progres
for all nodes at each time step in the model. For susceptible nodes, they get
infected based on the probability decided by the contagiousness of the disease and
their daily contact and protective behavior. Once a node is exposed, it remains in
the status for its own length of latent period and then enters the infected status.
For infected nodes, they may be killed by the disease with a probability of
mortality probability at each time step. If they survive the step, they have a
probability of recovery probability to recover from the influenza. Furthermore, a
recovered node would have lifelong immunity on recovery to the influenza.

Individual response processto risk information. The response process of
individuals to risk information is simulated based on the individual warning
response model developed by Quarantelli (1983). As shown in Figure 8, the
response process begins with the receipt of risk information, which isygreatl
influenced by the communication strategy employed by the public secter. Aft
receiving the information, individuals go through a reaction process. This process
consists of a set of sequential stages, including initial risk perception, socia
confirmation, and situational definition. Individuals first attach their own meaning
to the information, and then develop an initial perception in terms of whether the
risk being communicated exists and how severe'ftRaiblic risk communication
here has considerable influence on individuals’ risk perception. After that, people
ask or observe their friends regarding how they perceive or respond to the risk.

Individuals define their situation based on both their initial risk perception and

' The stages of understanding and initial risk perception are combined by
Quarantelli (1983) into one stage: initial risk perception.

107



their observation during the social confirmation stage. Quarantelli (1983) defines
the situational definition as whether individuals believe they are personally
endangered. It is different from the initial risk perception, since the tafers to
whether individuals believe the general public or others are in dandevsiduals’
responsive behavior is represented by whether they would take protectves acti
Situational definition is an important determinant of individual responsive
behavior, while there are also other influential factors. Furthermore, itistbkst

in the model public risk communication affects individuals’ response to risk

information through influencing their warning receipt and initial risk peraept
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Figure 8.Quarantelli model of individual emergency warning
There are also other well-established models explaining individual response
to emergency risk information, for example, Lindell & Perry model (Lineledl.,
2005; Lindell & Perry, 1992, 2004), Mileti model (Mileti & Sorensen, 1990) and

Donner Model (Donner, 2007). Most of them can be considered as an extension,
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or more accurately specification, of the Quarantelli model. Considering
Quarantelli's model is more general and inclusive, it is included in the agent-
based model to simulate individuals’ response to risk information.

Simulation setupin the model, each type of channel sends risk information
with a certain frequency. Several types of channel can be used simultgneousl
with each sending information according to their own frequency. Here channel
frequency is defined as how regularly certain channel is used; it inedan
once per number of time steps or number of days. When some channel is sending
information, certain percent of agents is randomly selected as channel users
according to this channel’s user percent, and then certain percent of agents as
channel believers according to the believer percent. The same individual can be
selected to use or believe several types of channel at the same ime ste

After individuals receive risk information, it is assumed that they understand
what information attempts to convey, and formulate their initial risk perception.
The initial risk perception here is defined as the probability for an individual to
have a high level of risk perception, namely to believe that the pandemic
influenza poses great danger for the general publc§Bch a probability in the
agent-based model is influenced by the number and type of channel the individual
uses to receive risk information, and whether the individual believes each channel
is credible. The way in which the probability is influenced depends upon the
specific research context.

Difficulties to simulate the responsive process lie in the stage of socia

confirmation and situational definition. Previous literature has been ambiguous
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about what type of information is collected by individuals at the confirmation
stage and how they use all information received and collected to make decisions
on the adoption of protective behavior. To address those limitations, this
dissertation uses the innovation diffusion model created by Delre, Jager, and
Janssen (2007) to simulate how individuals behave during the two stages.

Delre et al's innovation diffusion model is created to simulate how the
aggregate level of penetration of a new product emerges from individuation
decision on adopting the product. This model is also a network-based ABM. The
nodes of the network in the model are individual agents and links between two
nodes represent friendship relation. The adoption decision of an individual agent
is described as the probability to use the new product and calculated at each time
step as

P =1fx; + (1 - Dy

where Ris the adoption probability of individual i; ¥ individual preference,
which reflects the mass media influencasxhe local social influence. f weights
these two forces and presents how strong the local influence affects the
probability. The value for f is between 0 and 1.

Concerning the local social influence, it is from a node’s personal friendship
network and due to word-of-mouth process with its friends (neighbors in its
personal friendship network). The model assumes that agents are involved in such
a process if and only if they receive a message from some friend thaetiae fr
has already adopted the product. When the number of times of the node’s

involvement in the process exceeds certain threshold, the social influencegmerg
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and influences its own adoption probability. Delre used a parametetof H
represent the personal threshold which decides a node’s susceptibility to its
friends’ behavior. If the fraction of adopters among a node’s friends is higdrer t
Hi, the node feels the social influence. The value ffor this case is 1; otherwise,
the value is 0.

There are two reasons why Delre et al’'s model can be used in this research
context. First, the mechanism of the target social process is similar. Bd#iam
aim to simulate the spread of some subject, a new product or protective action,
over a network through modeling individual decision making process. The
decision is about whether or not to take some action to protect or improve their
benefits, and it is simultaneously influenced by two communication processes.
For the model created by Delre et al (2007), the rationale of the formalization of
individual adoption decision is rooted in social influence theory, particularly the
work of Bass (Delra et al., 2007). Bass formalizes the decision of a consumer to
adopt a new product as a probability. The probability is determined by two
processes of communication: external influence via advertising from nemsa m
and internal influence via word-of-mouth (Delra et al., 2007). Consumers form
their own preference for the product after receiving advertising infawmalhen
they observe their friends’ behavior or receive messages from their friemals a
whether their friends have adopted the product. Such a process is very similar as
the individual decision making process on responsive behavior after receiving risk
information: individuals’ decision on taking protective action depends on their

initial risk perception which is formulated by the external risk communication
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effort from public sector and on the internal influence that they receive fram the
friends. Second, a network-based ABM is used in both studies to simulate the
target process, and a friendship network is included in both models as the
underlying network to simulate how the product or action spread over it.

However, Delre et al's model is still unclear about how individual preference
is formulated by external communication. Here research findings frornopse
literature on emergency risk communication are used to simulatenissing part,
as discussed before.

Based on the innovation diffusion model, it is assumed in the model that
Individual responsive decision is defined as the probability to take protective
action. It is made based on both external and internal influences at the stage of
situational definition. The risk information individuals receive from the public
sector is the external influence; it formulates individuals’ initial ggroa. The
internal influence comes from the information individuals collect from some of
their friends during the social confirmation stage. The internal influenes rutmt
always exist. Its existence depends upon whether the percent of a node’s friends
selected for information collection who take protective action amongeaitis
selected for information collection exceeds certain threshold.

Specifically, at the social confirmation stage, an individual node seleces som
nodes from its personal friendship network to observe or ask whether they are
taking protective behavior. The number of friend nodes selected is represented by
the parameter of “confirmation attempts”, and is randomly chosen from 1, 2, 3

and 4 (Lindell & Perry, 2004). The sequence of asking is based on the closeness
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of this node to its friend nodes. It first asks its closest friend, the node among its
friends nodes which locates the nearest to it in the social space, and then its
second closest friend, till the value for confirmative attempts is achiduée. |
value for confirmative attempts is larger than a node’s number of friends thie
former would be set equal to the latter. If a node has no friends, no social
confirmation occurs; the node’s responsive decision is solely influencesl by it
initial risk perception. Furthermore, a moderate assumption is made on the
personal threshold for internal influence to occur, since no relevant research
findings have been found. A parameter called “internal influence threshold” is
created. It is assumed that when 50% or more of a node’s friends who arelselecte
among all friends for information collection have taken protective actiorg ther
would be an internal influence affecting the responsive decision made in the
following stage.

At the stage of situational definition, the responsive decision, described as
action probability, is calculated as

Pa=fFin+P(1 -0

where R represents individual responsive decision. f represents the strength
of friends’ influence on the decision. A moderate assumption is made on the value
for this parameter. Both influences have the same weights in influencing the
responsive decision, and f is equal to 50%4s R node’s initial risk perception.
Fin represents whether internal influence occurs. The value for this parasnkter |

when the internal influence threshold is exceeded and 0 otherwise.
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Based on the action probability calculated above, individuals in the model are
randomly selected to take protection action. The higher the action probabdity, th
more likely a node takes protective action. For example, if a node’s action
probability is 60% at time step t, then it has a 60% possibility to take action and
40% chance not to do so at this time step. Furthermore individuals with the same
action probability do not necessarily have the same responsive behavior. The way
the model simulates the occurrence of protective action corresponds with what
has been found in previous literature. Individual decision on responsive behavior
is a key factor determining their actual responsive behavior; the moresagces
an individual considers protective action, the more likely the action would be
taken. Meanwhile, the decision is not the only influential factor.

In the model, the protective action individuals take is assumed to be non-
pharmaceutical measure against influenza infection. That is because
pharmaceutical measures—vaccine and antivirals—against a novel influenza a
normally in absence when it starts to spread among a population. Individuals
adopting these non-pharmaceutical measures typically reduce their contiacts
other people to decrease their probability of being infected. Such measures are
also called in current literature avoidance action or avoidance behaviort(@lau e
2010; Yoo, Kasajima, & Bhattacharya, 2010). Avoidance behavior in the
simulation is assumed to influence the contact pattern. It does not influence the
values for other parameters; for example, the latent and infected pemoais r
the same regardless of whether exposed or infected people engage in avoidance

behavior. For daily contact rate, previous researchers estimate thaetiweff
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contact rate, which is the product of the infection rate and the contact rate, could
be reduced by 30-90% through the early implementation of non-pharmaceutical
pandemic mitigation measures (Larson & Nigmatulina, 2009; Jefferson et al.,
2008). The infection rate could be regarded a constant representing the biological
features of the disease. So it can be inferred that avoidance behavior could reduce
people’s contact rate by 30-90%. In the model, a parameter of avoidance behavior
effect ) is set to represent the reduction in contact rate due to avoidance
behavior. The value for this parameter is randomly selected among 30%, 40%,
50%, 60%, 70%, 80%, and 90%, and it is updated for each node each time step
when it responds to risk information by taking avoidance behavior.

For the type of individual daily contacts, no findings have been found on how
it is influenced by avoidance behavior. This model assumes that the structure of
individual daily contact would be sustained, despite their respons& toessage.

The number of stable and random contacts would be reduced by the same degree
by avoidance behavior. For example, if a node has a normal daily contact rate of
24, and its avoidance behavior effect is randomly selected to 50% at some time
step when it takes the behavior, then its stable daily contacts would be reduced to
3 (24 *0.25 * 0.5), and random daily contacts to 9 (24 * 0.75 * 0.5). 3 out of the 6
original stable-contact nodes would be selected as the currieletstatact nodes,

and 9 stranger nodes randomly selected as the current random-contact nodes.

Individual responsive process is initiated every time when a node receives
risk information, despite whether it has received risk information or taken

responsive behavior before.
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Summary. The simulation flowchart in the model is shown in Figure 9.
Before the simulation starts, the friendship and contact network are sethup, wit
each node having its own personal friendship and contact network. During the
simulation, at the beginning of each time step, first infected and then exposed
nodes go through the biological process of the disease, as shown Figure 10. A
parameter called “recovering?” is created to represent whether infectesl no
should enter the recovered status at the beginning of each time step. For those
nodes, if their recovering? is true, they would recover from the disease. If their
recovering? is false, they remain infected status. For those who are sfdlated
status, they have the probability of mortality probability to die from theadies
at this time step. If they stay alive, they have the probability of regover
probability to have their recovering? set true (its default value is falbehw
means they would recover from the disease at the beginning of next time step.
For exposed individuals, a parameter called “infectious?” is used to represent
whether they have been infectious. If its value is true, exposed nodes have been
infectious since the beginning of previous time step, and should become infected
this time step! If the value is false, no status change occurs for these nodes. As
shown in Figure 10, at the beginning of each time step, exposed nodes with a true
value for infectious? enter the infected status. Exposed nodes with a false value
for infections? remain their status, and have a probability of infected privypabil
to set their value for infectious? true (its default value is false), whichsribay

can spread the virus through contact to susceptible nodes within this time step.

17 Explanation would be provided later for why there is one day for exposed nodes
to be infectious.
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Figure 9.Simulation flowchart of the model
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at the beginning of each time step

The health status progress of some nodes from infected to died may lead to
changes in both friendship and contact network. The friendship network and the
stable component of contact network are static. But they need to remove the nodes
that have died and all their connections, both friendship and contact ones. The rest

part of the two networks remains unchanged. Therefore, after infected and
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exposed nodes finish their biological progresses, the friendship network and the
stable part of the contact network are updated to keep all nodes within them alive.

The risk communication strategy is then implemented in the community.
Public sector can change the five policy indicators as implementingedtiffer
strategies. At each time step, whether some type of channel is sending risk
information is decided by its use frequency. If it is being used, certaienief
nodes are selected among the population as the user and believer of this channel.
The same node can be the user or believer of several types of channel which all
send risk information at the same time step.

The receipt of risk information initiates a node’s responsive process, if its
health status is susceptible, exposed, or infected. These nodes have the potential
to perceive the risk and take avoidance behavior for self-protection or preventing
themselves from spreading the virus. For recovered nodes, they can be neither a
transmitter nor a receiver. Previous literature has not provided insightgdér
how individuals respond to risk information when the potential risk constitutes no
threat to them. The model assumes that recovered nodes have no response to the
risk information; they will ignore the information and continue with their normal
activities. If a node has not received any information, it will also act inalorm

Risk information influences individual responsive behavior by formulating
their initial risk perception. In the model, a node’s initial risk perception is
decided by the five risk communication indictors. But how the former is
formulated by the latter depends upon the specific research context. After the

initial risk perception is formulated, a node sequentially goes through the stage of
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social confirmation, situational definition and response, as described before. The
final result from the responsive process is a node’s responsive behavior, and it is
represented by whether or not the node takes avoidance behavior.

After all nodes have finished their responsive process, they update their
contact network according to their responsive behavior. If a node takes avoidance
behavior, its personal contact network is recreated in the way as descrityed bef
If it does not take the behavior, its stable contacts remain unchanged, while its
random contacts recreated. This new personal contact network represents the
contact routine of this node at this time step. The new contact network of the
community emerges after all nodes establish their new personal contamtksetw

Agents then interact with each other along their contact network just updated.
After all nodes have interacted with their neighbors in their personal contact
network, susceptible nodes begin their process of biological progress. An
infection probability is calculated for each susceptible node, and a status change is
randomly determined based on the probability. A susceptible node has a
probability of infection probability to get infected and enter exposed status;
otherwise, it is still susceptible to the disease.

The above process is repeated each time step after the simulationlistarts ti
the time limit.

Description of parameters. Key parameters used in the model can be
categorized into four groups. They are the environment parameters, epidé&niolog
parameters, personal parameters, and policy parameters. A detailgotidesof

these key parameters is as follows.
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Table 9 shows those parameters which characterize the commuomitgted.

The first four parameters define the size and shape of the community. The

population-related parameters define the total population and the number of

people in each health status. The rest environment parameters are used to set up

the friendship and contact network.

Table 9.Environment Parameters in the Model

Parameter Description

XMIN Minimum x coordinate of the simulation space
XMAX Maximum x coordinate of the simulation space
YMIN Minimum y coordinate of the simulation pace
YMAX Maximum y coordinate of the simulation space

%-large-reach
Large-reach

Small-reach

Mean-of-daily-contact-
capacity

Std-of-daily-
contact-capacity
Max-of-daily-contact-
capacity

Min-of-daily-
contact-capacity

%-of-stable-contact

Population
%-susceptible-
population

%-exposed-population

%-infected-population

%-recovered-
population
%-died-
population

The percent of agents who have large reach among
community population

The radius of the large social circle; it is used to create
friendship network

The radius of the small social circle; it is used to create
friendship network

The average daily contact capacity among community
population

The standard deviation of the distribution of individual daily
contact capacity in the community

The maximum daily contact capacity among community
population

The minimum daily contact capacity among community
population

The average percent of stable contact capacity among
individual daily contact capacity in the community

The number of individual agents in the community
The percent of agents susceptible to the disease among
community population
The percent of agents in exposed status among community
population
The percent of agents in infected status among community
population; it is also called morbidity
The percent of agents in recovered status among community
population
The percent of agents who have died from the disease
among community population
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The second set of parameters is related to the disease being modeled. For an
epidemic which can be simulated through the status transfer concept of SEIR,
infection rate, latent period, infected period, and mortality rate are nemded t
specify the individual status progress involved in the epidemic, as shown in Table
10. Values for these parameters depend on the biological characteristies of t
epidemic, and can be inferred from scientific literature, from reseapshience,
or from data results collected from the field (Bagni, Berchi, & Cariello, 2002).

Table 10 Epidemiologic Parameters in the Model

Parameter Description

The probability for a susceptible individual to get infected

Infection-rate after a contact with an infectious individual

The period of time between exposure to the disease and the

Latent-period time the disease becomes apparent through symptoms

Period-of-exposed-  The period of time during which exposed individuals can
being-infectious spread the virus to others

The period of time between the moment an individual
Infected-period becomes symptomatic and the moment the individual
recovers from the disease

The probability for an infected individual to die from the

Mortality-rate disease at each time step

The third set of parameters is related to individual agents’ characteastic
behaviors (Table 11). The values for most of these parameters are updated each
time step for each agent alive, to reflect its current daily contactmpattehealth
status, and whether it is taking avoidance behavior.

Table 11.Personal Parameters in the Model

Parameter Description

The radius of an agent’s social circle for friendship network
setup; it is either a large or a small reach

The number of friend agents an agent has;
it is the size of the agent’s personal friendship network
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Contact-capacity The number of agents an agent can contact per pme ste

The number of agents an agent contacts at each time step;
it is the size of the agent’s personal contact network

The percent of stable contacts an agent has per time step
among its daily contacts

The number of stable contacts an agent can have per time
Stable-contact-capacitystep; its value equals to the product of contact capacity
and %-of-stable-contacts

Stable-contact-rate The number of stable contacts an agent hals tineastep

The number of random contacts an agent can have per time
step; its value equals to the difference between contact

Contact-rate

%-of-stable-contacts

Random-contact-

capacity capacity and stable contact capacity

The number of random contacts an agent has at each time
Random-contact-rate

step
Health-status The health status of an agent relative to the disease

The probability for a susceptible agent to become exposed at
each time step

The probability for an exposed agent to become infected at
each time step; it is decided by the latent period

The probability for an infected agent to recover from the
disease at each time step; it is decided by the infected period
The probability for an infected agent to die from the disease
at each time step

Infection-probability
Infected-probability
Recovered-probability

Mortality-probability

Infections? Whether an exposed agent is infectious at each time step

Whether an infected agent would recover from the disease

ing?
Recovering: next time step

Whether an agent receives any risk information at each time
step

Whether an agent is using some channel for risk information
at each time step

Whether an agent believes the risk information from some
channel is credible

The probability for an agent to believe the general public is
greatly endangered

The number of friends an agent asks during the social
confirmation stage

The probability for an agent to take avoidance behavior at
each time step

New-info?
Channel-user?
Channel-believer?
Initial-risk-perception
Confirmation-attempts

Responsive-decision

Action? Whether an agent takes avoidance behavior at each time step

The reduction in an agent’s daily contact rate due to the
adoption of avoidance behavior at each time step
Social-influence- The threshold for social influence to occur during the
threshold situational definition stage

The percent of responsive decision which is decided by
social influence

Action-effect

Social-influence-effect
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The final set of parameters is policy indicators, which specify the
communication strategy employed by public sector. The number and type of
channel in use determine which types of channel are used to deimdaimation.
The rest three parameters in Table 12 decide the characteristics ohaachl¢n
use, including the percent of people among the community population who use
and believe the credibility of the channel, and its use frequency.

Table 12 Policy Parameters in the Model

Parameter Description

Number-of-channel- The number of different types of channels used by the public
in-use sector to send risk information at each time step
Channel-type The type of channel being used

The percent of agents who use some channel to receive risk

%-channel-user . . . ;
information among community population

The percent of agents who believe risk information from

%-channel-believer . : . .
some channel is credible among community population

Channel-frequency How regular some channel is used to send risk information

Model implementation in Netlogo. In this dissertation, the agent-based
model created is implemented in Netlogo. Netlogo is a multi-agent prograemmabl
modeling environment. It is developed based on the Logo programming language
and can serve as the basis for a variety of multi-agent simulation models. The user
interface of the model after implemented in Netlogo is presented in Appendix A

and the source code to implement the model in Netlogo in Appendix B.
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Chapter 5
Computational Simulation Results
Resear ch Context: 2009 HIN1 Influenza Outbreak in Arizona

2009 H1IN1 influenza emerged as a new pandemic strain of influenza in April
2009. As the first global influenza pandemic in over 40 years, it caused a
substantial number of illnesses, hospitalizations, and deaths (CDC, 2010a). On
June 11, 2009, WHO declared that a pandemic of 2009 H1N1 influenza was
underway (CDC, 2010b). The United States experienced its first wave of dutbrea
in the spring and summer months of 2009. A public health emergency was
declared by the U.S. government on April 26. By June 19, all states in the U.S.
had reported cases of 2009 H1NL1 infection. The second wave occurred in the fall
of 2009, with most of the nation experiencing the influenza outbreak from
October to early December 2009 (Ross et al., 2010).

In Arizona, the first case of 2009 H1N1 infection was confirmed on April 29,
2009 (Shanks, 2009). The Arizona Department of Health Services (ADHS) has
been reporting the number of newly infected and deceased cases each week since
August 30, 2009. By early October 2009, a total of 2,243 people had been
infected by and 30 people had died from the influenza in Arizona (ADHS, 2009a).
New infections continued to emerge till May 2010. By early October 2010, 5,620
people in Arizona had been infected, and the total number of deceased cases was
122. The solid part of the curve in Figure 11 shows how the number of newly
infected cases in Arizona changed each week during the 2009-2010 influenza

season, namely, from October 4, 2009 to October 2, 2010 (ADHS, 2009b).
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Figure 11.Epidemiological curve for 2009 H1N1 influenza
weekly newly infected cases in Arizdfia

To reduce the impacts of an influenza pandemic, ADHS has been
emphasizing the use of non-pharmaceutical interventions in the absence of
effective vaccine when facing a new influenza strain (ADHS, 2006, 2009c). When
the second wave of 2009 H1N1 influenza outbreak occurred in October, effective
vaccination against this influenza was still unavailable (ADHS, 2009d); but risk
communication plans and strategies had been made before it. A Joint Information
Center (JIC) and a coordinated statewide messaging system had beeshestabli
and used to disseminate pandemic-related information to encourage the public to
take non-pharmaceutical protective actions within the following influenzarseas
(ADHS, 2009c). This situation provides a proper context to empirically answer

the research question of this study.

18 |n this chart, only the solid curve represents the 2009-2010 influenza season.
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This chapter first introduces how the computational model developed before
is implemented in this specific setting. Experiments are then conductepldoee
the spread dynamics of 2009 H1H1 influenza in an Arizona community during the
2009-2010 influenza season, without any policy intervention and with different
risk communication strategies. Experiment results are summarized for aotic

management insights.

Data Sources

First, the agent-based model needs to be parameterized for this specific
research context. Table 13 summarizes the parameters used at the beginning of
simulation, their default values, and the sources of these values.

Table 13 Parameters, Values and Data Sources for Model Initialization

Parameters Default Valu®ata Sources
Environment
parameters
XMIN 326 cell side  Hamill & Gilbert (2008, 2009, 2010)
XMAX 326 cell side  Same as above
YMIN 326 cell side Same as above
YMAX 326 cell side  Same as above
%-large-reach 25% Same as above
%-small-reach 75% Same as above
] . Boase (2008),
Large-reach 65 cell side Wang & Weliman (2010)
Small-reach 25 cell side Same as above
Mean-of-daily-contact- 10 Salathe & Jones (2010),
capacity Mikolajczyk & Kretzschmar (2008)
Std-of-daily-contact- 10.6 Mossong et al. (2008)
capacity
Max-of-daily-contact- Edmunds et al. (1997)
capacity
Mln-of-dally-contact- 0 Same as above
capacity
Ave-%-of-stable- 2504 Beutels et al. (2006), Edmunds et al.
contacts 0 (2006), Glass & Glass (2008)
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Population 1,000
04-0f- i -
Yo-0f su.sceptlble 98%
population
04-0f- -
Yo-0f ex.posed 0%
population
04-0f-1 -
Yo-of mfected 204
population
04-0f- -
Yo-0f repovered 0%
population
%-of-died-population 0%
Epidemiologic
parameters
Infection-rate 1.4%
Average-latent-period 2 days
Period-of-exposed-

1 day

being-infectious
Average-infected-period 5 days

Mortality-rate 0.3%
Personal parameters
Infected-probability 50%
Revered-probability 20%
Mortality-probability 0.3%
Confirmation-attempts [1, 2, 3, 4]

[30%, 40%,
50%, 60%,

Action-effect 70%, 80%,

90%]
Social-influence- 0
threshold 50%
Social-influence-effect 50%
Policy parameters
Number-of-channels-in- [0, 1,2, 3]
use

Local TV,
Channel-type National TV,

Radio

Channel-frequency
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Perez & Dragicevic (2009)

Assumption of this dissertation
Assumption of this dissertation
Assumption of this dissertation

Assumption of this dissertation

Assumption of this dissertation

Coburn, Wagner, & Blower (2009),
Yang et al. (2009)
CDC (2009a)

Same as above

Same as above
Donaldson et al. (2009),
Tuite et al. (2010)

CDC (2009a)

Same as above
Donaldson et al. (2009),
Tuite et al. (2010)

Lindell & Perry (1992)

Jefferson et al. (2008),
Larson & Nigmatulina (2009)

Assumption of this dissertation

Assumption of this dissertation

Assumption of this dissertation
ASU/ADHS Influenza Survey
(2009)

ASU/ADHS Influenza Survey
(2009)

[1, 3, 7] days Assumption of this dissertation



Local TV

Assumption of this dissertation
ASU/ADHS Influenza Survey
(2009)

Same as above

[10%, 50%,
70%*, 90%]

[10%, 50%,
60%*, 90%]

%-channel-user

%-channel-believer

National TV

Assumption of this dissertation
ASU/ADHS Influenza Survey
(2009)

Same as above

[10%, 26%*,
50%, 90%)]

[10%, 50%,
55%*, 90%]

%-channel-user
%-channel-believer

Radio

Assumption of this dissertation
ASU/ADHS Influenza Survey
(2009)

Note. “[]” in this table means that any value for a parameter in the squeniesb
could be selected for simulation. Value with * is the empirical value for a
parameter.

[10%, 11%*,

%-channel-user 506, 90%]

The target social system simulated in the model is a medium-size community
in Arizona. Such a choice is made for two reasons. First, the entire population of
the state or a large city cannot be taken into consideration due to limited
computational capacity. Second, this study is interested in pandemic influenza
spread in a social network via individual interaction. The focus on a medium-size
community allows a more comprehensive understanding of the interactions at the
local level (Eidelson & Lustick, 2004). Furthermore, inferences can still be made
on larger groups from the analysis (Eidelson & Lustick, 2004).

Population size of the community in the model is set to 1000, the number
used by previous studies for a medium-size community (e.g., Perez & agice
2009). The population density and the shape of the community are the same as

those in Hamill and Gilbert’s study (2008, 2009, 2010), to ensure the friendship
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networks set up have the same characteristics. 1,000 agents are randomly placed
over a 100,000-cell unbounded and square space with a population density of 1%.
Parameters related to the friendship network include the percent of agents
who have large and small social reach, and large and small social reach. Proper
values for these parameters have been discussed before and are summarized in
Table 13. Values for those parameters needed to set up a structurally hiakarchic
contact network for agents are also from previous studies, as discussed before.
For an epidemic to diffuse over a network, a certain number of nodes need to
be infectious at the beginning of the spread process (Delre et al., 2007). In the
model created, 2009 H1N1 influenza dies out within a short time period when the
simulation is initialized with less than 2% nodes being infectious. The influenza
in this case cannot become a public concern. To simulate the influenza outbreak
as a public emergency, the model starts the simulation with 2% nodes chosen at
random to have infected health status; all other nodes are initially set
susceptiblé? Over time the initial infection can spread the disease through the
network. Figure 12 shows an example of how an infection unfolds within a simple
contact network through successive time steps. Beginning with one infected node
which is shaded at the center at time step t, the disease spreads to some but not all
of the remaining non-shaded susceptible nodes. Over time more susceptible nodes

are infected through their connections with infected nodes.

9 No common approach has been found in previous studies to decide the percent
of simulated population in each health status at the beginning of pandemic
influenza simulation. But the population is usually categorized into two groups:
people who are infected and infectious, and people who are susceptible to the
influenza (e.g., Kenah et al., 2011).
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Figure 12.The spread course of an SEIR epid¢in a simple contact netwc

For epidemiologic parameters, their values werkectdd from CDC repori
and earlier studies. According to CDC, “the incutraperiod for influenza i
estimated to range from 1 to 4 days with an avecd@edays” and “influenz
virus shedding (the tima@uring which a person might be infectious to ano
person) begins the day before illness onset angbeesst for 5 to 7 days” (CD(
2009a).The simulation mod assumesan average latent period of 2 days an
average infected period of 5 days. Arer implication from the CDC'’s stateme
is that exposed individuals are not infectiouslldiraes; they only begin t
transmit the virus from the last day of their ldtpariod (CDC, 2009a

The infection rate can be estimated based on prsYindin¢s on the basic
reproduction number @R whichis the number of secondary infections cause
a single infectious case introduced into the susgdeopulation. Considerin
the assumption that people can only die when theynainfected status, is
equal to the product of the average contact riageinfection rate and the avere

infectious period (Keeling & Rohani, 200%° This model uses a value of 1.4

0 The infectious period is the time period during evhan individual is infectiout
In the model, individuals zer exposed to the influenza have an average iofex
period of 6 days. It is composed of averagenfected period and the last day
latent period.
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the infection rate, which is based on the value of the estimated basic reproduction
number from the study of Coburn et al (2009) and Yang et al (2009), and the
value for the average contact rate and average infectious period. Thetynortal

rate for 2009 H1N1 influenza was estimated to be approximately 0.3%
(Donaldson et al., 2009; Tuite et al., 2010).

Values for personal parameters related to daily contact patterrt atelse
beginning of simulation based upon the characteristics of community contact
network. Each node’s daily contact capacity is randomly selected from the
truncated normal distribution of community contact network’s degree of
connectivity. Its ratio between stable and random contact capacitytaslsadt
Personal parameters related to individual biological progress are determined by
epidemiologic parameters. The infected-probability is the reciprocaleshige
latent period, and the recovered-probability the reciprocal of averageethfec
period. Meanwhile, the parameter of infectious? is used to help simulate the last
day of latent period. Its value is randomly decided based on the infected-
probability for each exposed node at the beginning of each time step. If the value
is true, the node becomes infectious at this time step, and infected at next time
step. Otherwise, the node remains exposed and noninfectious. Appropriate values
for personal parameters related to individual responsive process to risk
information have been discussed before, for example, confirmation-attempts,
action-effect, social-influence-threshold, and social-influenceteffe

Characteristics of public risk communication strategy came from the 2009

ASU/ADHS Influenza Survey (Jehn et al., 2011). It was a random-digit telephone
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survey of representative households in Arizona. The survey was designed to elicit
responses from the adult in the household who was the primary health-related
decision-maker. It was conducted by trained interviewers using a stdicture
guestionnaire. Interviews were performed between 8:00 am and 9:00 pm
including weekdays and weekends from October 1-30, 2009. A translated survey
guestionnaire was used for respondents speaking only Spanish.

A total of 945 available telephone numbers were identified for potential
interviews, with 727 households completing the survey for a 77% final survey
sample response rate. Sampling was designed around a 95% confidence interval
and together with the response rate resulted in a £3.64% margin of error. The
survey contained 53 main questions, and related sub-questions, on respondents’
demographics, what they knew about the 2009 H1N1 influenza, how they
received relevant information and perceived the risk, and whether they were
taking avoidance actions to reduce their risk of getting infected by thiemath
(Jehn et al., 2011).

In the model, components of public risk communication strategy influence
individual responsive behavior through formulating their initial risk perception.
Given the rare empirical findings on how the former influences the latter,
information collected from the survey is used to specify the relationship. Among
survey respondents, 49.24% believed that it was very easy for people to get the
influenza, or that the influenza situation was very urgent at that time. These

respondents are considered those who have a high level of initial risk perception.

133



Regarding risk communication strategies, the survey included itemedrelat
to channel type, and the use and perceived importance of each type of channel.
Survey respondents were asked to identify the type of channel through which they
obtained 2009 H1N1 flu information during the survey month. The choices were
local TV, national TV, local newspaper, national newspaper, Internet, radio,
magazine, friend, school, work, doctor, and other. Respondents could choose
multiple types of channel and are defined as a channel user of all typesmé¢icha
they used. Meanwhile, those who indicated that some type of channel they used to
obtain information was “very important” or “somewhat important” were
considered the believer of this chanflel.

Logit regression was run on the survey, using whether having a high-level
initial risk perception as dependent variable. Independent variables are shown in
Table 14, which include whether respondents use each type of channel to receive
2009 H1IN1 influenza information, whether they consider the channel important,
and their demographical characteristics which previous studies found influentia
on individuals’ risk perception of a pandemic influenza (Sjoberg, 2000).

The regression formula is showed as below.

12
logit(Prp) =B, + Z(Bln * Channel,, + B, * Channel, * Channel Imp,)

n=1

9
+ Z (B,,, * Demoy,)
m=1

%1 The perceived importance of a channel is different from its perceived citgdibil
But the former is the only available item in the research context thiatisd¢o

the latter. So here, in this specific research context, perceived impogance i
considered the same as perceived credibility.
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Table 14 Variable Definitions in the Logit Regression

Variable Definition Possible Value
Dependant

variable

High-initial-risk- Whether a respondent has a high-level (Yes)
perception? initial risk perception 0 (No)

| ndependent
variable
Whether a respondent uses Channel nltgYes)
Channel R .
receive risk information 0 (No)
Whether a respondent believes the 1 (Yes)

Channel_Imp information from Channel n is importartt (No)

1 (18-34)
Age Which age group a respondentisin 2 (35-65)
3 (65+)
Gender Whether a respondent is female or m%I%Female)
Male)
. : 1 (White)
Race Whether a respondent is while or not 0 (Non-White)
. L : 1 (Hispanic)
Ethnicity Whether a respondent is Hispanic or rl?ﬁNon-Hispanic)
. . 1 (Yes)
Kid Whether a respondent has kids 0 (No)
1 (less than
Bachelor)
Education Which education group a respondent |25(||||Bﬁ"’mhelor or
college degree)
3 (Graduate or post-
college degree)
Income Which before-tax income group a 1 (45K or less)
respondent is in 2 (45K+)
Ssflu Whether a respondent got seasonal fluL (Yes)
during the last flu season 0 (No)
| Whether a respondent has any type ofl (Yes)
nsur o
medical insurance 0 (No)

Note. Channel n could be any type of channel among the channel choices in the
survey.

In the formula, B represents the probability for a respondent to perceive a
high level of risk because of the influenza. Chapnregresents whether this

respondent uses Channel n to receive pandemic information, and GHannel

135



Channel_Impwhether this respondent as a user of Channel n believes its
importance” Demay is the mth demographic characteristic. Regression result is

showed in Table 15.

Table 15.
Regression Result on 2009 ASU/ADHS Influenza Survey Data
Coef. Std. Err.  z P> |z [95% Conf. Interval]
Itv  -1.01 0.74 -1.36 0.172 -2.46 0.44
ntv  -2.40 150 -1.60 0.109 -5.33 0.53
Inews 14.33 8.85 0.02 0.987 -17.21 17.49
nnews 12.23 1420 0.01 0.993 -27.69 27.96
internet  0.86 0.60 1.43 0.152 -0.32 2.05
radio -2.56 1.06 -2.41 0.016* -4.64 -0.48
magazine 12.54 26.00 0.00 0.996 -50.84 51.09
friend  -0.67 125 -0.53 0.594 -3.12 1.79
school 13.84 18.37 0.01 0.994 -35.86 36.14
work  14.22 16.00 0.01 0.996 -50.82 51.11
doctor 14.34 26.00 0.01 0.996 -50.82 51.11
other Omitted
ltv_Imp 1.68 0.73 2.28 0.023* 0.23 3.08
ntv_Imp  3.04 1.53 1.99 0.047* 0.39 6.05
Inews Imp -13.97 8.85 -0.02 0.987 -17.49 17.21
nnews_Imp -14.02 1420 -0.01 0.992 -27.97 27.69
internet_Ilmp  -0.24 0.76 -0.31 0.756 -1.73 1.26
radio_Imp  1.58 1.12 1.42 0.157 -0.61 3.77
magazine_Imp -13.18 26.00 -0.01 0.996 -51.09 50.83
friend_Imp  -0.79 1.32 -0.60 0.549 -3.38 1.80
school_Imp -15.25 18.37 -0.01 0.993 -36.15 35.85
work_Imp  -14.01 26.00 -0.01 0.996 -51.10 50.82
doctor_Imp -13.43 26.00 -0.01 0.996 -51.10 50.83
other_Imp Omitted
age ¢ 2 0.13 0.53 0.25 0.805 -0.90 0.55
age ¢ 3 -0.25 0.64 -0.40 0.691 -1.50 0.99
gender 0.19 0.32 0.61 0.543 -0.43 0.82
race -0.41 058 -0.71 0.477 -1.55 0.72
ethnicity  0.67 0.48 1.42 0.157 -0.26 1.61
kid -0.17 0.37 -0.47 0.639 -0.90 0.55
education  0.50 0.53 0.94 0.345 -0.54 1.54
income  -0.68 0.36 -0.33 0.061 -1.38 0.03
ssflu  -0.40 0.40 -1.01 0.314 -1.19 0.38
insur  0.24 0.60 0.39 0.696 -0.95 1.42
_cons 1.84 0.96 191 0.056 -0.50 3.73

Note. “ltv” represents local TV, “ntv” national TV, “Inews” local newspaper, and
“nnews” national newspaper.

22 For the perceived importance to exert influence on risk perception, cgpain t
of channel has to be used by an individual first.
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Therefore, respondents’ perception that there was a high risk of 2009 H1IN1
influenza was dependent upon whether they receive risk information from
national television (ntv), local television (Itv) and radio, and meanwhile whether
they believe either TV channel is important.

logit(Prp) = 3.04 * ntv * ntv_imp + 1.66 * ltv * ltv_imp — 2.56 * radio

The above regression result is used in the simulation in two ways. First,
public risk communication strategy in the model is represented by 8 indicators:
the percent of community population who receive risk information from local TV
(%-ltv-user), from national TV (%-ntv-user), and from radio (%-radia)yslee
percent of population who believe in the importance of local TV (%-ltv-be)ieve
and of national TV (%-ntv-believer), and the frequency the three types of channel
are used to send risk information (f-ltv, f-ntv, and f-radio). Channel usage
frequency was not included in the survey, but is considered in the model given its
vague influence recurrently mentioned in previous literature. As a result; publi
sector in the model can employ different communication strategies by choosing
which of the three types of channel to be used for sending risk information, and
by changing the user and believer percent and the usage frequency of eaxth typ
channel in use. Given the possible values for these policy parameters as shown in
Table 13, numerous communication strategies can be implemented in the model.

Second, based on the regression result, the probability for an individual after
receiving risk information to have a high-level risk perceptighgfPeach time

step is calculated as:

1

= 1+ e~ (3.04+ntvsntv_imp+1.66+Itv+ltv_imp—2.56+radio)

Py
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Simulation Setup

The model is initialized with the creation of the artificial community. The
simulation area is set up based on the display size parameters. 1000 individual
nodes are created and randomly located across the area. A populasivy alel%
is therefore achieved. Next, the community friendship network and contact
network are created in the way as discussed before. Health status for eaish node
then generated. Nodes are selected at random to fill the required number of people
in each health status. Other parameters are set to their values as showa 8Tabl

One time step in the mode is corresponding to one day. The first time step
represents October 4, 2009. Each simulation is run 364 time steps to cover the
whole 2009-2010 influenza season. Simulation outputs are captured by five
aggregate statistics: the percent of population ever get infected hydtlo¢ the
influenza season (epidemic size), the maximum frequency of infection during the
season (peak prevalence), the number of days between season beginning and the
elimination of the virus (epidemic duration), the percent of population in @tfect
status on each day (morbidity), and the percent of population ever classified as
infected by each day since season beginning (cumulative morbidity). $he fir
three indicators are usually used to measure the impacts a pandemic gaused i
communities (e.g., Salathe & Jones, 2010); they are recorded by the end of each
simulation. The last two indicators are recorded at each time step.

The model is experimented on two scenarios. The first scenario simulates
how the pandemic influenza spreads without any public intervention. The second

scenario explores how the five output indicators change with the incorporation of
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different public riskcommunication strategies. Figure 13 shows the gé

simulation framework in thidissertation.
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Figure 13 Simulation setup in the focused context

Experiment Results

This sectbn summarizes and compares simulation results the two
experiment scenario§or eactsimulation, the result presented belswhe
average results over its 20 ru

Influenza spread dynamics without pubic intervention. Figure 14 an(
Figure 15 shovihow morbidity and cumulative morbidity change otrare when
there is no public intervention. Once the pandeminitiated, thee isa period of
exponential growth in the morbidity. This indicafmaks on day 35 (Nov.7t
2009), with6.1% of community populaticinfected within the single d;; the
cumulativemorbidity by that day 24.22%. After the peakhe morbidity drop:
expmentially. By day 112 (Jan.23rd, 2010), when tregeeno infectious peopl
45.6% of the total population s been infected. This scenaisccalled the
baseline scenarjon which the epidemic size 45.6% the peak prevalence

6.1%, and the epidemduration is 112 day:
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Figure 15.Epidemic curve for cumulative morbidity in baseline scenario
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I nfluenza spread dynamics with public risk communication. In this
scenario, three sets of experiment are conducted, with public sector employing
one type of channel, two types of channel, and all three types of channel to send
pandemic information, respectively.

One channdl in use. Experiments here are conducted to explore the influenza
spread dynamics when just one type of channel is used by public sector. For the
strategy to use the channel, three levels of value can be selected for éreduse
believer percent: 10% (low), 50% (medium), and 90% (high). Channel usage
frequency also has three levels of value: 7 (once per week, low), 3 (once every
three days, medium), and 1 (once per day, high). As a result, 27 different
strategies can be implemented in the model when one type of channel is in use.

Local TV. Table 16 summarizes the simulation results on peak prevalence,
epidemic size and epidemic duration when the public sector uses different
communication strategies of local TV to send risk information.

Table 16 Pandemic Impacts with Local TV in Use Alone

Strategy Output Strategy Output Strategy Output
(10,10,1)| 3.1;27.3;114; (10,10,8) 4.9;35.2;114; (10,105p;41.8;113;
(10,50,1)| 2.8;24.1;149; (10,50,8) 4.0;30.6; 114; (10,505)7; 40.2; 113;
(10,90,1)| 2.9;19.9; 115; (10,90,8) 3.8;29.7;114; (10,905); 38.6; 112;
(50,10,1)| 2.3;23.7;163} (50,10,8) 3.3;27.4;125; (50,103)6; 30.9; 123;
(50,50,1)| 2.1;20.3; 160} (50,50,8) 2.1;22.0;161; (50,503 )%; 27.6; 165;
(50,90,1)| 2.0;13.8; 141} (50,90,8) 2.1;15.8;169; (50,903)0;19.8; 133;
(90,10,1)| 2.3;24.0; 148 (90,10,8) 2.7;27.2;167; (90,103); 31.0; 137;
(90,50,1)| 2.0;20.2;179; (90,50,8) 2.0;20.5;162; (90,502Z)3; 24.3; 128;
(90,90,1)| 2.0;14.7;158; (90,90,8) 2.0;14.7;1Y8; (90,9072); 16.9; 117,
Note.The strategy of how local TV is used is organized as (%-user, %-believer,
use frequency); for example, (50,90,3) means the user percent, believer percent
and use frequency of local TV is 50%, 90%, and once per 3 days, respectively.
The output is organized as (peak prevalence; epidemic size; epidemic duration;).
All tables and figures following this table in this chapter present thegyraf
using some type of channel and the output for pandemic impacts in the same way.
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Compared with the baseline scenario, any communication strategy using
local TV can reduce the influenza impacts. As shown in Table 16 and Figure 16,
the least effective strategy is (10,10,7), namely, when all three indicataat ar
their low levels. This strategy has little influence on peak prevakemte
epidemic duration, while reducing the epidemic size by a small degree. The mos
effective strategy is with medium- or high-level user percent, higl-tealiever
percent and medium- or high-level use frequency (except (50,90,3)). These
strategies can not only reduce the peak prevalence by at least 67.2% and epidemic
size by at least 67.5%, they can also prolong the epidemic duration, which gives
public managers more time to react to the outbreak. Furthermore, mosiesrateg

can prolong the epidemic duration, while the rest have little effect on it.
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e B aseline —10,10,7 — «50,90,1
------ 90,90,: - + «90,90,:

Figure 16.The most and least effective communication strategy
associated with local TV
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The influence of each strategy indicator can also be analyzed, with values for

the other two fixed. First, local TV has a conditional threshold of 50% regarding

the influence of its user percent on peak prevalence and epidemic size. When the

frequency is fixed to low level, increasing the user percent can reduce khe pea

prevalence and epidemic size. When the frequency is fixed to medium or high

level, increasing user percent after this parameter reaches 50%ldaslittnce

on the two output indicators. For epidemic duration, modifications in this

parameter in both conditions change this output indicator in an inconsistent way.

Such findings can be shown by Figure 17.

M orbidity

E e TR

—COLOANIGYOMOM OO WO MO T T OILOND WM ON T LN ODWM O T 0LON DO MO T
NN ILOONMNNMN0OOO =AM T FLNWOWON00 DO = =HNMM FLOLDWOMN00NO O —HNNMILOLNO
e e e e e e e e A A A A N AN AN AN AN AN AN AN AN AN NN AN OO MMM MMM D

Day
=—10,50,7 === =50,50,7 <¢+*+-+ 90,50,7 e===10,50,3 = =50,50,3
------ 90,50,3 e==—=10,90,1 = =50,90,1 ~------ 90,90,1

Figure 17.Influence of the user percent of local TV
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For the believer percent of local TV, an increase in its value can reduce the
epidemic size. For example, when the user percent is at the high level, increasing
the believer percent from 50% to 90% could averagely decrease the epidemic size
by 20.7%, despite the value of use frequency; increasing the percent from 50% to
90% can averagely reduce the epidemic size by 28.7%, as shown in Figure 18. Its
influence on peak prevalence depends upon the value for use frequency. When the
frequency is at low level, increasing believer percent can reduce peakepce.

When the frequency is higher than the low level, increasing believer paftamt
it reaches 50% would have little influence. Furthermore, the believer percent

exerts inconsistent influence on epidemic duration.
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The influence of local TV’ use frequency can also be summarized as being of
conditional threshold. When the user and believer percent are fixed and either is
less than 50%, increasing the use frequency can greatly reduce the peak
prevalence and epidemic size. When both values are fixed to equal to or more
than 50%, almost identical epidemic curves of the number of infected cases are
produced by communication strategies with medium and high use frequency,
while there is still a big difference between the influence of logteacy
strategy and medium-frequency strategy. Figure 19 partially shows such a
conditional influence. Furthermore, the epidemic duration is also incongystentl
influenced by changes in the use frequency.
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National TV Table 17 shows simulation outputs when just national TV is in
use. Similar as previous situation, any communication strategy asdogitiig¢he
channel can reduce the peak prevalence and epidemic size. The epidemic duration
is influenced inconsistently, but can be prolonged by most strategies. Tihe leas
effective strategy is the one with all indicators at low level, while tbgtm
effective strategy is with all indicators at high level, as shown inr&ig0.

Table 17 Pandemic Impacts with National TV in Use Alone

Strategy Output Strategy Output Strategy Output
(10,10,1)| 3.6; 29.4; 154; (10,10,3) 4.7;36.4;111; (10,105%; 40.5;112;
(10,50,1)| 2.9;23.2; 156 (10,50,8) 4.5;32.3;115; (10,5058;39.1;112;
(10,90,1)| 2.7;19.5;248; (10,90,8) 4.5;30.8; 155; (10,9048; 35.3; 129;
(50,10,1)| 2.7;24.8; 142, (50,10,3) 3.0;28.5;150; (50,104)0; 31.5; 135;
(50,50,1)| 2.0;18.3; 165, (50,50,8) 2.1;19.1;144; (50,5034, 25.8; 139;
(50,90,1)| 2.0;10.3;112; (50,90,3) 2.0;11.2;120; (50,902)%; 19.1;108;
(90,10,1)| 2.6; 25.0;129; (90,10,3) 2.9;27.4;123; (90,103)8; 27.9; 122,
(90,50,1)| 2.0; 19.0; 145, (90,50,3) 2.0;19.4; 164; (90,502)%; 20.2; 132,
(90,90,1)| 2.0;9.5;159; (90,90,8) 2.0;10.2;143; (90,90,2)0; 17.2;118;
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Figure 20.The most and least effective communication strategy
associated with national TV
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The influence of each strategy indicator on pandemic impacts with national
TV used alone is similar as that with the separation usage of local TV. Wéth fi
values for the believer percent and use frequency, there is a conditional threshold
of 50% for the influence of user percent to reduce peak prevalence and epidemic
size. The existence of this threshold depends upon whether the use frequency is at
low level. As an example, Figure 21 shows the almost identical influences
communication strategies exert on cumulative morbidity over time afieuuger
percent reaches 50% and their use frequency is medium or high. Besides, the

epidemic duration is influenced inconsistently by changes in the user percent.
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Figure 21.Influence of the user percent of national*fV

23 One set of number in the legend represents one strategy to use national TV. For
example, (90,50,1) means the user percent, believer percent and use frequency of
national TV is 90%, 50%, and once per day, respectively.
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The influence of national TV’s believer percent also depends on its use
frequency. When the frequency is at low level, increasing believer peeasent ¢
reduce both peak prevalence and epidemic size. When the frequency is medium or
high, increase the percent can only reduce the epidemic size while have small
influence on the peak prevalence. Figure 22 shows an example of such an
influence of believer percent. In addition, the epidemic duration is also

inconsistently influenced by changes in the believer percent.
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Figure 22.Influence of the believer percent of national TV

For the influence of use frequency, Figure 23, as an example, shows its
conditional threshold of once per 3 days, the existence of which depends upon the
level of user and believer percent. When both percents are equal to or higher than
50%, sending risk information more frequently after the frequency reduhes t

medium level achieves little to reduce the peak prevalence or epidemic size
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Otherwise, increasing the frequency is an effective way to decrease therrafm
infected cases at some time point or over time. Furthermore, no consistant patte
has been found regarding the relationship between the use frequency and the

epidemic duration, as in the situation when local TV is used alone.

AB.0 [ === mm e e e

400 F------=-=-=--- ; =% eee00000000000000 00000000 0000000000000 0000000000000 0000000
.. ’ —— E—— ——— ——— ——— ——— ——— ——— ——— ——

35,0 == m g A

> e

S /

S 300 F------- o AR S TSP

: /

S 250 F------ F B e

> o [

8 200 f----- ] T TP

g o o CEmm- oS G G e | s | s | e | e s

> /-"". °*

O 150 [---- —7— —————————————————————————————————————————————————————
100 |--- —/ ———— o e
5.0 [-Jfff------- -
0.0

OMNT—OOLOANOHYOMO N —COLHN OO MOM- T v OLH AN OO MO M T —OLONO O MO Y 1 OLONONOMOM-ST
—ANNN I LOOMNNO0 O O+ = NM I I LOWOWOMN 000D O =N MM I LOLNWOMN~ 000N O O —HANANM T LOLOWO
e e e e e e e e e e e A A NN AN N AN AN O NN NN NN NN

ay
——10,10,1 == =10,10,3 **+*+* 10,10,7 ====150,50,1 == =50,50,3
ceeees 50,50,7 ====00,90,1 == =90,90,3 *+++++ 90,90,7

Figure 23.Influence of information transmission frequency of national TV

Local TV vs. national TVThe effects of these two TV channels are similar in
terms of how each strategy indicator influences the pandemic impacts. Such
similarity may be caused by their similar influences on individual irit&l
perception. On the other hand, no consistent results have been found regarding
which TV channel with the same strategy indicators is more effective toereduc
pandemic impacts. Although national TV seems more influential on individual
initial risk perception and therefore pandemic impacts, local TV could lspuaf e

or more effects in some situations, as shown in Figure 24.
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Figure 24.Comparison of the influence of
local and national TV with each used alone

Radia When radio is used alone to send risk information, no

communication strategies can effectively reduce the pandemic impactsows s

in Table 18, even the most effective strategy with 50% user and 1-day frgquenc

can only reduce the peak prevalence by 6.5% and the epidemic size by 4.8%, and

delay the epidemic duration by one week. The least effective stratedi k080

user and 7-day frequency. This strategy has no influence on peak prevalence and

epidemic size, but prolong the epidemic duration.

Table 18 Pandemic Impacts with Radio in Use Alone

Strategy Output Strategy Output Stratepy Output
(10,1) 5.8; 45.0; 120 (10,3) 6.0; 43.6; 112; (20,7) 6.1; 45.6; 124;
(50,1) 5.7,43.4; 119 (50,3) 5.6, 44.8; 148, (50,7) 6.1; 44.8; 115;
(90,1) 6.1;45.4; 110 (90,3) 5.7, 44.1; 124, (90,7 6.0; 45.0; 114;
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Figure 25 shows the epidemic curve of cumulative morbidity in the baseline
scenario and the situation with each communication strategy associdteddiat
used. All these epidemic curves are very close to each other, which indicates the
little role radio can play in impact mitigation in the community. Furthermore, no
consistent pattern has been found in terms of how changes in any strategy
indicator of radio influence the pandemic impacts.

SummaryWhen public sector just uses one type of channel to send risk
information, local or national TV should be preferred to radio in order to mitigate
pandemic impacts. Public managers can manipulate the three strategy iadicator
of either TV channel to change the peak prevalence and epidemic size in their
expected direction. For epidemic duration, although its direction of change is hard

to be anticipated, it would be either delayed (in most cases) or influencetyslight
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Figure 25.Influence of communication strategies associated with radio
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Two channelsin use. The three types of channel can be used singly or in
combination. This set of experiment simulates pandemic impacts with two types
of channel used simultaneously to send risk information. Different combinations
of two types of channel include local TV and national TV, local TV and radio,
national TV and radio. Given the extensive number of possible communication
strategies associated with two types of channel, the experimentxes¢hie
strategy indicators of one type of channel to their empirical values fouhis in t
specific context, and explores how changes made in the indicators of the other
type of channel from their empirical values influence the pandemic impacts

According to ASU/ADHS influenza survey, the percent of respondents who
use the channel for 2009 H1N1 influenza news and believe its importance for
local TV is 70% and 60%, and for national TV 26% and 55%. Approximately
of respondents receive pandemic information from radio. No information on use
frequency has been provided in the survey. This dissertation assumes that, the
local TV was empirically used in the context to send pandemic information on a
daily basis. The other two types of channel were used with a smaller frgquenc
The empirical values for the three indicators for local TV, national TV radicd
are (70%, 60%, 1), (26%, 55%, 3), and (11%, 3), respectively.

Local TV & national TVWhen local TV is used alone and with a medium or
high frequency, there is a 50% threshold in terms the influence of its user or
believer percent on peak prevalence. When local TV is used with both user and
believer percent at medium or high level, increasing its frequency akaches

medium level also has little influence on the peak prevalence and epidesnic siz
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Considering that all indicators of local TV are empirically higher thamtedium
level, the first question here is whether and how further increasing the user or
believer percent of local TV or reducing its use frequency, when indigators
national TV are fixed at their empirical values, influences pandemic tsipac

Table 19 summarizes the simulation results on three output indicators from
this experiment situation. Figure 26 shows the epidemic curve for cumulative
morbidity in this situation. The black solid line represents the baseline stenari
and the black dashed line the situation with national TV used alone at its
empirical level. The blue solid line represents the situation when indicators of
both TV channels are at their empirical levels. All other dashed lines are
generated when one (blue dashed lines) or two (red dashed lines) indicators of
local TV are changed from their empirical value.

Based on the simulation results, public sector in the community can greatly
reduce the pandemic impacts by separately using the existing comnamicati
strategy for national TV. The peak prevalence is reduced by 57.4% and epidemic
size by 55.0%. The pandemic impacts can be further mitigated by includiihg loca
TV. Simultaneously using both channels at their empirical levels canlargey
reduction in peak prevalence and epidemic size, and particularly could prolong
the epidemic duration.

With both channels used at their empirical levels, further increasingltree va
for the believer percent of local TV can reduce the epidemic size, but has no
influence on peak prevalence and shortens the epidemic duration. Further

increasing local TV’s user percent has little influence on peak prevalence and
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epidemic size. This is possibly because the frequency here is at higarid\tbe
user present has already reached its 50% threshold. Furthermore, reduasey the
frequency to once every three days has little influence on peak prevalence and
epidemic size, which may also be explained by the conditional threshold of use
frequency found in previous experiments.

Table 19 Pandemic Impacts with Varying Strategies for Local TV and Fixed
Strategy for National TV

Strategy Output Strateg Output Stratelgy Output
National TV . . 104. NV& . ) | ntv& ) . .
alone 2.6; 20.5; 12“’(70,60,1) 2.0; 18.4; 157; (90,60,1) 2.0; 18.1; 150;
ntv & . ) o ntv & . ) | ntv& ) ) )
(70,90,1) 2.0; 13.2; 136’(70,60,3) 2.0; 18.4; 155; (90,90,1) 2.0;12.9; 124;

Note. ntv represents national TV. The strategy of how local TV is used is
organized as (%-user, %-believer, use frequency). For example, (90,60,1) means
the user percent, believer percent and use frequency of local TV is 90%, 60%, and
once per day, respectively.
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Figure 26.Influence of local TV with fixed strategy for national TV
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Compared with local TV, national TV reaches a much smaller population of
the community, and is used with lower frequency. So the second question
concerns whether and how increases in the three indicators of national TV from
their empirical values—with fixed values for local TV's indicators—influleenc
pandemic impacts. Simulation results are summarized in Table 20 and Figure 27.

Table 20.Pandemic Impacts with Fixed Strategy for Local TV and Varying
Strategies for National TV

Strategy Output Strategy Output Strategy Output
lone |2018:6184 g’y 5| 20,180 157) (qlec o) | 20;156; 161
(005.3)| 20 155 162) (o' 3)| 20:1731143) (o' )| 20:142:129
(sltt)\,/ggé,s) 20:13.0; 174 (slct)\,/sgé,l) 20141149 (zlcts\,/985,1) 20: 133 150
(5'8,’986,1) 2.0;11.9; 183

Note. Itv represents local TV. The strategy of how national TV is used is
organized as (%-user, %-believer, use frequency).
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In Figure 27, the black solid curve represents the baseline scenario, and the
black dashed curve the situation with local TV used alone at its empirichl leve
The blue solid curve is generated when indicators of both TV channels are at their
empirical levels. The blue, red and orange dashed curves represent the situation
when one, two or all indicators of national TV are increased from the empirical
level; indicators of local TV are fixed at their empirical levels.

Using local TV alone at its empirical level is more effective in reducing
pandemic impacts than the usage of national TV alone at its empirical level.
When both TV channels are used at their empirical strategy levels, pulbdic sec
can further increase the value for any one, two or all three indicatorsarfalat
TV to reduce the epidemic size. But no influence can be induced on peak
prevalence. Also, simultaneously increasing the value for two indicatorsres
effective than increasing the value for one, and the largest effect comesilvhe
three indicators are increased. Meanwhile, there is still a 50% thresholket of us
percent’s influence. After this indicator reaches the threshold, further adganci
its value alone would have small influence on pandemic impacts. For the
epidemic duration, it can be prolonged by further increasing the user pexcent, b
further increasing the believer percent with either the user percent or use
frequency higher than its empirical level, and by further increasing ¢he us
frequency with the believer percent at its high level. When the user percent and
use frequency are fixed at their empirical levels, further incre&siever
percent actually shortens epidemic duration. The same situation occurs when the

use frequency is increased with the believer percent lower than the high level.
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Local TV & Radio When the two types of channel selected are local TV and

radio, experiments are still conducted to examine with the indicators ofmae t

of channel constant at their empirical values, whether and how introducing the

other type of channel and changing its indicators influence pandemic impacts

Table 21 and Figure 28 show the simulation results with constant values for

radio indicators. A communication strategy using radio alone—with its indicators

at their empirical levels—would not influence the influenza spread dysamic

That can be seen through the almost identical epidemiological curves of

cumulative morbidity from this situation and the baseline scenariordocating

local TV in the strategy is needed in this case. The pandemic impacts can be

greatly mitigated when both types of channel are simultaneously used at thei

empirical levels. The 50% threshold of the influence of local TV’s user percent on

peak prevalence and epidemic size still exists, which makes furtheasimtg this

indicator alone unnecessary. But emergency managers can increasesttez bel

percent of local TV to reduce the epidemic size, while noting the shortened

epidemic duration. Reducing the use frequency of local TV to medium level has

little influence on peak prevalence and epidemic size, but greatly shortens the

epidemic duration.

Table 21 Pandemic Impacts with Varying Strategies for Local TV and Fixed
Strategy for Radio

Strategy

Output

Strategy

Output

Strateq

)y

Output

Radio
alone

6.1; 45.5; 112;

Radio &
(70,60,1)

2.0; 20.1; 180

Radio &
(90,60,1)

2.0; 20.0; 154}

Radio &
(70,90,1)

2.0; 15.8; 139;

Radio &

(70,60,3)

2.0; 20.5; 133

Radio &

(90,90,1)

2.0; 15.3; 123,

Note. The strategy of how local TV is used is organized as (%-user, %dogelie
use frequency).
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Figure 28.Influence of local TV with fixed strategy for radio

As emergency managers have already used local TV at its emmviebhhd
are considering whether radio should be added to the strategy, Table 22 and
Figure 29 should be referred to before any decision is made. The introduction of
radio reduces the effectiveness of current communication strategy, diespite t
varying values for two radio indicators. After it is introduced, increassngsier
percent increases the peak prevalence and epidemic size, and shortens the
epidemic duration. The relationship between radio use frequency and epidemic
impacts seems to be curvilinear. Both the increase in radio frequency from
medium to high level and the decrease from medium to low level are associate
with severer pandemic impacts. The frequency of once per 3 days seems to be an

optimal option in current simulation.
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Table 22 Pandemic Impacts with Fixed Strategy for Local TV and Varying
Strategies for Radio

Strategy Output Strategy Output Stratelgy Output
Local TV . ) Itv & . ) | hv& ) . ]
alone 2.0; 18.6; 184 (11.3) 2.0; 20.1; 180; (50,3) 2.3; 23.3; 160;
ltv & ) ] | Itv& ) ) | Itv& ) ] ]
(90,3) 3.2; 29.6; 148; (11.1) 2.3; 24.3; 136; (11,7) 2.0; 19.5; 1471,

Note. Itv represents local TV. The strategy of how radio is used is organized as
(%-user, %-believer).
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Figure 29.Influence of radio with fixed strategy for local TV

National TV & radio The pandemic impacts when radio used alone to send
risk information can also be mitigated by adding national TV in the
communication strategy. As shown in Table 23 and Figure 30, the strategy of
simultaneously using radio and national TV at their empirical levels coeiidlgr
reduce the impact compared with the baseline scenario, although it is not as

effective as adding local TV at its empirical level to the separageudaadio.

159



Table 23 Pandemic Impacts with Varying Strategies for National TV and Fixed
Strategy for Radio

Strategy Output Strategy Output Strategy Output

Radio along 6.1; 45.5; 112; (zg(’jé%’i‘) 3.3; 26.7; 142; (Eg(’jé%’i‘) 2.2; 22.8; 144;
(F;g(,jsi%,g) 2.0; 22.3; 145; gg%‘c’)g‘) 3.0; 26.1; 125 gg%gj‘) 2.0; 19.0; 116;
(Fég"jé%’i‘) 2.0; 21.1; 144; (F;g"jé‘gj‘) 2.0; 17.6; 121 gg‘g‘(’)j‘) 2.0; 14.4; 122;
(F;g"j;%’gl‘) 2.0; 14.0; 130;

Note. The strategy of how national is used is organized as (%-user, %ehelie
use frequency).
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Figure 30.Influence of national TV with fixed strategy for radio

Further increasing the user percent of national TV from its empiricdHeve
with fixed values for radio indicators—reduces the epidemic size and prolongs
epidemic duration, but has small influence on peak prevalence. Such an influence
can be observed till the user percent reaches 50%, after which small chenges ¢
be caused in pandemic impacts by increases in this indicator. Incréasing
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believer percent of national TV alone from its empirical level has simila
influences on peak prevalence and epidemic size, but shortens the epidemic
duration. The use frequency of national TV also plays a similar role asioggits
level alone can reduce both peak prevalence and epidemic size, but shorten the
epidemic duration.

The situation in which radio is added to the strategy of using national TV
alone is similar as that where radio is added to the separate usage of lo&al TV.
shown in Table 24 and Figure 31, regardless of the value for its indicators, the
introduction of radio decreases the effectiveness of previous strategygatimg
pandemic impacts. There is a negative relationship between the user percent of
radio and pandemic impacts, and a quasi-curvilinear relationship between use
frequency and pandemic impacts. Emergency managers need to avoid the usage
of radio, or minimize its user percent and keep its use frequency to send gandemi
information at one time every 3 days.

Table 24 Pandemic Impacts with Fixed Strategy for National TV and Varying
Strategies for Radio

Strategy Output Strateg Output Strategy Output
National TV ) . | ntv& . ] L ntv & ) . ]
alone 2.6; 20.5; 123; (11,3) 3.3; 26.7; 142; (50.3) 4.5; 38.0; 135;
ntv & ] . | ntv& . ] . ntv & . ]
(90,3) 4.6; 41.4; 124, (11,1) 3.6; 30.9; 133 (11,7) 3.2;25.9; 135

Note. ntv represents national TV. The strategy of how radio is used is organized
as (%-user, %-believer).
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Figure 31.Influence of radio with fixed strategy for national TV

Local TV & national TV & radioThis set of experiment explores the
situation where the indicator values for one type of channel are changed from
their empirical values while the other two types of channels are fixbdiat t
empirical levels. Simulations are first run to examine the influence of iodéca
of local TV, and results are shown in Table 25 and Figure 32. In Figure 32, the
black solid curve represents the baseline scenario, and the black dashed curve the
situation with national TV and radio used at their empirical levels. Theedalid
curve is generated when all three types of channel are at their ehipuels,
namely, when the exact empirical communication strategy in the researtetxtc
is implemented. The blue and red dashed curves are produced with varying levels

for local TV indicators, with national TV and radio fixed at their empiricatle
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Table 25 Pandemic Impacts with Varying Strategies for Local TV and Fixed
Strategy for National TV and Radio

Strategy

Output

Strategy

Output

Strateg

y

Outpu

National TV
& Radio

3.3; 26.7; 142

ntv & radio
& (70,60,1

2.0; 18.6; 176|

ntv & radio
'& (90,60,1)

2.0; 18.4; 146

ntv & radio &

(70,90,1)

2.0; 14.4; 136

ntv & radio

& (70,60,3

2.0; 19.5; 126,

ntv & radio

& (90,90,1)

2.0; 14.3; 136

Note. ntv represents national TV. The strategy of how local TV is used is
organized as (%-user, %-believer, use frequency).
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Figure 32.Influence of local TV with fixed strategy for national TV and radio

The influence of indicator changes in local TV on pandemic impacts in this
case is similar as that when local TV is used with national TV or radio.
Summarization therefore can be made regarding the influence of this khanne
when it is not used alone. Increasing its user percent alone from itscatripivel
or decreasing the use frequency alone from its empirical level hdse$ieet on
peak prevalence and epidemic size, but shortens epidemic duration. Increasing the

believer percent alone from its empirical level has little effect ok pesvalence
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and shortens epidemic duration, but brings a large reduction in epidemic size. For
emergency managers in the research context, no efforts seem necesisangéo

the user percent and use frequency of local TV in current risk communication
strategy. But they can attempt to increase this channel’s believenpdyased on
their choices between smaller epidemic size and longer epidemic duration.

The influence of national TV when its indicators are changed from their
empirical levels is shown in Table 26 and Figure 33. Such an influence is similar
as that when national TV is used with local TV or radio. As a result, it can be
summarized that, when national TV is used at its empirical level and with any
other types of channel, increasing its user percent alone—to at most 50%—
reduces the epidemic size and extends the epidemic duration while exerts no
influence on peak prevalence. Increasing its believer percent or use frequency
alone has similar effects on the peak prevalence and epidemic size, but shortens
the epidemic duration. Emergency managers in the context therefore can modify
their current risk communication strategy by increasing the user percent of
national TV to 50%. They can also increase its believer percent and use frequency
to reduce the epidemic size, while noting the shortened epidemic duration.

Table 26 Pandemic Impacts with Varying Strategies for National TV and Fixed
Strategy for Local TV and Radio

Strategy Output Strategy Output Strategy Output
e rado | 2012011180 ¥ 530 12.0,18.6: 1761 o' o 9) 2.0: 16.4; 179)
& (9000 9| 20162175 ¢\ 2800 12.0;17.6; 143; ¥ 20 2.0 169 135,
& (o009 20 156236 ¢\ oo/3d0 12,0 14.8; 162 ¢ %1310 2.0; 13.4; 138
g"(g‘ofggfcl’) 2.0;12.7; 171}

Note. Itv represents local TV. The strategy of how national TV is used is
organized as (%-user, %-believer, use frequency).
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Figure 33.Influence of national TV with fixed strategy for local TV and radio

For radio, Table 27 and Figure 34 show the simulation results with varying
values for its indicators when local and national TV are fixed at theireaipi
levels. The introduction of radio—at its empirical level—to communication
strategy here cannot be simply considered counter-productive. The peak
prevalence remains constant and the epidemic duration is extended by almost
three weeks, while there is a small increase in the epidemic size (3.38&6). Af
radio is included in the strategy, the influence of changing the values of its
indicators is consistent with that when it is not used alone. Raising its usentper
or use frequency aggravates the pandemic impacts. Reducing its use frequency

brings little decrease in epidemic size, but shortens the epidemic duration.
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Table 27 Pandemic Impacts with Varying Strategies for Radio and Fixed
Strategy for Local and National TV

Strategy Output Strategy Output Strategy Output

Local & ) . ltv & ntv ) . | Itv & ntv ) .
national TV 2.0; 18.0; 157 & (11,3) 2.0; 18.6; 176; & (50,3) 2.2;22.9; 164

Itv & ntv ) ] Itv & ntv ) ) | Itv & ntv ) )

& (90,3) 2.4; 25.6; 154 & (11,1) 2.3; 22.0; 140; & (11,7) 2.0;18.1; 151

Note. Itv represents local TV, and ntv national TV. The strategy of how radio is
used is organized as (%-user, %-believer).
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Figure 34.Influence of radio with fixed strategy for local and national TV
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Chapter 6
Discussion

This dissertation addresses current limitations in the literature of pighlic r
communication in EM filed. Four inter-related research questions are a&aksiver
the context of 2009 H1N1 influenza outbreak in an Arizona community.

First, emergency risk communication theory, social influence theory and
empirical data are used to answer the first and second research question, namely
how individuals make responsive decisions to risk information and what is the
influence of information transmission channel on the decision. According to
Quarantelli's model of individual warning response, individuals after receiving
risk information go through a staged process consisting of initial risk perception,
social confirmation, situational definition and response (Quarantelli, 1983, 1990).
The responsive decision is the result from situational definition, which is
simultaneously formulated by initial risk perception and the information cetlect
in the social confirmation stage. Public risk communication influences individual
response behavior through influencing their warning receipt and shaping their
initial risk perception, which is defined as whether individuals perceive a high
risk for the general public (Quarantelli, 1983, 1990).

The influence of risk communication on individual initial risk perception is
specified in the specific research context by conducting logit regressithe
data from 2009 ASU/ADHS Influenza Survey. The dependent variable of the
regression is the probability of an individual to perceive a high risk for the general

public. The independent variables include whether individuals use some type of
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channel to receive pandemic information, and whether they believe the channel is
important. A variety types of channel are included in the regression, including
local TV, national TV, local newspaper, national newspaper, Internet, radio,
magazine, friend, school, work, doctor, and other. Regression results showed that,
in the specific research context, individuals’ initial risk perception is pesiti
associated whether they receive pandemic information from local or natidnal T
and meanwhile believe information from local or national TV is importarg. It
negatively associated with whether they receive pandemic informatiorrdichm

The way in which the initial risk perception formulated, together with the
confirmative information collected, influences individuals’ responsive decision i
conceptualized based on the model of Delre et al (2007). Initial risk perception
and confirmative information collected have equal weight regarding influgnc
responsive decision. But the influence from confirmative information does not
always exist; it is only present when the percent of people taking prvetection
among individuals’ friends who are asked for confirmation exceeds certain
percent. Otherwise, the responsive decision is solely decided by inkial ris
perception. Here responsive decision is represented by the probability for an
individual to take protective actions. Responsive action—whether or not taking
protective actions—is randomly decided based on this probability. Reasons for
why using such a definition for responsive decision have been discussed before.

By now, a clear picture has been provided regarding individual response
process to emergency risk information, as well as how characteristics of

information transmission channel in the research context influence the prbzess
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make such knowledge more insightful for emergency managers, it is integrated
into an agent-based simulation framework with theories and empirical findings
from epidemiology and social network theory. Two streams of interaction occur
in this framework. First, in the context of influenza pandemic, interactions occur
among individuals along the contact network through which the influenza virus
spreads over the population. Second, individuals interact with their friends and
public sector through information exchange, to decide whether to take protective
action. These two streams of interaction at the individual level are intendbtye
and interactional. Together they generate the impact the pandemic catses at
community level over time, which in the context represents the public response
pattern. And this is how the third research question is responded to.

The fourth research question concerns the influence characteristics of
information transmission channel can induce on pandemic impacts. An
information transmission channel is indicated by its type, user percent, believer
percent and use frequency. Local TV, national TV and radio are included in the
simulation model, since just these three types of channel influence individual
initial risk perception in the context and therefore have the potential to influence
emergency impacts. For each type of channel, the user percent and usefreque
determine the percent of community population who receive risk information
from the channel at each time step, while the believer percent decidesctrd per
of population who believe in its importance. The spread dynamics of the
pandemic influenza is simulated in two scenarios: when there is no public

intervention and when there is public risk communication. In the second scenario,
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communication strategies can vary in the number and type of channel used and
the user percent, believer percent and use frequency of each channel in use.
The results of influenza propagation simulation indicate that the pandemic
can cause severe impacts in the community if no intervention measures are
implemented. Since it is initiated, the influenza keeps spreading for almost four
months, and over 40% of community population can get infected during the
period. Public risk communication, if appropriately designed, can greatly reduce
the impacts in this case. Simulation results from situations with differe
communication strategies and their policy insights are summarized agsfollo
When only one type of channel is used to send risk information, either local
TV or national TV should be selected. The introduction of either TV channel
would decrease the pandemic impact, although the extent of reduction depends on
the values for its three indicators. Using radio alone achieves littlediega
reducing the pandemic impact. For the two TV channels, the influence of
changing the value for one indicator on pandemic impacts with the other two
fixed is similar. First, there is a conditional threshold of 50% regarding the
influence of user percent of either TV channel. Emergency managers caasdecre
the peak prevalence and epidemic size by increasing the user percent when the
channel is used equally to or less frequently than one time every week. When the
use frequency is equal to or higher than one time every three days, ingressin
percent after it reaches 50% would change little in the two impact indicator
Second, the way in which the believer percent of either TV channel influences

pandemic impacts is also dependent upon its use frequency. While both peak
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prevalence and epidemic size can be reduced by increasing the bedieesit p
when the use frequency is one time every week, only the latter can be influence
by the same change in believer percent when the frequency is increased to one
time every three days or more frequently. Third, there is also a conditional
threshold in the influence of use frequency. When the user and the believer
percent are both equal to or higher than 50%, increasing the use frequency after it
reaches one time every three days has little effect on peak prevatahc
epidemic size; otherwise, emergency managers can mitigate thesrhpact
increasing the use frequency. For the epidemic duration, no consistent findings
have been found in term of how it is influenced by any indicator of either TV
channel. Furthermore, when emergency managers are deciding which TV channel
should be used, preference should be first clarified between smaller peak
prevalence and epidemic size and longer epidemic duration. With the san®e value
for all three indicators, generally national TV is more capable of redueig p
prevalence and epidemic size while local TV prolonging the epidemic duration.
When emergency managers decide to use two types of channel for risk
communication, the combination of local and national TV should be preferred.
Here indicators for both channels are first set at their empiricaklevel
Experiments are then conducted to explore the changes in pandemic impacts
brought by increases in one indicator value from its empirical level withsralue
for others fixed. Simulation results show that, compared with the baseline
scenario, using both TV channels at their empirical levels can g#bcteduce

peak prevalence and epidemic size and extend the epidemic duration. Further
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changing the strategy cannot induce influence on peak prevalence, but the
epidemic size can be reduced by increasing the believer percent of lgaal TV
any one, two or all three indicators of national TV. Meanwhile, those chdnges
not necessarily lead to prolonged epidemic duration. Increasing the believer
percent of local TV alone, or increasing the believer percent or use fogopfen
national TV alone, would actually shorten the duration. Choices need to be made
in this case regarding in which dimension pandemic impacts should be mitigated.
Another finding from this set of experiment is that, emergency managers can
reduce local TV’s use frequency to one time every three days. Such change has
little influence on pandemic impacts, but may be able to save public resources.
In the empirical context, local emergency managers utilized all tyypes of
information channel. Such empirical strategy is demonstrated by simulation ver
productive in reducing emergency impacts. To further advance the effesgvene
of this strategy, emergency managers can increase thpassent of national TV.
Notices are demanded when emergency managers are attempting to itheease
believer percent or use frequency of national TV, or to increase the believer
percent of local TV. These measures would shorten the epidemic duration,
although they can help reduce the epidemic size. No changes should be made in

the user percent and use frequency of both local TV and radio.

Contribution
This dissertation makes contributions, both theoretically and practically, in
three ways. For EM, ABM is advocated as an alternative and appropriate

approach to address issues. Since decades ago, EM researchers havedecogniz
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the complex nature of modern emergencies and the need for a new approach to
study and manage them (Alexander, 2002; Rosenthal & Kouzmin, 1997,
Rosenthal et al., 1989). This study summarizes the key features identified by
previous literature for this new approach, and argues ABM simultaneously
possesses these features, which theoretically makes it the approach irunked. S
theoretical possibility is further exemplified by using ABM to deal with zi§ipe

EM issue of reducing influenza pandemic impacts through effective public risk
communication strategy. In this example, public risk communication is framed as
a dynamic process, during which individuals interact with each other and with
public sector through communication. The management effectiveness in this case
is measured by the extent to which pandemic impacts can be mitigated by
communication strategies, which is a system-level pattern generatedlfrom a
individuals’ autonomous decision-makings and actions. Such a framework is also
developed from an inter-disciplinary perspective; it integrates theankes a
empirical findings from multiple disciplines, including epidemiology, sociplog
computational simulation, and emergency management.

For public risk communication, this dissertation provides a comprehensive
review of related studies in the EM field over the past seven decades. Pkople w
have a preliminary interest in this area can use this review as a spaiti o
find out in the field of EM what public risk communication is, what practitioners
believe, what previous studies have found, and what has been missed from current
literature. Particularly, detailed accounts have been provided on the key

component of emergency public risk communication, namely, how individuals
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respond to risk information during emergencies and what are the factors
influencing this response process. This review can also be utilized by hessarc
and practitioners already in EM field to check against their knowledge and
experience, which may advance the progress of the field.

Through the literature review, four limitations are found constrain the further
theoretical development and practical application of emergency risk
communication. Reasons for the existence of these limitations are both tlaoretic
and methodological. This dissertation attempts to address three of these four
limitations, by integrating theories from multiple disciplines and both quanta
and qualitative empirical data into a simulation framework based on ABM. In this
framework, public risk communication is conceptualized as a dynamic and
interactive process. How individuals make decisions and respond to risk
information are appropriately assumed given social network and social irgluenc
theory and empirical data from previous emergency risk communication studies.
The link between risk information transmission channel and individual response
process is also made clear through combining theoretical models of explaining
individual warning response and empirical data. At the community level, public
response pattern, based on which emergency managers design and evaluate their
strategies, is automatically generated from interactions at thedadi level.

This simulation framework is later implemented in a case study where
communication strategies with different characteristics of infoonati
transmission channel are executed to control the spread of a pandemic influenza

through influencing individual responsive behavior to risk information. The
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addressing of these limitations further suggests ABM an appropriateatiie to
the traditional approach to emergency public risk communication which may
provide more insights on effective practices.

Public risk communication is an integral component of emergency
management. Understanding its dynamics is crucial for effectivehagnag
public emergencies in communities (Drabek & Boggs, 1968; Mileti & O’Brien,
1992; Reynolds, 2005). This dissertation re-illustrates the key role public risk
communication plays. In the specific research context, effective pulldic ris
communication strategies can not only greatly reduce the total number o peopl
get infected, but also slow the pandemic influenza spread, and therefore help buy
time to introduce other public interventions, particularly the production and
distribution of vaccines. Although emergency managers cannot solely rely on risk
communication and people’s protective actions to avoid adverse social outcomes,
effective risk communication could lessen the impact of a pandemic. The role of
public risk communication during an emergency therefore requires more attention
in public emergency management scholarship.

Using simulation, this dissertation further models the effects of differe
communication strategies on pandemic impacts for policy insights. Simulation
results suggest that, the communication strategy local emergency msanage
empirically used is very effective in reducing pandemic impacts willen t
community. If emergency managers want to further mitigate tpacts, they
may consider increasing the user percent of national TV. Increasinglignecb

percent or use frequency of national TV, or increasing the believer percent of
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local TV can help reduce the total number of people get infected, but shortens the
epidemic duration. There is no need to change the user percent and use frequency
of local TV; otherwise, less time would be left for local managers to dealtveith t
emergency. For radio, it can only be used at its empirical level; clatigan

value for either of its indicators would be counter-productive.

For studies and practices in emergency public risk communication, the
current simulation model can serve as a support tool in both research and
decision-making process. More specifically it supports the identificaticactdrs
and mechanism of epidemic spread exactly during the descriptive phase, and
allows the shifting of different scenarios in a reasonable rapid way. Tleaeeke
enable the model to carry out a comprehensive evaluation of intervention strategy
choices in order to select the appropriate control measures. In this digsertati
computational experiments are not just conducted on the situations with three
types of channel used to send pandemic information, as in the empirical context.
The effectiveness of possible communication strategies with any one type of
channel or with any two types of channel is also tested and compared. Simulation
results from all these hypothetical situations provide a solid basis for emegrg
manager to design effective communication strategies before thgesrogrand
to systematically evaluate and improve the strategies used during theeayerg

For epidemic simulation and control, this study develops a computational
model that has the potential to more accurately anticipate the spread dyynamic
a pandemic influenza and to test and compare the effectiveness of tiigoba

interventions to control it. Pandemic spread of an influenza is one of the biggest
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threats to society because of the potentially high mortality and high social and
economic costs associated. The 20th century saw three influenza pandemics, with
each causing devastating numbers of deaths (Nicholls, 2006). In 2009, an HIN1
influenza pandemic occurred, which corroborated the expectations of former CDC
Director Julie Gerberding who said in April 2007 that: “We know that a pandemic
will eventually occur. We always say it's not a question of if; it's a question of
when” (Ulene, 2007). In view of the threat of a future pandemic of a highly
pathogenic influenza strain, understanding the spread of pandemic influenza and
engaging in pandemic preparedness and response efforts have become major
public health priorities (Salathe & Jones, 2010).

One prerequisite for effective pandemic planning and intervention is to
accurately anticipate the epidemic’s spread dynamics. For this purposendiffe
types of computational models have been developed, from the early differential
equation compartment models to more recent large-scale individual-based
stochastic models (Bobashev et al., 2007; Jenvald et al., 2007; Lee et al., 2009).
These models have provided important insights into the understanding and control
of pandemic influenza. However, most of them are criticized because of how they
construct the contact network for virus transmission and of their ignorance of key
social and human components for pandemic influenza simulation.

The structure of contact network is critical in determining the
epidemiological pattern seen in the spread of contagious diseases, such as
HIV/AIDS (Anderson, 1999) and pandemic influenza (Lloyd-Smith et al., 2005).

The most appropriate way argued by current literature to construct contact
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network in epidemic simulation is to use the empirical data on corresponding
contact pattern (Huang et al., 2004; Mikolajczyk et al., 2008). This approach has
been applied to construct networks for contacts for sexually transmittedetisea
(e.g., Fenton et al., 2001; Garnett et al., 1996). For pandemic influenza simulation
in current literature, models tend not to be parameterized by directly auggalyz
empirical data on contact pattern, but often rely on priori contact assumptions
with little or no empirical basis, or simply use certain type of netwogk, (Earrat

et al., 2006; Glass et al., 2006; Mei et al., 2010). In addition, little effort has been
devoted to empirically map the dynamic contact pattern for pandemic influenza
spread in human communities, and there has not been a simple way to explore the
sensitivity of epidemiological results to the deviation of certain type ofarkter
assumed contact structure from the actual contact pattern. Simulation fresults
these models are therefore considered problematic and vulnerable to those
guestions of what if (Keeling & Eames, 2005).

Meanwhile, existing pandemic influenza simulation models usually treat the
disease spread dynamics as a pure engineering or physical probles;rutigl
social or human factors are not taken into account. These models often ignore
human behavioral responses to potential threats. Individuals in the model are
usually assumed to not change their behavior during an epidemic but continue
with their regular activities as usual. Empirical studies have reptreapposite
phenomena, especially in a pandemic situation (Ekberg et al., 2009; Lau et al.,
2007; Lau et al., 2003). When confronted with the threat of pandemic influenza,

people undertake actions to protect themselves from infection (Lau et al., 2007;
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Lau et al., 2003), and keep these protective coping behaviors until the epidemic
ends (Leung et al., 2003; de Zwart et al., 2010).

To address this issue, the concept of “prevalence elastic behavior” is
introduced, which refers to the adaptive action people take as a reaction to
epidemic prevalence (Philipson, 2000; Philipson & Posner, 1993). Later studies
on pandemic-related estimation incorporate this notion into simulation mgdels b
assuming all individuals reduce their overall social activities due to a pandemic
and the reduction is based on the propagation condition of the disease (e.g.,
Larson & Nigmatulina, 2009; Yoo et al., 2010). Human responses are still
oversimplified in these models. Emergency public risk communication literat
has showed that whether people adopt self-protective actions is influencsk by ri
communication, and not all people would adopt such actions when facing some
potential threat (Lindell & Perry, 1983; Mileti & Darlington, 1997; Nigg, 1987).
Such complexities of people’s behavior call for more careful incorporation of
these social dimensions in the pandemic influenza simulation.

This dissertation develops a network-based agent-based model to simulate
the spread dynamics of a pandemic influenza. As discussed before, ABM is a
sharp tool for pandemic influenza simulation. It allows interactions among
individuals and could overcome the limitations of other modeling approaches. It
permits the study of a specific aspect of epidemic spread and is capable
addressing the stochastic nature of the epidemic process. Two featunggiidisti
the agent-based model created in this study from previous pandemic influenza

simulation models, particularly the massive agent-based models and social
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network models incorporating ABM technique. First, the underlying contact
network for virus transmission is constructed based on relevant empirical data.
Second, individual protective behavior is appropriately considered in the model
by including the component of public risk communication. Theories from
emergency risk communication and previous empirical data are used to frame the
probability for an individual to take protection action, and how this probability is
influenced by communication strategies. These two features simultaneoksly ma
the current model a promising exploration instrument for researchers as well as
decision support tool for local public managers to accurately anticipate thd sprea
dynamics of a pandemic influenza. Furthermore, both researchers and
practitioners can further introduce different public interventions—beside public
risk communication—into the model and use it to systematically evaluate and
compare their effectiveness for pandemic containment.

Theoretically, this study underlines the importance of social and human
factors in determining an epidemic’s spread dynamics. Epidemic siomulati
therefore must not be considered as a simple engineering or medical problem.
Social and behavioral aspects need to be taken into account. Besides, this study
illustrates the significance of non-pharmaceutical measures in pandentiol,
particularly individuals’ voluntary action to reduce their own social cositact
These measures can exert great effect in reducing the pandemic iRgpact
example, many studies have considered the reduction of public contacts an
effective means to control the 2003-2003 SARS spread (e.g., WHO, 2003). Non-

pharmaceutical measures are also associated with lower socglpaostularly
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compared with those pharmaceutical interventions which require considerable
amounts of labor and resources (Huang et al., 2004). The importance of non-
pharmaceutical measures becomes even more salient when a novel pandemic
strain of influenza is just found and no vaccination or antivirals against it is
available. On the other hand, the public normally is reluctant to take protective
actions, since such actions would change their routine activities (Quarantelli
1983). The responsibility to encourage the public therefore rests on emergency

managers to design effective strategies for public risk communication.

Limitation

There are several limitations in this dissertation. The first concerns how the
contact network is set up. A contact in the model is defined as what Edmunds et al
did in their study, namely, as a two-way conversion (Edmund et al., 1997).
Although such a definition is easier for operationalization and measuremeat, ther
are numerous questions about the validity of such a definition, particularly
regarding whether it could reflect the true picture of contacts that teegthto
pandemic influenza transmission. For example, considering the exact nature of at-
risk contacts is largely unknown, a contact as defined probably does not capture
all potentially important routines of transmission, such as direct contact by
contaminated hands and mouths, indirect fomite transmission from shared objects,
or being in the same space without talking (Beutels et al., 2006). However, as
Edmunds et al (1997) argued, such a definition of contact can serve as a starting
point, with the advantage of being “well understood, easy to recall and record, and

thus possible to collect from a study population” (Edmunds et al., 1997, p.950).
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Another reason to adopt this definition is to keep consistency. Previous empirical
findings used to parameterize the contact network in the model are from those
studies which used the same definition of a contact for influenza transmission.

For individual daily contact rate, previous studies exploring the number of
individuals’ daily at-risk contacts for influenza transmission geneteied
convenience samples (e.g., Beutels et al., 2006; Edmunds et al., 2006; Read et al.,
2008), focused on a specific group of population (e.g., Mikolajczyk &
Kretzschmar, 2008; Salathe et al., 2010), or were conducted in European
countries (e.g., Edmunds et al., 1997; Mikolajczyk et al., 2008; Wallinga et al.,
2006). Using empirical data from those studies to parameterize the model is
problematic, but there are few studies that investigated individual dentact
rate using the general U.S. population (Destefano et al., 2010). There are also
other characteristics of individual daily contact pattern found in previoustliter
which have not been included in the model. For example, the contact rate and type
may be different between weekdays and weekends (Beutels et al., 2006; Edmunds
et al., 1997). Furthermore, the empirically measured daily contact dataliasuae
valid proxy to quantify the unobservable actual infectious contacts; it is not
equivalent with the virus transmission routine.

Another limitation with this study is that, the implementation of the model
requires a thorough work of parameterization. While the value of some
parameters can be estimated based on previous studies (e.g., epidemiologic
parameters), the value of others may not be easily determined empiiecal)

contact pattern), or they exist only as certain range values (e.g. avoidance
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behavior effect). There are also some parameters whose value can only be
assumed, since no specific research has been found on the parameter in the
simulation context (e.g., social influence threshold and social influence effect).
Despite that, the current approach provides an opportunity to identify areas and
parameters for future research.

This study does not take into account other public intervention efforts for
pandemic control, particularly vaccination. Researchers and practitidtesrs o
consider vaccination the best measure for preventing and controlling a pandemic
influenza outbreak (Longini et al., 2004). However, when there is an outbreak of a
novel pandemic strain of influenza, the time and production capacity are usually
insufficient to produce and distribute enough effective vaccines to protect the
general public (Mniszewski et al., 2008; Monto, 2006). The influence of public
risk communication in this case needs to be understood by public managers, in
order to encourage individuals to adopt non-pharmaceutical measures for self-
protection. Furthermore, other public interventions are often used with the
presence of public risk communication. By further including vaccination and
other containment measures, the current model may provide better understanding
and testing of other interventions’ influence on the spread dynamics.

Public risk communication in this dissertation is a response intervention for
pandemic control. It is implemented after the influenza season begins, and the
public before the season is assumed not having any preparedness against the
influenza. The effectiveness of public risk communication in this case may be

different from that when it is used both before and throughout the influenza
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season or when the public is prepared to some extent for the influenza before the
season. Regarding the strategies emergency managers in the rese@dcan
adopt to improve the effectiveness of public risk communication, this dissertation
generally proposed improving the user percent, believer percent and use
frequency of local or national TV. No recommendations have been proposed in
terms of how to implement these strategies, particularly how to improve the
percent of community population who use and believe the importance of either
TV channel.

The spatial dimension is also not included in the model. The literature on
pandemic influenza simulation has increasingly realized the importanfrol
spatial structure in shaping the spread dynamics (Dangerfield et al., 2009;
Mollison, 1995). A large body of studies has been conducted on how space-
related factors affect the spread and hence influence the design of control
measures (e.g., Bian, 2004; Ferguson, 2006; Germann, 2006). These studies
commonly integrate network model or massive agent-based model with realistic
landscapes, which represent the continuous geographic environment individuals
interact with each other. Simulation models developed in such a way address the
non-spatial character of compartment models, and can provide spatial
implications for pandemic control (Cauchemeza et al., 2011; Dibble & Feldman,
2004). However, these models still have the same problem as their counterpart
models without spatial component regarding the simulation of contact pattern. For
epidemic simulation, the influence of actual geographic location and distance ar

usually considered secondary to that of the characteristics of contaotketw
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(Huang et al., 2004). This dissertation focuses on the more important aspect of
pandemic influenza simulation, which is also rarely explored in previous studies.
Besides, the spatial dimension can be easily incorporated in the developed
simulation framework.

Several researchers have emphasized the role of social media as a new type
of channel for risk communication during emergencies (e.g., Kittler 0&4;
Vaughan & Tinker, 2009). In contrast to the types of channel traditionally used,
social media facilitates interactive communication and content exchamnge. S
two-way communication channel has already been used by individuals,
organizations, and government agencies for disseminating emergency risk
information (Macias, Hilyard, & Freimuth, 2009). The ASU/ADHS Influenza
Survey included social media (e.g., the Internet or social media si@shasce
respondents could select for the channel they were using to receive 2009 HIN1
flu information. However, whether using or believing the importance of this type
of channel is not statistically significantly related to whether havingtzlevel
initial risk perception. So social media is excluded from the simulation model.
Given the emerging awareness about the importance of social media during an

emergency, further research on its effect is needed.

Future Research
The computational model developed in this dissertation is a flexible
framework, and it can be extended to accommodate several additional ideas and

avenues of research.
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First, the model employs a set of simplification and approximations.
Although it has made the best use of available data, these simplifications and
approximations can be gradually improved as future research provides more
findings. For example, given the compatibility between Netlogo and GiS the
landscape of a particular area can be easily incorporated in the modehineexa
disease spread dynamics within the area both temporally and spatialigoBut
information is needed in terms of how to set up a reasonable contact network for
disease spread over geographic space, particularly when the space is broad.

Second, the model can be adjusted and applied to other contexts. It can be
customized to study the spread dynamics of any other communicable disease by
modifying the transmission process and epidemiologic parameters. Isodrea
extended to simulate the influence of various pharmaceutical and non-
pharmaceutical interventions on epidemic spread dynamics, including therapeutic
and prophylactic use of antivirals, vaccination, and school closures. Furthermore,
it can be used for simulation in other communities. A common problem shared by
all these extensions is that, the model needs re-parameterized, and the value for
lots of parameters cannot be easily determined. For example, to simulate the
spread dynamics of another epidemic, what the definition of an at-risk contact
should be and how personal and community contact network should be set up
require new discussion. If the model is used to simulate the spread dynamics of
the same epidemic but within another community, current values for those
parameters related to public risk communication may not be able to be

generalized to the new context. For example, the perceived importansiglea

186



type of media usually varies greatly in different communities and time pefiods
accurately anticipate the disease spread dynamics and the effessivércertain
communication strategy, researchers and public managers need to tailor the mode
with reasonable values for their own contexts.

Third, in this dissertation, attentions have been paid to the one way
communication from public sector to the public, although it has been realized that
the emergency public risk communication is a two-way communication process.
Future extension of this study can modify the simulation model to include the
feedback from the public to the public sector; namely, emergency managers can
dynamically adjust their communication strategies based on how the public
respond to the current strategy. The risk communication process then can be made
interactive, and different insights may be provided from such a dynamic view.
Given the efforts that have been made by this dissertation and the figxibilit

ABM, such an extension is not a task impossible.
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APPENDIX A

USER INTERFACE OF NETLOGO MODEL
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APPENDIX B

SOURCE CODE OF NETLOGO MODEL
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globals [ %-large-reach large-reach small-reach social-influeifieet-eocial-
influence-threshold mean-of-contact-connectivity std-of-contact-conitgct
susceptible-population exposed-population infected-population
recovered-population died-population cumulative-infected ]

undirected-link-breed [ large-f-links large-f-link ]
undirected-link-breed [ small-f-links small-f-link ]
undirected-link-breed [ stable-links stable-link ]
undirected-link-breed [ random-links random-link ]

breed [ agents agent |

agents-own [ alive? large-f-agent? my-f-network-size my-friends
my-friends-ordered my-strangers my-c-network-size my-contacts
my-contacts-temp stable-random-ratio my-daily-contacts
my-normal-daily-contacts stable-capacity stable-capacity-temp
number-of-stable-contacts my-stable-contacts my-stable-contagps-te
random-capacity random-capacity-temp number-of-random-contacts
my-random-contacts epi-status infectious? recovering? my-infectionipliopa
new-info? Itv ntv radio Itv-cre ntv-cre initial-rp personal-rp n-conf-afitaction?
action-effect ]

to setup
ca

set %-large-reach 0.25

set large-reach 65

set small-reach 10

set social-influence-effect 0.5

set social-influence-threshold 0.5

set susceptible-population (n-agents - n-initial-infected-agents)
set exposed-population O

set infected-population n-initial-infected-agents

set recovered-population 0

set died-population 0

set cumulative-infected n-initial-infected-agents

create-agents n-agents
[ set shape "person”
set size 5
set large-f-agent? false
setxy random-pxcor random-pycor
while [ any? other turtles-here |
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[fd 1]

set my-f-network-size 0
set my-c-network-size 0
set my-daily-contacts 0
set my-normal-daily-contacts 0

set my-friends []

set my-friends-ordered []
set my-strangers []

set my-contacts []

set my-contacts-temp []

set stable-capacity 0

set stable-capacity-temp 0

set number-of-stable-contacts 0
set my-stable-contacts []

set my-stable-contacts-temp []
set random-capacity 0

set random-capacity-temp 0

set number-of-random-contacts O
set my-random-contacts []

set stable-random-ratio O

set alive? true

set epi-status 0 ;0susceptible, lexposed, 2infected, 3recovered, 4died
set color green

set infectious? false

set recovering? false

set my-infection-probability O

set new-info? false
setltv 0

setntv 0

set radio O

set Itv-cre O

set ntv-cre O

set initial-rp O

set personal-rp 0
set n-conf-attempts one-of [1 2 3 4]
set action? false
set action-effect O ]

let n-Itv-believer round (n-agents * %-Itv-believer / 100)
let n-ntv-believer round (n-agents * %-ntv-believer / 100)
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ask n-of n-ltv-believer agents [
set ltv-cre 1 ]

ask n-of n-ntv-believer agents [
set ntv-cre 1]

ask n-of n-initial-infected-agents agents [
set epi-status 2
set infectious? true
set color red ]

setup-friend-network
setup-contact-network
end

to setup-friend-network
let n-large-agents (%-large-reach * n-agents / 100)
ask n-of n-large-agents agents
[ set large-f-agent? true |

ask agents with [ large-f-agent? = true |
[ create-large-f-links-with other agents with [large-f-agent? 3 tndeadius
large-reach
[ hide-link ] ]
ask agents
[ create-small-f-links-with other agents with [large-f-agent? sef@in-radius
small-reach
[ hide-link ] ]

ask agents
[ set my-f-network-size (count link-neighbors)
set my-friends [who] of link-neighbors
set my-friends (shuffle my-friends)
set my-strangers [who] of other agents with [(link-neighbor? myself$e] fa
set my-strangers (shuffle my-strangers)

let my-friend-agents link-neighbors

leti O

letj O

while [i < my-f-network-size]

[ set j [who] of min-one-of my-friend-agents [distance myself]
set my-friends-ordered (Iput j my-friends-ordered)
set my-friend-agents my-friend-agents with [who !=j]
seti(i+1)]]
end
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to setup-contact-network

ask agents [

;decide contact network size

set my-c-network-size round (random-normal mean-of-daily-contkab s
daily-contacts)

while [(my-c-network-size < 0) or (my-c-network-size > max-of-daily
contacts)]

[ set my-c-network-size round (random-normal mean-of-daily-contacts sd-of-

daily-contacts) |

;decide the capacity of stable and random contacts
set stable-capacity round (%-of-stable-contacts * my-c-netwpek-4i00)
set random-capacity (my-c-network-size - stable-capacity)
if stable-capacity >= my-f-network-size
[ set stable-capacity my-f-network-size
set random-capacity (my-c-network-size - stable-capacity) ] |

;setup stable and random contacts
letiO
while [i < n-agents] [

let update-id-list-stable []

let update-id-list-random []

ask agent i [
if stable-capacity '=0 [
if (number-of-stable-contacts < stable-capacity) |
letjO
while [j < my-f-network-size] [
let current-agent item j my-friends
ifelse ([stable-capacity] of agent current-agent != 0) and ([number-of-
stable-contacts] of agent current-agent < [stable-capacity] of ageatcagent)
and ([stable-link-neighbor? myself] of agent current-agent = false)
[ create-stable-link-with agent current-agent [if hide-conta&@-Jmkle-

link]]
set number-of-stable-contacts (number-of-stable-contacts + 1)
set my-stable-contacts Iput current-agent my-stable-contacts
set update-id-list-stable Iput current-agent update-id-list-stable
if number-of-stable-contacts = stable-capacity [stop]
setj(j+1)]
[setj(+ 1)1
ask agent i [

if (number-of-stable-contacts != stable-capacity) [set random-tafagH
c-network-size - number-of-stable-contacts)]]
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ask agent i [
if random-capacity =0 [
if (number-of-random-contacts < random-capacity) [
let my-current-strangers my-strangers
foreach my-friends |
if [stable-link-neighbor? myself] of agent ? = false [
set my-current-strangers Iput ? my-current-strangers | |

set my-current-strangers (shuffle my-current-strangers)

letjO
while [j < length my-current-strangers] [
let current-agent item j my-current-strangers
ifelse ([random-capacity] of agent current-agent != 0) and ([number-of-
random-contacts] of agent current-agent < [random-capacity] of agent current-
agent)
and ([random-link-neighbor? myself] of agent current-agent = false)
[ create-random-link-with agent current-agent [if hide-contact-link?
[hide-link]]
set number-of-random-contacts (humber-of-random-contacts + 1)
set my-random-contacts Iput current-agent my-random-contacts
set update-id-list-random Iput current-agent update-id-list-random
if number-of-random-contacts = random-capacity [stop]
setj(+1)]
[setj (i + DI

if (empty? update-id-list-stable) = false [
letk O
while [k < length update-id-list-stable] [
let update-id item k update-id-list-stable
ask agent update-id |
set number-of-stable-contacts (number-of-stable-contacts + 1)
set my-stable-contacts Iput i my-stable-contacts ]
setkk+1]]

if (empty? update-id-list-random) = false |
letk O
while [k < length update-id-list-random] [
let update-id item k update-id-list-random
ask agent update-id [
set number-of-random-contacts (hnumber-of-random-contacts + 1)
set my-random-contacts Iput i my-random-contacts ]
setk (k +1)]]

seti(i+1)]
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ask agents [ ;for test
let a other agents with [stable-link-neighbor? myself = true or random-link
neighbor? myself = true]
set my-contacts [who] of a
set my-contacts-temp my-contacts
set my-daily-contacts (count a)
set my-normal-daily-contacts my-daily-contacts
ifelse my-normal-daily-contacts = 0
[set stable-random-ratio 0]
[set stable-random-ratio (number-of-stable-contacts / my-normal-daily
contacts) | |

end
j-mmmmmm e QO -----mmmmmmm oo
to go

report-parameter

do-plot

tick

if ticks =1 [

ask agents [
set random-capacity number-of-random-contacts ;here random capacity is # of
random contacts when the model is setup. it is not changed after step 1
set stable-capacity number-of-stable-contacts ;here stabléygapsaof
stable contacts when the model is setup. it is not changed after step 1
set stable-capacity-temp stable-capacity
set random-capacity-temp random-capacity | |

change-health-status-nonsusceptible
update-friendship-network

ask agents with [alive?] [
set number-of-random-contacts 0
set number-of-stable-contacts O
ask my-random-links [die]
set my-random-contacts []
ask my-stable-links [die]
set my-stable-contacts-temp []

set new-info? false
setltv O
setntv O
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set radio O
set action? false
set action-effect O |

receive-risk-information
response-to-risk-information
update-contact-network
change-health-status-susceptible

do-plot
end

to report-parameter
;infection spread among population
set susceptible-population ((count agents with [epi-status = 0]) * 100 / n-agents)
set exposed-population ((count agents with [epi-status = 1]) * 100 / n-agents)
set infected-population ((count agents with [epi-status = 2]) * 100 / n-agents)
set recovered-population ((count agents with [epi-status = 3]) * 100 / n-agents)
set died-population ((count agents with [epi-status = 4]) * 100 / n-agents)

;contact network characteristics

set mean-of-contact-connectivity mean [my-daily-contacts] of agetiits w
[alive?]

set std-of-contact-connectivity standard-deviation [my-daily-ctsitat agents
with [alive?]

;file-open (word "population.txt™)
Jfile-write "step”
Jfile-write ticks
;file-write susceptible-population
;file-write exposed-population
;file-write infected-population
;file-write recovered-population
;file-write died-population
;file-write (cumulative-infected * 100 / n-agents)
;file-close

end

to do-plot
set-current-plot "Epidemic Curve"
set-current-plot-pen "Infected”
plot (count agents with [epi-status = 2])
set-current-plot-pen "c infected"
plot cumulative-infected
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set-current-plot "Connectivity of Contact Network"
set-current-plot-pen "mean”
plot mean-of-contact-connectivity

end

to change-health-status-nonsusceptible
ask agents with [alive?] [
if epi-status = 2 |
ifelse recovering? = true
[ set epi-status 3 set color grey set infectious? false set recoveraag? fal
[ ifelse (random-float 100) < mortality-rate
[ ask my-links [die]
set alive? false
set epi-status 4
set infectious? false
set color black ]
[ if (random-float 1) < (1 / infected-period) [set recovering? true] ] ] ]
if epi-status = 1 [
ifelse infectious? = true
[set epi-status 2 set color red set cumulative-infected (cumulativeethfec

1]

[if (random-float 1) < (1 / latent-period) [set infectious? true set color

pink] ]]]
end

to update-friendship-network
;remove friends who has died; strangers remain the same
ask agents with [alive?] [
set my-friends [who] of agents with [large-f-link-neighbor? myseltie tir
small-f-link-neighbor? myself = true]
set my-f-network-size (length my-friends)
leti O
while [i < length my-friends-ordered] [
let current-agent-id item i my-friends-ordered
if [alive?] of agent current-agent-id = false [set my-friends-ordeesadlofre-
item i my-friends-ordered)]
seti(i+1)]

letjO
while [j < length my-stable-contacts] [
let current-agent-id item j my-stable-contacts
if [alive?] of agent current-agent-id = false [set my-stable-contacieye-
item j my-stable-contacts)]
setj(+1)]]
end
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to receive-risk-information
if risk-communication? [
let n-agent-alive (count agents with [alive?])
if Itv? [
if (ticks > 0) and (ticks mod f-ltv = 0) |
let n-agent-Itv round (n-agent-alive * %-Itv-user / 100)
ask n-of n-agent-ltv (agents with [alive?]) |
set new-info? true
setltv1]]]
if ntv? [
if (ticks > 0) and (ticks mod f-ntv = 0) [
let n-agent-ntv round (n-agent-alive * %-ntv-user / 100)
ask n-of n-agent-ntv (agents with [alive?]) [
set new-info? true
setntv1]]]
if radio? [
if (ticks > 0) and (ticks mod f-radio = 0) [
let n-agent-radio round (n-agent-alive * %-radio-user / 100)
ask n-of n-agent-radio (agents with [alive?]) [
set new-info? true
setradio1l]]]]
end

to response-to-risk-information

ask agents with [alive?] [

if epi-status = 3 [

if new-info?

[ let templ (3.04 * ntv * ntv-cre + 1.66 * Itv * ltv-cre - 2.56 * radio)

set templ (O - templ)
set templ (1 + exp templ)
set initial-rp (1 / temp1)

ifelse my-f-network-size =0
[ set personal-rp ((100 - social-influence-effect) * initial-rp / 100) |
[ if n-conf-attempts > my-f-network-size [set n-conf-attemptg$-my-
network-size]

letiO
let n-friend-confirm O
let n-friend-adopt O

while [i < n-conf-attempts] [
let current-id (item i my-friends-ordered)
if [action?] of agent current-id
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[ set n-friend-adopt (n-friend-adopt + 1) |
set n-friend-confirm (n-friend-confirm + 1)
seti(i+1)]

ifelse (n-friend-adopt / n-friend-confirm) >= (social-influerfaethold /
100)
[set personal-rp (social-influence-effect / 100 + (100 - social-influence
effect) * initial-rp / 100)]
[set personal-rp ((100 - social-influence-effect) * initial-rp / 100)] ] |

ifelse (random-float 1) < personal-rp
[ set action? true ]
[ set action? false ] ] ]

ask agents with [alive?] [
ifelse action?
[ set action-effect one-of [0.3 0.4 0.5 0.6 0.7 0.8 0.9]
set my-daily-contacts round ((1 - action-effect) * my-normal-daitytacts)
set stable-capacity-temp round (my-daily-contacts * stable-randmn-rat
set random-capacity-temp (my-daily-contacts - stable-capacipj-tem
if (random-capacity-temp > random-capacity) [set random-capagify-te
random-capacity] ]
[ set my-daily-contacts my-normal-daily-contacts
set stable-capacity-temp stable-capacity
set random-capacity-temp random-capacity | |
end

to update-contact-network
letiO
while [i < n-agents] [
let update-id-list-stable []
let update-id-list-random []

ask agenti [
if alive? [
;update stable contacts
if stable-capacity-temp =0 [
if number-of-stable-contacts < stable-capacity-temp [
letjO
while [j < length my-stable-contacts] [
let current-agent-id item j my-stable-contacts
ifelse ([alive?] of agent current-agent-id ) and ([stable-capewip)-t
of agent current-agent-id != 0)
and ([number-of-stable-contacts] of agent current-agent-id <
[stable-capacity-temp] of agent current-agent-id)
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and ([stable-link-neighbor? myself] of agent current-agent-id =

false)

[create-stable-link-with agent current-agent-id [if hide-comtkeét-|
[hide-link] ]

set number-of-stable-contacts (number-of-stable-contacts + 1)

set my-stable-contacts-temp Iput current-agent-id my-stable-
contacts-temp

set update-id-list-stable Iput current-agent-id update-id-list-stable

if number-of-stable-contacts = stable-capacity-temp [stop]

setj(+1)]

[setj ( + LI

ask agenti [
if alive? [
;update random contacts
if random-capacity-temp =0 [
if (number-of-random-contacts < random-capacity-temp) [
let my-current-strangers my-strangers
foreach my-friends [
if [stable-link-neighbor? myself] of agent ? = false [
set my-current-strangers Iput ? my-current-strangers | |

set my-current-strangers (shuffle my-current-strangers)

let k O
while [k < length my-current-strangers] [
let current-agent-id item k my-current-strangers
ifelse ([alive?] of agent current-agent-id) and ([random-capeaaiiy}tof
agent current-agent-id != 0)
and ([number-of-random-contacts] of agent current-agent-id <
[random-capacity-temp] of agent current-agent-id)
and ([random-link-neighbor? myself] of agent current-agent-id =
false)
[create-random-link-with agent current-agent-id [if hide-contact-link?
[hide-link]]
set number-of-random-contacts (number-of-random-contacts + 1)
set my-random-contacts Iput current-agent-id my-random-contacts
set update-id-list-random lput current-agent-id update-id-list-random
if number-of-random-contacts = random-capacity-temp [stop]
setk (k +1)]
[setk (k+1)]11111]

if (empty? update-id-list-stable) = false [
letnO
while [n < length update-id-list-stable] [
let update-id item n update-id-list-stable
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ask agent update-id |
set number-of-stable-contacts (number-of-stable-contacts + 1)
set my-stable-contacts-temp Iput i my-stable-contacts-temp ]
setn(n+1)]]

if (empty? update-id-list-random) = false |
letmO
while [m < length update-id-list-random] [
let update-id item m update-id-list-random
ask agent update-id [
set number-of-random-contacts (humber-of-random-contacts + 1)
set my-random-contacts Iput i my-random-contacts ]
setm (m + 1)] ]

seti(i+1)]

ask agents with [alive?] [
let a other agents with [stable-link-neighbor? myself = true or random-link-
neighbor? myself = true]
set my-contacts-temp [who] of a
set my-daily-contacts (count a)]
end

to change-health-status-susceptible
ask agents with [alive?] [
if epi-status =0 [

let infectious-stable-contact (count stable-link-neighbors with [ioles? =
true])

let infectious-random-contact (count random-link-neighbors with [infectious?
= true])

let infectious-contact (infectious-stable-contact + infectious-randotagatpn

set my-infection-probability (1 - exp (- transmission-probability *atiéeis-
contact / 100))

if (random-float 1) < my-infection-probability [ set epi-status 1 setrcol
yellow ] ]]
end
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