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ABSTRACT  

   

Pb-free solders are used as interconnects in various levels of micro-

electronic packaging. Reliability of these interconnects is very critical for the 

performance of the package. One of the main factors affecting the reliability of 

solder joints is the presence of porosity which is introduced during processing of 

the joints. In this thesis, the effect of such porosity on the deformation behavior 

and eventual failure of the joints is studied using Finite Element (FE) modeling 

technique. A 3D model obtained by reconstruction of x-ray tomographic image 

data is used as input for FE analysis to simulate shear deformation and eventual 

failure of the joint using ductile damage model. The modeling was done in 

ABAQUS (v 6.10). 

The FE model predictions are validated with experimental results by 

comparing the deformation of the pores and the crack path as predicted by the 

model with the experimentally observed deformation and failure pattern. To 

understand the influence of size, shape, and distribution of pores on the 

mechanical behavior of the joint four different solder joints with varying degrees 

of porosity are modeled using the validated FE model. 

The validation technique mentioned above enables comparison of the 

simulated and actual deformation only. A more robust way of validating the FE 

model would be to compare the strain distribution in the joint as predicted by the 

model and as observed experimentally. In this study, to enable visualization of the 

experimental strain for the 3D microstructure obtained from tomography, a three 

dimensional digital image correlation (3D DIC) code has been implemented in 
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MATLAB (MathWorks Inc).  This developed 3D DIC code can be used as 

another tool to verify the numerical model predictions. The capability of the 

developed code in measuring local displacement and strain is demonstrated by 

considering a test case.  
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

 Solders are commonly used as interconnects in various levels of electronic 

packages. At the first level, they are used to connect the silicon chip to the chip 

carrier and at the second level; they are used to connect the chip carrier to the 

Printed Circuit Board (PCB) as shown in Figure 1.  Solder joints not only provide 

electrical conductivity between the components but also provide mechanical 

integrity to the package. Thus, reliability of the package is affected by the 

mechanical performance of the solder joints. As the solder bump size and pitch 

continue to decrease due to miniaturization of electronic packages, the micro-

structural defects present in the joint become increasingly important for ensuring 

reliability. One such defect commonly observed in solder joints is voiding. Voids 

are introduced in the joint during the manufacturing process. These voids can be 

divided into the following categories: macro-voids, planar micro-voids, shrinkage 

voids, pin-hole voids, and Kirkendall voids (Aspandiar 2005). Out of the different 

void types, macro voids are the largest (> 100μm) and a major reliability risk to 

the solder joints. These voids are generated during the manufacturing process by 

non-uniform solder shrinkage or by entrapped air resulting from outgassing from 

the PCB, surface of the components during reflow (Lau and Harkins 1998) (N. C. 

Lee 2002) (Herzog, Wolter and Poetsch 2003) (Liu and Mei 1994). The size of 

these voids is relatively large compared to characteristic material length scale. 

The size and distribution of voids are exacerbated by the presence of micro-vias, 
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which facilitates air entrapment under the solder paste (Huang, Dasgupta and Lee 

2004) (Stafstrom, et al. 2003). Also, now-a-days the traditionally used tin-lead 

(Sn-Pb) solders are replaced with lead-free solders due to health and 

environmental concern. Pb-free solder alloys have more voids as compared to 

their Sn-Pb counterparts (Bath 2003) (Smetana, et al. 2004). Voids in excess of 

50% have been observed in some Pb-free solders (Chan, Xie and Lai 1996).   

 Voiding has been shown to profoundly influence the properties of solder 

interconnect. It causes weakening of the joint, a loss in ductility due to strain 

localization around the region of the pores, increased thermal resistivity (Yunus, 

Srihari, et al. 2007), decreased thermal conductivity (N. Zhu 1999), poor electro-

migration resistance (Tang and Shi 2001) and shortens the fatigue life. Several 

studies in the literature have shown the overall effect of voiding on the failure of 

the joint but not much work has been done in understanding the effect of different 

void characteristics namely, size, shape and distribution of voids on crack 

initiation and propagation in the joint. This thesis is aimed at getting a better 

understanding of the influence of the different void characteristics on the 

mechanical performance of the solder joint, by conducting numerical modeling 

incorporating the actual microstructural features of the joint. 



  3 

 
   Figure 1 Hierarchy of Electronic Packaging 

 

1.2 Literature Review  

  Several studies have shown the overall effect of porosity on the 

mechanical performance of the joint. Lau et al. used mathematical model and 

Finite Element (FE) analysis to study the effect of voids on stress - strain 

distribution in 2D rectangular Sn-Pb solder joint (Lau and Harkins 1998). Liu et. 

al. used analytical model and FE analysis to study the stress distribution in 2D 

rectangular shape solder for Sn–Pb solders (Liu and Mei 1994). Yunus et al. 

conducted experiments and 3D modeling for voided Chip Scale Package under 

mechanical and thermo-mechanical cyclic loadings and found that voids which 

are greater than 50% of the solder joint area decrease the mechanical robustness 

of the solder joints. They observed that small voids also affect the reliability, but 

it is dependent on the void frequency and location (Yunus, Srihari, et al. 2003). 

Doroszuk et al. studied the effect of voids on thermo-mechanical durability of 

BGA packages (Doroszuk, et al. 2000). Lau and Erasmus studied the effect of 

void size, location, and percentage on reliability of Sn–Pb solders for Bump Chip 

Carrier (BCC) under thermal cycling load using 2D FE models and crack 
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propagation using fracture mechanics. They concluded that the void size and void 

location could play important roles on the accumulated inelastic strain of the 

solder bumps. However, they stated that void percentage less than 20% of the 

BCC++ solder joint does not affect the reliability of the joint. They also stated 

that crack propagation could be arrested due to the presence of a void (Lau and 

Eramus 2002). Zhu et al. conducted experiments and studied the effect of voids 

on fatigue life of solder. They showed that fatigue life decreases with voiding and 

is proportional to the ratio of void size to solder resist opening (Zhu, et al. 2003). 

Herzog et al. investigated the effect of void content on shear strength of the solder 

joint in chip resistors by experiment. They concluded that void content up to 29% 

for Sn3.8Ag0.7Cu has no impact on the shear strength (Herzog, Wolter and 

Poetsch 2003). Kim et al. conducted experiments and modeling for BGA under 

mechanical cycling. In this study, they studied the relationship between formation 

of voids and fatigue fracture mode and fatigue strength of solder joints was 

examined using FE analysis and mechanical shear fatigue test. From the results of 

FE analysis, they found that the equivalent plastic strain and shear strain of solder 

joints with voids are not always larger than those of solder joints without voids 

and the magnitude of the strains relate to the position and size of voids in solder 

joints. Also, the difference of the strains was not much to affect the fatigue 

strength of solder joints (Kim, Shibutani and Yu 2004). Gonzalez et al. conducted 

2D FE modeling of voided solder ball including different size and position of the 

voids inside the joint and the existence of single and multiple voids. They 

observed that inelastic strain in case of single void is not much larger than that of 
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unvoided joint. However, if several voids were located one aside the other, the 

accumulated strain was much larger (Gonzalez, et al. 2005). Terasaki and Tanie 

conducted three-dimensional FE modeling of solder joints with spherical and 

hemispherical voids. Their main conclusion was that the life reduction effect was 

stronger for hemispherical voids when the void area ratio was higher than 15%. 

They also conducted 2D FE modeling of the effect of void location on crack 

propagation. Their calculations revealed that crack propagates from the joint edge 

towards void center. An increase in distance between the center of the void and 

the joint interface produced slower crack propagation (Tanie and Terasaki 2005).  

 However, there are a lot of ambiguities in the results presented in the 

literature. Most of the modeling has been conducted using 2D FE models and for 

very limited range of sizes, such as references (Gonzalez, et al. 2005) (Tanie and 

Terasaki 2005). Also, the modeling is done for very simple 2D rectangular shape 

joint, such as references (Lau and Harkins 1998) (Liu and Mei 1994). Such simple 

models are incapable of accurately representing the phenomenon taking place 

inside the microstructure. Lau et al. (Lau and Eramus 2002) evaluated the 

reliability of porous solder joints via a finite element analysis under the plane 

strain assumption. In their analysis, two dimensional circular voids were readily 

constructed under the plane strain assumption. However, a circular void under the 

plane strain assumption represents a through-thickness hole instead of a spherical 

void, which is incorrect in the real situation.  

 Some authors have incorporated 3D FE models in their analysis (Yunus, 

Srihari, et al. 2003) (Ladani and Dasgupta 2007) (Yu, et al. 2008). But these 
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models are an over simplification of the actual geometry and microstructure of the 

joint. Ladani et al. (Ladani and Dasgupta 2007) have conducted FE analysis of the 

ball with different void sizes under temperature cycling. They have shown that 

with increase in void size up to about 15% of the area fraction of the ball, 

durability increases. For voids bigger than that, the durability starts to decrease. 

Their conclusions are based on considering the effect of a single void. Practically, 

however, multiple voids are observed in the joint and the behavior of the joint 

maybe significantly different when the effect of multiple voids is considered. Q. 

Yu et al. (Yu, et al. 2008) have studied the effect of void size, location on the 

fatigue resistance by considering two voids in the joint. Again, this is a huge 

approximation of the actual scenario, wherein a large number of voids are seen to 

be randomly distributed in the microstructure. Also, since these models are all 

simplifications of the actual model, the results obtained cannot be validated 

experimentally.  

 None of the studies in the literature have provided detail about the effect 

of void size and location on damage initiation and propagation. They also 

provided very limited information about the effect of voids on deflecting the crack 

from its original path.  References (Doroszuk, et al. 2000) (Zhu, et al. 2003) 

(Tanie and Terasaki 2005) have qualitatively shown that certain percentage of 

voids is detrimental, but did not provide a quantitative value of the size, location, 

and distribution of the detrimental voids. Thus, there is a no clear understanding 

of the influence of void characteristics on the joint reliability. In this study, an 
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attempt has been made to address the discrepancies in the literature regarding the 

effect of reflow voids on the failure of the solder joint. 

1.3 Focus of the Thesis 

 This thesis is focused on developing a numerical model incorporating the 

exact size, shape and location of voids in the solder joint to get a thorough 

understanding of the influence of different void characteristics and the interplay 

between them on the mechanical performance of the solder joint. A combined  

approach of tomography and Finite Element Modeling is utilized to study the 

effect of reflow porosity on the deformation behavior of a single-lap shear joint 

composed of Sn-3.9Ag-0.7Cu solder reflowed between copper bars.  A lab scale 

X-Radia Micro XCT is utilized to image the pores in the joint. 3D reconstruction 

of the exact microstructure is incorporated into an FE model to predict the failure 

of the joint using a damage model. Interrupted lap shear tests, combined with X-

ray tomography, are conducted at different strain levels to visualize the damage 

evolution within the joint. The FE model is validated by comparing the failure 

pattern predicted by FE model with experimental results obtained by the 

interrupted lap shear test. The validated FE model is then used to study the failure 

of four different solder joints with varying degrees of porosity and different joint 

geometries. 

 The tomography technique enables visualization of the deformation of the 

pores as well as initiation and propagation of crack. However, it cannot be used to 

visualize the strain distribution inside the joint. To visualize the strain within the 

microstructure, 3D Digital Image Correlation (DIC) technique has been 
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implemented in MATLAB. The effectiveness and accuracy of this technique is 

demonstrated by considering a few test cases. 

 The thesis is organized as follows: Chapter 2 will discuss the experimental 

procedure and numerical modeling technique. The results obtained by the FE 

model and a comparison of the numerical results with the actual experimental 

observations are presented in the Chapter 3. Chapter 4 will discuss the FE analysis 

results of four different solder joints with varying degrees of porosity to gain a 

better understanding of the effect of void characteristics on the failure of the joint. 

The 3D DIC approach will be discussed in Chapter 5. A summary of the work and 

future work is presented in Chapter 6. 
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Chapter 2 

NUMERICAL MODELING METHODOLOGY 

 In this work, a combined approach of X-ray Tomography and Finite 

Element (FE) Modeling has been employed to study the effect of reflow porosity 

on the deformation behavior of a single-lap shear joint composed of Sn-3.9Ag-

0.7Cu solder reflowed between copper bars. Previous studies by N. Chawla et al. 

(Chawla, Sidhu and Ganesh 2006) have shown that numerical models 

incorporating only a simplified geometry of the microstructural features do not 

accurately reproduce the macroscopic stresses and strains. Indeed, the stress and 

strain state can only be represented accurately using models that incorporate the 

true geometry of the microstructural features. Thus, a 3D reconstruction with the 

exact microstructure of the solder joint was carried out. 

 Several techniques are available to visualize microstructural features in 

three dimensions. One of the most widely used techniques is serial sectioning 

combined with optical microscopy (Sidhu and Chawla 2004) (Dudek and Chawla 

2008), or focused ion beam milling (Kubis, Shiflet and Hull 2004) (Singh and 

Chawla 2010) and image reconstruction to visualize the microstructure in 3D. The 

destructive nature of serial sectioning however precludes any dynamic analysis, 

which is essential for studying deformation and failure. X-ray Computed 

Tomography (CT) is an established technique in the medical field for non-

destructive three-dimensional imaging that is growing in popularity in the 

materials science community (Baruchel, et al. 2008) (Kinney and Nichols 1992). 

X-ray Microtomography imaging tools with resolution limits below 1μm have 
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been developed for use with synchrotron as well as lab-scale x-ray sources 

(Williams, et al. 2010). The non-destructive nature of this technique enables study 

of the evolution of damage in the material, giving a better understanding of how 

microstructural features control the damage process (Silva, et al. 2010) (Dudek, et 

al. 2010).  

 A lab scale XRadia Micro XCT is utilized to image the pores in the joint. 

The 3D reconstructed microstructure is incorporated into a FE model to predict 

the failure of the joint using a damage model. Interrupted lap shear tests, 

combined with X-ray tomography, were conducted at different strain levels to 

visualize the damage evolution within the joint. The experimental procedure and 

the numerical modeling methodology will be discussed in this chapter. 

2.1 Joint Preparation and X-Ray Tomography  

 A single-lap shear joint of Sn-3.9Ag-0.7Cu solder reflowed between 

copper bars was used in this study. To prepare the joint, a 1 x 1 mm square was 

cut from 0.5 mm thick sheet of solder. The high-purity Oxygen-free copper bars 

(approximately 1 mm x 1 mm x 10 mm) were mechanically polished to a 0.05 µm 

colloidal silica finish, and masked with graphite, leaving a 1 mm x 1 mm area on 

each bar available for the solder to bond. Immediately prior to reflow, the 

unmasked region of each copper bar was coated with a thin layer of mildly 

activated resin flux in order to optimize wetting.  The copper bars and solder were 

then fixed in place using a jig to maintain the alignment of the joint, and reflowed 

on a hotplate. After reflow, the jig was removed from the hotplate and air-cooled 

on an aluminum block. This reflow process produced joints with a pore volume 
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fraction of 4-5 %. The typical pore size distribution, as measured from the 3D 

reconstructions of the microstructure is shown in Figure 2. 

 
 Figure 2 Pore size distribution measured by X-ray tomography  

     (Courtesy E.Padilla) 

 

 Microtomography was used to image the solder joint after reflow. A series 

of 1117 images at 0.25° rotation angle were acquired with a 40 mm specimen-

detector distance at an accelerating voltage of 150 kV. This produced a 3D 

reconstruction of the microstructure with approximately 1μm resolution. After 

reconstruction in 3D, the dataset was virtually sliced into a stack of parallel cross-

sections.  Each virtual cross-section was spaced 2.16 µm apart and saved as a 

Tagged Image File (TIF) image with square pixels of 2.16 µm.  Each cubic 

element (voxel) of the resulting stack represented the absorption contrast of a 10 

μm
3
 volume. 

2.2 Image Segmentation and Reconstruction 

 The 3D image dataset was segmented using commercial tomographic 

reconstruction software (Mimics, Matertialise, Ann Arbor, MI).  Segmentation 
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was done by dividing the dataset into masks (corresponding to solder, pores, and 

the background). After segmentation, the body of the solder and each of the 

included pores were reconstructed in 3D.  

2.3 Interrupted Test 

 To track the solder microstructural evolution during shear deformation, the 

lap shear joint was first imaged using X-ray Microtomography in the as-reflowed 

state, and then loaded in shear using a Tytron 250 micro-force testing tool. After 

the joint had been sheared at 10
-3

 s
-1

strain rate for a specified time, it was removed 

from the test fixture and imaged again using X-ray tomography.  This process was 

repeated several times, producing tomographic datasets at 0, .05, .12, .18, and .44 

shear strains. After acquisition, the joints were segmented using the livewire 

algorithm and reconstructed in 3D. Using X-ray tomography to image the joint at 

intermediate stages of strain allows the progression of deformation predicted by 

FE model to be compared to the strain localization observed in the sample. 

2.4 Numerical Modeling 

 Finite Element Modeling is a very powerful numerical tool that can be 

used effectively to understand the deformation behavior of solder (Shen, Chawla, 

et al. 2005) (Lee, Lee and Jung 1998) (Shen and Aluru 2010). This technique has 

been utilized in this study to not only model the deformation of the solder joint 

but also to predict the initiation and propagation of cracks by incorporating a 

progressive ductile damage model (Dassault Systems Simulia 2010). Emphasis 

has been laid on understanding the effect of porosity on damage evolution in the 

solder joint. The simulation results are then compared to the tomographic 
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observations to determine the accuracy of the model predictions and thus validate 

the numerical model.  

 To conduct Finite Element analysis on the sample, the reconstructed 

model was imported into commercial meshing software (HyperMesh, Version 9.0, 

Altair Engineering Inc., Troy, MI) to generate a volume mesh. The meshing was 

done using linear tetrahedral elements (C3D4). Linear elements are preferred in 

plasticity modeling cases because most plasticity models tend toward hyperbolic 

behavior. This allows discontinuities to occur in the solution. If the finite element 

solution is to exhibit accuracy, these discontinuities in the gradient field of the 

solution should be reasonably well modeled. With a fixed mesh that does not use 

special elements that admit discontinuities in their formulation, this suggests that 

the lowest-order elements-the first order elements-are likely to be the most 

successful, because, for a given number of nodes, they provide the most locations 

at which some component of the gradient of the solution can be discontinuous 

(Dassault Systems Simulia 2010).  

 Meshing was done in such a way that there was a highly refined mesh 

around the region of all the pores as shown in Figure 3. The mesh was allowed to 

grow gradually into the matrix so that the total number of elements in the final 

model did not significantly increase computation time. The final meshed model 

has 1,728,106 elements. The meshed model was exported to Abaqus (Version 

6.10, Dassault Systems Simulia Corp, Providence, RI) for further analysis. 
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Figure 3 Meshed model of solder showing the highly refined mesh around the 

pores 

 The 3D computational model used for the analysis is shown in Figure 4. 

The solder joint has a thickness of 500μm and an average cross sectional area of 

1000x500 μm
2
. It is attached to two copper bars at the top and bottom of the joint 

as in the physical joint. The copper bars are 1000μm x 500μm x 500μm. The 

copper bar at the bottom is fixed in all the three translational directions whereas 

the copper bar at the top is fixed in y and z directions and a displacement 

boundary condition is applied in the x direction to get a pure shear deformation of 

the solder joint with a nominal strain of 0.9. 
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  Figure 4 3D computational model used in FE analysis 

 

  In the model, the copper bars are taken to be isotropic linear elastic with 

Young’s modulus of 114 GPa, Poisson’s ratio of 0.31 and a density of 8,920 

kg/m
3
. The Sn-3.9Ag-0.7Cu solder was modeled as an elastic-plastic solid with 

Young’s modulus of 48 GPa, Poisson’s ratio of 0.33 and a density of 7,290 kg/m
3
. 

The plastic properties of solder were obtained from tensile stress-strain data of 

Sn-3.9Ag-0.7Cu solder. The plastic properties used for the model are shown in 

Figure 5. The ultimate tensile strength of the joint was about 38 MPa at a plastic 

strain of 0.1252 beyond which perfectly plastic behavior was assumed. Though 

engineering stress-strain curve was used as input for the analyses, a few test runs 

were also conducted by considering the true stress-strain curve. However, the 

results did not differ significantly in both the cases.  
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The model was sheared at 10
-3

 s
-1

 strain rate to simulate quasi-static loading of the 

joint. ABAQUS explicit solver was employed in the calculations. 

 
  Figure 5  Plastic properties of Sn-3.9Ag-0.7 Cu 

 

 The elastic response follows the generalized Hooke’s law. Plastic yielding 

of SAC follows the von Mises criterion and the incremental flow theory (Y. L. 

Shen 2008). In terms of the principal stresses σ1, σ2 and σ3, the von Mises 

effective stress is expressed as 

 𝜎𝑒 =
1

 2
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2]

1
2 (1) 

 Yielding commences when the magnitude of σe reaches σy, the yield 

strength of the metal under uniaxial loading. Note, 𝜎𝑒 =  3𝐽2 =  
3

2
𝜎𝑖𝑗

′ 𝜎𝑖𝑗
′  where, 

J2 is the second invariant of the deviatoric stress tensor 𝜎𝑖𝑗
′

  with 𝜎𝑖𝑗
′ = 𝜎𝑖𝑗 −

1

3
𝜎𝑖𝑗𝛿𝑘𝑘  (𝜎𝑖𝑗 represents the general stress components and  𝛿𝑘𝑘  is the Kronecker 

delta). Upon yielding, the total strain of an elastic-plastic material, 𝜀𝑖𝑗  is the sum 
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of the elastic part 𝜀𝑖𝑗
𝑒  and the plastic part 𝜀𝑖𝑗

𝑝
. The incremental flow theory relates 

the increment of plastic deformation to stress in the functional form of 

 𝜎𝑒 = 𝑓( 𝑑𝜀 𝑝) (2) 

Where, f is the strain hardening function and d𝜀 𝑝 , the effective plastic strain 

increment, is 

 𝑑𝜀 𝑝 =
 2

3
[(𝑑𝜀1 − 𝑑𝜀2)2 + (𝑑𝜀2 − 𝑑𝜀3)2 + (𝑑𝜀3 − 𝑑𝜀1)2]

1
2  (3) 

Where, 𝑑𝜀1, 𝑑𝜀2 and 𝑑𝜀3 are the principal plastic strain increments. After the 

material has experienced a plastic deformation history, the equivalent plastic 

strain (or effective plastic strain) is then  

 𝜀 𝑝 =  
𝑑𝜀 𝑝

𝑑𝑡
𝑑𝑡

𝑡

0

              (4) 

Where, t is the time history. 

 Initially, a basic elastic-plastic simulation was conducted to get an insight 

into the stress- strain behavior of the joint and to determine the regions of strain 

localization which are the most likely sites for crack nucleation. The results of the 

analysis are presented in Chapter 3. The basic analysis enabled identification of 

the potential sites for crack nucleation and propagation in the model.  

 The next step of the work was to incorporate a damage model capable of 

simulating the failure of the joint. The progressive ductile damage model 

available in ABAQUS was used to simulate the ductile failure of the solder joint. 

A schematic diagram of the ductile damage response of a material is represented 

in terms of the stress-strain curve shown in Figure 6. The initial response of the 
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material is linear elastic and is represented by region 1-2 in the plot. This is 

followed by plastic yielding of the material in the region 2-3. Beyond point 3, 

there is reduction in stress carrying capacity of the material with further straining 

until rupture at point 4. In the absence of damage, the stress in the material would 

increase with increasing strain beyond point 3 as shown in the region 3-4’ of the 

curve. Point 3 corresponds to the material state at which damage initiates and 

point 4 is the point at which the material fails completely and has no stress 

carrying capacity. The region 3-4 of the curve represents the damage evolution 

path of the material during which gradual degradation of the material stiffness 

takes place. The damage process is defined in terms of a scalar damage parameter 

D such that,  

 𝜎 =  1 − 𝐷 𝜎  (5) 

Where σ is the stress tensor in the current increment and 𝜎  is the flow stress in the 

absence of damage. Thus, at the onset of damage D = 0 and at material failure 

point D = 1. Once a finite element reaches the material failure point, it is removed 

and a void is developed in the model. As the material is strained, more elements 

reach the failure criterion and eventual cracking of the model takes place by the 

linkage of voids. Thus, the ductile damage response of a material is specified in 

three parts: the damage initiation point, damage evolution path and the failure 

point (Dassault Systems Simulia 2010). 
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Figure 6 Schematic diagram of Ductile Damage Model (Dassault Systems Simulia 

2010) 

 

 The ductile damage initiation (D = 0) point, 𝜀 𝐷
𝑝𝑙

 is specified in terms 

equivalent plastic strain at the onset of damage, 𝜀 𝐷
𝑝𝑙

 which is a function of ɳ 

and 𝜀𝑝𝑙 , where ɳ=
𝜎ℎ𝑦𝑑

𝜎𝑒
 is the stress triaxiality, and 𝜀𝑝𝑙  is the equivalent strain 

rate. Here, 𝜎ℎ𝑦𝑑 =
1

3
(𝜎1 + 𝜎2 + 𝜎3) is the hydrostatic stress and σe is the effective 

stress. 

 In the present study, 𝜀 𝐷
𝑝𝑙

 is assumed to be independent of the stress 

triaxiality due to lack of experimental data to define the functional form (Shen 

and Aluru 2010). The strain rate is taken to be 10
-3

 s
-1

 to simulate quasi-static 

loading of the sample. Once damage sets in, material softening and strain 

localization take place which display a strong mesh dependency. To alleviate the 

mesh dependency, a characteristic length is utilized so the softening of the 

constitutive law is expressed as a strain-displacement relation as detailed below. 
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The damage evolution law is specified in terms of effective plastic displacement, 

upl through the relation 

 𝑢𝑝𝑙 = 𝐿𝜀𝑝𝑙               (6) 

Where L is the characteristic length of an element and is defined as cube root of 

the integration volume for tetrahedral elements. A linear evolution of damage was 

assumed so that when the equivalent plastic displacement reaches the failure 

point, uf

pl
 the damage parameter D becomes unity. The evolution of damage can 

be written in terms of the damage parameter as: 

 𝐷 =
𝑢𝑝𝑙

𝑢𝑓
𝑝𝑙               (7) 

  Thus, the ductile damage response is completely specified in terms of two 

parameters, 𝜀 𝐷
𝑝𝑙

 and 𝑢𝑓
𝑝𝑙  (Dassault Systems Simulia 2010). In this study, the 

damage was assumed to initiate at the ultimate tensile strength (UTS) of the 

material and 𝜀 𝐷
𝑝𝑙

 was chosen to be 0.1252 which is the strain at UTS. The meshed 

model of the solder joint contained 1,728,106 elements and the characteristic 

length of these elements varied greatly in the whole model as shown in Figure 3. 

Such variability in element lengths was inevitable to limit the total number of 

elements in the final model to a considerate value. Since the range of element 

lengths was quite wide it was not possible to define an average failure 

displacement value for all the elements in the model. This would have resulted in 

the failure of elements with characteristic lengths much greater than the average 

length at a failure strain much lower than the actual failure strain. Thus, to make 

all the elements in the model fail at approximately the same strain, different 
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element groups were created based on their characteristic length. The failure 

displacement, uf

pl
 of each element group was calculated separately based on the 

average characteristic length of every group. The element groups were created in 

such a way that the maximum deviation in the failure strain from the actual failure 

strain was less than +0.07 within every group. The different sub-groups and their 

failure criteria are listed in Table 1. The failure displacements correspond to an 

average failure strain of 0.5944. The results of the failure analysis of the model 

are discussed in chapter 3. 

Table 1 Element Sub-groups for ductile damage analysis 

 

 

  

Element 

Subgroup based 

on characteristic 

length of the 

element (μm) 

Displacement 

 at failure (μm) 

Element 

Subgroup based 

on characteristic 

length of the 

element (μm) 

Displacement 

 at failure (μm) 

0.228-0.3 0.156 3-5 2.377 

0.3-0.5 0.237 5-8 3.863 

0.5-0.7 0.356 8-12 5.944 

0.7-1 0.505 12-16 8.321 

1-1.5 0.743 16-20 10.699 

1.5-2 1.04 20-24 13.076 

2-3 1.486 24-28 15.454 
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Chapter 3 

FINITE ELEMENT MODEL VALIDATION 

3.1 Finite Element Analysis Results 

 The solder joint modeling results are discussed in this chapter. To verify 

the FE model predictions, the analysis results are compared with the interrupted 

experiment results obtained using X-ray tomography. 

3.1.1 Elastic-Plastic Analysis 

 The plastic equivalent strain (PEEQ) developed in the model by the basic 

elastic-plastic analysis at a nominal shear strain of 0.33 is shown in Figure 7a. The 

two large pores near the bottom interface of the joint act as strain localization sites 

and the highest strain in the model is observed in this region. As the model is 

sheared further, the strain around the two large pores increased significantly as 

shown in Figure 7b. Also, the bottom interface is more strained than the top 

interface. This can be attributed mainly to the fact that the bottom interface has a 

smaller cross-sectional area than the top interface.  
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Figure 7  PEEQ plot at (a) γ= 0.33 (b) γ= 0.45 

3.1.2 Ductile Damage Analysis 

 The elastic-plastic analysis enabled identification of strain localization 

zones which could act as potential crack nucleation sites in the model. However, 

the model is incapable of predicting crack growth in the model. To visualize 

failure of the joint, ductile damage analysis was carried out as described in section 

2.4. With the incorporation of the damage model in the FE analysis, stress in the 

joint initially increases with strain. However, once the damage criterion is met, 

the stress in the model decreases with further shearing and a crack is initiated 

when the stress within an element is reduced to zero. A crack is depicted in the FE 

analysis results by removal of the element. Overall stress-strain response of the 

entire solder model is illustrated in Figure 8. The stress in the ductile damage 

model deviates from the elastic-plastic model at a strain of 0.35 and starts 

(a) 

(b) 
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decreasing, indicating that damage has set in the model. With further increase in 

the shear strain, the stress in the join decreases further. 

 
Figure 8 Stress-strain response of the joint 

  

 shows the initiation and propagation of cracks in the model. The stress 

distribution in the entire joint when damage has set in is depicted in Figure 9a. 

The stress around the vicinity of the two large pores near the bottom interface is 

lower than the stress away from these pores. This indicates that damage has set in 

the region around the pores. As the model is sheared further, two cracks are seen 

to nucleate in the model as shown in Figure 9b. The two cracks observed in the 

model nucleate adjacent to the two large pores at a strain of 0.39, in the same zone 

where most of the strain localization was observed in the elastic-plastic analysis. 

The cracks propagate along the interface linking all the pores and cause eventual 

failure of the joint. The progression of crack is depicted in Figure 9c.  
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Figure 9 Von Mises stress distribution in the joint for ductile damage analysis at a 

shear strain of (a) 0.3 (b) 0.39 (c) 0.44 

 

3.1.3 Comparison of Finite Element Analysis results with Experiment 

 To validate the FE model, the analysis results were compared with 

tomographic images obtained from the interrupted experiment. Figure 10 shows 

the deformation of pores observed experimentally and as predicted by the FE 

model. The FE results show very good correlation with the experiment. In both 

cases, more pronounced deformation is seen in pores on the lower half of the 

sample, located near the solder/copper interface. This strain localization correlates 

with the solder's reduced cross-sectional area near that interface which is 

approximately 25 % lower than near the opposite interface.  The reduction in 

(a) 

(b) 

(c) 
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surface area is due to both the tapered shape of the solder and the presence of two 

large (200 μm & 290 μm diameter) pores near that interface. 

Figure 10 Deformation of pores at a shear strain of 0.44 as observed (a) in the FE 

model (b) experimentally 

 

 

 In order to further demonstrate the accuracy of the FE model in predicting 

deformation of the solder joint, deformation of the largest pore in the model was 

compared with experiment at different strains as shown in Figure 11. The 

deformation of the pore observed in the FE results shows very good agreement 

with the experimental observations, thus indicating the precision of the numerical 

model in predicting the deformation of the solder joint. 

 

 

 

(a) 

(b) 
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Figure 11 2D section along the thickness of the joint showing the deformation of 

the large pore observed in FE simulation (left) and experimentally (right) at a 

strain of (a) 0.18 (b) 0.44 

 

 

 The numerical model developed should not only predict the deformation 

of the pores correctly but also represent the failure of the joint accurately. Figure 

12 shows a comparison of crack propagation path predicted by FE and observed 

experimentally. 2-D cross sections across the thickness of the joint depicting the 

crack in the sample are shown in the figure.  The crack around the pore located 

near the bottom left corner of the joint was predicted to occur in the precise 

location as observed experimentally. As mentioned in the previous section, FE 

model predicts crack nucleation at both of the large pores. The crack around the 

other large pore located at the bottom right corner of the joint occurs in the same 

location where failure of the pore wall is observed experimentally as shown in 

Figure 13. Comparison of FE results with experiment clearly demonstrated the 

capability of the numerical damage model to accurately simulate the deformation 

as well as the failure of the solder joint. 

(a) 

(b) 
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Figure 12  2D section across the thickness of the joint showing a comparison of 

propagation of crack (a) as predicted by FE analysis and (b) observed 

experimentally  

 

 

Figure 13 2D section showing pore wall collapse around the largest pore as 

observed in (a) FE model (b) experimentally 

(a) 

(a) 

(b) 

(b) 
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3.1.4 Effect of porosity  

 To demonstrate the influence of porosity on the deformation behavior as 

well as the failure of the joint, ductile damage analysis was carried out by 

excluding all the pores in the solder and modeling just the solder matrix. Figure 

14 shows the comparison of stress distribution in the models with and without 

porosity along a 2D section taken along the thickness of the joint at different 

strains. At a strain of 0.11, before the damage has set in the model, the model with 

porosity has higher stress around the larger pore near the bottom interface 

whereas the model with no porosity has a homogenous stress distribution in the 

joint. At a strain of 0.36, the stress in the model with porosity is lower near the 

bottom interface than the top interface indicating that damage has set in the joint. 

The model with no porosity on the other hand, is undamaged. As the models are 

strained further, the model with porosity develops a crack near the large pore at a 

strain of 0.42 which propagates along the interface linking all the pores. The 

model without porosity however is still intact and shown no cracking. The model 

without porosity starts developing a crack at a strain of about 0.69. The model 

with porosity is completely failed at this point.  
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Figure 14 Von Mises Stress distribution and cracking of the model with porosity 

(left) and without porosity (right) at a strain of (a) 0.11 (b) 0.36 (c) 0.42 (d) 0.62 

  

 

 

 

 

 

  

(a) 

(b) 

(c) 

(d) 
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Chapter 4 

FINITE ELEMENT ANALYSIS OF MODELS WITH VARYING DEGREES 

OF POROSITY 

4.1 Introduction 

 After validating the accuracy of ductile damage model in predicting failure 

of solder joint, this model was used to study the crack nucleation and propagation 

path in four different solder joints with varying size, shape and distribution of 

porosity to understand the influence of the different void characteristics on the 

failure pattern. The four joints were single lap shear Sn-3.9Ag-0.7Cu solders 

reflowed between copper bars. The solder joints were prepared by using two 

different reflow profiles to get varying degrees of porosity in all the joints. The 

reader is referred to the paper by Chawla et al. (Dudek, et al. 2010) for further 

details about the experimental procedure.  

 High resolution X-ray tomography was carried out on the solder joints 

using Xradia’s proprietary MicroXCT technology (Xradia, Concord, California). 

Once the tomographic data was collected, it was incorporated in tomographic 

reconstruction software to create a three-dimensional, 16-bit gray scale 

representation of the sample. The 3D image dataset was segmented using 

commercial tomographic reconstruction software (Mimics, Matertialise, Ann 

Arbor, MI).  After segmentation, the body of the solder and each of the included 

pores were reconstructed in 3D. The reconstructed microstructure of all the four 

solder joint samples is shown in Figure 15. Sample 1 has one large pore near the 

bottom interface of the joint and a few small pores randomly scattered in the 
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matrix. Sample 2 has clustering of small sized pores near the top interface. 

Sample 3 has a distinct geometrical shape with a prominent reduced cross-

sectional area in the center of the joint and clustering of medium sized pores near 

the bottom right edge of the joint. Sample 4 on the other hand has pores larger 

than Sample 2 and 3 distributed near the top interface.  

 
 

 Figure 15 Porosity distribution in all the four samples (Dudek, et al. 2010) 

 

 The pore characteristics of all the four joints are summarized in Table 2. 

Sample 1 has the smallest number of pores but highest volume fraction. Sample 2, 

3 and 4 on the other hand have large number of pores but the total void volume 

fraction is small. All the four joints have unique void characteristics which will 

clearly lead to a noticeable difference in the strain localization in the joint during 

mechanical loading and affect the nature of deformation and damage 

accumulation. 
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Table 2 Characteristics of porosity in the four samples (Dudek, et al. 2010) 

 Sample 1   Sample 2    Sample 3   Sample 4 

Number of pores 28 152 61 83 

Maximum pore 

diameter (μm) 

206 91 54 94 

Pore Volume 

Fraction (%) 

1.1 + 0.2 0.06 + 0.2 0.4 + 0.2 0.2 + 0.1 

 

 

 All the samples were meshed in HyperMesh using first order tetrahedral 

elements (C3D4) to get a highly refined mesh around the pores. The mesh 

characteristics of all the samples are mentioned in Table 3. These models were 

analyzed numerically by applying the ductile damage model discussed in chapter 

2. The four samples were also analyzed by excluding the porosity in the joint and 

modeling the solder matrix to clearly visualize the influence of porosity on 

nucleation and propagation of cracks. The analysis results for all the four samples 

are presented in this chapter. 

Table 3 Mesh Characteristics of the four samples 

     Sample 1      Sample 2     Sample 3        Sample 4 

Total 

Number of 

Elements 

65013 366676 561847        368558 

 

 

4.2 Analysis Results 

4.2.1 Sample 1 

4.2.1.1 Elastic-Plastic Analysis 

 The plastic equivalent strain (PEEQ) distribution in the joint for the 

models with and without porosity at a nominal strain of 0.29 is shown in Figure 

16. For both the models, the strain is concentrated at the bottom of the joint. This 
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is due to the smaller cross-sectional area at the bottom of the joint. The model 

with porosity has overall higher strain as compared to the model without porosity. 

Also, in the model with porosity the strain distribution is highly localized around 

the large pore whereas the model without porosity has a more uniform strain 

distribution. The strain localization due to presence of porosity plays a significant 

role in the failure of the model as discussed in the next section. 

Figure 16 PEEQ plots of sample 1 for elastic-plastic analysis at γ= 0.29 showing 

the overall strain distribution in the entire joint (left) and around the region of the 

large pore (right) for the model (a) with porosity (b) without porosity  

 

 

4.2.1.2 Ductile Damage Analysis 

 To visualize the crack propagation behavior of the joint under the 

influence of porosity ductile damage analysis was carried out. The analysis results 

are shown in Figure 17. The crack nucleates at the bottom two corners of the joint 

for the model with porosity at a nominal strain of 0.27 and propagates towards the 

large pore. As shown in Figure 17a, at a strain of 0.29 the crack has advanced 

(a) 

(b) 
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significantly in the model with porosity however, the model without porosity is 

entirely intact. As the sample is sheared further, the model with porosity is seen to 

fail completely at a strain of 0.33 (Figure 17b). The model without porosity on the 

other hand does not show any crack nucleation. The crack nucleates in this model 

at a strain of 0.47 which is much larger than the failure strain of the model with 

porosity. This model fails completely at a nominal strain of 0.56 (Figure 17c) 

 After the crack nucleates in the model with porosity, it takes a strain 

increment of 4% for the crack to propagate through the joint and cause complete 

failure. However, for the model without porosity a strain increment of 9% is 

required to cause failure of the joint. Thus, presence of porosity not only reduced 

the failure strain but also increased the crack growth rate for sample 1.  
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Figure 17 Von Mises stress plot for ductile damage analysis for the models with 

porosity (left) and without porosity (right) at (a) γ= 0.29 (b) γ= 0.33 (c) γ= 0.56 

 

4.2.2 Sample 2 

4.2.2.1 Elastic-Plastic Analysis 

 The elastic-plastic analysis results are shown in Figure 18 for the models 

with and without porosity. The 3D strain plots for both the models are very 

identical. The strain is highest around the top right corner of the joint for both the 

cases. Sections taken along the thickness of the joint enable a clear visualization 

of the similarity of strain distribution for both models. No strain localization is 

observed around the pores. This is because the sample has a very few small sized 

pores clustered near the top interface. The pore size and pore fraction is not high 

enough to alter the deformation of the joint.  

(a) 

(b) 

(c) 
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Figure 18 PEEQ plot for the model (a) without porosity (b) with porosity at γ= 0.4 

for the 3D model (left) and a 2D section along the thickness of the joint (right) 

 

 

4.2.2.2 Ductile Damage Analysis 

 The elastic-plastic analysis results clearly showed that the presence of 

porosity in this case did not affect the strain distribution in the joint. To 

understand the influence of porosity on the failure of the joint, ductile damage 

analysis was carried out. The analysis results are presented in Figure 19. The 

crack nucleates at a strain of 0.45 in both the models near the top right corner of 

the joint. The elastic-plastic analysis results had shown that this part of the joint 

was most strained and hence, nucleation of crack in this location validates the 

accuracy of the ductile damage model in predicting failure. As the models are 

strained further, the crack propagates along the interface in both the cases and 

complete failure of the joint takes place at a strain of 0.69.  

 Thus, in this sample the presence of porosity did not affect the behavior of 

the joint. 

 

 

(a) 

(b) 
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Figure 19 Von Mises stress plot showing crack nucleation and propagation for the 

models without porosity (left) and with porosity (right) at (a) γ =0.45 (b) γ =0.49 

(c) 0.65 (d) 0.69 

 

 

4.2.3 Sample 3 

4.2.3.1 Elastic-Plastic Analysis 

 The elastic-plastic analysis results for the sample 3 are plotted in Figure 20  

at nominal strains of 0.45, 0.54 and 0.6. The strain profiles for the models with 

and without porosity are very similar. The strain is seen to localize around the 

center of the joint. This is due to the reduced cross-sectional area in this region.  

The presence of porosity has not caused a significant increase in the strain 

concentration. Though the sample has large number of pores near the bottom 

(a) 

(b) 

(c) 

(d) 
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interface, the effect of solder geometry seems to have a more prominent effect on 

the strain localization on the deformation behavior of the joint. 

 

Figure 20 PEEQ plots for sample 3 at a nominal strain of (a) 0.45 (b) 0.54 (c) 0.6 

4.2.3.2 Ductile Damage Analysis 

 The ductile damage analysis results for sample 3 are shown in Figure 21 

for the models with and without porosity. In both the cases the crack is seen 

around the necked part of the joint propagates towards the top interface.  The 

pores in the joint are located near the bottom interface. However, no crack 

initiation is seen in this region. Also, the failure strain for the models with and 

without porosity is the same as can be seen in the figure below.  This indicates 

that porosity has no effect on the failure of the joint in this sample. Geometry of 

the joint governs the crack propagation in this sample. 

 

(a) 

(b) 

(c) 
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 Figure 21 Von Mises Stress in sample 3 at γ = 0.67 for the model (a) without 

porosity (b) with porosity  

 

4.2.4 Sample 4 

4.2.4.1 Elastic-Plastic Analysis 

 The 3D plastic strain plots for the models with and without porosity shown 

on the left in Figure 22 show the overall distribution of strain in the joint. For both 

the models, the strain is seen to be concentrated around the near the bottom right 

corner of the joint. This can be attributed mainly to the reduced cross-sectional 

area in this region. A cross-section taken along the thickness of the joint is shown 

on the right in the figure to enable a better visualization of the strain field. The 

bottom right corner of the joint is most strained as mentioned earlier. On the top, 

for the model with porosity high strain zone is seen along the interface near the 

(a) 

(b) 
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pores. However, the area of strain localization on the top is much smaller than the 

area at the bottom of the joint.  

 
Figure 22 PEEQ plot at γ = 0.4 for the model (a) without porosity (b) with 

porosity  

 

4.2.4.2 Ductile Damage Analysis 

 The crack propagation path for the models with and without porosity for 

sample 4 is shown in Figure 23. The crack is seen to nucleate near the bottom 

right corner of the joint which propagates along the interface for both the models 

which corresponds to the region of strain localization predicted by elastic-plastic 

analysis thus, validating the ductile damage model results. The strains at which 

the crack nucleates and the rate of propagation is same for both the models 

indicating there is no influence of porosity on the failure of the joint. 

(a) 

(b) 
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Figure 23 Von Mises Stress Distribution for models with porosity (left) and 

without porosity (right) at (a) γ = 0.42 (b)  γ = 0.47 (c)  γ = 0.5 

  

(a) 

(b) 

(c) 
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Chapter 5 

3D DIGITAL IMAGE CORRELATION 

5.1 Introduction 

 Traditionally, experimental strains have been measured using strain 

gauges, which performs measurements on isolated points and gives the overall 

strain in the model. However, this technique is incapable of identifying regions of 

strain localization in the model.  To address this issue and enable full-field 

deformation measurement, a number of optical measurement techniques such as 

holography, speckle interferometry and photo-elasticity have been developed for 

noncontact measurement of displacement and strain fields which are capable of 

measuring local displacements and strains in the sample. Among those optical 

measurement techniques, the digital image correlation (DIC) method has gained 

its popularity, since its invention in the eighties (Peter and Ranson 1982) (Sutton, 

et al. 1983) (Chu, Ranson and Sutton 1985) largely due to its simplicity in sample 

preparation and experimental setup and its wide range of measurement sensitivity 

and resolution (Pan, Qian, et al. 2009). The basic principle of DIC is to match the 

same physical points imaged in the reference image and the deformed image. To 

this end, a square subset surrounding the interrogated point in the reference image 

is selected and used to find its corresponding location in the deformed image. This 

non-invasive technique has allowed studying behavior of materials and structures 

in solid mechanics for many applications. Now it has become a powerful tool for 

quantitative investigation. The technique developed initially allowed to measure 

displacement and strain only on the surface of specimens during mechanical 
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loadings. In non-plane loading, the surface of any material is in a state of plane 

stress whereas within the material, regions of stress triaxiality exist.  Thus, surface 

deformation cannot accurately represent the phenomenon taking place inside the 

material. Generally, in order to study such complex loading cases numerical tools 

like finite element simulation are used. However, the obtained results can strongly 

depend on the chosen mechanical modeling and also on the associated hypotheses 

(boundary conditions, mesh). Then, the comparison between simulated fields and 

those obtained on the surface of a similar structure by measurement of 

displacement or strain can be insufficient to validate the calculus, and the 

measurement of 3D kinematic fields inside the specimen appears essential in this 

case (Germaneau, Doumalin and Dupre 2007). Hence, to measure displacements 

and strains at the core of solids, the 2D DIC technique was extended to three 

dimensions (Bay, et al. 1998). The 3D DIC technique has been used for 

applications in medicine, biology as well as to observe heterogeneous materials 

like ceramics, composites (Phillips and Lanutti 1998) (Maire, et al. 2001) or to 

detect defects in industrial structures (Benouali, et al. 2002). 

 In this study, the 3D- DIC technique has been implemented in MATLAB 

(MathWorks Inc.) to calculate the displacements and strains inside the 

microstructure. The developed 3D DIC code can be used to validate the finite 

element results obtained in the previous sections. The accuracy of the developed 

code to measure 3D strains is demonstrated by considering a model test case. 
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5.2 Three Dimensional Digital Image Correlation  

 The displacement field between a reference state and a deformed state of a 

studied sample is measured on a 3D virtual grid. The displacement of each point 

of this grid is calculated by inter-correlation of the grey levels of the 

neighborhood surrounding the considered point in both states. Both the 

configurations are linked by 3D material transformation. The correlation of grey 

levels depends on the presence of contrast in the model.  The volume images 

employed in the image correlation are usually obtained by high resolution X-Ray 

Tomography.  

 Some materials have inherent contrast due to the density difference 

between the different phases of the material. However, in materials where such 

contrast does not exist, artificial markers are introduced in the material which 

gives the contrast required for the image analysis. The detailed procedure to 

conduct digital volume correlation of two images is described in this section.  

5.2.1 Correlation Coefficient 

 Measurement of displacement of any point in the reference image, 

involves finding the best match for the subset of voxels defined around the point 

of interest in the deformed configuration. The best match is calculated by defining 

a correlation criterion which determines the degree of similarity degree between 

the reference subset and its target.  The two commonly used correlation criterion 

are Sum of Squared Differences (SSD) (Lee, et al. 2011) and Normalized Cross 

Correlation (NCC) (Pan, Qian, et al. 2009) (Verhulp, Rietebergen and Huiskes 

2004).  The SSD and NCC criteria are defined as: 
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 𝑆𝑆𝐷 =
 {𝑏 𝑥𝑖

′ , 𝑦𝑗
′ , 𝑧𝑘

′  − 𝑎 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 }2𝑁
𝑖,𝑗 ,𝑘=1

 𝑎 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 
2𝑁

𝑖,𝑗 ,𝑘=1

 (8) 

 

 

 
𝑁𝐶𝐶 =

 𝑏 𝑥𝑖
′ , 𝑦𝑗

′ , 𝑧𝑘
′  𝑎 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 

𝑁
𝑖,𝑗 ,𝑘=1

  𝑎 𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘 
2𝑁

𝑖,𝑗 ,𝑘=1  𝑏 𝑥𝑖
′ , 𝑦𝑗

′ , 𝑧𝑘
′  

2𝑁
𝑖,𝑗 ,𝑘=1

  (9) 

 

 

Where,  

 𝑥′ = 𝑥 + 𝑢 +
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧  (10) 

 

 y′ = y + v +
𝜕v

𝜕𝑥
𝑑𝑥 +

𝜕v

𝜕𝑦
𝑑𝑦 +

𝜕v

𝜕𝑧
𝑑𝑧  (11) 

 

 z′ = z + w +
𝜕w

𝜕𝑥
𝑑𝑥 +

𝜕w

𝜕𝑦
𝑑𝑦 +

𝜕w

𝜕𝑧
𝑑𝑧  (12) 

 

a and b are NxNxN matrices corresponding to subsets in the reference and 

deformed configuration as shown in  Figure 24.  

 The SSD criterion is sensitive to varying illumination and also cannot find 

significantly rotated pattern. The NCC criterion on the other hand is insensitive to 

changes in illumination levels and is more robust. Hence, the NCC criterion is 

used in the code. The correlation technique involves minimizing the function S by 

maximizing NCC. 

      

 𝑆 = 1 − 𝑁𝐶𝐶  (13) 
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 Figure 24 Schematic representation of subsets in the reference and  

 deformed configuration (Verhulp, Rietebergen and Huiskes 2004) 

 

 

 The subset size used for the correlation analysis determines the accuracy 

of the results. A very large subset size would compromise the spatial resolution of 

the measured displacement and also increase the computation time. On the other 

hand, if a very small subset size is used, the feature may not be tracked well 

resulting in wrong displacement calculation (Jandejsk, Jirousek and Vavrik 2011) 

(Lee, et al. 2011). Previous studies by Lee et al. (Lee, et al. 2011) have shown a 

subset size of 21x21x21 voxels is suitable for 3D DIC analysis. 

5.2.2 Sub-Voxel Minimization 

 The function S to be minimized is function of 12 independent variables 

denoted by the vector D. 

 𝐷  𝑢, 𝑣, 𝑤,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑢

𝜕𝑧
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑣

𝜕𝑦
,
𝜕𝑣

𝜕𝑧
,
𝜕𝑤

𝜕𝑥
,
𝜕𝑤

𝜕𝑦
,
𝜕𝑤

𝜕𝑧
   (14) 
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Minimization of function S is a two step process. In the first step, a voxel level 

search is carried out to find the best possible match for the template in the 

deformed image by considering only the translation of the subset i.e. the vector D 

has only 3 independent variables u, v, and w.  The location of the peak of the 

simplified function corresponds to the displacement components u0, v0 and w0 in 

whole voxels (Verhulp, Rietebergen and Huiskes 2004). The point under 

consideration however, could have moved to a sub-voxel location in the deformed 

image. To determine the sub-voxel displacement of the point, minimization of 

function S is carried out further with respect to different number of deformation 

degrees of freedom of vector D.  Few studies in the literature have carried out the 

minimization by considering only 3 degrees of freedom in the model (only 

translation of the subset included) (Lee, et al. 2011). This method enabled only 

voxel level correlation between the two images thus, resulting in poor accuracy at 

high strains.  Some other studies included minimization of the correlation function 

with respect to 6 degrees of freedom of vector D by including the effects of 

translation and rotation of the subset (Smith, Bay and Rashid 2002). However, the 

displacement can be measured accurately only if all the 12 degrees of freedom of 

vector D are included in minimization of function S (Verhulp, Rietebergen and 

Huiskes 2004). Thus, the code developed in this study included all the 12 degrees 

of freedom of vector D. With an initial guess as D (u0,v0,w0,0,0,0,0,0,0,0,0,0) 

minimization is carried out. Tri-linear interpolation is used to evaluate image 

values between adjacent voxels to enable displacement calculation with sub-voxel 

accuracy. 
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5.2.3 Displacement Smoothing and Strain Estimation 

 The displacement data obtained by the correlation analysis is very noisy. If 

this data is differentiated to determine the strains, the noise will be amplified 

resulting in inaccurate strain calculation. Hence, smoothing of the displacement 

data is carried out before differentiation for strain estimation. The most efficient 

technique of smoothing the displacement field is by fitting a polynomial to a 

window of discrete points around the point of interest (Pan, Asundi, et al. 2009). 

A cube window containing (2m+1) x (2m+1) x (2m+1) discrete points is selected 

around the point under consideration. If the window is small enough, the 

displacement within the window can be assumed to be linear and represented as, 

 𝑢 𝑖, 𝑗, 𝑘 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧  (15) 

 

 𝑣 𝑖, 𝑗, 𝑘 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧  (16) 

 

 

 𝑤 𝑖, 𝑗, 𝑘 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3𝑧  (17) 

 

Where, i, j and k = -m: m are the local coordinates within the strain calculation 

window, u(i,j,k) v(i,j,k) and w(i,j,k) are the displacements obtained by the DIC 

code.  The unknown polynomial coefficients a0, a1, a2, b0, b1, b2, c0, c1, c2 are 

determined from the above equations. Once, the coefficient values are 

determined, the strain at the center of the window can be calculated by 

differentiating the displacement equations. This technique gets rid of the noise in 

the data to a large extent resulting in improved accuracy. 
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 The main parameter to be determined in displacement smoothing is the 

size of the window. A small window size cannot suppress noise accurately 

whereas a large window size would result in a highly smoothened field thus 

suppressing the strain localization in the model particularly for the case of 

inhomogeneous deformation. Previous studies by Pan et al. (Pan, Asundi, et al. 

2009) have shown a strain window size of 11x11x11 is sufficient. This window 

size has been used in the code. 

5.2.4 Post-Processing of Displacement and Strain  

 After calculating the displacement and strain data by the 3D DIC code, 

some post-processing of the results is carried out before visualization. The first 

step involves getting rid of badly tracked markers. This is done by plotting the 

displacements calculated for all the markers in the model. The outliers are 

identified manually and are removed from the analysis. After identification of the 

outliers, the displacement data is smoothened and the strains calculated.  

 The 3D DIC code gives displacement and strain values at discrete points 

in the model. The output data needs to be interpolated at the remaining locations 

in the image.  A tri-linear interpolation technique is implemented to interpolate 

the result data. The 3D contour plots generated by the DIC analysis were 

visualized using PARAVIEW (Kitware Inc, 2000) software. The step by step 

process of conducting the correlation analysis of two images is summarized in 

Figure 25. 
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   Figure 25 Flow Chart of 3D DIC  

 

5.3 Test Model for Code Validation 

 To test the accuracy of the 3D DIC code in calculating displacement and 

strain, a test model was built. The model includes a single spherical pore of radius 

15 units embedded in a cube of size 60x60x60 units as shown in Figure 26. This 

Define a uniform grid of markers to be 

tracked on the undeformed image 

Read the images to be correlated in MATLAB 

Conduct a voxel level search to find the best 

match for all the markers 

For markers with NCC < 0.9, conduct a sub-

voxel search 

Calculate the displacements of all the markers 

and eliminate badly tracked markers 

Smoothen out the displacement field to reduce 

the noise and calculate strains 

Interpolate the values of displacement and 

strains at the remaining locations in the image 

Visualize the results in PARAVIEW 
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model was built in ABAQUS (v 6.10). The FE model had 6875 linear tetrahedral 

elements (C3D4).  

 
    Figure 26 Test Model 

 

 The model was deformed numerically by applying a displacement 

boundary condition to the face on the right and constraining the face on the left as 

shown in Figure 27 to get a nominal strain of 0.2. The undeformed and deformed 

configurations obtained by the FE analysis were exported as .STL files. These two 

images were used as input for the 3D DIC code. The inherent contrast between 

the intensity levels of the pore and the surrounding matrix was used for tracking 

in DIC. The image correlation was carried out in MATLAB using the developed 

code. The displacement and strain plots obtained by the DIC code were compared 

to the results obtained by the FE analysis to determine the accuracy of the DIC 

code. 
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  Figure 27 Boundary conditions applied to the test model 

 

5.4 3D DIC Results 

 DIC analysis was carried out on the undeformed and deformed datasets by 

tracking about 7515 markers distributed uniformly around the void in the center 

of the undeformed image. The displacement and strain plots obtained by the DIC 

analysis are discussed below. Figure 28 shows the z-displacement plots obtained 

by the DIC analysis and FE model. The displacement profile predicted by the DIC 

code shows very good correlation with the displacement profile predicted by the 

FE model. In both the cases, the displacement is increasing from the left edge to 

the right edge which is the edge being pulled. A comparison of the y-displacement 

plots is shown in Figure 29. The FE model predicts maximum y-displacement at 

the top and bottom of the void. The same behavior is also predicted by the DIC 

code. Thus, the DIC code models the y-displacement quite accurately. The x-

displacement plots obtained in both the cases also show a very good match as 

shown in Figure 30.  Thus, the DIC code determines the displacements quite 

accurately. 
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Figure 28 Z- displacement plots as predicted by (a) FE Model (b) DIC code 

 

 

 

 
       Figure 29 Y- displacement plots as predicted by (a) FE Model (b) DIC code 

(a) (b) 

(a) (b) 
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      Figure 30 X- displacement plots as predicted by (a) FE Model (b) DIC code 

 

 Figure 31 shows E33 strain plots obtained by the DIC code and the FE 

model. The strain is maximum at the top and bottom of the void in both the cases. 

The strain profile predicted by the DIC code shows a very good correlation with 

the strain profile obtained by the FE model. The E22 strain plots also compare 

very well as shown in Figure 32. The FE model shows maximum strain at the top 

and bottom of the image indicated by the green colored contour. The DIC code 

also shows maximum strain in the same location. Thus, the DIC code predicts the 

displacement and strain contours quite accurately. 

 

(b) (a) 
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            Figure 31 Strain E33 as predicted by (a) FE Model (b) DIC code 

 

 
Figure 32 Strain E22 as predicted by (a) FE Model (b) DIC code (The difference 

in color contours is due to the difference in the scale bars) 

 

 

(a) (b) 
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Chapter 6 

SUMMARY 

 In this research, three dimensional finite element analysis of Pb-free solder 

joints incorporating the exact geometry of the pores was carried out to understand 

the influence of porosity on the deformation behavior as well as overall failure of 

the joint. A damage model was incorporated in the analysis to predict crack 

nucleation and propagation path in the joint. The analysis results were validated 

by comparing the model predictions with the actual results obtained by the 

interrupted experiment. The simulation results showed a very good correlation 

with the experimental results.  The deformation of the pores predicted the 

numerical model was in very close agreement with the tomographic observations. 

The simulated crack nucleation site as well as the propagation path compared very 

well with the actual crack path. The validated FE model was then used to simulate 

the failure of different solder joints with varying degrees of porosity to understand 

the influence of different void characteristics on the failure of the joints. It was 

observed that for joints with more than 1% void volume fraction, the strength was 

reduced considerably.  Another factor that affected the failure pattern was the 

geometry of the joint. For one of the samples, it was observed that the highly 

necked central region of the joint had more influence on the eventual failure path 

than the pores in the joint. Thus, this study enabled visualization of failure of 

solder joints under the influence of varying degree of porosity. 

 In this research, a three dimensional digital image correlation technique 

was implemented in MATLAB which can be used as an efficient tool to measure 
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the experimental displacement and strain. The accuracy of the tool was 

demonstrated by considering a model test case. The 3D DIC code predicted the 

deformation of the model quite accurately.  

 Future work for this research would include modeling of the entire 

electronic package to determine the most critical solder balls in the package. Also, 

to test the 3D DIC code for more complex cases. 
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