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ABSTRACT  
   

Dual-wavelength laser sources have various existing and potential 

applications in wavelength division multiplexing, differential techniques in 

spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-

wave generation, microelectromechanical systems, and microfluidic lab-on-chip 

systems. In the drive for ever smaller and increasingly mobile electronic devices, 

dual-wavelength coherent light output from a single semiconductor laser diode 

would enable further advances and deployment of these technologies. The output 

of conventional laser diodes is however limited to a single wavelength band with 

a few subsequent lasing modes depending on the device design. This thesis 

investigates a novel semiconductor laser device design with a single cavity 

waveguide capable of dual-wavelength laser output with large spectral separation.  

The novel dual-wavelength semiconductor laser diode uses two shorter- 

and longer-wavelength active regions that have separate electron and hole quasi-

Fermi energy levels and carrier distributions. The shorter-wavelength active 

region is based on electrical injection as in conventional laser diodes, and the 

longer-wavelength active region is then pumped optically by the internal optical 

field of the shorter-wavelength laser mode, resulting in stable dual-wavelength 

laser emission at two different wavelengths quite far apart.  

Different designs of the device are studied using a theoretical model 

developed in this work to describe the internal optical pumping scheme. The 

carrier transport and separation of the quasi-Fermi distributions are then modeled 

using a software package that solves Poisson's equation and the continuity 
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equations to simulate semiconductor devices. Three different designs are grown 

using molecular beam epitaxy, and broad-area-contact laser diodes are processed 

using conventional methods. The modeling and experimental results of the first 

generation design indicate that the optical confinement factor of the longer-

wavelength active region is a critical element in realizing dual-wavelength laser 

output. The modeling predicts lower laser thresholds for the second and third 

generation designs; however, the experimental results of the second and third 

generation devices confirm challenges related to the epitaxial growth of the 

structures in eventually demonstrating dual-wavelength laser output. 
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1   Introduction 

 
 Over the last half of a century advancements have been made in the 

design, performance, and manufacturing of semiconductor laser diodes such that 

they are nearly ubiquitous today in a host of applications. The impact of laser 

diodes has been revolutionary both economically and socially with applications 

ranging from telecommunications, the internet, media storage, security, sensing, 

biology, to medicine. The history and development of the laser diode is marked 

with many creative ideas and engineering of semiconductor physics to overcome 

then current limitations, and many of these advancements relate either to: 1) 

reducing the laser threshold current density; 2) achieving laser output at new 

wavelengths with new materials; or 3) improving the modulation bandwidth, 

characteristic temperature, spectral width, or other parameters key to 

communication applications.   

 The inherent nature of carrier scattering and the band structures in 

conventional semiconductor laser diodes results in laser output which is generally 

considered as being at a single wavelength with subsequent spectral modes 

depending on the type of laser diode. In this work a novel semiconductor laser 

diode design is investigated to enable simultaneous laser output at two 

wavelengths that have a large spectral separation by using two asymmetric active 

regions and a creative internal optical pumping scheme. To begin, a brief review 

of some of the most creative ideas and advancements in laser diode device 
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technology is given, and then a high-level introduction of the novel dual-

wavelength laser diode is presented along with its potential applications.   

I.   CREATIVE ADVANCEMENTS OF LASER DIODES 

 Multiple individuals and research groups were involved in the early 

development and invention of the first semiconductor laser diodes. As to whom 

the true inventor of the laser diode is, there is still today some debate, and an 

excellent review of the different parties and their contributions is provided by 

Dupuis [1]. Dupuis notes John von Neumann as the first to suggest using carrier 

injection in a semiconductor p-n junction to upset carrier equilibrium to achieve 

stimulated emission and create an amplifier of incident radiation. His ideas were 

originally part of an unpublished manuscript written in 1953, a year before 

Charles Townes, James Gordon, and Herbert Zeiger demonstrated the first maser 

at Columbia University in 1954 [2]. (Although von Neumann’s manuscript was 

later historically included in a 1987 issue of IEEE Journal of Quantum Electronics 

reviewing the invention of the semiconductor laser [3].)   

 Among the other contributors Dupuis notes are Bernard and Duraffourg as 

the first to publish a paper using quasi-Fermi levels to describe the requirements 

for carrier population inversion inside a semiconductor p-n junction in 1961 [4], 

and Nikolai G. Basov in the Soviet Union for suggesting the use of heavily-

degenerate p-n junctions to establish the necessary population inversion of 

carriers and using the change in the index of refraction due to the heavy doping as 

a waveguide [5]. Dupuis provides a detailed review of the many groups working 

independently at that time who were proposing similar ideas for using p-n 
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junctions to realize semiconductor lasers, but he carefully notes that none of the 

groups had the complete theory correct [1].   

 Experimentally, the first semiconductor laser diodes were demonstrated in 

1962 by four groups working independently. Robert N. Hall et al. at General 

Electric R&D Labs are widely acknowledged as the first to experimentally 

demonstrate a semiconductor laser diode in 1962, although at liquid nitrogen 

temperatures and under high pulsed current [6]. On the same day the results were 

published in Physical Review Letters, another paper by Marshall I. Nathan et al. 

at IBM appeared in Applied Physics Letters also announcing experimental 

evidence of laser emission from a semiconductor diode, however their manuscript 

was received 10 days after Hall’s paper [7]. The devices of both groups were 

infrared GaAs p-n homojunctions, and only a few weeks later, Nick Holonyak, 

who was also at General Electric, was the first to report visible laser emission 

using GaAs1-xPx junctions [8]. The fourth group to demonstrate a semiconductor 

laser diode was T. M. Quist et al. at Lincoln Laboratory, and their paper was 

received only one month after Hall’s first [9].   

 These first laser diodes were all p-n homojunction devices and operated 

only at cryogenic temperatures or under high pulsed currents. In 1963, Herbert 

Kroemer and Zhores Alferov independently proposed double heterostructure laser 

diodes to improve carrier confinement and reduce the laser thresholds [10], [11]. 

In heterojunctions, the injected carriers are confined by the heterobarriers, and 

larger carrier densities not possible in homojunctions are realized. Kroemer noted 

that with wider-gap layers on the sides of the “radiative semiconductor layer,” 
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quasi-Fermi level separations greater than the radiative active region band gap are 

possible. In 1970 Alferov’s group in the former Soviet Union was the first to 

demonstrate  continuous-wave (CW), operation of a laser diode at room 

temperature by using a double heterostructure design, and shortly after Hayashi 

and Panish in the United States also reported CW operation [12], [13]. In 2000, 

Kroemer and Alferov shared the Noble Prize in physics for their creative proposal 

of double heterostructures. 

 In 1973 while working on some simple calculations of slab optical 

waveguides for integrated optics, Charles H. Henry at Bell Laboratories 

recognized a correlation between the confinement of light in a slab waveguide and 

the confinement of electrons in the potential well created by a thin heterostructure 

or quantum well [14]. He proposed there should be discrete modes or levels in a 

quantum well (QW), and the absorption edge should contain a series of discrete 

steps. At that time the thinnest heterostructure layers that could be grown using 

liquid phase epitaxy were near 200 nm, but A. Y. Cho, also at Bell Labs, was 

developing molecular beam epitaxy (MBE), into a reliable and alternative method 

for growing semiconductor heterostructures with near atomic monolayer 

precision. Using a thin MBE-grown GaAs/AlGaAs heterostructure, Dingle, 

Wiegmann, and Henry in 1974 reported the first absorption spectra that clearly 

showed a distinct series of steps indicative of quantum confinement in the 

heterostructure [15]. They quickly filed a patent application in 1975 claiming both 

reduced thresholds in laser diodes with quantum well active regions and the 

ability to tune the laser wavelength by adjusting the well thickness, and the 
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earliest quantum well laser diodes were reported in the late 1970s by Dupuis and 

Dapkus of Rockwell International in collaboration with Holonyak at the 

University of Illinois using metal organic chemical vapor deposition (MOCVD), 

[16]-[19]. 

 Demonstration of MBE-grown quantum well laser diodes was not realized 

until later due to the low quality and very short nonradiative lifetimes of the 

AlGaAs layers. Absorption of carbon and oxygen while growing AlGaAs leads to 

defects and nonradiative recombination centers, and early improvements of MBE 

sought to eliminate hydrocarbon and water vapor sources. These improvements 

included Ti sublimation and liquid-nitrogen-cooled shrouds to significantly 

reduce residual carbon-containing gases [20].  W. T. Tsang, who was also at Bell 

Labs, added an interlock chamber to keep the growth chamber under ultrahigh 

vacuum, and with other improvements reported MBE-grown double 

heterostructure lasers with current thresholds as low as similar devices grown by 

other methods [21]. Tsang also improved the material quality of AlGaAs layers 

by increasing the growth temperature of AlGaAs, observing a four times 

reduction in laser threshold when the AlGaAs growth temperature was increased 

from ~ 500 °C to over 620 °C [22], [23]. Further, Tsang optimized the barrier 

heights, barrier widths, and quantum well thicknesses in a multiple-quantum-well 

GaAs/AlxGa1-xAs structure to reach threshold current densities as low as 250 

A/cm2 [24]. Finally, Tsang noted continued reductions in the thresholds of laser 

diodes using a graded-index waveguide separate-confinement heterostructure 

(GRINSCH) due to increases of the optical confinement factor of the active 



  6 

region with Schubert later noting improved carrier injection into the active region 

of laser diodes using graded-index heterostructures [25], [26].     

 The development of quantum well active regions resulted in lower 

threshold current densities, higher differential gains, and larger characteristic 

temperatures for laser diodes. Many of these improvements are results of the one-

dimensional quantum confinement and change in the electronic density of states. 

Arakawa and Sakaki at the University of Tokyo, proposed continued advances 

with additional quantum confinement in the other dimensions and were the first to 

propose quantum dot lasers in 1982 [27]. However, it was not until the 

development of the Stranski-Krastanow method that the epitaxial growth of 

quantum dot layers was realized and the first quantum dot lasers were 

demonstrated. Some of the first quantum dot lasers were reported in 1994 by 

Bimberg’s group at Technical University Berlin working together with 

Ledentsov’s group at St. Peterburg’s Ioffe Institute [28]. The devices had low 

thresholds and large characteristic temperatures at low temperature, but at room 

temperatures the performance was worse than quantum well devices, and it wasn’t 

until 1996 that room-temperature CW operation was realized by a group at the 

University of Michigan [29]. Finally in 1999, Lester’s group at the University of 

New Mexico was the first to report quantum dot lasers with thresholds lower than 

quantum well lasers [30]. By positioning the dots within a quantum well (“dots-

in-a-well or DWELL”), Lester et al. reported thresholds of 26 A/cm2, the lowest 

of any semiconductor laser diode to that point.   
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 In addition to the creative advancements using heterostructures and 

nanostructures to improve the threshold and performance of laser diodes, creative 

research has extended the range of wavelengths at which laser diodes can be 

made. Despite the availability of compound semiconductor alloys with direct 

band gaps with corresponding wavelengths from ~ 200 nm to past 7 µm, laser 

diodes have not been realized at all these wavelengths due to problems related to 

efficiencies, doping, and adequate lattice-matched substrates.  The GaAs/AlGaAs 

material system is well developed with λ ~870 nm.  Laser diodes at this 

wavelength are often used for short-distance communication and local-area 

networks, whereas for long distance optical fiber transmission in 

telecommunications, lasers at 1.3 µm and 1.5 µm are used due to the minimum 

dispersion and minimum absorption loss of optical fibers at these wavelengths.  

The main material system at these wavelengths is the quaternary In1-xGaxAsyP1-

y/InP [31]. For laser emission at even longer wavelengths, the quantum cascade 

laser, developed at Bell Labs by Federico Capasso relies on intersubband 

transitions rather than direct interband transitions to enable laser output at mid and 

far infrared wavelengths (2-70 µm), [32].  The unique design of quantum cascade 

lasers has led to the realization of laser diodes with wavelengths even longer than 

the smallest III-V band gap for applications in chemical sensing and terahertz 

generation. 

 At the visible wavelengths, light-emitting diodes have been developed for 

nearly all the visible colors; however, laser diodes have not been achieved at all 

these wavelengths.  For red laser diodes, the quaternary semiconductor (AlxGa1-
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x)0.5In0.5P lattice-matched to GaAs covers the longer visible wavelengths in 

addition to the near infrared, and DVD players and red laser pointers use 

In0.5Ga0.5P active regions to emit at 650 nm.  At the other end of the visible 

spectrum, S. Nakamura at Nichia Chemical in Japan and later at the University of 

California, Santa Barbara, was the pioneer leader in the development of blue laser 

diodes using GaN-based semiconductors.  In 1996, his group was the first to 

report a room-temperature CW blue laser diode at 408.3 nm with a device that 

consisted of three In0.2Ga0.8N quantum wells each 4 nm wide separated by 8 nm 

In0.05Ga0.95N barriers [33].   

 
II.   DUAL-WAVELENGTH SEMICONDUCTOR LASER DIODES 

USING INTERNAL OPTICAL PUMPING 

 A small area of the continued research and development associated with 

laser diodes relates to creative approaches to achieve multi-wavelength laser 

output for certain applications such as wavelength division multiplexing, 

differential techniques in spectroscopy and sensing, multiple-wavelength 

interferometry, and THz generation. Initially the largest driving force for research 

on dual-wavelength laser diode sources was for use in optical communications 

and wavelength division multiplexing. With different modulated wavelength 

sources, multiple channels can propagate simultaneously within a single fiber 

optic cable with little crosstalk, and wavelength division multiplexing can be used 

to increase the capacity of an existing fiber network without the need to lay 

additional fiber. In this application, ideally the spectral separation between the 
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laser modes should be minimal to match the losses and dispersion of the different 

channels.  

 Another application for dual-wavelength laser sources is chemical and gas 

sensing using differential spectroscopy techniques. In this approach, a medium is 

probed using two different laser wavelengths, one at a resonant absorption 

wavelength λabs and the other a reference wavelength that is an off-resonant 

wavelength λref. The intensity of the transmitted or backscattered light at the 

absorbed wavelength λabs is compared to that of the unabsorbed wavelength λref.  

With this differential technique, linear and absolute measurements can be made 

that are independent of other environmental factors [34].  The method has been 

implemented in a range of applications from remote sensing of trace gases in the 

atmosphere and differential absorption lidar [34], [35], to fiber optic based 

sensors for measuring pH, pressure, temperature, and other bio-parameters within 

the human body [36], [37]. Another application for dual-wavelength lasers is 

multi-wavelength interferometry since the degree of ambiguity in optical path-

length and surface profile measurements can be decreased with techniques 

involving multiple wavelengths [38]. Dual-wavelength laser output can also be 

used in the generation of THz radiation through wave-mixing for its uses 

spectroscopy, biomedical imaging, DNA analysis, communication systems, and 

security imaging [39].   

 Often for these applications, the needed multi-wavelength laser signal is 

achieved by combining the output of multiple laser sources through various 

optical elements. There is a continued demand however in today’s fast-paced 
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climate for miniaturization and increased mobility of electronic devices. Dual-

wavelength laser output from a single diode device would enable such advances 

in the applications noted here, and with increased mobility and reduction in costs, 

it is easy to envision the emergence of new applications. Future ideas include 

integrating a dual-wavelength laser diode in small-footprint devices where two 

laser wavelengths within the same optical beam would be highly advantageous, 

such as in microelectromechanical systems and/or lab-on-chip microfluidic 

systems.   

 The challenge in realizing dual-wavelength output from a single laser 

diode is that carrier scattering and quasi thermal equilibration within the active 

junction region limit laser output to what is generally considered single-

wavelength with possible subsequent spectral modes depending on the laser 

design. In a diode junction region with asymmetric quantum wells of different 

effective band gaps or transition energies, the carrier dynamics and thermal 

equilibration result in a single electron/hole quasi-Fermi level and distribution that 

extends across the junction active region as illustrated in Fig. 1.1. This scattering 

and broadening prevents sustaining simultaneous stable laser output from both 

quantum wells if the two wavelengths are very different. With applied current to 

the laser diode, carriers are injected and band filling occurs starting at the lowest 

energy quantum well, and the spontaneous emission and gain spectra increase 

with continued injection of carriers into the active region. At laser threshold the 

carrier concentration, gain, and quasi-Fermi levels theoretically become fixed due 

to the high recombination rate of the stimulated emission, and this pinning of the 



  11 

carrier concentration prevents any further increase of the gain to achieve laser 

threshold at shorter wavelengths. 

 To enable dual-wavelength laser output at wavelengths with large spectral 

separation from a single p-i-n junction device and waveguide, a creative laser 

diode design with dual active region is introduced that decouples the quasi-Fermi 

levels/distributions of the two regions and uses a novel internal optical pumping 

scheme. This novel internal-optically-pumped dual-wavelength laser design is 

illustrated in Fig. 1.2. The first laser active region, termed the master active 

region, consists of a larger band gap material placed within the junction of the 

diode as in conventional laser diode devices, and the second laser active region, 

termed the slave active region, consists of a smaller band gap material placed 

outside the p-n junction but still within the guided optical field of the cavity 

waveguide. The placement of the two active regions prevents quasi thermal 

equilibration or decouples the quasi-Fermi levels between the two regions. The 

master active region is driven by the applied current as in conventional laser 

diodes, and a portion of the shorter-wavelength laser emission from this master 

laser then optically pumps the longer-wavelength slave region to its laser 

threshold, resulting in simultaneous laser output at two wavelengths with large 

spectral separation. The master and slave regions are considered separate active 

regions based on the decoupled quasi-Fermi levels and the different methods for 

carrier injection.   
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Fig. 1.1. Conceptual band diagram of a conventional multiple-quantum-well laser 
diode with asymmetric quantum wells sharing common quasi-Fermi levels. 
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Fig. 1.2. Conceptual diagram of the novel dual-wavelength laser design with 
decoupled quasi-Fermi levels and internal optical pumping. 
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 The research presented here covers detailed theoretical modeling to 

specific device designs and efforts to demonstrate the novel dual-wavelength laser 

diode experimentally. First, an overview of previous multi-wavelength laser diode 

research by other groups is given in chapter two. A theoretical model is developed 

in chapter three of the internal optical pumping scheme, and the key parameters in 

optimizing the device performance are identified. Chapter four discusses other 

modeling methods used in developing and predicting the performance of actual 

device designs, and chapter five covers the experimental methods related to 

epitaxy growth, device processing, and device testing. The modeling and 

experimental results of three generations of dual-wavelength laser diode designs 

are then presented in chapters six and seven.  
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2   Previous Research on Dual-Wavelength Laser Diodes 
 
 

 Conventional semiconductor laser diodes are nearly single-wavelength 

devices or at least devices with a single wavelength band supporting a few 

subsequent spectral modes. Applications for laser diodes consisting of two 

wavelength bands far apart in the optical spectrum were noted in the previous 

chapter. The difficulty of achieving such a device with conventional laser diode 

designs was also pointed out as carrier scattering and quasi thermal equilibration 

result in carriers preferentially populating the lower energy active region or longer 

wavelength band. It is then difficult to populate a second shorter wavelength 

active region and produce the desired dual-wavelength output.  

 This chapter reviews previous research by other groups in developing 

dual-wavelength laser diodes, which is categorized into four groups. The first 

group includes approaches to engineer the resonant cavity of a semiconductor 

laser to selective support laser output from two non-subsequent longitudinal 

modes (or lateral modes in vertical cavity device), with the same gain medium. 

The spectral difference of these devices is not very large as the modes are 

supported by the same gain medium or the same wavelength band. Hence there 

are also mode-competition and stability issues with these devices. The second 

area of research is efforts to produce two laser diodes with different wavelengths 

monolithically on the same chip in close proximity. Some of the early literature 

labels these devices as dual-wavelength lasers wherein they are really monolithic 

arrays of individual devices. The third category relates to the research and 
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development of asymmetric multiple-quantum-well (AMQW), laser diodes where 

multiple quantum wells with different dimensions or material band gaps are 

located within a diode junction and the carrier dynamics are modulated by unique 

heterostructure designs. There are however limitations to the design and 

performance of these devices. Finally the fourth group relates to research on 

optically-pumped dual-wavelength devices, and their relation to the internal 

optical pumping scheme and the novel dual-wavelength laser diode introduced 

will be covered.  

 
I.   ENGINEERING THE RESONANT CAVITY 

 Different research groups have sought to modify the resonant cavity of 

semiconductor lasers to enable dual-wavelength laser operation. Independently, 

two groups in Taiwan and Germany developed two-color lasers using a special 

external cavity design [40], [39]. The designs use a laser-diode array with an 

antireflection coating on the front facet and then use an external diffraction 

grating at grazing incidence for wavelength selection and output coupling.  The 

first-order reflection of the grating is focused on an end mirror that has a V-

shaped double slit placed immediately in front of it to select two cavity resonant 

wavelengths. Horizontal translation of the slit leads to tandem tuning of the two 

wavelengths, and vertical translation controls the spectral difference of the modes. 

The spectral separation of the two modes is limited by the gain bandwidth of the 

semiconductor active region, and the largest separation demonstrated was 17 nm 

[41]. Concerning competition of the two laser modes, it was noted from the far-



  16 

field pattern that the two laser modes were initially using different gain regions of 

the laser diode array, and when a single laser diode was used, stable simultaneous 

dual-wavelength output due to strong mode competition was difficult to achieve 

[41].   

 A few groups have sought to realize dual-wavelength laser diodes without 

an external cavity by altering the distributed Bragg reflector (DBR), of DBR laser 

diodes.  Iio et al. first demonstrated DBR laser diodes with output at two 

wavelengths 10.6 nm apart by using periodic-phase-shifting gratings fabricated by 

electron-beam lithography, ion implantation, and a two-step epitaxial growth [42]. 

Another group at the University of Illinois, Urbana, used two separate uniform 

gratings instead of periodically modulated gratings to realize dual-wavelength 

DBR lasers [43]. Using an In0.29Ga0.71As quantum well active region, they 

demonstrated dual-wavelength laser operation with 16.9 nm wavelength 

separation, and in a later design, the group realized tunable wavelength separation 

by depositing separate metal contacts on the DBR sections and applying current to 

realize tuning of the DBR by thermal effects [44].    

 A few other approaches have been taken to engineer the resonant cavity of 

a semiconductor laser to support dual-wavelength laser modes. Common through 

the different works however are stability problems in supporting the two modes as 

most of the devices only demonstrate dual-wavelength output over certain 

temperature and current ranges. The wavelength separation is also limited as the 

lasers are still really single wavelength band devices relying on the same active 

region.  
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II.   MULTI-WAVELENGTH LASER DIODE ARRAYS 

 To realize dual-wavelength laser diodes with larger spectral separations 

and stable outputs, most of the early research on dual-wavelength lasers relates to 

laser diode arrays rather than individual devices. These arrays consist of 

individual addressable laser diodes monolithically on the same chip, but while 

spatially close, they emit at different wavelengths. Many of the methods to realize 

such arrays involve special processing steps and/or epitaxial regrowth. In one 

creative approach, a group at Mitsubishi developed a dual-wavelength laser diode 

array by changing the internal optical losses of subsequent diodes in an array by 

varying the waveguide lateral width [45]. By processing a narrow waveguide laser 

next to a wide one and optimizing the cavity length, the laser thresholds of the 

two devices can be made such that laser emission from the wider device 

corresponds to the lowest quantized state transition (n = 1), while the narrower 

device corresponds to the second transition (n = 2). The group demonstrated dual-

wavelength operation of the side-by-side monolithic devices at ~810 nm and ~830 

nm while using the same active region material and quantum well width.     

 Sakai et al. at the Nagoya Institute of Technology in Japan, developed 

dual-wavelength laser diode arrays with outputs at ~1.2 µm and 1.3 µm with two 

similar designs [46], [47]. In the first design, an n-i-p-i-n structure is grown by 

epitaxy, where the first-grown intrinsic region is the smaller band gap 1.3 µm 

region, and the second is the 1.2 µm active region. A mesa is etched with the etch 

depth extending into the p-region, and separate contacts are then deposited on and 
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off the mesa. In this design each active region has separate n-contacts but shared a 

common p-contact, and with the proper bias, the two lasers reach threshold [46]. 

The authors note resistance problems due to the common p-region design and 

modify the design by growing instead an n-i-n-i-n structure [47]. The same etch is 

performed as before, but then zinc is diffused to form the proper p-regions. The 

active regions then have separate p-contacts and a common n-contact. The 

emission from the two devices is not very close as the spatial separation of the 

two laser spots are 50 µm and 80 µm respectively in the two designs.             

 Multiple groups have sought to extend the range of the wavelength 

separation of monolithic laser diode arrays by first etching and then doing 

selective-area epitaxial regrowth to form different compositional active regions 

with small spatial separation. A group at NTT in Japan used liquid phase epitaxy 

(LPE), regrowth to integrate 1.26 µm and 1.55 µm devices in a buried 

heterostructure design [48]. The near-field laser spot separation was 30 µm for 

their device. Bouadma et al. used liquid phase epitaxy regrowth to realize a laser 

diode array structure emitting at 850 nm and 885 nm with GaAs and 

Al 0.05Ga0.95As active regions respectively, and the spatial mode separation of their 

device was 25 µm [49]. Most of the early regrowth approaches used either metal 

organic chemical vapor deposition (MOCVD), or LPE due to the available in situ 

etching and growth inhibition on dielectric masks. A group at Bell Labs however 

developed close integration of GaAs and In0.2Ga0.8As lasers with molecular beam 

epitaxy (MBE), regrowth [50]. In their devices, undercut of the etch mask, careful 
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cleaning, and the growth of a thick cladding buffer layer enabled devices with 

thresholds comparable to respective single-growth laser diodes. 

 Development of dual wavelength laser diodes was of interest to a group at 

Xerox in the 1990s. One of their first approaches involved epitaxial regrowth, 

however only the upper p-cladding region was regrown rather than an active 

region [51]. In the initial growth, two different quantum well active regions are 

grown over the entire wafer with the shorter-wavelength region grown first or 

closest to the substrate. Using a patterned etch, the longer-wavelength active 

region is then selectively removed where the shorter-wavelength laser will be 

processed. After the etching, a p-cladding region is regrown on top of all the 

devices. In the longer-wavelength devices, the carriers naturally populate the 

lowest band gap quantum well first and laser emission occurs at the longer 

wavelength. Then in the shorter-wavelength devices, the longer-wavelength active 

region no longer exists, so the emission is at the shorter wavelength. The spatial 

separation of the two monolithic laser diodes reported by the Xerox group is 15 – 

20 µm.  

 In another creative approach developed by the same group, localized 

intermixing to raise the band gap of the lower active quantum well is used rather 

than etching to enable laser output at the shorter wavelength[52]. The barrier 

layers next to the lower band gap quantum well are doped with Si at 5×1018 cm-3, 

and when annealed intermixing occurs. The authors note in intermixing a SiNx 

surface layer is needed to prevent loss of As since an As-poor condition inhibits 

intermixing. Thus by patterning a SiNx layer, the lower quantum well can 
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alternately either be intermixed or left intact, enabling a monolithic dual-

wavelength laser diode array.  Whereas the technique worked for infrared 

AlGaAs/GaAs dual-wavelength devices, the authors noted the high annealing 

temperature and long annealing time resulted in defect generation in phosphorous 

based compounds, and the technique could not be used for the fabrication of 

red/IR dual-wavelength devices.  For dual-wavelength laser devices at these 

wavelengths, the Xerox group had to rely on selective etching and regrowth [53].  

 With the laser diode arrays, the laser modes of the two devices still have 

significant spatial separation that limits the overall coupling efficiency into an 

optical fiber. Osowski et al. used a y-junction coupler to combine the output of 

two monolithically integrated laser elements into a single waveguide for coupling 

into a fiber [54]. The group used a selective-area MOCVD process with a silicon 

dioxide mask to both inhibit and enhance the epitaxial growth rate. By varying the 

stripe width of openings in the oxide mask, the growth rate can be selectively 

controlled, and quantum wells of different thickness are grown on a single 

substrate. Their device then consists of two parallel active region channels with 

different transition wavelengths that then couple into the trunk of the y-junction 

coupler. With this configuration and the integration of electroabsorption 

modulators, the device can be operated with laser output at either one of the 

wavelengths or at both wavelengths simultaneously from the same spatial 

location. The device design is complex, and it requires three separate epitaxial 

growth steps with intermediate processing steps. The spectral separation of the 
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two laser modes is also limited since only the quantum well thicknesses and not 

the composition is varied.   

 
III.   ASYMMETRIC MULTIPLE QUANTUM WELL LASERS 

 Asymmetric multiple-quantum-well (AMQW), devices are of high interest 

for realizing dual-wavelength output from a single laser diode.  In this design 

quantum wells of varying thickness and/or composition are located within a single 

active region within the core of a single optical waveguide, and the individual 

wells have different transition energies and associated wavelengths.  Quantum 

wells of varying thickness are referred to as dimensionally asymmetric, and 

devices of varying composition are compositionally asymmetric [55].   

 In AMQW devices it is critical that the carrier dynamics are altered by 

unique heterostructure designs when compared to the design of a conventional 

multiple-quantum-well laser (MQW). In conventional lasers, the barrier heights 

and thicknesses between the wells are usually optimized to obtain the lowest 

possible threshold current [24]. The timescale of carrier transport between the 

wells is much shorter than the energy relaxation processes which results in quasi 

thermal equilibration of the carriers between the wells. The quasi-Fermi levels are 

then approximately flat and constant across the different wells and single Fermi 

distributions exist for electrons and holes throughout the junction active region. 

Carriers then populate the lowest energy states first as described earlier, and the 

MQW gain medium is considered a homogeneously broadened gain medium, 
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from which it is difficult to sustain stable laser output at two wavelengths 

simultaneously.   

 Disruption of the carrier transport and quasi thermal equilibration between 

the asymmetric wells is achieved by employing high and/or thick barriers between 

the wells. This leads to separate quasi-Fermi levels or Fermi distributions of 

carriers for each individual well and enables a degree of control over the carrier 

densities in the individual asymmetric wells and more equal emission and gain 

from the different wells. Broader gain spectrums can then be achieved in AMQW 

devices, and they are of high interest for broad wavelength tuning of external 

cavity semiconductor lasers and for broad-band superluminescent diodes [56]. 

Due to the disruption of carrier quasi thermal equilibration, the gain medium of an 

AMQW device approaches inhomogeneous broadening, and dual-wavelength 

laser emission is possible in contrast to conventional homogeneously broadened 

quantum well laser diodes.                    

 Sotomitsu Ikeda and Akira Shimizu in Japan were the first to report dual-

wavelength laser emission from an AMQW device and provided some of the first 

theory and modeling of the unique behavior of these devices [57], [58].  In their 

work, Ikeda and Shimizu use two compositionally and dimensionally asymmetric 

quantum wells with the barrier between them larger and thicker than in 

conventional MQW structures. The larger shorter-wavelength well is located 

nearest the p-doped region of the p-i-n junction, and the width of the well is wider 

than the mean-free path of the energy relaxation processes of holes. Injected holes 

from the p-region are then captured in the shorter-wavelength well and must be 
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thermally activated to transfer over the barrier and into the longer-wavelength 

well. By making the barrier high and/or thick, Ikeda and Shimizu suggest the rate 

of hole transport from the shorter- to the longer-wavelength well can be slowed to 

the same order as the overall recombination rate, disrupting the quasi thermal 

equilibration. In their theory they assume an adequate supply of electrons is 

injected into both wells with injection into the shorter-wavelength well near the p-

side of the junction achieved by a combination of: 1) making the conduction band 

edge of the separate confinement layer on the n-side higher than the edge of the 

barrier layer; 2) making the longer-wavelength well narrower than the mean-free 

path of the energy relaxation processes of electrons; and 3) doping the barrier 

layer n+. The transport of holes over the barrier is then the determining factor in 

the final behavior of the AMQW laser [58].  

 Experimentally, Ikeda and Shimizu reported dual-wavelength laser 

emission from an AMQW device with an 8 nm GaAs quantum well and a shorter-

wavelength Al0.08Ga0.92As well that is 16 nm wide. The barrier between the wells 

is a 15 nm Al0.3Ga0.7As barrier [57]. For devices with cavity lengths greater than 

300 µm, simultaneous dual-wavelength laser output was observed at 831 nm and 

818 nm with the longer wavelength reaching threshold first. In their devices, the 

barrier height is not too high so that sufficient carriers are still injected into the 

longer-wavelength well and it reaches threshold first. However, since the two 

asymmetric wells have separate quasi-Fermi distributions, the carrier density and 

gain in the shorter-wavelength well keep increasing with continued increase in the 
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applied current. Eventually threshold is reached at the shorter wavelength, and 

simultaneous laser output from the two quantum wells is observed.   

 To date, dual-wavelength laser output from AMQW laser diodes has been 

limited only to certain ranges of current and cavity lengths [57], [59]. 

Experimentally in AMQW lasers, as the current to the device is increased above 

the thresholds of both laser wavelengths, the output power of the longer-

wavelength laser starts to decrease while the output power of the shorter 

wavelength continues to increase. Eventually, the longer wavelength ceases lasing 

entirely and a complete switch of the laser output from the longer wavelength to 

the shorter wavelength is observed.   

 One explanation for the wavelength switching in AMQW lasers suggested 

by Wang et al. is changing threshold conditions with increasing current lead to the 

output reduction and eventual cessation of the longer-wavelength laser [59]. By 

measuring the electroluminescence from the bottom side of devices, they 

monitored the spontaneous emission from the active regions as a function of 

current and noticed increases in the spontaneous emission spectra of both regions 

even beyond the laser thresholds, indicating incomplete pinning of the carrier 

concentrations. Despite the reduction in the longer-wavelength laser output, the 

spectrum from both laser active regions continues increasing as the current is 

increased. This suggests the gain is not reduced but rather continues to increase 

for both active regions. Wang et al. therefore suggest the laser threshold 

conditions are not constant but continue to increase due to thermal effects and 

increased internal optical loss. Operating an AMQW laser diode continuous-
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wave, the measured thresholds were approximately 80 mA, 150 mA, and 180 mA 

for the longer wavelength, shorter wavelength, and cessation of the longer 

wavelength respectively, but under pulsed operation, the same thresholds were 70 

mA, 260 mA, and 330 mA [59]. If the threshold conditions are increasing due to 

thermal effects in the continuous-wave scenario, the carrier concentrations, 

spontaneous emission, and gain will continue to increase rather than pin. The 

authors note the increase in gain is larger at the shorter wavelength than the longer 

wavelength with further injection, and eventually only the shorter-wavelength 

gain is able to match the increasing threshold requirements. In comparison, under 

pulsed-operation the threshold conditions do not change as rapidly due to fewer 

thermal effects and the laser switching phenomenon instead occurs at higher 

currents. 

 These experimental results indicate the dual-wavelength output is sensitive 

to the internal losses and dependent on the gain spectrum at threshold. The cavity 

length and mirror loss are then variables in enabling dual-wavelength laser output. 

Multiple groups have observed that for short-cavity-length AMQW lasers, laser 

output occurs only at the shorter wavelength and never at the longer wavelengths 

[57], [60]. This is due to the higher loss which prevents laser output from the 

longer-wavelength quantum well. With continued injection and band filling, the 

modal gain eventually becomes large enough at the shorter wavelength, and only 

the shorter-wavelength laser reaches threshold.  For long-cavity-length AMQW 

lasers, threshold is reached with a much smaller material gain due to the lower 

loss, and only laser output from the longer-wavelength laser is observed. 
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Therefore to realize dual-wavelength laser emission from an AMQW device, the 

gain spectrum near the thresholds needs to be broad and flat with nearly equal 

gain at both the shorter and longer wavelengths [60]. From band filling such a 

gain spectrum is realized only near a specific cavity length dependent on the other 

losses, and Hamp and Cassidy define this cavity length as the transition cavity 

length (TCL), [55]. The other modulator is the mirror loss, and for higher output 

power from an AMQW device, Jiang et al. showed that facet coatings can be used 

to increase the TCL and still ensure the needed level of loss and threshold 

conditions [60].  

    
IV.   OPTICALLY-PUMPED DUAL-WAVELENGTH LASERS 

 In the previous section it was noted AMQW lasers can demonstrate dual-

wavelength laser output; however, the two-color output is only observed for 

certain ranges of current and is dependent on the internal losses, mirror loss, and 

cavity length. Also in the AMQW laser diode designs, carrier injection of both the 

longer- and shorter-wavelength quantum wells is achieved directly through the p-

i-n junction and the applied current. The novel internal-optically-pumped dual-

wavelength laser diode design proposed here is unique wherein the asymmetric 

wells and barrier are designed so current injection into the longer-wavelength 

quantum well is blocked entirely and an innovative internal optical pumping 

scheme generates carriers within the longer-wavelength quantum well. Dual-

wavelength laser output using this unique approach should not be constrained to a 

narrow range of total loss, cavity length, or applied current.  
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 The shorter-wavelength active region, labeled the master active region, is 

placed within the p-n junction of the diode and carriers are injected with applied 

current as in typical laser diodes. Then the longer-wavelength active region, 

termed the slave active region, is placed outside of the junction but still within the 

guided optical field of the cavity waveguide as illustrated in Fig. 2.1. Contrary to 

previous AMQW devices, by positioning longer-wavelength slave quantum well 

outside the junction, very few minority carriers are generated in the slave 

quantum well directly due to the applied current. Instead as current is applied to 

the device, the shorter-wavelength master laser should reach threshold first in the 

novel dual-wavelength laser design, again contrary to previous AMQW devices. 

This master laser then internally optically pumps the longer-wavelength slave 

quantum well until it reaches threshold as well and simultaneous dual-wavelength 

laser output is achieved. The asymmetric wells in the previous AMQW devices 

are considered as a single active region within the junction. However, in the novel 

internal-optically-pumped design, the asymmetric master and slave quantum wells 

are considered separate active regions due to the unconventional placement of the 

slave active region outside the junction and the two different methods of carrier 

injection.  

 The unique approach of using the internal optical field of the shorter-

wavelength master laser to optically pump the second slave laser, in theory should 

enable continued dual-wavelength laser output with continued current injection 

far beyond the thresholds of both lasers contrary to the previous AMQW dual-

wavelength lasers. Continued increase in the output powers of both lasers can be 
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realized since continued injection of the master laser will also result in stronger 

optical pumping of the slave laser. With the internal optical pumping scheme, 

dual-wavelength functionality should therefore not be limited to a narrow range of 

cavity lengths or threshold conditions. One other difference compared to the 

previous AMQW devices is much larger spectral difference in the wavelengths of 

the two lasers can be achieved due to the nature of the optical pumping.  
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Fig. 2.1.  Diagram illustrating the design and optical pumping of the novel 
internal-optically-pumped dual-wavelength laser diode. 
   

 The internal optical pumping scheme arises from a similar idea developed 

in vertical cavity surface-emitting lasers (VCSEL), although not explored for in-

plane laser diodes. In 1998, Jayaraman et al. reported a device consisting of an 

850 nm VCSEL vertically wafer-fused to a 1300 nm VCSEL [61]. A conventional 

p-i-n junction provides carrier injection for the 850 nm VCSEL, and the mirrors 
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and active region of the 1300 nm VCSEL are undoped.  The 850 nm VCSEL is 

then used to optically pump the 1300 nm VCSEL. The design overcame many of 

the technical challenges of VCSELs at that wavelength, and in their paper 

Jayaraman et al. claimed these VCSELs to be the first 1300 nm VCSELs to meet 

the required performance for commercial telecommunication.   

 Carlin et al. refer to this cascaded optical pumping scheme in VCSELs as 

“hybrid electrical optical pumping,” and they reported dual wavelength laser 

output at 927 nm and 955 nm from two vertically stacked InGaAs VCSELs [62]. 

They address issues related to mode competition and coupling of the two cavities 

that arise when the wavelength separation of the two VCSELs is much closer than 

the 850 nm and 1300 nm reported by Jayaraman et al. [61]. Whereas the dual-

wavelength laser beams of the VCSELs from these two research groups are 

coaxial, the two different active regions are within separate cavities, and the 

cascaded dual-cavity VCSELs are referred to as BiVCSELs in the literature [62], 

[63]. To the best of our knowledge, no one has studied the case where the two 

active regions are within the same cavity or where the optical pumping scheme is 

incorporated in an in-plane laser structure as it is proposed here with the novel 

dual-wavelength laser diode design. 

 The design of the novel dual-wavelength laser diode design is also similar 

in some aspects to the optically-pumped dual-wavelength lasers studied by Ron 

Kaspi’s group [64]-[66]. The main difference of the two different device designs 

is whereas the novel design uses the hybrid approach of electrical injection and 

internal optical pumping, the devices of Kaspi’s group use only optical pumping 
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from an external source to generate carriers in two separate active regions within 

a single waveguide. The wavelength range of the devices is in the midinfrared 

using type-II InGaSb/InAs quantum well active regions, and the two different 

active regions with different target wavelengths are placed within the same 

waveguide core comprised of GaSb. An AlGaAsSb barrier layer that is 

transparent to the optical pumping source is used to separate the two active 

regions and partition the waveguide. This barrier layer prevents scattering and 

redistribution of the carriers from the shorter-wavelength active region to the 

longer-wavelength region. With this design and at liquid nitrogen temperatures, 

they observed laser output as far apart as ~4.0 µm and ~5.4 µm. To demonstrate 

the importance of the barrier layer, they grew the same structure without the 

barrier layer, which when tested produced laser output only near ~4.1 µm since 

the carriers were able to scatter and redistribute to the lower energy quantum 

wells. 

 One interesting aspect Kaspi’s group noticed was the impact of the modal 

overlap of the shorter-wavelength mode with longer-wavelength active region 

[66]. They noticed the relative intensity of the two lasers depends on the modal 

overlap of the shorter-wavelength waveguide mode with the longer-wavelength 

active region. The group carefully designed a set of samples so the absorption 

layers and carrier generation were equal across the set, and the modal overlap was 

varied by increasing the thickness of the transparent barrier layer between the two 

active regions. From the measurements, they noticed when the overlap is large, 

lasing only occurs at the longer wavelength, but as the overlap is reduced, laser 
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output is observed from both wavelengths with the larger intensity at the longer 

wavelength. At even lower modal overlap, they observed a switch in the relative 

intensities with the shorter-wavelength laser producing the higher output. Kaspi’s 

group cites re-absorption of the shorter-wavelength photons in the longer-

wavelength active region as an additional modal loss that influences the threshold 

and intensity of the shorter-wavelength laser.  

 The critical design elements are the same for the novel dual-wavelength 

laser diode and the optically-pumped midinfrared devices by Kaspi’s group. First 

a barrier or means of disrupting scattering and quasi thermal equilibration of 

carriers from the shorter-wavelength active region to the longer-wavelength 

region is necessary. Second, the modal overlap of the absorbing longer-

wavelength active region requires careful consideration in the design process. In 

the next chapter, a model is developed of the internal optical pumping scheme of 

the novel dual-wavelength laser diode, and the impact of the modal overlap or 

optical confinement is investigated.  
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3   Internal Optical Pumping Theory 

 
 To better understand the internal optical pumping of the slave active 

region by the master laser in the novel dual-wavelength laser diode design, a 

model is developed starting from the standard rate equations for conventional 

laser diodes. The equations are modified to include absorption of the slave region 

and pumping by the master laser, and logarithmic gain-current density relations 

for the quantum well (QW), active regions are included to model the material 

gain. Complete inhibition of quasi thermal equilibration and decoupling of the 

quasi-Fermi levels between the two active regions are assumed. To study the 

internal optical pumping, it is also assumed that zero carriers are injected from the 

junction into the slave region so the slave region relies completely on the internal 

optical pumping for carrier generation. In the next chapter it will be shown these 

are valid assumptions for the studied designs. From the modeling in this chapter, 

the influence of the optical confinement of the slave active region on the laser 

thresholds and the device performance is illustrated.   

 
I.   RATE EQUATIONS, PHOTON DENSITY, AND LASER THRESHOLD 

 From the continuity equations, the rate equation for the carrier 

concentration inside the active region of a laser diode is  

 SRnR
qd

J
nD

t

n
sti −−+∇=

∂
∂

)(2 η .      (3.1) 

The first term on the right-hand side accounts for carrier diffusion which occurs 

mainly in the lateral direction in double-heterostructure devices due to the 



  33 

confinement in the transverse or growth direction provided by the heterostructure 

barriers. For index-guided structures such as ridge lasers, the lateral carrier 

diffusion effect is also often assumed to be negligible [67], and it assumed such 

herein. The second term in (3.1) is the injection of carriers due to the applied 

current and the p-n junction into the active region of thickness d  where iη  is the 

injection efficiency. The third term R(n) accounts for both nonradiative and 

spontaneous radiative recombination 

 32)( CnBnAnnR ++=        (3.2) 

where A, B, and C are the respective coefficients of Shockley-Read-Hall (SRH), 

spontaneous, and Auger recombination. The final term in (3.1) accounts for 

carrier recombination due to stimulated emission where S  is the photon density 

of the laser mode, and the stimulated emission coefficient is 

 )()( ng
n

c
ngvR

g
gst ==        (3.3) 

where gv  and gn  are the group velocity and group refractive index and g(n) is the 

local or material gain. At steady-state and assuming zero diffusion, the rate 

equation simplifies to 

 SngvCnBnAn
qd

J
gi )(32 +++=η .      (3.4) 

 In semiconductor quantum well lasers, only a small fraction of the guided 

optical field, defined as the confinement factor, overlaps the quantum well active 

region. The confinement factor Γ  is written as  
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where u(x,y) is the optical field. The normalized magnitude square of the optical 

field serves as a probability density for photons inside the cavity, and the photon 

density inside the active region is then 
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S
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=        (3.6) 

where aV  is the volume of the active region. Rearranging the terms leads to  

 photons of # total=⋅=
Γ

⋅ c
a VS

V
S .      (3.7) 

where cV  is an effective cavity volume 

 
Γ

= a
c

V
V .         (3.8) 

The photon density S of the active region is then the photon density throughout 

the effective cavity volume.   

 Equation (3.4) is the rate equation at steady-state for carriers in the active 

region of a laser diode, assuming negligible diffusion. The rate equation for the 

photon density S of a laser mode is 

 sp
ph

g RSngv
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dS
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where the first term on the right-hand side accounts for the gain or generation of 

photons in a mode due to stimulated emission, and the second term is the loss of 

photons represented by a photon lifetime. The photon lifetime   
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depends on the mirror loss 
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representing the transmission of photons at the facets with reflectivities 1R  and 

2R , and cavity length L . The intrinsic loss iα  includes losses due to reabsorption 

of photons (bulk and free-carrier) and scattering of photons out of the cavity. The 

final term in (3.9) accounts for photons from spontaneous emission where β  is 

the fraction of the total spontaneous emission which couples into the mode. This 

is negligible compared to the generation of photons due to stimulated emission 

and is generally ignored at threshold.      

 To sustain a laser mode, the modal gain must equal the total loss of one 

round-trip through the resonator cavity. From (3.9)-(3.11) the threshold gain of a 

laser diode is then 

 iimth RRL
g ααα +
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

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21
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Since the recombination rate of stimulated emission is significantly greater than 

the other recombination mechanisms, the carrier concentration in the active region 

pins at its threshold level thn , and the material gain and quasi-Fermi levels which 

are both dependent on the carrier concentration also pin. With a negligible photon 

density below threshold, the threshold current density is then 
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and above threshold the rate equation is 

 SgvCnBnAn
qd

J
thgthththi +++= 32η       (3.14) 

due to pinning of the carrier concentration at threshold. Subtracting (3.13) from 

(3.14) and rearranging terms, the photon density of the laser mode above 

threshold is then 

 )( th
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η

.        (3.15) 

 Different methods for calculating the material gain spectrum exist, and 

these models range in complexity based on the different phenomenon included 

[67], [68]. Whereas the models become increasingly accurate as strain, valence-

band intermixing, quantum effects, wave-function overlap, and broadening effects 

are considered, the complexity of these models also increases, and the closest 

match between calculated and real gain spectrums is only realized when many-

body effects are considered. The laser mode of a laser diode corresponds to the 

cavity mode that closest overlaps the peak of the gain spectrum and knowledge of 

the peak gain is sufficient and simplifies the modeling if spectral properties are 

not needed. For modeling the internal-optically-pumped dual-wavelength laser 

diode, a simple logarithmic gain-current density relation can be used. 

 For bulk double-heterostructure lasers, the peak gain versus current 

density is considered a linear relationship. However, McIlroy et al. suggested a 

logarithmic peak gain-current density relation is more appropriate for quantum 
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well lasers based on their simulations of GaAs quantum wells [69]. In one form 

the peak gain g  is  
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where 0g and 0J  are the gain and current density at the point on the curve where 

the ratio Jg /  is maximum. Whereas another form of the logarithmic fit is  

   







=

tr

i

J

J
gg

η
ln0         (3.17) 

where the current density is normalized by the transparency current density [70]. 

The current normalization factors of the current in the two forms are related by 

 eJJ tr ⋅=0          (3.18) 

and the gain coefficient 0g  is the same for both equations.   

 
II.   INTERNAL OPTICAL PUMPING THEORY 

 In building a model of the internal-optically-pumped dual-wavelength 

laser diode, the analytical equations reviewed in the previous section are modified 

for the master and slave laser active regions with super(sub)scripts M  and S  

added to many of the parameters. To describe the internal optical pumping, a 

critical relationship is derived in the following analysis with a few general 

assumptions. The mirror and intrinsic losses of both the master and slave lasers 

are assumed to be nearly equal in the analysis. Also the master and slave regions 

are both considered as single quantum wells initially for simplicity, and in a later 
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section the model is adjusted to account for multiple quantum wells in the master 

active region.  

 For the master laser active region, the photon rate equation is adjusted to 

include an additional absorption loss by the slave region Sα  where SΓ  is the 

confinement of the slave region determined by the overlap of the master laser 

optical mode.   
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The master laser threshold gain is then  

SSim
M
thM g ααα Γ++=Γ        (3.20) 

and from the logarithmic gain-current density relation, the threshold current 

density is 
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The photon density of the master laser mode is then 
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 To model the internal optical pumping of the slave by the guided optical 

field of the master laser, the carrier generation rate inside the slave region due to 

the photon density of the master laser is derived. Starting from the photon rate 

equation of the master laser (3.19), the change in the photon density due to 

absorption by the slave region is 
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and the rate of total number of photons lost is then 
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where  M
cV  is the cavity volume of the master laser mode. By particle 

conservation, this rate of photon loss must equal the rate of the total number of 

carriers generated in the slave region, which is then divided by the actual volume 

of the slave region to get the generation rate per unit volume in the slave region 
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From the definition for the cavity volume 
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and assuming the width and cavity length of the master and slave regions are 

equal, the generation rate becomes 
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This is the carrier generation rate due to internal optical pumping by the master 

laser rather than electrical injection of carriers into the slave laser active region.  

From this generation rate an effective internal-optical-pumping current density is 

defined 
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which then allows use of the logarithmic gain-current density relation to predict 

the gain of the slave. Substituting (3.27), this optical-pumping current density 

becomes 

 MSgM
M

Sopt
S SvqdJ α

Γ

Γ
=          (3.29) 

 For the slave laser, a separate photon rate equation and threshold gain 

condition exist and are identical to a conventional laser diode. 
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Since the wavelengths and thus optical modes and confinement factors of the 

master and slave lasers differ slightly, SS
λΓ  is used here to distinguish the 

confinement factor for the modal gain of the slave laser from SΓ  the confinement 

for the modal absorption loss to the master laser. In the analysis in this chapter 

they will be considered as equal, but in predicting the performance of actual 

designs in later chapters they will be treated not equal. From the threshold gain, 

an optical-pumping current density threshold and carrier generation rate threshold 

are found using the logarithmic gain-current density relation   
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and from the threshold carrier generation rate, a threshold photon density of the 

master laser mode is found using the relationship in (3.27)   
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This is the photon density of the master laser needed to optically pump the slave 

region and generate enough carriers to reach its laser threshold. From this photon 

density and from (3.22), a second threshold current is found 
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that is the applied current necessary for the master laser to produce the photon 

density required to optically pump the slave region to its threshold and realize 

laser output at the master and slave wavelengths simultaneously. Combing (3.20) 

and (3.33)-(3.35) this threshold of the slave laser becomes the sum of two 

exponential terms 
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where the second exponential increases with the optical confinement of the slave 

active region. This second term is the threshold current of the master laser, and as 

expected the modal absorption loss and threshold increase with greater overlap of 

the optical mode with the slave region. In the first term on the right-hand side of 

(3.36), the exponential term decreases with greater optical confinement of the 

slave region, representing a reduction in material gain of the slave laser region 
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and optical pumping by the master laser needed to reach threshold. Additionally 

an inverse relation of the optical confinement factor of the slave region reduces 

this term even further. From these increasing and decreasing terms with slave 

optical confinement, an optimum optical confinement factor then exists at which 

the slave laser threshold is minimized. 

       
III.   RESULTS OF INTERNAL OPTICAL PUMPING MODEL 

 In the initial modeling, a simple implementation of the previous equations 

is made to better understand the device physics and identify the critical design 

considerations of the novel internal-optically-pumped dual-wavelength laser. The 

calculations are done using self-generated code in MATLAB, and assumptions 

about the active material and cavity losses are discussed next. For the remainder 

of this chapter, the reasonable assumption is made that the optical confinement 

factor of the slave for both the master and slave laser modes are equal.   

 For the logarithmic gain-current density relation, gain parameters are 

chosen from the literature that best match the quantum well widths and materials 

of the actual samples to be grown. The master laser active region consists of 

multiple 10 nm wide GaAs quantum wells, and the slave laser active region is a 

single 10 nm wide In0.24Ga0.76As quantum well slave region. The closest matching 

gain-current density data found were for a 10 nm GaAs quantum well and a 7 nm 

In0.25Ga0.75As quantum well, and the gain coefficients and transparency current 

densities are listed in Table III.I [70].   
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TABLE III.I 
LOGARITHMIC GAIN-CURRENT DENSITY PARAMETERS 

Composition 
QW width – d  

(nm) 

Gain coeff. – 0g  
(cm-1) 

Transp. Current 
density – trJ  

(A/cm2) 

GaAsa 10 1200 90 

In0.25Ga0.75Asb 7 1396 48 
a values from [70], [71] 
b values from [70], [72] 
 

 For the master region GaAs quantum wells, the composition and well 

width are exactly the same as those in the sample to be grown. However for the 

slave region, the In composition in the published data is 25% instead of 24%, and 

the well width is 7 nm instead of 10 nm. Since the difference in composition is 

small, the difference in key parameters such as effective mass, matrix element, 

and index of refraction should be minimal, and it is reasonable to expect only a 

small difference in the gain coefficient 0g . The small variation in the width of the 

quantum wells results in changes to the quantized energy levels and 

corresponding shifts in the gain spectrum and laser wavelength. It also results in a 

smaller density of states (per unit volume) for the wider well and a smaller 

transparency carrier concentration. In terms of current density however, the 

smaller concentration is partially compensated by the larger volume, and therefore 

the change in transparency current density between the two wells is minimal. 

Coldren and Corzine showed for In0.20Ga0.80As/GaAs quantum wells with widths 

between 5-10 nm, there is little change in the transparency current density of the 

quantum well [68]. The values in Table III.I are thus considered sufficient for 
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modeling the gain of the GaAs quantum wells in the master laser active region 

and the gain of the 10 nm wide In0.24Ga0.76As quantum well of the slave laser 

active region. Initially, both the master and slave active regions are assumed to be 

single quantum wells, and in the next section the model will be adjusted to 

account for multiple quantum wells within the master active region.   

 The threshold gains of the master and slave lasers are determined by 

summing the different losses listed in Table III.II. The mirror and intrinsic losses 

are assumed the same for both the master and slave laser active regions. The 

mirror loss is calculated for a cavity length of 1000 µm with facet reflectivities of 

30%. For the intrinsic loss, a moderate value of 10 cm-1 is chosen which includes 

free-carrier absorption. In determining the absorption of the slave material at the 

master laser wavelength, the bulk absorption is chosen. Using the bulk rather than 

a quantum well absorption is justified since the barriers of the In0.24Ga0.76As 

quantum well are GaAs as required by the growth and the pumping energy of 

master laser is slightly larger than the GaAs barrier band gap. At this point for 

generality, absorption in the GaAs barrier layer is neglected; however, it will be 

considered later. The absorption coefficient is then determined from published 

n−κ tables using 

 )(
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MS λκ
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π
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The material or local absorption of the slave quantum well is 24,768 cm-1 which 

leads to a modal loss of 247.7 cm-1 if the confinement factor is only 1%. Since its 
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active region is the lowest band gap in the structure, the slave laser has no other 

inter-band absorption losses to consider. 

 
TABLE III.II 

ASSUMED MODAL LOSSES OF MASTER AND SLAVE LASERS 

Laser 
Mirror loss – mα  

(cm-1) 
Intrinsic loss – iα  

(cm-1) 

Slave abs. – 

SSαΓ  
(cm-1) 

Master 12.04a 10 247.7b 

Slave 12.04a 10 - 
a =L 1000 µm, 3.021 == RR  
b %1=ΓS  
 

 From these assumptions for the material gain and cavity losses, the modal 

gain of the slave active region as a function of the applied current is calculated for 

different optical confinements of the slave, and the results are plotted in Fig. 3.1. 

Increasing the optical confinement of the slave results in higher modal gains for 

the slave as expected, but the applied current density at which the slave region 

reaches transparency also increases due to the greater modal absorption loss to the 

master region and the resulting increase in the threshold current density of the 

master laser. In Fig. 3.1 the slave laser threshold is not achieved at a reasonable 

current for an optical confinement factor of 0.2%. The threshold is reduced when 

the factor is increased to 0.4% and 0.6% due to the increased modal gain; 

however, the threshold is lowest for the factor of 0.4% since the transparency 

current density is lower. 
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Fig. 3.1. Modal gain of the slave laser versus applied terminal current for different 
slave optical confinement factors. 
 

 To better visualize the impact of the slave optical confinement factor, the 

two terms of the slave laser threshold in (3.36) are calculated versus the optical 

confinement factor of the slave in Fig. 3.2. The threshold of the master laser or the 

second term in (3.36) is plotted for different master optical confinements, and the 

exponential increase in the threshold with increased slave optical confinement is 

seen. The first term or the optical pumping term in (3.36) is labeled ζ and is the 

decaying curve in Fig. 3.2. The optical pumping term ζ  is independent of the 

optical confinement or modal gain of the master, and graphically the threshold of 

the slave is then the sum of the decaying curve and one of the master laser 

threshold curves. The threshold current density of the slave laser is calculated and 

shown versus the slave optical confinement in Fig. 3.3 for the same master optical 

confinements used in Fig. 3.2.   
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Fig. 3.2. Calculated threshold current densities of a single GaAs QW master laser 
versus optical confinement of the slave active region.   
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Fig. 3.3. Calculated threshold current densities of the slave laser versus optical 
confinement of the slave laser. 
 



  48 

 At zero optical confinement of the slave laser active region in Fig. 3.3, the 

threshold current densities of the master laser are 123 A/cm2 and 226 A/cm2 for 

6% and 2% master optical confinement respectively and are reasonable thresholds 

for conventional GaAs quantum well lasers. This is expected since it is assumed 

there is no current injection into the slave region. As noted, at small optical 

confinements the threshold of the slave laser is very large due to the small modal 

gain. Increasing the slave confinement factor reduces the threshold of the slave 

laser; however, the resulting increase in modal absorption loss to the master laser 

leads to greater thresholds for the master laser and thus eventually the slave laser 

as well. The slaver laser thresholds are thus minimized at the optimum slave 

optical confinements in Fig. 3.3. This minimum slave laser threshold and the 

corresponding optimum optical slave confinement factor must be found 

numerically since differentiating (3.36) to find an analytical expression results in 

needing to solve a transcendental equation. The optimum optical slave 

confinements and the thresholds of the master and slave lasers at this confinement 

from the modeling are listed in Table III.III.     
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TABLE III.III 

OPTIMUM OPTICAL CONFINEMENT AND THRESHOLDS WITH SINGLE 
QUANTUM WELL MASTER LASER ACTIVE REGION 

Master laser 
optical 

confinement  
(%) 

Minimum slave 
laser threshold  

(A/cm2) 

Optimum slave 
laser optical 
confinement   

(%) 

Master laser 
threshold  

at optimum slave 
confinement   

(A/cm2) 

2 13,796 0.35 7931 

3 5473 0.43 3112 

4 3207 0.49 1823 

5 2242 0.55 1274 

6 1728 0.61 979.5 

 
 
 Increasing the optical confinement factor of the master laser active region 

leads to reduced thresholds of the novel internal-optically-pumped dual-

wavelength laser diodes due to the increased modal gain of the master active 

region. The larger modal gain results in lower material gain required for 

threshold, and from the logarithmic gain-current relation, small reductions in the 

material gain can result in large reductions in the threshold current. An interesting 

trend is seen in the data in Table III.III where the optimum optical confinement of 

the slave laser increases with increased optical confinement of the master laser. 

The modal absorption loss is then larger for the master laser, but the thresholds of 

both the master and slave lasers at the optimum slave confinement are still 

lowered. Both thresholds are lowered since the increase in the modal gain of the 

slave laser is less than the increase in modal absorption loss to the master. This is 

seen in Fig. 3.4 where the optimum slave optical confinement is calculated versus 
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the optical confinement factor of the master and the increase in optimum slave 

confinement is sub-linear. The threshold currents of the novel internal-optically-

pumped laser diodes can thus be reduced by: 1) optimizing the optical 

confinement factor of the slave laser active region and 2) increasing the optical 

confinement and modal gain of the master laser active region.   
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Fig. 3.4. Optimum slave laser optical confinement versus confinement factor of 
master laser active region. The master laser active region is a single GaAs 
quantum well. 
 

IV. MULTIPLE-QUANTUM-WELL MASTER LASER ACTIVE REGION 

 In the modeling in the previous section, the master laser active region 

consisted of a single GaAs quantum well only, and the optical confinement of the 

master laser was increased to achieve higher modal gains that resulted in reduced 

thresholds for both master and slave lasers. In reality, the optical confinement of a 

quantum well active region can only be increased to a certain degree depending 
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on the waveguide design and the core and cladding material compositions. A 

simpler approach to increase the modal gain of a semiconductor laser is to use 

multiple quantum wells in the active region rather than a single well. The theory 

and modeling of the novel internal-optically-pumped dual-wavelength laser 

diodes developed in the previous section is modified to include a multi-quantum-

well (MQW) active region for the master laser.   

 McIlroy et al. suggested the optical confinement factor is nearly 

proportional to the number of wells if: the total active region width is less than 

100 nm, and a separate confinement heterostructure is used [69]. Thus the total 

confinement can be considered as 
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where Wn  is the number of quantum wells, WΓ  is the confinement of an 

individual well, and WV  is the volume of the well. It is assumed each quantum 

well in the structure is exactly the same. If the injection into the wells is uniform, 

the total current is 
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where WJ  is the current injected into each well and iη  is the injection efficiency 

of the terminal current into the entire active region. From the logarithmic gain-

current relation, the total modal gain for a multi-quantum-well structure is 
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In Fig. 3.5 the modal gain curves are shown for different GaAs multi-quantum-

well active regions with increasing number of wells. Comparing the curves in Fig. 

3.5 and inspection of (3.40)  shows the gain produced by a MQW structure is 

simply the gain-current relation of a single well with both the horizontal current 

axis and the vertical gain axis scaled by a factor Wn .      
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Fig. 3.5. The increase in modal gain of the master GaAs MQW laser active region 
with added QW. Each quantum well is 10 nm wide with 3% optical confinement 
per well.  
 

 If the total cavity loss is low, increasing the number of quantum wells may 

not result in lower current thresholds.  For example in Fig. 3.5, if the cavity loss is 

less than 30 cm-1, the current threshold is lowest for one quantum well in the 

active region, whereas if the loss is 60-130 cm-1, the optimum number of quantum 

wells is three.  To determine the optimum number of wells for a laser diode, 

McIlroy et al. derived the following equation [69].  
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They also show that for a fixed number of quantum wells, an optimum cavity 

length can also be found for minimizing the total current threshold. 
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They are careful to point out the two optimizations cannot be repeated iteratively 

since this would result in an infinitely short cavity with an infinite number of 

wells. By extending the model of the novel internal-optically-pumped dual-

wavelength laser diodes to include a MQW active region for the master laser, an 

optimum number of quantum wells can also be determined for the novel dual-

wavelength laser.   

 The rate equation for a MQW active region remains unchanged if uniform 

injection is assumed for the wells. It is however, important to distinguish between 

the total current injection and the total volume of the active region versus the 

injection and volume of the individual quantum wells. For a MQW active region 

the rate equation is 

 SngvCnBnAn
dqn
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qd

J
g

WW
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ii )(32 +++== ηη     (3.43) 

where d  is the total active layer thickness and Wd  is the thickness of an 

individual quantum well.  The thicknesses of all of the wells in the MQW active 

region are assumed equal.  It can be shown that the gain in the term for the 

stimulated recombination remains the material or local gain of only one of the 
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wells.  From the pinning of the carrier density and gain at threshold, the photon 

density is 
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 In modifying the internal optical pumping model to include a MQW 

master laser active region, the threshold gain and current density of the master 

laser are 
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respectively, for Wn  quantum wells.  For a photon density MS  produced by the 

master active region, the carrier generation in the slave active region is   
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From (3.38), for a multi-quantum-well active region, the cavity volume is 
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and by substitution, the generation rate in the slave is then  
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Since the cavity length and lateral width are the same for both the master and 

slave laser active regions, the ratio of the volumes is simply the ratio of the 

quantum well widths 
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where Wd  is the width of only one of the quantum wells in the master region.    

 As noted earlier, an effective current generation can be defined from 

(3.50) so the logarithmic gain-current relation can be used to predict the gain in 

the slave active region.  From the modal losses, the threshold gain and threshold 

optical current density of the slave are found, and the threshold generation rate in 

the slave laser active region is then 
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The photon density which sufficiently pumps the slave to achieve this generation 

rate is the threshold photon density 
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and the threshold current density for the slave laser is 
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As noted earlier, this threshold is the applied current to the diode needed so the 

master laser pumps the slave laser to its threshold.   

 Substitution of (3.51) and (3.52) into (3.53) leads to the following 

expression for the current threshold of the slave laser. 
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Comparing to expression (3.36) for a single quantum well master laser active 

region, the first term or optical pumping term is unchanged and decays with 

increasing optical confinement of the slave laser. The second term is still the 

threshold current of the master laser, and the only difference compared to (3.36) is 

the adjustment for multiple quantum wells in the master active region. If the 

number of wells is one, (3.54) simply reduces to (3.36) as expected.   

 As in the previous section, the optical confinement of the slave laser active 

region is varied in the modeling to illustrate its impact on the current thresholds of 

both the master and slave lasers. Rather than increasing the optical confinement of 

the quantum wells in the master laser active region, the confinement is held 

constant in the modeling at 3% per quantum well, and the number of quantum 

wells in the master MQW laser active region is then increased. In Fig. 3.6 the two 

terms on the right-hand side of (3.54) are calculated versus the optical 

confinement factor of the slave laser. The first term or internal optical pumping 

term, labeled ζ , is the decaying curve in Fig. 3.6 and is independent of the 

number of quantum wells in the master laser active region. As before the 

threshold of the slave is graphically the sum of the ζ curve with the one of the 

increasing curves depending on the number of wells in the master active region.     
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Fig. 3.6. Threshold current density of the master MQW laser versus the slave 
optical confinement for increasing number of wells in the MQW active region.   
 

 From Fig. 3.6, a significant reduction in the threshold of the slave laser is 

expected when the number of wells in the master MQW active region is increased 

from a single quantum well. This is evident in Fig. 3.7 where the calculated 

threshold curves of the slave laser are plotted versus the optical confinement of 

the slave laser active region for increasing numbers of wells in the master MQW 

laser active region. As in the single quantum well case, a minimum in the 

threshold current of the slave is observed at an optimum optical confinement of 

the slave laser due to the combined effects of the increasing modal gain of the 

slave laser and the increasing modal absorption loss to the master laser with 

increased optical confinement of the slave region. 
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Fig. 3.7. Threshold current density of the slave laser for 1, 3, 5, and 7 quantum 
wells in the master MQW laser active region. The minimum in the threshold 
current corresponds to the optimum optical confinement of the slave.    
 

 Some interesting observations are made from the results in Fig. 3.7 that 

are the basis of important design considerations for the novel internal-optically-

pumped dual-wavelength laser diode. As expected the threshold of the slave laser 

first decreases sharply from that of a single master quantum well with the addition 

of one or two wells in the master laser active region. The decrease in threshold is 

less for further additional quantum wells, and slight increases in the threshold are 

predicted by the modeling for each additional well beyond five wells in the active 

region of the master laser. This increase in threshold with further addition of 

quantum wells is just as in conventional MQW lasers, and an optimum number of 

quantum wells exists for the master laser active region in the novel dual-

wavelength device. 
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  In Table III.IV, the minimum thresholds of the slave laser and the 

corresponding optimum optical confinement of the slave are listed for increasing 

number of master quantum wells. The master laser thresholds are also listed for 

this optimum optical confinement of the slave laser at which the slave laser 

threshold is lowest. The data is plotted in Fig. 3.8, and in addition to an optimum 

number of master quantum wells at which the threshold of the slave laser is the 

lowest, an optimum number of wells also exists at which the master laser 

threshold is minimum. For the slave laser, the optimum number of master 

quantum wells is five, and the threshold current density is 1848 A/cm2. However 

for the master laser, the optimum number of wells is four, and the master 

threshold is 1308 A/cm2. If the number of wells is increased to five to match the 

optimum number for the slave laser, the threshold of the master laser increases 

only to 1322 A/cm2, and thus five quantum wells in the master laser active region 

is considered ideal for the novel dual-wavelength device.    
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TABLE III.IV 

OPTIMUM OPTICAL CONFINEMENT AND THRESHOLDS FOR 
MULTI-QUANTUM-WELL MASTER LASER ACTIVE REGION 

Number of wells 
in master MQW 

laser active region 

Minimum slave 
laser threshold  

(A/cm2) 

Optimum slave 
laser optical 
confinement   

(%) 

Master laser 
threshold  

at optimum slave 
confinement   

(A/cm2) 

1 5473 0.43 3112 

2 2605 0.55 1605 

3 2073 0.62 1360 

4 1901 0.66 1308 

5 1848 0.69 1322 

6 1849 0.72 1362 

7 1877 0.74 1419 

8 1922 0.75 1485 
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Fig. 3.8. (a) Optimum threshold current densities of the master and slave regions. 
(b) Optimum slave confinement versus number of QW included in the master 
active region.  L= 1000 µm. 
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 The second observation from Fig. 3.6 and Fig. 3.7 that is useful in 

considering the design of the novel internal-optically-pumped dual-wavelength 

laser is the change in thresholds of the master and slave lasers with the optical 

confinement of the slave for the different number of wells in the master MQW 

active region. In Fig. 3.7, on the left-hand side of the graph, the slave laser 

threshold increases sharply with reducing optical confinement of the slave 

regardless of the number of wells in the master MQW active region. The internal 

optical pumping term which is independent of the number of wells is the 

dominant term on this side of the curve in the equation for the slave laser 

threshold, and the slave threshold increases sharply due to the reduction in the 

modal gain of the slave laser. On the right-hand side of the graph, the thresholds 

of both the master and slave lasers increase; however, the rate of increase with 

optical confinement of the slave decreases with additional quantum wells in the 

master laser active region. This behavior results in larger tolerance of variations in 

the optical confinement factor of the slave with additional quantum wells in the 

master active region and is valuable in the actual design and growth of the novel 

internal-optically-pumped dual-wavelength laser diode. 

 An increase in the modal gain of the master by the addition of active 

quantum wells helps to offset the absorption loss introduced by the slave laser 

active region and results in a lower threshold of the master laser. The data in 

Table III.IV also confirms an increase in the optimum optical confinement of the 

slave with additional quantum wells in the master laser active region and a 

resulting decrease in the slave laser threshold. Whereas this increase results in a 
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higher modal absorption loss to the master, the threshold of the master laser is still 

reduced as the increase in the modal gain is greater than the increase in the modal 

absorption loss.     

 
V.   CAVITY LENGTH VARIATION 

 Finally, the impact of the cavity length in the novel internal-optically-

pumped dual-wavelength laser diode is investigated by varying it in the modeling. 

As in conventional laser diodes, the thresholds of the master and slave lasers are 

both reduced for longer cavity lengths due to the reduced mirror loss. However, 

additional effects are observed in the predicted performance of the dual-

wavelength laser and the threshold current of the slave laser. In considering the 

optimum optical confinement and threshold of the slave laser (3.54), variation of 

the cavity length results in a greater change of the internal optical pumping term 

than in the master threshold since the mirror loss is much less than the modal 

absorption loss of the slave in determining the master threshold. This is seen in 

Fig. 3.9 where the thresholds of the master and slave lasers are calculated versus 

the optical confinement of the slave for a 500 µm cavity and a 1000 µm cavity. A 

significant reduction in the internal optical pumping term ζ  is observed when the 

cavity length is increased which results in a further reduction of the minimum and 

optimum slave laser threshold. 
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Fig. 3.9. The thresholds of the master and slave lasers as a function of the optical 
confinement of the slave and the cavity length. 
 

 The reduction in the internal optical pumping term ζ  with cavity length 

not only results in a reduction of the minimum slave laser threshold but also 

results in a reduction of the corresponding optimum optical confinement of the 

slave as observed in Fig. 3.9. From the modeling, the optimum optical 

confinement of the slave laser is calculated as a function of the cavity length, and 

the result is shown in Fig. 3.10. Since the optimum optical confinement of the 

slave laser varies with cavity length, the theoretical optimum thresholds of the 

master and slave lasers are therefore also dependent on the cavity length.   

 If the cavity length is predetermined, the dual-wavelength laser can be 

designed and grown with the optimum slave optical confinement for the lowest 

slave threshold. However, if the cavity length is varied and the optical 

confinement of the slave is held constant, the thresholds of the master and slave 
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lasers will deviate from the theoretical optimum thresholds. In the modeling, the 

thresholds of the master and slave lasers are calculated versus cavity length for a 

constant slave optical confinement of 0.69% which is the optimum confinement 

for a cavity length of 1000 µm. These thresholds are then compared to the 

optimum thresholds where the optimum slave optical confinement is used in the 

calculations at each cavity length. The results are in Fig. 3.11 and reveal the 

cavity length can be reduced to 606 µm and increased to 1437 µm for a constant 

slave optical confinement of 0.69% before either the threshold of the master or 

slave laser is greater than 10% of the optimum thresholds.     
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Fig. 3.10. The optimum optical confinement of the slave laser at which the 
threshold of the slave laser is minimized as a function of the cavity length.   
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Fig. 3.11. Deviation of the master and slave lasers from the optimum thresholds 
where the slave optical confinement is optimized.  The slave optical confinement 
is held constant at 0.69% which is the optimum optical confinement for a cavity 
length of 1000 µm.   
 

VI.   SUMMARY 

 In this chapter the theory and a corresponding model of the internal optical 

pumping scheme for the dual-wavelength laser diode has been developed, and the 

modeling reveals optimization of the optical confinement of the slave laser active 

region is critical to lowering the threshold of the slave laser and enabling dual-

wavelength output. In addition, the thresholds of the two lasers can be further 

reduced by increasing the optical confinement of the master laser active region 

and increasing the cavity length. The modeling predicts an optimum number of 5 

quantum wells in the master laser active region with 3% optical confinement per 

well, and the optimum optical confinement of the slave is then 0.69% for a cavity 

length of 1000 µm. These results will serve as useful guidelines in designing 
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specific device structures to implement the internal optical pumping scheme and 

experimentally realize the novel dual-wavelength laser diodes.   
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4   Device Modeling Methods 

 
 To develop real laser diodes with dual-wavelength behavior using the 

internal optical pumping scheme, it is critical to design devices that have 

decoupled active regions in terms of the quasi-Fermi distributions and second 

have optimized optical confinement factors as was demonstrated in chapter three. 

In order to better understand the different device designs it is important to be able 

to model and predict their performance, and methods to model the different 

aspects of the device are outlined in this chapter. An appropriate level of detail is 

incorporated in the models to make the results as predictive as possible to the 

actual device performance, and yet, some general assumptions and simplifications 

are made to keep the modeling simple and efficient. First, the method of 

calculating the optical mode profiles and optical confinement factors of the laser 

structures is presented. A few adjustments to the internal optical pumping model 

are required to include effects such as free-carrier absorption and to better match 

the model to actual device designs, and these considerations are covered second. 

Third, the methods for modeling the carrier transport and quasi-Fermi 

distributions in the device structures are introduced in this chapter.  

 
I.   CALCULATION OF CAVITY OPTICAL MODES 

 Different methods exist for calculating the optical modes and confinement 

factors of laser diodes. These methods include analytical, various finite-

difference, and transfer matrix methods among others to calculate the optical 

modes of a waveguide. Here a finite-difference approach as outlined by Coldren 
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and Corzine is chosen to form a matrix eigenvalue equation from the wave 

equation for the electric field of a supported optical mode [68]. For the novel 

internal-optically-pumped dual-wavelength laser structures, a graded-index 

separate-confinement-heterostructure (GRINSCH), is chosen as a starting point 

for the designs, and a significant advantage to the finite-difference method is the 

ability to solve for the field in regions with graded refractive index whereas the 

transfer matrix method cannot solve the profile in these regions due to the inherit 

dependence on discrete boundaries.   

 The finite-difference method for calculating the optical modes is outlined 

starting from Maxwell’s equations and derivation of the wave equation. 

Maxwell’s equations for a dielectric medium that is linear, nondispersive, 

homogeneous, isotropic, and source-free are as follows: 
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Applying the curl operation ×∇  to 4.2  
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using the identity 

 EEE 2)()( ∇−⋅∇∇=×∇×∇  (4.6) 

and substituting 4.3 leads to 
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The wave equation for the electric field of a propagating electromagnetic wave is 

then found using 4.1 
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As a coordinate system, ẑ  is chosen as the longitudinal or propagating direction, 

x̂  the growth or transverse direction, and ŷ  as the lateral direction, and for 

transverse electric or TE polarized waves, the electric field takes the form   

 )(
0 ),(ˆ),,,( ztjeyxUEytzyx βω −=E  (4.9) 

where ),( yxU  is the transverse field profile and is normalized so 
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∞
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= 1),(

2
dxdyyxU . (4.10) 

By substituting 4.9 into the wave equation 4.8 and factoring out common terms, 

the Helmholtz equation is found which is an eigenvalue equation for the field 

profile. 

 0),(][),( 22 =−+∇ yxUyxU βµεω  (4.11) 

 0),(][),( 222
0

2 =−+∇ yxUnnkyxU eff  (4.12) 

The field profile for the mode of a waveguide can be calculated from the 

Helmholtz equation where the refractive index term varies spatially with the 

geometry of the waveguide ),( yxn .   

 For broad-area lasers, the overall confinement factor is determined largely 

by the confinement in the transverse or growth direction, so a 1-D case is assumed 
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to simplify the modeling where )(xU  is the profile of the electric field of the 

optical mode in the transverse direction. To calculate the profile, the finite 

difference method outlined by Coldren and Corzine  [68] is used with a second-

order Taylor series expansion, so     
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The space in the transverse direction is discretized  

 1...2,1,0where +=∆= Iixix  (4.16) 

and the second order differential becomes 
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The finite-difference discrete form of the Helmholtz equation for the field profile 

is then 
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Next, by defining the term 

 22
0

2 xkX ∆=∆  (4.19) 

and rearranging the terms, the Helmholtz equation for the field profile can now be 

written as a matrix eigenvalue equation 
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where the refractive index in  can vary spatially with each discrete element to 

calculate the profile of the field of a guided optical mode. In order to solve for the 

field profile, boundary conditions must be specified. A simple choice is to make 

the computational window large enough, so that the boundary is far enough away 

from the guiding layer of the waveguide so the field is effectively zero at the 

boundary so 

 010 == +IUU . (4.21) 

With these boundary conditions, the matrix eigenvalue equation then takes the 

form  
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where the eigenvalue 2effn  is the square of the effective index of the traveling 

optical mode, and the eigenvector U  is the field profile. These values can be 

solved quickly and with relative ease by employing built-in matrix-solving 

functions found in most numerical software packages such as MATLAB.   

 For the TE modes of a laser diode cavity, it can be shown that the optical 

confinement factor is [67] 
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In the 1-D case, substituting 4.9 and factoring out the common terms, the optical 

confinement factor becomes 
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Thus the optical confinement factor can be computed by summing the squares of 

the individual elements of the field profile corresponding spatially to the active 

region and dividing this by the sum of the squares of all of the elements.  The 

refractive indexes of the different materials used in the dual-wavelength 

heterostructures are listed in Table IV.I.  For the graded regions, linear 

interpolation of the refractive indexes is used in the modeling.  

 
TABLE IV.I 

REFRACTIVE INDICES IN MODELING OPTICAL MODES  
OF DUAL-WAVELENGTH LASER DESIGNS 

Material n (λ=850 nm) n (λ=1020 nm) 

In0.24Ga0.76As 3.68302 3.61904 

GaAs 3.6442 3.4995 

Al 0.2Ga0.8As 3.4634 3.3979 

Al 0.3Ga0.7As 3.3889 3.3390 

Al 0.7Ga0.3As 3.1377 3.0944 

Al 0.75Ga0.25As 3.1262 3.0795 
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II.   ADJUSTMENTS FOR FREE-CARRIER AND BARRIER ABSORPTION 

 In the novel internal-optically-pumped dual-wavelength laser diode design 

the slave laser active region is placed within the quasi-neutral doped region and 

not within the intrinsic region of the p-i-n junction, and free-carrier absorption 

and its impact on the threshold of the dual lasers are important considerations. In 

considering different detailed designs implementing the internal optical pumping 

scheme, the free-carrier absorption is evaluated by comparing the optical field 

profile with the doping profile. Casey and Panish note the free-carrier absorption 

near the GaAs band edge at room temperature is 

 pnfc
1818 107103 −− ×+×≈α      [cm-1] (4.25) 

where n  and p  are the electron and hole concentrations respectively [73]. For the 

device structures examined here, this relation is considered to also be a reasonable 

approximation for free-carrier absorption in the AlxGa1-xAs layers. It is also 

assumed the electron or hole concentration in a doped region of the device is 

equal to the doping concentration.   

 The free-carrier absorption loss introduced by a doped region depends on 

the optical mode and the overlap of the mode with the region or the confinement 

factor. The optical mode of the overall structure is calculated using the matrix 

eigenvalue method outlined previously. The contribution of a region within the 

heterostructure laser device to the total free-carrier absorption loss can be 

calculated from the doping level and optical confinement factor of that specified 

region. The total free-carrier absorption loss is then simply the sum of the 

contributions from the different n and p regions 
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        ∑ ∑ ⋅×⋅Γ+⋅×⋅Γ= −−

k l
llkkfc pn 1818 107103α  (4.26) 

where each region has a different doping or carrier concentration. It will be shown 

that for the different designs considered here, the highest total free-carrier 

absorption loss of any of the devices is 4.7 cm-1, which is insignificant compared 

to the modal absorption loss introduced with the addition of the slave laser active 

region. 

 Material growth issues arise in growing InGaAs directly on AlxGa1-xAs, 

and InGaAs quantum wells are grown with GaAs barrier layers. In the novel 

internal-optically-pumped dual-wavelength laser structures, the AlxGa1-xAs layers 

are transparent to the 850 nm light generated by the master laser GaAs MQW. 

However, the GaAs barrier layers of the In0.24Ga0.76As slave laser quantum well 

are not transparent and introduce an additional absorption into the equations and 

model of the novel dual-wavelength device. In developing the model and the 

theory in the chapter three, this detail was omitted, but the model is adjusted to 

include it in evaluating specific structures and growth designs.   

 The additional absorption of the barrier layers adds to the total modal 

absorption loss the slave laser active region introduces to the master laser, so the 

total loss is 

 bbSS αα Γ+Γ .   (4.27) 

The assumption is made that the photo-generated carriers in the barriers layers 

scatter to the slave quantum well, and from the modal absorption loss the carrier 

generation rate inside the slave laser quantum well is  



  76 

 MbbSSg
S

M
c

S Sv
V

V
G )( αα Γ+Γ=  (4.28) 

where M
cV  is the master laser cavity volume and MS is the photon density. 

Assuming the carriers in the barrier scatter to the quantum well, the volume SV  is 

the volume of the InGaAs quantum well only and does not include the volume of 

the GaAs barrier layers. The barrier absorption effectively increases the 

absorption coefficient of the slave quantum well as M
cV  and SV  in 4.28 are 

unchanged with or without the barrier layers. From the ratio of the optical 

confinement factor of the barrier layers to that of the slave quantum well 

 
S

bX
Γ
Γ

=  (4.29) 

an effective slave absorption coefficient 'Sα  can be defined 

 bSS Xααα +=' . (4.30) 

With this definition, the modal absorption loss to the master laser and the carrier 

generation within the slave laser active region simplify to 

 'SSαΓ  (4.31) 

 MSSg
S

M
c

S Sv
V

V
G 'αΓ=  (4.32) 

which resemble the equations of the model without barrier absorption. The model 

developed previously can then easily be adjusted to include absorption in the 

barrier layers of the slave laser quantum well by substituting in the effective 

absorption Sα  for the actual slave absorption coefficient Sα . For the dual- 



  77 

wavelength structures developed in this chapter, the absorption in the GaAs 

barrier layers at λ = 850 nm is 9,048 cm-1 compared to 24,768 cm-1 at the same 

wavelength in the In0.24Ga0.76As slave quantum well. 

    
III.   MODELING SUB-THRESHOLD CARRIER DYNAMICS 

 In the internal-optically-pumped dual-wavelength laser diode design, it is 

critical that the master and slave laser active regions are electrically decoupled so 

the quasi-Fermi levels/distributions are distinct for each region. Further, the 

internal optical pumping model developed in the previous chapter assumes 

negligible injection of carriers into the slave active region due to current leakage 

from the junction, meaning the current injection efficiency for the slave laser 

active region should be near zero. To validate this assumption and better 

understand the decoupling of the quasi-Fermi levels between the two active 

regions, the carrier transport and electrical behavior of various implementations of 

the novel dual-wavelength device are modeled under applied biases and currents 

below the laser thresholds. The devices are simulated using Silvaco’s ATLAS 

device simulation software. ATLAS is described as a physically-based device 

simulator in that a set of differential equations derived from Maxwell’s equations 

is applied to a discrete two or three dimensional grid representative of the 

physical device structure to simulate its behavior, providing valuable insight and 

visualization of the theoretical equations [74].   

 To better understand the functionality and results produced by Silvaco’s 

ATLAS, the physical equations and models used in the simulations of the novel 
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dual-wavelength designs are described here briefly. The software relies on solving 

Poisson’s equation which relates the electric field E  to the charge density ρ          

 
ε

ρ ),,( zyx
=⋅∇ E  (4.33) 

where the charge density is made up of free electrons and holes and ionized 

donors and acceptors. The electrostatic potential φ  can then be found from the 

electric field using 

 E−=∇φ . (4.34) 

The continuity equations equate the time rate of change of the carrier 

concentration n or p to the generation rate nG , recombination rate nR , and current 

density J  

 nnn q
RG

t

n
J⋅∇+−=

1

δ
δ

 (4.35) 

 ppp q
RG

t

p
J⋅∇−−=

1

δ
δ

. (4.36) 

The current density equations consist of drift and diffusion components  

 nqDnq nnn ∇+= EJ µ  (4.37) 

 pqDpq ppp ∇−= EJ µ  (4.38) 

where pn,µ  and pnD ,  are the mobility and diffusion parameters respectively. The 

current density equations can be inserted into the continuity equations, and the 

continuity equations and Poisson’s equation then form a set of three equations 

with three unknowns: the electron concentration n , hole concentration p , and 
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electrostatic potential φ . The ATLAS simulator solves discrete forms of these 

equations and up to six coupled equations may then need to be solved [74].   

 Boundary conditions are required to solve Poisson’s equation and the 

continuity equations, and it is assumed on the surface of an ideal ohmic contact 

that space-charge neutrality is met and the electrostatic potential is equal to the 

applied voltage plus a reference potential 0φ  

 applied0 V+= φφ . (4.39) 

Additionally the carrier concentrations at the contact are equal to their equilibrium 

values 

 0nn =  (4.40) 

 0pp =  (4.41) 

and the quasi-Fermi potentials satisfy 

 appliedVpn == φφ  (4.42) 

with the quasi-Fermi potentials related to the quasi-Fermi levels nF  and pF  by  

 pnpn F
q ,,

1
−=φ . (4.43)  

 To evaluate the generation and recombination terms in the continuity 

equations, Shockley-Read-Hall (SRH), radiative, and Auger mechanisms are 

considered in ATLAS. The simplest form describing SRH used by ATLAS and in 

simulations of the novel dual-wavelength structures is 
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In the simulations of the dual-wavelength laser devices, it is assumed the trap 

energy levels are equal to the intrinsic energy level, it EE = , which simplifies the 

expression further. The SRH lifetimes nτ  and pτ  can be specified in ATLAS for 

specific semiconductor materials, and the values used in simulating the dual-

wavelength designs are listed in Table IV.II. Under high injection where 

2
innp >>  and assuming pn ≈ , it can be shown that the SRH recombination 

reduces to the familiar form 

 An
n

R
pn

=
+

=
ττSRH . (4.45) 

For optical generation/radiative recombination the band to band rate is 

 )( 2
ippnn nnpBGRGR −=−=−  (4.46) 

and for Auger processes the rates are 

 )( 22
innn nnpnCGR −=−  (4.47) 

 )( 22
ippp pnnpCGR −=−  (4.48) 

where B  and pnC ,  are the respective radiative and Auger coefficients. These 

values can also be specified in ATLAS for a given material, and the values used 

in simulating the novel dual-wavelength structures are listed in Table IV.II. The 

values were collected from the built-in tables in ATLAS [74], Ioffe’s [75], 

Properties of AlGaAs [76], Adachi [77], and Coldren [68]. 
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TABLE IV.II 

RECOMBINATION PARAMETERS IN MODELING DWLD DESIGNS 

Material 

SRH 
lifetime 

τn 
(s) 

SRH 
lifetime 

τp 
(s) 

Radiative 
coeff. – B 
(cm3/s) 

Auger 
coeff. Cn 
(cm6/s) 

Auger 
coeff. Cp 
(cm6/s) 

In0.24Ga0.76As 2.5×10-7 3×10-6 7×10-11 1×10-30 7×10-29 

GaAs (QW) 2.5×10-7 3×10-6 8×10-11 1×10-30 1×10-30 

GaAs (bulk) 2.5×10-7 3×10-6 7.2×10-10 1×10-30 1×10-30 

Al 0.2Ga0.8As 4×10-9 2×10-9 1.5×10-10 7×10-32 6.1×10-31 

Al 0.3Ga0.7As 1.5×10-8 1×10-9 1.5×10-10 5×10-30 1×10-31 

Al 0.5Ga0.5As 3×10-8 1×10-9 1.5×10-10 5×10-30 1×10-31 

Al 0.7Ga0.3As 3×10-8 1×10-9 1.5×10-10 5×10-30 1×10-31 

Al 0.75Ga0.25As 3×10-8 1×10-9 1.5×10-10 5×10-30 1×10-31 

 

 In calculating the current density, the carrier mobilities listed in Table 

IV.III for the different materials were used in the simulations. Additionally, in a 

high electric field, the drift velocity begins to saturate. ATLAS accounts for this 

by reducing the effective mobility since the drift velocity is the product of the 

mobility and the electric field component parallel to the current flow. A parallel 

electric field dependent mobility model in ATLAS adjusts the mobility and 

provides a smooth transition from low to high electric field behavior. The model 

uses the following equations relating the mobility and the electric field component 

parallel to the current flow ||E ,  
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In the simulations 2=nβ  and 1=pβ , and for all compositions of AlxGa1-xAs, 

including GaAs, the saturation velocity satv  is 7.7×106 cm/s for both electrons and 

holes. 

 
TABLE IV.III 

CARRIER DRIFT MOBILITY IN MODELING DWLD DESIGNS, [74] and [75] 

Material Electron mobility – µn 
(cm2/V-s) 

Hole mobility – µp 
(cm2/V-s) 

In0.24Ga0.76As 7086 300 

GaAs 8000 400 

Al 0.2Ga0.8As 4000 206 

Al 0.3Ga0.7As 2300 146 

Al 0.5Ga0.5As 145 70 

Al 0.7Ga0.3As 204 54 

Al 0.75Ga0.25As 204 54 

 

 To model heterojunctions, ATLAS is equipped with a simulator referred 

to as BLAZE which accounts for position dependent band structures by 
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modifying the current density equations slightly [74]. Poisson’s equation remains 

the same as for a homogeneous structure except the dielectric constant is position 

dependent. The continuity equations also remain the same, but the current 

equations are altered and take the form 

 nnn n φµ ∇−=J  (4.51) 

 ppp p φµ ∇−=J  (4.52) 

To determine the quasi-Fermi potentials, the conduction and valence band edges 

in BLAZE are determined from the electrostatic potential by 

 χφφ −−−= )( 0qEc  (4.53) 

 gv EqE −−−−= χφφ )( 0  (4.54) 

where the electron affinity χ  and the band gap gE  are position dependent based 

on the heterostructure. In the BLAZE simulator, the band offsets of a 

heterojunction can be specified, and the electron affinity of the material is then 

modified by the simulator to produce the specified offsets in the position-

dependent structure. For the AlGaAs/GaAs/InGaAs junctions in the novel dual-

wavelength structures, the following band offsets were selected for all 

heterojunctions within the structure: 

 gc EE ∆⋅=∆ 65.0  (4.55) 

 gv EE ∆⋅=∆ 35.0 . (4.56)   

 The quasi-Fermi levels and potentials can be calculated from the band 

edges and the carrier concentrations using Fermi-Dirac statistics with the electron 

and hole density-of-state functions )(Eeρ  and )(Ehρ : 
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A detailed description of how ATLAS handles Fermi-Dirac statistics is 

considered unnecessary here since the goal of reviewing these basic equations is 

to conceptually understand the physics considered in the software to better 

interpret the calculated results. However, further details regarding the 

computation of the quasi-Fermi levels using the Fermi-Dirac statistics are 

available in the ATLAS user’s manual and involve expressions relying on the 

effective density of state values and the Fermi integral of order 1/2 [74]. These 

expressions ultimately relate the quasi-Fermi potentials to the carrier 

concentrations and are inserted into the current density equations (4.51) and 

(4.52) and into the continuity equations.   

 The continuity equations and Poisson’s equation are solved by ATLAS 

applying the different recombination, mobility, and heterojunction models just 

outlined, and up to six coupled equations may need to be solved for the carrier 

concentrations and electrostatic potential. ATLAS has three basic solution 

techniques for solving these equations [74]. The first method is the Gummel 
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method that solves for each unknown while keeping the other variables constant 

and repeating the process until a stable solution is reached. The second method is 

the Newton method which solves the overall system of unknowns together, and 

finally the Block method solves some equations fully coupled and others 

decoupled. The default method is the Newton method, and it is the method used to 

solve the novel dual-wavelength laser structures. In solving the equations, 

ATLAS uses an initial guess of the variables from previous solutions and iterates 

to a converged solution at the new bias conditions, and small steps in the bias 

conditions converge easier in simulating a device. For the initial solution, the 

initial guesses are made from the doping profile, and the structure is solved for the 

zero bias or thermal equilibrium case.       

 To run ATLAS an input file is created which is then run in the ATLAS 

interface. In the first portion of the input file the device structure is specified 

which includes specifying the mesh size and density, defining regions and 

electrodes, and setting the doping levels of the defined regions. Next the materials 

of each region are selected and material parameters different than the default 

values can be set. The physical models to be applied in the simulation are then 

noted, and the numerical method can be set to one of the other two types if the 

default Newton method is not desired. Finally specifications for the solution files 

are made which include the bias conditions. The input file is then ran in ATLAS, 

and for each bias point, a structure file is generated which contains the solved 

variables at each node of the mesh. Parameters such as the band gap, band edges, 

carrier concentrations, electrostatic potential, electric field, current, quasi-Fermi 
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levels, recombination rates, etc. can be viewed for the different nodes of the mesh, 

and the values are extracted to generate figures such as the band diagrams shown 

in later chapters. Additionally log files can be specified which record these 

parameters at specific locations within the device/mesh as a function of the bias 

conditions. Besides current versus voltage curves, other curves such as 

recombination rate versus voltage or current can be generated for given points 

within the device. For example the quasi-Fermi levels of the different active 

regions are plotted as a function of the applied bias.   

 Additional parameters can be found using the resulting data from the 

ATLAS simulations, and an important parameter in evaluating the dual-

wavelength structures is the injection efficiency of the different active regions or 

the fraction of the terminal current that generates carriers within an active region. 

The injection efficiency is easily found using the recombination rates within the 

active regions and with the following definition  

 
total

active Auger,active rad,active SRH,active )(

J

RRRqd
i

++
=η . (4.61) 

The injection efficiency of the different active regions can then be evaluated as a 

function of the applied bias or current.    

 A brief explanation of the band gaps and effective masses used in the 

ATLAS simulations is given as slight adjustments were made to these values to 

best represent the behavior of the quantum well active regions while preserving 

the relative simplicity of the modeling. Various quantum models are available in 

ATLAS, but these models are complex and limited in their scope and 
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documentation [74]. In these models detailed optimization procedures are 

required to determine proper values for several of the models’ parameters to 

obtain useful simulation results. In simulating the novel dual-wavelength laser 

diodes, the most desired effect is a change in the density of states and the Fermi-

Dirac statistics to reflect the quantum nature of the wells in the active regions. 

However to the best of our knowledge a simple method of achieving this without 

the additional complexity and limitations of the available quantum models is not 

available. To preserve the simplicity of the modeling, the quantum well active 

regions are thus considered as bulk materials in the ATLAS simulations in 

determining the density of states.   

 A few modifications are made however so these regions more closely 

resemble the effects of the quantum wells. The effective band gap value of the 

GaAs quantum well remains that of a bulk GaAs, and the band gap of the 

In0.24Ga0.76As quantum well is set to the value of strained bulk In0.24Ga0.76As on 

GaAs. These values are listed in Table IV.IV.  Further, the values for the effective 

masses are set to those used in parabolic band models of quantum wells described 

in the literature and determined by the Luttinger parameters [67] and [68]. In the 

limit of a wide quantum well, the density of states approaches that of a bulk 

semiconductor, so this is considered as the best approximation to realizing the 

effects of the quantum well without relying on the full complex quantum models.   

 In parabolic models of the bands, the electron effective mass in a quantum 

well remains that of the bulk semiconductor, but the hole effective masses of the 

quantum well active regions are calculated using the Luttinger parameters of the 
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material. For an unstrained quantum well, the hole effective masses in the 

perpendicular and in-plane directions are equal and are calculated using the 

following relationships [67] and [78]: 

 
21 2

1
γγ −

=hhm  (4.62) 

 
21 2

1
γγ +

=lhm . (4.63) 

For a strained quantum well the perpendicular effective masses are unchanged 

from 4.62 and 4.63, but the in-plane effective masses are equal to 

 
21

1
γγ +

=hhm  (4.64) 

 
21

1
γγ −

=lhm  . (4.65) 

For InxGa1-xAs, the Luttinger parameters can be found by linear interpolating 

those of InAs and GaAs. The Luttinger parameters, calculated effective masses, 

and the band gaps used for the active regions in the ATLAS simulations are listed 

in Table IV.IV. In contrast, for the bulk GaAs regions the default values in 

ATLAS were used, and these values are also listed in the table for comparison.  

For the quantum well active regions, the in-plane heavy hole effective masses are 

used to determine the density of states since the degeneracy of the heavy and light 

hole bands is split inside the quantum well. For the bulk GaAs and AlxGa1-xAs 

regions the hole density of states effective mass is found from both the heavy and 

light  
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hole masses according to   

 3/22/32/3 )( hhlhh mmm +=  (4.66) 

which is based on a three-dimensional density of states. 

 
TABLE IV.IV 

BAND PARAMETERS IN MODELING DWLD DESIGNS [74], [75], [78] 

Parameter 
GaAs 
QW 

In0.24Ga0.7

6As QW 
(strained) 

GaAs 
bulk 

Band gap Eg (eV) 1.42 1.1742 1.42 

Effective masses me 0.063 0.0574 0.067 

mhh 0.37 0.07 0.49 

mlh 0.091 0.158 0.16 

Luttinger parameters γ1 6.85 9.93 - 

 γ2 2.1 3.60 - 

 

 To complete this summary of the models and parameters used in the 

Silvaco ATLAS simulations the material parameters for AlxGa1-xAs are noted.  

For the graded AlxGa1-xAs regions within the dual-wavelength structures the band 

gap, effective masses, and dielectric constant are graded as follows and are default 

in ATLAS [74]: 

 237.0155.159.1 xxEg ++=Γ  (4.67) 

 2245.0005.0911.1 xxE X
g ++=  (4.68) 

 
45.014.085.0

45.00083.0067.0

>−=

<<+=

xx

xxme  (4.69) 

 xmlh 063.0087.0 +=  (4.70) 
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 xmhh 14.062.0 +=  (4.71) 

 x9.218.13 −=ε . (4.72) 

The mobility and recombination parameters are not graded in these regions, and 

instead the parameters of the intermediate composition x = 0.5 are used for the 

layers which are graded from x = 0.2-0.3 to x = 0.7-0.75. 

 
IV.   SUMMARY 

 With the modeling adjustments and methods covered in this chapter, 

different dual-wavelength device designs implementing the internal optical 

pumping scheme can be modeled and evaluated prior to the actual epitaxial 

growth. The balance of the low-level details with the general assumptions and 

simplifications was carefully monitored to allow the models to be as predictive as 

possible while maintaining simplicity and efficiency in the calculations and 

device development. Three different dual-wavelength designs are modeled in 

chapters six and seven using these modeling methods to calculate the optical 

modes and confinement factors, to apply the internal optical pumping model, and 

to evaluate the quasi-Fermi distributions and carrier dynamics.  
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5   Experimental Methods 

 
 To experimentally demonstrate dual-wavelength laser operation from the 

novel design, three generation of designs are studied in the next chapters, and this 

chapter covers the experimental techniques used in fabricating and testing actual 

devices based the on the internal optical pumping design. The epitaxial growth of 

the layers is done using molecular beam epitaxy (MBE). Standard broad-contact-

area ridge-waveguide laser diodes are processed from the grown wafers using 

conventional semiconductor processing techniques. Laser bars are then cleaved at 

various cavity lengths, and to test the laser devices, a new testing station is 

designed and built with the flexibility to complete a variety of standard laser 

diode measurements. This chapter covers each of these areas, epitaxy growth, 

device processing, and device testing, in brief detail.  

 
I.   EPITAXY GROWTH 

 Epitaxial growth of the laser diode structures enables mono-layer growth 

of the dual-wavelength structures studied. The first generation of dual-wavelength 

laser diodes are grown at Arizona State University (ASU), using a VG V80H 

solid source MBE machine. The machine at ASU is capable of growing on 2” and 

3” substrates, and the machine is equipped with Ga, Al, In, As, Sb, P, Be, Si, and 

Te sources. The second and third generation designs of the dual-wavelength laser 

diode are grown at the University of California, Los Angeles (UCLA). The MBE 

machine at UCLA is equipped with In, Ga, and Al effusion cells for the group III 

elements and As and Sb valved cracker cells for the group V elements. The 
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available dopant sources are Be, Si, and Te. The machines at both universities are 

equipped with reflection high energy electron diffraction systems for in-situ 

monitoring of the growth.  

 The complete details of the device structure are not given at this point but 

some specifics regarding the growths of the active regions and cladding materials 

are mentioned. The dual-wavelength laser structures are based on a graded index 

separate confinement heterostructure (GRINSCH), design using the 

GaAs/InGaAs/AlGaAs material system. In all the designs, a thick n-doped GaAs 

buffer layer is grown first on a 3” GaAs n-doped (n ~ 1×1018 cm-3), substrate. 

Following the buffer layer, the n-doped region of the diode is grown which 

includes a high-Al-composition AlGaAs cladding layer with linear grades in the 

Al composition as the structure growth transitions from the GaAs buffer layer to 

the cladding and from the cladding to the core of the waveguide structure. The 

core of the waveguide is undoped in the region of the master active region, and 

after the growth of the core, a cladding p-doped region symmetric to the other 

cladding layers is grown. A highly doped p++ GaAs contact layer is the final 

epitaxial layer in all of the samples grown.  

 The growth temperature of the n-doped GaAs buffer layer in all samples is 

580 °C, but the growth temperature of the AlGaAs cladding layers is different 

between the first generation samples grown at ASU and the later generation 

designs grown at UCLA. For the first generation design, the Al0.75Ga0.25As 

cladding layers were grown at 670 °C using Sb surfactant. In the second and third 

generation designs, the Al0.7Ga0.3As cladding layers are grown at 580 °C without 
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Sb surfactant. The change is based both on the need to grow the lower-

temperature InGaAs slave active layer within the waveguide cladding in the later 

generation designs and UCLA’s inexperience in using Sb as a surfactant in 

AlGaAs growth.   

 The active regions of the master and slave lasers as noted in chapter three 

are a GaAs multiple-quantum-well (MQW), region and an InGaAs single 

quantum well respectively. In all of the designs, the quantum well widths of the 

master active region are 10 nm. The composition of the well barriers is 

Al 0.2Ga0.8As, and the barrier widths are 10 nm in the first design and 3 nm in the 

second and third designs of the dual-wavelength laser with the reduction expected 

to result in slightly lower thresholds. The calculated energy levels of the GaAs 

MQW are listed in Table V.I, and the transition wavelength at 300 K is 851 nm. 

The growth conditions of the GaAs MQW are the same as the AlGaAs cladding 

layers for the different designs, 670 °C with Sb surfactant for the first generation 

and 580 °C without surfactant for the later designs.   

 The slave laser active layer in the first generation design and in the 

modeling of all the designs is a 10 nm In0.24Ga0.76As quantum well. The 

composition and well width in the grown second and third generation designs 

were adjusted to In0.2Ga0.8As and 8 nm to improve the growth quality with 

UCLA’s MBE. The energy levels and target wavelengths of these two quantum 

wells are listed in Table V.I. The last-minute change in the slave laser active layer 

should not result in a large deviation from the predicted modeling results with the 

wavelength difference being the most drastic. The growth temperature of the 
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InGaAs quantum wells is between 500-510 °C for all of three designs of the dual-

wavelength laser diode. A complete list of all of the epitaxial layers in the designs 

is found in the next chapters with their specific modeling and experimental 

results.   

 
TABLE V.I 

QUANTIZED ENERGY LEVELS AND TRANSITION WAVELENGTHS OF 
ACTIVE REGION QUANTUM WELLS IN DWLD 

Parameter  
Master laser 
active layer 

Slave laser 
active layer  

1st gen. design 

Slave laser 
active layer 

2nd & 3rd gen. 
designs 

Well material  GaAs In0.24Ga0.76As In0.2Ga0.8As 

Well width  10 nm 10 nm 8 nm 

Barrier  Al 0.2Ga0.8As GaAs GaAs 

Eg  (eV) 1.4240 1.1776 1.2179 

Ee2  (eV) 0.1038 0.1017 - 

Ee1    (eV) 0.0273 0.0286 0.0338 

Ehh1  (eV) -0.0053 -0.0059 -0.0083 

Ehh2  (eV) -0.0211 -0.0233 -0.0326 

Elh1  (eV) -0.0201 -0.0102 -0.0116 

Transition energy  
(Eg + Ee1 + |Ehh1| ) 

(eV) 1.4566 1.2121 1.2600 

λ (nm) 851 nm 1023 nm 984 nm 

 

II.   DEVICE PROCESSING 

 Broad-contact-area ridge-waveguide laser diodes were fabricated from the 

grown material using standard processing techniques. The first generation designs 

were fabricated at ASU in the Center for Solid State Electronics Research, and the 
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second and third generation designs were fabricated at the University of Arkansas. 

The process flows of the two different process runs are mostly the same with the 

only significant difference being wet etching instead of dry etching of the mesa 

that forms the ridge-waveguide.  

 The most important steps of the fabrication of the dual-wavelength 

semiconductor laser diodes are illustrated in Fig. 5.1, and more detail is provided 

in the text that follows. The first step in the fabrication is the photolithography 

step to define the pattern for etching the mesa that forms the p-contact area and 

the ridge-waveguide. The mesa widths range from 30 µm to 150 µm, and AZ4620 

and AZ3312 positive photoresists are used in the first generation’s and later 

generations’ device fabrication respectively. The difference between the two 

resists is the thickness of the resists, but given the wide feature size of the mesas 

and the relative etch depth, the difference is irrelevant. Following the developer 

step, the samples and resist are hard baked at 100 – 110 °C.  

 The second critical step in the fabrication process is the etch-step of the 

mesa. This etch is necessary to remove the highly-doped p++ contact layer in the 

non-device regions and confine the current flow to the device region. This etch 

can either be done using an inductively coupled plasma dry etch with BlC3 and 

Cl2  or using a 1:8:40, H2SO4:H2O2:H2O wet etch with an etch rate of ~0.9-1.0 

µm/s. Fabrication of the first generation devices used the dry etch method, 

whereas the later generation designs used the wet etch. The method of etching is 

not critical since the ratio of the etch depth is small compared to the mesa widths. 
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 Following cleaning and removal of the first layer photoresist, a second 

lithography step forms the pattern for the top metal contacts of the laser diodes. 

Instead of positive photoresist, AZ5214 image reversal resist is used in this step. 

The same photomask from the first lithography step is used again in this step, but 

the mask and features are shifted one period so the 30 µm stripe width is over the 

50 µm mesa, etc. After the photoresist layer is developed and baked, an Au/Ti 

metal stack is deposited on the samples using e-beam metal evaporation. Just 

prior to putting the samples in the e-beam evaporator, any native oxide is removed 

using a brief 10 second 1:20, NH4OH:H2O wet etch. The Au and Ti target metal 

layer thicknesses are 2000-3000 Ǻ and 200 Ǻ respectively, and the samples are 

afterwards immersed in acetone to remove the photoresist and lift-off the metal. 

The result is the neatly patterned metal contacts on top of the mesas as seen in 

Fig. 5.1. 

 At this point the processing on the top-side or epi-side of the wafers is 

nearly complete, and the next step is thinning of the back-side GaAs substrate. 

Thinner samples will produce cleaner cleaves and higher quality mirror facets 

when laser bars are cleaved from the finished samples. The samples are lapped 

using mechanical abrasion from a starting thickness of ~360 µm to a final target 

thickness of ~100 µm. The samples are mounted on a rotatable chuck and held in 

position against a large grooved plate that is rotating while slurry of micrometer-

sized Al2O3 particles is fed to the plate.  

 The samples are cleaned thoroughly after the lapping, and the next step is 

a blanket Au/Ni/AuGe metal deposition covering the back-side of the wafers to 
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form the n-contact of the devices. Any native oxide is removed prior to loading 

the samples in the evaporator using again the 1:20, NH4OH:H2O wet etch. The 

target layer thicknesses are slightly different between the samples fabricated at 

ASU and the University of Arkansas, but the difference is expected to have little 

impact on the end performance of the devices. The total target thickness of the n-

contact metal stack is 3655 Ǻ and 4250 Ǻ for the different processing runs.  

 The final step before cleaving the samples into laser bars is rapid thermal 

annealing (RTA), of the samples. The RTA step helps form better ohmic contacts 

to the device and the rapid temperature ramp and short duration of the anneal 

portion are necessary to limit diffusion of the dopants within the device. The 

temperature ramp is ~30 seconds to 400 °C, and then the samples are annealed at 

400 °C for another 30 seconds.  

 Finally, individual laser bars are cleaved from the samples using a 

cleaving station designed and assembled at ASU. The station consists of a 

vacuum chuck mounted on rotational and translational stages. Above the chuck is 

a diamond-tipped scribe on a lever that is in a fixed position. Using the stages and 

the scribe, small marks to define the cleave planes can be scribed into the edge of 

a sample at selected intervals. The resolution of one of the micrometer-driven 

translational stages is on the order of a single micron, enabling great accuracy in 

cleaving laser bars with specific cavity lengths. The individual laser diodes on a 

laser bar are then ready for testing.     
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Fig. 5.1. Process flow diagram showing the critical steps in fabrication of the 
dual-wavelength laser diodes. 
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III.   DEVICE TESTING 

 To test the dual-wavelength laser diodes, a new experimental setup was 

designed and built to perform standard spectrum and power vs. current (L-I), 

measurements. The setup was assembled in the high-speed lab of the ASU MBE 

Optoelectronics Group, and Fig. 5.2 is a photograph of the setup showing all the 

major components which include a probe station with a microscope and television 

monitor to probe individual devices, a pulsed current-source, an oscilloscope to 

monitor the current waveform, a thermal-electric cooler with a feedback system 

for controlling the temperature of the heatsink, optics and fibers to collect and 

direct the light output, an optical spectrum analyzer, and an optical multimeter for 

power and wavelength measurements. The testing setup was designed to allow 

flexibility in rearranging the components to do different types of measurements. 

The different setup configurations and the components of the system with their 

relevant specifications are outlined here.     
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Fig. 5.2. Photograph of the equipment and setup built to test laser diodes at 
Arizona State University. 
 

 To probe the individual devices on a cleaved laser bar, the laser bar is 

placed on a Cu heatsink which is temperature controlled using a thermal electric 

cooler and an ILX Temperature Controller. The heatsink also functions as the 

negative terminal since it contacts the back-side metal and cathode of the diode. 

The top-side anode of the diode is contacted using a three-axis micrometer stage 

to position a probe tip on the metal contact as in Fig. 5.3. Initially W-probe tips 

were selected, but were replaced with BeCu-probe tips to lower the contact 

resistance with the Au contacts of the devices. The probe tips are shortened and 

soldered to a ceramic blade with a metal microstrip line leading to a SMA coaxial 

connector at the opposite end. The stage and probe tip are shown in the 

photograph of Fig. 5.4. A short coaxial cable connects the blade to a PCB board 

provided by ILX with an impedance-matching circuit to match the 50 ohm 

impedance cable ribbon from the current pulse driver to the laser diode device. 
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The design seeks to achieve impedance matching to maintain the bandwidth and 

current waveform from the current source to the PCB-matching board to the 

probed device. One output from the matching board enables monitoring of the 

waveform using an oscilloscope. The current source used is an ILX LDP-3840 

precision pulsed current source with an output range of 20-3000 mA and 1 mA 

resolution. The source can produce current pulse widths from 0.1 µs to 10 µs with 

0.1 µs resolution, and the range of pulse repetition intervals (PRI), is 0.001 ms to 

6.5 ms.  

 The assembly of the heatsink and 3-axis stage with the BeCu probe is 

mounted to translational and rotational stages (seen in Fig. 5.4), for alignment of 

the probed laser diode with an optics system to collect and direct the emission 

from the facet of the device to the optical test equipment. The optics system is 

built on a series of three-axis stages directly in line with the probe assembly. On 

these stages different optical configurations can be assembled relatively quick 

based on the desired measurement, allowing multiple types of measurements to be 

conducted within a relative short time for a single probed device. Three of the 

possible configurations are shown in the diagram of Fig. 5.5.   
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Fig. 5.3. Microscope view of the BeCu probe tip contacting the p-contact of the 
diode and the optical fiber butt-coupled to the facet of the laser diode. The laser 
bar sits on a polished Cu heatsink that also serves as the n-terminal. 
 
 
 

 
 
Fig. 5.4. Photograph of the laser diode testing setup in a butt-coupling fiber 
configuration. The micrometer stage on the left positions the fiber next to the 
facet of laser diode. The stage-on-stage assembly on the left positions the current 
probe tip on device while allowing alignment of the device with the optics.  
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Fig. 5.5. Three of the different configurations of the interchangeable laser diode 
testing station designed and assembled for testing the DWLD. 
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 Spectrum measurements of the edge emission from the probed device can 

be done in two ways. The first method is a butt-coupling method where an optical 

fiber is positioned using the micrometer controls of one of the three-axis stages 

until it is nearly adjoining the laser diode at the facet edge as seen in Fig. 5.3 and 

Fig. 5.5.  The opposite end of the fiber is connected to an Ando optical spectrum 

analyzer, and nearly all of the spectrum measurements reported in this study are 

performed using this technique because of its ease of alignment with good 

collection efficiency. Another configuration of the setup is to first collimate the 

laser light with a large numerical aperture lens, and then the beam can pass 

through any desired optical components before focusing and coupling the beam 

into the fiber using another lens. This is the configuration used in the high spectral 

resolution configuration shown in Fig. 5.5. In this setup the beam passes through a 

Glan-Thompson polarizer with a high extinction coefficient to separate the 

polarized amplified spontaneous emission and laser modes from the spontaneous 

emission. The high resolution spectrum of a conventional InGaAs quantum well 

laser diode shown in Fig. 5.6 and Fig. 5.7 are collected using this configuration 

and were done as part of qualifying the test setup. 
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Fig. 5.6. High-resolution spectrum of a conventional InGaAs quantum well laser 
diode just above laser threshold measured by the assembled testing setup. 
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Fig. 5.7. High-resolution spectrum of a conventional InGaAs quantum well laser 
diode just below laser threshold showing amplified spontaneous emission modes. 
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 Power versus current measurements are done using an ILX OMM-6810B 

Optical Multimeter with either a OMH-6722B Silicon Power/WaveHead or 

OMH-6727B InGaAs Power/WaveHead to measure the output power and 

wavelength of the laser emission. Both detectors are a type of integrating sphere, 

and the input power range of both detectors is 100 nW to 1 W. The silicon-

detector power/wavelength meter has a specified wavelength range 400 nm to 

1100 nm, and InGaAs-detector range is 950 nm to 1650 nm. The detector can be 

placed immediately in front of the laser diode for maximum power coupling. To 

generate L-I curves of the master and slave lasers of the dual-wavelength laser 

diode, a high numerical aperture lens is used to collimate the laser emission, and 

then a 900 nm short or long pass filters is used to select only the 850 nm or 1020 

nm laser wavelengths before a final lens focuses the beam back into the detector 

as in the L-I configuration in Fig. 5.5.  
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6   First Generation Device Design 

 
 A first generation design of the dual-wavelength laser diode structure was 

developed and grown using the MBE machine at Arizona State University prior to 

the full development of the internal optical pumping theory discussed in chapter 

three. The goal of the design was to decouple the quasi-Fermi levels and carrier 

distributions between the master and slave active regions and implement the 

internal optical pumping scheme; however, due to a limited window of time to do 

the epitaxial growth, the first generation design had to be designed quickly as a 

gross reality check without a extensive modeling or understanding of the internal 

optical pumping theory. In this chapter, the experimental results of the first 

generation devices are presented along with an analysis of the design using the 

modeling methods covered in chapter four. 

 
I.   DESIGN 

 To study the first generation design, two different structures were 

designed for comparative study. One design, referred to as the “control” design, 

consists of two sets of asymmetric wells both within the intrinsic region of the p-i-

n junction and the core of the heterostructure waveguide. The design is illustrated 

in Fig. 6.1, which also shows the profile of the calculated optical mode of the 

inherent waveguide. The first set of quantum wells is three 10 nm GaAs wells 

with 10 nm Al0.2Ga0.8As barriers, and the second set is a single 10 nm 

In0.24Ga0.76As quantum well with GaAs buffer barriers. The different layers with 

their thickness, composition, and applicable dopings are listed in Table VI.I.  
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Fig. 6.1. Control design of a laser diode with asymmetric quantum wells showing 
the active and doped regions and the calculated optical mode profile.  
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TABLE VI.I 
CONTROL LASER DIODE EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

p++ contact GaAs 100 Be – Graded: 
3×1019 to 1×1018 

Cladding 
Graded: Al0.06Ga0.94As to 
Al 0.75Ga0.25As 

200 Be – 1×1018 

Cladding Al0.75Ga0.25As 1200 Be – 1×1018 

Cladding 
Graded: Al0.75Ga0.25As to 
Al 0.3Ga0.7As 

150  

 Al0.3Ga0.7As 25  

 Al0.2Ga0.8As 10  

Active QW GaAs 10  

 Al0.2Ga0.8As 10  

Active QW GaAs 10  

 Al0.2Ga0.8As 10  

Active QW GaAs 10  

 Al0.2Ga0.8As 10  

 Al0.3Ga0.7As 50  

 GaAs 5  

Active QW In0.24Ga0.76As 10  

 GaAs 5  

 Al0.3Ga0.7As 115  

Cladding 
Graded: Al0.3Ga0.7As to 
Al 0.75Ga0.25As 

150  

Cladding Al0.75Ga0.25As 1200 Si – 1×1018 

Cladding 
Graded: Al0.75Ga0.25As to 
Al 0.06Ga0.94As 

200 
Si – Graded: 
1×1018 to 5×1017 

Buffer GaAs 400 Si – 5×1017 
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 The other design is the first generation dual-wavelength laser design and 

utilizes the same sets of quantum wells as the conventional design. However, the 

center-to-center pitch of the active regions is increased from 95 nm in the control 

design to 170 nm in the first generation dual-wavelength design. Additionally, the 

silicon n-type doping is extended into the core of the waveguide 105 nm beyond 

the slave In0.24Ga0.76As quantum well so it is within the n-doped region of the 

junction. The first generation design is shown in Fig 6.2 with its calculated optical 

mode, and the details of the epitaxial layers are listed in Table V.II.  
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Fig. 6.2. First generation design of the dual-wavelength laser design with its 
active and doped regions and optical mode profile.  
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TABLE VI.II  
FIRST GENERATION DWLD EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

p++ contact GaAs 100 Be – Graded: 
3×1019 to 1×1018 

Cladding 
Graded: Al0.06Ga0.94As to 
Al 0.75Ga0.25As 

200 Be – 1×1018 

Cladding Al0.75Ga0.25As 1200 Be – 1×1018 

Cladding 
Graded: Al0.75Ga0.25As to 
Al 0.3Ga0.7As 

150  

 Al0.3Ga0.7As 25  

 Al0.2Ga0.8As 10  

Master QW GaAs 10  

 Al0.2Ga0.8As 10  

Master QW GaAs 10  

 Al0.2Ga0.8As 10  

Master QW GaAs 10  

 Al0.2Ga0.8As 10  

 Al0.3Ga0.7As 25  

 Al0.3Ga0.7As 100 Si – 5×1017 

 GaAs 5 Si – 5×1017 

Slave QW In0.24Ga0.76As 10 Si – 5×1017 

 GaAs 5 Si – 5×1017 

 Al0.3Ga0.7As 40 Si – 5×1017 

Cladding 
Graded: Al0.3Ga0.7As to 
Al 0.75Ga0.25As 

150 
Si – Graded: 
5×1017 to 1×1018 

Cladding Al0.75Ga0.25As 1200 Si – 1×1018 

Cladding 
Graded: Al0.75Ga0.25As to 
Al 0.06Ga0.94As 

200 
Si – Graded: 
1×1018 to 5×1017 

Buffer GaAs 400 Si – 5×1017 
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 In the control design, the two sets of asymmetric quantum wells are 

expected to share common quasi-Fermi levels and carrier distributions due to 

carrier scattering and thermal equilibration between the wells as illustrated in Fig. 

6.3 (reproduced from earlier). In this structure, much larger carrier densities 

should exist within the longer wavelength In0.24Ga0.76As quantum well which in 

turn would result in the threshold gain being reached before the GaAs quantum 

well transitions and laser emission would occur solely at 1020 nm. 

 Different behavior was predicted from the first generation design of the 

dual-wavelength laser as it was expected the extension of the doping and the 

larger spatial separation between the wells would in effect position the longer 

wavelength slave quantum well outside the junction and produce the necessary 

decoupling of the quasi-Fermi distributions. The device was then expected to 

function according to the theory presented in the earlier chapters and illustrated in 

Fig. 6.4 where the master GaAs multiple-quantum-well laser would reach 

threshold first at 850 nm and optically-pump the In0.24Ga0.76As quantum well to its 

laser threshold. Simultaneous laser emission at 850 nm and 1020 nm was the 

predicted experimental result.   
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Fig. 6.3. Conventional or control laser diode design with asymmetric quantum 
wells that share quasi-Fermi levels and distributions, resulting in larger carrier 
populations in the longer wavelength well. 
 
 

  

 

Novel internal-optically-pumped DWLD band diagram
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Fig. 6.4. The concept of the novel internal-optically-pumped dual-wavelength 
laser diode with separate quasi-Fermi levels and distributions for the two active 
regions and reliance on the internal optical pumping. 
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II.   EXPERIMENTAL RESULTS 

 The control and first generation dual-wavelength designs were grown 

using MBE, and broad area contact laser devices were processed according to the 

methods discussed in chapter five. Individual devices were probed, and spectra 

measurements and power-current (L-I) curves were measured at the cleaved facets 

of the device according to the methods discussed earlier. All of the control and 

first generation devices tested and reported here have 30 µm contact widths. 

 In observing the spectra of the control laser devices, the predicted 

behavior of single-wavelength laser output is confirmed, and Fig. 6.5 shows the 

spectra of a 430 µm long device at increasing currents above threshold. The laser 

threshold of the 1020 nm In0.24Ga0.76As quantum well is much larger than the best 

single quantum well lasers due to poorer injection efficiency of the terminal 

current in generating carriers inside the quantum well. This is due to the addition 

of the multiple GaAs quantum wells as well as non-optimized doping of the 

graded cladding layers and the short cavity of the device.  The device exhibits 

single-wavelength behavior as no emission is observed from the 850 nm GaAs 

quantum wells until over five times the current threshold of the 1020 nm quantum 

well. With large injection, minimal spontaneous emission is observed at 850 nm; 

however, it is rather insignificant in comparison to the stimulated emission from 

the In0.24Ga0.76As quantum well, and the overall results are very indicative of 

shared quasi-Fermi levels and distributions for the two active regions. 
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Fig. 6.5. Electroluminesence spectra of the control laser diode showing single-
wavelength behavior as expected at the longer wavelength.  
 
 
 Much different behavior was observed from the first generation dual-

wavelength design devices, although not the behavior predicted in the early 

design stage. The spectra of a first generation dual-wavelength device at different 

levels of current injection are shown in Fig. 6.6. In contrast to the conventional 

devices, greater emission is observed from the GaAs multi-quantum well active 

region. However, the emission of the longer wavelength 1020 nm In0.24Ga0.76As 

quantum well is still stronger, and the slave laser reaches threshold first contrary 

to the predicted performance. The threshold for the longer wavelength slave laser 

is even larger than the control design since the active region is no longer in the 

intrinsic junction region of the diode. 
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Fig. 6.6. Electroluminesence spectra of the first generation dual-wavelength laser 
diode where the longer wavelength quantum well reaches threshold first. 
  
 
 Even though the master shorter wavelength active region does not reach 

threshold first to optically pump the longer wavelength slave region in the first 

generation design, at extremely high injection levels, multi-wavelength laser 

emission is still observed with the on-set of laser emission from the master GaAs 

quantum wells as the terminal current is increased.  The multi-wavelength output 

shown in Fig. 6.7 and Fig. 6.8 is only observed in short cavity devices and at high 

injection levels. Interestingly at such high injection and a certain cavity length, 

laser output is observed from multiple transitions within the In0.24Ga0.76As 

quantum well due to thermal effects. Time-resolved measurements are necessary 

to determine if the transitions are lasing simultaneously or if they are pulsating 

such that the spectrum analyzer cannot resolve it temporally. However, one 

possibility is the high injection introduces thermal effects which increase the 
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threshold condition and introduce an incomplete pinning of the quasi-Fermi levels 

and carrier distributions in the In0.24Ga0.76As quantum well. Eventually the gain 

would be large enough to support laser output at both the e1-hh1 transition and 

the e2-hh2 transition which are 1023 nm and 948 nm respectively at 300 K. The 

laser peaks are then red-shifted in Fig. 6.7 and Fig 6.8. due to the thermal effects 

at the high injection-levels. If the cavity length is made shorter so that the mirror 

loss and threshold are higher, laser emission from the In0.24Ga0.76As quantum well 

is only observed from the higher energy e2-hh2 transition due to band-filling and 

satisfying the increased gain threshold conditions. To confirm the multi-

wavlength laser output, L-I measurements were done on a 200 µm cavity device 

using 900 nm short- and long-pass filters, and the curves shown in Fig. 6.9 

indicate laser output from the two active regions but only at extremely high 

thresholds.  
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Fig. 6.7. Electroluminesence spectra of a short-cavity first generation dual-
wavelength laser diode at extremely high injection showing multi-wavelength 
laser output. 
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Fig. 6.8. Electroluminesence spectra of a short-cavity first generation dual-
wavelength laser diode at extremely high injection showing dual-wavelength laser 
output. 
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Fig. 6.9. Power vs. current density of a short-cavity first generation dual-
wavelength laser diode at extremely high injection showing dual-wavelength laser 
output. 
 

 Despite the multi-wavelength laser output from the first generation design, 

the design is not considered a successful dual-wavelength design due to the 

extremely high-thresholds, the need for short-cavity devices, and that the slave 

laser reached threshold first. Given the slave laser reached threshold first, it is 

assumed very little of the carrier generation in the slave In0.24Ga0.76As  quantum 

well is due to optical pumping from the master GaAs quantum wells. The course 

of the research at this point transitioned to developing the internal optical 

pumping theory in chapter three, and developing device models to better 

understand and trouble-shoot the first generation design, the results of which will 

be covered next.   
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III. MODELING RESULTS 

 In order to better understand the surprising experimental results and 

performance of the first generation dual-wavelength laser design, predictive 

modeling of the design is performed using the Silvaco software and the 

parameters outlined in chapter four. The first generation design was modeled to 

understand the carrier dynamics within the device sub-laser-threshold and without 

any internal optical pumping. From the modeling, the calculated band diagram of 

the device under a voltage bias of 1.45 V is shown in Fig. 6.10. The voltage bias 

was chosen to match the quasi-Fermi level separation necessary to reach 

transparency in the master active region. The band diagram shows the quasi-

Fermi level separation in the master multi-quantum well region and the slave 

single quantum well region are not equal, supporting the design’s original 

specification to decouple the quasi-Fermi levels. To understand the degree to 

which the master and slave active regions are isolated from each other 

electronically, the quasi-Fermi level separation in the regions as a function of the 

terminal voltage bias is calculated and plotted in Fig. 6.11. According to these 

results, the slave region reaches the necessary quasi-Fermi level separation 

indicative of transparency at a lower voltage bias than the master region. These 

results suggest a decent portion of the terminal current is still generating carriers 

in the slave active region quantum well since the model does not include optical 

pumping, a valid simplification of the model since the master laser still has not 

met laser threshold conditions. 
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Fig. 6.10. Calculated band diagram of the first generation dual-wavelength laser 
design with an applied voltage bias of 1.45 V. 
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Fig. 6.11. Calculated quasi-Fermi level separation in the active regions as a 
function of applied bias for the first generation dual-wavelength laser design. 
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 Since the modeling suggests a portion of the current is generating carriers 

in the slave active region, intermediate results of the Silvaco modeling are used to 

determine the exact portion of the current going to the slave region compared to 

the portion going to the master active region. Among the different computed 

parameters of the modeling are the SRH, radiative, and Auger recombination rates 

in the quantum well active regions. The sum of these rates or the total 

recombination rate in a quantum well leads to the amount of current generating 

carriers and recombining within the quantum well as was shown in chapter four. 

With this active region current, the injection efficiency ηi or portion of the 

terminal current that generates carriers in the active region can be determined. 

 The sub-threshold injection efficiencies of the master and slave laser 

active regions in the first generation design, determined by the model, are plotted 

as a function of the terminal current density in Fig. 6.12.  Initially at a few 

hundred A/cm2, approximately 85% of the current is recombining in the master 

active region, and only about 5% is leaking into the slave region. However, as the 

current density is increased to 2000 A/cm2, the injection efficiency or amount of 

current leaking to the slave region increases to 20% and the master region drops 

to near 60%. Since the master region consists of three quantum wells and the 

slave only one, the portion of the current recombining in each of the wells is 

nearly equal. The current leakage into the slave active region becomes quite 

significant beyond a few hundred A/cm2.  
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Fig. 6.12. Calculated current injection efficiency vs. applied current density for 
the master and slave laser active regions in the first generation dual-wavelength 
laser design. 
 

 Good quantum well laser diodes have threshold current densities in the 

low hundreds of A/cm2. From the modeling, at this current level most of the 

current is recombining in the master region with only a small amout leaking to the 

slave, so other losses must be preventing the master laser from reaching threshold 

in the first generation design. After developing and applying the internal optical 

pumping model from chapter three, it was identified that the modal absorption 

loss introduced by the slave active region is too large in the first generation design 

and prevents the master laser from reaching threshold.    

 From the calculated optical mode, the optical confinement factors of the 

first generation design were determined and then used in the internal optical 

pumping model. With this design the optical confinement factor of the slave 
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quantum well with its GaAs buffer layers is 4.81%, which leads to a modal 

absorption loss contribution to the master laser threshold equation of 814 cm-1. 

Even under the ideal assumption of 100% injection efficiency to the master active 

region, the threshold current density of the master laser according the logarithmic 

gain-current relation would be a hypothetical 500 kA/cm2. Table VI.III lists some 

of the key parameters and results of the internal optical pumping model when 

applied to the first generation dual-wavelength laser diode design.  

 Combining the results from the Silvaco modeling and the internal optical 

pumping model, the current understanding of the first generation design is the 

master laser will never reach threshold first and produce the internal optical field 

to pump the slave laser active region because the modal absorption loss of the 

slave region is too large. Instead at a large enough current injection, the inefficient 

current leakage generates enough carriers in the slave active region to reach laser 

threshold, and with short cavity devices and extremely high injection levels, dual-

wavelength laser output is observed but not due to internal optical pumping.   
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TABLE VI.III 
PARAMETERS AND RESULTS OF INTERNAL OPTICAL PUMPING 

MODEL APPLIED TO FIRST GENERATION DWLD DESIGN 

Component Parameter 
1st Gen. DWLD 

design 

GaAs MQW 
master gain 

Current injection eff. – ηi 1.0 

 Number of wells – nw 3 

Optical conf. – Γw, avg. (%) 3.09 

InGaAs slave 
absorption 

Optical conf. – ΓS (%) 2.41 

Modal absorption in QW (cm-1) 596.9 

Optical conf. – Γb (%) 2.40 

Modal absorption  
in GaAs barrier (cm-1) 

217.1 

Total abs. loss (cm-1) 814.1 

Cavity losses  
(850 nm) 

Free carrier abs. (cm-1) 0.86 

Assumed intrinsic loss (cm-1) 10 

Mirror loss (cm-1) 12.04 

Master laser threshold (A/cm2) 500,120 

InGaAs slave gain Current injection eff. – ηi 0.0 

Optical conf. – ΓS (%) 2.36 

Cavity losses 
(1020 nm) 

Free carrier abs. (cm-1) 0.99 

Assumed intrinsic loss (cm-1) 10 

Mirror loss (cm-1) 12.04 

Slave laser threshold (A/cm2) 500,220 

 

IV.   SUMMARY OF FIRST GENERATION DESIGN 

 The first generation design despite being designed prior to a complete 

development of the models was valuable as the experimental results helped direct 

development of the models outlined in chapter four. The design confirmed the 
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possibility of decoupling the quasi-Fermi levels and distributions of the master 

and slave laser active regions but that further improvements in the design are 

needed to limit the current leakage to the slave region. In addition, the results 

validated the critical conclusion from chapter three that the optical confinement 

factor of the slave active region and its buffer layers needs to be optimized to 

balance the modal absorption loss presented to the master laser with the modal 

gain needed by the slave laser. Based on these observations and using the 

developed models, additional new generations of dual-wavelength laser diode 

designs are explored in the next chapter.   
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7   Second and Third Generation Device Designs 

 
 The first generation dual-wavelength laser diode (DWLD), design did not 

produce the desired dual-wavelength laser output at reasonable thresholds, and 

whereas multi-wavelength laser output was observed, it was due to thermal effects 

at high injection rather than the sought internal optical pumping. It was 

determined from the modeling that the device’s performance was due to carrier 

leakage into the slave active region and large modal absorption loss to the master 

laser due to the slave. Hence, second and third generation designs are developed 

that aim to lower the current leakage into the slave active region and optimize the 

optical confinement factor of the slave active region.  

 
I.   MODELING AND DESIGN OF THE SECOND GENERATION DESIGN 

 Heterostructures in conventional semiconductor laser diodes confine 

carriers to the active region of the device and thereby limit the current leakage. In 

the first generation dual-wavelength design an Al0.3Ga0.7As barrier layer is 

positioned between the master GaAs multi-quantum well active region and the 

slave In0.24Ga0.76As single quantum well active region to decouple the quasi-Fermi 

distributions. It was noted previously that the modeling reveals for a current 

density of a few hundred A/cm2, approximately 5% of the terminal current leaks 

into the slave active region, and that by 2000 A/cm2, the current injection into the 

slave quantum well is nearly equal the injection into any one of the master 

quantum wells. One possibility to reduce the current leakage overall into the slave 

region is to use a larger Al composition to increase the band gap and the 
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heterobarrier. Reducing the carrier leakage is therefore not considered difficult in 

implementing the dual-wavelength laser concept, and the challenge thus shifts to 

optimizing the optical confinement factors of the master and slave laser modes.  

 From the internal optical pumping theory, the optical confinement factor 

of the slave laser must be optimized. To review, if it is too large, the modal 

absorption loss the slave active region introduces prevents the master laser from 

reaching threshold, and if it is too small, the slave laser will not have enough 

modal gain to reach its threshold. For the active materials selected in this study, it 

was shown in chapter three that a multiple-quantum-well master region consisting 

of five quantum wells and a slave optical confinement factor of 0.69% result in 

the lowest thresholds for the master and slave lasers.  

 The optical confinement factors for different dual-wavelength designs are 

determined by calculating the optical modes of different GRINSCH waveguides 

using the calculation methods in chapter four. The Al composition, spatial 

dimensions, and location of the slave active region are varied in the different 

designs to determine a design that meets the criteria defined by the internal optical 

pumping model. Ideally the core of the waveguide should be thin to maintain 

adequate optical confinement of the master active region. Therefore, from the 

modeling, it is determined that to reach an optical confinement factor near 0.69%, 

the slave active region needs to be positioned outside the waveguide core but still 

within the tail of the guided optical mode. A second generation design of the dual-

wavelength laser is developed with the required number of wells and optical 

confinement factors, and the design is shown in Fig. 7.1 with the calculated 
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optical mode. The specific composition, thickness, and doping of the different 

epitaxial layers of the second generation design are listed in Table VII.I.   
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p-doping  n-doping  

 
Fig. 7.1. Second generation design of the dual-wavelength laser with its doped 
and active regions where the slave active region is positioned outside the core of 
the waveguide to optimize the optical confinement. 
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TABLE VII.I 
SECOND GENERATION DWLD EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

p++ contact GaAs 125 Be – Graded: 
1×1019 to 2×1018 

Cladding 
Graded: Al0.1Ga0.9As to 
Al 0.7Ga0.3As 

200 Be – 2×1018 

Cladding Al0.7Ga0.3As 1500 Be – 2×1018 

Cladding 
Graded: Al0.7Ga0.3As to 
Al 0.3Ga0.7As 

150 Be – 1×1018 

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

Cladding 
Graded: Al0.3Ga0.7As to 
Al 0.7Ga0.3As 

150 Si – 1×1018 

Cladding Al0.7Ga0.3As 30 Si – 2×1018 

 GaAs 10 Si – 2×1018 

Active QW In0.2Ga0.8As 8 Si – 2×1018 

 GaAs 10 Si – 2×1018 

Cladding Al0.7Ga0.3As 1500 Si – 2×1018 

Cladding 
Graded: Al0.7Ga0.3As to 
Al 0.1Ga0.9As 

200 Si – 2×1018 

Buffer GaAs 400 Si – 2×1018 
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 The sub-threshold carrier dynamics of the second generation dual-

wavelength laser design are modeled in Silvaco similar to the first design, and the 

band diagram of the device under a voltage bias of 1.45 V is plotted in Fig. 7.2. 

One inherent advantage to placing the slave active region outside the core of the 

GRINSCH waveguide is the much larger heterobarrier that prevents holes from 

leaking from the master active region into the slave region and reduces the current 

leakage. The calculated current injection efficiency is plotted in Fig. 7.3, and 

indeed the injection efficiency is near zero for the slave laser active region and 

approximately 95% for the master beyond a terminal current density of 2000 

A/cm2. Further, the quasi-Fermi level separation in the two active regions as a 

function of the applied bias is shown in Fig. 7.4, and in contrast to the first 

generation design, the master active region reaches transparency at an applied bias 

0.5 V less than the slave active region would when considering only electrical 

injection of carriers. 
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Fig. 7.2. Calculated band diagram of the second generation dual-wavelength laser 
design at an applied voltage bias of 1.45 V. 
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Fig. 7.3. Calculated current injection efficiency vs. applied current density for the 
master and slave laser active regions in the second generation dual-wavelength 
laser design. The theoretical thresholds assuming 100% injection efficiency for 
the master active region are listed, whereas the vertical threshold lines are 
corrected for the non-unity efficiency. 
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Fig. 7.4. Calculated quasi-Fermi level separation in the active regions as a 
function of applied bias for the second generation dual-wavelength laser design. 
 

 The theoretical thresholds of the master and slave lasers of the second 

generation dual-wavelength laser diode design are calculated using the internal 

optical pumping model and the calculated optical confinement factors. One of the 

assumptions used in the model is that 100% of the terminal current recombines 

within the master active region, and whereas it is not a good assumption for the 

first generation design, based on the sub-threshold injection efficiencies shown in 

Fig. 7.3, it is a decent assumption for the second generation design. The 

assumption is especially true in the aspect that negligible current leakage flows 

into the slave active region. With these assumptions, the calculated thresholds of 

the second generation design are 1539 A/cm2 and 1806 A/cm2 for the master and 

slave lasers respectively. The vertical lines in Fig. 7.3 representing the thresholds 
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of the master and slave laser are adjusted upward to account for the predicted 95% 

injection efficiency rather than the ideal 100%. A list of the parameters and results 

of the internal optical pumping model applied to the second generation design are 

listed in Table VII.III which compares the results of all the different dual-

wavelength designs studied.  

 
II.   MODELING AND DESIGN OF THE THIRD GENERATION DESIGN 

 In the first and second generation dual-wavelength designs, the one-

dimensional optical mode of the master and slave lasers in the transverse or 

growth dimension is the first order mode. This is the mode profile calculated and 

displayed in the figures of the different designs thus far. The optical confinement 

factor of the slave active region is slightly different for the master and slave lasers 

since the modes are not exactly the same due to differences in the wavelength and 

indices of refraction. The general profile of the two first order modes is the same 

in the first and second generation designs, and the waveguide is engineered in the 

second design to optimize the optical confinement factors to lower the modal 

absorption loss to the master laser while maintaining enough modal gain for the 

slave.  

 The performance and design of the dual-wavelength laser diode can be 

improved further by creatively broadening the waveguide and using the second 

order optical mode as the sustaining mode of the slave laser. This is the concept 

used in the design of the third generation dual-wavelength laser shown in Fig. 7.5. 

With the second order optical mode, the optical confinement factor is larger for 
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the slave active region than it is for the first order mode, enabling larger modal 

gain. The master laser still lases in the first order mode, and the optical 

confinement factor for the master laser with the slave active region can then be 

made small to reduce the modal absorption loss. However, it still must be large 

enough to optically pump the slave region. By using the first and second order 

modes for the master and slave lasers respectively, it is therefore possible to have 

a both larger and smaller optical confinement factors for the slave active region. 

The details of the layers of the third generation design are listed in Table VII.II, 

and from the calculated optical modes, the slave confinement factor in 

determining the master laser threshold or the modal absorption loss is 0.17% 

(0.68% for the second generation DWLD). For the slave laser, the optical 

confinement is 2.66% (0.96% for the second generation DWLD), and a larger 

modal gain is then obtained. The results of the theoretical internal optical 

pumping model suggest a possible 50% reduction in the thresholds of the master 

and slave lasers compared to the second generation design, and the results of the 

internal pumping model for the third generation design are listed in Table VII.III 

with the results of the other designs.   
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Fig 7.5. Third generation design of the dual-wavelength laser with its doped and 
active regions and where the second order transverse mode is utilized. 
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TABLE VII.II 
THIRD GENERATION DWLD EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

p++ contact GaAs 125 Be – Graded: 
1×1019 to 2×1018 

Cladding 
Graded: Al0.1Ga0.9As to 
Al 0.7Ga0.3As 

200 Be – 2×1018 

Cladding Al0.7Ga0.3As 1500 Be – 2×1018 

Cladding 
Graded: Al0.7Ga0.3As to 
Al 0.2Ga0.8As 

150 Be – 1×1017 

 Al0.2Ga0.8As 115 Be – 1×1017 

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 3  

Active QW GaAs 10  

 Al0.2Ga0.8As 115 Si – 1×1018 

Cladding 
Graded: Al0.2Ga0.8As to 
Al 0.7Ga0.3As 

150 Si – 1×1018 

Cladding Al0.7Ga0.3As 30 Si – 2×1018 

 Al0.2Ga0.8As 20 Si – 1×1018 

 GaAs 10 Si – 2×1018 

Active QW In0.2Ga0.8As 8 Si – 2×1018 

 GaAs 10 Si – 2×1018 

 Al0.2Ga0.8As 20 Si – 1×1018 

Cladding 
Graded: Al0.2Ga0.8As to 
Al 0.7Ga0.3As 

150 Si – 1×1018 

Cladding Al0.7Ga0.3As 1500 Si – 2×1018 

Cladding 
Graded: Al0.7Ga0.3As to 
Al 0.1Ga0.9As 

200 Si – 2×1018 

Buffer GaAs 400 Si – 2×1018 
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 The third generation design is modeled sub-threshold in Silvaco just as the 

other designs to understand the current injection of the active regions, and the 

results are similar to those of the second generation design. The band diagram of 

the design with an applied voltage bias of 1.45 V is shown in Fig. 7.6, and the 

quasi-Fermi separation within the active regions vs. the applied bias is plotted in 

Fig. 7.7. As in the second generation design, the master active region reaches 

transparency at a voltage bias lower than the slave active region, and the plot of 

the injection efficiencies in Fig. 7.8 indicates essentially zero current leakage into 

the slave active region, validating the assumption used in the internal optical 

pumping model. The injection efficiency of the master laser decreases faster than 

the second generation design with increased current due to the more complicated 

heterostructure of the third generation design. However hypothetically assuming 

100% injection efficiency for the master laser, the thresholds of the master and 

slave lasers are 704 A/cm2 and 817 A/cm2 according to the internal optical 

pumping model. The vertical lines representing the laser thresholds in Fig. 7.8 are 

adjusted upwards to account for the lower injection efficiency predicted by the 

Silvaco results. 
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Fig. 7.6. Calculated band diagram of the third generation dual-wavelength laser 
design with an applied voltage bias of 1.45 V. 
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Fig. 7.7. Calculated quasi-Fermi level separation in the active regions as a 
function of applied bias for the third generation dual-wavelength laser design. 
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Fig. 7.8. Calculated current injection efficiency vs. applied current density for the 
master and slave laser active regions in the third generation design. The 
theoretical thresholds, assuming 100% injection efficiency for the master active 
region are listed, whereas the vertical threshold lines are corrected for the non-
100% efficiency. 
 

III.   NOVEL DUAL-WAVELENGTH LASER DESIGN SUMMARY 

 The results of the internal optical pumping model for the three different 

dual-wavelength laser designs are listed in Table VII.III along with the results of a 

conventional single-wavelength multiple-quantum-well laser diode for 

comparison. The assumption of 100% injection efficiency for the master laser and 

negligible current injection into the slave active region is a fair assumption for the 

second and third generation designs, and the thresholds listed for these designs are 

somewhat realistic. Although the actual experimental thresholds will be different 

due to variations in growth, processing, and material parameters, the thresholds 

are predicted to be of the same order. For the first generation design, a significant 
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current leakage is present, but hypothetically if there was zero current leakage, the 

results of the internal optical pumping model indicate thresholds not even possible 

in a real device. The table therefore illustrates the development moving from each 

generation of designs in implementing the internal optical pumping model and 

reducing the laser thresholds. 
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TABLE VII.III 
PARAMETERS AND RESULTS OF THE INTERNAL OPTICAL PUMPING 

MODEL APPLIED TO THE DIFFERENT DWLD DESIGNS 

Component Parameter 
Conv. 
MQW 
laser 

1st Gen. 
DWLD 
design 

2nd 
Gen. 

DWLD 
design 

3rd Gen. 
DWLD 
design 

GaAs 
MQW 
master 

Injection efficiency – ηi 1.0 1.0 1.0 1.0 

 Number of wells – nw 5 3 5 5 

Optical conf. – Γw, avg. (%) 4 3.09 4.25 3.54 

InGaAs 
slave 

absorption 

Optical conf. – ΓS (%) - 2.41 0.68 0.17 

Modal absorption  
  in QW (cm-1) 

- 596.9 168.4 42.11 

Optical conf. – Γb (%) - 2.40 1.34 0.34 

Modal absorption  
  in GaAs barrier (cm-1) 

- 217.1 121.2 30.76 

Total abs. loss (cm-1) - 814.1 289.7 72.87 

Cavity 
losses  

(850 nm) 

Free carrier abs. (cm-1) - 0.86 3.99 1.58 

Assumed intrinsic  
  loss (cm-1) 

10 10 10 10 

Mirror loss (cm-1) 12.04 12.04 12.04 12.04 

Master laser threshold (A/cm2) 493.3 500,120 1539 703.5 

InGaAs 
slave gain 

Injection efficiency – ηi - 0.0 0.0 0.0 

Optical conf. – ΓS (%) - 2.36 0.96 2.66 

Cavity 
losses 

(1020 nm) 

Free carrier abs. (cm-1) - 0.99 4.70 3.20 

Assumed intrinsic 
  loss (cm-1) 

- 10 10 10 

Mirror loss (cm-1) - 12.04 12.04 12.04 

Slave laser threshold (A/cm2) - 500,220 1806 816.7 
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IV. EXPERIMENTAL RESULTS 

 After designing and modeling the second and third generation dual-

wavelength laser designs, collaboration was sought to grow the designs using 

molecular beam epitaxy (MBE). Unfortunately, the MBE machine at Arizona 

State University (ASU), which was used to grow the first generation design, was 

down for extensive repairs and upgrades when these later designs were ready for 

growth. Quotes from foundry growth services were obtained from IQE, 

EpiWorks, LandMark Optoelectronics, and Sumika Electronic Materials, but 

funding limitations prevented using these services. Outreach was made to groups 

at various national labs including National Institute of Standards and Technology, 

National Research Council Canada, and Sandia National Labs for collaboration, 

and while willing parties were available, their machines were also down for 

repairs or occupied with high priority projects. After over nine months of 

searching, the MBE group at the University of California, Los Angeles (UCLA), 

agreed to collaborate on the epitaxial growth of the second and third generation 

dual-wavelength laser designs. It was then another few months before the growth 

of the designs took place. 

    To determine the quality of the material grown at UCLA, two 

photoluminescence (PL), structures were grown immediately before the growth of 

the second and third generation designs. The epitaxial layers of the PL samples 

are listed in Table VII.IV and Table VII.V, and the PL samples were returned to 

ASU to do the PL measurements. An Ar-laser set at 515 nm was used to optically 

pump the samples, and the baseline power was 35 mW. The results of the two 
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samples compared to a reference sample grown at ASU demonstrated good PL 

signals, and the spectra are shown in Fig. 7.9. The InGaAs single quantum well 

980 nm PL sample grown at UCLA had a similar design as the reference sample 

from ASU although with different target wavelengths, and the spectra indicate the 

growth of the InGaAs at UCLA is as near of quality as previous growths at ASU. 

The GaAs multiple-quantum-well PL sample consists of five quantum wells 

similar to the second and third generation designs, and the pumping intensity was 

therefore increased to three-times and five-times the 35 mW baseline used for the 

single quantum well samples to obtain the spectra plotted in Fig. 7.9. Based on the 

good PL and the optical quality of material grown at UCLA, the growth quality of 

the second and third generation dual-wavelength laser designs is considered 

limited only by the design of the devices and not the growth capabilities of the 

MBE machine. 
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TABLE VII.IV 
GAAS MQW PL SAMPLE EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

Cap GaAs 30 - 

Cladding Al0.65Ga0.35As 30 - 

 Al0.3Ga0.7As 25 - 

 Al0.2Ga0.8As 10 - 

Active QW GaAs 10 - 

 Al0.2Ga0.8As 3 - 

Active QW GaAs 10 - 

 Al0.2Ga0.8As 3 - 

Active QW GaAs 10 - 

 Al0.2Ga0.8As 3 - 

Active QW GaAs 10 - 

 Al0.2Ga0.8As 3 - 

Active QW GaAs 10 - 

 Al0.2Ga0.8As 10 - 

 Al0.3Ga0.7As 25 - 

Cladding Al0.65Ga0.35As 30 - 

Buffer GaAs 400 - 
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TABLE VII.V 
INGAAS SQW PL SAMPLE EPITAXIAL LAYERS / DESIGN 

Description Material 
Layer 

thickness 
(nm) 

Dopant 
concentration 

(cm-3) 

Cap GaAs 30 - 

 Al0.3Ga0.7As 50 - 

 GaAs 50 - 

Active QW In0.2Ga0.8As 8 - 

 GaAs 50 - 

 Al0.3Ga0.7As 50 - 

Buffer GaAs 250 - 
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Fig. 7.9. Photoluminescence of test samples grown at UCLA to evaluate optical 
material quality.  
 

 The second and third generation dual-wavelength laser designs were 

grown at UCLA immediately after the PL samples. One change was made in the 
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design of the slave active region at this point to reduce the strain in the epitaxial 

growth. The composition of the quantum well was changed to In0.2Ga0.8As, and 

the thickness was reduced to 8 nm. The changes should only slightly change the 

experimental behavior of the designs with one of the more significant changes 

being the predicted wavelength moving to 980 nm from 1020 nm. After the PL 

measurements, samples of the grown epitaxial wafers implementing the two 

designs were sent to collaborators at the University of Arkansas for device 

processing, and the steps of the processing are found in chapter five. The 

processed laser diodes were then returned to ASU for testing. 

 The results of the second and third generation dual-wavelength designs are 

disappointing as laser output is only observed from the master GaAs multiple-

quantum-well laser for both designs. The measured spectra of the second and 

third designs at one times, three times, and five times current threshold are shown 

in Fig. 7.10 and Fig. 7.11 respectively. Examining the spectra on a log-scale, there 

is no indication of any luminescence, stimulated or spontaneous, from the InGaAs 

slave quantum well near 980 nm at even five times injection to the master laser. 
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Fig. 7.10. Electroluminesence spectra of a second generation dual-wavelength 
laser diode showing master laser output but no emission from slave active region 
(Jth = 700 A/cm2). 
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Fig. 7.11. Electroluminesence spectra of a third generation dual-wavelength laser 
diode showing master laser output but no emission from slave active region (Jth = 
660 A/cm2). 
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 The absence of any emission from the InGaAs slave quantum well active 

region suggests possible issues with the material quality, and there are a couple 

possibilities for the shift in the material quality of the PL samples to the second 

and third generation designs. The first possibility is related to the designs 

themselves and the introduction of growth interruptions in the MBE growth of the 

dual-wavelength designs to satisfy thermal requirements. By positioning the slave 

active region outside the waveguide core and in the high Al cladding, sharp 

changes in the growth temperature are necessary. In growing good quality 

AlGaAs with MBE, growth temperatures above 580 °C are necessary to lower the 

incorporation of non-radiative defects in the layers, and the number of defects 

continues to be reduced as the temperature is increased [23], although the use of a 

surfactant becomes important above 620 °C [79]. However, the best growth 

temperature for InGaAs is much lower in the range 500-510 °C to prevent In 

evaporation from the layers. With the close proximity both spatially and 

temporally in the growth of the high Al cladding and InGaAs slave active region, 

interruptions in the growth are introduced prior to and after the GaAs barrier 

layers to accommodate the temperature ramps. These interruptions can lead to 

defects in the layers which then serve as non-radiative recombination centers.  

 The second possibility for poor quality of the InGaAs slave active region 

is calibration issues related to the choice of substrates used in the growth. Most of 

UCLA’s growth experience is with two inch substrates, and two inch substrates 

were used for the PL samples. However, to grow the dual-wavelength structures, 

three inch doped-substrates provided by ASU were used. Due to the change in 
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substrate size, the possibility exists that the growth temperature of the InGaAs 

quantum well was actually much higher than the ideal growth temperature and In 

evaporation occurred during the growth. Related is another possibility where the 

longer duration of the growth at higher growth temperatures due to the addition of 

the master laser leads to degradation of the InGaAs layer.  

 To investigate the actual root cause, low temperature PL measurements 

are done on the second and third generation design grown wafers. At low 

cryogenic temperatures, non-radiative recombination due to defects is suppressed 

and the luminescence due to radiative recombination increases. If the growth 

quality of the slave InGaAs quantum well is good and the poor device 

performance is due to defects from the growth interruptions, than a PL signal is 

still expected from the InGaAs quantum well at low temperature. However, if 

quality issues exist with the grown InGaAs material, little or no PL signal is 

expected even at low temperature. 

 The PL spectra of the second and third generation dual-wavelength laser 

samples at 10 K are plotted in Fig. 7.12 and Fig. 7.13. A strong PL signal is 

observed from the master GaAs multiple-quantum-well region as expected with 

the peak wavelength blue-shifted due to the low-temperature. PL is observed from 

the InGaAs slave active region for both designs, but the intensity is quite low 

compared to the GaAs active region. Even more interesting is the broad spectrum 

width of the InGaAs PL, indicative of poor material quality. One possibility for 

the broad spectra is evaporation  of In during the growth, altering the composition 

and forming non-uniform InGaAs islands. The non-uniformities result in various 
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band gaps, and at low temperatures non-homogeneous broadening results in an 

overall broad spectrum. One method to verify this is to reduce the pumping 

intensity and thus the carrier density inside the active region, and observe the 

spectrum width. This can be done by moving the lens that focuses the pumping 

excitation on the sample and adjusting the spot size on the sample while 

maintaining the same laser excitation power. In Fig. 7.14, two PL spectra of the 

third generation design are shown with the focusing lens focused and defocused. 

The broad width of the InGaAs spectra does not change, suggesting a non-

homogenous broadening of the active region.  
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Fig. 7.12. Low-temperature photoluminescence of second generation dual-
wavelength sample.  
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Fig. 7.13. Low-temperature photoluminescence of third generation dual-
wavelength sample.  
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Fig. 7.14. Low-temperature photoluminescence of third generation dual-
wavelength sample with focused and defocused excitation.  
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 Based on the low temperature PL results, the poor experimental results of 

the second and third generation designs is due to the poor material quality of the 

InGaAs slave active region. At room-temperature, non-radiative recombination 

due to defects dominates and no luminescence is observed. Whereas the 

experimental results were disappointing, the results do not argue against the actual 

device designs, and rather challenges in the actual growth and implementation of 

the designs is appearing more challenging than first thought. In the future, 

different approaches exist for improving the growth quality. One idea is to 

experiment with different temperature ramps near the growth of the InGaAs slave 

active region to eliminate the need for growth interruptions. The risk with this 

approach is the introduction of defects during the growth of the high Al layers. 

Further investigation is needed in determining whether the temperature ramp or 

the growth interruptions will introduce more defects than the other. Finally 

another idea is to use metal organic chemical vapor deposition instead of MBE, 

since this method of epitaxial growth does not have the same thermal constraints 

for growing the various layers as does MBE and the nitrogen-purged chamber 

reduces the defect risks associated with growth interruptions.   

   
V. SUMMARY OF SECOND AND THIRD GENERATION DESIGNS 

 Second and third generation designs of the dual-wavelength laser diode 

were developed to optimize the optical confinement factors of the slave active 

region based on the internal optical pumping theory and the results of the first 

generation design. In addition, the later designs seek to nearly eliminate current 
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leakage into the slave region so it is entirely dependent on the internal optical 

pumping for carrier generation. Both these aims are accomplished by positioning 

the slave active region in the cladding rather than the core of the waveguide, 

which introduces new challenges in growing the designs from a thermal 

perspective with MBE. Real laser diode devices grown by UCLA with the second 

and third generation designs do not show any room temperature luminescence 

associated with the InGaAs slave active region, and low temperature PL revealed 

problems with the material quality. If challenges with the epitaxial growth can be 

overcome, dual-wavelength laser output is still predicted from devices based on 

the two designs.  
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8   Conclusion 

 
 Dual-wavelength laser sources either have existing applications in, or are 

being investigated for use in wavelength division multiplexing, differential 

techniques in spectroscopy for gas and chemical sensing, multiple-wavelength 

interferometry, THz generation, and different uses in microelectromechanical 

systems and lab-on-chip microfluidic systems. In the drive for ever smaller and 

increasing mobile electronic devices, dual-wavelength laser output from a single 

semiconductor laser diode would be an enabling factor for these technologies. 

Tremendous advancements have been made in the device design of 

semiconductor lasers, and the history of these devices and the creative milestones 

in their development were noted earlier. The output of conventional laser diodes 

is however limited to a single wavelength band with possibly a few subsequent 

lasing modes depending on the device design.   

 The novel dual-wavelength internal-optically-pumped laser diodes 

proposed here enable laser output at two wavelength bands with large spectral 

separation from a single diode and waveguide structure. The shorter-wavelength 

master active region is positioned within the junction of a conventional diode, and 

carriers are injected with applied electrical current as in typical laser diodes. The 

longer-wavelength slave active region is positioned outside the junction and core 

of the waveguide but still within the guided optical mode. The internal optical 

field of the master laser mode then optically pumps the slave laser to its threshold, 

and simultaneous laser output at the two wavelengths is produced. The design in 
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theory enables dual-wavelength laser output for continued increase in applied 

current and is not limited to a certain current range or cavity length. 

 It was shown the critical aspects of the novel dual-wavelength design are 

first a method for decoupling the quasi-Fermi distributions of the two regions or 

preventing the redistribution of the carriers from the larger band gap active region 

to the smaller band gap active region, and second, optimization of the optical 

confinement factor of the slave active region. The internal optical pumping model 

developed in chapter three reveals an optimum confinement factor that results in 

the lowest current threshold for the slave laser and balances the modal absorption 

loss added to the master laser and the modal gain needed by the slave laser. Using 

material parameters for the GaAs and InGaAs quantum wells selected for actual 

device designs, the internal optical pumping model indicates a set of 5 GaAs 

quantum wells and a single InGaAs quantum well will result in the lowest 

thresholds when the cavity length is 1000 µm. The optimum optical confinement 

factor with these parameters for the slave laser is then ~0.7%.    

 A first generation design of the dual-wavelength laser diode was designed 

and grown prior to development of the modeling and having a full understanding 

of the critical aspects of the design. Broad-contact-area laser diodes were 

fabricated, and a new experimental setup was designed and assembled to test the 

laser diodes. The observed electroluminescence spectra revealed laser output only 

from the longer-wavelength slave laser at reasonable current; however, at 

extremely large current injection, multi-wavelength laser output was observed 

with the onset of lasing from the master GaAs multiple-quantum-well active 
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region. Modeling of the device post the experimental results revealed the optical 

confinement factor of the slave laser (~2.4% at λ = 850 nm), was too large and 

introduced too large of a modal absorption loss to enable lasing by the master 

laser at low current. Modeling of the device subthreshold using Silvaco showed a 

degree of current leakage into the slave active region such that the slave active 

region reaches transparency before the master active region, and the slave laser 

reaches threshold first. Then thermal effects due to the high current levels lead to 

increased carrier injection in the master laser active region and multi-wavelength 

lasing at extremely high-injection. Even though dual-wavelength lasing is 

observed, the first generation design does not demonstrate the predicted behavior 

of the internal optical pumping model. 

 New designs of the dual-wavelength laser diode were designed using the 

models to optimize the optical confinement factors and reduce the current 

leakage. To obtain the right optical confinement factor in the second generation 

design, the slave active region is positioned outside of the waveguide core, which 

also increases the heterobarrier separating the active regions. The subthreshold 

modeling, using Silvaco, predicts negligible carrier leakage into the slave active 

region with the increased heterobarrier, thereby forcing the slave to rely on the 

internal optical pumping for carrier generation. The third generation design of the 

dual-wavelength laser diode uses a novel concept of utilizing the second order 

optical mode in the transverse direction to achieve both a small and large optical 

confinement factor of the slave active region in determining the thresholds of the 

master and slave lasers respectively. The master laser uses the first order mode 
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which has a small slave optical confinement factor and low modal absorption loss, 

and the slave laser uses the second order mode which has a larger optical 

confinement factor and larger modal gain. By using two transverse optical modes, 

the internal optical pumping model, in theory, suggests a 50% reduction in the 

dual-laser thresholds compared to those calculated for the second generation 

design.  

 Experimental demonstration of the second and third generation dual-

wavelength designs was delayed due to the scheduled renovation and upgrade of 

the molecular beam epitaxy (MBE), machine at Arizona State University. 

Multiple external groups were approached, and the MBE group at the University 

of California, Los Angeles agreed to help in the epitaxial growth of the second 

and third generation designs. Preliminary photoluminescence results indicated 

good quality in growing the required active regions, and samples with the second 

and third generation designs were grown. The experimental results of processed 

broad-area-contact laser diodes were disappointing as no luminescence, 

stimulated or spontaneous, from the slave active region was observed at room 

temperature. Low temperature photoluminescence measurements of actual grown 

samples revealed poor material quality for the InGaAs slave quantum well layer. 

The possible reasons for the poor growth quality is either problems with the 

temperature calibration in going from 2” to 3” substrates or problems with the 

temperature ramps and growth interruptions in transitioning from the higher-

temperature AlGaAs growth of the cladding layers to the lower-temperature 

growth needed for the InGaAs active layer. 



  159 

 The experimental results of the second and third design do not disprove 

the ideas of the second and third generation designs of the dual-wavelength laser, 

and the challenge becomes one of epitaxial growth. Possibilities for improving the 

growth include adjustments to the temperature ramp to avoid the growth 

interruptions or using metal organic chemical vapor deposition, which does not 

have the same growth temperature constraints as MBE and is nitrogen purged to 

prevent defect formation. At the current time, problems related to funding and 

resources prevent aggressive advancement in determining the best growth 

conditions for the designs and experimental demonstration of the dual-wavelength 

laser diodes. It is hoped in the future the second and third generation dual-

wavelength laser diodes will be demonstrated experimentally since stable dual-

wavelength laser output from a single semiconductor laser diode would lead to 

new devices and advances in the applications noted herein.  
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