
S-Taliro: A Tool for Temporal Logic Falsification

for Hybrid Systems

by

Yashwanth Singh Rahul Annapureddy

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2011 by the
Graduate Supervisory Committee:

Georgios Fainekos, Chair

Yann-Hang Lee
Sandeep Gupta

ARIZONA STATE UNIVERSITY

December 2011

 i

ABSTRACT

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal

robustness in hybrid systems that are implemented as either m-functions or

Simulink/State flow models. Trajectories with minimal robustness are found using

automatic testing of hybrid systems against user specifications. In this work we use

Metric Temporal Logic (MTL) to describe the user specifications for the hybrid

systems. We then try to falsify the MTL specification using global minimization of

robustness metric. Global minimization is carried out using stochastic optimization

algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO)

algorithms. Irrespective of the type of the model we provide as an input to S-Taliro,

the user needs to specify the MTL specification, the initial conditions and the

bounds on the inputs. S-Taliro then uses this information to generate test inputs

which are used to simulate the system. The simulation trace is then provided as an

input to Taliro which computes the robustness estimate of the MTL formula. Global

minimization of this robustness metric is performed to generate new test inputs

which again generate simulation traces which are closer to falsifying the MTL

formula. Traces with negative robustness values indicate that the simulation trace

falsified the MTL formula. Traces with positive robustness values are also of great

importance because they indicate how robust the system is against the given

specification. S-Taliro has been seamlessly integrated into the Matlab environment,

which is extensively used for model-based development of control software.

Moreover the toolbox has been developed in a modular fashion and therefore adding

new optimization algorithms is easy and straightforward. In this work I present the

architecture of S-Taliro and its working on a few benchmark problems.

 ii

DEDICATION

To my parents, sister and family

 iii

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my advisor, Prof. Georgios

Fainekos, who has supported me throughout my thesis with his immense knowledge

and excellence. His dedication and enthusiasm towards research is very inspirational.

He has been an excellent mentor and guide throughout my thesis program.

I would like to extend my sincere thanks to Prof. Yann-Hang Lee and Prof. Sandeep

K.S. Gupta for agreeing to be on my master‟s thesis committee and for all the

valuable suggestions they made.

I would not have done my master‟s without my sister. She has truly been a role

model throughout my life. Her continuous support and encouragement is

unforgettable. Thank You for everything.

This acknowledgement would be incomplete without mentioning the following

names. Siddhartha, Siddhant, Raviteja, Vamsy and Vivek, thank you so much for

making my stay memorable. I am forever grateful to you guys.

I owe a lot to my parents. I cannot put into words the affection, love and blessing

they show towards me. They always support me for everything I do. I would like to

thank all my family members who supported me throughout my stay here.

This work would not have been possible without the support of the industry

partners of the NSF I/UCRC for Embedded Systems at the Arizona State University

and the NSF award CNS-1017074.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES .. vi

LIST OF FIGURES .. x

CHAPTER

1 INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Problem Formulation ... 3

1.3 Contribution ... 5

1.4 Related Research .. 6

1.5 Organization of Thesis ... 7

2 ANT COLONY OPTIMIZATION ... 9

2.1 Related Background .. 9

2.2 Introduction to Ant Colony Optimization ... 10

2.3 ACO for the Travelling Salesman Problem 11

2.4 ACO for the MTL Falsification Problem ... 13

3 THE S-TALIRO TOOL .. 16

3.1 About the Tool .. 16

3.2 Overall Architecture .. 17

3.3 S-Taliro User Guide .. 18

3.4 Input Arguments ... 21

3.5 Output Arguments .. 30

4 TUNING OF PARAMETERS .. 31

4.1 Optimal Parameters for EACO .. 31

 v

CHAPTER Page

4.2 EACO on the Delta-Sigma Modulator ... 32

4.3 EACO on the Navigation Benchmark Problem 37

4.4 EACO on the Automatic Transmission Model 42

5 RESULTS .. 47

5.1 Comparison between Optimization Algorithms 47

5.2 Observations .. 50

6 CONCLUSION ... 53

6.1 Conclusions .. 53

6.2 Future Work ... 54

REFERENCES .. 55

 vi

LIST OF TABLES

Table Page

1. Choices provided by S-Taliro for model input .. 20

2. Default values to the options provide by S-Taliro 26

3. Global Least Method for gridsize of 10 on Delta-Sigma 33

4. Global Least Method for gridsize of 32 on Delta-Sigma 33

5. Global Least Method for gridsize of 60 on Delta-Sigma 33

6. Global Least Method for gridsize of 90 on Delta-Sigma 33

7. Cycle Least Method for gridsize of 10 on Delta-Sigma 34

8. Cycle Least Method for gridsize of 32 on Delta-Sigma 34

9. Cycle Least Method for gridsize of 60 on Delta-Sigma 34

10. Cycle Least Method for gridsize of 90 on Delta-Sigma 34

11. Auto-Switch Method for gridsize of 10 on Delta-Sigma 35

12. Auto-Switch Method for gridsize of 32 on Delta-Sigma 35

13. Auto-Switch Method for gridsize of 60 on Delta-Sigma 35

14. Auto-Switch Method for gridsize of 90 on Delta-Sigma 35

15. Cycle & Global Depositon for gridsize of 10 on Delta-Sigma 36

16. Cycle & Global Depositon for gridsize of 32 on Delta-Sigma 36

17. Cycle & Global Depositon for gridsize of 60 on Delta-Sigma 36

18. Cycle & Global Depositon for gridsize of 90 on Delta-Sigma 36

19. Global Least Method for gridsize of 10 on Navigation benchmark 38

20. Global Least Method for gridsize of 32 on Navigation benchmark 38

21. Global Least Method for gridsize of 60 on Navigation benchmark 38

22. Global Least Method for gridsize of 90 on Navigation benchmark 38

 vii

Table Page

23. Cycle Least Method for gridsize of 10 on Navigation benchmark 39

24. Cycle Least Method for gridsize of 32 on Navigation benchmark 39

25. Cycle Least Method for gridsize of 60 on Navigation benchmark 39

26. Cycle Least Method for gridsize of 90 on Navigation benchmark 39

27. Auto-Switch Method for gridsize of 10 on Navigation benchmark 40

28. Auto-Switch Method for gridsize of 32 on Navigation benchmark 40

29. Auto-Switch Method for gridsize of 60 on Navigation benchmark 40

30. Auto-Switch Method for gridsize of 90 on Navigation benchmark 40

31. Cycle & Global Depositon(gridsize 10)on Navigation benchmark 41

32. Cycle & Global Depositon(gridsize 32)on Navigation benchmark 41

33. Cycle & Global Depositon(gridsize 60)on Navigation benchmark 41

34. Cycle & Global Depositon(gridsize 90)on Navigation benchmark 41

35. Global Least Method for gridsize of 10 on Automatic Transmission 43

36. Global Least Method for gridsize of 32 on Automatic Transmission 43

37. Global Least Method for gridsize of 60 on Automatic Transmission 43

38. Global Least Method for gridsize of 90 on Automatic Transmission 43

39. Cycle Least Method for gridsize of 10 on Automatic Transmission 44

40. Cycle Least Method for gridsize of 32 on Automatic Transmission 44

41. Cycle Least Method for gridsize of 60 on Automatic Transmission 44

42. Cycle Least Method for gridsize of 90 on Automatic Transmission 44

43. Auto-Switch Method for gridsize of 10 on Automatic Transmission 45

44. Auto-Switch Method for gridsize of 32 on Automatic Transmission 45

45. Auto-Switch Method for gridsize of 60 on Automatic Transmission 45

 viii

Table Page

46. Auto-Switch Method for gridsize of 90 on Automatic Transmission 45

47. Cycle & Global Depositon(gridsize 10)on Automatic Transmission 46

48. Cycle & Global Depositon(gridsize 32)on Automatic Transmission 46

49. Cycle & Global Depositon(gridsize 60)on Automatic Transmission 46

50. Cycle & Global Depositon(gridsize 90)on Automatic Transmission 46

51. Comparison on Delta Sigma Modulator with input range [-.45, .45] 47

52. Comparison on Delta Sigma Modulator with input range [-.4, .4] 47

53. Comparison on Delta Sigma Modulator with input range [-.35, .35] 48

54. Comparison on Navigation benchmark for the first formula 48

55. Comparison on Navigation benchmark for the second formula 48

56. Comparison on Navigation benchmark for the third formula 48

57. Comparison on Navigation benchmark for the fourth formula 48

58. Comparison on Navigation benchmark for the fifth formula 49

59. Comparison on Automatic Transmission for the first formula 49

60. Comparison on Automatic Transmission for the second formula 49

61. Comparison on Automatic Transmission for the third formula 49

62. Comparison on Automatic Transmission for the fourth formula 49

63. Comparison on Automatic Transmission for the fifth formula 50

64. Comparison on Automatic Transmission for the sixth formula 50

65. Comparison on Automatic Transmission for the seventh formula 50

66. Comparison on Automatic Transmission for the eighth formula 50

67. Global Least Method (fourth formula) on Automatic Transmission 51

68. Comparison between MC & ACO with „Euclidean Metric‟ 52

 ix

Table Page

69. Comparison between MC & ACO with „hybrid distance metric‟ 52

 x

LIST OF FIGURES

Figure Page

1. Power Train System in Simulink ... 2

2. The Architecture of the S-Taliro Tool .. 18

 1

Chapter 1

INTRODUCTION

S-Taliro [1] is a Matlab toolbox that searches for falsifying trajectories of temporal

logic properties of Simulink/State flow models. The toolbox can analyze arbitrary

Simulink models or user-defined functions which are used to model the system. In this

thesis I present the architecture of the toolbox, its usage and conclude with a few

application examples.

1.1 Motivation

Hybrid systems are essentially dynamical systems which exhibit both discrete and

continuous behaviors. These systems arise from a combination of continuous and

discrete inputs, outputs, states or dynamics. In general, however hybrid systems arise

whenever one inter-mixes logical decision making with the generation of continuous

valued control laws. Typical examples of these hybrid systems include constrained

robotic systems, biological systems [2], flight control and management systems and

analog/digital circuit co-design and verification.

In Figure 1 I include the Simulink model for the Power Train System which clearly

depicts the interaction between discrete and continuous behaviors for a hybrid system.

In this model the Switched Continuous System with resets indicates the continuous

dynamics for the hybrid system whereas the State Flow Charts indicate the discrete

behavior for the hybrid system.

Analysis and safety verification of hybrid systems is generally considered to be critical

and challenging because of the complex behaviors these systems can exhibit.

Therefore practitioners are inclined to manual testing of individual components of the

hybrid system as this gives them more control on the testing process. This process

 2

however is extremely time-consuming and hence various authors have come up with

several methods for the safety verification [3] – [6] of hybrid systems. These methods

take into consideration the complex behaviors that the hybrid systems can exhibit and

also the user specifications.

Figure 1: Power Train System in Simulink

 3

Classic temporal logics have limitations on modeling real time systems as they cannot

deal with quantitative temporal requirements. As a result Metric Temporal Logic which

includes quantitative requirement on the elapse of time is used in this work. Metric

Temporal Logic which was introduced by Koymans [7] is very useful for describing

the user specifications/ real-time requirements of hybrid systems. MTL is essentially a

formal language which closely resembles the natural language and hence can be used

by practitioners easily to describe the specifications for hybrid systems.

MTL falsification of hybrid systems involves the ability to prove as well as falsify

temporal logic properties of systems. Informally MTL falsification is the search

through all the possible system trajectories to find a trajectory that does not satisfy the

system specification. In this thesis I use the robust semantics of MTL as described in

[8]. This semantics can be used to indicate if a system trajectory satisfies a given

specification. Moreover it can be used to indicate how robustly it satisfies the

specification which is of importance.

As an example, we describe a MTL specification for the Power Train System which

captures a certain property that we are trying to falsify. Say the specification for the

system is that there exists a gear transition “second-to-first-second” during the course

of the simulation of the hybrid system. This is the specification that we try to falsify

using S-Taliro.

1.2 Problem Formulation

In this section we describe the formal definition of the problem that we are trying to

solve. We consider a system Σ which essentially maps a set of initial conditions and

input signals to output signals . Essentially we define the system as

 4

i.e. given a point ∈ and an input signal ∈ , then

Our goal in this case is to verify the correctness of the system by keeping track of the

output signals for particular input signals and initial conditions. Essentially we are

trying to find those system trajectories that falsify or are closest to falsifying a given

specification for the system. By falsification, we intend to find the system trajectories

with “negative robustness” with respect to the specification or trajectories with

minimal positive robustness if a falsifying trajectory is not found.

In this context, robustness is informally defined as the bound on the perturbation that

the system trajectory can handle such that the system trajectory satisfies the same

specification. We define the robustness metric as:

where φ denotes the MTL specification we are trying to falsify and is a finite

duration test signal. The robustness metric essentially describes how robustly the test

signal satisfies or falsifies the given specification for the system [10]. The satisfaction of

a given specification takes a quantitative value rather than a Boolean value.

Because the satisfaction of a given specification is a quantitative value we can now

convert the decision problem into an optimization problem given by:

Minimize for all possible system trajectories

Therefore, now we can use an optimization algorithm to search through all the

possible system trajectories and, eventually, find a particular system trajectory that

minimizes the robustness with respect to the system specification. The falsification

 5

problem searches for the system trajectory that yields a negative robustness value.

However we use the above mentioned minimization problem as this could be used to

find how robust the system is with respect to the specification, even if the system

satisfies the specification for the system.

1.3 Contribution

As suggested earlier, an optimization algorithm can now be utilized to search for

trajectories of minimal robustness for the MTL falsification problem. In this context I

modify the Extended Ant Colony Optimization (EACO) algorithm so that it can be

applied to the temporal logic falsification of hybrid systems problem. ACO is

essentially a stochastic optimization technique which is inspired from the manner in

which ants make and locate paths from their colonies to food sources. EACO is

mainly an extension to the continuous domains of the more general discrete ACO

algorithm. In order to search through the input space to find the system trajectories

with minimal robustness the search space needs to be parameterized. In this context

we use interpolating polynomials like cubic spline to parameterize the input space.

Cubic Spline curves are essentially piecewise polynomial functions which are very

popular for their simplicity in construction and ease of evaluation. Therefore these

curves have been utilized to parameterize the input space based on the range of the

input signals for the MTL falsification problem. The EACO algorithm has been

developed using C (Matlab executable), has been interfaced with Matlab code and has

been packaged into fully functional Matlab toolbox which can be used for the

temporal logic falsification of hybrid systems problem. Overall, my contribution in this

thesis can be summarized as follows:

 6

1) Modified the EACO Algorithm and applied it to the MTL falsification problem of

hybrid systems.

2) Found optimal parameters for EACO by running the algorithm against couple of

benchmark problems.

3) Have developed a fully functional Matlab toolbox named S-Taliro which

incorporates the various optimization algorithms and solves the MTL falsification

problem of hybrid systems.

4) Parameterize the input space using interpolating polynomials like cubic spline to

solve the MTL falsification problem of hybrid systems.

In [9] I report my experience with ACO for Temporal Logic Falsification of Hybrid

Systems.

1.4 Related Research

Testing, in general for hybrid system are difficult and time consuming because of the

un-decidability in the manner in which the systems behave for extreme cases. As a

result lot of research is being carried out to investigate testing approaches to the

verification of hybrid systems (related research section in [10]). Two main approaches

exist for the testing of hybrid systems. The first approach focusses on choosing the

inputs in an orderly fashion to cover the entire state space while the second approach

deals with robust simulations trajectories. However most of the research focusses on

parameter estimation [11, 12]. Research in Temporal Logic Falsification of

specifications describing the properties of the hybrid system is growing rapidly, though

there are very few publicly available tools to solve this problem. Currently the only

publicly available tool that supports the computation of robustness of temporal logic

 7

formulas is BREACH [12]. However this tool does not solve the problem of temporal

logic falsification for Simulink/State flow models. MathWorks also provides System

Test [13] and Simulink Design Verifier [14] along the commercial lines for this

problem.

Lot of work is also being carried out in Ant Colony Optimization to extend it to the

problem of falsification of hybrid systems. In [15] the authors talk about Fuzzy Ant

Colony Optimization for Optimal Control using fuzzy partitioning of the state space

system to parameterize the input space. In this thesis I use spline functions to

parameterize the input space. In [16] authors use a different pheromone update rule in

the form of noting a number of candidate solutions to update the pheromone based

on Gaussian functions.

1.5 Organization of the Thesis

The reminder of this thesis is organized into 6 chapters.

Chapter 2 – Ant Colony Optimization: This chapter introduces the Ant Colony

Optimization Algorithm and its application to the Travelling Salesman Problem and

the MTL falsification problem.

Chapter 3 – The S-Taliro Tool: This chapter introduces the S-Taliro tool, describes

the architecture of the toolbox and gives a detailed description of the interface to the

tool.

Chapter 4 – Tuning of Parameters: This chapter describes the experimental analysis

performed to find the optimal parameters of EACO by running the algorithm against

few benchmark problems.

 8

Chapter 5 – Results: This chapter shows a performance comparison between MC,

UR and ACO by applying these algorithms to couple of bench mark problems.

Chapter 6 – Conclusion: This chapter comprises of the final summary of the

research done and possible future work.

 9

Chapter 2

ANT COLONY OPTIMIZATION

2.1 Related Background

Ant Colony Optimization is a Meta heuristic optimization algorithm inspired by the

foraging behavior of ants. This algorithm was first proposed by Marco Dorigo and

his colleagues [16] as a multi- agent approach for solving combinatorial optimization

problems. Ant Colony Optimization is a essentially a member of the Ant Colony

Algorithms family and the first algorithm was mainly aimed at finding an optimal

path in a graph based on the manner in which ants find a path between their colonies

and food locations. From the initial idea of finding an optimal path in a graph this

algorithm has diversified to meet the requirements of many optimization problems

and solve them effectively.

Common examples of combinatorial problems include scheduling, finding the

minimum spanning tree, travelling salesman problem etc. These problems are in

general difficult to solve and therefore heuristic methods (like ACO) are used to find

solutions to these problems. Solving combinatorial problems involves finding

optimal objects from a finite set of objects. This is done by operating on the input

domains of the optimization problems to find the best solution. Initially this process

was performed only for discrete solutions but later was applied to continuous ranges.

The limitation for applying combinatorial optimization algorithms to these kind

problems is that the continuous ranges have to be converted to sets of finite size

which is difficult if the initial ranges are large.

A lot of work has been done to create an algorithm based on Ant Colony

Optimization methods to solve continuous optimization problems. The first attempt

 10

in this direction was made in [17] which initially provided only local search

capabilities. This is was at a later time extended to Continuous Ant Colony

Optimization (CACO) algorithm [18] which solved the problem of local search but

was not completely based on the ACO principles. In this work I utilize the concepts

of the ACO methods to propose an algorithm for the MTL falsification of hybrid

systems which is a continuous optimization problem.

2.2 Introduction to Ant Colony Optimization

The Ant Colony Optimization algorithm has been inspired from the manner in

which ants effectively find food, lay pheromone (chemical secreted or excreted by

ants) along the path to and from the food location and return to their colonies.

Initially the ants move around randomly to search for food, but once they do find

food at a certain location they keep laying pheromone in the path between the food

locations and their colonies. Other ants have the capability to detect pheromone

trails left by their counterparts and therefore are more likely to follow a path which is

laid by pheromone than choose a path at random. Moreover these ants choose that

particular path which is more densely laid by pheromone that any other path. If these

ants do find food along this path then they return back to their colonies with the

food along the same path thereby reinforcing (laying more pheromone) it so that

other ants can detect and use this particular path to locate food sources.

Pheromone evaporation is extremely important for the ants and the algorithm in

general as this has the advantage of avoiding convergence to a locally optimal

solution or path in the case of the ants. If pheromone never evaporated, then the

paths that were chosen by the first ants would have more pheromone on them and

hence would be excessively attractive to the subsequent ones. This would lead to

 11

ants not exploring all the possible paths and hence result in a local optimal path

between their colonies and food sources.

Briefly, the following is a simple model illustrating the behavior of ants to find food

sources.

1) An ant randomly travels around the colony in search of food.

2) Once the ant finds food, it returns back to its colony depositing pheromone along

the path.

3) Ants which are close to the pheromone deposited path get attracted to it.

4) They find food, and return back to their colonies along the same path thereby

reinforcing the path.

5) Shorter paths to food sources from ant colonies will be the ones that are more

travelled and hence will have greater deposition of pheromone.

6) This is will result in shorter paths becoming more attractive.

7) Because of pheromone evaporation the longer path loses its pheromone and

eventually no ant chooses this path.

8) All the ants keep reinforcing the shorter path and follow only this path to move

between their colonies and food sources.

2.3 ACO for the Travelling Salesman Problem

In this section we apply the Ant Colony Optimization algorithm to the Travelling

Salesman Problem (TSP) to get a better understanding of the semantics of the

algorithm. TSP has been chosen for this illustration because

1) TSP is NP hard problem.

2) TSP is considered a standard problem for performance evaluation of algorithms.

 12

3) TSP is simple to understand and therefore the ACO‟s behavior to this problem

can be seen clearly.

The TSP is the problem of a salesman who wants to find a shortest possible route

from his home town through a given set of cities and return back to his hometown,

without visiting a city twice. When ACO is applied to the problem of TSP, ants act

as simple agents to make tours by moving from one city to another. These tours are

guided by pheromone trails and local distance based decisions to find the shortest

optimal tour.

At the beginning, each of the ants is placed on a city that is chosen randomly. At a

particular city, an ant choses an unvisited city with a probability that is proportional

to the pheromone deposit on that edge along with locally available heuristic

information. This heuristic is a function of the distance between the connecting

cities. This means that ants are more inclined to visiting cities which are closer in

distance to their current city and have more pheromone deposition along the edge

connecting the cities. All the ants make choices based on the above information and

complete their tours.

Once all the tours are completed, the pheromones trails along each of the edges

connecting neighboring cities are updated through evaporation and deposition. This

pheromone update is done in a way such that shorter tours receive a higher amount

of pheromone deposition so that they can be chosen with a greater probability in the

next iterations. This means that shorter paths will tend to have more pheromone,

which results in attracting a majority of the ants. This eventually leads to the

convergence of the algorithm to an optimal shortest route, thereby providing a

solution to the TSP.

 13

2.4 ACO for the MTL Falsification Problem

In this section I modify EACO algorithm [19] to apply it to the problem of MTL

falsification of hybrid systems. In the MTL falsification problem the user needs to

specify the bounds on the initial conditions and input range . Based on the

number of control points that are assigned to each of the inputs, the regions which

the ants have to visit are defined. These regions are essentially one dimensional set‟s

which are bounded by the ranges of the initial conditions and the input ranges.

Each of these regions is divided into finite sets of intervals . These interval

points are called stations which each ant can visit in each region. All these intervals

are of the same length which can be set by the user while defining the options for the

EACO algorithm. The manner in which an ant chooses to visit a particular station

in a region depends on the probability factor which we define below. All the

stations in each of the regions are initially laid with a certain amount of pheromone

deposition where c refers to the particular cycle during which the choice is

being made by the ants. The probability with which the choice is made by each of

the ants is given by:

Each of the ants use this probability measure to visit the stations in each of the

regions defined. For each ant its exact location within each region at a particular

cycle is denoted by
 . This choice is made at random based on uniform

distribution. Based on the probabilities that are assigned to each of the stations, the

exact location to which ant visits is decided by choosing a random number and

 14

comparing it with the probabilities assigned to the stations. We make this choice at

random because this gives a greater state space exploration possibility.

Once all the ants have finished their tours in a particular cycle, the pheromone

depositions at each of the stations in each region need to be updated. This must be

done so that the ants converge to that particular tour that eventually falsifies the

hybrid system. After the completion of each of the cycles we have sample trajectories

 for each of the ants. The robustness estimate of each of these trajectories is

calculated and the ant which produced the least possible robustness value is used to

update the pheromone deposits at each of the stations in each of the regions defined.

In this thesis four different deposition techniques have been implemented and tested

on various benchmark problems:

1) Deposition by the cycle best ant (the ant that found the best solution during the

current cycle) and the global best ant (the ant that found the best solution during all

the previous cycles).

2) Deposition by either the cycle best ant or the global best ant according to an

option that is specified by the user which switches the deposition method after a

given number of cycles (Auto Switch method)

3) Deposition by the cycle best ant (Cycle Least method)

4) Deposition by the global best ant (Global Least method)

Irrespective of the algorithm that is used pheromone values need to be updated at

the end of each cycle. The pheromone deposition values in the next cycle are given

by the following formula:

 15

Where is the rate of evaporation and

Where is the parameter that is used to define the decay rate of the exponential

distribution and is a user defined constant.

Pheromone is updated in this manner at the end of each cycle and this process

terminates either if a falsifying trajectory is found or if the maximum number of

iterations are completed. In either case the trajectory with the least robustness along

with the robustness values are returned to the user for analysis.

 16

Chapter 3

THE S-TALIRO TOOL

3.1 About the Tool

In this thesis we present our tool S-Taliro for temporal logic falsification of hybrid

systems. S-Taliro is a fully functional Matlab toolbox that essentially searches for

counterexamples to MTL properties (which describe the specification for the hybrid

system) through global minimization of robustness metric. The global minimization is

performed using stochastic optimization techniques which are used to find a system

trajectory with minimal robustness. These optimization algorithms essentially perform

a random walk over the initial states and input ranges to find the minimal robustness

trajectory. Currently the tool supports three optimization algorithms in the form of

Uniform Random, MC and ACO.

To use this toolbox the user needs to specify the MTL specification, the initial

conditions and the bounds on the input range. S-Taliro uses these inputs to generate

test initial conditions and input ranges which are used to simulate the hybrid system.

The simulation trace is then provided as an input to Taliro [20] which computes the

robustness estimate of the MTL formula. Global minimization of this robustness value

is carried out using optimization algorithms (ACO/MC/UR) to generate new test

initial conditions and input ranges which are again used to generate simulation traces

which are closer to falsifying the MTL formula. Traces with negative robustness values

are falsifications of temporal logic properties. Traces with positive but low robustness

values are also of great importance because they indicate how robust the system is

against the given user specification. These system trajectories with small positive

robustness values are closer in distance to falsifying traces using a mathematically well-

 17

defined notion of distance between trajectories and user specifications which are

defined user temporal logic properties.

S-Taliro has been developed in a modular fashion in Matlab with respect to the

optimization algorithms, and therefore other optimization algorithms can be added

given a Matlab interface to their simulators. Though a basic understanding of using the

MTL formulae is necessary to describe the specifications for the hybrid system, the

entire design of the toolbox is extremely user friendly with extensive help

documentation. It has a simple command line interface along with an in-built parser

for the easy input of MTL formulae. These features make the tool easy to understand

and solve the problem of temporal logic falsification of hybrid systems.

3.2 Overall Architecture

The figure below clearly depicts the overall architecture of the S-Taliro toolbox. The

toolbox contains a temporal logic robustness analysis engine (Taliro) that works in

tandem with a stochastic sampler. This stochastic sampler suggests an input array

which comprises of the initial conditions, input ranges and any other parameters which

are needed to execute the system implemented as an m-function or a Simulink/State

flow model. The Simulink/State flow environment returns a simulation trace which is

analyzed against the MTL formula for the hybrid system. For this purpose we have a

robustness analyzer which eventually returns a robustness value for the system trace.

This value is computed depending on the results of convex optimization problems

which are used to compute signed distances. These signed distances are essentially

distances between the trace and the MTL formula which we trying to falsify. Once we

have the robustness value, this is used by the stochastic sampler to decide on the next

inputs which can be used to generate another simulation trace. During this process if a

 18

falsifying trace is found i.e. a trajectory that does not satisfy the MTL formula, then it is

returned to the user for examination. Moreover if the toolbox is unable to falsify the

MTL formula then the trajectory with the least robustness value is returned along with

the robustness value. This information is extremely valuable to know, how robust the

system is with respect to the MTL user specification.

Figure 2: The Architecture of the S-Taliro Tool

3.3 S-Taliro User Guide

S-Taliro has been designed to be seamlessly integrated in the model based design

process of Matlab/Simulink (TM). Currently, S-Taliro can be applied to three kinds

of inputs:

1) Simulink Models

2) Matlab functions

3) Hybrid Automaton

In case of the Simulink models, the user specification can be defined either over the

state space of the model or over the output space. This is an explicit option which is

 19

provided to S-Taliro to make the distinction. If the model does not have external

inputs, then the search for the falsifying trajectory is performed only over the set of

initial conditions. On the other hand, if the user would like to verify the MTL

property over a Simulink model with external inputs, then the user has to make sure

that the these inputs are defined as input ports to the Simulink model. The interface

to the Simulink models is clearly explained in the description of input arguments for

S-Taliro.

In case of Matlab functions, the input model must be provided as a function handle,

where the function handle represents a pointer to the Matlab function. There is an

options in S-Taliro called „black_box‟ which can be set/reset depending on whether

the user wants his implementation of the hybrid system to be considered as a black

box or not. Therefore if the model is a function pointer and the black box option is

set to 0, then the function is passed to the ODE solver indicated by the option

„ode_solver‟. If the model is a function pointer and the black box options is set to 1,

then it is assumed that the model will be given the time stamps, the initial conditions

and input signals and it will output the time stamps, the state trajectory, the output

trajectory and optionally the graph and guards depending on the option „taliro_metric‟.

On a higher level, with these settings S-Taliro will treat the input function as a black

box. The options which are also inputs to the tool will be described in detail in the

S-Taliro options section.

In case of hybrid automata, the input model must be an object of class „hautomaton’

which has been defined in the S-Taliro toolbox. The user needs to understand the

interface to the „hautomaton’ class and define the initial continuous set, the dynamics

in each location, the adjacency list, and guards for the transitions between locations,

 20

the unsafe set and the target set. A description of all these parameters is given in the

input arguments section. Given below is a table that clearly illustrates the choices

provided by S-Taliro for model inputs.

Input Model Input Type Example

Simulink model String Model =‟sim_model‟

Matlab function Function handle Model = @function_name

Hybrid automaton Object of type hautomaton Model = hautomaton object

Table 1: Choices provided by S-Taliro for model input

No matter what the type of the model we provide to S-Taliro, we also need to

specify the set of initial conditions as well as the constraints on the input signals. In

the current version of the toolbox both must be provided as hyper cubes. Note that

if the user does not want to search for a falsifying trajectory over the set of initial

conditions or if the hybrid system does not have any inputs, then that particular

input needs to be set as an empty array. If the system does accept input signals, then

in this case we need to parameterize the input function space using a finite set of

points in time. For this particular reason the user needs to provide two more

parameters: the type of interpolating function and the number of control points in

time for each input signal. Currently S-Taliro supports all the interpolating functions

provided in Matlab using the „interp1‟ function and some more such as the piecewise

constant and constant value functions.

Given below is the description of the interface to the tool. The user needs to provide

the following parameters as inputs to the tool.

Syntax

 21

[rob, rtime, nIter, samples] =

s_taliro (model, icond, irange, cparray, phi, pred, tt, opt);

In the following sections we describe the above parameters in detail. More

information on declaring the parameters and using the S-Taliro tool can be obtained

by typing „help staliro‟ at the Matlab command prompt.

3.4 Input Arguments

S-Taliro requires that the following parameters be defined before providing them as

inputs to S-Taliro. The input arguments to S-Taliro are as follows:

1) ‘model’ : As described earlier S-Taliro can currently handle three different kinds of

inputs in the form of Simulink models, Matlab functions and Hybrid Automaton.

Therefore the input argument must be either a string, function handle or an object of

the „hautomaton‟ class as depicted in Table 1.

The only requirement for the Simulink input other than the ones discussed above is

that the user must provide the Simulink model in the current directory. Moreover the

input signals must be provided to the Simulink model through the input ports if they

exist.

For the Matlab function case, as discussed earlier the user can model his system as a

black box and set the appropriate option in S-Taliro. By doing so, black box

computation is performed. In this case the user must provide the following interface

to the Matlab function

[T, X, G] = function(X0, ET, TS, U)

Where:

X0: the initial conditions as a vector.

 22

ET: the end time for the simulation. It is assumed that the start time is 0.

TS: the time stamps that correspond to the sampling instances for the input signals

in U.

U: the input signals. This is an array where each column corresponds to a different

signal and each row to time instance that corresponds to TS. This is optional if no

input signals are required.

T: the new time stamps

X: the state/ output trajectory as an array where each column corresponds to a

different state variable. If hybrid distances are used then the last column must be the

trace (location trace) on the state machine of the system.

G: the graph that corresponds to the discrete transition graph of the system. This is

required when hybrid distance metrics are used.

For the hybrid automata case, the user must understand the „hautomaton‟ class files to

carefully define the following parameters to build an object of that particular class

which will work as an input to S-Taliro. The interface for declaring this object is as

follows:

object = hautomaton (init, loc, adjList, guards, unsafe, target)

The input parameters in this interface are as follows:

init: is the initial continuous set.

loc: holds the dynamics in each location which is a Matlab structure:

adjList: is the adjacency list for each location which is a Matlab cell array.

guards: is the guard set which contains the guards for the transitions between

locations. This is also a Matlab structure.

 23

unsafe: is essentially a conjunction of half spaces indicating regions which should not

be reached by the system trajectory.

target: is the target set that needs to be reached by the system trajectory.

More details on using these parameters and defining the hybrid automaton can be

found by typing „help hautomaton‟ at the Matlab command prompt.

2) icond: This input argument must be a hypercube which defines the set of initial

conditions. It must be of type real. The input can be empty (indicating no initial

conditions) or of dimension m by 2, where m is an integer and indicates the number

of initial conditions. Each row in this input argument defines the minimum and

maximum bounds on each of the initial condition.

For example:

icond = [3 6; 7 8]

Indicates two initial conditions where, the first initial condition is bounded between

3 and 6 and the second initial condition is bounded between 7 and 8.

For example:

icond = []

Indicates no initial conditions

3) irange: This input argument must also be defined as a hypercube defining the set of

constraints on the input signals. It must be of type real. This input argument can be

empty (indicating no inputs) or of dimension m by 2, where m is an integer and

indicates the number of input signals to the hybrid system. Each row in this input

argument defines the minimum and maximum bounds on each of the input signals

to the hybrid system.

For example:

 24

irange = [3 5; 6 8]

Indicates two input signals where, the first input signal is bounded between 3 and 5

and the second input signal is bounded between 6 and 8.

For example:

irange = []

Indicates no input signals to the hybrid system.

Defining the initial conditions and input signals as hyper cubes is not an inherent

restriction of our method but rather we have observed that usually engineers do not

provide constraints on the initial conditions that have variable dependencies. We

plan to remove this constraint in the future versions of the toolbox.

4) cparray: This input argument contains the number of control points for the

interpolating function associated with each input signal. This input argument must be

of type real. This input can be empty (indicating no inputs to the hybrid system) or

must be a 1 by n array (indicating n inputs to the hybrid system) where each of the n

values refer to the number of control points associated with each input signal. Note

that the number of rows in irange must be equal to the number of columns in cparray

as each input signal needs to have a particular number of control points associated

with it.

For example:

cparray = [10 14]

Indicates 10 control points for the first input signal and 14 control points for the

second input signal

 25

5) phi: This input argument must be a string in Matlab with the MTL formula that

needs to be falsified. More information on defining MTL formulae can be found by

typing „help taliro‟ at the Matlab command prompt.

6) pred: This input argument must be a Matlab structure with the atomic proposition

mapping. More information on defining the predicates for an MTL formula can be

found by typing „help taliro‟ at the Matlab command prompt.

7) tt: This input argument contains the total simulation time for the hybrid system.

The input must be of type real.

8) opt: This input argument refers to the various options provided by S-Taliro. Table

2 indicates the default values for the options provided by the tool. The user can set

the default options for the tool using the following command:

opt = staliro_options()

Given below is a description of each of the options provided by S-Taliro:

1) optimization_solver: This option indicates the optimization algorithm to be used by

S-Taliro to solve the MTL falsification problem. This option can be set to any one of

Ant Colony Optimization or Uniform Random or Monte Carlo optimization

algorithms.

2) ode_solver: This options selects the ODE solver to be used by S-Taliro. The default

option is „ode45‟. It is recommended that this option be set to „default‟ for Simulink

models. For Simulink models, the default option uses the default solver inside the

Simulink model.

 26

Property Default Value

optimization_solver „MonteCarlo‟

ode_solver „default‟

interpolationtype {„pchip‟}

black_box 0

runs 100

n_tests 1000

ants_number 20

spec_space „Y‟

loc_traj „none‟

SampTime .05

dispinfo 1

taliro_metric „none‟

map2line 1

rob_scale 100

taliro „taliro‟

sa_params sa_parameters

hasim_params [1 0 0 0]

Table 2: Default values to the options provided by S-Taliro

3) interpolationtype: This option must be defined as a Matlab structure where each one

of its elements must be a string and refers to an interpolation type for each of the

corresponding input signals. If the interpolation type is a structure variable

containing only one element, then that particular interpolation type is applied to all

 27

the input signals. The options for interpolating functions are the same as the options

for interp1. The additional options are „pconst’ for piecewise constant signals and

„const’ for constant signals. When the „const’ interpolation type is used, only one

control point must be provided for the corresponding input signal.

4) black_box: This option is set/reset when using function handles as the inputs to

the tool. When this option is set S-Taliro will treat the input function as a black box.

When this option is set to 0, the function is passed to the ODE solver indicated by

the „ode_solver’ option.

5) runs: This options sets the total number of iterations for which S-Taliro is

executed against the MTL formula. It is recommended that this option be set to a

large value (default is 100) as the optimization algorithms used are stochastic which

would yield better overall results for a larger number of runs.

6) n_tests: This option indicates the maximum number of tests that the tool can make

to find a falsifying trace in each run.

7) ants_number: This option indicates the number of ants to be used by the Ant

Colony Optimization algorithm to solve the problem of MTL falsification.

8) spec_space: This option is set to „X‟ when the MTL specification is over the

trajectories of the state variables of the system. This option is set to „Y‟ when the

specification is over the output signals of the system.

9) loc_traj: This option is used to define which output signal corresponds to the

location trace in case of hybrid system trajectories generated by a Simulink model.

This option can be set to:

a) „none’: the output signals do not contain a location trace. All the output signals are

used for the temporal logic robustness computation.

 28

b) „end’: the location trace is in the last output port.

c) integer: If the location trace is outputted from another port number, then this

option should contain the corresponding port number.

10) SampTime: This option indicates the sampling time to be used for the input

signals for simulation.

11) dispinfo: This option is set when the user needs the run number to be displayed on

the Matlab command prompt.

12) taliro_metric: This option indicates the type of the temporal logic metric to be used

for the MTL falsification problem. This option can be set to the following values:

a) „none‟: In this case only the continuous space is considered. Any location

information on the predicates is ignored.

b) „hybrid_inf‟: This metric considers the path distance between control locations

and the Euclidean space distance.

c) „hybrid‟: This metric considers also the distance to guards that enable a transition

on the hybrid system.

13) map2line: This options is set to 1 for using a standard optimization algorithm with

hybrid distance values. In this case we map the hybrid distances on the real line using

the inverse logit function (see description for the option „rob_scale‟). Setting this

option to 0 will utilize more complicated algorithms that will attempt to directly

minimize the hybrid metric.

14) rob_scale: For using a standard optimization algorithm with hybrid distance values,

we are mapping the hybrid distances on the real line using the inverse logit function:

rob = h.dl + 2*(2*exp(h.ds/a)/(1+exp(h.ds/a))-1)

 29

Where a is the scaling factor and h is the hybrid distance. If the scaling factor is not

provided then, a=100. The scaling factor depends on the application and is

important since a value of h.ds above 40 with a =1, already gives the upper bound 1

for the inverse logit function. This implies that a large range of robustness values

might be mapped to the same number.

15) taliro: This option is set to „taliro’ which is a tool that computes the robustness

estimate of an MTL formula with respect to a finite times state sequence.

16) sa_params: This option is used to set the Simulated Annealing parameters with

Monte Carlo Sampling.

17) hasim_params: This option holds a vector of values which are used by the hybrid

automaton simulator. For more information on setting this option please type „help

hasimulator‟ at the Matlab command prompt.

To change the default values of the options to user specified values, first create the

default options object by calling the „staliro_options‟ class as described above. Then use

this object to change its default properties.

For example: to change the optimization solver to Ant Colony Optimization and to

change the interpolation type to piecewise constant, follow the sequence of steps

listed:

opt = s_taliro_options()

opt.optimization_solver = „ACO‟

opt.interpolationtype = {„pconst‟}

 30

3.5 Output Arguments

The following is a description of the output arguments that result after the MTL

falsification problem.

1) rob: This output argument holds the minimum robustness value that was found at

each run of the simulation.

2) rtime: This output argument holds the total running time until a falsifying trajectory

is found or until the total number of stochastic tests is reached for each run of the

simulation.

3) nIter: This output argument holds the total number of iterations until a falsifying

trajectory is found or the total number of stochastic tests is reached for each run of

the simulation.

4) samples: This output argument holds the vector containing the initial conditions

and the inputs that produced a trajectory with minimum robustness for each run of

the simulation.

 31

Chapter 4

TUNING OF PARAMETERS

4.1 Optimal Parameters for EACO

In this section the parameters of the EACO are modified and tested against few

benchmark problems. This is done to get a general idea on the parameters and the

deposition techniques which work well for most of the benchmark problems. Along

with the four deposition techniques mentioned in the previous section we have two

other parameters which are varied to gauge the performance of the EACO on the

benchmark problems.

1) Grid Size – denotes the number of stations/intervals in each region.

2) Evaporation Rate () - denotes the rate at which pheromone evaporates.

These parameters are varied over a certain range and for each one of those

combinations the benchmark problems are executed against S-Taliro to find the

trajectories that falsify a particular MTL user specification. The following sections

illustrate the results of the various experiments that were executed to find the

optimal parameters.

In the following tables:

1) Runs indicate the total number of independent simulations of the problem

2) #Falsifications indicate the times S-Taliro was able to falsify the formula.

3) Robustness indicates the minimum, average and maximum positive robustness.

4) Tests indicate the minimum, average and maximum number of tests.

We only list the positive robustness values as this would be useful to determine how

robust the system is when compared to the specification.

 32

Based on the experimental analysis that was performed on the benchmark problems

in the following sections, it was observed that on an average the following

parameters showed good results:

1) Deposition by both the cycle best and global best ants.

2) Gridsize of 10

3) Evaporation rate of 0.5

This result was based on calculating the average number of tests that each of the

deposition technique required to falsify each of the benchmark problems. This value

was the least for the case where deposition of pheromone was done by both the

cycle best and global best ants.

4.2 EACO on the Delta – Sigma Modulator

The first benchmark against which the experiments are performed is the Delta –

Sigma Modulator whose description can be found in [21]. The third order Delta –

Sigma modulator has initital conditions in the range and a one

dimensional input signal that ranges between . For finding the optimal

parameters for this model the input ranges have been chosen to be .

The specification for this model that S-Taliro tries to falsify is that the state of the

system should always remain in the set .

 33

Deposition by the Global Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 94 .0040, .0109, .0190 20, 248.6, 1000

100 0.7 98 .0013, .0204, .0395 20, 160.4, 1000

100 0.5 97 .0027, .0150, .0383 20, 179.6, 1000

100 0.3 99 .0341, .0341, .0341 20, 179.6, 1000

100 0.1 97 1.4735e-4, .0095, .0177 20, 177.8, 1000

Table 3: Global Least Method for gridsize of 10 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 92 .0016, .0223, .0503 20, 300.8, 1000

100 0.7 92 3.9447e-4, .0215, .0530 20, 356.2, 1000

100 0.5 93 .0084, .0384, .0626 20, 324.6, 1000

100 0.3 89 .0015, .0239, .0406 20, 378.6, 1000

100 0.1 94 .0024, .0171, .0594 20, 319.2, 1000

Table 4: Global Least Method for gridsize of 32 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 91 .0035, .0269, .0575 20, 308, 1000

100 0.7 91 .0035, .0170, .0378 20, 348, 1000

100 0.5 94 4.6015e-4, .0238, .0607 20, 301.8, 1000

100 0.3 87 .0015, .0177, .0554 20, 380, 1000

100 0.1 92 .0021, .0208, .0510 20, 326.4, 1000

Table 5: Global Least Method for gridsize of 60 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 89 4.8651e-4, .0299, .0719 20, 381, 1000

100 0.7 93 1.5687e-4, .0201, .0504 20, 358.4, 1000

100 0.5 90 4.5552e-4, .0222, .0688 20, 348.4, 1000

100 0.3 95 8.6144e-4, .0431, .0744 20, 348.2, 1000

100 0.1 86 3.1873e-5, .0240, .0743 20, 399.8, 1000

Table 6: Global Least Method for gridsize of 90 on Delta-Sigma

 34

Deposition by the Cycle Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 100 0, 0, 0 20, 156.6, 760

100 0.7 100 0, 0, 0 20, 156.8, 660

100 0.5 100 0, 0, 0 20, 153.2, 460

100 0.3 100 0, 0, 0 20, 160.6, 680

100 0.1 100 0, 0, 0 20, 183.2, 740

Table 7: Cycle Least Method for gridsize of 10 on on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 94 .0759, .0993, .1253 20, 321.6, 1000

100 0.7 100 0, 0, 0 20, 274.8, 880

100 0.5 99 .0966, .0966, .0966 20, 294.8, 1000

100 0.3 97 .0469, .0696, .1067 20, 291.4, 1000

100 0.1 98 .0886, .0929, .0973 20, 291.6, 1000

Table 8: Cycle Least Method for gridsize of 32 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 97 .0156, .0452, .0620 20, 318.8, 1000

100 0.7 96 .0099, .0870, .1331 20, 279.8, 1000

100 0.5 98 .0573, .0632, .0690 20, 287.6, 1000

100 0.3 94 .0086, .0616, .1398 20, 314, 1000

100 0.1 96 .0788, .1152, .1523 40, 275.2, 1000

Table 9: Cycle Least Method for gridsize of 60 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 91 .0150, .0843, .1462 20, 385.4, 1000

100 0.7 99 .0579, .0579, .0579 20, 321.8, 1000

100 0.5 95 .0110, .0644, .1352 20, 334.6, 1000

100 0.3 97 .0499, .0833, .1182 20, 379.4, 1000

100 0.1 98 .1132, .1225, .1319 20, 308.2, 1000

Table 10: Cycle Least Method for gridsize of 90 on Delta-Sigma

 35

Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles.

Runs #Falsifications Robustness Tests

100 0.9 100 0, 0, 0 20, 178.8, 820

100 0.7 100 0, 0, 0 20, 157, 740

100 0.5 100 0, 0, 0 20, 136, 640

100 0.3 100 0, 0, 0 20, 175.2, 640

100 0.1 100 0, 0, 0 20, 179.2, 640

Table 11: Auto-Switch Method for gridsize of 10 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 96 .0012, .0166, .0526 20, 297.6, 1000

100 0.7 100 0, 0, 0 20, 248.6, 1000

100 0.5 98 .0020, .0082, .0145 20, 276.8, 1000

100 0.3 99 6.2061e-4, 6.2061e-4, 6.2061e-4 20, 284, 1000

100 0.1 96 .0042, .0147, .0253 20, 293.8, 1000

Table 12: Auto-Switch Method for gridsize of 32 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 97 .0026, .0196, .0379 20, 327.8, 1000

100 0.7 96 .0020, .0425, .0705 20, 284, 1000

100 0.5 97 .0029, .0118, .0182 20, 304.4, 1000

100 0.3 95 1.8723e-4, .0131, .0316 20, 328.8, 1000

100 0.1 98 .0066, .0079, .0092 20, 352.2, 1000

Table 13: Auto-Switch Method for gridsize of 60 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 96 .0022, .0246, .0507 20, 300.6, 1000

100 0.7 96 .0098, .0352, .0629 20, 309.4, 1000

100 0.5 95 .0066, .0335, .0650 20, 324.8, 1000

100 0.3 97 .0044, .0170, .0268 20, 360.6, 1000

100 0.1 94 .0012, .0102, .0251 20, 329.6, 1000

Table 14: Auto-Switch Method for gridsize of 90 on Delta-Sigma

 36

Deposition by the Cycle Best and the Global Best Ants

Runs #Falsifications Robustness Tests

100 0.9 100 0, 0, 0 20, 161.2, 960

100 0.7 97 .0013, .0159, .0262 20, 204.2, 1000

100 0.5 100 0, 0, 0 20, 168.4, 700

100 0.3 99 .0182, .0182, .0182 20, 172.2, 1000

100 0.1 98 .0073, .0154, .0235 20, 192, 1000

Table 15: Cycle & Global Deposition for gridsize of 10 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 90 2.9453e-4, .0247, .0457 20, 326.8, 1000

100 0.7 94 .0049, .0152, .0248 20, 304.2, 1000

100 0.5 94 8.1405e-4, .0148, .0266 20, 310.4, 1000

100 0.3 97 .0077, .0185, .0324 20, 274.8, 1000

100 0.1 97 .0294, .0419, .0609 20, 293.8, 1000

Table 16: Cycle & Global Deposition for gridsize of 32 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 91 1.8335e-4, .0259, .0676 20, 394.4, 1000

100 0.7 88 3.3173e-4, .0299, .0669 20, 359.2, 1000

100 0.5 91 .0026, .0155, .0447 20, 325.8, 1000

100 0.3 95 .0178, .0363, .0653 20, 297.6, 1000

100 0.1 87 .0039, .0260, .0586 20, 373, 1000

Table 17: Cycle & Global Deposition for gridsize of 60 on Delta-Sigma

Runs #Falsifications Robustness Tests

100 0.9 92 .0042, .0336, .0802 20, 360.8, 1000

100 0.7 93 .0179, .0336, .0553 20, 327, 1000

100 0.5 98 .0036, .0037, .0039 20, 283.2, 1000

100 0.3 92 .0010, .0171, .0519 20, 317.2, 1000

100 0.1 96 .0087, .0209, .0421 20, 303.8, 1000

Table 18: Cycle & Global Deposition for gridsize of 90 on Delta-Sigma

 37

4.3 EACO on the Navigation Benchmark Problem

The second benchmark problem that we use to find the optimal parameters for

EACO is the Navigation (NV) benchmark problem from [22]. This is a hybrid

automaton benchmark with discrete locations and 4 continuous variables

 .
 and refer to the position and velocity of the system

respectively. The invariant set of every location is the box that constraints the

position of the system. The guards in each location are the edges and the vertices

that bound the location. The formulas against which S-Taliro is executed to find

falsifying trajectories in the navigation benchmark problem have been described in

the [24].

To find the optimal parameters for EACO we use S-Taliro to falsify the fifth

formula in [24] for the NV benchmark problem.

 38

Deposition by the Global Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 61 1.0843e-7, 8.8661e-5, 1.9649e-4 40, 667, 1000

100 0.7 53 2.9471e-5, 8.8853e-5, 1.9733e-4 80, 700.4, 1000

100 0.5 62 1.2210e-5, 1.1245e-4, 2.0079e-4 40, 691.4, 1000

100 0.3 64 1.1879e-7, 9.7389e-5, 1.9960e-4 40, 657.6, 1000

100 0.1 58 8.0472e-6, 7.8040e-5, 1.9296e-4 20, 728.4, 1000

Table 19: Global Least Method for gridsize of 10 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 47 3.0015e-6, 1.2148e-4, 2.0274e-4 60, 777.8, 1000

100 0.7 48 3.1961e-6, 1.2192e-4, 1.9725e-4 40, 800.6, 1000

100 0.5 46 1.9315e-5, 1.3334e-4, 1.9982e-4 60, 795.2, 1000

100 0.3 45 1.9069e-5, 1.2670e-4, 2.0534e-4 60, 790, 1000

100 0.1 38 2.3390e-6, 1.3442e-4, 2.0201e-4 20, 837, 1000

Table 20: Global Least Method for gridsize of 32 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 41 3.4978e-5, 1.4302e-4, 2.0040e-4 20, 802, 1000

100 0.7 45 3.2177e-5, 1.3841e-4, 2.0189e-4 80, 773.8, 1000

100 0.5 33 4.2862e-7, 1.4419e-4, 2.0282e-4 60, 859, 1000

100 0.3 36 4.8758e-6, 1.3776e-4, 2.1236e-4 80, 827.4, 1000

100 0.1 39 3.4130e-5, 1.4559e-4, 2.0178e-4 100, 836.2, 1000

Table 21: Global Least Method for gridsize of 60 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 31 5.6258e-7, 1.2861e-4, 2.0153e-4 40, 858, 1000

100 0.7 46 7.4329e-6, 1.4064e-4, 2.0481e-4 20, 805, 1000

100 0.5 40 1.8508e-5, 1.4216e-4, 1.9882e-4 60, 827.2, 1000

100 0.3 34 1.9961e-5, 1.4703e-4, 2.0091e-4 180, 872.4, 1000

100 0.1 39 2.5056e-6, 1.3171e-4, 2.0175e-4 160, 854.2, 1000

Table 22: Global Least Method for gridsize of 90 on Navigation benchmark

 39

Deposition by the Cycle Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 44 3.1510e-5, 2.2777e-4, 7.7005e-4 20, 780, 1000

100 0.7 42 3.2003e-5, .0347, 2 60, 780, 1000

100 0.5 45 3.7187e-5, 2.0166e-4, 6.2379e-4 40, 718.8, 1000

100 0.3 42 3.0905e-5, .0347, 2 40, 798.6, 1000

100 0.1 43 3.3164e-5, 2.4495e-4, 6.1270e-4 40, 778.8, 1000

Table 23: Cycle Least Method for gridsize of 10 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 29 1.9543e-5, 3.2772e-4, 7.2911e-4 40, 842.8, 1000

100 0.7 22 7.4857e-5, .0772, 2 80, 905.4, 1000

100 0.5 19 6.3969e-5, .0744, 2 20, 898.8, 1000

100 0.3 20 4.9701e-5, .0253, 2 120, 898.6, 1000

100 0.1 11 4.7541e-5, .1127, 2 60, 940.8, 1000

Table 24: Cycle Least Method for gridsize of 32 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 12 9.2472e-5, .1140, 2 80, 941, 1000

100 0.7 16 5.0001e-5, .0241, 2 40, 926.6, 1000

100 0.5 16 6.1007e-5, .0480, 2 100, 919.8, 1000

100 0.3 10 5.9755e-5, .0448, 2 100, 972, 1000

100 0.1 14 8.3364e-5, .0469, 2 60, 934.6, 1000

Table 25: Cycle Least Method for gridsize of 60 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 13 8.5167e-5, .0463, 2 100, 919.2, 1000

100 0.7 12 6.3932e-5, 3.5545e-4, 6.9061e-4 40, 940, 1000

100 0.5 9 4.3649e-5, .0443, 2 340, 967, 1000

100 0.3 12 6.9424e-5, .0686, 2 40, 927, 1000

100 0.1 7 5.0292e-5, 3.7626e-4, 6.9001e-4 40, 962, 1000

Table 26: Cycle Least Method for gridsize of 90 on Navigation benchmark

 40

Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles.

Runs #Falsifications Robustness Tests

100 0.9 57 2.9978e-5, 1.1490e-4, 2.1197e-4 40, 724.2, 1000

100 0.7 53 1.0409e-5, 1.0392e-4, 2.0559e-4 60, 733.6, 1000

100 0.5 58 2.9811e-5, 9.0305e-5, 2.0971e-4 40, 726.4, 1000

100 0.3 52 2.2560e-5, 8.5693e-5, 1.9677e-4 20, 722.6, 1000

100 0.1 55 3.0438e-5, 9.7972e-5, 2.0313e-4 40, 709.8, 1000

Table 27: Auto-Switch Method for gridsize of 10 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 33 8.8470e-6, 1.3923e-4, 2.1117e-4 20, 865.6, 1000

100 0.7 34 2.3765e-5, 1.4987e-4, 2.1416e-4 100, 886.8, 1000

100 0.5 31 2.6572e-5, 1.3519e-4, 2.1251e-4 120, 877, 1000

100 0.3 35 1.3833e-5, 1.3969e-4, 2.1329e-4 100, 882.8, 1000

100 0.1 19 3.4106e-5, 1.2139e-4, 2.1083e-4 60, 928.4, 1000

Table 28: Auto-Switch Method for gridsize of 32 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 28 3.7765e-5, 1.5181e-4, 2.1111e-4 40, 888.2, 1000

100 0.7 28 4.9210e-7, 1.6060e-4, 2.1078e-4 60, 890.6, 1000

100 0.5 23 3.4208e-5, 1.3895e-4, 2.0727e-4 40, 917, 1000

100 0.3 18 3.7446e-6, 1.5026e-4, 2.1007e-4 20, 933.8, 1000

100 0.1 22 3.3875e-5, 1.3627e-4, 2.1041e-4 40, 925, 1000

Table 29: Auto-Switch Method for gridsize of 60 on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 26 2.4225e-5, 1.5131e-4, 2.1444e-4 100, 898.4, 1000

100 0.7 20 3.5574e-5, 1.5484e-4, 2.1325e-4 120, 912.6, 1000

100 0.5 26 2.3164e-5, 1.4312e-4, 2.1184e-4 160, 932, 1000

100 0.3 19 3.1702e-5, 1.5347e-4, 2.1357e-4 100, 955, 1000

100 0.1 16 7.6385e-6, 1.3620e-4, 2.1160e-4 100, 936, 1000

Table 30: Auto-Switch Method for gridsize of 90 on Navigation benchmark

 41

Deposition by the Cycle Best and the Global Best Ants

Runs #Falsifications Robustness Tests

100 0.9 61 7.6669e-6, 9.0180e-5, 2.0307e-4 20, 689.8, 1000

100 0.7 61 2.9697e-5, 1.0288e-4, 2.0469e-4 40, 653.8, 1000

100 0.5 64 1.9084e-5, 8.6082e-5, 2.0035e-4 20, 642.4, 1000

100 0.3 59 8.3212e-6, 8.8875e-5, 1.9925e-4 40, 666.2, 1000

100 0.1 55 8.2749e-7, 6.5438e-5, 1.9271e-4 20, 713, 1000

Table 31: Cycle & Global Deposition (gridsize 10) on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 43 3.1174e-6, 1.2027e-4, 2.0650e-4 20, 807, 1000

100 0.7 47 4.8341e-6, 1.3059e-4, 2.1350e-4 140, 782.6, 1000

100 0.5 39 3.1822e-6, 1.0807e-4, 2.0957e-4 60, 788.6, 1000

100 0.3 45 4.0260e-6, 1.2392e-4, 2.0250e-4 40, 803.8, 1000

100 0.1 31 3.5347e-5, 1.2037e-4, 2.0558e-4 140, 877.6, 1000

Table 32: Cycle & Global Deposition (gridsize 32) on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 39 2.6717e-5, 1.3852e-4, 2.0092e-4 160, 850.6, 1000

100 0.7 46 2.6741e-5, 1.4144e-4, 2.0185e-4 140, 829.4, 1000

100 0.5 39 3.3047e-5, 1.2794e-4, 2.0470e-4 80, 844.2, 1000

100 0.3 38 6.1733e-6, 1.3827e-4, 2.0510e-4 60, 839.2, 1000

100 0.1 34 7.0868e-6, 1.2344e-4, 2.0385e-4 140, 873, 1000

Table 33: Cycle & Global Deposition (gridsize 60) on Navigation benchmark

Runs #Falsifications Robustness Tests

100 0.9 31 2.2009e-6, 1.2757e-4, 2.0737e-4 160, 870.6, 1000

100 0.7 38 7.5714e-7, 1.4011e-4, 2.0051e-4 100, 863, 1000

100 0.5 37 8.2471e-6, 1.3061e-4, 2.0638e-4 80, 830.4, 1000

100 0.3 35 2.0519e-5, 1.2926e-4, 2.0147e-4 80, 871.4, 1000

100 0.1 26 3.0209e-6, 1.3233e-4, 1.9908e-4 60, 896, 1000

Table 34: Cycle & Global Deposition (gridsize 90) on Navigation benchmark

 42

4.4 EACO on the Automatic Transmission Model

The third benchmark problem that we use to find the optimal parameters for EACO

is the Automatic Transmission Model(AT). This is a model of an automatic

transmission controller which has one input and two outputs. The only input to the

system is the throttle schedule, while the break schedule is set to 0 for the entire

simulation duration. The time of simulation is 30s. The outputs to the system are the

engine speed and the vehicle speed. A description of the model and the formulas

against which S-Taliro is executed to find falsifying trajectories in the automatic

transmission model have been described in [24].

To find the optimal parameters for EACO we use S-Taliro to falsify the fourth

formula in [24] for the AT Model.

 43

Deposition by the Global Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 41 .0023, 1.63, 8.24 60, 770.2, 1000

100 0.7 49 .03, 1.42, 12.34 60, 720.4, 1000

100 0.5 39 .0015, .88, 8.06 40, 761, 1000

100 0.3 39 .0044, 1.48, 7.28 40, 785.4, 1000

100 0.1 33 .013, 1.01, 9.88 60, 802.4, 1000

Table 35: Global Least Method for gridsize of 10 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .07, 4.3, 33.15 1000, 1000, 1000

100 0.7 0 .08, 3.47, 19.85 1000, 1000, 1000

100 0.5 0 .07, 3.92, 19.71 1000, 1000, 1000

100 0.3 0 .08, 3.75, 18.48 1000, 1000, 1000

100 0.1 0 .07, 3.72, 20.07 1000, 1000, 1000

Table 36: Global Least Method for gridsize of 32 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .22, 7.05, 26.84 1000, 1000, 1000

100 0.7 0 .04, 6.69, 20.24 1000, 1000, 1000

100 0.5 0 .18, 7.49, 29.31 1000, 1000, 1000

100 0.3 0 .17, 7.27, 25.81 1000, 1000, 1000

100 0.1 0 .26, 7.16, 29.08 1000, 1000, 1000

Table 37: Global Least Method for gridsize of 60 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .16, 5.36, 21.97 1000, 1000, 1000

100 0.7 0 .31, 7.28, 35.87 1000, 1000, 1000

100 0.5 0 .21, 6.52, 19.72 1000, 1000, 1000

100 0.3 0 .36, 8.08, 31.12 1000, 1000, 1000

100 0.1 0 .21, 7.5, 36.94 1000, 1000, 1000

Table 38: Global Least Method for gridsize of 90 on Automatic Transmission

 44

Deposition by the Cycle Best Ant has been used to generate the following tables.

Runs #Falsifications Robustness Tests

100 0.9 23 .13, 4.66, 40.72 80, 815.4, 1000

100 0.7 29 .11, 4.16, 38.41 40, 758.2, 1000

100 0.5 19 .098, 5.62, 57.84 40, 843, 1000

100 0.3 25 .12, 3.37, 21.5 20, 796, 1000

100 0.1 26 .14, 3.27, 27.64 80, 797.6, 1000

Table 39: Cycle Least Method for gridsize of 10 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .18, 9.61, 375.56 1000, 1000, 1000

100 0.7 0 .14, 6.22, 71.4 1000, 1000, 1000

100 0.5 0 .10, 3.9, 23.73 1000, 1000, 1000

100 0.3 0 .11, 6.14, 122.58 1000, 1000, 1000

100 0.1 0 .12, 7.48, 195.09 1000, 1000, 1000

Table 40: Cycle Least Method for gridsize of 32 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .43, 7.87, 40.44 1000, 1000, 1000

100 0.7 0 .43, 7.08, 33.67 1000, 1000, 1000

100 0.5 0 .42, 14.29, 542.26 1000, 1000, 1000

100 0.3 0 .14, 7.04, 29.31 1000, 1000, 1000

100 0.1 0 .28, 7.87, 22.4 1000, 1000, 1000

Table 41: Cycle Least Method for gridsize of 60 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .18, 5.84, 20.36 1000, 1000, 1000

100 0.7 0 .25, 7.89, 33.22 1000, 1000, 1000

100 0.5 0 .24, 8.07, 31.12 1000, 1000, 1000

100 0.3 0 .42, 8.04, 28.32 1000, 1000, 1000

100 0.1 0 .33, 8.73, 24.84 1000, 1000, 1000

Table 42: Cycle Least Method for gridsize of 90 on Automatic Transmission

 45

Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles.

Runs #Falsifications Robustness Tests

100 0.9 21 .0072, 6.89, 161.83 60, 823.2, 1000

100 0.7 27 .089, 2.11, 18.75 40, 796.8, 1000

100 0.5 27 .039, 3.34, 20.51 40, 776.6, 1000

100 0.3 26 .069, 3.73, 23.82 60, 799.6, 1000

100 0.1 30 .094, 3.34, 22.86 60, 762, 1000

Table 43: Auto-Switch Method for a grid size of 10 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .166, 5.24, 28.13 1000, 1000, 1000

100 0.7 0 .079, 4.84, 100.61 1000, 1000, 1000

100 0.5 0 .12, 5.15, 23.85 1000, 1000, 1000

100 0.3 0 .087, 5.86, 50.42 1000, 1000, 1000

100 0.1 0 .14, 4.87, 22.4 1000, 1000, 1000

Table 44: Auto-Switch Method for a grid size of 32 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .22, 7.61, 24.56 1000, 1000, 1000

100 0.7 0 .33, 7.34, 23.19 1000, 1000, 1000

100 0.5 0 .31, 7.23, 24.95 1000, 1000, 1000

100 0.3 0 .36, 7.74, 23.64 1000, 1000, 1000

100 0.1 0 .33, 9.08, 36.74 1000, 1000, 1000

Table 45: Auto-Switch Method for a grid size of 60 on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .27, 6.18, 29.73 1000, 1000, 1000

100 0.7 0 .134, 6.76, 29.34 1000, 1000, 1000

100 0.5 0 .13, 7.28, 29.94 1000, 1000, 1000

100 0.3 0 .16, 6.5, 21.71 1000, 1000, 1000

100 0.1 0 .37, 7.85, 24.66 1000, 1000, 1000

Table 46: Auto-Switch Method for a grid size of 90 on Automatic Transmission

 46

Deposition by the Cycle Best and the Global Best Ants

Runs #Falsifications Robustness Tests

100 0.9 21 .02, 1.65, 10.47 60, 818, 1000

100 0.7 21 .069, 1.38, 11.48 40, 827.6, 1000

100 0.5 17 .0023, 1.57, 11.05 40, 859.8, 1000

100 0.3 15 .0051, 1.64, 11.08 120, 878.2, 1000

100 0.1 32 .039, 1.51, 9.91 60, 734, 1000

Table 47: Cycle & Global Deposition (grid size 10) on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .07, 3.69, 25.38 1000, 1000, 1000

100 0.7 0 .07, 4.89, 19.71 1000, 1000, 1000

100 0.5 0 .138, 4.65, 22.79 1000, 1000, 1000

100 0.3 0 .072, 4.38, 24.42 1000, 1000, 1000

100 0.1 0 .088, 3.97, 21.96 1000, 1000, 1000

Table 48: Cycle & Global Deposition (grid size 32) on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .21, 6.98, 33.78 1000, 1000, 1000

100 0.7 0 .207, 6.28, 25.18 1000, 1000, 1000

100 0.5 0 .16, 8.45, 28.07 1000, 1000, 1000

100 0.3 0 .25, 8.01, 27.63 1000, 1000, 1000

100 0.1 0 .277, 9.66, 25.87 1000, 1000, 1000

Table 49: Cycle & Global Deposition (grid size 60) on Automatic Transmission

Runs #Falsifications Robustness Tests

100 0.9 0 .18, 5.59, 23.49 1000, 1000, 1000

100 0.7 0 .14, 5.58, 23.51 1000, 1000, 1000

100 0.5 0 .15, 6.36, 21.39 1000, 1000, 1000

100 0.3 0 .13, 6.61, 22.7 1000, 1000, 1000

100 0.1 0 .31, 7.9, 26.36 1000, 1000, 1000

Table 50: Cycle & Global Deposition (grid size 90) on Automatic Transmission

 47

Chapter 5

RESULTS

5.1 Comparison between Optimization Algorithms

In this section we make a comparison between the optimization algorithms provided

by S-Taliro against the benchmark problems discussed in the previous section. The

optimization algorithms provided by the tool are:

1) Uniform Random

2) Monte Carlo

3) ACO

For the Delta-Sigma modulator benchmark problem, the initial conditions are in the

range and the following input ranges are considered:

1)

2)

3)

The specification is that the state of the system must remain in the set . Each

of the three algorithms are run against this specification for each of the input ranges

and a comparision is made on the performance of the algorithms.

Algo. #Fals Robustness Tests Time(sec)

UR 82 .0019, .0087, .0186 5, 465.64, 1000 .1967, 17.7552, 38.3188

MC 78 .0032, .0394, .0756 10, 549.37, 1000 .3999, 21.3301, 38.9293

ACO 96 3.2863e-4, .0086, .0200 20, 206.2, 1000 .7668, 7.9251, 38.4502

Table 51: Comparison on Delta Sigma Modulator with input range [-.45, 45]

Algo. #Fals Robustness Tests Time(sec)

UR 37 2.2727e-4, .0259, .0595 10, 811.91, 1000 .3923, 31.3805, 39.1409

MC 63 .0029, .0588, .0979 4, 650.33, 1000 .1634, 25.4940, 39.2649

ACO 98 .0020, .0033, .0047 20, 252.4, 1000 .7630, 9.6045, 38.0263

Table 52: Comparison on Delta Sigma Modulator with input range [-.4, 4]

 48

Algo. #Fals Robustness Tests Time(sec)

UR 0 .0141, .0656, .1199 1000, 1000, 1000 39.9770, 40.3558, 45.5991

MC 32 7.8402e-5, .08, .1482 165, 873.67, 1000 6.6135, 35.1957, 41.750

ACO 82 .0030, .0225, .0809 20, 493, 1000 .7825, 19.3393, 39.3373

Table 53: Comparison on Delta Sigma Modulator with input range [-.35, 35]

For the navigation benchmark problem similar comparison between the optimization

algorithms is performed for each of the 5 formulas described in [24]. The following

tables illustrate the comparison.

Algo. #Fals Robustness Tests Time(sec)

UR 27 9.987e-7, 8.979e-5, 1.81e-4 54, 859.1, 1000 49.78, 787.5295, 926.61

MC 43 6.025e-7, 9.395e-5, 1.82e-4 5, 869.87, 1000 5.66, 803.1635, 975.97

ACO 66 2.01e-6, 8.494e-5, 1.76e-4 20, 557, 1000 18.38, 544.388, 1.07e3

Table 54: Comparison on Navigation benchmark for the first formula

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 2,53.58, 234 1.102, 26.914, 114.3076

MC 100 0, 0, 0 2, 47.36, 197 1.244, 26.488, 126.6534

ACO 100 0, 0, 0 20, 35.6, 100 8.784, 19.675, 55.7264

Table 55: Comparison on Navigation benchmark for the second formula

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 2,12.52, 162 .929, 6.342, 79.6583

MC 100 0, 0, 0 2, 24.66, 117 1.05, 12.1023, 53.2432

ACO 100 0, 0, 0 20, 21.2, 60 8.6791, 10.8967, 26.951

Table 56: Comparison on Navigation benchmark for the third formula

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 2, 67.07, 303 1.196, 35.4733, 159.843

MC 100 0, 0, 0 2, 56.49, 195 1.4964, 32.25, 102.263

ACO 100 0, 0, 0 20, 45.2, 160 9.0459, 24.927, 87.384

Table 57: Comparison on Navigation benchmark for the fourth formula

 49

Algo. #Fals Robustness Tests Time(sec)

UR 9 3.24e-5, 9.135e-5, 1.885e-4 23, 964.7, 1000 11.937, 490.043, 521.04

MC 46 3.701e-5, 1.225e-4, 1.92e-4 43, 767, 1000 32.616, 502.292, 688.31

ACO 61 1.411e-5, 8.3e-5, 2.01e-4 20, 665, 1000 11.08, 383.302, 675.49

Table 58: Comparison on Navigation benchmark for the fifth formula

For the Automatic Transmission Model similar comparison between the

optimization algorithms is performed for the formulas described in [24]. The

following table illustrates the comparison.

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 2, 32.8, 287 .2, 3.38, 29.5823

MC 98 5.1361, 11.68, 18.23 2, 131.81, 1000 .2, 13.59, 103.22

ACO 99 .0774, .0774, .0774 20, 41, 1000 2.0409, 4.2, 102.35

Table 59: Comparison on Automatic Transmission for the first formula

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 4, 81.57, 373 .48, 9.85, 44.84

MC 86 4.47, 8.84, 18.22 3, 271, 1000 .36, 32.89, 121.59

ACO 75 .137, 4.03, 12.02 20, 291.6, 1000 2.39, 35.25, 121.29

Table 60: Comparison on Automatic Transmission for the second formula

Algo. #Fals Robustness Tests Time(sec)

UR 0 .114, .87, 3.11 1000, 1000, 1000 120.84, 121.14, 121.44

MC 82 .0043, 6.64, 23.23 75, 412.38, 1000 9.13, 50.27, 122.02

ACO 30 .015, 2.59, 13.82 20, 757.6, 1000 2.41, 91.87, 121.83

Table 61: Comparison on Automatic Transmission for the third formula

Algo. #Fals Robustness Tests Time(sec)

UR 0 .207, .625, 2.89 1000, 1000, 1000 123.84, 124.31, 130.89

MC 0 .155, 1.56, 18.23 1000, 1000, 1000 124.58, 125.05, 125.52

ACO 19 .053, 1.57, 11.83 20, 846.2, 1000 2.47, 105.25, 124.75

Table 62: Comparison on Automatic Transmission for the fourth formula

 50

Algo. #Fals Robustness Tests Time(sec)

UR 0 5.89, 6.05, 6.37 1000, 1000, 1000 117.66, 118.08, 118.68

MC 0 5.86, 6.67, 18.22 1000, 1000, 1000 118.18, 118.42, 118.64

ACO 0 5.64, 6.17, 11.81 1000, 1000, 1000 117.84, 118.82, 119.08

Table 63: Comparison on Automatic Transmission for the fifth formula

Algo. #Fals Robustness Tests Time(sec)

UR 100 0, 0, 0 4, 147.73, 510 .42, 15.47, 53.40

MC 100 0, 0, 0 2, 125.05, 406 .22, 13.17, 42.73

ACO 84 5.24e-4, .0079, .037 20, 230, 1000 2.09, 24.11, 105.01

Table 64: Comparison on Automatic Transmission for the sixth formula

Algo. #Fals Robustness Tests Time(sec)

UR 97 1.11e-4, 2.96e-4, 6.18e-4 3, 379.03, 1000 .31, 39.7, 104.7

MC 100 0, 0, 0 3, 153.73, 476 .32, 16.18, 50.06

ACO 84 1.55e-4, .0083, .0278 20, 268.4, 1000 2.09, 28.14, 105.18

Table 65: Comparison on Automatic Transmission for the seventh formula

Algo. #Fals Robustness Tests Time(sec)

UR 0 1.97e-5, .001, .0029 1000, 1000, 1000 104.52, 104.64, 104.82

MC 0 1.89e-7, 3.5e-4, 7.55e-4 1000, 1000, 1000 104.97, 105.18, 106.41

ACO 0 3.88e-7, .0018, .03 1000, 1000, 1000 104.53, 104.63, 104.95

Table 66: Comparison on Automatic Transmission for the eighth formula

5.2 Observations

In the case of the Delta-Sigma modulator benchmark problem, the performance of

the algorithms vary depending on the ease/difficulty with which the specification is

falsified. It is evident from the tablular results that ACO comes up with a greater

number of falsifications in each of the three instances of the Delta-Sigma modulator.

Moreover ACO comes up with lower average robustness values at lower average

runtimes which indicate greater performance at a lower computational cost.

 51

In the case of the Navigation benchmark problem, it is observed that the

performance of all the algorithms is comparable in terms of the number of

falsifications and computation time for the second, third and fourth formulas. On

harder problem instances, however it is clearly eveident that ACO performs better

than MC and UR in terms of both the computation time and the number of

falsifications. Moreover the average number of tests needed to falsify also are lesser

when ACO is used on the Navigation Benchmark problem.

In the case of the Automatic Transmission Model, it is observed that the

performance of the algorithms vary depending on the ease/difficulty with which the

specification is falsified.

Algo. #Fals Robustness Tests Time(sec)

UR 0 .207, .625, 2.89 1000, 1000, 1000 123.84, 124.31, 130.89

MC 0 .155, 1.56, 18.23 1000, 1000, 1000 124.58, 125.05, 125.52

ACO 47 .0086, 1.05, 11.96 80, 742.6, 1000 9.97, 93.26, 126.08

Table 67: Global Least Method (fourth formula) on Automatic Transmission

On easier problems performance of MC, UR and ACO were comparible, but on

tougher problems (fourth formula) ACO was able to falsify 19 times where MC and

UR could not find a falsifying trajectory. We then used the global least deposition

technique for the fourth formula and the performace improved as the results indicate

in Table 67. We remark that this may be a special case since ACO was optimized on

this formula. This result seems to suggest that the problem may not have many

minima and hence using the global best ant converges faster. Moreover the structure

of the formula also seems to play a role in the rate at which an algorithm converges.

Following is a summary of the comparison made between MC and ACO for the

various problem instances that have been discussed in the previous sections. All the

 52

formulas have been described in [24]. Table 68 has been generated by setting the

taliro_metric = „none‟ whereas Table 69 has been generated by setting the taliro_metric

= „hybrid_inf‟.

Problem Formula Number of Falsifications

MC ACO

AT
 98 99

AT
 86 75

AT
 82 30

AT
 0 19

AT
 0 0

 78 96

 63 98

 32 82

Table 68: Comparison between MC & ACO with „Euclidean metric‟

Problem Formula Number of Falsifications

MC –H0 ACO

AT
 100 84

AT
 100 84

AT
 0 0

NV
 43 66

NV
 100 100

NV
 100 100

NV
 100 100

NV
 46 61

Table 69: Comparison between MC & ACO with „hybrid distance metric‟

 53

Chapter 6

CONCLUSION

6.1 Conclusions

In this thesis we have applied the Extended Ant Colony Optimization (EACO)

Algorithm to the problem of MTL falsification of hybrid systems. The algorithm was

initially applied to the Delta-Sigma Modulator problem and the Navigation Benchmark

problem to find the optimal parameters in EACO which best suit both the benchmark

problems. The optimal parameters which worked well for the Delta-Sigma Modulator

problem were different from the optimal parameters found for the Navigation

Benchmark Problem. However, from the results it was evident that the algorithm,

where the cycle best ant and the global best ant were used to update the pheromone,

showed better results in the form of minimum number of tests needed to falsify the

MTL specification for both the problems on an average. The performance was

observed to be better with EACO parameters, grid size set to 10 and evaporation rate

set to 0.5. These optimal parameters were set in the EACO algorithm and a

comparison was made with Monte Carlo and Uniform Random Algorithms on various

problem instances. The results of EACO on the problems that were easy to falsify

were comparable with Monte Carlo and Uniform Random Algorithm. However on

tougher problems the results indicate that EACO performed better that Monte Carlo

and Uniform Random Algorithms in terms of the number of falsifications and the

computational time.

The results obtained from the experimental analysis are very promising and we hope

that the toolbox with all the inbuilt optimization algorithms will be very useful for test

engineers of hybrid systems.. S-Taliro has been developed to handle the falsification

 54

problem of hybrid systems which are implemented as Simulink/State flow models or

Matlab functions. The toolbox can be used not only to falsify MTL specifications of

arbitrary systems but also to find how robust a hybrid system is with respect to a given

specification. This can be especially useful in systems that have been proven to be

correct.

6.2 Future work

In the experiments that were performed, four deposition techniques were used along

with varying grid sizes and evaporation rates to find the optimal parameters for the

Extended Ant Colony Optimization Algorithm which could be used on all the

benchmark problems in general to find near optimal solutions. The rate at which this

algorithm converges to a good solution varies based on the parameters being used

and therefore additional tuning of the pheromone update rule could be done to

better the rate at which the algorithm converges to a good solution. As future work

we could look at:

1) Incorporating lower and upper bounds on the pheromone deposition.

2) Regular re-initialization of pheromone deposits on the regions.

3) Implement parallel ant colonies and gauge the performance of the algorithm on

various benchmarks.

Moreover some of the results indicated that there might be some structure in the

systems being considered or the formulas that makes one algorithm converge faster

and perform better than others. This is a very interesting prospect for future

research.

 55

REFERENCES

[1] Yashwanth Annapureddy, Che Liu, Georgios Fainekos, Sriram Sankaranarayanan.
S-taliro: A tool for temporal logic falsification for hybrid systems. In Tools and
algorithms for the construction and analysis of systems, volume 6605 of LNCS, pages 254-
257. Springer, 2011.

[2] A. A. Julius, A. Halasz, V. Kumar, and G. J. Pappas, “Controlling biological
systems: The lactose regulation system of escherichia coli,” in American Control
Conference, New York, July 11-13 2007.

[3] A. Bhatia and E. Frazzoli, “Incremental search methods for reachability analysis
of continuous and hybrid systems,” in Hybrid Systems: Computation and Control, ser.
LNCS, vol. 2993. Springer, 2004, pp. 142–156.

[4] M. Branicky, M. Curtiss, J. Levine, and S. Morgan, “Sampling-based planning,
control and verification of hybrid systems,” IEE Proc.- Control Theory Appl., vol. 153,
no. 5, pp. 575–590, 2006.

[5] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid systems,” in
CAV, ser. LNCS, vol. 4590. Springer, 2007, pp. 449–462.

[6] T. Dang, A. Donze, O. Maler, and N. Shalev, “Sensitive state-space exploration,”
in Proc. of the 47th IEEE Conference on Decision and Control, Dec. 2008, pp. 4049–4054.

[7] R. Koymans, “Specifying real-time properties with metric temporal logic.” Real-
Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[8] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications for
continuous-time signals,” Theoretical Computer Science, vol. 410, no. 42, pp. 4262–4291,
2009.

[9] Y.S.R. Annapureddy and G.Fainekos. Ant colonies for temporal logic falsification
of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial
Electronics, 2010.

[10] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivan_ci_c, A. Gupta, and G.
Pappas. Monte-Carlo techniques for the falsification of temporal properties of non-
linear systems. In Hybrid Systems: Computation and Control, pages 211-220. ACM Press,
2010.

[11] A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of
satisfaction of temporal logic formulae with applications to systems biology. In 6th
International Conference on Computational Methods in Systems Biology, volume 5307 of
LNCS, pages 251-268. Springer, 2008.

 56

[12] A. Donze. BREACH, a toolbox for verification and parameter synthesis of
hybrid systems. In Computer Aided Verification, volume 6174 of LNCS, pages 167-170.
Springer, 2010.

[13] http://www.mathworks.com/products/systemtest/

[14] http://www.mathworks.com/products/sldesignverifier/

[15] J. Van Ast, R. Babuˇska, and B. De Schutter, “Fuzzy ant colony optimization for
optimal control,” in Proceedings of the 2009 conference on American Control Conference.
IEEE Press, 2009, pp. 1003-1008.

[16] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,”
European Journal of Operational Research, vol. 185, pp. 1155–1173, 2008.

[17] Bilchev, G., and Parmee, I. C. (1995). The ant colony metaphor for searching
continuous design spaces, In: T. Fogarty, ed. Lecture Notes in Computer Science, 993,
Springer Verlag, 25-39.

[18] Wodrich, M. and Bilchev, G. (1997). Cooperative distributed search: the ants‟
way, Control and Cybernetics, Vol. 26 No. 3, 413–445.

[19] G. E. Fainekos and K. C. Giannakoglou, “Inverse design of airfoils based on a
novel formulation of the ant colony optimization method,” Inverse Problems in
Engineering, vol. 11, no. 1, pp. 21–38, 2003.

[20] G. E. Fainekos and G. J. Pappas. A user guide for Taliro. Technical report,
Dept. of CIS, Univ. of Pennsylvania, 2008.

[21] T. Dang, A. Donz´e, and O. Maler, “Verification of analog and mixed-signal
circuits using hybrid system techniques,” in 5th International Conference on Formal
Methods in Computer-Aided Design, ser. LNCS, vol. 3312. Springer, 2004, pp. 21–36.

[22] A. Fehnker, F. Ivancic. Benchmarks for hybrid systems verification. In HSCC.
LNCS Series, vol. 2993. Springer, 2004, pp. 326–341.

[23] ZHAO, Q., KROGH, B. H., AND HUBBARD, P. 2003. Generating test inputs
for embedded control systems. IEEE Control Systems Magazine Aug., 49–57.

[24] Probabilistic Temporal Logic Falsification of Cyber-Physical Systems
(unpublished)

http://www.mathworks.com/products/systemtest/
http://www.mathworks.com/products/sldesignverifier/

