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ABSTRACT  
   

Public risk communication (i.e. public emergency warning) is an integral 

component of public emergency management. Its effectiveness is largely based on 

the extent to which it elicits appropriate public response to minimize losses from 

an emergency. While extensive studies have been conducted to investigate 

individual responsive process to emergency risk information, the literature in 

emergency management has been largely silent on whether and how emergency 

impacts can be mitigated through the effective use of information transmission 

channels for public risk communication. 

This dissertation attempts to answer this question, in a specific research 

context of 2009 H1N1 influenza outbreak in Arizona. Methodologically, a 

prototype agent-based model is developed to examine the research question. 

Along with the specific disease spread dynamics, the model incorporates 

individual decision-making and response to emergency risk information. This 

simulation framework synthesizes knowledge from complexity theory, public 

emergency management, epidemiology, social network and social influence 

theory, and both quantitative and qualitative data found in previous studies. It 

allows testing how emergency risk information needs to be issued to the public to 

bring desirable social outcomes such as mitigated pandemic impacts. 

Simulation results generate several insightful propositions. First, in the 

research context, emergency managers can reduce the pandemic impacts by 

increasing the percent of state population who use national TV to receive 

pandemic information to 50%. Further increasing this percent after it reaches 50% 
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brings only marginal effect in impact mitigation. Second, particular attention is 

needed when emergency managers attempt to increase the percent of state 

population who believe the importance of information from local TV or national 

TV, and the frequency in which national TV is used to send pandemic information. 

Those measures may reduce the pandemic impact in one dimension, while 

increase the impact in another. Third, no changes need to be made on the percent 

of state population who use local TV or radio to receive pandemic information, 

and the frequency in which either channel is used for public risk communication.   

This dissertation sheds light on the understanding of underlying dynamics of 

human decision-making during an emergency. It also contributes to the discussion 

of developing a better understanding of information exchange and communication 

dynamics during a public emergency and of improving the effectiveness of public 

emergency management practices in a dynamic environment.  
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Chapter 1 

Introduction 

Public emergency management or emergency management (EM) is “the 

discipline and profession of applying science, technology, planning and 

management to deal with extreme events that can injure or kill large numbers of 

people, do extensive damage to property, and disrupt community life” (Hoetmer, 

1991, p. xvii).1 Despite there are many ways to describe the importance of EM, it 

hardly seems necessary today to explain the value of a discipline and profession 

whose purpose is protecting lives and property in public emergencies. The 

increasing number and variety of public emergencies that are plaguing the world 

today promote the visibility and significance of EM. 

In the United States, EM has been conceptualized as an essential role of 

government (Giuffrida, 1985; Wilson & Oyola-Yemaiel, 2001). As a discipline 

and profession, it emerges in the 1950s (Drabek & McEntire, 2003; Dynes & 

Drabek, 1992). A command and control approach since then has been adopted as 

the mainstream approach in public administration (PA) field to address EM issues. 

According to this approach, the goal of EM is to regain control over the social 

chaos created by an emergency and to reestablish social order (Dynes, 1983, 

1989). Public EM system should be developed as a highly bureaucratic system, 

which is characterized by clearly defined objectives, a formal structure, a division 

of labor, and a set of guiding policies (Schneider, 1992). Management strategies 

                                                 
1 This dissertation focuses only on the research and practices of EM in the field of 
public administration. Studies and practices of EM in private sectors are not 
considered. Within this study, public emergency management can also be simply 
called emergency management.  
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within this system mainly include centralized decision-making and 

communication, and the strict implementation of pre-planned operating protocol 

and procedures (Britton, 1986, 1989, 1991). 

Over time many EM researchers have realized the ineffectiveness of this 

approach to address EM issues, despite its consistent and wide application. The 

highly bureaucratic EM system developed under this approach is designed to 

operate under stable and routine conditions (Schneider, 1992). Such a system 

inevitably becomes mismatched and ineffective in the rapidly changing 

circumstances of a public emergency. The dynamic nature of the environment 

requires a different approach than the traditional framework. This dissertation 

attempts to address some of those limitations in current EM literature in PA filed, 

by focusing on public risk communication during public emergencies (i.e., public 

emergency warning).  

Public Risk Communication as an Important EM Issue 

The crucial role public risk communication plays in EM has long been 

recognized by both academics and practitioners (Garnett & Kouzmin, 2007; 

Leibinger, 1980; Williams, 1964). Historical evidence has showed a community 

with the help of effective public risk communication can greatly reduce the 

potential consequences of an emergency (Drabek & Stephenson, 1971; Mileti & 

Sorense, 1990; Perry & Lindell, 2003a). It is therefore not surprising that many 

studies in the earliest research in EM area focused on the effectiveness of public 

risk communication (Drabek, 1969; Quarantelli, 1954; Williams, 1957). 

Meanwhile, practicing emergency managers have also been sharply reminded the 
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missteps in public risk communication by the well-documented failed attempts in 

the 2001 anthrax risk communication debacle (Koplan, 2003; Reynolds & Seeger, 

2005), the 2003 and 2004 flu vaccine shortages (CDC, 2004; Gilk, 2007), and the 

2005 resident evacuation prior to Hurricane Katrina and subsequent flooding 

(Brodie et al., 2006; Wang & Kapucu, 2007). To improve the effectiveness of 

current public risk communication practices motivates this dissertation to focus on 

this issue among all other important issues in public emergency management. 

In the EM field, the term of public risk communication is rarely used. Most 

studies in this field use the term of public emergency warning or public warning 

to refer to the transmission of messages to individuals, groups, or populations 

which provide them with information about the existence of danger and what can 

be done to prevent, avoid, or minimize the danger (Williams, 1964; Lindell & 

Perry, 1992; Reynolds, 2005). This dissertation uses these three terms 

interchangeably. Furthermore, the term of risk when used in studies of public risk 

communication in EM can be defined as “a condition in which there is a 

possibility that persons or property could experience adverse consequences” 

(Lindell, Prater, & Perry, 2005, p.84).  

Traditionally, public risk communication during public emergencies is 

addressed through a ‘command and control’ centralized effort. Both researchers 

and practitioners in this area considered public risk communication as a linear, 

top-down and expert-to-lay process (Gladwin et al., 2007; Gutteling, 2001). The 

main concern for them is the top-down influence on direct preparedness and 

response orders, as well as the capacity and application of different 
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communication technologies involved. Emergency managers in practice are 

preoccupied by a technical focus, particularly the interoperability of mechanical 

devices, such as radio, cell phones, and satellite telephone networks. With the 

successive failure of the traditional model to communicate emergency risk to the 

public and to elicit their appropriate response, EM researchers are challenged to 

reconsider the process of public risk communication.  

To meet such a challenge, an extensive number of studies in EM have been 

conducted to explore the process of public risk communication. Most of these 

studies believe the most important aspect of the process lies in its social and 

human component, particularly how the warning target population responds to 

risk information and how public risk communication can facilitate timely and 

proper response. On the one hand, empirical findings have been provided to 

evaluate the traditional model emergency managers subscribe to for public risk 

communication practices. On the other hand, substantial and systematic 

knowledge has been accumulated regarding how individuals perceive and respond 

to risk information in emergency situations. These studies also provide important 

insights on the design of emergency risk information to encourage desirable 

public response.  

While such knowledge has significantly influenced previous public risk 

communication practices in EM, some limitations remain: 1) few insights have 

been provided on how emergency risk information should be sent to the public; 2) 

little is known about how individuals use information for decision-making during 

their response process to emergency risk information; 3) little attention has been 
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paid to how public response pattern to emergency risk information at the system 

or community level emerges; and 4) few studies have considered risk 

communication during emergencies as a dynamic process, through which public 

sectors and the public interact with each other through information exchange.   

These limitations, while not overlooked, are made persistent concerns in 

public risk communication in EM, due to the methodological flaws inherent in 

this stream of literature (Donner, 2006; Drabek, 1969; Gladwin et al., 2007). 

Previous EM studies on public risk communication have either adopted a 

traditional view and focused on its technical aspect, or engaged themselves into 

the investigation of individual behavior. Methodologically, current EM studies are 

preoccupied by qualitative description or post-emergency survey and simple 

statistical analysis. Such research methods are not well equipped to connecting 

individual and system level while at the same time tracking the decision-making 

process at the individual level and including a dynamic and process view.  

This dissertation aims to address the first three limitations out of four as 

discussed above in the public risk communication literature in EM filed, by 

employing agent-based modeling to explore whether and how emergency impacts 

can be managed through the effective use of information transmission channel for 

public risk communication. 
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Chapter 2 

Literature Review 

During the past decades, EM scholarship has been in a cross-road (Britton, 

1999). Such a status becomes more salient with the occurrence of 9/11 attack and 

Hurricane Katrina. More academic efforts since then are stimulated to explore and 

develop new and revolutionary approaches to address EM issues.  

This chapter summarizes previous research in the field of public 

administration on how the approach to emergency management in general and to 

emergency public risk communication in particular evolves in the context of ever-

changing practical and academic environment. In this chapter, what is a public 

emergency is first defined. The traditional approach to emergency management is 

then reviewed, including its histories, characteristics, strengths, and particularly 

its weaknesses and previous insights on how to address the weaknesses. This 

chapter also purports to develop an understanding of the current literature on a 

key aspect of emergency management: public risk communication. Specifically, it 

shall address what has been discussed with regard to public risk communication in 

emergency management literature, and what are the inherent limitations in this 

stream of  literature that constrain its potential for further theoretical development 

and practical application. 

Emergency Management Research and Practice 

What is a public emergency. One of the major problems that confront EM 

researchers is the dissent regarding how to name and define the subject matter. 

Different terms have been used in EM literature to refer to the major object of 
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studies, including emergency, incident, hazard, disaster, catastrophes and 

calamities. Some researchers attempt to distinguish these terms from each other. 

According to them, all terms refer to environmental events with negative 

consequences on society (Lindell & Perry, 2004). They all can be called 

emergencies, but come with different sizes and impacts and need different 

response units (Birkland, 2006; McEntire, 2004a).  

Generally speaking, small-size emergencies are often called incidents, 

hazards or simply emergencies (Kapucu & van Wart, 2006). These events cause 

minor consequences for a community, and can be successfully handled with the 

resources of a single local governmental agency (Lindell & Perry, 2004). 

Moderate-size emergencies can cause considerable losses in a community and are 

given the name of disaster. Although they can be entirely managed at the local 

level, multiple agencies are usually required for a regional response; sometimes 

they even need assistance from the state. A catastrophe or calamity refers to a top-

level emergency, whose occurrence is “notable, rare, unique, severed, and 

profound in terms of impact, effects, or outcomes” (Kapucu & van Wart, 2006, 

p.290). Responding to such an event often exceeds the capacity of local 

jurisdictions and needs cooperation national wide (Lindell & Perry, 2004). 

Another term frequently used in EM studies is crisis. This term is even more 

comprehensive than emergency when used as a general term (Shaluf, Ahmadun, 

& Said, 2003). It refers to a situation or a turning point where important decisions 

have to be made. It is different from any other term discussed before since both 

positive and negative outcomes can result from a crisis. Based on the differences, 
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what interest researchers and practitioners in EM are disasters or catastrophes, not 

all types of emergencies. However, the term of emergency and disaster are often 

used interchangeably in EM studies (Adelman & Legg, 2009).  

Even for studies using the same term for the major subject, no definitive 

conclusions have been achieved regarding how to define the term. For example, a 

disaster has been defined from various perspectives, for example, as a physical 

happening outside society (e.g., Fritz, 1961), as a social disruptive event (e.g., 

Kreps, 1995), or as a non-routine social occasion (e.g., Quarantelli, 1989). 

In this dissertation, the definition of a public emergency adopts what Lindell 

and Perry (2004) defined a disaster from the EM perspective, namely, “a non-

routine event in time and space, producing human, property, or environmental 

damage, whose remediation requires the use of resources from outside the directly 

affected community” (p.7-8).2 

Command and control approach. In United States, emergency 

management as a research field emerged in the 1950s as a response to institutional 

demand (Dynes & Drabek, 1992). US governments at that time were primarily 

concerned with the threat of outside nuclear attacks (Wilson & Oyola-Yemaiel, 

2001). Disasters, particularly natural disasters, were viewed as small-scale 

analogues to nuclear attack situations and natural laboratories for testing the 

possible effects of armed aggression. Funds were provided by civil defense 

departments for the study of disaster and emergency management, to explore 

                                                 
2 Since this dissertation focuses only on research and practices of EM in public 
sectors, a public emergency within this study can also be simply called emergency.  
Furthermore, following Lindell and Perry’s definition (2004), the term emergency 
and disaster can be used interchangeably throughout this dissertation. 
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civilian response to nuclear attacks, as well as how to maintain social order in war 

situations (Alexander, 2002; Kreps, 1995; Tierney, Lindell & Perry, 2001). Such 

civil defense supports pressed researchers to develop a theoretical perspective that 

was consistent with military pattern (Dynes, 1983; Gilbert, 1995).  

Command and control emerged from this circumstance as the first model of 

emergency management. It strongly reflects the wartime and national security 

roots (Perry, 2006). In this model, disasters bear a great resemblance to harmful 

attacks. They are considered as events external to a focal society. Human 

communities are systems with essential functions. After a disaster hits the system, 

social functions are disrupted; communities should react organically against the 

aggression, to restore the system back to normal.  

Individuals are assumed to be inept and passive because of the social chaos 

created by a disaster (Dynes, 1994; Schneider, 1992); they behave in an irrational 

and anti-social way (Dynes, 1994; Britton, 1989a; Mileti, 1989). Local emergency 

personnel are considered self-centered and irresponsible; they leave their posts in 

the disaster situation (Dynes, 1983). Outside authorities and resources therefore 

become necessary, given the reduced capacity of individuals and organizations in 

the local community to cope with disasters (Dynes & Drabek, 1992). 

The goal of emergency management is to regain control over the social chaos 

and to reestablish social order (Dynes, 1983, 1989). With this goal, the model 

provides a highly bureaucratic emergency management system (Dynes, 1994; 

Kapucu & van Wart, 2006). Schneider (1992) characterizes this system with four 

basic features: clearly defined objectives, a formal structure, a division of labor, 
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and a set of guiding policies. Management goals are achieved through the 

centralization of power and decision making (Britton, 1989a; Dynes, 1983), a 

hierarchical, top-down communication and information system (Britton, 1989a, 

1991; Dynes, 1983), strong paramilitary leadership (Drabek & McEntire, 2003; 

Neal & Phillips, 1995), and pre-planned detailed operating protocol and 

procedures (Britton, 1986, 1991; Schneider, 1992).  

Management efforts are viewed effective only if they are made by public 

sectors. For example, information outside of official sources is considered 

inaccurate (Britton, 1989a). Ad hoc or emergent behavior, such as voluntary 

rescuing behavior after a disaster, is considered counter-productive, and should be 

prevented (Mileti, 1989). In fact, advocates of this approach contend that any 

departure from bureaucratic guidelines would create problems (Neal & Phillips, 

1995). When government fails in responding to a disaster, the management 

system is viewed not as bureaucratic as it should be. The system therefore needs 

to be advanced toward a stricter and more centralized direction. Measures that are 

usually advocated by researchers favoring this model include more detailed pre-

event planning and organizational reconstruction of government emergency 

management sectors (Britton, 1989a).  

Methodologically, studies within this stream of literature take an individualist 

or case study approach to a specific type of disaster event (e.g., earthquake, 

hurricane, or flood) (Shaluf, Ahmadun, & Said, 2003). Researchers believe that 

different types of disaster are different qualitatively from each other, and each of 

them requires unique model of understanding and management (Lindell & Perry, 
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1992). As a result of this disaster-specific approach, various lines of research were 

developed for each type of disaster. This research strategy actually echoes the 

civil defense related funding priorities (Tierney et al., 2001). Studies are 

descriptive in nature, and they often focus on the fact of a specific disaster, 

particularly the characteristics of the disaster (e.g., magnitude and duration) 

(McEntire & Marshall, 2003; Porfiriev, 1995; Quarantelli, 1981) and social-

systemic antecedents and consequences (e.g., numerical estimates of negative 

disaster results) (Tierney et al., 2001; Quarantelli, 2001). 

In practices, the command and control approach was subscribed by most 

emergency managers (Britton, 1989b; Dynes, 1989; Siegel, 1985). The popularity 

even continues till today (Neal & Phillips, 1995; Drabek & McEntire, 2003). 

Some researchers attribute its wide practical application to the approach’s 

simplicity and clarity, particularly to emergency managers (e.g., Dombrowsky, 

1995). The founding fathers of EM filed were actually civil defense directors, 

who used to serve in armed forces (Drabek & McEntire, 2003; Haddow, Bullock, 

& Coppola, 2008). It is therefore logical to initiate the professional with a 

paramilitary approach. Many emergency managers also began their career in 

military, and the command and control approach makes particular sense to them 

(Dynes, 1983). Besides, the model is compatible with the classical management 

theory that has been commonly employed in public sectors (Britton, 1989a).  

Command and control, as the first model to emergency management, 

influenced most of the work followed in EM field. Several models are proposed in 

later studies as variants of this model, for example, the rational model (Siegel, 
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1985), bureaucratic norm model (Schneider, 1992), and the better known model 

of Comprehensive Emergency Management (Sylves, 1994; Waugh, 1994). 

However, all these models maintain the same basic tenets, addressing issues of 

emergency management through a command and control approach. Neal and 

Phillips (1995) summarized three underlying points of such an approach. “They 

urge the strict use of bureaucratic structure and rules, argue that ad hoc efforts 

lead to failed emergency response, and suggest that effective emergency response 

occurs only through normal, rational, written bureaucratic procedures” (Neal & 

Phillips, 1995, p.328). As for emergency managers, they continue their 

concentration and application of classical management theory (Britton, 1999). EM 

training is attuned to skill-based emergency response activities (Britton, 1999). 

The public is considered as part of the external environment of EM, whose 

behavior should be controlled (McEntire, 2004a). 

Critiques. Critiques on the command and control model have been emerging 

since the late 1960s. By that time, many EM researchers started to realize it was 

not effective to manage natural and technological disasters through a paramilitary 

system (Alexander, 2002; Britton, 1986, 1991; Quarantelli, 1986). The approach 

makes inaccurate assumptions on individual behavior in emergency situations. 

Individuals do not behave irrationally or anti-socially; nor would they become 

helpless and dependent (Dynes, 1989). The proposed emergency management 

system as an administrative hierarchy is designed to operate under stable and 

predictable conditions (Drabek, 1985; Perrow, 1979; Rosenthal & Kouzmin, 

1997). Given the rapidly changing and unpredictable nature of disaster created 
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environments, such a system inevitably becomes mismatched with the 

environment and ineffective.  

Considering the inherent limitations of the traditional approach, some EM 

researchers attempted to explore alternative approaches of EM, for example, the 

emergent human resource model (Brouillette & Quarantelli, 1971; Drabek, 1985; 

Dynes, 1983), the comprehensive vulnerability management model (McEntire, 

2001, 2002, 2004b), and the inter-governmental crisis management model 

(Comfort, 1985, 1988, 1999). Today, the research and practice of EM is still 

evolving. On the one hand, the rapid and extensive reorganization of EM system 

after the trauma of the 9/11 attack de-emphasizes all hazards other than terrorism 

(Birkland, 2006). Traditional model of command and control is reinforced 

(Comfort, 2006; Haddow et al., 2008; Kreps, 1990). On the other hand, the 

response failure to Hurricane Katrina relentlessly revealed the flaws and 

weaknesses in current EM system (Col, 2007; Jurklewicz, 2007; Kiefer & 

Montjoy, 2006; Menzel, 2006).  More initiatives since then have been stimulated 

to search and develop an alternative approach for EM (e.g., Garnett & Kouzmin, 

2007; Lester & Krejci, 2007; Morris, Morris, & Jones, 2007; Wise, 2006).  Four 

common features identified by these efforts that should characterize the new 

approach can be summarized as below: 

First, the EM system should be framed as a loosely-coupled inter-

organizational system, with a flexible and networked structure (Comfort, 2005; 

Neal & Phillips, 1995). Components of the system include both organizations—

public, private, and non-profit—and individuals (Kuban, 1996; McEntire, 2002). 
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These components are interdependent; they interact with each other and with the 

environment, through a continuous process of information exchange and behavior 

adjustment. Although public sectors bear the primary EM responsibility in this 

system (Comfort, 2006, 2007; Rosenthal & Kouzmin, 1997), the dynamics of the 

emergency-created environment  require decentralized decision making, and local 

adaptation (Kapucu & van Wart, 2006).  Furthermore, the effectiveness of EM 

practices depends upon the interaction among system participants, and 

communication is the key to integrate the system and coordinate the actions of 

multiple actors (Pijnenburg & van Duin, 1991). 

Second, management strategies should be developed based upon systematic 

information about how people behave in a disaster, instead of trying to control 

their behavior (Dynes & Drabek, 1992; Quarantelli, 2005). When facing 

emergencies, people do not become passive and do what the authority tells them 

to do. They take actions based on their own decisions made in a bounded rational 

way (Quarantelli, 1982, 1984). Management practices therefore can no longer be 

understood as exerting control over individual behavior, but as designing and 

continuously adjusting strategies based on human behavior in disasters. Besides, 

the public should be viewed as resource and part of EM system, rather than what 

should be prevented from management practices (Drabek & McEntire, 2003). 

Third, EM is essentially a dynamic process, particularly given the rapidly 

changing environment created by a disaster. Rosenthal and Kouzmin (1997) once 

argued that, a more comprehensive analysis of EM called for a more focused 

understanding of the process and of the challenges the process posed for public 
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management. The new approach needs to take a dynamic and process view, which 

allows actors to trace the development of an emergency situation, rapidly identify 

and correct errors and adapt their performances.  

Fourth, instead of focusing on technological knowledge and its application, 

EM research and practice should be based upon efforts from multiple disciplines 

(Petak, 1985; Wamsley & Schroeder, 1996). EM research and practice, by its very 

nature, is multidisciplinary (Dynes & Drabek, 1992). No one discipline can help 

see the big picture of disaster and emergency management; nor does any single 

perspective provide a comprehensive understanding and explanation. Efforts 

therefore should be made to develop an inter-disciplinary approach, in which 

“disciplinary differences will all be melded into one overall perspective” 

(Quarantelli, 1989, p.244).  

The above four features have been repeatedly discussed by proponents of an 

alternative approach to EM, and they believe that such an approach characterized 

by these features could provide important insights on effective EM (Comfort & 

Kupucu, 2006; McEntire et al., 2002; Rosenthal, 't Hart, & Charles, 1989). 

Meanwhile, none of the existing EM approaches can simultaneously fulfill these 

four requirements. Efforts are still needed to develop another new approach. 

Public Risk Communication Research and Practice in EM 

What is public risk communication in EM. In emergency management, 

public risk communication or public warning has been defined as the transmission 

of messages to individuals, groups, or populations which provide them with 

information about the existence of danger and what can be done to prevent, avoid, 
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or minimize the danger (Williams, 1964; Worth & McLuckie, 1977).  It is 

conceived as a general social system consisting of three basic elements or 

activities: assessment, dissemination, and response (McLuckie, 1970; Quarantelli, 

1983; Tierney, 1993). EM researchers usually consider the aspect of response as 

the most important aspect of the total communication system, since the ultimate 

goal of public risk communication is to initiate and motivate appropriate 

protective response by those to whom the information is directed (Lindell et al., 

2005; Perry & Lindell, 1986; Tayag et al., 1997). Correspondingly, the 

effectiveness of public risk communication is evaluated based on the degree to 

which desirable public response is elicited to minimize losses from a disaster 

(Worth & McLuckie, 1977). In practice, emergency risk communication systems 

are complex communication systems (Sorensen, 2000). They link a variety of 

specialties and organizations and the public (Mileti, 1995; Mileti & Peek, 2000). 

They are also more than a technological system, and far extended beyond the 

official communication systems (Sorensen & Sorensen, 2007).  

Public risk communication in EM under command and control. EM 

researchers have consistently demonstrated the difficulties for emergency warning 

to elicit desired public response (Donner, Rodriguez, & Diaz, 2007; Quarantelli, 

1984, 1990). As a result, there is often inadequate protection provided for 

communities. While many efforts to mitigate the problem have been devoted to 

developing and using new technologies, such a solution is considered insufficient 

(Gladwin et al., 2007). It is argued that, the principle problem of public warning 

response lies at the oversimplified conception of warning process held by 
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emergency managers (Balluz et al., 2000; Donner et al., 2007). Such a conception 

is developed under the roof of a command and control approach to EM, and 

usually called the “conventional wisdom” on public risk communication (Parker 

& Handmer, 1998). It includes the assumptions and model many researchers and 

practitioners use in public risk communication study and practice. 

Common myth on public risk communication. Over the past seven decades, 

researchers have identified a set of common, but mistaken, beliefs among EM 

scholars and practitioners about emergency risk communication and public 

response (Drabek, 1986; Mileti & Peek, 2000; Wenger & James, 1994). Often 

referred in literature as “myth”, these interrelated assumptions are considered as 

the central constraining factor in improving the effectiveness of public risk 

communication (Dynes & Quarantelli, 1973; Sorensen, 1993).  

All individuals directly receive official warning. Information notification is 

the starting point in seeking to explain how people respond to public warnings 

(Parker, Priest, & Tapsell, 2009). Since people can only respond after they receive 

the warning, it plays an important role in most emergencies (Sorensen, 1993). In 

EM practices, it is generally assumed that, after disseminated, each warning 

message will directly reach all individuals (Mileti, 1995). Public officials also 

believe that it is better to have a single spokesperson to distribute emergency 

information (Tierney, 1993). Therefore, the authority becomes the single and only 

source from which all people can directly get risk information (Sorensen, 2000).  

Individuals have limited capacity to process information in emergencies. 

Officials are usually concerned about overwhelming the public with too much 
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information (Sorensen, 2000). They believe that people’s ability to process 

information is reduced by emergency situations, and therefore they will be 

confused by long and detailed warning messages (Mileti, 1995).  Emergency 

managers usually adhere to such principles as “keep the information simple and 

stupid”, in order to hold people’s attention and make the information more 

understandable (Mileti, 1999; Sorensen & Sorensen, 2006).  

Previous studies also find that many researchers and emergency managers are 

worried about the so-called “cry-wolf” syndrome, which refers to the 

phenomenon that repetitive false alarms may decrease the effectiveness of 

people’s response to a warning (Sorensen, 1992; Sorensen & Mileti, 1988). It is 

believed that repeated activation of the false alarm can lead the public to take 

unnecessary protective actions and therefore cause needless time and financial 

cost. More important, it will reduce the credibility of a subsequent and maybe true 

warning. In practice, emergency managers are sometimes too concerned about the 

syndrome to inform the public timely (Lindell & Perry, 1992). 

Individuals become panic and irrational. Individuals, as emergency 

managers believe, respond to warning messages in a very disorganized or 

dysfunctional way (Perry, 1981; Perry & Lindell, 2003a). One assumed pattern of 

individual warning response is panic, which is one of the most common myths 

with regard to warnings of impending threats (Dynes & Quarantelli, 1973; Mileti, 

1999; Perry & Lindell, 2003b). Quarantelli (1954) defined panic as “an acute fear 

reaction marked by a loss of self-control which is followed by non-social and 

non-rational flight” (p.272). In other words, after receiving warning messages, 
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individuals are no longer able to make rational decisions and enter into an 

irrational panic status.  

The assumption of individual panic status has two important implications for 

the practice of emergency management. Public flight has been considered a major 

problem (Perry & Lindell, 2003b).  This concern prevents public officials from 

providing the public with complete risk information, in order not to cause a public 

panic (Mileti, 1999). The assumption also justifies the outside control from public 

officials over individual behavior (Dynes & Quarantelli, 1973). Since individuals 

become irrational and cannot decide for themselves what their best interest is, 

they need public officials to become the Big Brother and tell them what to do 

(Trainor & McNeil, 2008).  

Individuals become passive and follow suggestions immediately. Another 

myth as stubborn as the panic assumption is that, warning messages are received 

by passive and isolated individuals, who cannot take care of themselves (Helsoot 

& Ruitenbery, 2004; Parker & Handmer, 1998). As a result, they wait around for 

the help from public officials (Dynes & Quarantelli, 1973). After receiving 

warning messages, each person responds directly and individually to the content 

of the warning and follows recommendations made in the message (McLuckie, 

1970; Sorensen, 2000).  

The presence of passivity may be caused by “disaster syndrome”, which is 

characterized by Perry and Lindell (2003a) as “a state of shock associated with 

docility, disoriented thinking and sometimes a general insensitivity to cues in the 

immediate environment” (p.223). Put it in a simple way, potential disaster victims 
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upon receiving a warning are so stunned or shocked that they cannot adaptively 

respond.  Nor do they have action initiatives. They wait childlike for the authority 

to tell them what to do (Dynes & Quarantelli, 1973). The presence of such 

passivity and docility further consolidates the authority of public emergency 

managers as commanders who give orders for the public to carry out.  Moreover, 

emergency mangers consider an individual’s responsive decision or action as a 

personal matter, which is made or taken independently (Sorensen, 1991, 1992).  

These four interrelated disaster myths compose the main assumption many 

EM researchers and practitioners hold for public warning response (Dynes, 1994). 

They actually reflect the inaccurate assumptions the command and control 

approach made on individual behavior in emergency situations. On the other hand, 

they have been empirically demonstrated not just erroneous, but restrain the 

effectiveness of emergency warning (Perry, Lindell, & Greene, 1981; Perry & 

Lindell, 2003b; Tierney et al., 2001). For example, Perry and Lindell (2003a) 

argued that the myth of panic often justified emergency managers’ behavior of 

withholding information from the public, which “is particularly troubling because 

it has been shown repeatedly that people are more reluctant to comply with 

suggested emergency measures when they are provided with vague and 

incomplete information” (p.50). Similar situation can also be triggered by public 

managers’ concern with people’s incapability for information processing. 

Moreover, since they believe the authority is the only warning source, emergency 

managers may ignore the risk information from other sources. Such risk 

information may be inconsistent with or contrary to the official risk information, 
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and the public may use minor points of inconsistency to resist suggested 

protective actions (Drabek, 1999; Reynolds, 2005). What makes the influence of 

such common myths more complex and worse on EM practices is that, they laid 

the foundations for and qualify the traditional model used to frame the public risk 

communication process and design communication strategies. 

Traditional model of public risk communication. Traditionally, public risk 

communication during emergencies is considered as a linear, top-down and 

expert-to-lay process (Gladwin et al., 2007; Gutteling, 2001). Public sectors 

identify the presence and make predictions of an extreme event and inform public 

emergency officials; public emergency officials then make decisions and 

disseminate risk messages to the public (Sorensen & Sorensen, 2006).  

The process of public risk communication, when viewed from this traditional 

approach, is nothing more than a linear transmission of risk messages from public 

officials to the public (Quarantelli, 1990). The risk information flows out from its 

exclusive official source down to the public, which is visualized as an aggregate 

of individuals (Tierney, 1993). Upon the receipt of the information, these 

individuals become passive and docile, and incapable of processing information 

and making decisions. They respond directly to the risk information as suggested 

by public officials in it. In essence, the risk information acts as a stimulus which 

impinges directly on all individuals, and then evokes a response as the reaction to 

it (Quarantelli, 1983).  

Such message transmission model to understand public risk communication 

and human response is primarily based on the classic theory of persuasive 
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communication (Lindell & Perry, 2006; Sorensen & Sorensen, 2007). According 

to this theory, all communication messages go uni-directionally from generating 

sources, to transmission channel, and finally to targeted receivers. The purpose of 

communication is to elicit some kind of changes from the audience group (Lindell 

et al., 2005). Sorensen and Sorensen (2006) described this one-way 

communication process as an engineering theory of communications that most 

closely resembles the defunct hypodermic effect in mass communication.  

For public risk communication during emergencies, the source, medium, audience 

and effect can be clearly defined. The source is an authority, the message includes 

information about a hazard and protective actions, and the public are expected to 

receive the message and take actions described in the message. As shown in 

Figure 1, the public risk communication process is actually framed as a simple 

linear and strictly unidirectional model of “warning dissemination, public receipt, 

and warning response” (O’Brien, 2003). 

 
 
 
 
 

 

 

Based on the model, emergency managers in practice direct their attention 

towards improving the trustworthiness and expertise of official sources on the one 

hand, and developing rational communication strategies on the other (Gutteling, 

2001; Lindell & Perry, 1992; Lindell et al., 2005). Meteorological efforts, 

Official 
Source 

Channel Public  Response 

Figure 1. Traditional model of public risk communication in EM 
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especially advancing scientific knowledge and modernizing communication 

equipments, are emphasized, in order to improve the accuracy of hazard forecast 

(Gladwin et al., 2007; Sorensen, 1993, 2000). Warning messages are formulated 

from a technical view, typically containing quantitative information and 

communicated to the public in an analytical and logical style (Gutteling, 2001). 

Emergency managers believe people after receiving warnings will replace their 

irrational and subjective judgment with the rational and objective opinion in the 

message, and take actions as suggested right away. 

These two efforts are actually interrelated with each other. They both 

illustrate the essence of the traditional model: we experts know and tell you 

people what is important and you do whatever is told (Sorensen & Sorensen, 

2006). When people fail to follow recommendations on protective actions, public 

managers ascribe the ineffectiveness to the warning message; the message is 

considered not scientific and objective enough to correct people’s misperception 

and motivate them to adopt recommendations (Lindell et al., 2005; Tierney et al., 

2001). Such reasoning inevitably leads to further efforts on technical progress and 

developing more rationalistic warning strategies and messages.  

The message transmission model of public warning has dominated the 

practice of public risk communication in EM for more than 50 years (Sorensen & 

Sorensen, 2006, 2007). It is developed and widely used under the background of a 

command and control approach to EM. EM scholars and practitioners are also 

tempted to use this model because of its clarity and simplicity for both 

explanation and management practices. However, they are at the same time 
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deluded by its oversimplification of the complex reality (Qurantelli, 1984). The 

realization that the model is a deficient representation of reality motives 

researchers to complement and extend the understanding of public warning 

process, particularly the ways in which individuals respond to warning messages 

(Lindell & Perry, 1987, 2004; Lindell et al., 2005). By now, it has formulated one 

of the most important research traditions in disaster and emergency management 

research (Trainor & McNeil, 2008). 

Findings from EM studies on public risk communication. EM researchers 

have explored the process of public risk communication in emergency context for 

more than six decades (Trainor & McNeil, 2008). They believe the most 

important aspect of the process lies in its social or human component, particularly, 

how the warning target population responds to risk information. On the one hand, 

empirical studies are conducted to find evidence to evaluate those underlying 

common myths held by emergency managers (Dynes, 1994; McLuckie, 1974; 

Sorensen, 1991). On the other hand, a significant level of knowledge has been 

developed about how individuals respond to emergency risk information in the 

presence of impending threats (Aguirre, 2003; Gray, 1981). 

Empirical finding of individual response to public risk information. 

Official warning cannot reach everyone. Previous research has consistently 

revealed that, not everyone in the public can receive risk information when it is 

disseminated (Donner, 2007; Schware, 1982; Sorensen & Sorensen, 2007). 

Various factors, both physical and social, may prevent individuals from hearing a 

warning (Parker & Neal, 1990; Parker et al., 2009; Perry, 1985). Furthermore, the 
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authority is not the only source from which people can get warned (Mileti et al., 

2004; Perry & Greene, 1983; Perry & Hirose, 1991). Individuals usually find out 

the possibility of impending hazard in a variety of ways (Parker et al., 2009; 

Sorensen, 1992). For Lindell et al (2005), public warning “should be represented 

by a network in which multiple sources are linked to intermediate sources who 

receive information and relay it to the ultimate receivers” (p.88). As shown in 

Figure 2, recited from Lindell et al. (2008, p.89), ultimate receivers can receive 

information directly from the original source, or indirectly from many 

intermediates which are linked to the original source. They can also get messages 

from each other.  

 

 

 

 

 

 

Figure 2. Communication network model  
(Recited from Lindell et al., 2008, p.89) 

The public is “information-hungry” rather than overloaded. After receiving 

warning messages, the public is rarely overloaded by too much information; 

neither is their capacity to process information deteriorated by risk messages 

(Sorensen, 1993, 2000). Instead, the warning information creates an information 

void, which makes the public information “hungry” or “starving” (Mileti, 1995, 
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1999; Mileti & Frizpatrick, 1992). People in this case usually need more and 

detailed information, and want to receive it frequently. Furthermore, people at risk 

need information from multiple sources, rather than one single source or 

spokesman (Mileti & Peek, 2000; Sorensen, 2000). If the official source cannot 

meet their information demand, people will turn to other sources from which in 

most cases they will get inaccurate or inconsistent messages (Mileti, 1999).  

For the cry-wolf syndrome, EM researchers found that repetitive false risk 

information did not always have a negative effect on people’s response (Mileti & 

Sorensen, 1990; Sorensen, 2000; Sorensen & Sorensen, 2006).  People usually 

prefer to risk hearing false messages rather than not being informed after 

emergencies occur (Parker & Neal, 1990). Furthermore, the syndrome mostly 

occurs when emergency managers make no attempt to explain why false 

information is sent (Sorensen, 2000). If the reasons are told to and understood by 

the public, the integrity of subsequent risk messages and the effectiveness of 

public response could not be influenced (Sorensen & Sorensen, 2006, 2007).  

Individuals are bounded rational. The record of panic as a reaction to public 

emergency warning could be dated back to the early 1950s (Perry & Lindell, 

2003a). However, disaster research indicates the phenomenon can be evoked only 

when certain circumstances, probably simultaneously, occur (Sorensen, 2000; 

Sorensen & Sorensen, 2006). These circumstances include 1) there is an 

immediate and severe danger, as a clear source of death, 2) there are inadequate 

exit routes that are accessible to everyone before the danger occurs, and 3) there is 

insufficient communication about the situation (Quarantelli, 1983, 1984; Sorensen, 
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1993). An example of panic situation among a large group of people occurs in the 

1972 Sao Paulo high-rise fire in Brazil, since these people believed it impossible 

for them to get rescued (Beitel & Iwankiw, 2002). Perry and Lindell (2003a) also 

argue that whether these conditions are met is based on the perception or belief of 

people who are at risk, instead of what emergency managers know at the time.  

Empirically, individual or collective disorganization after receiving warning 

information is rarely observed in the context of any type of disaster (Blanchard-

Boehm, 1998; Donner et al., 2007; Drabek, 1985). Potential disaster victims do 

not simply break into behaviors characterized by irrational decisions, such as 

panic flight, or illogical actions (Dynes & Quarantelli, 1973). Research into 

different aspects of public warning response illustrates that most potential disaster 

victims behave in a bounded rational way (Helsloot & Ruitenbery, 2004; 

Quarantelli, 1983). They typically “rise to the occasion” (Trainor & McNeil, 

2008). Based on their limited understanding and available resources, they act in 

the way which they believe is best for themselves and their significant others 

(Perry & Lindell, 2003a). EM researchers therefore argue that emergency 

managers in practice should consider the issue of individual or collective panic as 

an insignificant practical problem, given its rare occurrence in any emergency 

warning context (Dynes, 1994; Quarantelli & Dynes, 1972, 1977). 

People respond to risk information proactively and collectively. Contrary to 

what emergency managers believe, emergency risk information is not passively 

received and followed by people’s direct, immediate and individual response 

(Ikeda, 1982; Perry, 1979a, 1979b). After receiving the message, people tend to 
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interpret and evaluate it in the social context at that time (Lindell & Perry, 1983; 

Nigg, 1987; Perry, Lindell, & Greene, 1980). They develop their own 

understanding of the message they received (McLuckie, 1970, 1973). The same 

information may be perceived and interpreted by different people in different 

ways. As a result, there is no such thing as a risk message for all people. For 

emergency management, as Quarantelli (1983) argued, “it is necessary to lay 

aside the idea that any message is in itself a warning message” (p.178). What is 

crucial is the meaning people attach to the message, which may or may not 

correspond to what emergency managers intend at the first place (Mileti, 1995; 

Quarantelli, 1983). It is therefore important to achieve a shared meaning of the 

warning message between the public and emergency managers (Pfister, 2002).  

The finding of personal understanding or perception of warning messages 

also questions the rationality and validity of current public risk communication 

efforts. According to Gutteling (2001), the application of a rationalistic 

communication strategy may actually increase the public disbelief of risk 

messages. Peters, Covello, and McCallum (1997) also argue that the top-down 

communication may decrease public trust in risk communication sources, such as 

government agencies. Since emergency managers will attempt to develop more 

rationalist and scientific messages when people disbelieve and do not follow their 

recommendations, a vicious circle can actually be formulated. In this circle, the 

public keeps questioning the risk information because its style and content, which 

makes emergency managers keep changing the communication style and content 

to what is more difficult for the public to believe and follow. 
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Furthermore, most people upon receiving warning attempt to verify what 

they heard, as well as what they understand, through the so-called “confirmation 

process” (Donner, 2006; Drabek & Stephenson, 1971; Sorensen, 1993). During 

this process, people employ their personal networks to search for additional 

information and discuss the warning with known others (Parker & Handmer, 1998; 

Perry & Lindell, 2003b). The reason why people engage in such confirmative 

behaviors is to see how others are interpreting and reacting to the warning (Dynes 

& Quarantelli, 1973; Mileti, 1995; Perry & Greene, 1982). Additional information 

collected from the process is then used to assess the validity of their initial 

understanding and perception. The next outcome following the confirmation 

process is people’s definition of their current situation, specifying whether they 

believe they are personally endangered (McLuckie, 1970; Quarantelli, 1990). 

Given research findings discussed above, EM researchers argue that, people 

do not directly respond to risk information as soon as they receive it (Mileti & 

Sorensen, 1990; Sorensen & Mileti, 1992; Sorensen & Sorensen, 2006). Time is 

needed for people to understand and verify it, especially when they are facing 

unfamiliar hazards (Worth & McLuckie, 1977). Neither will they respond as 

individual persons. People normally respond in a social context. They interact 

with each other during the confirmation process, which produces a situational 

definition based upon which individuals will respond (Quarantelli, 1983). Put it 

another way, the social interaction during confirmation mediates how people 

interpret the warning, define their situation and respond. Therefore, both warning 

interpretation and response are no longer individual matters (Donner 2007; 
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Trainor & McNeil, 2008). “It is a complex and, if time and a group of people are 

involved, usually a highly social process” (Wlliams, 1964, p.96).  

Furthermore, even if people share the meaning of warnings with emergency 

managers and have obtained the confirmation of danger, they will not blindly 

follow the suggestions emergency managers propose in the warning (Pfister, 2002; 

Sorensen, 1993, 2000).  People at risk normally react in a proactive, rather than 

passive way (Dynes & Quarantelli, 1973). They do not just wait and do what the 

authority asks them to do; they make decisions and undertake their own protective 

actions they perceive appropriate. Besides officially advised response, a variety of 

alternative responsive behavior is possible. Also, the way in which individuals 

respond is affected by numerous factors, and official warning message is just one 

element among these influential factors (McLuckie, 1970; Quarantelli, 1983).  

Another important finding from previous studies is that, disaster syndrome 

occurs infrequently in emergency situations (Dynes, 1994; Dynes & Quarantelli, 

1973; Quarantelli & Dynes, 1977). Even when it occurs, it only lasts for a 

maximum of a few hours and hardly influences individuals’ capacity for decision 

making and active response (Perry & Lindell, 2003a, 2003b). This finding further 

disproves the assumption that the public is passive and docile in emergency 

warning situations.  EM researchers actually argue the disaster syndrome is “of 

negligible significance for emergency operations” (Perry & Lindell, 2003a, p.51). 

Summary. Recognizing the above empirical findings is crucial for public risk 

communication. The process, according to previous research findings, is no 

longer what emergency managers and policy makers normally believe and 
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practice; it is a much more complex course than getting the scientific information 

out and people will do what they are told. Emergency warning must be based on 

accurate knowledge of likely human warning response (Perry & Nigg, 1985). 

Emergency managers, instead of forcing people to change their behavior, should 

adjust their strategies according to the probable behavior of people. Besides 

discovering how people respond to warning messages empirically, EM 

researchers also argue that, better understanding of human warning response also 

depends on better understanding of how and why individuals come to respond in 

their way (Donner, 2006; Quarantelli & Dynes, 1972; Trainor & McNeil, 2008). 

Emphasis is therefore placed on the development of models of individual 

response to emergency risk information that can be applied to a variety of 

emergency situations (Donner, 2007; Lindell & Perry, 1992; Mileti & Sorensen, 

1988). Among these models there is a high degree of agreement: 1) individuals 

respond to emergency warning through a social process, 2) such a process 

consists of a sequence of stages, and 3) a wide range of factors could influence 

individual behavior at each stage. Such agreement provides a general picture of 

individual emergency warning response, and will be discussed in detail as below. 

Individual warning response as a complex social process. When researchers 

first began to study individual response to emergency risk information, they 

quickly found they were exploring a highly complex process (e.g., Drabek & 

Boggs, 1968; Quarantelli, 1954; Williams, 1957). Quarantelli is one of the earliest 

researchers studying the human aspect of disasters. In his 1983 article, “people’s 

reactions to emergency warnings”, he summarized previous research findings on 
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individual reactions to information about possible emergency. According to him, 

there is a difference between individual reaction and response to emergency risk 

information. Reaction, as he defined, “is the broader set of activities involved in 

exposure to and use of disseminated warning messages, as well as other 

observations regarding a dangerous situation” (Quarantelli, 1983, p.177). 

Response is “the adjustive behavioral outcome of the reaction pattern” 

(Quarantelli, 1983, p.177). Individuals after receiving risk messages would first 

go through a reaction process, and responsive behavior is the result of this process.  

The reaction process involves sequential cognitive and behavior stages. Five 

constituent stages have been identified, accepted and utilized by most EM studies. 

They are information receipt, understanding, believing or initial perception, social 

confirmation, and risk personalization or situational definition.  

Information receipt. Individual response process to emergency warning is 

initiated by receiving or hearing risk information. People can receive it from 

different types of channels, among which the most common is mass media 

(Donner, 2006). The failure to be notified generally prevents people from or at 

least postpones their responses (Donner, 2006; Mileti & Sorensen, 1990). In 

public warning literature, fewer studies have focused on the hearing phase, 

compared with other stages. Researchers are usually interested in when 

individuals can hear the warning after it is disseminated (Drabek, 1999; Sorensen, 

1991). Relatively scant empirical findings exist to document why some 

individuals receive the message while others do not, and how the coverage of 

warning can be maximized (Donner, 2007; Mileti & Sorensen, 1990). 
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Understanding. Upon receiving the warning, individuals develop their own 

interpretation of the message. Personal understanding varies among the public and 

may not conform to what emergency managers originally intend to convey. 

Therefore, there is no message that is inherently a warning message for all people. 

Donner et al (2007) argue that there are two categories of individual warning 

misunderstanding; people may misunderstand the level of risk or the geography of 

the risk area. EM researchers also found that the social context in which one 

receives the warning plays an important role for people to grasp the meaning of 

the message (Mileti & Sorensen, 1990). During the stage, if people understand the 

warning and interpret it as implying the existence of some risk, they will engage 

in the next stage; otherwise, they will ignore the message and go back to their 

previous activities before hearing it.  

Belief. The stage following understanding is belief, during which individuals 

develop their initial perception regarding whether the risk communicated is real. 

In previous studies, it has been long recorded that the understanding of risk 

existence triggers immediately skepticism or disbelief for most people (Drabek, 

1999; Drabek & Boggs, 1968; Worth & McLuckie, 1977). Instant belief may 

occur, but only among a few individuals “who are psychologically set to believe 

the worst in any situation or those who have recently experienced a ‘near miss’ 

disaster” (McLuckie, 1970, p.31). EM researchers name this phenomenon 

“normal bias”, and consider it a common reaction to risk information (Okabe & 

Makami, 1981; Parker et al., 2009; Rogers, 1998). The occurrence of this 

phenomenon is explained in the way that there is an “everydayness” for each 
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individual (Lefervbe, 1987). Since it is defined by individual routine activities, the 

disruption of such “everydayness” signals that something goes wrong (Goffman, 

1956). However, on the part of individuals, they tend to assimilate all these 

signals to normal, and deny there may be something wrong. In the context of 

emergency warning, most people prefer to believe they are not endangered. 

Unless further proven otherwise, conditions are evaluated as normal, even if they 

receive and understand what the information is trying to convey (McLuckie, 

1973, 1974).  The burden of proof lies within risk communication efforts 

(Tierney, 1993). Through risk communication emergency managers need to help 

the public overcome normal bias and correct their tendency to act in normal.   

  Three types of actions can be elicited at this stage as the result of the degree 

of belief, or skepticism, of the warning (Drabek, 1969, 1986; Worth & Mcluckie, 

1977). At one extreme individuals completely deny the existence of potential 

danger. The warning message is therefore ignored and people continue with their 

routine activities. At the other extreme individuals completely believe the warning, 

and take protection actions immediately. Most people develop skeptical attitude 

as between these two extremes and react investigatively. They attempt to seek 

more information to verify their own perception. For emergency management, 

both taking protective action and seeking confirmation among the public manifest 

the warning has some effect on individual behavior. But whether the effect is 

desired by emergency managers, or whether such attempts can actually decrease 

or eliminate personal risk, is another matter (McLuckie, 1970). 
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Social confirmation. It is typically referred to as the social confirmation stage 

that people seek additional information to verify their prior understanding and 

perception on risk messages. Three categories of sources for confirmative 

information have been found by previous studies: authority, personal contacts and 

environment (Donner et al., 2007; Parker et al., 2009;). The personal contact 

includes friends, neighbors and relatives, and it is constantly considered as the 

most important confirmation mechanism (Drabek & Stephenson, 1971; Mileti, 

1995; Parker et al., 2009). People tend to use personal networks to get known 

others’ response to risk information (Parker & Handmer, 1998). The 

communication could be face-to-face, or usually via telephone (Drabek & 

Stephenson, 1971). People can also substantiate the warning by making 

observations on their surrounding environment. They can monitor how the 

physical environment changes, such as changes in the river level before a flood 

(McLuckie, 1970). Government agencies or even quasi-official organizations are 

seldom contacted by individuals, unless other sources are exhausted (Perry & 

Lindell, 2003b). On the other hand, people give greater credence to the 

information they get from personal sources and known others than impersonal 

mechanism and strangers. Therefore, the responsive action of significant others 

are crucial for social confirmation.  

The confirmation process actually manifests the nature of individual warning 

response as a complex social process. Individuals during this stage interact with 

each other through information exchange. The warning message is not simply 

handled by single individual person; it is processed by a group of others, whom 
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the individual turn to for confirmation. Because of the interactive process, people 

become interdependent on each other in terms of how to respond to risk 

information. The social confirmation stage characterizes the process of individual 

warning response as a matter of collective behavior.  

Risk personalization. Individuals who have confirmed the presence of some 

risk do not necessarily believe they are personally endangered (Donner et al., 

2007).  In fact, EM researchers found a persistent and all-too-common 

phenomenon among the population at risk. Like the occurrence of normal bias, 

people tend to depersonalize the risk. In other words, even if individuals can hear 

a warning, understanding it and develop a high level of initial risk perception, 

they still hardly believe they will be personally affected (Drabek & Boggs, 1968; 

Tinerney, 1993).  Such an “it cannot happen to me” syndrome usually makes 

people respond too late, or ignore the warning and not respond at all (Donner, 

2006; Mileti & Sorensen, 1990).  

The stage of risk personalization is also named situational definition by 

Quarantelli (1983, 1990) and other disaster researchers (e.g., McLuckie, 1970; 

Parker & Handmer, 1998). According to Quarantelli (1983), individuals’ 

situational definition, namely whether they believe themselves the targets of some 

risk, is tightly connected with and influenced by previous two stages: belief or 

initial risk perception and social confirmation. During this stage, individuals relate 

their initial beliefs to the confirmative information they collected, to define their 

own situation. While later studies also identified other factors affecting individual 
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risk personalization, answers to whether the threat exists and what others are 

doing are still considered as exerting the major influence (Donner, 2007).   

Risk personalization or situational definition is also argued by EM 

researchers as the central component of individual warning response process 

(Quarantelli, 1983, 1990). It is actually the very fundamental assumption of 

almost all efforts toward emergency warning response that, “the actor acts toward 

his world on the basis of how he sees it and not on the basis of how that world 

appears to the outside observer” (Drabek & Boggs, 1968, p.445). Therefore, in 

order to understand individual behavior in the context of emergency warning, it 

would be essential to understand how they define their own situation based on the 

information received and collected from previous stages (Drabek & Boggs, 1968). 

Response. After the reactive process, individuals enter the response stage, 

during which they take protective action that they consider most appropriate to 

reduce or eliminate their personal risk. Researchers found individuals typically 

attempt to maintain their routine ways of behaving (Quarantelli, 1983, 1990). 

Therefore, even if a warning is believed, socially confirmed and personalized, 

they are still reluctant to take actions. Furthermore, just as there are differentiated 

interpretations and levels of risk perception, people respond in a variety of ways. 

Generally they prefer to consider and take actions that are least disruptive in the 

situation (Qurantelli, 1983, 1990). The effectiveness of emergency warning is 

ultimately measured by whether individuals adopt protective actions as officially 

suggested (Worth & McLuckie, 1977). In practice there often is a difference 

between whether people respond and how they respond.  Certain protective 
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actions other than official advices are especially more likely under some 

circumstance. That people take these actions does not necessarily provide enough 

protection and indicate the success of public emergency warning.  

Influential factors on individual behavior during response process. 

Individual behavior during the process of warning response is not free (Drabek, 

1999). Although they make their own decisions and autonomously take actions, 

the range of their choices is constrained. Previous studies of public risk 

communication in EM have identified a wide variety of factors that can influence 

individual behavior at each stage of their response process (McLuckie, 1973; 

Mileti & Sorensen, 1990; Trainor & McNeil, 2008). These factors can be 

generally grouped into five categories, which are sender, receiver, contextual, 

event, and social-culture factors.   

Receiver factors. Receiver factors are those influential factors as related to 

the characteristics of people who receive risk information. They can be further 

divided into five groups: demographics, physical attributes, psychological 

attributes, social attributes and resources (Mileti & O’Brien, 1992; Perry, 1987; 

Turner et al., 1979). Table 1 summarizes the literature of public risk 

communication in EM on what receiver factors are included in each group, and 

how each of them influences individuals’ behavior during each stage of their 

response process to emergency risk communication.  
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Table 1. Influence of Receiver Factors on Individual Response Process to 
Emergency Risk Information 

 Receive Understand Believe Confirm Personalize Respond 

Demographics       
Age D + D D D D 

Gender + D D D + + 
Race D D D D D  

Ethnicity D D D D  D 
Language  D D  D D 
Religion  D  D   

Education  +    D 
Socioeconomic status D + D D D D 

Presence of dependents +  +   D 
Family size      - 

House ownership      - 
Price of home      - 

Length of residence  +     
       

Physical attributes       
Impairments -     - 

       
Psychological 

attributes 
      

Cognition       
Locus of control +  +  + D 

Stress      D 
Fatalism -     D 

Self-confidence      D 
Normalcy   -   - 

Selective perception D      
Risk awareness D  D  D D 

       
Knowledge       

Hazard +   -  + 
Protective action +   -  + 
Emergency plan +   -  + 

       
Experience       

 Type + D D D D D 
Recency + D D D D D 

Habituation D      
Common-sense belief D   D  D 

       
Social attributes       

Association membership D D    D 
Social network D D D D D D 

       
Resources       

Physical + + D  D D 
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Social + + D  D D 
Economic + + D  D D 

Note. In this table, “+” represents a positive association between a specific factor 
and individuals’ tendency to take corresponding action at a given stage. “-” 
represents a negative association. “D” indicates an inconclusive finding with 
regard to how the factor influences individual behavior within a stage. For 
example, while females are more likely to receive, personalize and respond to risk 
information, no consistent conclusion has been achieved when it comes to such 
gender difference in risk information understanding, belief and confirmation. 

 
First, individual demographics include age, gender, race, ethnicity, language, 

religion, education, socioeconomic status, presence of dependent, family size, 

house ownership, price of home and length of residence. For most of these factors, 

inconclusive, or even contradicting, findings exist in terms of their influence on 

how individuals behave during certain process stage. For example, some 

researchers argue people occupying marginal social position, such as the elderly, 

members of lower socioeconomic classes and minority ethnic groups, are less 

likely to take preparative or protective actions (e.g., Drabek, 1969; Mileti & 

Darlington, 1997; Parker et al., 2009). Meanwhile, empirical evidence exists 

demonstrating such factors can either encourage or have no effect on individual 

responsive behavior (e.g., O’Brien, 2003; Perry & Lindell, 1991). 

The discussion on the influence of physical attributes is scant, but more 

consistent. Physical disabilities and impairment, such as being deaf or blind, can 

significantly constrain individuals’ ability to hear and respond to a warning 

(Mileti & Sorensen, 1990, 1998). 

The third group of receiver factors consists of individual psychological 

characteristics. It includes: 1) cognitions such as the locus of control (Sorense & 

Sorensen, 2006), psychological stress level (Mileti & Sorensen, 1990), fatalism 

(what will happen will happen regardless of what is done) (Sorensen, 1991), self-
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confidence (sense of personal efficiency) (Mileti & Sorensen, 1990), normalcy 

(Donner, 2006), selective perception (people accept only what they want to) 

(Mileti, 1999), and pre-event risk awareness (Donner, 2006; McLuckie, 1970), 2) 

knowledge about the potential threat (Sorensen, 1991), about protective actions 

(Mileti & Darlington, 1997), and about making emergency plans (Lindell & Perry, 

2004), and 3) the type and recency of experience with the risk (Foster, 1980; 

Perry & Greene, 1983; Perry & Lindell, 1986) and pre-event habituation (Drabek, 

1969) and common-sense belief (Gray, 1981; Quarantelli, 1990).  

Among these psychological factors, EM researchers show more interests in 

pre-event risk awareness and emergency experience. Risk awareness measures 

“the degree to which a hazard resides in the conscious awareness of the public” 

(O’Brien, 2003, p.358). The salience of a risk before it occurs generally increases 

the probability for warning receipt (O’Brien, 2003). However, risk awareness 

does not necessarily lead individuals to believe and personalize the risk, and 

respond to risk information. A case in point is Hurricane Katrina. In the field 

work in Louisiana and Mississippi after the disaster, Donner (2006) found that 

there was strong risk awareness among interviewees before the hurricane struck 

the region, but few took protective actions until visible environmental cues arose. 

Previous emergency experience can also help individuals hear a warning, 

especially when they are facing the same type of risk that occurred recently 

(Sorensen, 1991; Trainor & McNeil, 2008). On the other hand, whether and when 

experiencing a disaster does not shape people’s reaction to future events in a 

predictable way (Sorensen & Sorensen, 2006). Inconsistent empirical evidence 
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exists regarding the influence of disaster experience on individual understanding, 

belief, confirmation, personalization, and response to a warning (Donner et al., 

2007; Farley et al., 1993; Perry & Greene, 1983). For example, both Parker et al 

(2009) and O’Brien (2003) found that people with prior disaster experience are 

more likely to respond to a warning; also, the more recent the experience, the 

more likely people will respond actively. Trainor and McNeil (2008), however, 

discovered the “survivor confidence” phenomenon; namely, individuals, who 

have lived through a disaster or received warnings which did not develop into a 

personally harmful situation, tend to react to the current situation in a less 

cautious way. Therefore, people without previous hazard experience were more 

likely to take protective actions and take them more quickly. For Lindell and 

Perry (2004), the influence of prior experience was even not found. They argue 

that the hazard experience has no affection on the warning interpretation, 

information seeking, decision-making or response (Lindell & Perry, 2004).  

A range of social attributes can make a difference in the warning response 

process, such as association membership and the characteristics of social network. 

Depending on the type of association, individuals inside can be either encouraged 

to or prevented from hearing, understanding, and responding to warning (Donner, 

2007; Perry et al., 1981; Sorensen, 1991). Characteristics of social network can 

include, for example, participation in certain type of social network (e.g., 

involvement in the community or kinship), and the strength of social ties (e.g., the 

degree of family cohesion, interaction frequency with friends). Social networks, 

particularly informal ones, serve as very important means of receiving and 
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confirming a warning (Gray, 1981; Mileti, 1995). Generally, people who are part 

of and maintain close relationships within large and well-established social 

networks, both formally and informally, are more likely to receive and confirm a 

warning (Landry & Rogers, 1982; Mileti & Sorensen, 1990). As a result, they are 

more likely to personalize the risk and take protection actions. But the influence 

of social network varies by the type of the network, like the influence of 

association membership. 

Finally, there are the influences of resources. Having more physical, social 

and economic resources can enhance the probability for individuals to receive and 

understand a warning, but has a complex influence on behaviors at other 

responsive stages (Waugh, 2009).  For example, while these resources enable 

people to undertake protection action, such as, car and enough money for 

evacuation, they also create some concerns holding people back from taking any 

action (Balluz et al., 2000; Drabek & Boggs, 1968; Perry, 1979b). Fear of looting 

is one of such concerns consistently found by EM researchers which prevent 

individuals from taking necessary evacuative behavior (Donner, 2006).  

Sender factors. The sender factors characterize how the risk information is 

designed and sent to its target population. Previous research on public risk 

communication in EM categorizes them into five groups: attributes of 1) the 

information source, 2) the transmission channel, 3) the communication frequency, 

4) the message content and 5) the message style. Table 2 shows how factors in 

each category influence individual behavior at each responsive stage to 

emergency risk information.  
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Table 2. Influence of Sender Factors on Individual Response Process to 
Emergency Risk Information 

Receive Understand Believe Confirm Personalize Respond 

Information source       
Number  + +   + 

Credibility   +  + + 
Familiarity   +  + + 

       
Transmission 

channel 
      

Number + D D   D 
Type D D D   D 

Credibility D D D   D 
       

Communication 
frequency 

      

Number + D D D  D 
Pattern +     + 

       
Message content       

Hazard  +    + 
Location   +  +  
Guidance  + +   + 

Time      + 
Source      + 
Format  D D    

       
Message style       

Consistency  + + D + + 
Continuity   +    
Certainty   +   + 
Urgency   + D   

Sufficiency  +   +  
Specificity  + + D + + 

Clarity  + + D   
Accuracy  + +  + + 

Note. In this table, “+” represents a positive association between a specific factor 
and individuals’ tendency to take corresponding action at a given stage. “-” 
represents a negative association. “D” indicates an inconclusive finding with 
regard to how the factor influences individual behavior within a stage. 
 

An information source refers to the organization or person who disseminates 

risk messages. Public agencies, scientific community and individual experts can 

all become information resources. According to previous studies, emergency 

warnings are more likely to be understood, believed and responded to if they 
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come from a mixed set of sources (Donner, 2007; Mileti, 1999). Regarding source 

credibility, people are more likely to believe, personalize and respond to a 

warning from the source they perceived more credible (Perry, 1987). Similar 

influences can also be elicited by a warning from the sources individuals are more 

familiar with (Mileti & Fitzpatrick, 1992). 

A transmission channel is the medium through which a risk message is 

conveyed from its source to its target recipients. Previous studies usually grouped 

information channels into the authority, mass media and peer, and empirically 

compare which type of channel is more utilized and perceived more credible (e.g., 

Donner, 2006; Lindell & Perry, 1992). They find that mass media and peers are 

important information channels; they are more used than the authority. However, 

the authority is generally considered with higher expertise. These studies also find 

that influential channel-related characteristics on individual warning response 

include the number of different types of channel used to send risk information, the 

type of channel in use, and the credibility level of channel perceived by a 

recipient (Donner, 2007; Mileti, 1995). These factors can influence whether 

individuals hear and how they understand, believe and respond to risk information.  

The third group of sender factor is communication frequency. Both the 

pattern and number of times risk information is disseminated can influence 

individual response process. For the former, it is defined as “the degree to which 

message repetitions occur in a predictable pattern” (Mileti & Sorensen, 1990, p.5-

5). The more predictable the repetition pattern is, the more likely individuals are 

to hear and respond to risk messages. For the latter, it is an important influential 
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factor of individual warning hearing, understanding, believing, confirming and 

responding (Trainor & McNeil, 2008). Inconsistent influences of this factor have 

been found by previous studies on these individual reactions. While some EM 

researchers argue for its encouraging or discouraging impact (Nigg, 1982; 

O’Brien, 2003), Tierney (1993) and Mileti (1995) found a curvilinear relationship; 

there is a point of diminishing returns after which repetition of the same message 

may be counterproductive. But the optimal number of repetitions is not known.  

At last, message content and style are the characteristics of warning 

information itself. Previous EM studies found individual response process can be 

influenced by whether the information encompasses answers to the following 

questions: 1) what the risk and its characteristics are, 2) what geographical area or 

location is threatened, 3) what people can do to protect themselves, 4) when the 

risk occurs and how much time is left before the impact, 5) who the information is 

issued from, and 6) whether the information includes graphical information 

besides verbal messages. By answering the first five questions, a warning can 

increase the probability for individuals to understand, believe, personalize and 

respond to a warning (Mileti, 1995; Mileti & Darlington, 1997; Parker et al., 

2009). For the last question, the inclusion of graphical information, such as 

picture, graphics and video, has mixed influence on warning understanding and 

belief (Donner, 2007; Quarantelli, 1990).  

The same content in a message can be conveyed in different styles. The 

influence of risk information itself is therefore not only generated by what 

questions are answered in it; how these answers are expressed and conveyed to 
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recipient also matters. Previous studies have identified eight components of the 

style of a risk message. They are consistency, continuity, certainty, urgency, 

sufficiency, specificity, clarity and accuracy. Generally, when the degree of each 

component is enhanced for the answer to each of the six question mentioned 

before, for example, the message becomes more specific about risk, location, time 

and guidance, people are more likely to understand, believe, personalize and 

respond to the warning (McLuckie, 1970; Perry et al., 1981; Reynolds, 2005). An 

exception is that inconsistent evidence is found regarding the influence of 

message style factors on individual confirmative behavior. For example, while 

Sorensen (1992) argues the probability of confirmation decreases with increased 

information specificity, Donner (2007) finds receivers are more likely to confirm 

the information when it is more specific.  

Contextual factors. Contextual factors include the characteristics of the 

context in which individuals receive and react to emergency risk messages. These 

characteristics are further divided into four groups: 1) environmental attributes, 

which include environmental cues, geographical proximity to threat and lead-time 

to impact; 2) social settings, which include family union, social cues, social time, 

social role and social activity; 3) individual psychological attributes in the context, 

including emotional status, fear of looting and concern, and 4) decisions and 

actions at previous response stages. For the influence of each contextual factor on 

individual behavior at each response stage, see Table 3.  
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Table 3. Influence of Contextual Factors on Individual Response Process to 
Emergency Risk Information 

 Receive Understand Believe Confirm Personalize Respond 

Environmental 
attributes       

Environmental 
cues 

D D D D D D 

Proximity to threat +  + + + + 
Lead-time to 

impact 
+  - +  - 

       
Social settings       

Family union   + +  + 
Social cues   D D  D 
Social time D   D   
Social role D D  D  D 

Social activity D  D D D D 
       

Psychological 
attributes 

      

Emotional status   D    
Fear of looting      - 

Concern +  + D  D 
       

Previous 
decisions & actions 

      

Receipt  +     
Understanding   +  + + 

Belief     + + 
Confirmation     + + 

Personalization      + 
Note. In this table, “+” represents a positive association between a specific factor 
and individuals’ tendency to take corresponding action at a given stage. “-” 
represents a negative association. “D” indicates an inconclusive finding with 
regard to how the factor influences individual behavior within a stage. 

Environmental attributes refer to the physical characteristics of a warning 

setting (Mileti, 1995).  In such a setting, physical cues can exist to support or 

contradict what people are being warned of. For example, how individuals react to 

a flood warning they receive in a heavy rainy day is quite different from how they 

react in a cloudless day. Supportive environmental cues therefore constitute an 

important type of factor that can elicit people to understand, believe, personalize, 
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confirm and respond to an emergency warning (Donner, 2007; Perry & Greene, 

1982; Worth & McLuckie, 1977). The geographical proximity to the site of 

emergency has similar influence as supportive environmental cues do. Individuals 

who are geographically closer to the potential danger are more likely to receive 

and react to risk information (Donner et al., 2007; Sorensen, 1991; Trainor & 

McNeil, 2008). The third factor in this group is the length of lead-time to impact. 

This factor is actually related to individuals’ perception of the situation urgency, 

namely, how much time individuals believe available for them to respond before 

an emergency occurs. Generally, with the increase of the lead-time length, the 

sense of urgency decreases, which enhances the probability for people to confirm 

a warning on the one hand, but makes them less likely to believe and respond on 

the other (Mileti & Sorensen, 1990; Perry et al., 1981; Quarantelli, 1983).  

Besides physical attributes, the context of public risk communication also 

possesses social features. The first social feature that has been persistently 

reported by previous studies is family union, that is, whether individuals are 

united with their family when risk information is received. Family union can 

encourage individuals to believe, confirm and respond to a warning (Drabek, 

1969; Drabek & Boggs, 1968). The second social feature concerns how others, 

particularly familiar others, are seen as reacting to the warning, which is also 

called the social cues. Social cues can be consistent or inconsistent with the 

warning message, and their influence on response process varies depending upon 

their supportiveness on the potential threat (Donner, 2006; Donner, 2007; 

McLuckie, 1970). Social time, social role and activities are three closely-related 
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factors. For social time, it refers to a community’s patterned time for certain 

activities (Gray, 1981).  It is different from chronological time, and varies among 

communities and over time. Previous EM studies found social time had important 

influence on warning reception, confirmation and response (Donner, 2007; 

McLuckies, 1970). The other two factors can affect what role people is playing in 

the warning context, for example, whether there is care-giving responsibility, and 

what people are doing, such as sleeping, working or engaging in recreation (Gray, 

1981). These two factors can further exert complex influence on almost the whole 

individual response process (McLuckie, 1970; Quarantelli, 1990; Trainor & 

McNeil, 2008). 

The psychological attributes here are different from those psychological 

attributes in the receiver factor. The former formulate when or after an individual 

receives a warning, while the latter are pre-warning characteristics. In the 

emergency context, individual emotional status can influence whether and to what 

extent the risk information will be believed (Parker et al., 2009). Increased degree 

of concern with safety can increase the probability for people to hear, believe, 

confirm and respond to risk information (McLuckie, 1970; Quarantelli, 1983).  

Lastly, decisions and actions at current reactive stage are at least partially 

influenced by those at previous stages. Specifically, people can only understand a 

warning after it is received, and a clear understanding enhances the chance to 

believe the message (Mileti & Sorensen, 1990). Warning messages are more 

likely to be accurately personalized by people who have formed correct 

understanding, developed high level of belief and possessed confirmative 
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information about the risk (Nigg, 1982, 1987; Perry & Greene, 1982). Also, 

people are more likely to take responsive actions if risk information is understood, 

believed, confirmed, and personalized (Mileti & Darlington, 1997; Perry & 

Mushkatel, 1986; Quarantelli, 1983). The only exception regarding the influence 

of these contextual factors occurs at the confirmation stage. Previous research 

findings, to my knowledge, have not documented whether individual confirmative 

behavior is influenced by previous warning understanding or belief.  

Event factors. Factors of this category refer to the characteristics of an 

emergency. Specific attributes associated with an emergency and their 

implications for management have been the major concern of geography and 

other natural scientific fields (Tierney, 1993). For public risk information in EM, 

researchers argue that, the knowledge of individual emergency warning 

responsive transcends emergency type (Lindell et al., 2005; Mileti, et al., 2004). 

Individual warning response is more about the human nature, especially, how 

individuals respond to a stressful situation (Worth & McLuckie, 1977).  Therefore, 

regardless of how they vary in characteristics, “the basic social psychological 

process that directs public response is similar across hazards” (Mileti, 1995, p.1).  

On the other hand, EM researchers did find some event related factors which 

have a bearing on individual warning response. For example, the level of 

objective risk, which indicates based on scientific estimation the seriousness and 

destructive power of the potential danger, was weakly associated with the warning 

recipient, belief, confirmation, personalization, and response (Mileti & Darlington, 

1997). There are also other factors which can influence whether and how 
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individuals will respond, such as the controllability of an emergency, the length of 

forewarning (rapid- or slow-onset emergencies), and the accessibility of escape 

routes in the emergency (Tierney, 1993). Table 4 summarizes the influence of 

each event factor on individuals’ behavior during their responsive process to 

emergency risk information.  

Table 4. Influence of Event Factors on Individual Response Process to Emergency 
Risk Information 

 Receive Understand Believe Confirm Personalize Respond 

Objective risk +  + D D + 

Controllability      - 

Length of  
forewarning 

     D 

Accessibility 
of escape routes 

     D 

Note. In this table, “+” represents a positive association between a specific factor 
and individuals’ tendency to take corresponding action at a given stage. “-” 
represents a negative association. “D” indicates an inconclusive finding with 
regard to how the factor influences individual behavior within a stage. 

Social-cultural factors. The last general category of influential factors 

concerns with the social and cultural characteristics of the local area potentially 

impacted. Specifically, these include the culture developed in the area, spirit of 

the times, features of the local public risk communication system, and local 

preparedness efforts. Table 5 summarizes how these social-cultural factors 

influence individual behavior at each responsive stage.  

Local culture, particularly the disaster culture developed in the area, plays an 

important role in the whole public responsive process. It is most formulated 

within a community that often experiences the same or similar risks (Mileti & 

Darlington, 1997). Because of such relatively high occurrence, cultural defenses 

are formulated to prepare and respond to the recurrent danger. Moore refers to 
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such standard coping tradition within a community for a specific hazard as 

“disaster culture”, which includes “those adjustments, actual and potential, social 

psychological, and physical, which are used by residents of such areas to cope 

with disasters which have struck or which tradition indicates may strike in the 

future” (Moore, 1964, p.195). For public risk communication, disaster culture 

shapes the way in which each individual reacts to the risk information, from the 

very beginning of hearing to the final response (Donner et al., 2007; Perry & 

Hirose, 1991; Perry et al., 1981). Both encouraging and depressive influence can 

be generated by a disaster culture, depending on whether the standard reaction 

implied by it is adequate or not for a particular risk.  

Table 5. Influence of Social-cultural Factors on Individual Response Process to 
Emergency Risk Information 

 Receive Understand Believe Confirm Personalize Respond 

Culture D D D D D D 

Spirit of the times   D    
Local warning 

system 
  D D  D 

Local 
preparedness effort 

     D 

Note. In this table, “+” represents a positive association between a specific factor 
and individuals’ tendency to take corresponding action at a given stage. “-” 
represents a negative association. “D” indicates an inconclusive finding with 
regard to how the factor influences individual behavior within a stage.  

The spirit of the times is another aspect of the social setting. It consists of 

those anticipations and expectations that are widespread within an area at certain 

time (McLuckie, 1970). People inside such time-space boundary are more likely 

to accept any cue that is supportive of the spirit. What is relevant to emergency 

risk communication is the belief by individuals. The public is more likely to 
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believe messages that are warning an anticipated or expected risk, while ignore 

the information against such anticipations and expectations. 

For local public risk communication system, researchers argue for its 

influence, but arrive at inconclusive findings. One feature of the local system that 

has been widely studied is its efficiency, particularly the false alarm rate. 

Although previous studies found that the false alarm rate can influence whether 

individuals believe, confirm and respond to a warning (Donner et al., 2007; 

Trainor & McNeil, 2008), whether or not the influence is encouraging for 

individual responsive behavior varies among different contexts. In most cases, the 

response process could be exempted from the influence of false warnings as long 

as efforts are made to explain why they are disseminated.  

The last set of influential factors is about local or community preparedness 

efforts, for example, public education and information programs. Previous 

research has examined the effectiveness of pre-emergency education programs, 

and reported inconsistent evidence in terms of whether such efforts can enhance 

individual response to emergency risk information. While some studies found a 

positive influence, others found the influence to be negative or make no 

difference (Sorensen & Mileti, 1988). At present, EM researchers are more likely 

to agree with each other that, although the effectiveness of a good pre-emergency 

education or information program is in question, a poor program will not likely 

have a positive influence (Sorensen, 2000; Sorensen & Sorensen, 2006). In 

addition, consensus has been reached with regard to what topics should be 

covered by these programs (Sorensen, 1993; Sorensen & Mileti, 1992).  
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Summary. For each influential factor, it affects individual response process to 

emergency risk information in a complex way.  The influence is both nonlinear 

and contextual. On the one hand, the same factor can have distinct affections on 

individual behavior at different stages and make its influence on the final response 

sophisticated. On the other hand, whether one factor has an influence on behavior 

at a specific stage and what the influence is depend on the emergency context and 

study settings (Turner, 1981; Turner, et al., 1979). What adds a further layer of 

complexity is the inter-connection and interaction among these factors. In most 

cases the influence of a specific factor may be reduced, enlarged, or complicated 

by other factors, whose affections may be changed by this factor at the same time. 

For instance, low economic status or poverty can make it more difficult for 

individuals to understand a warning; but these difficulties can be overcome if 

individuals have a large-size social network (Donner, 2006). Similarly, the gender 

difference in taking protective action may fade away as females’ education level 

and work experience get closer to that of males (Drabek, 1999). Furthermore, 

both factors can simultaneously complicate the influence of other factors, such as 

social time (Donner, 2007). It is self-evident that what white middle-class are 

doing when receiving emergency warnings is quite different from that of a lower-

class African-American female, or a upper-class Asian college student. 

Considering such complexity, researchers argue that how specific individuals may 

react in an emergency warning context is influenced by very intricate 

combinations of factors (McLuckie, 1970). An invisible web of constraints 

actually exists that patterns individual warning response (Drabek, 1999).  
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Previous studies also argue for two more interesting findings. First, 

individual behavior at all stages of the warning response process, except message 

receipt, is influenced by almost identical sender and receiver factors (e.g., Mileti 

& Sorensen, 1990). This may be caused by the interaction among these factors. 

The second finding concerns which category of factors is more influential, and 

some EM studies find the context in which warning is received is more influential 

in affecting individual responses (e.g., Dynes & Quarantelli, 1973).  

Critiques. Over a period of several decades now, EM researchers have been 

attempting to describe a more accurate picture of how individuals perceive and 

respond to risk information in emergency situations. Substantial and systematic 

knowledge has been accumulated. Individual response process is social and 

complex, consisting of sequential stages. Individual behavior at each stage is 

patterned by a series of inter-connected factors. Furthermore, these stages and 

factors are interlinked, which together produce individual responsive behavior to 

emergency risk information.  

Such knowledge needs to be understood and considered by emergency 

managers when they plan for and respond to future emergencies. They need to 

correct their unrealistic assumptions on individual response to emergency risk 

information. Also, instead of making people what they are not and blaming them 

for not changing themselves for the response plan, emergency managers should 

understand how individuals are likely to behave and adaptively adjust their plan in 

accordance with these behaviors.  Previous studies also provide useful guidance 

for emergency managers to design emergency communication strategies. For 
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example, a certain degree of consensus has been achieved regarding what makes 

for effective risk messages. These factors, among the wide range of factors 

identified influential on individual reaction, can be utilized by emergency 

managers to enhance the probability of sound public response. 

While previous studies on emergency risk communication can greatly assist 

emergency managers, further investigation is still needed. In current literature at 

least four major limitations remain: 1) few insights have been provided on how 

emergency risk information should be sent to the public; 2) little is known about 

how individuals use information for decision-making during their response 

process to emergency risk information; 3) little attention has been paid to how 

public response pattern to emergency risk information at the system or 

community level emerges; and 4) few studies have considered risk 

communication during emergencies as a dynamic process, through which public 

sectors and the public interact with each other through information exchange.   

First, very limited insights have been provided on the effective way to issue 

risk information. Sender factors are crucial for emergency risk communication 

research and practice. That is because emergency managers can relatively easily 

manipulate these factors to influence individual response to risk information. All 

the other four types of factors cannot simply be accessed and changed (e.g., such 

demographics as gender and age). Among sender factors, systematic knowledge 

has been developed on how to design risk information, for example, what its 

content should be and how its style needs to be framed. There is little information 

in term of how certain risk information should be disseminated, for example, 
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which type of channel should be used and what the dissemination frequency 

should be. Particularly, previous studies simply narrow all types of mass media 

into one general channel type. During an emergency, most individuals receive risk 

messages through a variety of mass media, such as television, newspapers, or 

social media. Emergency managers can also easily change their communication 

strategies through changing the types of mass media used for sending information. 

More systematic knowledge on the interaction of different types of 

communication channels—particularly different types of mass media— and 

individual warning response is needed to help public managers develop effective 

risk communication strategies. 

Second, the individual reactive process after warning receipt is clear in EM 

literature, in terms of what stages individuals go through and how their behavior 

at each stage may be influenced by various factors. However, ambiguousness 

arises when it comes to how individuals behave at the social confirmation and 

situational definition stage. According to previous studies, warning confirmation 

almost always occurs after individuals receive an emergency warning and 

formulate their initial risk perception. Individuals within the two stages attempt to 

obtain additional information mainly from personal contacts, namely friends, 

family and neighbors, in order to verify their initial perception. Based on 

additional information collected and their initial perception, individuals then 

define their own situation in terms of whether they are personally endangered. 

Important information that has been missing is how individuals evaluate 

collected information from diverse informal sources and assess their personal risk 
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based on the information. In other words, disaster researchers find what occurs at 

the beginning and end of the two stages, but do not know the social process 

between. Specifically, questions remain with regard to 1) what criteria individuals 

use to select personal contacts for additional information, for example, is it based 

on geographical proximity or relationship familiarity; 2) how individuals evaluate 

information from different contacts; and 3) how they use information received 

and collected to formulate their situational definition, especially when information 

obtained is inconsistency, or even contradicting.  

Third, how emergency managers plan for and respond to an emergency need 

to be based upon system-level data, rather than individual information. For 

example, essential resource estimation before an emergency is community- or 

group- based; seldom is it based upon an individual’s needs. For public risk 

communication, practices should start with what we know of how groups are 

likely to react, rather than with what individual response might be (Quarantelli, 

1983). However, few studies have explored the response pattern at the system 

level. Almost all studies consider it the most common and effective way for 

improving warning effectives to find out empirical evidence about individual 

warning response and developing individual response model. While such 

knowledge can help emergency managers identify and incorporate incentives to 

enhance individual warning compliance, it provides little information regarding 

the system pattern of public warning response. Given the highly interactive and 

collective nature of individual response, such public pattern, although closely 

related to how each individual respond, cannot be easily inferred from it. What 
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both researchers and practitioners need is the possible mechanism that links 

individual behavior and system-level dynamics. The latter therefore can easily be 

derived through the mechanism from previous knowledge. Also, since influential 

factors on public response pattern may be different from those on individual 

behavior, we need to investigate what these factors are and how they exert their 

impacts at the system level.   

Fourth, in emergency situations, public managers need to continuously 

monitor the public’s response. Feedback must be received to indicate whether the 

risk message is received and understood and how further warnings can be 

developed for behavior correction if people are not responding in the desirable 

way. Meanwhile, people may adjust their responses accordingly to the updating 

risk messages, and the consequences of their behavioral adjustment may lead to 

further modification of risk communication. Figure 3 shows such a dynamic and 

interactive process, which is highly effective for public self-protection but rarely 

practiced by emergency managers.  

Figure 3. A dynamic model of emergency risk communication 
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In practice emergency managers are more tempted by the uni-directional 

communication model which obviously is more manageable and less time- and 

resource-consuming. With regard to previous studies, the importance of a 

dynamic and two-way risk communication process has been emphasized by 

several EM researchers (e.g., Chowdhury, 2005; Tierney, 1993; Williams, 1964; 

Worth & McLuckie, 1977). However, few of them have included the interactive 

process into their empirical studies or theoretical development. Knowledge 

therefore is absent in terms of how the public and emergency managers adjust to 

each other during the public risk communication process. To provide more 

insights for effective emergency warning, such a gap must be filled. 

Although these limitations are not ignored by previous studies on public risk 

communication in EM, the methodological flaws inherent in this stream of 

literature make them persistent concerns (Donner, 2006; Drabek, 1969; Gladwin 

et al., 2007). For example, previous studies on public risk communication in EM 

have either adopted a traditional view and focused on its technical aspect, or 

engaged themselves into the investigation of individual behavior. Responsive 

pattern at the community level and the interaction between public sector and the 

public therefore can hardly become a research focus. Furthermore, current EM 

studies are preoccupied by qualitative description or post-emergency survey and 

simple statistical analysis. Such research methods are incapable of connecting 

individual behavior and system-level pattern while at the same time tracking 

individual decision-making process and including a dynamic and process view.  
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Chapter 3 

Research Design 

Research Question 

This dissertation explores whether and how emergency impacts can be 

mitigated through the effective use of information transmission channel for public 

risk communication. To answer the research question requires addressing the 

following questions: 

• How do individuals make decisions regarding their response to risk 

information in emergency situations? 

• How do the characteristics of information transmission channel influence 

individual response to emergency risk information? 

• How does public response pattern to emergency risk information emerge at 

the community level? 

• How can information transmission channel be appropriately used by 

emergency managers to mitigate emergency impacts? 

Research Scope 

Public risk communication for a long time has been an important topic in a 

variety of research and applied areas, such as environmental risk communication 

(e.g., Fishoff, 1985; Fischhoff, Slovic, & Lichtenstein, 1979; Slovic, 1986), 

emergency management (e.g., Quarantelli, 1954; Williams, 1957), and health 

promotion and communication (e.g., Klaidman, 1985; Sharlin, 1987). This 

dissertation focuses only on the research and practices of public risk 
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communication in the field of EM. Studies and practices of public risk 

communication in other fields are not covered.3 

Among all problems related to public risk communication in EM, this 

dissertation focuses on how the response process to risk information at the 

individual level and emergency impacts at the community level are influenced by 

the characteristics of information transmission channel emergency managers use 

to send risk information. The key aspect of emergency public risk communication 

lies in the extent to which risk information can elicit appropriate public response 

to minimize losses from an emergency. Previous studies in public risk 

communication in EM have identified a wide range of factors that can influence 

individual response to risk information. Compared with others, emergency 

managers are more easily to utilize one specific type of factor, called sender factor, 

to influence individual response and further emergency impacts. Sender factors 

characterize how the risk information is designed and sent to its target population. 

Among these factors, the influence of information source and information content 

and style on individual response process has been conclusive. But inconsistent 

insights have been provided regarding the influence of the characteristics of 

information transmission channel, including the number and type of channel used 

to send risk information, and the perceived credibility and use frequency of each 

type of channel.  This dissertation attempts to explore whether and how 

emergency impacts could be influenced by the characteristics of transmission 

channel used to send risk information. The strategy for public risk communication 

                                                 
3 There is a very large literature on risk communication between experts and 
citizens that is not related to EM.  
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in this study is only indicated by those characteristics of information transmission 

channel. Other strategy indicators for public risk communication in EM would not 

be considered. 

In this dissertation, the specific type of public emergency focused on is 

influenza pandemic.4 The scale of analysis is a medium-size community.5 The 

specific research context is the 2009 H1N1 influenza outbreak in Arizona.  

Research Method 

Methodologically different from conventional EM research on public risk 

communication, this dissertation employs the computational simulation approach 

of agent-based modeling (ABM) to address the research question. An agent-based 

model is a class of computational models, which attempts to explain and 

anticipate social phenomenon by simulating the interactions of interdependent 

agents (Srbljinovic & Skunca, 2003). It is also called multi-agent simulation or 

individual-based model. ABM as a simple concept emerged in the late 1940s. 

With the development of game theory, computer science and artificial intelligent, 

it became a research method in the 1990s. By now it has been extensively applied 

in various domains. 

Contrasted with more traditional mathematical models, agent-based models 

are characterized by four distinguishing features. These comparative features 

make ABM particularly well suited, or even necessary, to better understand 

                                                 
4 Why influenza pandemic is selected as the focused type of emergency would be 
explained at the beginning of Chapter 3.  

5 Why a medium-size community is select as the scale of analysis would be 
explained in Chapter 4. 
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problems in emergency risk communication, including the research question of 

this study.  

ABM simulates interactions between adaptive agents. Agent-based models 

consist of agents and action rules. Agents are the basic action unit; they may be 

persons, organizations, or countries. An agent in ABM is programmed to be 

autonomous and boundedly rational; it makes use of decision rules based on local 

information. Action rules specify how agents interact with each other. These 

interactions need not be physical; they can also occur through information 

exchange. Because of the interaction, agents become interdependent and adaptive 

to one another.  

ABM is process-oriented. Agent-based models require a high degree of 

precision regarding the underlying processes (i.e., mechanisms) involved. Every 

aspect of how agents interact must be well specified. This requirement enables 

ABM a process-oriented approach, which can explicitly describe and track agents’ 

interactions (Rakowski et al., 2010). Such feature further makes ABM inherently 

dynamic, and a natural way to explore the dynamic behavior of a system.  

The above two features of agent-based modeling enable this approach 

framing public risk communication as a dynamic process. Individuals and public 

sector can be considered as adaptive agents. During the process, they interact with 

each other through information exchange, and mutually adjust their behaviors. 

The model can track each agent’s action, as well as the whole interaction process. 

Insights therefore can be provided from a dynamic and process view.  
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ABM is also a bottom-to-up modeling approach. Many existing analytic tools 

follow top-down logic, and represent system relationships between aggregate 

variables in the system (An et al., 2005). For example, regression analysis usually 

attempts to do so by inductively fitting empirical data with regression models. 

Bottom-up approach analyzes system behavior in an opposite way. It starts with 

the understanding of the low-level processes, and generates aggregate system 

pattern by simulating the individual entities in the system. ABM therefore can 

bridge the gap between micro and macro level by generating large-scale 

macroscopic phenomena from micro-level agent interactions. For public risk 

communication, individual response process to risk information could be 

simulated in an agent-based model, and the response pattern at the system or 

community then can be automatically generated through the simulation over time.  

ABM can serve as a knowledge integrating framework. ABM can be applied 

to integrate knowledge from different fields into a united framework (Gong & 

Xiao, 2007). It can also integrate qualitative and quantitative data (Polhill, 

Sutherland, & Gotts, 2010). Therefore, ABM can make assumptions based on 

both theories and empirical data from a variety of disciplines, and create artificial 

societies in which agents could be expressed more directly and detailedly. 

Considering this feature, ABM can learn from previous studies in other research 

fields than emergency management and public risk communication, to make 

reasonable assumptions on how characteristics of information transmission 

channel influence individual response to risk information, and how individuals 
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collect confirmative information and make decisions during their response 

process. These assumptions then can be included and tested in the model.  

Besides being a promising approach to answer the research question, ABM 

also possesses the four features previous studies have repeatedly proposed for a 

new approach to EM. All types of organizations and the public within EM system 

can be included in an agent-based model as agents. These agents interact with 

each other through communication and make their own decisions. The artificial 

EM system formulated in the model therefore becomes a network-structured inter-

organization system, with decentralized decision making and open 

communication. Meanwhile, since agents are interdependent and adaptive to 

others’ actions, public sector as one type of agent must base their actions—the 

management strategy—on the action of other types of agents, for example, the 

public. Furthermore, ABM’s process-oriented feature and capacity of integrating 

knowledge make a dynamic and inter-disciplinary perspective to EM possible.  

Another reason why ABM makes an appropriate approach to EM is that it 

provides unique opportunities for social experiments. Emergencies are those 

social phenomena as only occur rarely. Considering ethnical, resource and other 

factors, it is very difficult to conduct experiments in real social setting (Skvortsov 

et al., 2007). On the other hand, the artificial world in an agent-based model can 

be fully observed, recovered and repeated. It is a convenient and very cost 

effective tool to formalize, refine and conduct what-if simulation and analyses for 

EM issues. Researcher and public managers by using this modeling approach can 

easily and systematically analyze different policy options at their disposal. 



  68 

No single approach or tool is suitable for all questions, and it is certainly 

unreasonable to claim ABM universal and almighty. However, the constellation 

of features offered by ABM does make it a very promising approach to gain new 

insights into EM in general and public risk communication in particular.  

In the specific research context, agent-based simulation among other 

modeling approaches has the most potential to appropriately simulate the spread 

dynamics of a pandemic influenza. Previous literature identifies two key features 

that should be simultaneously included in a computational model for pandemic 

influenza simulation. First, the spread dynamics of pandemic influenza cannot be 

understood without some knowledge of social network, particularly knowledge on 

the underlying inter-personal contact network for virus transmission (Mollison, 

1995). Researchers have realized that the way in which contact network was 

parameterized in previous models for pandemic influenza simulation is 

problematic (e.g., Edmunds et al., 2006).  Meanwhile, empirical contact data is 

considered a more appropriate base to structure and parameterize the artificial 

contact network (Keeling & Eames, 2005).  

Second, the knowledge of contact network must be combined with a 

modeling approach which is capable of simulating the bottom-up aggregation of 

micro-interaction to macro-pattern (Eames, 2007). The impact of an influenza 

pandemic at the community level emerges from the interactions between 

individuals and interactions between individuals and public sectors. Therefore, the 

simulation model should have the capacity of tracking the contacts of each 

individual with others in the relevant contact network, and how public 



  69 

interventions influence those contacts. Meanwhile, it should be bottom-up instead 

of top-down modeling, to simulate how thousands of micro-interactions in the 

population contribute the emergent patterns of infection, death, and survival at the 

aggregate level.  

These two key features can be simultaneously included in agent-based 

simulations. Other modeling approaches previously used for pandemic influenza 

simulation may have addressed one of them, but rarely both at one time. An 

agent-based model consists of a population of heterogeneous and autonomous 

actors or agents, an environment, and a set of action rules. Modeling in 

epidemiology using this approach can track the contacts of each individual, and 

simulate the spread progress of a pandemic influenza through those contacts. 

Rules for agent contacts and infection transmissions are explicit. Agent-based 

modeling is also a bottom-up approach. The main difference between this 

approach and those traditional pandemic influenza simulation models based on 

differential equations lies in that the latter is used at the macro level while the 

former bridges the gap between micro and macro level by producing emergency 

global effects from local agents’ interactions. Although data collected at the 

macro level are still important in agent-based simulations, they are mainly used to 

compare the results from different simulation scenarios or compare modeling 

results against empirical data (Gong & Xiao, 2007). Furthermore, the theory of 

social network can be easily integrated into agent-based models. The nodes in a 

social network can be considered as agents in an agent-based model, while 

connections between nodes as interactions between agents.  
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Organization of the Dissertation 

This dissertation consists of six chapters. Chapter 1 briefly introduces the 

background and motivation of this dissertation. Chapter 2 reviews the traditional 

approach to EM in general and public risk communication during emergencies in 

particular, and critiques on these approaches. Chapter 3 proposes the research 

question, the research scope, and the research method to be employed to answer 

the research question. Chapter 4 first explains why an influenza pandemic is 

chosen as the focused public emergency. It then reviews previous computational 

models in literature for pandemic influenza simulation, and explains how the 

agent-based model created in this study can be distinguished from previous 

pandemic influenza simulation models, how the model is created, and why it is 

created in such a way. Chapter 5 uses a case to demonstrate how the 

methodological framework developed can be used to answer the research question 

in the influenza pandemic context, and utilized by emergency managers in 

practice to develop effective communication strategies. Chapter 6 summarizes the 

answer to the research question based on the simulation results from Chapter 5. 

Theoretical and practical contributions of this dissertation, as well as its 

limitations and further extensions, are also discussed in this chapter. 
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Chapter 4 

Modeling an Emergency for Public Management 

 Influenza Pandemic as a Public Emergency 

The specific emergency focused on in this dissertation is an influenza 

pandemic. An influenza pandemic is “a global outbreak of disease that occurs 

when a new influenza virus appears or emerges in the human population, causes 

serious illness, and then spreads easily from person to person worldwide” (CDC, 

2012).6 It is different from the seasonal epidemics of influenza, since the latter are 

caused by those influenza viruses that already exist among people (Nicholls, 

2006). Such an emergency situation is selected based on two reasons. First, as a 

relatively new type of public emergency, past influenza pandemics have caused 

serious consequences on human societies, including high levels of illness, death, 

social disruption and economic loss (CDC, 2012). For example, the 1918 Spanish 

flu is estimated as being responsible for the deaths of 50 million to 100 million 

people worldwide (Barry, 2005). In the past century, there occurred three 

influenza pandemics—in 1918, 1957 and 1968 respectively, which were followed 

by the most recent 2009 H1N1 pandemic. Given the estimated high probability of 

another influenza pandemic, both CDC and HHS have made it a priority to 

understand its spread dynamics in communities and to develop effective spread-

control strategies (Das, Savachkin, & Zhu, 2008; Ferguson et al., 2005).  

The importance of effective public risk communication becomes more salient 

in the context of an influenza pandemic. Interventions for pandemic prevention 

                                                 
6 Influenza pandemic is different from pandemic influenza. The latter refers to the 
influenza which causes a global outbreak of the disease.  
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and control are usually grouped into two categories: pharmaceutical measures 

(typically vaccination and antivirals) and physical or non-pharmaceutical 

measures (typically social distance measures). Researchers and practitioners 

commonly consider the former more effective than the latter (Longini et al., 2004). 

However, when novel pandemic strain of influenza occurs, time and production 

capacities are usually insufficient to develop, produce and distribute enough 

effective vaccine or antivirals to protect the general public (Mniszewski et al., 

2008; Monto, 2006). Whether individuals take physical measures for self-

protection in this case becomes an importance influence on the duration and 

severity of the outbreak.7 Meanwhile, previous studies found that individuals are 

reluctant to take protective actions (Rodríguez et al., 2006; Rogers & Sorensen, 

1989). Understanding individual response to emergency risk information and 

developing effective communication strategies to encourage the public to take 

protective measures therefore become one key intervention public managers can 

employ for pandemic control.  

Traditional Approaches for Pandemic Influenza Simulation 

Given the rare occurrence of an influenza pandemic, computational 

simulation has been an efficient approach to systematically understand its spread 

and control. Simulation models enable researchers to formalize, refine and 

conduct thought experiments. Conspicuous quantities of artificial data therefore 

can be generated, which are hardly available in the real world because of the 

                                                 
7 The term of pandemic when used alone in this dissertation refers to influenza 
pandemic. For example, a pandemic means an influenza pandemic, and pandemic 
impacts the impacts caused by an influenza pandemic.  
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elevated costs or the rarity of the phenomenon. Such data further allows 

researchers to do preliminary “what-if” analyses to examine systems’ behavior 

when different control measures are adopted.  

Compartment models in epidemiology. The foundations of modern 

epidemiology are based upon classic compartment models, which began with a 

series of studies conducted by Kermack and McKendrick (1927, 1932, 1933). In 

their research, the total population, depending on their status relative to an 

epidemic, is divided into three subdivisions or compartments: 1) Susceptible, the 

population who are healthy and can be infected by the epidemic, 2) Infected, the 

population who have been infected and are infectious to the susceptible, and 3) 

Removed, including people who either recovered from the epidemic (Recovered) 

or are killed by it (Died).  Individuals can move from one compartment to the next, 

as shown in Figure 4. Transition rates of movement between two adjacent 

compartments are defined in the following set of ordinary differential equations. 

dS
dt � �αβS I

N 

dI
dt � αβS I

N � γI 

dRe
dt � γI 

dD
dt � µI 

In these equations, S, I, Re, and D refer to the number of susceptible, infected, 

recovered and died individuals, respectively, in a population of size N. The other 

parameters are the infection rate, α, which represents the probability for a 



 

susceptible individual to get infected after a contact with an infectious individual, 

and the contact rate, β, representing the average number of people each individual 

contacts within a time step. µ is the mortality rate among infected individuals; it 

represents the probability for an infected individual to die at each time step. 

the recovery rate, which refers to the probability for an infected individual to 

recover from the epidemic 

reciprocal is the infected 

individual becomes symptomatic and the moment the individual recover

disease. Using this set of equations, the 

is treated as a non-stationary process. It
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epidemic spread (Dangerfield, Ross, & 

Keeling, 2009). Over the years, the model has been extended to consider other 

SEIR, SEIRS, 

. All these models are called the deterministic 

compartment model. They simulate the spread process of an epidemic through a 

s rooted in the general 
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population model which divides a population into different segments (Perez & 

Dragicevic, 2009). A system of differential equations is then developed to model 

the population change in each segment. 

Deterministic compartment models have been used for mathematically 

modeling the spread process of a pandemic influenza for over a century. They 

capture the nonlinear nature of the spread dynamics in a population. They also 

simplify the factors and variables that should be considered to understand the 

dynamics, and can be easily processed with a set of mathematical equations.  

Despite the long and successful history, the compartment model is also 

criticized in that it is too simple to provide insightful information to understand 

and control a pandemic, particularly considering the complex nature of the issue 

(Gong & Xiao, 2007). Two limitations within the model constrain its utility. First, 

compartment models fail to consider social phenomena associated with individual 

interactions. Since the population is assumed homogeneously mixed and modeled 

as continuous entities in compartment models, the characteristic of inter-personal 

interactions are neglected (Mollision, 1995; Watts, 2004).8 Second, compartment 

models fail to express the relationship between micro and macro levels (Gong & 

Xiao, 2007). The spread process of a pandemic influenza at the system level is 

produced by countless interactions between individuals, through which the 

influenza virus is transmitted. Pandemic control measures also aim to change 

individual behavior, but their effectiveness is measured at the system level 

                                                 
8 By homogeneous mixing, an individual is assumed to meet or contact any other 
individual in the population with the same probability (Larson & Nigmatulina, 
2009).  
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(Eames, 2007); for example whether and by how much the vaccination reduces 

the impacts of a pandemic influenza in a community. Hence, how individual 

behaviors marked by local parameters translate into global patterns indicated by 

global parameters is vital for understanding the spread dynamics and anticipating 

the impact of control measures. Since both input and output parameters in 

differential equations are at the macro level, compartment models fail to describe 

such a translation.   

As Eidelson and Lustick (2004) once stated, traditional mathematical 

modeling tended to consider social issues as Newtonian physics problems. The 

world is fully predictable, and “comprised of traceable vectors and governed by 

known laws operating at the macro level” (Eidelson & Lustick, 2004). These top-

down models are typically incapable of capturing the underlying dynamics in 

most social systems where a great number of autonomous and interdependent 

micro-actors interact with one another.  

Social network models and massive agent-based models. Alternative 

simulation models to traditional compartment models for pandemic influenza 

simulation have been developed, with the main purpose of including the structure 

of interpersonal contacts in the simulation. Two types of models are common 

among previous studies: social network models and massive agent-based models.  

Social network models have played an important role in shaping the 

understanding of pandemic influenza spread process over the past decades (Hu & 

Gong, 2009; Newman, 2002). In these models, individuals are considered as 

nodes in a network and the links between them their contacts. Each individual has 
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a set of links or connections to others, who are usually selected through certain 

preference. The homogeneous population mixing assumption in traditional 

compartment models therefore is avoided since individuals can only contact those 

who are connected to them in the network. Infection is transmitted along links, 

and individuals can only transmit infection to or get infected by those people 

connected (Dangerfield et al., 2009). Current social networks models have been 

integrated with a variety of other techniques for epidemic simulation, including 

cellular automata (e.g., Leung et al., 2008; Pfeifer et al., 2008) and agent-based 

modeling (e.g., Epstein, 2009; Yang, Atkinson, & Ettema, 2011).  

Compared with social network models, agent-based modeling for pandemic 

influenza simulation is more recent efforts. As described before, ABM could be 

integrated with social network to simulate influenza spread. It could also be used 

without the assistance of network (e.g., Rakowski et al., 2010; Stroud et al., 2007). 

In the latter situation, agent-based models are normally large scale, spatially 

explicit and parameterized to construct a synthetic population to match the actual 

population of the region studied. Such models are usually called massive agent-

based models. Each individual in the model has a schedule of daily activities, and 

each activity has a specified start and stop time and a specified sub-location. 

Possible sub-locations include households, schools, workplaces, and so on. 

Infection occurs between individuals when they occupy the same sub-location at 

the same time. Contact network also exists in the model, but it is not set up at the 

very beginning of simulation and guides how individuals contact with each other 

during the simulation. The network in massive ABM emerges as the result of 
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agents’ interactions based on their action rules. That is why massive ABM is not 

considered as a social network model. That is also how a social network model 

integrated with ABM is different from a massive agent-based model.9 

Critiques on the above two types of models for pandemic influenza 

simulation have been centered on how individuals contact with each other is 

simulated in the model (Edmunds et al., 2006; Wallinga, Teunis, & Kretzschmar, 

2006). First, disagreements have been raised in terms of the stability of contacts, 

namely, whether the set of people each individual contacts is transient, stable or 

both. Edmunds et al (2006) categorized simulation models for pandemic influenza 

into two groups, according to their assumptions on contact stability: those using 

the mass action assumption in which contacts are independent and instantaneous, 

and those in which individuals have stable contact connections. For social 

network models, their initial usage for epidemic simulation is intended to capture 

the permanent nature of interpersonal interactions to substitute the random mixing 

assumed in compartment models (Edmunds et al., 2006). Many social network 

models therefore fall into the second category; the links in the network remain 

constant over time (Keeling & Eames, 2005). Each individual has a fixed set of 

contacts. The focus of simulation is on how the disease spread over the static 

network. For massive agent-based models, Edmunds, O’Callaghan, and Nokes 

(1997) argue that they typically employ the mass action assumption, essentially 

random contacts, although those random contacts are restricted to a sub-

population decided by a sub-location. According to a few of more recent studies, 

                                                 
9 Models integrating ABM and social network can also be considered as agent-
based models. But they are different from massive agent-based models. 



  79 

interpersonal interactions should have a hierarchical structure (Grabowskia & 

Kosinskia, 2005; Mikolajczyk & Kretzschmar, 2008; Read, Eames, & Edmunds, 

2008). While some of individuals’ daily contacts are stable, others are constantly 

changing. In fact, most daily encounters are random and non-repeated. Those 

encounters reflect the mobility of a community; they can occur during commuting 

or in public places. Stable and repeated contacts also exist, but with a smaller 

amount than the number of random encounters. For epidemic simulation, these 

studies argue that the transmission route for infection in the model should include 

a strong random component, as well as a stable element (Grabowskia & Kosinskia, 

2005; Mikolajczyk & Kretzschmar, 2008; Read et al., 2008).  

The second concern with individual contact pattern in the two types of 

models is that the epidemiologically relevant contact pattern in both cases are first 

assumed and then calibrated to epidemiological data (Edmunds et al., 2006; 

Mossong et al., 2008). These assumptions could be very simple, or very detailed. 

For example, massive agent-based models for pandemic influenza simulation 

usually demand a variety of individual behavioral assumptions, particularly those 

related to individual movement. Several issues make such a way to construct 

artificial contact pattern problematic. For example, there are often a larger number 

of parameters related to contact pattern that need estimation than that of 

epidemiological parameters which the model can be calibrated against (Edmunds 

et al., 2006). Meanwhile, Wallinga et al (2006) argued that, for specific infectious 

diseases, particularly for the transmission of airborne infections, models 

parameterized by empirical social contact data offer a better description of 
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observed incidence than those that employ assumed and calibrated assumptions 

on contact pattern. Following that study, there are other studies using and 

demonstrating empirical data from survey can be utilized as a valid proxy for 

unobservable distributions of actual at-risk contacts for respiratory infections 

(Mikolajczyk et al., 2008; Mikolajczyk & Kretzschmar, 2008). Since the pattern 

of contact is crucial in determining the spread of an epidemic, a reconsideration of 

how it should be approximated in simulation models is needed.  

A Network-based ABM for Pandemic Influenza Simulation 

In this dissertation, a network-based ABM is created to simulate the spread 

dynamics of a pandemic influenza within a community. This model integrates 

both key elements identified by previous literature for pandemic influenza 

simulation. It is different from compartment models in that it employs 

heterogeneous mixing assumption on contact pattern instead of homogeneous 

mixing, and meanwhile leverages the power of “bottom-up” instead of “top-down” 

modeling. It is different from previous social network models, including those 

incorporating agent-based simulation technique, since the contact network 

included in the model for influenza transmission is based upon both social theory 

and earlier empirical findings. It is also different from massive agent-based 

models in how the contact pattern is assumed and structured. Table 6 shows the 

difference between the dissertation model and other modeling approaches used in 

previous studies for pandemic influenza simulation. A more comprehensive 

understanding of pandemic spread and control is expected via the usage of the 

new model. 
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Table 6. Differences between Dissertation Model and Other Modeling Approach 
for Pandemic Influenza Simulation 

 
Compartment 

Models 
Social Network 

Models 
Massive  
ABM 

Dissertation 
Model 

Assumption on 
contact pattern 

Homogeneous 
Mixing 

Heterogeneous 
Mixing 

Homogeneous 
Mixing 

Heterogeneous 
Mixing 

Basis for 
assumption 

/ / / 
Social theory 
Empirical data 

Modeling logic Top-down Bottom-up Bottom-up Bottom-up 

 

An agent-based model can be best described in order of its three components: 

environment, agents, and action rules (Perez & Dragicevic, 2009). The following 

parts outline the design and implementation of an agent-based simulation system. 

They first explain in detail for each component how it is designed based on 

previous literature.  The whole system is then implemented in the Netlogo toolkit, 

a multi-agent programmable modeling environment (Wilensky, 1999). 

Environment. In this model, the community is simulated as a friendship 

network, mainly based on two reasons. First, according to public warning 

literature, most people after receiving risk message tend to seek more information 

from known others, particularly friends, to make their responsive decision 

(Donner et al., 2007; Lardry & Rogers, 1982). Second, the contact between 

friends constitutes an important component of individuals’ daily contacts for virus 

transmission in a pandemic (Mollison, 1995). Friendship network therefore 

provides the necessary basis to simulate individual communication and contact 

pattern in the research context.  

The friendship network is set up based on the approach developed by Hamill 

and Gilbert (2008, 2009, 2010). The following part first reviews the key 
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characteristics of a friendship network, and then explains why such an approach is 

selected and how the friendship network is built in the model.  

Key characteristics of friendship networks. In a friendship network, nodes 

represent individuals, and edges represent the relationship of friend between two 

individuals (nodes). Each node has an egocentric friendship network, which 

represents the relationship between this node or individual and others. The 

friendship network, at the macro level, is the aggregation of all egocentric 

friendship networks and represents the whole set of relationships.  

Key characteristics of a friendship network can be grouped into the 

characteristics of egocentric networks in a friendship network and those of the 

friendship network itself. For egocentric networks, they are of limited size. Since 

the maintenance of relationship needs time and effort, people can only have 

limited number of friends (Gilbert, 2006). Also, egocentric networks vary in size 

among individuals, with a few individuals having a very large number of friends 

and many much less so (Boissevain, 1974; Roberts et al., 2009). This 

characteristic often indicates a positive-skewed, even fat-tailed, distribution on the 

degrees of connectivity for the whole friendship network (Boase, 2008; Fischer, 

1982; Wagner & Fell, 2001).10 

The third characteristic of egocentric or personal friend networks is their 

dynamic feature. A dyadic friendship can decay over time (Burt, 2000). 

Boissevain once noted that, “a person’s network is a fluid, shifting concept” 
                                                 
10 In a network, a node’s degree of connectivity is its number of connections to 
other nodes; the distribution of degrees of connectivity is the probability 
distribution of all nodes’ degrees of connectivity over the whole network (Knoke, 
2008).  
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(Boissevain, 1974, p.48). As a result, the size, structure and membership of a 

personal network may change over time.  Such changes can be caused by 

demographic reasons, such as fertility and mortality, or by geographical and 

social reasons, for example, people drift apart physically or change their social 

behavior (Hamill & Gilbert , 2008, 2010). At the macro level, the whole 

friendship network is dynamically evolving because of individual behavior at the 

micro level with regard to friendship relationships and changes in their personal 

networks (Zeggelink, 1995). The dynamic feature characterizes both individual 

personal networks and the whole friendship network.  

Besides a right-skewed distribution on the degrees of connectivity and 

dynamic nature, a friendship network is also sparse and highly clustered (Watts, 

1999). The network is sparse in the sense that only a few of the potential links in 

the network actually exist (Michell & Amos, 1997). The density of the whole 

network therefore is low. Meanwhile, most of the few connections each individual 

has are tied up in local interactions within “cliques” of individuals (Wagner & 

Fell, 2001). Since members of an individual’s egocentric network tend to know 

each other, most personal networks are strongly overlapping. The presence of a 

high clustered friendship network is a result of homophily, which is defined as the 

principle that “a contact between similar people occurs at a higher rate than 

among dissimilar people” (McPherson, Smith-Lovin, & Cook, 2001, p.416). In 

other words, people are more likely to be friends with others who are similar in 

demographic and social characteristics, such as race, ethnicity, age, education and 

gender (McPherson, et al., 2001) 
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The principle of homophily also results in another key feature: positive 

assortativity by degree of connectivity (Bruggeman, 2008). According to 

Newman and his colleagues, positive assortativity is a key feature which 

distinguishes social networks from other types of network (Newman, 2003; 

Newman, Barabasi, & Watts, 2006; Newman & Parker, 2003). It refers to the 

phenomenon that well-connected nodes or individuals tend to be linked with other 

well-connected nodes and vice versa. Several studies have also found such a 

phenomenon in friendship networks (e.g., Bollen et al., 2011; Hallinan & 

Williams, 1989; Kandel, 1978). They explained its emergence as the outcome of 

homophily: sociable people like other sociable people (Bruggeman, 2008). 

Another characteristic of friendship networks is their short path lengths 

(Wagner & Fell, 2001). The path length is the shortest routine between two nodes. 

It is measured by the minimum number of links from one node to the other. With 

short path lengths, individuals within the network can reach any other individual 

in a few steps, even if the two are perceived to be far away (Watts, 1999). Such a 

phenomenon is also called the small world effect (Milgram, 1967), or more 

popularly six degrees of separation (Guare, 1990). 

Community, or the existence of “giant component”, is the last characteristic 

of friendship networks that have been widely discussed in previous literature. In a 

network, a giant component is a group of nodes that are highly connected to each 

other, directly or indirectly, but loosely connected to the nodes within other 

groups (Newman, 2001). It represents the connectedness of a network, which can 

be measured by “the extent to which adding ‘friends-of-friends’ would increase 
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the size of agents’ personal networks” (Hamill & Gilbert, 2010, p.85). The 

existence of giant components makes the friendship network highly inter-

connected, while its absence makes the network composed of tiny groups which 

do not interact with each other (Hamill & Gilbert, 2010). 

Given the key characteristics discussed above, the ideal model to set up a 

friendship network should simultaneously have dynamically changing personal 

networks with limited and varying size and a whole friendship network at the 

macro level showing high clustering, low density, positive assortativity, short path 

length and giant component.  

A model for friendship network. In previous literature, four basic types of 

network model are commonly used to simulate a friendship network: regular 

lattice, random, scale free, and particularly small-world. While these standard 

models fit well with some networks, researchers found none of them can 

adequately reproduce the typical features of real friendship networks (Hassan, 

Salgado, & Pavon, 2008; Singer, Singer, & Herrmann, 2009). For example, 

personal networks within a random network normally are of the same size 

(Barabasi & Bonabeau, 2003). For small-world networks, while they are 

considered by some researchers as the best illustrated for friendship networks 

(e.g., Wagner & Fell, 2001), they does not display giant components or positive 

assortativity (Hamill & Gilbert, 2010). The scale-free network has also been 

criticized as a model for friendship network given its low clustering and zero 

assortative index (Hamill & Gilbert, 2008; Newman, 2002).  
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This dissertation adopts the approach developed by Hamill and Gilbert (2008, 

2009, 2010) to set up a friendship network. The characteristics of the network 

generated by this approach correspond to the key features of a friendship network. 

Overall, it constrains and varies the size of personal networks, permits a right-

skewed distribution of degree of connectivity, and allows network changes over 

time. The whole network has a low network density and displays high clustering. 

Positive assortativity by degree of connectivity, giant components and short path 

lengths can also be found in it. Hamill and Gilbert (2009) consider this model 

particularly suitable for simulations of artificial societies. Here it is used to 

simulate a community, which is conceptualized as a friendship network.  

Basic concepts used to set up the network include social space, social circle 

and reciprocity (Hamill & Gilbert, 2008, 2009, 2010). A social space is similar as 

a geographic space, but shows the social distance among people. In the social 

space, two points (individuals) locate close to each other if they are close socially 

(Hamill & Gilbert, 2008). The closer they are, the stronger the relationship 

between them. Social circle here is used as a metaphor (Hamill & Gilbert, 2010). 

Each point (individual) within the space has a circle with itself being the center. 

Within the circle are all the individuals in the map whose distance from the center 

individual is less than the radius. Hamill and Gilbert (2010) called this radius 

social reach, and consider all the points within the social circle as potential friends 

of the center individual. Reciprocity is used to specify which potential friend 

within the social reach of an individual is actually a friend. According to this idea, 

two individuals are permitted to link only when they can reciprocate, namely, 
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when they are within each other’s social reach (Hamill & Gilbert, 2010). If A has 

a larger social reach than B, then B may be in A’s social circle but not vice versa. 

In this case, A knows B while B does not know A. A relationship cannot be 

formulated between them.  

Hamill and Gilbert (2008, 2009, 2010) implemented this network model as 

an agent-based model, with agents representing individuals or nodes. Certain 

number of agents is randomly distributed across an unbounded grid—which 

represents the social space—to achieve a population density of 1%. All agents are 

then split into two groups, with each group having a different social reach. For 

each agent, personal network is formulated through creating links to other agents 

who are reciprocal to each other. The whole friendship network is then formulated 

as all agents’ personal networks are completed. The percent of agents within each 

group and the large and small social reach can be adjusted to change the mean and 

standard deviation of the distribution of the degree of connectivity. To 

accommodate the dynamic mechanism, some agents are randomly selected at 

each time step to move randomly in the social space.   

Simulation setup. While the original model could produce a social network 

with typical characteristics of friendship networks, it does not calibrate 

parameters to adjust the mean, median and standard deviation of the distribution 

of degree of connectivity to reasonable values. According to Wang and Wellman 

(2010), the mean, median and standard deviation of the number of personal off-

line friends in US in 2007 is 11.3, 5, and 15.23, respectively. An off-line friend 

here is defined as people whom individuals contacted face-to-face and by phone 
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at least weekly (Wang & Wellman, 2010). Such positive-skew distribution, where 

the mean is substantially higher than the median, indicates the pattern found in 

other studies on personal network size: a minority of Americans has a much larger 

number of friends than the rest majority (Boase, 2008). Wang and Wellman (2010) 

also found that for individuals, friends whom they meet or speak with are 

substantial. Despite the extensive usage of internet, just about 15% of people have 

one or more friends who are online only (Wang & Wellman, 2010).  Therefore, it 

is assumed in this dissertation that the distribution of degree of connectivity in 

friendship network follows a positive skew distribution with a mean of 11, a 

median of 5, and a standard deviation of 15.  

To calibrate the friendship network generated, experiments are conducted on 

scenarios with different values for large and small social reach. Since the 

maximum size of personal friendship network is 76 and the minimum size is not 0 

(Wang & Wellman, 2010), both social reach values can be adjusted from 5 to 75, 

with a 5 incensement in each scenario. Totally there are 15*15 scenarios, but only 

those in which the value for large reach is larger than that for small reach are 

possible. As a result, there are 105 possible scenarios. 10 experiments are 

repeated for each scenario, and it is found that a large social reach of 65 and a 

small social reach of 10 can produce the best results. The mean, median and 

standard deviation of the distribution of degree of connectivity in this scenario are 

11, 4 and 15, respectively.  

Another assumption made on friendship network is that it is static, with all 

connections remaining constant over time. This assumption is made provided that 
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the turnover of a friendship connection is slow relative to the timescale of a 

pandemic and therefore can be ignored in the context (Keeling & Eames, 2005). 

Also, the population of agents is constant during the simulation. Even if they have 

acquired immunity against some epidemic, they are not removed from the 

population. The only exception is that, when some node dies, this node and all its 

connections are removed. Table 7 shows the difference in friendship network 

between Hamill and Gilbert’s model and the dissertation model.  

Table 7. Differences in Friendship Network between Hamill and Gilbert’s Model 
and Dissertation Model 

Model 

Parameter values Network characteristics 

Large 
reach 

Small 
reach 

Stability 

Distribution of  
degree of connectivity 

Mean Median 
Standard 
deviation 

Hamill & 
Gilbert’s 

35 10 Dynamic 6 4 5 

Dissertation 65 10 Static 11 4 15 
 

For modeling, the friendship network is set up at the beginning of the 

simulation, in a similar way as it is in Hamill and Gilbert’s studies (2008, 2009, 

2010). Certain amount of agents is randomly placed over a space to achieve a 

population density of 1%. 25% of all agents are allocated with large social reach 

while the rest with small one. Personal networks and the whole large friendship 

network are formulated based on the rule specified by social reach and reciprocity. 

For each node, the size of its personal friendship network is the number of friends 

it has. The nodes connected to it are called its friend nodes, and the rest nodes 

stranger nodes. During the simulation, the friendship network remains stable. 

When some node dies, this node and all its friendship connections are removed 



 

from the community; the rest part of the friendship network remains unchanged. 

Figure 5 shows the friendship network created by the model. 

Figure 5.

Agents. Two types of agents are created

sector, and the other residents or individuals in the community. The public sector 

is responsible for devising public risk communication strategy and sending risk 

information to residents according

contact pattern, health status and responsive behavior to the risk information 

received. Interactions between public sector and individuals through risk 

communication and interactions between individuals through both their conta

and information exchange 
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from the community; the rest part of the friendship network remains unchanged. 

shows the friendship network created by the model.  

Figure 5. Community as a friendship network 

Two types of agents are created in the model. One represents public 

sector, and the other residents or individuals in the community. The public sector 

is responsible for devising public risk communication strategy and sending risk 

information to residents accordingly. Individuals are mainly characterized by their 

, health status and responsive behavior to the risk information 

received. Interactions between public sector and individuals through risk 

communication and interactions between individuals through both their conta

and information exchange generate the pandemic impacts at the community level. 

from the community; the rest part of the friendship network remains unchanged. 

 

in the model. One represents public 

sector, and the other residents or individuals in the community. The public sector 

is responsible for devising public risk communication strategy and sending risk 

erized by their 

, health status and responsive behavior to the risk information 

received. Interactions between public sector and individuals through risk 

communication and interactions between individuals through both their contacts 

community level.  
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Action rules. Action rules in an agent-based model define how agents 

behave or interact with one another at each time step. In this model, the action 

rule of public sector is simpler than that of individuals. At each time step, the 

public sector sends risk information to individuals according to certain 

communication strategy. The communication strategy is indicated by five 

indicators: the number and type of channel used for sending risk information, the 

frequency of each channel used for sending risk information (use frequency), the 

percent of population who use each channel for receiving risk information 

(percent of channel user), and the percent of population who consider the 

information from each channel credible (percent of channel believer).11 For 

example, public sector can send risk information to the community using local 

television every one or two days.  

Individual agents’ behavior includes both their daily contact pattern and the 

biological process involved in the pandemic influenza infection. When they 

receive risk information, they also go through a responsive process. The following 

part would explain each type of individual behavior in detail. 

Individual daily contact. Individual contact pattern refers to a description of 

who have been contacted by an individual and how (Mikolajczyk & Kretzschmar, 

2008). Usually it has two indicators: the number of contacts an individual has 

                                                 
11 Why the first three indicators are selected to represent risk communication 
strategy has been explained before. The user and believer percent are related to 
but not exactly sender factors as defined in literature. The user percent could 
mediate the influence of sender factors, since it decides the number of individuals 
who receive information from and are therefore affected by characteristics of 
some channel. The believer percent is related to channel credibility. In addition, 
both indicators may be manipulated by emergency managers to some extent.  
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within a time unit, which is defined as contact rate, and the type of those contacts, 

namely, whether the contact is repeated interaction or one-time encounter 

(Mikolajczyk et al., 2008). In this study, one day is chosen as one time unit. The 

contact rate is actually daily contact rate. 

Before summarizing previous findings on the characteristics of individual 

daily contact pattern and explaining how it is simulated, the concept of contact 

used in the model is first clarified.  

Contact vs. at-risk contact. A closeness of contacts is usually required for the 

transmission of airborne infections (Mikolajczyk & Kretzschmar, 2008). For 

pandemic influenza, most transmissions occur within 3 feet of the source, which 

making close-proximity interactions highly relevant for its spread (Glass & Glass, 

2008; Salathe et al., 2010). As a result, not all contacts are disease-causing 

contacts. Here an at-risk contact or effective contact is used to refer to an 

interaction that is likely to result in infection transmission.  At-risk contacts are 

distinguished from actual contacts, which include all interactions an individual 

has. Unless specified otherwise a contact in this study refers to an at-risk contact.  

For operaionalization purpose, it is further assumed in the model that an 

individual makes an at-risk contact with another individual if at least one two-way 

conversation has been held between them. Such a definition of effective contact 

for pandemic influenza transmission is first proposed by Edmunds et al (1997) 

and then adopted by many later studies (e.g., Beutels et al., 2006; Mossong et al., 

2008). Such a definition is practical and general. It is easier for respondents to 

recall the number of a two-way conversation they have within some time unit and 
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therefore easier for researchers to collect accurate empirical data. It is also 

comprehensive in that other common pandemic influenza transmission 

mechanisms can be included in this definition, such as any sort of physical 

touching (Mikolajczyk & Kretzschmar, 2008). Edmunds et al (1997) also 

provided a detailed explanation for what is a two-way conversation. It is a 

situation “(at a distance which did not require raising the voice) in which at least 

two words were spoken by each party and in which there was no physical barrier 

between the two parties (such as security screens)” (Edmunds et al., 1997, p.950). 

The length of each conversation is not considered in this concept. Nor is the 

number of conversation between the same pair of individuals. In other words, 

multiple times of conversation an individual had with the same other individual 

within one time unit are recorded as one at-risk contact for each party. The 

contact rate used in the model actually indicates the number of different 

individuals an individual has conversations with per day.  

Characteristics of individual daily contact pattern. In current literature 

empirical findings on individual contact pattern for the spread of airborne 

infectious disease are scare, because of the difficulty in comprehensively defining 

an at-risk contact and the considerable work to collect relevant data (Beutels et al., 

2006; Salathe & Jones, 2010). Just a small number of studies have provided some 

quantitative descriptions of individual daily contact rate and contact type for 

airborne epidemic transmission (e.g., Edmunds et al., 1997; Edmunds et al., 2006). 

Findings in these studies are summarized in Table 8.  
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Table 8. Findings on Individual Daily Contact Pattern in Previous Studies 

Author 
(year) 

Distribution of 
individual daily contact rate 

Ratio between 
repeated to  

random 
contacts 

Survey sample12 
Mean 

Standard 
deviation 

Range 

Salathe & 
Jones (2010) 

10 / / / 
A random sample 
from an American 
high school 

Mikolajczyk & 
Kretzschmar 

(2008) 
10 / / / 

A small convenience 
sample of students 
from an university in 
Germany 

Mossong et al. 
(2008) 

13.4 10.6 / / 

A population-based 
prospective survey in 
eight European 
countries 

Read et al. 
(2008) 

/ / / 1:8 
A convenience 
sample of 49 adults in 
UK 

Beutels et al. 
(2006) 

1613 / / 1:3 

A convenience 
sample of 73 students 
and personnel from 
an university in 
Belgian 

Edmunds et al. 
(2006) 

11 / / 1:3 

A convenience 
sample of 29 
undergraduate 
students from an UK 
university  

Glass & Glass 
(2006) 

/ / / 1:3 

A convenience 
sample of 249 
students from an 
elementary, middle 
and high-school in 
US 

Edmunds et al. 
(1997) 

16.8 8 0-40 / 

A convenience 
sample of 92 students 
and their families and 
friends from an 
university in Britain 

 

                                                 
12 The limitation of using the survey results from these studies would be discussed 
in Chapter 6. 

13 Beutels et al (2006) found that each individual averagely had 18 contacts in 
weekdays, and 12 at weekends. 16 is the weighted mean of daily contact rate in 
any day of a week.  
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For example, Salathe and Jones (2010) found that the average individual 

daily contact rate for airborne infection transmission is about 10. This finding is 

line with several other studies (e.g., Edmunds et al., 2006; Mikolajczyk & 

Kretzschmar, 2008). There are also studies which reported a high average daily 

contact rate. Both Edmunds et al (1997) and Beutels et al (2006) found an average 

daily contact of 16 or higher. Besides the mean, the variability in the number of 

daily contacts among individuals is also explored. According to Edmunds et al 

(1997), the number of daily contacts was approximately a normal distribution, 

with a standard deviation of 8, and a range from 0 to 40. Mossong et al (2008) 

reported a standard deviation of 10.6. Based on these findings, individual daily 

contact rate when simulated in the model should follow a truncated normal 

distribution, with a mean larger than 10 but less than 17, a standard deviation 

between 8 and 11, a minimum value of 0 and a maximum value of 40. 

Regarding contact type, previous studies provided three important findings. 

First, casual encounters are predominantly random and irregular; mostly they are 

first-time and non-physical contact, with very short duration (Mossong et al., 

2008; Read et al., 2008). Second, contacts of daily frequency often involve 

physical interactions and are of long duration; those contacts usually occur 

between individuals who are familiar with each other (Mossong et al., 2008; Read 

et al., 2008). Three, the number of casual encounters within a day is significantly 

greater than the number of repeated contacts which typically occur on a daily 

basis; the ratio of the former to the latter reported by several studies is about 3:1 

(e.g., Beutels et al., 2006; Edmunds et al., 2006; Glass & Glass, 2008). Some 
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studies even found a much higher ratio (e.g., Read et al., 2008). Based on the 

three findings, it is assumed in this study that there are two types of contacts 

occurring per day for each individual: random encounter which is changed every 

day and stable contact which is constantly repeated over time. The ratio of 

random encounters to stable contacts among an individual’s daily total contacts is 

at least 3:1. In other words, at least 75% of the people an individual contacts per 

day are randomly selected from the population while at most 25% repeatedly 

contacted each day. Such an assumption supports previous findings that 

interpersonal interactions have a hierarchical structure; there are more daily 

random encounters than stable contacts (Glass & Glass, 2008; Grabowskia & 

Kosinskia, 2005). It also corresponds to the call from previous studies that the 

transmission routine for infection in epidemic models should include both random 

encounters and repeated contacts (Mikolajczyk & Kretzschmar, 2008; Read et al., 

2008).  

Personal & community contact network. The opportunities for an epidemic to 

spread within a community are given by its contact network. In this network, the 

nodes represent individuals in the community, and the edges between nodes the 

contacts between two connected individuals along which an infection is possibly 

transmitted. All edges are symmetrical, which means infection can be transmitted 

in either direction (Grabowskia & Kosinskia, 2005). Edges are also unweighted, 

which means all contacts transit an infection with the same probability (Salathe & 

Jones, 2010). Therefore, community contact network for potential transmission of 

pandemic influenza is abstracted as a non-directed and unweighted graph.  
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Within the network, each node has its own personal or egocentric contact 

network. An egocentric network consists of a focus node, other nodes this node 

connects with, and the connection between the focus node and other nodes. The 

focus node is called “ego” and other nodes connected “alters”. The set of alters of 

this node is its “neighborhood”. The size of this neighborhood is the node’s 

degree of connectivity.  

A node’s personal contact network comprises the ego node, the nodes it 

contacts with per day, and the contact connection between the ego and alter nodes. 

The characteristics of a node’s contact network are determined by its contact 

pattern. The contact rate specifies the size of its neighborhood size. Regarding the 

contact type, since an node’s ego-centric network is its daily transmission routine, 

it should include both random encounters and stable contacts. At least 75% of 

alters in individual contact network are changed every day; they are people an 

individual randomly comes across. The rest 25% alters, at most, remain the same 

group of people the individual constantly contacts.  

Individual contact and friendship network may partially overlap given 

previous findings that daily stable contacts occur between individuals and people 

they are familiar with (Spoors 1995; Wasserman & Faust, 1994).  In this study, it 

is assumed that those people a node repeatedly contacts over time are its friends.  

At the macro level, the community contact network emerges from all 

individuals’ personal contact networks. Because of the turnover of partial 

individual contact networks, the community contact network would also be 

dynamically changing every time unit.  
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Simulation setup. To simulate individual daily contact, the value for the 

parameter of “contact capacity” is first decided for each node at the beginning of 

the simulation. The value is randomly selected from a truncated normal 

distribution, with a mean of 10, a standard deviation of 10.6, a minimum value of 

0 and a maximum value of 40. Contact capacity represents the number of people a 

node can contact per day. It is distinguished from the parameter of “contact rate”, 

which represents the number of people each node actually contacts on some day. 

The former may be larger than the latter since the community size may constrain 

the number of people a node can actually meet. Furthermore, nodes may reduce 

their daily contact rates in a pandemic situation for self-protection.  

The initial personal contact network is set up for each node according to its 

contact capacity and the ratio between random and stable contacts. A parameter of 

“stable contact capacity” is used to represent the number of stable contacts each 

node can have daily. Its value equals to the product of contact capacity and 0.25. 

If the product is not an integer, the value equals to the next integer that is larger 

than the product. Similarly, a parameter of “random contact capacity” is used to 

represent the number of random contacts each node can have daily, and its value 

equals to the difference between contact capacity and stable contact capacity.  

To set up a node’s personal contact network, a number of stable contact 

capacity of nodes are randomly selected from this node’s personal friendship 

network. A connection is then created between this node and each selected friend 

node. These selected friend nodes represent the individuals this node repeatedly 

meets every day. The connection between the node and each selected node 
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represents stable contact.  Two situations need attention when stable contacts are 

created. First, if the size of personal friendship network is larger than the stable 

contact capacity, the value for stable contact capacity is set to the value for the 

number of this node’s friends. All friends in this situation would be the node’s 

stable contacts, and the value for random contact capacity increased. Second, only 

one stable contact can be created between two nodes and only when the stable 

contact capacities of both ends have not been achieved. If there are already stable-

contact connections connected to the node before it starts to create its stable 

contacts, the number of stable contact created by itself should not be stable 

contact capacity but the difference between the stable contact capacity and the 

number of stable-contact connections that have been connected to it. For nodes 

whose stable contact capacity has been achieved, no stable-contact connection can 

further be created for it. Therefore, when the stable contact capacity of one 

selected friend node has been achieved, another friend node that has not been 

selected should be randomly selected. If none of the friend nodes can be selected 

for connection, the stable contact capacity of the node would not be achieved. The 

value for random contact capacity would not be changed as well. Aimed at this 

case, the model uses a parameter of “stable contact rate” to represent the number 

of stable contacts a node has per day.  

For random contacts, a number of random contact capacity of nodes are 

randomly selected from all stranger nodes, and then connected with the node. 

These selected stranger nodes represent those individuals the node randomly 

encounters on some day, and the connections random contacts on that day. The 
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special situations when random contacts are created are similar as those when 

stable contacts are created, and are handled by the model in the same way. A 

parameter of “random contact rate” is created to represent the number of random 

contacts a node has per day. Its value is not necessarily equal to the random 

contact capacity.  

The community contact network emerges when all nodes set up their 

personal contact networks. At the beginning of simulation, the distribution of 

degree of connectivity in the formulated community contact network follows a 

truncated normal distribution, with a mean of 13, a standard deviation of 8, a 

minimum value of 0, and a maximum value of 40.14 Such a distribution 

corresponds to what has been proposed by previous studies.   

For each individual node, the model creates a dynamic and hierarchical 

structure for its personal contact network. Both stable and random contacts exist 

in the network.  During the simulation, the stable-contact connection remains 

constant till either end dies. When a node dies, it is removed from the community, 

as well as all of its contact connections. The random-contact connection is 

updated per time unit; namely, all random-contact connections are removed for 

each node at the end of each time step, and then recreated at the beginning of the 

next time step.  

 

                                                 
14 The distribution of degree of connectivity in the formulated community contact 
network is not necessarily the same as the distribution used to decide each node’s 
contact capacity, since the former is decided by each node’s contact rate, which is 
not necessarily the same as its contact capacity.  
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Individual biological process involved in pandemic influenza infection. The 

most common or basic epidemic contagion consists of a transmitter, receiver, and 

transmission channel (Brodie, 1996; Comellas, Ozon, & Peters, 2000). For 

pandemic influenza, transmitters are infectious individuals. Receivers are 

susceptible individuals who have contacted with transmitters. The transmission 

channel is the contact between them. Given the definition of a contact, the only 

transmission channel in the model is the direct contact between a susceptible and 

an infectious individual. As a result, the pandemic influenza is transmitted in the 

model from individual to individual via a contact network.  

Meanwhile, Standard compartment models, although limited in providing 

insights for epidemic control, build the basis for previous studies using social 

network or massive agent-based models to simulate the unconscious biological 

process after susceptible individuals get infected. In this model, the disease 

progression of the pandemic influenza is modeled as an SEIR infection.15 

The standard Susceptible-Exposed-Infected-Removed (SEIR) four-

compartment model, as shown in Figure 6, successfully captures the disease 

progression process of certain type of influenza. Particularly, it considers the 

“exposed” status individuals enter after they get infected (Li et al., 1999; Rost & 

                                                 
15 The methodological framework developed here would be later implemented in 
a specific case, to simulate the spread dynamics of 2009 H1N1 influenza in a 
community of Arizona. The infection progress of this pandemic influenza has 
been modeled by previous studies based on SEIR model (e.g., Balcan et al., 2009; 
Halder, Kelso, & Milne, 2010). That is why SEIR model is explained here among 
all other types of compartment models. If the framework is used in another case, 
the infection progress may be conceptualized based upon another compartment 
model, depending upon the epidemiologic features of the epidemic simulated. 
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Wu, 2008). Differential equations defining the transition rates between 

compartments in the model are presented as follows: 

dS
dt � �αβS E′ � I

N  

dE
dt � αβS E′ � I

N � σE 

dI
dt � σE � �γ� µ�I 

dRe
dt � γI 

dD
dt � µI 

Similar as in the SIR model, the first compartment includes people who are 

susceptible to the disease (S). α is the infection rate and β is the contact rate. Once 

infected, the susceptible transit into the exposed status (E), during which 

individuals may be infectious but not yet show any disease symptom. E’ in the 

equations above represents the number of exposed people who have become 

infectious. σ represents the progression rate from E to I; its reciprocal (σ
-1)  is the 

latent period, the time period between exposure to the disease and the time point 

the disease becomes apparent through symptoms (Perez & Dragicevic, 2009). 

After the latent period ends, the exposed become infected people (I) who are both 

infectious and symptomatic. The removed (R) compartment consists of people 

who either recover (Re) from the disease after the infection period (γ
-1) or die (D) 

when they are in the infected status. γ is the recovery rate, and µ is the mortality 

rate among infected people. Generally the recovered is assumed to acquire full 

immunity to subsequent infection so that these individuals never re-enter the 



 

susceptible population (Chow et al., 2008; Bootsma & Ferguson, 2007). N is the 

total number of people in the system, excluding those who died.

Figure 6. SEIR 

Simulation setup. Using the state transfer concept of SEIR model, the 

individual biological progress involved in the influenza infection i

shown in Figure 7. Each individual node in the model could have one of five 

potential health states: su

and died (D). Definitions of these statuses are defined as below. 

• Susceptible: the node is healthy, but susceptible to infection from its contacts 

• Exposed: the node has been exposed to infection, but not yet showed any 

symptom. It may be infectious, transmitting the influenza virus to 

• Infected: the node is both infectious and symptomatic

• Recovered: the node has experienced the infection,

acquires lifetime immunity, and no longer poses a threat to its contacts

• Died: the node has been

community, as well as all of its friendship and contact connections. 
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susceptible population (Chow et al., 2008; Bootsma & Ferguson, 2007). N is the 

total number of people in the system, excluding those who died. 

SEIR model of an epidemic infection progress 

Using the state transfer concept of SEIR model, the 

individual biological progress involved in the influenza infection is simulated as 

. Each individual node in the model could have one of five 

potential health states: susceptible (S), exposed (E), infected (I), recovered (Re) 

and died (D). Definitions of these statuses are defined as below.  

Susceptible: the node is healthy, but susceptible to infection from its contacts 

Exposed: the node has been exposed to infection, but not yet showed any 

symptom. It may be infectious, transmitting the influenza virus to its contacts

Infected: the node is both infectious and symptomatic 

Recovered: the node has experienced the infection, and recovered from it. It 

acquires lifetime immunity, and no longer poses a threat to its contacts

Died: the node has been killed by the infection. It will be removed from the 

community, as well as all of its friendship and contact connections.  

susceptible population (Chow et al., 2008; Bootsma & Ferguson, 2007). N is the 

 

Using the state transfer concept of SEIR model, the 

s simulated as 

. Each individual node in the model could have one of five 

, recovered (Re) 

Susceptible: the node is healthy, but susceptible to infection from its contacts  

Exposed: the node has been exposed to infection, but not yet showed any 

its contacts 

and recovered from it. It 

acquires lifetime immunity, and no longer poses a threat to its contacts. 

killed by the infection. It will be removed from the 



 

Figure 7. Individual biological progress after being infected

Over time, individual nodes’ health statuses evolve along the direction 

showed by the arrow in Figure 7. Transition probabilities between two adjacent 

states at each time step are decided by different

transition from susceptible to exposed, this study adopts the following formula 

developed by previous studies (Eidelson & Lustick, 2004; Salathe & Jones, 2010), 

to calculate the probability (P

the exposed status at each time step: 

where PSE is a susceptible node’s infection probability. 

which represents the probability for a susceptible node to get infected through a 

contact with a infectious node. 

number of nodes among a node’s daily contacts who are infectious. While the 

value for α is decided by the contagiousness of the 

susceptible nodes, values for 

their daily contacts in normal condi

behavior, and the health status and protective behavior of the nodes they 

contacted. Previous studies often make assumptions about how the infection rate 
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Individual biological progress after being infected 

Over time, individual nodes’ health statuses evolve along the direction 

showed by the arrow in Figure 7. Transition probabilities between two adjacent 

states at each time step are decided by different parameters. For the status 

transition from susceptible to exposed, this study adopts the following formula 

developed by previous studies (Eidelson & Lustick, 2004; Salathe & Jones, 2010), 

to calculate the probability (PSE) for a susceptible node to get infected and enter 

the exposed status at each time step:  

 

is a susceptible node’s infection probability. α is the infection rate, 

which represents the probability for a susceptible node to get infected through a 

contact with a infectious node. β' is the infectious contact rate; it represents the 

among a node’s daily contacts who are infectious. While the 

 is decided by the contagiousness of the influenza and shared by all 

susceptible nodes, values for β’ vary among nodes, depending upon the number of 

their daily contacts in normal conditions, whether they are taking protective 

behavior, and the health status and protective behavior of the nodes they 

contacted. Previous studies often make assumptions about how the infection rate 

 

Over time, individual nodes’ health statuses evolve along the direction 

showed by the arrow in Figure 7. Transition probabilities between two adjacent 

parameters. For the status 

transition from susceptible to exposed, this study adopts the following formula 

developed by previous studies (Eidelson & Lustick, 2004; Salathe & Jones, 2010), 

fected and enter 

 is the infection rate, 

which represents the probability for a susceptible node to get infected through a 

' is the infectious contact rate; it represents the 

among a node’s daily contacts who are infectious. While the 

and shared by all 

’ vary among nodes, depending upon the number of 

tions, whether they are taking protective 

behavior, and the health status and protective behavior of the nodes they 

contacted. Previous studies often make assumptions about how the infection rate 



  105 

varies among different types of contacts, for example, contacts with different 

duration, frequency, occurrence time, and social and spatial proximity 

(Cauchemeza et al., 2011). However, according to Newman (2002), the variance 

in infection rate does not influence the statistical properties of an epidemic 

outbreak. It would spread in the population as if all contacts present an equal 

chance for infection. In this study, the infection rate is set to one constant value. 

This assumption also corresponds to the assumption of symmetric and un-

weighted edges in the contact network.  

The concept of infection probability essentially represents the probability for 

a susceptible node to get infected after it has disease-causing contacts with 

infectious individuals within one time step. It reflects the fact that at-risk contacts 

do not guarantee an infection (Jones & Adida, 2011). It also enables the model to 

include the heterogeneity in individuals’ vulnerability and resistance to the 

disease (Huang, Sun, & Lin, 2005). Nodes in the model with the same infection 

probability at the same time do not necessarily all become infected, which reflects 

some people are more susceptible than others.  

For the transition from exposed to infected status, previous literature has 

employed two ways to set the value for latent period in epidemic models: the 

constant-length method with all exposed individuals having the same value for 

their latent period (e.g., Haber et al., 2007; Longini et al., 2005), and the random-

length method where all exposed individuals have the same progression rate from 

exposed to infected status (Dunham, 2005; Easley & Kleinberg, 2010). In the 

second way, the progression rate is usually calculated as the reciprocal of the 
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average length of the latent period found in empirical data. Each exposed node is 

randomly decided whether to have status transition based on the progression rate. 

Variety in the length of latent period therefore can be created. In this study, the 

model uses the second way to consider the latent period, given the heterogeneity 

found in empirical data in individuals’ latent period after they get infected by a 

pandemic influenza (CDC, 2009a). A parameter called infected probability (PEI) 

is used to represent the probability for each exposed node to transit to the infected 

status at each time step. Its value equals to the reciprocal of the average latent 

period empirically found for a pandemic influenza.  

Similarly, previous studies also provide a constant-length way and a random-

length way to simulate the infected period (e.g., Haber et al., 2007). Considering 

the variety empirically found in the infected period for a pandemic influenza 

(CDC, 2009a), the model also chooses to model the infected period as random in 

length, by assuming that all infected nodes have the same probability to recover 

from the influenza at each time step. This probability is called recovered 

probability (PIR). Its value is equal to the reciprocal of the average length of 

infected period empirically found for a specific influenza (Germann et al., 2006; 

Mathews et al., 2007). 

Besides recovering from the disease, infected nodes can also be killed by the 

disease. The probability for them to die at each time step is defined as mortality 

probability. Its value is equal to the value for mortality rate found in empirical 

data for a pandemic influenza.  
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The above staged process reflects the rule that governs the disease progress 

for all nodes at each time step in the model. For susceptible nodes, they get 

infected based on the probability decided by the contagiousness of the disease and 

their daily contact and protective behavior. Once a node is exposed, it remains in 

the status for its own length of latent period and then enters the infected status. 

For infected nodes, they may be killed by the disease with a probability of 

mortality probability at each time step. If they survive the step, they have a 

probability of recovery probability to recover from the influenza. Furthermore, a 

recovered node would have lifelong immunity on recovery to the influenza.   

Individual response process to risk information. The response process of 

individuals to risk information is simulated based on the individual warning 

response model developed by Quarantelli (1983). As shown in Figure 8, the 

response process begins with the receipt of risk information, which is greatly 

influenced by the communication strategy employed by the public sector. After 

receiving the information, individuals go through a reaction process. This process 

consists of a set of sequential stages, including initial risk perception, social 

confirmation, and situational definition. Individuals first attach their own meaning 

to the information, and then develop an initial perception in terms of whether the 

risk being communicated exists and how severe it is.16 Public risk communication 

here has considerable influence on individuals’ risk perception. After that, people 

ask or observe their friends regarding how they perceive or respond to the risk. 

Individuals define their situation based on both their initial risk perception and 

                                                 
16 The stages of understanding and initial risk perception are combined by 
Quarantelli (1983) into one stage: initial risk perception.  
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their observation during the social confirmation stage. Quarantelli (1983) defines 

the situational definition as whether individuals believe they are personally 

endangered. It is different from the initial risk perception, since the latter refers to 

whether individuals believe the general public or others are in danger. Individuals’ 

responsive behavior is represented by whether they would take protective actions. 

Situational definition is an important determinant of individual responsive 

behavior, while there are also other influential factors. Furthermore, it is clear that 

in the model public risk communication affects individuals’ response to risk 

information through influencing their warning receipt and initial risk perception. 

 
There are also other well-established models explaining individual response 

to emergency risk information, for example, Lindell & Perry model (Lindell et al., 

2005; Lindell & Perry, 1992, 2004), Mileti model (Mileti & Sorensen, 1990) and 

Donner Model (Donner, 2007).  Most of them can be considered as an extension, 

Figure 8. Quarantelli model of individual emergency warning 

Warning Message 

Warning Receipt 

Response Influential Factors 

Situational Definition 

Influential Factors Social Confirmation Initial Perception Influential Factors 
(Public Risk Communication) 

Influential Factors 
(Public Risk Communication) 
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or more accurately specification, of the Quarantelli model. Considering 

Quarantelli’s model is more general and inclusive, it is included in the agent-

based model to simulate individuals’ response to risk information. 

Simulation setup. In the model, each type of channel sends risk information 

with a certain frequency. Several types of channel can be used simultaneously, 

with each sending information according to their own frequency. Here channel 

frequency is defined as how regularly certain channel is used; it is measured in 

once per number of time steps or number of days. When some channel is sending 

information, certain percent of agents is randomly selected as channel users 

according to this channel’s user percent, and then certain percent of agents as 

channel believers according to the believer percent. The same individual can be 

selected to use or believe several types of channel at the same time step.   

After individuals receive risk information, it is assumed that they understand 

what information attempts to convey, and formulate their initial risk perception. 

The initial risk perception here is defined as the probability for an individual to 

have a high level of risk perception, namely to believe that the pandemic 

influenza poses great danger for the general public (PI). Such a probability in the 

agent-based model is influenced by the number and type of channel the individual 

uses to receive risk information, and whether the individual believes each channel 

is credible. The way in which the probability is influenced depends upon the 

specific research context.  

Difficulties to simulate the responsive process lie in the stage of social 

confirmation and situational definition. Previous literature has been ambiguous 
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about what type of information is collected by individuals at the confirmation 

stage and how they use all information received and collected to make decisions 

on the adoption of protective behavior. To address those limitations, this 

dissertation uses the innovation diffusion model created by Delre, Jager, and 

Janssen (2007) to simulate how individuals behave during the two stages.  

Delre et al’s innovation diffusion model is created to simulate how the 

aggregate level of penetration of a new product emerges from individuation 

decision on adopting the product. This model is also a network-based ABM. The 

nodes of the network in the model are individual agents and links between two 

nodes represent friendship relation. The adoption decision of an individual agent 

is described as the probability to use the new product and calculated at each time 

step as  

P� � fx� � �1 � f�y� 

where Pi is the adoption probability of individual i. yi is individual preference, 

which reflects the mass media influence. xi is the local social influence. f weights 

these two forces and presents how strong the local influence affects the 

probability. The value for f is between 0 and 1.  

Concerning the local social influence, it is from a node’s personal friendship 

network and due to word-of-mouth process with its friends (neighbors in its 

personal friendship network). The model assumes that agents are involved in such 

a process if and only if they receive a message from some friend that the friend 

has already adopted the product. When the number of times of the node’s 

involvement in the process exceeds certain threshold, the social influence emerges 
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and influences its own adoption probability. Delre used a parameter of Hi to 

represent the personal threshold which decides a node’s susceptibility to its 

friends’ behavior. If the fraction of adopters among a node’s friends is higher than 

Hi, the node feels the social influence. The value for xi in this case is 1; otherwise, 

the value is 0.  

There are two reasons why Delre et al’s model can be used in this research 

context. First, the mechanism of the target social process is similar. Both models 

aim to simulate the spread of some subject, a new product or protective action, 

over a network through modeling individual decision making process. The 

decision is about whether or not to take some action to protect or improve their 

benefits, and it is simultaneously influenced by two communication processes. 

For the model created by Delre et al (2007), the rationale of the formalization of 

individual adoption decision is rooted in social influence theory, particularly the 

work of Bass (Delra et al., 2007). Bass formalizes the decision of a consumer to 

adopt a new product as a probability. The probability is determined by two 

processes of communication: external influence via advertising from mass media 

and internal influence via word-of-mouth (Delra et al., 2007). Consumers form 

their own preference for the product after receiving advertising information. Then 

they observe their friends’ behavior or receive messages from their friends about 

whether their friends have adopted the product. Such a process is very similar as 

the individual decision making process on responsive behavior after receiving risk 

information: individuals’ decision on taking protective action depends on their 

initial risk perception which is formulated by the external risk communication 
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effort from public sector and on the internal influence that they receive from their 

friends. Second, a network-based ABM is used in both studies to simulate the 

target process, and a friendship network is included in both models as the 

underlying network to simulate how the product or action spread over it.  

However, Delre et al’s model is still unclear about how individual preference 

is formulated by external communication. Here research findings from previous 

literature on emergency risk communication are used to simulate this missing part, 

as discussed before.  

Based on the innovation diffusion model, it is assumed in the model that 

Individual responsive decision is defined as the probability to take protective 

action. It is made based on both external and internal influences at the stage of 

situational definition. The risk information individuals receive from the public 

sector is the external influence; it formulates individuals’ initial perception. The 

internal influence comes from the information individuals collect from some of 

their friends during the social confirmation stage. The internal influence does not 

always exist. Its existence depends upon whether the percent of a node’s friends 

selected for information collection who take protective action among all friends 

selected for information collection exceeds certain threshold.  

Specifically, at the social confirmation stage, an individual node selects some 

nodes from its personal friendship network to observe or ask whether they are 

taking protective behavior. The number of friend nodes selected is represented by 

the parameter of “confirmation attempts”, and is randomly chosen from 1, 2, 3 

and 4 (Lindell & Perry, 2004). The sequence of asking is based on the closeness 
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of this node to its friend nodes. It first asks its closest friend, the node among its 

friends nodes which locates the nearest to it in the social space, and then its 

second closest friend, till the value for confirmative attempts is achieved. If the 

value for confirmative attempts is larger than a node’s number of friends alive, the 

former would be set equal to the latter. If a node has no friends, no social 

confirmation occurs; the node’s responsive decision is solely influenced by its 

initial risk perception. Furthermore, a moderate assumption is made on the 

personal threshold for internal influence to occur, since no relevant research 

findings have been found. A parameter called “internal influence threshold” is 

created. It is assumed that when 50% or more of a node’s friends who are selected 

among all friends for information collection have taken protective action, there 

would be an internal influence affecting the responsive decision made in the 

following stage.  

At the stage of situational definition, the responsive decision, described as 

action probability, is calculated as 

P� � fF�� � P��1 � f� 

where PA represents individual responsive decision. f represents the strength 

of friends’ influence on the decision. A moderate assumption is made on the value 

for this parameter. Both influences have the same weights in influencing the 

responsive decision, and f is equal to 50%. PI is a node’s initial risk perception. 

FIN represents whether internal influence occurs. The value for this parameter is 1 

when the internal influence threshold is exceeded and 0 otherwise.  
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Based on the action probability calculated above, individuals in the model are 

randomly selected to take protection action. The higher the action probability, the 

more likely a node takes protective action. For example, if a node’s action 

probability is 60% at time step t, then it has a 60% possibility to take action and 

40% chance not to do so at this time step. Furthermore individuals with the same 

action probability do not necessarily have the same responsive behavior. The way 

the model simulates the occurrence of protective action corresponds with what 

has been found in previous literature. Individual decision on responsive behavior 

is a key factor determining their actual responsive behavior; the more necessary 

an individual considers protective action, the more likely the action would be 

taken. Meanwhile, the decision is not the only influential factor. 

In the model, the protective action individuals take is assumed to be non-

pharmaceutical measure against influenza infection. That is because 

pharmaceutical measures—vaccine and antivirals—against a novel influenza are 

normally in absence when it starts to spread among a population. Individuals 

adopting these non-pharmaceutical measures typically reduce their contacts with 

other people to decrease their probability of being infected. Such measures are 

also called in current literature avoidance action or avoidance behavior (Lau et al., 

2010; Yoo, Kasajima, & Bhattacharya, 2010). Avoidance behavior in the 

simulation is assumed to influence the contact pattern. It does not influence the 

values for other parameters; for example, the latent and infected periods remain 

the same regardless of whether exposed or infected people engage in avoidance 

behavior. For daily contact rate, previous researchers estimate that the effective 
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contact rate, which is the product of the infection rate and the contact rate, could 

be reduced by 30-90% through the early implementation of non-pharmaceutical 

pandemic mitigation measures (Larson & Nigmatulina, 2009; Jefferson et al., 

2008). The infection rate could be regarded a constant representing the biological 

features of the disease. So it can be inferred that avoidance behavior could reduce 

people’s contact rate by 30-90%. In the model, a parameter of avoidance behavior 

effect (φ) is set to represent the reduction in contact rate due to avoidance 

behavior. The value for this parameter is randomly selected among 30%, 40%, 

50%, 60%, 70%, 80%, and 90%, and it is updated for each node each time step 

when it responds to risk information by taking avoidance behavior.  

For the type of individual daily contacts, no findings have been found on how 

it is influenced by avoidance behavior. This model assumes that the structure of 

individual daily contact would be sustained, despite their response to risk message. 

The number of stable and random contacts would be reduced by the same degree 

by avoidance behavior. For example, if a node has a normal daily contact rate of 

24, and its avoidance behavior effect is randomly selected to 50% at some time 

step when it takes the behavior, then its stable daily contacts would be reduced to 

3 (24 * 0.25 * 0.5), and random daily contacts to 9 (24 * 0.75 * 0.5). 3 out of the 6 

original stable-contact nodes would be selected as the current stable-contact nodes, 

and 9 stranger nodes randomly selected as the current random-contact nodes.  

Individual responsive process is initiated every time when a node receives 

risk information, despite whether it has received risk information or taken 

responsive behavior before.  
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Summary. The simulation flowchart in the model is shown in Figure 9. 

Before the simulation starts, the friendship and contact network are set up, with 

each node having its own personal friendship and contact network. During the 

simulation, at the beginning of each time step, first infected and then exposed 

nodes go through the biological process of the disease, as shown Figure 10. A 

parameter called “recovering?” is created to represent whether infected nodes 

should enter the recovered status at the beginning of each time step. For those 

nodes, if their recovering? is true, they would recover from the disease. If their 

recovering? is false, they remain infected status. For those who are still in infected 

status, they have the probability of mortality probability to die from the diseases 

at this time step. If they stay alive, they have the probability of recovery 

probability to have their recovering? set true (its default value is false), which 

means they would recover from the disease at the beginning of next time step.  

For exposed individuals, a parameter called “infectious?” is used to represent 

whether they have been infectious. If its value is true, exposed nodes have been 

infectious since the beginning of previous time step, and should become infected 

this time step.17 If the value is false, no status change occurs for these nodes. As 

shown in Figure 10, at the beginning of each time step, exposed nodes with a true 

value for infectious? enter the infected status. Exposed nodes with a false value 

for infections? remain their status, and have a probability of infected probability 

to set their value for infectious? true (its default value is false), which means they 

can spread the virus through contact to susceptible nodes within this time step. 

                                                 
17 Explanation would be provided later for why there is one day for exposed nodes 
to be infectious.  
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Figure 9. Simulation flowchart of the model 
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Figure 10. Biological progress of infected and exposed individuals  
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exposed nodes finish their biological progresses, the friendship network and the 

stable part of the contact network are updated to keep all nodes within them alive.  

The risk communication strategy is then implemented in the community. 

Public sector can change the five policy indicators as implementing different 

strategies. At each time step, whether some type of channel is sending risk 

information is decided by its use frequency. If it is being used, certain percent of 

nodes are selected among the population as the user and believer of this channel. 

The same node can be the user or believer of several types of channel which all 

send risk information at the same time step. 

The receipt of risk information initiates a node’s responsive process, if its 

health status is susceptible, exposed, or infected. These nodes have the potential 

to perceive the risk and take avoidance behavior for self-protection or preventing 

themselves from spreading the virus. For recovered nodes, they can be neither a 

transmitter nor a receiver. Previous literature has not provided insights in terms of 

how individuals respond to risk information when the potential risk constitutes no 

threat to them. The model assumes that recovered nodes have no response to the 

risk information; they will ignore the information and continue with their normal 

activities. If a node has not received any information, it will also act in normal. 

Risk information influences individual responsive behavior by formulating 

their initial risk perception. In the model, a node’s initial risk perception is 

decided by the five risk communication indictors. But how the former is 

formulated by the latter depends upon the specific research context. After the 

initial risk perception is formulated, a node sequentially goes through the stage of 
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social confirmation, situational definition and response, as described before. The 

final result from the responsive process is a node’s responsive behavior, and it is 

represented by whether or not the node takes avoidance behavior.  

After all nodes have finished their responsive process, they update their 

contact network according to their responsive behavior. If a node takes avoidance 

behavior, its personal contact network is recreated in the way as described before. 

If it does not take the behavior, its stable contacts remain unchanged, while its 

random contacts recreated. This new personal contact network represents the 

contact routine of this node at this time step. The new contact network of the 

community emerges after all nodes establish their new personal contact networks.  

Agents then interact with each other along their contact network just updated. 

After all nodes have interacted with their neighbors in their personal contact 

network, susceptible nodes begin their process of biological progress. An 

infection probability is calculated for each susceptible node, and a status change is 

randomly determined based on the probability. A susceptible node has a 

probability of infection probability to get infected and enter exposed status; 

otherwise, it is still susceptible to the disease.  

The above process is repeated each time step after the simulation starts till 

the time limit.  

Description of parameters. Key parameters used in the model can be 

categorized into four groups. They are the environment parameters, epidemiologic 

parameters, personal parameters, and policy parameters. A detailed description of 

these key parameters is as follows.  
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Table 9 shows those parameters which characterize the community simulated. 

The first four parameters define the size and shape of the community. The 

population-related parameters define the total population and the number of 

people in each health status. The rest environment parameters are used to set up 

the friendship and contact network.  

Table 9. Environment Parameters in the Model 

Parameter Description 

XMIN Minimum x coordinate of the simulation space 
XMAX Maximum x coordinate of the simulation space 
YMIN Minimum y coordinate of the simulation pace 
YMAX Maximum y coordinate of the simulation space 
  

%-large-reach 
The percent of agents who have large reach among 
community population 

Large-reach 
The radius of the large social circle; it is used to create 
friendship network 

Small-reach 
The radius of the small social circle; it is used to create 
friendship network 

  
Mean-of-daily-contact-
capacity 

The average daily contact capacity among community 
population 

Std-of-daily- 
contact-capacity 

The standard deviation of the distribution of individual daily 
contact capacity in the community  

Max-of-daily-contact-
capacity 

The maximum daily contact capacity among community 
population 

Min-of-daily- 
contact-capacity 

The minimum daily contact capacity among community 
population 

%-of-stable-contact 
The average percent of stable contact capacity among 
individual daily contact capacity in the community  

  
Population The number of individual agents in the community 
%-susceptible-
population 

The percent of agents susceptible to the disease among 
community population 

%-exposed-population 
The percent of agents in exposed status among community 
population 

%-infected-population 
The percent of agents in infected status among community 
population; it is also called morbidity 

%-recovered-
population 

The percent of agents in recovered status among community 
population 

%-died- 
population 

The percent of agents who have died from the disease  
among community population 
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The second set of parameters is related to the disease being modeled. For an 

epidemic which can be simulated through the status transfer concept of SEIR, 

infection rate, latent period, infected period, and mortality rate are needed to 

specify the individual status progress involved in the epidemic, as shown in Table 

10. Values for these parameters depend on the biological characteristics of the 

epidemic, and can be inferred from scientific literature, from research experience, 

or from data results collected from the field (Bagni, Berchi, & Cariello, 2002). 

Table 10. Epidemiologic Parameters in the Model 

Parameter Description 

Infection-rate 
The probability for a susceptible individual to get infected 
after a contact with an infectious individual 

Latent-period 
The period of time between exposure to the disease and the 
time the disease becomes apparent through symptoms 

Period-of-exposed-
being-infectious 

The period of time during which exposed individuals can 
spread the virus to others 

Infected-period 
The period of time between the moment an individual 
becomes symptomatic and the moment the individual 
recovers from the disease 

Mortality-rate 
The probability for an infected individual to die from the 
disease at each time step 

 

The third set of parameters is related to individual agents’ characteristics and 

behaviors (Table 11). The values for most of these parameters are updated each 

time step for each agent alive, to reflect its current daily contact pattern, its health 

status, and whether it is taking avoidance behavior.   

Table 11. Personal Parameters in the Model 

Parameter Description 

Social-reach 
The radius of an agent’s social circle for friendship network 
setup; it is either a large or a small reach 

Number-of-friends 
The number of friend agents an agent has; 
it is the size of the agent’s personal friendship network 
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Contact-capacity The number of agents an agent can contact per time step 

Contact-rate 
The number of agents an agent contacts at each time step; 
it is the size of the agent’s personal contact network 

%-of-stable-contacts 
The percent of stable contacts an agent has per time step 
among its daily contacts 

Stable-contact-capacity 
The number of stable contacts an agent can have per time 
step; its value equals to the product of contact capacity 
and %-of-stable-contacts 

Stable-contact-rate The number of stable contacts an agent has at each time step 

Random-contact-
capacity 

The number of random contacts an agent can have per time 
step; its value equals to the difference between contact 
capacity and stable contact capacity 

Random-contact-rate 
The number of random contacts an agent has at each time 
step 

  

Health-status The health status of an agent relative to the disease 

Infection-probability 
The probability for a susceptible agent to become exposed at 
each time step 

Infected-probability 
The probability for an exposed agent to become infected at 
each time step; it is decided by the latent period 

Recovered-probability 
The probability for an infected agent to recover from the 
disease at each time step; it is decided by the infected period 

Mortality-probability 
The probability for an infected agent to die from the disease 
at each time step 

Infections? Whether an exposed agent is infectious at each time step 

Recovering? 
Whether an infected agent would recover from the disease 
next time step 

  

New-info? 
Whether an agent receives any risk information at each time 
step 

Channel-user? 
Whether an agent is using some channel for risk information 
at each time step 

Channel-believer? 
Whether an agent believes the risk information from some 
channel is credible 

Initial-risk-perception 
The probability for an agent to believe the general public is 
greatly endangered 

Confirmation-attempts 
The number of friends an agent asks during the social 
confirmation stage 

Responsive-decision 
The probability for an agent to take avoidance behavior at 
each time step 

Action? Whether an agent takes avoidance behavior at each time step 

Action-effect 
The reduction in an agent’s daily contact rate due to the 
adoption of avoidance behavior at each time step 

Social-influence-
threshold 

The threshold for social influence to occur during the 
situational definition stage 

Social-influence-effect 
The percent of responsive decision which is decided by 
social influence 
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The final set of parameters is policy indicators, which specify the 

communication strategy employed by public sector. The number and type of 

channel in use determine which types of channel are used to send risk information. 

The rest three parameters in Table 12 decide the characteristics of each channel in 

use, including the percent of people among the community population who use 

and believe the credibility of the channel, and its use frequency.  

Table 12. Policy Parameters in the Model 

Parameter Description 

Number-of-channel-
in-use 

The number of different types of channels used by the public 
sector to send risk information at each time step 

Channel-type The type of channel being used 

%-channel-user 
The percent of agents who use some channel to receive risk 
information among community population 

%-channel-believer 
The percent of agents who believe risk information from 
some channel is credible among community population 

Channel-frequency How regular some channel is used to send risk information 

 

Model implementation in Netlogo. In this dissertation, the agent-based 

model created is implemented in Netlogo. Netlogo is a multi-agent programmable 

modeling environment. It is developed based on the Logo programming language 

and can serve as the basis for a variety of multi-agent simulation models. The user 

interface of the model after implemented in Netlogo is presented in Appendix A, 

and the source code to implement the model in Netlogo in Appendix B.  
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Chapter 5 

Computational Simulation Results 

Research Context: 2009 H1N1 Influenza Outbreak in Arizona 

2009 H1N1 influenza emerged as a new pandemic strain of influenza in April 

2009. As the first global influenza pandemic in over 40 years, it caused a 

substantial number of illnesses, hospitalizations, and deaths (CDC, 2010a). On 

June 11, 2009, WHO declared that a pandemic of 2009 H1N1 influenza was 

underway (CDC, 2010b). The United States experienced its first wave of outbreak 

in the spring and summer months of 2009. A public health emergency was 

declared by the U.S. government on April 26. By June 19, all states in the U.S. 

had reported cases of 2009 H1N1 infection. The second wave occurred in the fall 

of 2009, with most of the nation experiencing the influenza outbreak from 

October to early December 2009 (Ross et al., 2010).   

In Arizona, the first case of 2009 H1N1 infection was confirmed on April 29, 

2009 (Shanks, 2009). The Arizona Department of Health Services (ADHS) has 

been reporting the number of newly infected and deceased cases each week since 

August 30, 2009. By early October 2009, a total of 2,243 people had been 

infected by and 30 people had died from the influenza in Arizona (ADHS, 2009a). 

New infections continued to emerge till May 2010. By early October 2010, 5,620 

people in Arizona had been infected, and the total number of deceased cases was 

122. The solid part of the curve in Figure 11 shows how the number of newly 

infected cases in Arizona changed each week during the 2009-2010 influenza 

season, namely, from October 4, 2009 to October 2, 2010 (ADHS, 2009b).  
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Figure 11. Epidemiological curve for 2009 H1N1 influenza  
weekly newly infected cases in Arizona18 

To reduce the impacts of an influenza pandemic, ADHS has been 

emphasizing the use of non-pharmaceutical interventions in the absence of 

effective vaccine when facing a new influenza strain (ADHS, 2006, 2009c). When 

the second wave of 2009 H1N1 influenza outbreak occurred in October, effective 

vaccination against this influenza was still unavailable (ADHS, 2009d); but risk 

communication plans and strategies had been made before it. A Joint Information 

Center (JIC) and a coordinated statewide messaging system had been established 

and used to disseminate pandemic-related information to encourage the public to 

take non-pharmaceutical protective actions within the following influenza season 

(ADHS, 2009c). This situation provides a proper context to empirically answer 

the research question of this study.  

                                                 
18 In this chart, only the solid curve represents the 2009-2010 influenza season.  
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This chapter first introduces how the computational model developed before 

is implemented in this specific setting. Experiments are then conducted to explore 

the spread dynamics of 2009 H1H1 influenza in an Arizona community during the 

2009-2010 influenza season, without any policy intervention and with different 

risk communication strategies. Experiment results are summarized for policy and 

management insights.  

Data Sources 

First, the agent-based model needs to be parameterized for this specific 

research context. Table 13 summarizes the parameters used at the beginning of 

simulation, their default values, and the sources of these values. 

Table 13. Parameters, Values and Data Sources for Model Initialization 

Parameters Default Value Data Sources 
Environment 
parameters 

  

XMIN 326 cell side Hamill & Gilbert (2008, 2009, 2010) 
XMAX 326 cell side Same as above 
YMIN 326 cell side Same as above 
YMAX 326 cell side Same as above 
   
%-large-reach 25% Same as above 
%-small-reach 75% Same as above 

Large-reach 65 cell side 
Boase (2008),  
Wang & Wellman (2010) 

Small-reach 25 cell side Same as above 
   
Mean-of-daily-contact-
capacity 

10 
Salathe & Jones (2010),  
Mikolajczyk & Kretzschmar (2008) 

Std-of-daily-contact-
capacity 

10.6 Mossong et al. (2008) 

Max-of-daily-contact-
capacity 

40 Edmunds et al. (1997) 

Min-of-daily-contact-
capacity 

0 Same as above 

Ave-%-of-stable-
contacts 

25% 
Beutels et al. (2006), Edmunds et al. 
(2006), Glass & Glass (2008) 
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Population 1,000 Perez & Dragicevic (2009) 
%-of-susceptible-
population 

98% Assumption of this dissertation 

%-of-exposed-
population 

0% Assumption of this dissertation 

%-of-infected-
population 

2% Assumption of this dissertation 

%-of-recovered-
population 

0% Assumption of this dissertation 

%-of-died-population 0% Assumption of this dissertation 
   
Epidemiologic 
parameters 

  

Infection-rate 1.4% 
Coburn, Wagner, & Blower (2009),  
Yang et al. (2009) 

Average-latent-period  2 days CDC (2009a) 
Period-of-exposed- 
being-infectious 

1 day Same as above 

Average-infected-period 5 days Same as above 

Mortality-rate 0.3% 
Donaldson et al. (2009),  
Tuite et al. (2010) 

   

Personal parameters   

Infected-probability 50% CDC (2009a) 
Revered-probability 20% Same as above 

Mortality-probability 0.3% 
Donaldson et al. (2009),  
Tuite et al. (2010) 

Confirmation-attempts [1, 2, 3, 4] Lindell & Perry (1992) 

Action-effect 

[30%, 40%, 
50%, 60%, 
70%, 80%, 
90%] 

Jefferson et al. (2008), 
Larson & Nigmatulina (2009) 

Social-influence-
threshold 

50% Assumption of this dissertation 

Social-influence-effect 50% Assumption of this dissertation 
   
Policy parameters   

Number-of-channels-in-
use  

[0, 1, 2, 3] 
Assumption of this dissertation 
ASU/ADHS Influenza Survey 
(2009) 

Channel-type  
Local TV,  
National TV, 
Radio 

ASU/ADHS Influenza Survey 
(2009) 

Channel-frequency  [1, 3, 7] days Assumption of this dissertation 
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Local TV   

%-channel-user  
[10%, 50%, 
70%*, 90%] 

Assumption of this dissertation 
ASU/ADHS Influenza Survey 
(2009) 

%-channel-believer 
[10%, 50%, 
60%*, 90%] 

Same as above 

   
National TV   

%-channel-user  
[10%, 26%*, 
50%, 90%] 

Assumption of this dissertation 
ASU/ADHS Influenza Survey 
(2009) 

%-channel-believer 
[10%, 50%, 
55%*, 90%] 

Same as above 

   
Radio   

%-channel-user  
[10%, 11%*, 
50%, 90%] 

Assumption of this dissertation 
ASU/ADHS Influenza Survey 
(2009) 

Note. “[]” in this table means that any value for a parameter in the square bracket 
could be selected for simulation. Value with * is the empirical value for a 
parameter. 

The target social system simulated in the model is a medium-size community 

in Arizona. Such a choice is made for two reasons. First, the entire population of 

the state or a large city cannot be taken into consideration due to limited 

computational capacity. Second, this study is interested in pandemic influenza 

spread in a social network via individual interaction. The focus on a medium-size 

community allows a more comprehensive understanding of the interactions at the 

local level (Eidelson & Lustick, 2004).  Furthermore, inferences can still be made 

on larger groups from the analysis (Eidelson & Lustick, 2004).  

Population size of the community in the model is set to 1000, the number 

used by previous studies for a medium-size community (e.g., Perez & Dragicevic, 

2009). The population density and the shape of the community are the same as 

those in Hamill and Gilbert’s study (2008, 2009, 2010), to ensure the friendship 
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networks set up have the same characteristics. 1,000 agents are randomly placed 

over a 100,000-cell unbounded and square space with a population density of 1%.  

Parameters related to the friendship network include the percent of agents 

who have large and small social reach, and large and small social reach. Proper 

values for these parameters have been discussed before and are summarized in 

Table 13. Values for those parameters needed to set up a structurally hierarchical 

contact network for agents are also from previous studies, as discussed before.  

For an epidemic to diffuse over a network, a certain number of nodes need to 

be infectious at the beginning of the spread process (Delre et al., 2007). In the 

model created, 2009 H1N1 influenza dies out within a short time period when the 

simulation is initialized with less than 2% nodes being infectious. The influenza 

in this case cannot become a public concern. To simulate the influenza outbreak 

as a public emergency, the model starts the simulation with 2% nodes chosen at 

random to have infected health status; all other nodes are initially set 

susceptible.19 Over time the initial infection can spread the disease through the 

network. Figure 12 shows an example of how an infection unfolds within a simple 

contact network through successive time steps. Beginning with one infected node 

which is shaded at the center at time step t, the disease spreads to some but not all 

of the remaining non-shaded susceptible nodes. Over time more susceptible nodes 

are infected through their connections with infected nodes. 

                                                 
19 No common approach has been found in previous studies to decide the percent 
of simulated population in each health status at the beginning of pandemic 
influenza simulation. But the population is usually categorized into two groups: 
people who are infected and infectious, and people who are susceptible to the 
influenza (e.g., Kenah et al., 2011).  
 



 

Figure 12. The spread course of an SEIR epidemic
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estimated to range from 1 to 4 days with an average of 2 days” and “influenza 
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person) begins the day before illness onset and can persist for 5 to 7 days” (CDC, 
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20 The infectious period is the time period during which an individual is infectious. 
In the model, individuals aft
period of 6 days. It is composed of the
latent period.  
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The spread course of an SEIR epidemic in a simple contact network

For epidemiologic parameters, their values were collected from CDC reports 

and earlier studies. According to CDC, “the incubation period for influenza is 
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the infection rate, which is based on the value of the estimated basic reproduction 

number from the study of Coburn et al (2009) and Yang et al (2009), and the 

value for the average contact rate and average infectious period. The mortality 

rate for 2009 H1N1 influenza was estimated to be approximately 0.3% 

(Donaldson et al., 2009; Tuite et al., 2010). 

Values for personal parameters related to daily contact pattern are set at the 

beginning of simulation based upon the characteristics of community contact 

network. Each node’s daily contact capacity is randomly selected from the 

truncated normal distribution of community contact network’s degree of 

connectivity. Its ratio between stable and random contact capacity is set to 1:3. 

Personal parameters related to individual biological progress are determined by 

epidemiologic parameters. The infected-probability is the reciprocal of average 

latent period, and the recovered-probability the reciprocal of average infected 

period. Meanwhile, the parameter of infectious? is used to help simulate the last 

day of latent period. Its value is randomly decided based on the infected-

probability for each exposed node at the beginning of each time step. If the value 

is true, the node becomes infectious at this time step, and infected at next time 

step. Otherwise, the node remains exposed and noninfectious. Appropriate values 

for personal parameters related to individual responsive process to risk 

information have been discussed before, for example, confirmation-attempts, 

action-effect, social-influence-threshold, and social-influence effect.  

Characteristics of public risk communication strategy came from the 2009 

ASU/ADHS Influenza Survey (Jehn et al., 2011). It was a random-digit telephone 
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survey of representative households in Arizona. The survey was designed to elicit 

responses from the adult in the household who was the primary health-related 

decision-maker. It was conducted by trained interviewers using a structured 

questionnaire.  Interviews were performed between 8:00 am and 9:00 pm 

including weekdays and weekends from October 1-30, 2009.  A translated survey 

questionnaire was used for respondents speaking only Spanish.   

A total of 945 available telephone numbers were identified for potential 

interviews, with 727 households completing the survey for a 77% final survey 

sample response rate.  Sampling was designed around a 95% confidence interval 

and together with the response rate resulted in a ±3.64% margin of error.  The 

survey contained 53 main questions, and related sub-questions, on respondents’ 

demographics, what they knew about the 2009 H1N1 influenza, how they 

received relevant information and perceived the risk, and whether they were 

taking avoidance actions to reduce their risk of getting infected by the influenza 

(Jehn et al., 2011).   

In the model, components of public risk communication strategy influence 

individual responsive behavior through formulating their initial risk perception. 

Given the rare empirical findings on how the former influences the latter, 

information collected from the survey is used to specify the relationship. Among 

survey respondents, 49.24% believed that it was very easy for people to get the 

influenza, or that the influenza situation was very urgent at that time. These 

respondents are considered those who have a high level of initial risk perception.   
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Regarding risk communication strategies, the survey included items related 

to channel type, and the use and perceived importance of each type of channel. 

Survey respondents were asked to identify the type of channel through which they 

obtained 2009 H1N1 flu information during the survey month. The choices were 

local TV, national TV, local newspaper, national newspaper, Internet, radio, 

magazine, friend, school, work, doctor, and other. Respondents could choose 

multiple types of channel and are defined as a channel user of all types of channel 

they used. Meanwhile, those who indicated that some type of channel they used to 

obtain information was “very important” or “somewhat important” were 

considered the believer of this channel.21  

Logit regression was run on the survey, using whether having a high-level 

initial risk perception as dependent variable. Independent variables are shown in 

Table 14, which include whether respondents use each type of channel to receive 

2009 H1N1 influenza information, whether they consider the channel important, 

and their demographical characteristics which previous studies found influential 

on individuals’ risk perception of a pandemic influenza (Sjoberg, 2000).  

The regression formula is showed as below. 

logit�P� ! � β" � #�β$% & Channel%
$+

%,$
� β+% & Channel% & Channel_Imp%�

� # �β01 & Demo1�
2

1,$
 

 

 
                                                 
21 The perceived importance of a channel is different from its perceived credibility. 
But the former is the only available item in the research context that is related to 
the latter. So here, in this specific research context, perceived importance is 
considered the same as perceived credibility.  
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Table 14. Variable Definitions in the Logit Regression 

Variable Definition Possible Value 
Dependant 
variable 

  

High-initial-risk-
perception? 

Whether a respondent has a high-level 
initial risk perception 

1 (Yes) 
0 (No) 

   
Independent 
variable 

  

Channeln 
Whether a respondent uses Channel n to 
receive risk information 

1 (Yes) 
0 (No) 

Channel_Impn 
Whether a respondent believes the 
information from Channel n is important 

1 (Yes) 
0 (No) 

Age Which age group a respondent is in 
1 (18-34) 
2 (35-65) 
3 (65+) 

Gender Whether a respondent is female or male 
1 (Female) 
0 (Male) 

Race  Whether a respondent is while or not 
1 (White) 
0 (Non-White) 

Ethnicity Whether a respondent is Hispanic or not 
1 (Hispanic) 
0 (Non-Hispanic) 

Kid Whether a respondent has kids 
1 (Yes) 
0 (No) 

Education Which education group a respondent is in 

1 (less than 
Bachelor) 
2 (Bachelor or 
college degree) 
3 (Graduate or post-
college degree) 

Income 
Which before-tax income group a 
respondent is in 

1 (45K or less) 
2 (45K+) 

Ssflu 
Whether a respondent got seasonal flu 
during the last flu season 

1 (Yes) 
0 (No) 

Insur 
Whether a respondent has any type of 
medical insurance 

1 (Yes) 
0 (No) 

Note. Channel n could be any type of channel among the channel choices in the 
survey.  

In the formula, Prp represents the probability for a respondent to perceive a 

high level of risk because of the influenza. Channeln represents whether this 

respondent uses Channel n to receive pandemic information, and Channeln * 
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Channel_Impn whether this respondent as a user of Channel n believes its 

importance.22 Demom is the mth demographic characteristic. Regression result is 

showed in Table 15. 

 Table 15. 
 Regression Result on 2009 ASU/ADHS Influenza Survey Data 

 Coef. Std. Err. z P > |z| [95% Conf. Interval] 
ltv -1.01 0.74 -1.36 0.172 -2.46 0.44 
ntv -2.40 1.50 -1.60 0.109 -5.33 0.53 

lnews 14.33 8.85 0.02 0.987 -17.21 17.49 
nnews 12.23 14.20 0.01 0.993 -27.69 27.96 

internet 0.86 0.60 1.43 0.152 -0.32 2.05 
radio -2.56 1.06 -2.41 0.016* -4.64 -0.48 

magazine 12.54 26.00 0.00 0.996 -50.84 51.09 
friend -0.67 1.25 -0.53 0.594 -3.12 1.79 
school 13.84 18.37 0.01 0.994 -35.86 36.14 
work 14.22 16.00 0.01 0.996 -50.82 51.11 

doctor 14.34 26.00 0.01 0.996 -50.82 51.11 
other Omitted 

ltv_Imp 1.68 0.73 2.28 0.023* 0.23 3.08 
ntv_Imp 3.04 1.53 1.99 0.047* 0.39 6.05 

lnews_Imp -13.97 8.85 -0.02 0.987 -17.49 17.21 
nnews_Imp -14.02 14.20 -0.01 0.992 -27.97 27.69 

internet_Imp -0.24 0.76 -0.31 0.756 -1.73 1.26 
radio_Imp 1.58 1.12 1.42 0.157 -0.61 3.77 

magazine_Imp -13.18 26.00 -0.01 0.996 -51.09 50.83 
friend_Imp -0.79 1.32 -0.60 0.549 -3.38 1.80 
school_Imp -15.25 18.37 -0.01 0.993 -36.15 35.85 
work_Imp -14.01 26.00 -0.01 0.996 -51.10 50.82 

doctor_Imp -13.43 26.00 -0.01 0.996 -51.10 50.83 
other_Imp  Omitted 

age_c_2 0.13 0.53 0.25 0.805 -0.90 0.55 
age_c_3 -0.25 0.64 -0.40 0.691 -1.50 0.99 

gender 0.19 0.32 0.61 0.543 -0.43 0.82 
race -0.41 0.58 -0.71 0.477 -1.55 0.72 

ethnicity 0.67 0.48 1.42 0.157 -0.26 1.61 
kid -0.17 0.37 -0.47 0.639 -0.90 0.55 

education 0.50 0.53 0.94 0.345 -0.54 1.54 
income -0.68 0.36 -0.33 0.061 -1.38 0.03 

ssflu -0.40 0.40 -1.01 0.314 -1.19 0.38 
insur 0.24 0.60 0.39 0.696 -0.95 1.42 

_cons 1.84 0.96 1.91 0.056 -0.50 3.73 
Note. “ltv” represents local TV, “ntv” national TV, “lnews” local newspaper, and 
“nnews” national newspaper.  

                                                 
22 For the perceived importance to exert influence on risk perception, certain type 
of channel has to be used by an individual first.  
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Therefore, respondents’ perception that there was a high risk of 2009 H1N1 

influenza was dependent upon whether they receive risk information from 

national television (ntv), local television (ltv) and radio, and meanwhile whether 

they believe either TV channel is important.    

logit�P� ! � 3.04 & ntv & ntv_imp � 1.66 & ltv & ltv_imp � 2.56 & radio 

The above regression result is used in the simulation in two ways. First, 

public risk communication strategy in the model is represented by 8 indicators: 

the percent of community population who receive risk information from local TV 

(%-ltv-user), from national TV (%-ntv-user), and from radio (%-radio-user), the 

percent of population who believe in the importance of local TV (%-ltv-believer) 

and of national TV (%-ntv-believer), and the frequency the three types of channel 

are used to send risk information (f-ltv, f-ntv, and f-radio). Channel usage 

frequency was not included in the survey, but is considered in the model given its 

vague influence recurrently mentioned in previous literature. As a result, public 

sector in the model can employ different communication strategies by choosing 

which of the three types of channel to be used for sending risk information, and 

by changing the user and believer percent and the usage frequency of each type of 

channel in use. Given the possible values for these policy parameters as shown in 

Table 13, numerous communication strategies can be implemented in the model.  

Second, based on the regression result, the probability for an individual after 

receiving risk information to have a high-level risk perception (PI) at each time 

step is calculated as: 

P� � 1
1 � e<�0."=&%>?&%>?_�1 @$.AA&B>?&B>?_�1 <+.CA&�DE�F� 
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Simulation Setup 

The model is initialized with the creation of the artificial community. The 

simulation area is set up based on the display size parameters. 1000 individual 

nodes are created and randomly located across the area. A population density of 1% 

is therefore achieved. Next, the community friendship network and contact 

network are created in the way as discussed before. Health status for each node is 

then generated. Nodes are selected at random to fill the required number of people 

in each health status. Other parameters are set to their values as shown in Table 13.  

One time step in the mode is corresponding to one day. The first time step 

represents October 4, 2009. Each simulation is run 364 time steps to cover the 

whole 2009-2010 influenza season. Simulation outputs are captured by five 

aggregate statistics: the percent of population ever get infected by the end of the 

influenza season (epidemic size), the maximum frequency of infection during the 

season (peak prevalence), the number of days between season beginning and the 

elimination of the virus (epidemic duration), the percent of population in infected 

status on each day (morbidity), and the percent of population ever classified as 

infected by each day since season beginning (cumulative morbidity). The first 

three indicators are usually used to measure the impacts a pandemic caused in 

communities (e.g., Salathe & Jones, 2010); they are recorded by the end of each 

simulation. The last two indicators are recorded at each time step.  

The model is experimented on two scenarios. The first scenario simulates 

how the pandemic influenza spreads without any public intervention. The second 

scenario explores how the five output indicators change with the incorporation of 



 

different public risk communication strategies. Figure 13 shows the general 

simulation framework in this 

Figure 13.

Experiment Results 

This section summarizes and compares simulation results from

experiment scenarios. For each 

average results over its 20 runs. 

Influenza spread dynamics without pubic intervention.

Figure 15 show how morbidity and cumulative morbidity change over time when 

there is no public intervention. Once the pandemic is initiated, ther

exponential growth in the morbidity. This indicator peaks on day 35 (Nov.7th, 

2009), with 6.1% of community population

cumulative morbidity by that day is

exponentially. By day 112 (Jan.23rd, 2010), when there are no infectious people, 

45.6% of the total population ha

baseline scenario, in which the epidemic size is 

6.1%, and the epidemic duration is 112 days. 
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communication strategies. Figure 13 shows the general 

simulation framework in this dissertation.   

Figure 13. Simulation setup in the focused context 

on summarizes and compares simulation results from the two 

. For each simulation, the result presented below is the 

average results over its 20 runs.  

pread dynamics without pubic intervention. Figure 14 and 

how morbidity and cumulative morbidity change over time when 

there is no public intervention. Once the pandemic is initiated, there is a period of 

exponential growth in the morbidity. This indicator peaks on day 35 (Nov.7th, 

6.1% of community population infected within the single day

morbidity by that day is 24.22%. After the peak, the morbidity drops 

nentially. By day 112 (Jan.23rd, 2010), when there are no infectious people, 

45.6% of the total population has been infected. This scenario is called the 

, in which the epidemic size is 45.6%, the peak prevalence is 

duration is 112 days.  

communication strategies. Figure 13 shows the general 

 

the two 

is the 

Figure 14 and 

how morbidity and cumulative morbidity change over time when 

a period of 

exponential growth in the morbidity. This indicator peaks on day 35 (Nov.7th, 

infected within the single day; the 

, the morbidity drops 

nentially. By day 112 (Jan.23rd, 2010), when there are no infectious people, 

is called the 

, the peak prevalence is 
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Figure 14. Epidemic curve for morbidity in baseline scenario 

Figure 15. Epidemic curve for cumulative morbidity in baseline scenario 
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Influenza spread dynamics with public risk communication. In this 

scenario, three sets of experiment are conducted, with public sector employing 

one type of channel, two types of channel, and all three types of channel to send 

pandemic information, respectively.  

One channel in use. Experiments here are conducted to explore the influenza 

spread dynamics when just one type of channel is used by public sector. For the 

strategy to use the channel, three levels of value can be selected for the user and 

believer percent: 10% (low), 50% (medium), and 90% (high). Channel usage 

frequency also has three levels of value: 7 (once per week, low), 3 (once every 

three days, medium), and 1 (once per day, high). As a result, 27 different 

strategies can be implemented in the model when one type of channel is in use.   

Local TV. Table 16 summarizes the simulation results on peak prevalence, 

epidemic size and epidemic duration when the public sector uses different 

communication strategies of local TV to send risk information.  

Table 16. Pandemic Impacts with Local TV in Use Alone 

Strategy Output Strategy Output Strategy Output 
(10,10,1) 3.1; 27.3; 114; (10,10,3) 4.9; 35.2; 114; (10,10,7) 5.9; 41.8; 113; 
(10,50,1) 2.8; 24.1; 149; (10,50,3) 4.0; 30.6; 114; (10,50,7) 5.7; 40.2; 113; 
(10,90,1) 2.9; 19.9; 115; (10,90,3) 3.8; 29.7; 114; (10,90,7) 5.0; 38.6; 112; 
(50,10,1) 2.3; 23.7; 163; (50,10,3) 3.3; 27.4; 125; (50,10,7) 3.6; 30.9; 123; 
(50,50,1) 2.1; 20.3; 160; (50,50,3) 2.1; 22.0; 161; (50,50,7) 3.4; 27.6; 165; 
(50,90,1) 2.0; 13.8; 141; (50,90,3) 2.1; 15.8; 169; (50,90,7) 3.0; 19.8; 133; 
(90,10,1) 2.3; 24.0; 148; (90,10,3) 2.7; 27.2; 167; (90,10,7) 3.7; 31.0; 137; 
(90,50,1) 2.0; 20.2; 179; (90,50,3) 2.0; 20.5; 162; (90,50,7) 2.3; 24.3; 128; 
(90,90,1) 2.0; 14.7; 158; (90,90,3) 2.0; 14.7; 178; (90,90,7) 2.0; 16.9; 117; 

Note. The strategy of how local TV is used is organized as (%-user, %-believer, 
use frequency); for example, (50,90,3) means the user percent, believer percent 
and use frequency of local TV is 50%, 90%, and once per 3 days, respectively. 
The output is organized as (peak prevalence; epidemic size; epidemic duration;). 
All tables and figures following this table in this chapter present the strategy of 
using some type of channel and the output for pandemic impacts in the same way.  
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Compared with the baseline scenario, any communication strategy using 

local TV can reduce the influenza impacts. As shown in Table 16 and Figure 16, 

the least effective strategy is (10,10,7), namely, when all three indicators are at 

their low levels. This strategy has little influence on peak prevalence and 

epidemic duration, while reducing the epidemic size by a small degree. The most 

effective strategy is with medium- or high-level user percent, high-level believer 

percent and medium- or high-level use frequency (except (50,90,3)). These 

strategies can not only reduce the peak prevalence by at least 67.2% and epidemic 

size by at least 67.5%, they can also prolong the epidemic duration, which gives 

public managers more time to react to the outbreak. Furthermore, most strategies 

can prolong the epidemic duration, while the rest have little effect on it.  

 

Figure 16. The most and least effective communication strategy  
associated with local TV 
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The influence of each strategy indicator can also be analyzed, with values for 

the other two fixed. First, local TV has a conditional threshold of 50% regarding 

the influence of its user percent on peak prevalence and epidemic size. When the 

frequency is fixed to low level, increasing the user percent can reduce the peak 

prevalence and epidemic size. When the frequency is fixed to medium or high 

level, increasing user percent after this parameter reaches 50% has little influence 

on the two output indicators. For epidemic duration, modifications in this 

parameter in both conditions change this output indicator in an inconsistent way. 

Such findings can be shown by Figure 17. 

 

Figure 17. Influence of the user percent of local TV 
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For the believer percent of local TV, an increase in its value can reduce the 

epidemic size. For example, when the user percent is at the high level, increasing 

the believer percent from 50% to 90% could averagely decrease the epidemic size 

by 20.7%, despite the value of use frequency; increasing the percent from 50% to 

90% can averagely reduce the epidemic size by 28.7%, as shown in Figure 18. Its 

influence on peak prevalence depends upon the value for use frequency. When the 

frequency is at low level, increasing believer percent can reduce peak prevalence. 

When the frequency is higher than the low level, increasing believer percent after 

it reaches 50% would have little influence. Furthermore, the believer percent 

exerts inconsistent influence on epidemic duration.  

 

Figure 18. Influence of the believer percent of local TV 
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The influence of local TV’ use frequency can also be summarized as being of 

conditional threshold. When the user and believer percent are fixed and either is 

less than 50%, increasing the use frequency can greatly reduce the peak 

prevalence and epidemic size. When both values are fixed to equal to or more 

than 50%, almost identical epidemic curves of the number of infected cases are 

produced by communication strategies with medium and high use frequency, 

while there is still a big difference between the influence of low-frequency 

strategy and medium-frequency strategy. Figure 19 partially shows such a 

conditional influence. Furthermore, the epidemic duration is also inconsistently 

influenced by changes in the use frequency. 

 

Figure 19. Influence of transmission frequency of information from local TV 
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National TV. Table 17 shows simulation outputs when just national TV is in 

use. Similar as previous situation, any communication strategy associated with the 

channel can reduce the peak prevalence and epidemic size. The epidemic duration 

is influenced inconsistently, but can be prolonged by most strategies. The least 

effective strategy is the one with all indicators at low level, while the most 

effective strategy is with all indicators at high level, as shown in Figure 20.  

Table 17. Pandemic Impacts with National TV in Use Alone 

Strategy Output Strategy Output Strategy Output 
(10,10,1) 3.6; 29.4; 154; (10,10,3) 4.7; 36.4; 111; (10,10,7) 5.6; 40.5; 112; 
(10,50,1) 2.9; 23.2; 156; (10,50,3) 4.5; 32.3; 115; (10,50,7) 5.8; 39.1; 112; 
(10,90,1) 2.7; 19.5; 248; (10,90,3) 4.5; 30.8; 155; (10,90,7) 4.8; 35.3; 129; 
(50,10,1) 2.7; 24.8; 142; (50,10,3) 3.0; 28.5; 150; (50,10,7) 4.0; 31.5; 135; 
(50,50,1) 2.0; 18.3; 165; (50,50,3) 2.1; 19.1; 144; (50,50,7) 3.4; 25.8; 139; 
(50,90,1) 2.0; 10.3; 112; (50,90,3) 2.0; 11.2; 120; (50,90,7) 2.6; 19.1; 108; 
(90,10,1) 2.6; 25.0; 129; (90,10,3) 2.9; 27.4; 123; (90,10,7) 3.3; 27.9; 122; 
(90,50,1) 2.0; 19.0; 145; (90,50,3) 2.0; 19.4; 164; (90,50,7) 2.5; 20.2; 132; 
(90,90,1) 2.0; 9.5; 159; (90,90,3) 2.0; 10.2; 143; (90,90,7) 2.0; 17.2; 118; 

 

 

Figure 20. The most and least effective communication strategy  
associated with national TV 
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The influence of each strategy indicator on pandemic impacts with national 

TV used alone is similar as that with the separation usage of local TV. With fixed 

values for the believer percent and use frequency, there is a conditional threshold 

of 50% for the influence of user percent to reduce peak prevalence and epidemic 

size. The existence of this threshold depends upon whether the use frequency is at 

low level. As an example, Figure 21 shows the almost identical influences 

communication strategies exert on cumulative morbidity over time after their user 

percent reaches 50% and their use frequency is medium or high. Besides, the 

epidemic duration is influenced inconsistently by changes in the user percent.   

 

Figure 21. Influence of the user percent of national TV23 

                                                 
23 One set of number in the legend represents one strategy to use national TV. For 
example, (90,50,1) means the user percent, believer percent and use frequency of 
national TV is 90%, 50%, and once per day, respectively. 
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The influence of national TV’s believer percent also depends on its use 

frequency. When the frequency is at low level, increasing believer percent can 

reduce both peak prevalence and epidemic size. When the frequency is medium or 

high, increase the percent can only reduce the epidemic size while have small 

influence on the peak prevalence. Figure 22 shows an example of such an 

influence of believer percent. In addition, the epidemic duration is also 

inconsistently influenced by changes in the believer percent.   

 

Figure 22. Influence of the believer percent of national TV 

For the influence of use frequency, Figure 23, as an example, shows its 

conditional threshold of once per 3 days, the existence of which depends upon the 

level of user and believer percent. When both percents are equal to or higher than 

50%, sending risk information more frequently after the frequency reaches the 

medium level achieves little to reduce the peak prevalence or epidemic size. 
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Otherwise, increasing the frequency is an effective way to decrease the number of 

infected cases at some time point or over time. Furthermore, no consistent pattern 

has been found regarding the relationship between the use frequency and the 

epidemic duration, as in the situation when local TV is used alone.  

 

Figure 23. Influence of information transmission frequency of national TV 

Local TV vs. national TV. The effects of these two TV channels are similar in 

terms of how each strategy indicator influences the pandemic impacts. Such 

similarity may be caused by their similar influences on individual initial risk 

perception. On the other hand, no consistent results have been found regarding 

which TV channel with the same strategy indicators is more effective to reduce 

pandemic impacts. Although national TV seems more influential on individual 

initial risk perception and therefore pandemic impacts, local TV could be of equal 

or more effects in some situations, as shown in Figure 24.  
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Figure 24. Comparison of the influence of  
local and national TV with each used alone 

Radio. When radio is used alone to send risk information, no 

communication strategies can effectively reduce the pandemic impacts. As shown 

in Table 18, even the most effective strategy with 50% user and 1-day frequency 

can only reduce the peak prevalence by 6.5% and the epidemic size by 4.8%, and 

delay the epidemic duration by one week. The least effective strategy is with 10% 

user and 7-day frequency. This strategy has no influence on peak prevalence and 

epidemic size, but prolong the epidemic duration.  

Table 18. Pandemic Impacts with Radio in Use Alone 

Strategy Output Strategy Output Strategy Output 
(10,1) 5.8; 45.0; 120; (10,3) 6.0; 43.6; 112; (10,7) 6.1; 45.6; 124; 
(50,1) 5.7; 43.4; 119; (50,3) 5.6; 44.8; 128; (50,7) 6.1; 44.8; 115; 
(90,1) 6.1; 45.4; 110; (90,3) 5.7; 44.1; 124; (90,7) 6.0; 45.0; 114; 
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Figure 25 shows the epidemic curve of cumulative morbidity in the baseline 

scenario and the situation with each communication strategy associated with radio 

used. All these epidemic curves are very close to each other, which indicates the 

little role radio can play in impact mitigation in the community. Furthermore, no 

consistent pattern has been found in terms of how changes in any strategy 

indicator of radio influence the pandemic impacts.  

Summary. When public sector just uses one type of channel to send risk 

information, local or national TV should be preferred to radio in order to mitigate 

pandemic impacts. Public managers can manipulate the three strategy indicators 

of either TV channel to change the peak prevalence and epidemic size in their 

expected direction. For epidemic duration, although its direction of change is hard 

to be anticipated, it would be either delayed (in most cases) or influenced slightly.  

 

Figure 25. Influence of communication strategies associated with radio 
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Two channels in use. The three types of channel can be used singly or in 

combination. This set of experiment simulates pandemic impacts with two types 

of channel used simultaneously to send risk information. Different combinations 

of two types of channel include local TV and national TV, local TV and radio, 

national TV and radio. Given the extensive number of possible communication 

strategies associated with two types of channel, the experiment here fixes the 

strategy indicators of one type of channel to their empirical values found in this 

specific context, and explores how changes made in the indicators of the other 

type of channel from their empirical values influence the pandemic impacts.  

According to ASU/ADHS influenza survey, the percent of respondents who 

use the channel for 2009 H1N1 influenza news and believe its importance for 

local TV is 70% and 60%, and for national TV 26% and 55%. Approximately 11% 

of respondents receive pandemic information from radio. No information on use 

frequency has been provided in the survey. This dissertation assumes that, the 

local TV was empirically used in the context to send pandemic information on a 

daily basis. The other two types of channel were used with a smaller frequency. 

The empirical values for the three indicators for local TV, national TV, and radio 

are (70%, 60%, 1), (26%, 55%, 3), and (11%, 3), respectively.  

Local TV & national TV. When local TV is used alone and with a medium or 

high frequency, there is a 50% threshold in terms the influence of its user or 

believer percent on peak prevalence. When local TV is used with both user and 

believer percent at medium or high level, increasing its frequency after it reaches 

medium level also has little influence on the peak prevalence and epidemic size. 



  153 

Considering that all indicators of local TV are empirically higher than the medium 

level, the first question here is whether and how further increasing the user or 

believer percent of local TV or reducing its use frequency, when indicators of 

national TV are fixed at their empirical values, influences pandemic impacts.   

Table 19 summarizes the simulation results on three output indicators from 

this experiment situation. Figure 26 shows the epidemic curve for cumulative 

morbidity in this situation. The black solid line represents the baseline scenario, 

and the black dashed line the situation with national TV used alone at its 

empirical level. The blue solid line represents the situation when indicators of 

both TV channels are at their empirical levels. All other dashed lines are 

generated when one (blue dashed lines) or two (red dashed lines) indicators of 

local TV are changed from their empirical value.  

Based on the simulation results, public sector in the community can greatly 

reduce the pandemic impacts by separately using the existing communication 

strategy for national TV. The peak prevalence is reduced by 57.4% and epidemic 

size by 55.0%. The pandemic impacts can be further mitigated by including local 

TV. Simultaneously using both channels at their empirical levels can bring larger 

reduction in peak prevalence and epidemic size, and particularly could prolong 

the epidemic duration.  

With both channels used at their empirical levels, further increasing the value 

for the believer percent of local TV can reduce the epidemic size, but has no 

influence on peak prevalence and shortens the epidemic duration. Further 

increasing local TV’s user percent has little influence on peak prevalence and 
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epidemic size. This is possibly because the frequency here is at high level and the 

user present has already reached its 50% threshold. Furthermore, reducing the use 

frequency to once every three days has little influence on peak prevalence and 

epidemic size, which may also be explained by the conditional threshold of use 

frequency found in previous experiments.  

Table 19. Pandemic Impacts with Varying Strategies for Local TV and Fixed 
Strategy for National TV 

Strategy Output Strategy Output Strategy Output 
National TV 

alone 
2.6; 20.5; 123; 

ntv & 
(70,60,1) 

2.0; 18.4; 157; 
ntv & 

(90,60,1) 
2.0; 18.1; 150; 

ntv & 
(70,90,1) 

2.0; 13.2; 136; 
ntv & 

(70,60,3) 
2.0; 18.4; 155; 

ntv & 
(90,90,1) 

2.0; 12.9; 124; 

Note. ntv represents national TV. The strategy of how local TV is used is 
organized as (%-user, %-believer, use frequency). For example, (90,60,1) means 
the user percent, believer percent and use frequency of local TV is 90%, 60%, and 
once per day, respectively. 

 

 

Figure 26. Influence of local TV with fixed strategy for national TV 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 7 1
4

2
1

2
8

3
5

4
2

4
9

5
6

6
3

7
0

7
7

8
4

9
1

9
8

1
0

5
1

1
2

1
1

9
1

2
6

1
3

3
1

4
0

1
4

7
1

5
4

1
6

1
1

6
8

1
7

5
1

8
2

1
8

9
1

9
6

2
0

3
2

1
0

2
1

7
2

2
4

2
3

1
2

3
8

2
4

5
2

5
2

2
5

9
2

6
6

2
7

3
2

8
0

2
8

7
2

9
4

3
0

1
3

0
8

3
1

5
3

2
2

3
2

9
3

3
6

3
4

3
3

5
0

3
5

7
3

6
4

C
um

ul
at

iv
e 

m
or

bi
di

ty

Day

baseline national TV 70,60,1 90,60,1
70,90,1 70,60,3 90,90,1



  155 

Compared with local TV, national TV reaches a much smaller population of 

the community, and is used with lower frequency. So the second question 

concerns whether and how increases in the three indicators of national TV from 

their empirical values—with fixed values for local TV’s indicators–influence 

pandemic impacts. Simulation results are summarized in Table 20 and Figure 27.  

Table 20. Pandemic Impacts with Fixed Strategy for Local TV and Varying 
Strategies for National TV 

Strategy Output Strategy Output Strategy Output 
Local TV 

alone 
2.0; 18.6; 184; 

ltv & 
(26,55,3) 

2.0; 18.0; 157; 
ltv & 

(50,55,3) 
2.0; 15.6; 161; 

ltv & 
(90,55,3) 

2.0; 15.6; 162; 
ltv & 

(26,90,3) 
2.0; 17.3; 143; 

ltv & 
(26,55,1) 

2.0; 14.2; 129; 

ltv & 
(50,90,3) 

2.0; 13.0; 174; 
ltv & 

(50,55,1) 
2.0; 14.1; 149; 

ltv & 
(26,90,1) 

2.0; 13.3; 150; 

ltv & 
(50,90,1) 

2.0; 11.9; 183;     

Note. ltv represents local TV. The strategy of how national TV is used is 
organized as (%-user, %-believer, use frequency). 

 

Figure 27. Influence of national TV with fixed strategy for local TV 
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In Figure 27, the black solid curve represents the baseline scenario, and the 

black dashed curve the situation with local TV used alone at its empirical level. 

The blue solid curve is generated when indicators of both TV channels are at their 

empirical levels. The blue, red and orange dashed curves represent the situation 

when one, two or all indicators of national TV are increased from the empirical 

level; indicators of local TV are fixed at their empirical levels.  

Using local TV alone at its empirical level is more effective in reducing 

pandemic impacts than the usage of national TV alone at its empirical level. 

When both TV channels are used at their empirical strategy levels, public sector 

can further increase the value for any one, two or all three indicators of national 

TV to reduce the epidemic size. But no influence can be induced on peak 

prevalence. Also, simultaneously increasing the value for two indicators is more 

effective than increasing the value for one, and the largest effect comes when all 

three indicators are increased. Meanwhile, there is still a 50% threshold of user 

percent’s influence. After this indicator reaches the threshold, further advancing 

its value alone would have small influence on pandemic impacts. For the 

epidemic duration, it can be prolonged by further increasing the user percent, by 

further increasing the believer percent with either the user percent or use 

frequency higher than its empirical level, and by further increasing the use 

frequency with the believer percent at its high level. When the user percent and 

use frequency are fixed at their empirical levels, further increasing believer 

percent actually shortens epidemic duration. The same situation occurs when the 

use frequency is increased with the believer percent lower than the high level.  
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Local TV & Radio. When the two types of channel selected are local TV and 

radio, experiments are still conducted to examine with the indicators of one type 

of channel constant at their empirical values, whether and how introducing the 

other type of channel and changing its indicators influence pandemic impacts.  

Table 21 and Figure 28 show the simulation results with constant values for 

radio indicators. A communication strategy using radio alone—with its indicators 

at their empirical levels—would not influence the influenza spread dynamics. 

That can be seen through the almost identical epidemiological curves of 

cumulative morbidity from this situation and the baseline scenario. Incorporating 

local TV in the strategy is needed in this case. The pandemic impacts can be 

greatly mitigated when both types of channel are simultaneously used at their 

empirical levels. The 50% threshold of the influence of local TV’s user percent on 

peak prevalence and epidemic size still exists, which makes further increasing this 

indicator alone unnecessary. But emergency managers can increase the believer 

percent of local TV to reduce the epidemic size, while noting the shortened 

epidemic duration. Reducing the use frequency of local TV to medium level has 

little influence on peak prevalence and epidemic size, but greatly shortens the 

epidemic duration.  

Table 21. Pandemic Impacts with Varying Strategies for Local TV and Fixed 
Strategy for Radio 

Strategy Output Strategy Output Strategy Output 
Radio 
alone 

6.1; 45.5; 112; 
Radio & 
(70,60,1) 

2.0; 20.1; 180; 
Radio & 
(90,60,1) 

2.0; 20.0; 154; 

Radio & 
(70,90,1) 

2.0; 15.8; 139; 
Radio & 
(70,60,3) 

2.0; 20.5; 133; 
Radio & 
(90,90,1) 

2.0; 15.3; 123; 

Note. The strategy of how local TV is used is organized as (%-user, %-believer, 
use frequency). 
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Figure 28. Influence of local TV with fixed strategy for radio 

As emergency managers have already used local TV at its empirical level and 

are considering whether radio should be added to the strategy, Table 22 and 

Figure 29 should be referred to before any decision is made. The introduction of 

radio reduces the effectiveness of current communication strategy, despite the 

varying values for two radio indicators. After it is introduced, increasing its user 

percent increases the peak prevalence and epidemic size, and shortens the 

epidemic duration. The relationship between radio use frequency and epidemic 

impacts seems to be curvilinear. Both the increase in radio frequency from 

medium to high level and the decrease from medium to low level are associated 

with severer pandemic impacts. The frequency of once per 3 days seems to be an 

optimal option in current simulation.  
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Table 22. Pandemic Impacts with Fixed Strategy for Local TV and Varying 
Strategies for Radio 

Strategy Output Strategy Output Strategy Output 
Local TV 

alone 
2.0; 18.6; 184 

ltv & 
(11,3) 

2.0; 20.1; 180; 
ltv & 
(50,3) 

2.3; 23.3; 160; 

ltv & 
(90,3) 

3.2; 29.6; 148; 
ltv & 
(11,1) 

2.3; 24.3; 136; 
ltv & 
(11,7) 

2.0; 19.5; 141; 

Note. ltv represents local TV. The strategy of how radio is used is organized as 
(%-user, %-believer). 

 

Figure 29. Influence of radio with fixed strategy for local TV 

National TV & radio. The pandemic impacts when radio used alone to send 

risk information can also be mitigated by adding national TV in the 

communication strategy. As shown in Table 23 and Figure 30, the strategy of 

simultaneously using radio and national TV at their empirical levels could greatly 

reduce the impact compared with the baseline scenario, although it is not as 

effective as adding local TV at its empirical level to the separate usage of radio.  
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Table 23. Pandemic Impacts with Varying Strategies for National TV and Fixed 
Strategy for Radio 

Strategy Output Strategy Output Strategy Output 

Radio alone 6.1; 45.5; 112; 
Radio & 
(26,55,3) 

3.3; 26.7; 142; 
Radio & 
(50,55,3) 

2.2; 22.8; 144; 

Radio & 
(90,55,3) 

2.0; 22.3; 145; 
Radio & 
(26,90,3) 

3.0; 26.1; 125; 
Radio & 
(26,55,1) 

2.0; 19.0; 116; 

Radio & 
(50,90,3) 

2.0; 21.1; 144; 
Radio & 
(50,55,1) 

2.0; 17.6; 121; 
Radio & 
(26,90,1) 

2.0; 14.4; 122; 

Radio & 
(50,90,1) 

2.0; 14.0; 130;     

Note. The strategy of how national is used is organized as (%-user, %-believer, 
use frequency). 

 

Figure 30. Influence of national TV with fixed strategy for radio 

Further increasing the user percent of national TV from its empirical level—

with fixed values for radio indicators—reduces the epidemic size and prolongs 

epidemic duration, but has small influence on peak prevalence. Such an influence 

can be observed till the user percent reaches 50%, after which small changes can 

be caused in pandemic impacts by increases in this indicator. Increasing the 
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believer percent of national TV alone from its empirical level has similar 

influences on peak prevalence and epidemic size, but shortens the epidemic 

duration. The use frequency of national TV also plays a similar role; increasing its 

level alone can reduce both peak prevalence and epidemic size, but shorten the 

epidemic duration.   

The situation in which radio is added to the strategy of using national TV 

alone is similar as that where radio is added to the separate usage of local TV. As 

shown in Table 24 and Figure 31, regardless of the value for its indicators, the 

introduction of radio decreases the effectiveness of previous strategy in mitigating 

pandemic impacts. There is a negative relationship between the user percent of 

radio and pandemic impacts, and a quasi-curvilinear relationship between use 

frequency and pandemic impacts. Emergency managers need to avoid the usage 

of radio, or minimize its user percent and keep its use frequency to send pandemic 

information at one time every 3 days.  

Table 24. Pandemic Impacts with Fixed Strategy for National TV and Varying 
Strategies for Radio 

Note. ntv represents national TV. The strategy of how radio is used is organized 
as (%-user, %-believer). 

Strategy Output Strategy Output Strategy Output 
National TV 

alone 
2.6; 20.5; 123; 

ntv & 
(11,3) 

3.3; 26.7; 142; 
ntv & 
(50,3) 

4.5; 38.0; 135; 

ntv & 
(90,3) 

4.6; 41.4; 124; 
ntv & 
(11,1) 

3.6; 30.9; 133; 
ntv & 
(11,7) 

3.2; 25.9; 135 
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Figure 31. Influence of radio with fixed strategy for national TV 

Local TV & national TV & radio. This set of experiment explores the 

situation where the indicator values for one type of channel are changed from 

their empirical values while the other two types of channels are fixed at their 

empirical levels. Simulations are first run to examine the influence of indicators 

of local TV, and results are shown in Table 25 and Figure 32. In Figure 32, the 

black solid curve represents the baseline scenario, and the black dashed curve the 

situation with national TV and radio used at their empirical levels. The blue solid 

curve is generated when all three types of channel are at their empirical levels, 

namely, when the exact empirical communication strategy in the research context 

is implemented. The blue and red dashed curves are produced with varying levels 

for local TV indicators, with national TV and radio fixed at their empirical levels.  
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Table 25. Pandemic Impacts with Varying Strategies for Local TV and Fixed 
Strategy for National TV and Radio 

Strategy Output Strategy Output Strategy Output 
National TV 

& Radio 
3.3; 26.7; 142; 

ntv & radio 
& (70,60,1) 

2.0; 18.6; 176; 
ntv & radio 
& (90,60,1) 

2.0; 18.4; 146; 

ntv & radio & 
(70,90,1) 

2.0; 14.4; 136; 
ntv & radio 
& (70,60,3) 

2.0; 19.5; 126; 
ntv & radio 
& (90,90,1) 

2.0; 14.3; 136; 

Note. ntv represents national TV. The strategy of how local TV is used is 
organized as (%-user, %-believer, use frequency). 

 

Figure 32. Influence of local TV with fixed strategy for national TV and radio 

The influence of indicator changes in local TV on pandemic impacts in this 

case is similar as that when local TV is used with national TV or radio. 

Summarization therefore can be made regarding the influence of this channel 

when it is not used alone. Increasing its user percent alone from its empirical level 

or decreasing the use frequency alone from its empirical level has small effect on 

peak prevalence and epidemic size, but shortens epidemic duration. Increasing the 

believer percent alone from its empirical level has little effect on peak prevalence 
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and shortens epidemic duration, but brings a large reduction in epidemic size. For 

emergency managers in the research context, no efforts seem necessary to change 

the user percent and use frequency of local TV in current risk communication 

strategy. But they can attempt to increase this channel’s believer percent, based on 

their choices between smaller epidemic size and longer epidemic duration.  

The influence of national TV when its indicators are changed from their 

empirical levels is shown in Table 26 and Figure 33. Such an influence is similar 

as that when national TV is used with local TV or radio. As a result, it can be 

summarized that, when national TV is used at its empirical level and with any 

other types of channel, increasing its user percent alone—to at most 50%—

reduces the epidemic size and extends the epidemic duration while exerts no 

influence on peak prevalence. Increasing its believer percent or use frequency 

alone has similar effects on the peak prevalence and epidemic size, but shortens 

the epidemic duration. Emergency managers in the context therefore can modify 

their current risk communication strategy by increasing the user percent of 

national TV to 50%. They can also increase its believer percent and use frequency 

to reduce the epidemic size, while noting the shortened epidemic duration.  

Table 26. Pandemic Impacts with Varying Strategies for National TV and Fixed 
Strategy for Local TV and Radio 

Strategy Output Strategy Output Strategy Output 
Local TV 
& Radio  

2.0; 20.1; 180; 
ltv & radio 
& (26,55,3) 

2.0; 18.6; 176; 
ltv & radio 
& (50,55,3) 

2.0; 16.4; 179; 

ltv & radio 
& (90,55,3) 

2.0; 16.2; 175; 
ltv & radio 
& (26,90,3) 

2.0; 17.6; 143; 
ltv & radio 
& (26,55,1) 

2.0; 16.9; 135; 

ltv & radio 
& (50,90,3) 

2.0; 15.6; 236; 
ltv & radio 
& (50,55,1) 

2.0; 14.8; 162; 
ltv & radio 
& (26,90,1) 

2.0; 13.4; 138; 

ltv & radio 
& (50,90,1) 

2.0; 12.7; 171;     

Note. ltv represents local TV. The strategy of how national TV is used is 
organized as (%-user, %-believer, use frequency). 
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Figure 33. Influence of national TV with fixed strategy for local TV and radio 

For radio, Table 27 and Figure 34 show the simulation results with varying 

values for its indicators when local and national TV are fixed at their empirical 

levels. The introduction of radio—at its empirical level—to communication 

strategy here cannot be simply considered counter-productive. The peak 

prevalence remains constant and the epidemic duration is extended by almost 

three weeks, while there is a small increase in the epidemic size (3.3%). After 

radio is included in the strategy, the influence of changing the values of its 

indicators is consistent with that when it is not used alone. Raising its user percent 

or use frequency aggravates the pandemic impacts. Reducing its use frequency 

brings little decrease in epidemic size, but shortens the epidemic duration.  
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Table 27. Pandemic Impacts with Varying Strategies for Radio and Fixed 
Strategy for Local and National TV 

Strategy Output Strategy Output Strategy Output 
Local & 

national TV 
2.0; 18.0; 157 

ltv & ntv 
& (11,3) 

2.0; 18.6; 176; 
ltv & ntv 
& (50,3) 

2.2; 22.9; 164; 

ltv & ntv  
& (90,3) 

2.4; 25.6; 154; 
ltv & ntv 
& (11,1) 

2.3; 22.0; 140; 
ltv & ntv 
& (11,7) 

2.0; 18.1; 151; 

Note. ltv represents local TV, and ntv national TV. The strategy of how radio is 
used is organized as (%-user, %-believer). 

 

Figure 34. Influence of radio with fixed strategy for local and national TV 
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Chapter 6 

Discussion 

This dissertation addresses current limitations in the literature of public risk 

communication in EM filed. Four inter-related research questions are answered in 

the context of 2009 H1N1 influenza outbreak in an Arizona community.  

First, emergency risk communication theory, social influence theory and 

empirical data are used to answer the first and second research question, namely 

how individuals make responsive decisions to risk information and what is the 

influence of information transmission channel on the decision. According to 

Quarantelli’s model of individual warning response, individuals after receiving 

risk information go through a staged process consisting of initial risk perception, 

social confirmation, situational definition and response (Quarantelli, 1983, 1990). 

The responsive decision is the result from situational definition, which is 

simultaneously formulated by initial risk perception and the information collected 

in the social confirmation stage. Public risk communication influences individual 

response behavior through influencing their warning receipt and shaping their 

initial risk perception, which is defined as whether individuals perceive a high 

risk for the general public (Quarantelli, 1983, 1990).  

The influence of risk communication on individual initial risk perception is 

specified in the specific research context by conducting logit regression on the 

data from 2009 ASU/ADHS Influenza Survey. The dependent variable of the 

regression is the probability of an individual to perceive a high risk for the general 

public. The independent variables include whether individuals use some type of 
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channel to receive pandemic information, and whether they believe the channel is 

important. A variety types of channel are included in the regression, including 

local TV, national TV, local newspaper, national newspaper, Internet, radio, 

magazine, friend, school, work, doctor, and other. Regression results showed that, 

in the specific research context, individuals’ initial risk perception is positively 

associated whether they receive pandemic information from local or national TV 

and meanwhile believe information from local or national TV is important. It is 

negatively associated with whether they receive pandemic information from radio.  

The way in which the initial risk perception formulated, together with the 

confirmative information collected, influences individuals’ responsive decision is 

conceptualized based on the model of Delre et al (2007). Initial risk perception 

and confirmative information collected have equal weight regarding influencing 

responsive decision. But the influence from confirmative information does not 

always exist; it is only present when the percent of people taking protective action 

among individuals’ friends who are asked for confirmation exceeds certain 

percent. Otherwise, the responsive decision is solely decided by initial risk 

perception. Here responsive decision is represented by the probability for an 

individual to take protective actions. Responsive action—whether or not taking 

protective actions—is randomly decided based on this probability. Reasons for 

why using such a definition for responsive decision have been discussed before. 

By now, a clear picture has been provided regarding individual response 

process to emergency risk information, as well as how characteristics of 

information transmission channel in the research context influence the process. To 
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make such knowledge more insightful for emergency managers, it is integrated 

into an agent-based simulation framework with theories and empirical findings 

from epidemiology and social network theory. Two streams of interaction occur 

in this framework. First, in the context of influenza pandemic, interactions occur 

among individuals along the contact network through which the influenza virus 

spreads over the population. Second, individuals interact with their friends and 

public sector through information exchange, to decide whether to take protective 

action. These two streams of interaction at the individual level are inter-dependent 

and interactional. Together they generate the impact the pandemic causes at the 

community level over time, which in the context represents the public response 

pattern. And this is how the third research question is responded to.  

The fourth research question concerns the influence characteristics of 

information transmission channel can induce on pandemic impacts. An 

information transmission channel is indicated by its type, user percent, believer 

percent and use frequency. Local TV, national TV and radio are included in the 

simulation model, since just these three types of channel influence individual 

initial risk perception in the context and therefore have the potential to influence 

emergency impacts. For each type of channel, the user percent and use frequency 

determine the percent of community population who receive risk information 

from the channel at each time step, while the believer percent decides the percent 

of population who believe in its importance. The spread dynamics of the 

pandemic influenza is simulated in two scenarios: when there is no public 

intervention and when there is public risk communication. In the second scenario, 
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communication strategies can vary in the number and type of channel used and 

the user percent, believer percent and use frequency of each channel in use.  

The results of influenza propagation simulation indicate that the pandemic 

can cause severe impacts in the community if no intervention measures are 

implemented. Since it is initiated, the influenza keeps spreading for almost four 

months, and over 40% of community population can get infected during the 

period. Public risk communication, if appropriately designed, can greatly reduce 

the impacts in this case. Simulation results from situations with different 

communication strategies and their policy insights are summarized as follows.  

When only one type of channel is used to send risk information, either local 

TV or national TV should be selected. The introduction of either TV channel 

would decrease the pandemic impact, although the extent of reduction depends on 

the values for its three indicators. Using radio alone achieves little regarding 

reducing the pandemic impact. For the two TV channels, the influence of 

changing the value for one indicator on pandemic impacts with the other two 

fixed is similar. First, there is a conditional threshold of 50% regarding the 

influence of user percent of either TV channel. Emergency managers can decrease 

the peak prevalence and epidemic size by increasing the user percent when the 

channel is used equally to or less frequently than one time every week. When the 

use frequency is equal to or higher than one time every three days, increasing user 

percent after it reaches 50% would change little in the two impact indicators. 

Second, the way in which the believer percent of either TV channel influences 

pandemic impacts is also dependent upon its use frequency. While both peak 
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prevalence and epidemic size can be reduced by increasing the believer percent 

when the use frequency is one time every week, only the latter can be influenced 

by the same change in believer percent when the frequency is increased to one 

time every three days or more frequently. Third, there is also a conditional 

threshold in the influence of use frequency. When the user and the believer 

percent are both equal to or higher than 50%, increasing the use frequency after it 

reaches one time every three days has little effect on peak prevalence and 

epidemic size; otherwise, emergency managers can mitigate the impacts by 

increasing the use frequency. For the epidemic duration, no consistent findings 

have been found in term of how it is influenced by any indicator of either TV 

channel. Furthermore, when emergency managers are deciding which TV channel 

should be used, preference should be first clarified between smaller peak 

prevalence and epidemic size and longer epidemic duration. With the same values 

for all three indicators, generally national TV is more capable of reducing peak 

prevalence and epidemic size while local TV prolonging the epidemic duration.   

When emergency managers decide to use two types of channel for risk 

communication, the combination of local and national TV should be preferred. 

Here indicators for both channels are first set at their empirical levels. 

Experiments are then conducted to explore the changes in pandemic impacts 

brought by increases in one indicator value from its empirical level with values 

for others fixed. Simulation results show that, compared with the baseline 

scenario, using both TV channels at their empirical levels can effectively reduce 

peak prevalence and epidemic size and extend the epidemic duration. Further 
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changing the strategy cannot induce influence on peak prevalence, but the 

epidemic size can be reduced by increasing the believer percent of local TV, or 

any one, two or all three indicators of national TV. Meanwhile, those changes do 

not necessarily lead to prolonged epidemic duration. Increasing the believer 

percent of local TV alone, or increasing the believer percent or use frequency of 

national TV alone, would actually shorten the duration. Choices need to be made 

in this case regarding in which dimension pandemic impacts should be mitigated. 

Another finding from this set of experiment is that, emergency managers can 

reduce local TV’s use frequency to one time every three days. Such change has 

little influence on pandemic impacts, but may be able to save public resources.  

In the empirical context, local emergency managers utilized all three types of 

information channel. Such empirical strategy is demonstrated by simulation very 

productive in reducing emergency impacts. To further advance the effectiveness 

of this strategy, emergency managers can increase the user percent of national TV. 

Notices are demanded when emergency managers are attempting to increase the 

believer percent or use frequency of national TV, or to increase the believer 

percent of local TV. These measures would shorten the epidemic duration, 

although they can help reduce the epidemic size. No changes should be made in 

the user percent and use frequency of both local TV and radio. 

Contribution 

This dissertation makes contributions, both theoretically and practically, in 

three ways. For EM, ABM is advocated as an alternative and appropriate 

approach to address issues. Since decades ago, EM researchers have recognized 
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the complex nature of modern emergencies and the need for a new approach to 

study and manage them (Alexander, 2002; Rosenthal & Kouzmin, 1997; 

Rosenthal et al., 1989). This study summarizes the key features identified by 

previous literature for this new approach, and argues ABM simultaneously 

possesses these features, which theoretically makes it the approach in need. Such 

theoretical possibility is further exemplified by using ABM to deal with a specific 

EM issue of reducing influenza pandemic impacts through effective public risk 

communication strategy. In this example, public risk communication is framed as 

a dynamic process, during which individuals interact with each other and with 

public sector through communication. The management effectiveness in this case 

is measured by the extent to which pandemic impacts can be mitigated by 

communication strategies, which is a system-level pattern generated from all 

individuals’ autonomous decision-makings and actions. Such a framework is also 

developed from an inter-disciplinary perspective; it integrates theories and 

empirical findings from multiple disciplines, including epidemiology, sociology, 

computational simulation, and emergency management. 

For public risk communication, this dissertation provides a comprehensive 

review of related studies in the EM field over the past seven decades. People who 

have a preliminary interest in this area can use this review as a starting point to 

find out in the field of EM what public risk communication is, what practitioners 

believe, what previous studies have found, and what has been missed from current 

literature. Particularly, detailed accounts have been provided on the key 

component of emergency public risk communication, namely, how individuals 
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respond to risk information during emergencies and what are the factors 

influencing this response process. This review can also be utilized by researchers 

and practitioners already in EM field to check against their knowledge and 

experience, which may advance the progress of the field.   

Through the literature review, four limitations are found constrain the further 

theoretical development and practical application of emergency risk 

communication. Reasons for the existence of these limitations are both theoretical 

and methodological. This dissertation attempts to address three of these four 

limitations, by integrating theories from multiple disciplines and both quantitative 

and qualitative empirical data into a simulation framework based on ABM. In this 

framework, public risk communication is conceptualized as a dynamic and 

interactive process. How individuals make decisions and respond to risk 

information are appropriately assumed given social network and social influence 

theory and empirical data from previous emergency risk communication studies. 

The link between risk information transmission channel and individual response 

process is also made clear through combining theoretical models of explaining 

individual warning response and empirical data. At the community level, public 

response pattern, based on which emergency managers design and evaluate their 

strategies, is automatically generated from interactions at the individual level. 

This simulation framework is later implemented in a case study where 

communication strategies with different characteristics of information 

transmission channel are executed to control the spread of a pandemic influenza 

through influencing individual responsive behavior to risk information. The 
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addressing of these limitations further suggests ABM an appropriate alternative to 

the traditional approach to emergency public risk communication which may 

provide more insights on effective practices.  

Public risk communication is an integral component of emergency 

management. Understanding its dynamics is crucial for effectively managing 

public emergencies in communities (Drabek & Boggs, 1968; Mileti & O’Brien, 

1992; Reynolds, 2005). This dissertation re-illustrates the key role public risk 

communication plays. In the specific research context, effective public risk 

communication strategies can not only greatly reduce the total number of people 

get infected, but also slow the pandemic influenza spread, and therefore help buy 

time to introduce other public interventions, particularly the production and 

distribution of vaccines. Although emergency managers cannot solely rely on risk 

communication and people’s protective actions to avoid adverse social outcomes, 

effective risk communication could lessen the impact of a pandemic. The role of 

public risk communication during an emergency therefore requires more attention 

in public emergency management scholarship.  

Using simulation, this dissertation further models the effects of different 

communication strategies on pandemic impacts for policy insights. Simulation 

results suggest that, the communication strategy local emergency managers 

empirically used is very effective in reducing pandemic impacts within the 

community. If emergency managers want to further mitigate the impacts, they 

may consider increasing the user percent of national TV. Increasing the believer 

percent or use frequency of national TV, or increasing the believer percent of 
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local TV can help reduce the total number of people get infected, but shortens the 

epidemic duration. There is no need to change the user percent and use frequency 

of local TV; otherwise, less time would be left for local managers to deal with the 

emergency. For radio, it can only be used at its empirical level; changing the 

value for either of its indicators would be counter-productive.   

For studies and practices in emergency public risk communication, the 

current simulation model can serve as a support tool in both research and 

decision-making process. More specifically it supports the identification of factors 

and mechanism of epidemic spread exactly during the descriptive phase, and 

allows the shifting of different scenarios in a reasonable rapid way. These features 

enable the model to carry out a comprehensive evaluation of intervention strategy 

choices in order to select the appropriate control measures. In this dissertation, 

computational experiments are not just conducted on the situations with three 

types of channel used to send pandemic information, as in the empirical context. 

The effectiveness of possible communication strategies with any one type of 

channel or with any two types of channel is also tested and compared. Simulation 

results from all these hypothetical situations provide a solid basis for emergency 

manager to design effective communication strategies before the emergency and 

to systematically evaluate and improve the strategies used during the emergency.  

For epidemic simulation and control, this study develops a computational 

model that has the potential to more accurately anticipate the spread dynamics of 

a pandemic influenza and to test and compare the effectiveness of different public 

interventions to control it. Pandemic spread of an influenza is one of the biggest 
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threats to society because of the potentially high mortality and high social and 

economic costs associated. The 20th century saw three influenza pandemics, with 

each causing devastating numbers of deaths (Nicholls, 2006). In 2009, an H1N1 

influenza pandemic occurred, which corroborated the expectations of former CDC 

Director Julie Gerberding who said in April 2007 that: “We know that a pandemic 

will eventually occur. We always say it’s not a question of if; it’s a question of 

when” (Ulene, 2007). In view of the threat of a future pandemic of a highly 

pathogenic influenza strain, understanding the spread of pandemic influenza and 

engaging in pandemic preparedness and response efforts have become major 

public health priorities (Salathe & Jones, 2010).  

One prerequisite for effective pandemic planning and intervention is to 

accurately anticipate the epidemic’s spread dynamics. For this purpose, different 

types of computational models have been developed, from the early differential 

equation compartment models to more recent large-scale individual-based 

stochastic models (Bobashev et al., 2007; Jenvald et al., 2007; Lee et al., 2009). 

These models have provided important insights into the understanding and control 

of pandemic influenza. However, most of them are criticized because of how they 

construct the contact network for virus transmission and of their ignorance of key 

social and human components for pandemic influenza simulation.  

The structure of contact network is critical in determining the 

epidemiological pattern seen in the spread of contagious diseases, such as 

HIV/AIDS (Anderson, 1999) and pandemic influenza (Lloyd-Smith et al., 2005). 

The most appropriate way argued by current literature to construct contact 
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network in epidemic simulation is to use the empirical data on corresponding 

contact pattern (Huang et al., 2004; Mikolajczyk et al., 2008). This approach has 

been applied to construct networks for contacts for sexually transmitted diseases 

(e.g., Fenton et al., 2001; Garnett et al., 1996). For pandemic influenza simulation 

in current literature, models tend not to be parameterized by directly analyzing 

empirical data on contact pattern, but often rely on priori contact assumptions 

with little or no empirical basis, or simply use certain type of network (e.g., Carrat 

et al., 2006; Glass et al., 2006; Mei et al., 2010). In addition, little effort has been 

devoted to empirically map the dynamic contact pattern for pandemic influenza 

spread in human communities, and there has not been a simple way to explore the 

sensitivity of epidemiological results to the deviation of certain type of network or 

assumed contact structure from the actual contact pattern. Simulation results from 

these models are therefore considered problematic and vulnerable to those 

questions of what if (Keeling & Eames, 2005).  

Meanwhile, existing pandemic influenza simulation models usually treat the 

disease spread dynamics as a pure engineering or physical problem, while crucial 

social or human factors are not taken into account. These models often ignore 

human behavioral responses to potential threats. Individuals in the model are 

usually assumed to not change their behavior during an epidemic but continue 

with their regular activities as usual. Empirical studies have reported the opposite 

phenomena, especially in a pandemic situation (Ekberg et al., 2009; Lau et al., 

2007; Lau et al., 2003). When confronted with the threat of pandemic influenza, 

people undertake actions to protect themselves from infection (Lau et al., 2007; 
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Lau et al., 2003), and keep these protective coping behaviors until the epidemic 

ends (Leung et al., 2003; de Zwart et al., 2010).  

To address this issue, the concept of “prevalence elastic behavior” is 

introduced, which refers to the adaptive action people take as a reaction to 

epidemic prevalence (Philipson, 2000; Philipson & Posner, 1993). Later studies 

on pandemic-related estimation incorporate this notion into simulation models by 

assuming all individuals reduce their overall social activities due to a pandemic, 

and the reduction is based on the propagation condition of the disease (e.g., 

Larson & Nigmatulina, 2009; Yoo et al., 2010). Human responses are still 

oversimplified in these models. Emergency public risk communication literature 

has showed that whether people adopt self-protective actions is influenced by risk 

communication, and not all people would adopt such actions when facing some 

potential threat (Lindell & Perry, 1983; Mileti & Darlington, 1997; Nigg, 1987). 

Such complexities of people’s behavior call for more careful incorporation of 

these social dimensions in the pandemic influenza simulation.  

This dissertation develops a network-based agent-based model to simulate 

the spread dynamics of a pandemic influenza. As discussed before, ABM is a 

sharp tool for pandemic influenza simulation. It allows interactions among 

individuals and could overcome the limitations of other modeling approaches. It 

permits the study of a specific aspect of epidemic spread and is capable of 

addressing the stochastic nature of the epidemic process. Two features distinguish 

the agent-based model created in this study from previous pandemic influenza 

simulation models, particularly the massive agent-based models and social 
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network models incorporating ABM technique. First, the underlying contact 

network for virus transmission is constructed based on relevant empirical data. 

Second, individual protective behavior is appropriately considered in the model 

by including the component of public risk communication. Theories from 

emergency risk communication and previous empirical data are used to frame the 

probability for an individual to take protection action, and how this probability is 

influenced by communication strategies. These two features simultaneously make 

the current model a promising exploration instrument for researchers as well as a 

decision support tool for local public managers to accurately anticipate the spread 

dynamics of a pandemic influenza. Furthermore, both researchers and 

practitioners can further introduce different public interventions—beside public 

risk communication—into the model and use it to systematically evaluate and 

compare their effectiveness for pandemic containment. 

Theoretically, this study underlines the importance of social and human 

factors in determining an epidemic’s spread dynamics. Epidemic simulation 

therefore must not be considered as a simple engineering or medical problem. 

Social and behavioral aspects need to be taken into account. Besides, this study 

illustrates the significance of non-pharmaceutical measures in pandemic control, 

particularly individuals’ voluntary action to reduce their own social contacts. 

These measures can exert great effect in reducing the pandemic impact. For 

example, many studies have considered the reduction of public contacts an 

effective means to control the 2003-2003 SARS spread (e.g., WHO, 2003). Non-

pharmaceutical measures are also associated with lower social costs, particularly 
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compared with those pharmaceutical interventions which require considerable 

amounts of labor and resources (Huang et al., 2004). The importance of non-

pharmaceutical measures becomes even more salient when a novel pandemic 

strain of influenza is just found and no vaccination or antivirals against it is 

available. On the other hand, the public normally is reluctant to take protective 

actions, since such actions would change their routine activities (Quarantelli, 

1983). The responsibility to encourage the public therefore rests on emergency 

managers to design effective strategies for public risk communication.  

Limitation 

There are several limitations in this dissertation. The first concerns how the 

contact network is set up. A contact in the model is defined as what Edmunds et al 

did in their study, namely, as a two-way conversion (Edmund et al., 1997). 

Although such a definition is easier for operationalization and measurement, there 

are numerous questions about the validity of such a definition, particularly 

regarding whether it could reflect the true picture of contacts that might lead to 

pandemic influenza transmission. For example, considering the exact nature of at-

risk contacts is largely unknown, a contact as defined probably does not capture 

all potentially important routines of transmission, such as direct contact by 

contaminated hands and mouths, indirect fomite transmission from shared objects, 

or being in the same space without talking (Beutels et al., 2006). However, as 

Edmunds et al (1997) argued, such a definition of contact can serve as a starting 

point, with the advantage of being “well understood, easy to recall and record, and 

thus possible to collect from a study population” (Edmunds et al., 1997, p.950). 
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Another reason to adopt this definition is to keep consistency. Previous empirical 

findings used to parameterize the contact network in the model are from those 

studies which used the same definition of a contact for influenza transmission. 

For individual daily contact rate, previous studies exploring the number of 

individuals’ daily at-risk contacts for influenza transmission generally used 

convenience samples (e.g., Beutels et al., 2006; Edmunds et al., 2006; Read et al., 

2008), focused on a specific group of population (e.g., Mikolajczyk & 

Kretzschmar, 2008; Salathe et al., 2010), or were conducted in European 

countries (e.g., Edmunds et al., 1997; Mikolajczyk et al., 2008; Wallinga et al., 

2006). Using empirical data from those studies to parameterize the model is 

problematic, but there are few studies that investigated individual daily contact 

rate using the general U.S. population (Destefano et al., 2010). There are also 

other characteristics of individual daily contact pattern found in previous literature 

which have not been included in the model. For example, the contact rate and type 

may be different between weekdays and weekends (Beutels et al., 2006; Edmunds 

et al., 1997). Furthermore, the empirically measured daily contact data is used as a 

valid proxy to quantify the unobservable actual infectious contacts; it is not 

equivalent with the virus transmission routine.  

Another limitation with this study is that, the implementation of the model 

requires a thorough work of parameterization. While the value of some 

parameters can be estimated based on previous studies (e.g., epidemiologic 

parameters), the value of others may not be easily determined empirically (e.g., 

contact pattern), or they exist only as certain range values (e.g. avoidance 



  183 

behavior effect). There are also some parameters whose value can only be 

assumed, since no specific research has been found on the parameter in the 

simulation context (e.g., social influence threshold and social influence effect). 

Despite that, the current approach provides an opportunity to identify areas and 

parameters for future research. 

This study does not take into account other public intervention efforts for 

pandemic control, particularly vaccination. Researchers and practitioners often 

consider vaccination the best measure for preventing and controlling a pandemic 

influenza outbreak (Longini et al., 2004). However, when there is an outbreak of a 

novel pandemic strain of influenza, the time and production capacity are usually 

insufficient to produce and distribute enough effective vaccines to protect the 

general public (Mniszewski et al., 2008; Monto, 2006). The influence of public 

risk communication in this case needs to be understood by public managers, in 

order to encourage individuals to adopt non-pharmaceutical measures for self-

protection. Furthermore, other public interventions are often used with the 

presence of public risk communication. By further including vaccination and 

other containment measures, the current model may provide better understanding 

and testing of other interventions’ influence on the spread dynamics.  

Public risk communication in this dissertation is a response intervention for 

pandemic control. It is implemented after the influenza season begins, and the 

public before the season is assumed not having any preparedness against the 

influenza. The effectiveness of public risk communication in this case may be 

different from that when it is used both before and throughout the influenza 
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season or when the public is prepared to some extent for the influenza before the 

season. Regarding the strategies emergency managers in the research context can 

adopt to improve the effectiveness of public risk communication, this dissertation 

generally proposed improving the user percent, believer percent and use 

frequency of local or national TV. No recommendations have been proposed in 

terms of how to implement these strategies, particularly how to improve the 

percent of community population who use and believe the importance of either 

TV channel. 

The spatial dimension is also not included in the model. The literature on 

pandemic influenza simulation has increasingly realized the important role of 

spatial structure in shaping the spread dynamics (Dangerfield et al., 2009; 

Mollison, 1995). A large body of studies has been conducted on how space-

related factors affect the spread and hence influence the design of control 

measures (e.g., Bian, 2004; Ferguson, 2006; Germann, 2006). These studies 

commonly integrate network model or massive agent-based model with realistic 

landscapes, which represent the continuous geographic environment individuals 

interact with each other. Simulation models developed in such a way address the 

non-spatial character of compartment models, and can provide spatial 

implications for pandemic control (Cauchemeza et al., 2011; Dibble & Feldman, 

2004). However, these models still have the same problem as their counterpart 

models without spatial component regarding the simulation of contact pattern. For 

epidemic simulation, the influence of actual geographic location and distance are 

usually considered secondary to that of the characteristics of contact network 
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(Huang et al., 2004). This dissertation focuses on the more important aspect of 

pandemic influenza simulation, which is also rarely explored in previous studies. 

Besides, the spatial dimension can be easily incorporated in the developed 

simulation framework.  

Several researchers have emphasized the role of social media as a new type 

of channel for risk communication during emergencies (e.g., Kittler et al., 2004; 

Vaughan & Tinker, 2009). In contrast to the types of channel traditionally used, 

social media facilitates interactive communication and content exchange. Such 

two-way communication channel has already been used by individuals, 

organizations, and government agencies for disseminating emergency risk 

information (Macias, Hilyard, & Freimuth, 2009). The ASU/ADHS Influenza 

Survey included social media (e.g., the Internet or social media sites) as a choice 

respondents could select for the channel they were using to receive 2009 H1N1 

flu information. However, whether using or believing the importance of this type 

of channel is not statistically significantly related to whether having a high-level 

initial risk perception. So social media is excluded from the simulation model. 

Given the emerging awareness about the importance of social media during an 

emergency, further research on its effect is needed.  

Future Research 

The computational model developed in this dissertation is a flexible 

framework, and it can be extended to accommodate several additional ideas and 

avenues of research.  
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First, the model employs a set of simplification and approximations. 

Although it has made the best use of available data, these simplifications and 

approximations can be gradually improved as future research provides more 

findings. For example, given the compatibility between Netlogo and GIS data, the 

landscape of a particular area can be easily incorporated in the model to examine 

disease spread dynamics within the area both temporally and spatially. But more 

information is needed in terms of how to set up a reasonable contact network for 

disease spread over geographic space, particularly when the space is broad.  

Second, the model can be adjusted and applied to other contexts. It can be 

customized to study the spread dynamics of any other communicable disease by 

modifying the transmission process and epidemiologic parameters. It can also be 

extended to simulate the influence of various pharmaceutical and non-

pharmaceutical interventions on epidemic spread dynamics, including therapeutic 

and prophylactic use of antivirals, vaccination, and school closures. Furthermore, 

it can be used for simulation in other communities. A common problem shared by 

all these extensions is that, the model needs re-parameterized, and the value for 

lots of parameters cannot be easily determined. For example, to simulate the 

spread dynamics of another epidemic, what the definition of an at-risk contact 

should be and how personal and community contact network should be set up 

require new discussion. If the model is used to simulate the spread dynamics of 

the same epidemic but within another community, current values for those 

parameters related to public risk communication may not be able to be 

generalized to the new context. For example, the perceived importance of a single 
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type of media usually varies greatly in different communities and time periods. To 

accurately anticipate the disease spread dynamics and the effectiveness of certain 

communication strategy, researchers and public managers need to tailor the model 

with reasonable values for their own contexts. 

Third, in this dissertation, attentions have been paid to the one way 

communication from public sector to the public, although it has been realized that 

the emergency public risk communication is a two-way communication process.  

Future extension of this study can modify the simulation model to include the 

feedback from the public to the public sector; namely, emergency managers can 

dynamically adjust their communication strategies based on how the public 

respond to the current strategy. The risk communication process then can be made 

interactive, and different insights may be provided from such a dynamic view. 

Given the efforts that have been made by this dissertation and the flexibility of 

ABM, such an extension is not a task impossible.   
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APPENDIX A  

USER INTERFACE OF NETLOGO MODEL  
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APPENDIX B  

SOURCE CODE OF NETLOGO MODEL 
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globals [ %-large-reach large-reach small-reach social-influence-effect social-
influence-threshold mean-of-contact-connectivity std-of-contact-connectivity 
susceptible-population exposed-population infected-population  
recovered-population died-population cumulative-infected ] 
 
undirected-link-breed [ large-f-links large-f-link ] 
undirected-link-breed [ small-f-links small-f-link ] 
undirected-link-breed [ stable-links stable-link ] 
undirected-link-breed [ random-links random-link ] 
 
breed [ agents agent ] 
agents-own [ alive? large-f-agent? my-f-network-size my-friends  
my-friends-ordered my-strangers my-c-network-size my-contacts  
my-contacts-temp stable-random-ratio my-daily-contacts  
my-normal-daily-contacts stable-capacity stable-capacity-temp  
number-of-stable-contacts my-stable-contacts my-stable-contacts-temp  
random-capacity random-capacity-temp number-of-random-contacts  
my-random-contacts epi-status infectious? recovering? my-infection-probability  
new-info? ltv ntv radio ltv-cre ntv-cre initial-rp personal-rp n-conf-attempts action? 
action-effect ] 
 
;---------------set up -------------------------------- 
 
to setup 
  ca   
   
  set %-large-reach 0.25 
  set large-reach 65 
  set small-reach 10 
  set social-influence-effect 0.5 
  set social-influence-threshold 0.5 
   
  set susceptible-population (n-agents - n-initial-infected-agents) 
  set exposed-population 0 
  set infected-population n-initial-infected-agents 
  set recovered-population 0 
  set died-population 0 
  set cumulative-infected n-initial-infected-agents 
   
  create-agents n-agents 
    [ set shape "person" 
      set size 5 
      set large-f-agent? false 
      setxy random-pxcor random-pycor 
      while [ any? other turtles-here ]  
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        [ fd 1 ] 
         
      set my-f-network-size 0 
      set my-c-network-size 0 
      set my-daily-contacts 0 
      set my-normal-daily-contacts 0 
       
      set my-friends [] 
      set my-friends-ordered [] 
      set my-strangers [] 
      set my-contacts [] 
      set my-contacts-temp [] 
       
      set stable-capacity 0 
      set stable-capacity-temp 0 
      set number-of-stable-contacts 0 
      set my-stable-contacts [] 
      set my-stable-contacts-temp [] 
      set random-capacity 0 
      set random-capacity-temp 0 
      set number-of-random-contacts 0 
      set my-random-contacts [] 
      set stable-random-ratio 0 
       
      set alive? true 
      set epi-status 0     ;0susceptible, 1exposed, 2infected, 3recovered, 4died 
      set color green 
      set infectious? false 
      set recovering? false 
      set my-infection-probability 0  
       
      set new-info? false 
      set ltv 0 
      set ntv 0 
      set radio 0 
      set ltv-cre 0 
      set ntv-cre 0 
      set initial-rp 0 
      set personal-rp 0 
      set n-conf-attempts one-of [1 2 3 4] 
      set action? false 
      set action-effect 0 ]  
     
    let n-ltv-believer round (n-agents * %-ltv-believer / 100) 
    let n-ntv-believer round (n-agents * %-ntv-believer / 100) 
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    ask n-of n-ltv-believer agents [ 
      set ltv-cre 1 ] 
    ask n-of n-ntv-believer agents [ 
      set ntv-cre 1 ] 
     
    ask n-of n-initial-infected-agents agents [ 
      set epi-status 2 
      set infectious? true 
      set color red ] 
   
  setup-friend-network  
  setup-contact-network 
end 
     
to setup-friend-network 
  let n-large-agents (%-large-reach * n-agents / 100) 
  ask n-of n-large-agents agents 
    [ set large-f-agent? true ] 
     
  ask agents with [ large-f-agent? = true ] 
    [ create-large-f-links-with other agents with [large-f-agent? = true] in-radius 
large-reach 
        [ hide-link ] ]  
  ask agents  
    [ create-small-f-links-with other agents with [large-f-agent? = false ] in-radius 
small-reach 
        [ hide-link ] ]  
     
  ask agents 
    [ set my-f-network-size (count link-neighbors) 
      set my-friends [who] of link-neighbors  
      set my-friends (shuffle my-friends) 
      set my-strangers [who] of other agents with [(link-neighbor? myself) = false] 
      set my-strangers (shuffle my-strangers) 
       
      let my-friend-agents link-neighbors 
      let i 0  
      let j 0 
      while [i < my-f-network-size] 
        [ set j [who] of min-one-of my-friend-agents [distance myself] 
          set my-friends-ordered (lput j my-friends-ordered) 
          set my-friend-agents my-friend-agents with [who != j] 
          set i (i + 1) ] ] 
end 
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to setup-contact-network 
    ask agents [ 
     ;decide contact network size 
     set my-c-network-size round (random-normal mean-of-daily-contacts sd-of-
daily-contacts) 
     while [(my-c-network-size < 0) or (my-c-network-size > max-of-daily-
contacts)]  
       [ set my-c-network-size round (random-normal mean-of-daily-contacts sd-of-
daily-contacts) ] 
       
     ;decide the capacity of stable and random contacts 
     set stable-capacity round (%-of-stable-contacts * my-c-network-size / 100) 
     set random-capacity (my-c-network-size - stable-capacity) 
     if stable-capacity >= my-f-network-size 
       [ set stable-capacity my-f-network-size 
         set random-capacity (my-c-network-size - stable-capacity) ] ] 
     
    ;setup stable and random contacts 
    let i 0 
    while [i < n-agents] [ 
      let update-id-list-stable [] 
      let update-id-list-random [] 
       
      ask agent i [ 
        if stable-capacity != 0 [ 
          if (number-of-stable-contacts < stable-capacity) [ 
            let j 0 
            while [j < my-f-network-size] [ 
              let current-agent item j my-friends 
              ifelse ([stable-capacity] of agent current-agent != 0) and ([number-of-
stable-contacts] of agent current-agent < [stable-capacity] of agent current-agent)  
                     and ([stable-link-neighbor? myself] of agent current-agent = false) 
                [ create-stable-link-with agent current-agent [if hide-contact-link? [hide-
link]] 
                  set number-of-stable-contacts (number-of-stable-contacts + 1) 
                  set my-stable-contacts lput current-agent my-stable-contacts 
                  set update-id-list-stable lput current-agent update-id-list-stable 
                  if number-of-stable-contacts = stable-capacity [stop] 
                  set j (j + 1) ] 
                [ set j (j + 1)] ] ]]] 
       
      ask agent i [ 
        if (number-of-stable-contacts != stable-capacity) [set random-capacity (my-
c-network-size - number-of-stable-contacts)]] 
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      ask agent i [ 
        if random-capacity != 0 [ 
          if (number-of-random-contacts < random-capacity) [ 
            let my-current-strangers my-strangers 
            foreach my-friends [ 
              if [stable-link-neighbor? myself] of agent ? = false [ 
                set my-current-strangers lput ? my-current-strangers ] ] 
            set my-current-strangers (shuffle my-current-strangers) 
             
            let j 0 
            while [j < length my-current-strangers] [ 
              let current-agent item j my-current-strangers 
              ifelse ([random-capacity] of agent current-agent != 0) and ([number-of-
random-contacts] of agent current-agent < [random-capacity] of agent current-
agent) 
                     and ([random-link-neighbor? myself] of agent current-agent = false) 
                [ create-random-link-with agent current-agent [if hide-contact-link? 
[hide-link]] 
                  set number-of-random-contacts (number-of-random-contacts + 1) 
                  set my-random-contacts lput current-agent my-random-contacts 
                  set update-id-list-random lput current-agent update-id-list-random 
                  if number-of-random-contacts = random-capacity [stop] 
                  set j (j + 1) ] 
                [set j (j + 1)]]]]] 
       
      if (empty? update-id-list-stable) = false [ 
        let k 0 
        while [k < length update-id-list-stable] [ 
          let update-id item k update-id-list-stable 
          ask agent update-id [ 
            set number-of-stable-contacts (number-of-stable-contacts + 1) 
            set my-stable-contacts lput i my-stable-contacts ] 
          set k k + 1 ] ] 
       
      if (empty? update-id-list-random) = false [ 
        let k 0 
        while [k < length update-id-list-random] [ 
          let update-id item k update-id-list-random 
          ask agent update-id [ 
            set number-of-random-contacts (number-of-random-contacts + 1) 
            set my-random-contacts lput i my-random-contacts ] 
          set k (k + 1)]] 
       
      set i (i + 1) ]  



  223 

     
    ask agents [ ;for test 
        let a other agents with [stable-link-neighbor? myself = true or random-link-
neighbor? myself = true] 
        set my-contacts [who] of a 
        set my-contacts-temp my-contacts 
        set my-daily-contacts (count a) 
        set my-normal-daily-contacts my-daily-contacts 
        ifelse my-normal-daily-contacts = 0 
          [set stable-random-ratio 0] 
          [set stable-random-ratio (number-of-stable-contacts / my-normal-daily-
contacts) ] ]     
end 
 
;---------------go --------------------------------   
 
to go  
  report-parameter 
  do-plot 
   
  tick 
   
  if ticks = 1 [ 
    ask agents [ 
      set random-capacity number-of-random-contacts ;here random capacity is # of 
random contacts when the model is setup. it is not changed after step 1 
      set stable-capacity number-of-stable-contacts ;here stable capacity is # of 
stable contacts when the model is setup. it is not changed after step 1 
      set stable-capacity-temp stable-capacity  
      set random-capacity-temp random-capacity ] ] 
  
  change-health-status-nonsusceptible   
  update-friendship-network 
    
  ask agents with [alive?] [ 
    set number-of-random-contacts 0 
    set number-of-stable-contacts 0 
    ask my-random-links [die] 
    set my-random-contacts []  
    ask my-stable-links [die] 
    set my-stable-contacts-temp [] 
     
    set new-info? false 
    set ltv 0 
    set ntv 0 
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    set radio 0 
    set action? false 
    set action-effect 0 ]  
   
  receive-risk-information 
  response-to-risk-information   
  update-contact-network     
  change-health-status-susceptible 
   
  do-plot      
end 
 
to report-parameter 
  ;infection spread among population 
  set susceptible-population ((count agents with [epi-status = 0]) * 100 / n-agents) 
  set exposed-population ((count agents with [epi-status = 1]) * 100 / n-agents)  
  set infected-population ((count agents with [epi-status = 2]) * 100 / n-agents)  
  set recovered-population ((count agents with [epi-status = 3]) * 100 / n-agents) 
  set died-population ((count agents with [epi-status = 4]) * 100 / n-agents)  
   
  ;contact network characteristics 
  set mean-of-contact-connectivity mean [my-daily-contacts] of agents with 
[alive?] 
  set std-of-contact-connectivity standard-deviation [my-daily-contacts] of agents 
with [alive?] 
   
  ;file-open (word "population.txt")   
  ;file-write "step" 
  ;file-write ticks 
  ;file-write susceptible-population 
  ;file-write exposed-population 
  ;file-write infected-population 
  ;file-write recovered-population 
  ;file-write died-population  
  ;file-write (cumulative-infected * 100 / n-agents) 
  ;file-close 
end 
 
to do-plot 
  set-current-plot "Epidemic Curve" 
  set-current-plot-pen "Infected"   
  plot (count agents with [epi-status = 2]) 
  set-current-plot-pen "c infected" 
  plot cumulative-infected 
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  set-current-plot "Connectivity of Contact Network" 
  set-current-plot-pen "mean" 
  plot mean-of-contact-connectivity 
end 
 
to change-health-status-nonsusceptible 
  ask agents with [alive?] [ 
    if epi-status = 2 [ 
      ifelse recovering? = true  
        [ set epi-status 3 set color grey set infectious? false set recovering? false] 
        [ ifelse (random-float 100) < mortality-rate 
            [ ask my-links [die] 
              set alive? false 
              set epi-status 4 
              set infectious? false 
              set color black ] 
            [ if (random-float 1) < (1 / infected-period) [set recovering? true] ] ] ]  
    if epi-status = 1 [ 
      ifelse infectious? = true  
        [set epi-status 2 set color red set cumulative-infected (cumulative-infected + 
1)] 
        [if (random-float 1) < (1 / latent-period) [set infectious? true set color 
pink] ] ] ] 
end 
 
to update-friendship-network 
  ;remove friends who has died; strangers remain the same 
  ask agents with [alive?] [ 
    set my-friends [who] of agents with [large-f-link-neighbor? myself = true or 
small-f-link-neighbor? myself = true] 
    set my-f-network-size (length my-friends) 
    let i 0 
    while [i < length my-friends-ordered] [  
      let current-agent-id item i my-friends-ordered 
      if [alive?] of agent current-agent-id = false [set my-friends-ordered (remove-
item i my-friends-ordered)] 
      set i (i + 1) ] 
     
    let j 0  
    while [j < length my-stable-contacts] [ 
      let current-agent-id item j my-stable-contacts 
      if [alive?] of agent current-agent-id = false [set my-stable-contacts (remove-
item j my-stable-contacts)] 
      set j (j + 1) ] ]  
end 
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to receive-risk-information 
  if risk-communication? [ 
    let n-agent-alive (count agents with [alive?]) 
    if ltv? [ 
      if (ticks > 0) and (ticks mod f-ltv = 0) [ 
        let n-agent-ltv round (n-agent-alive * %-ltv-user / 100) 
        ask n-of n-agent-ltv (agents with [alive?]) [ 
          set new-info? true 
          set ltv 1 ] ] ] 
    if ntv? [ 
      if (ticks > 0) and (ticks mod f-ntv = 0) [ 
        let n-agent-ntv round (n-agent-alive * %-ntv-user / 100) 
        ask n-of n-agent-ntv (agents with [alive?]) [ 
          set new-info? true 
          set ntv 1 ] ] ]  
    if radio? [ 
      if (ticks > 0) and (ticks mod f-radio = 0) [ 
        let n-agent-radio round (n-agent-alive * %-radio-user / 100) 
        ask n-of n-agent-radio (agents with [alive?]) [ 
          set new-info? true 
          set radio 1 ] ] ] ]  
end 
 
to response-to-risk-information 
    ask agents with [alive?] [ 
    if epi-status != 3 [ 
    if new-info?  
      [ let temp1 (3.04 * ntv * ntv-cre + 1.66 * ltv * ltv-cre - 2.56 * radio) 
        set temp1 (0 - temp1) 
        set temp1 (1 + exp temp1) 
        set initial-rp (1 / temp1)  
       
        ifelse my-f-network-size = 0  
          [ set personal-rp ((100 - social-influence-effect) * initial-rp / 100) ] 
          [ if n-conf-attempts > my-f-network-size [set n-conf-attempts my-f-
network-size] 
             
            let i 0 
            let n-friend-confirm 0  
            let n-friend-adopt 0   
                  
            while [i < n-conf-attempts] [  
              let current-id (item i my-friends-ordered) 
              if [action?] of agent current-id  



  227 

                [ set n-friend-adopt (n-friend-adopt + 1) ]  
              set n-friend-confirm (n-friend-confirm + 1) 
              set i (i + 1) ]  
             
            ifelse (n-friend-adopt / n-friend-confirm) >= (social-influence-threshold / 
100) 
              [set personal-rp (social-influence-effect / 100 + (100 - social-influence-
effect) * initial-rp / 100)] 
              [set personal-rp ((100 - social-influence-effect) * initial-rp / 100)] ] ]  
       
     ifelse (random-float 1) < personal-rp  
       [ set action? true ]  
       [ set action? false ] ] ] 
   
  ask agents with [alive?] [ 
    ifelse action? 
      [ set action-effect one-of [0.3 0.4 0.5 0.6 0.7 0.8 0.9] 
        set my-daily-contacts round ((1 - action-effect) * my-normal-daily-contacts) 
        set stable-capacity-temp round (my-daily-contacts * stable-random-ratio) 
        set random-capacity-temp (my-daily-contacts - stable-capacity-temp) 
        if (random-capacity-temp > random-capacity) [set random-capacity-temp 
random-capacity] ] 
      [ set my-daily-contacts my-normal-daily-contacts 
        set stable-capacity-temp stable-capacity 
        set random-capacity-temp random-capacity ] ] 
end 
 
to update-contact-network 
  let i 0 
  while [i < n-agents] [ 
    let update-id-list-stable [] 
    let update-id-list-random [] 
     
    ask agent i [ 
      if alive? [  
        ;update stable contacts 
        if stable-capacity-temp != 0 [ 
          if number-of-stable-contacts < stable-capacity-temp [ 
            let j 0  
            while [j < length my-stable-contacts] [ 
                  let current-agent-id item j my-stable-contacts 
                  ifelse ([alive?] of agent current-agent-id ) and ([stable-capacity-temp] 
of agent current-agent-id != 0) 
                         and ([number-of-stable-contacts] of agent current-agent-id < 
[stable-capacity-temp] of agent current-agent-id) 
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                         and ([stable-link-neighbor? myself] of agent current-agent-id = 
false) 
                    [create-stable-link-with agent current-agent-id [if hide-contact-link? 
[hide-link] ] 
                     set number-of-stable-contacts (number-of-stable-contacts + 1) 
                     set my-stable-contacts-temp lput current-agent-id my-stable-
contacts-temp 
                     set update-id-list-stable lput current-agent-id update-id-list-stable 
                     if number-of-stable-contacts = stable-capacity-temp [stop] 
                     set j (j + 1)] 
                    [set j (j + 1)]]]]]] 
     
    ask agent i [ 
      if alive? [ 
        ;update random contacts      
        if random-capacity-temp != 0 [ 
          if (number-of-random-contacts < random-capacity-temp) [ 
            let my-current-strangers my-strangers 
            foreach my-friends [ 
              if [stable-link-neighbor? myself] of agent ? = false [ 
                set my-current-strangers lput ? my-current-strangers ] ] 
            set my-current-strangers (shuffle my-current-strangers) 
             
            let k 0 
            while [k < length my-current-strangers] [ 
              let current-agent-id item k my-current-strangers 
              ifelse ([alive?] of agent current-agent-id) and ([random-capacity-temp] of 
agent current-agent-id != 0)  
                     and ([number-of-random-contacts] of agent current-agent-id < 
[random-capacity-temp] of agent current-agent-id) 
                     and ([random-link-neighbor? myself] of agent current-agent-id = 
false) 
                [create-random-link-with agent current-agent-id [if hide-contact-link? 
[hide-link]] 
                 set number-of-random-contacts (number-of-random-contacts + 1) 
                 set my-random-contacts lput current-agent-id my-random-contacts 
                 set update-id-list-random lput current-agent-id update-id-list-random 
                 if number-of-random-contacts = random-capacity-temp [stop] 
                 set k (k + 1)] 
                [set k (k + 1)] ] ] ] ] ] 
     
     if (empty? update-id-list-stable) = false [ 
        let n 0 
        while [n < length update-id-list-stable] [ 
          let update-id item n update-id-list-stable 
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          ask agent update-id [ 
            set number-of-stable-contacts (number-of-stable-contacts + 1) 
            set my-stable-contacts-temp lput i my-stable-contacts-temp ] 
          set n (n + 1)] ]        
     
    if (empty? update-id-list-random) = false [ 
        let m 0 
        while [m < length update-id-list-random] [ 
          let update-id item m update-id-list-random 
          ask agent update-id [ 
            set number-of-random-contacts (number-of-random-contacts + 1) 
            set my-random-contacts lput i my-random-contacts ] 
          set m (m + 1)] ] 
       
    set i (i + 1) ] 
  
  ask agents with [alive?] [ 
    let a other agents with [stable-link-neighbor? myself = true or random-link-
neighbor? myself = true] 
    set my-contacts-temp [who] of a 
    set my-daily-contacts (count a)] 
end 
 
to change-health-status-susceptible 
  ask agents with [alive?] [ 
    if epi-status = 0 [ 
      let infectious-stable-contact (count stable-link-neighbors with [infectious? = 
true]) 
      let infectious-random-contact (count random-link-neighbors with [infectious? 
= true]) 
      let infectious-contact (infectious-stable-contact + infectious-random-contact) 
      set my-infection-probability (1 - exp (- transmission-probability * infectious-
contact / 100))   
      if (random-float 1) < my-infection-probability [ set epi-status 1 set color 
yellow ] ] ] 
end 


