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ABSTRACT  
   

S-Taliro is a fully functional Matlab toolbox that searches for trajectories of minimal 

robustness in hybrid systems that are implemented as either m-functions or 

Simulink/State flow models. Trajectories with minimal robustness are found using 

automatic testing of hybrid systems against user specifications. In this work we use 

Metric Temporal Logic (MTL) to describe the user specifications for the hybrid 

systems. We then try to falsify the MTL specification using global minimization of 

robustness metric. Global minimization is carried out using stochastic optimization 

algorithms like Monte-Carlo (MC) and Extended Ant Colony Optimization (EACO) 

algorithms. Irrespective of the type of the model we provide as an input to S-Taliro, 

the user needs to specify the MTL specification, the initial conditions and the 

bounds on the inputs. S-Taliro then uses this information to generate test inputs 

which are used to simulate the system. The simulation trace is then provided as an 

input to Taliro which computes the robustness estimate of the MTL formula. Global 

minimization of this robustness metric is performed to generate new test inputs 

which again generate simulation traces which are closer to falsifying the MTL 

formula. Traces with negative robustness values indicate that the simulation trace 

falsified the MTL formula. Traces with positive robustness values are also of great 

importance because they indicate how robust the system is against the given 

specification. S-Taliro has been seamlessly integrated into the Matlab environment, 

which is extensively used for model-based development of control software. 

Moreover the toolbox has been developed in a modular fashion and therefore adding 

new optimization algorithms is easy and straightforward. In this work I present the 

architecture of S-Taliro and its working on a few benchmark problems. 
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Chapter 1 

INTRODUCTION 

S-Taliro [1] is a Matlab toolbox that searches for falsifying trajectories of temporal 

logic properties of Simulink/State flow models. The toolbox can analyze arbitrary 

Simulink models or user-defined functions which are used to model the system. In this 

thesis I present the architecture of the toolbox, its usage and conclude with a few 

application examples. 

1.1 Motivation 

Hybrid systems are essentially dynamical systems which exhibit both discrete and 

continuous behaviors. These systems arise from a combination of continuous and 

discrete inputs, outputs, states or dynamics. In general, however hybrid systems arise 

whenever one inter-mixes logical decision making with the generation of continuous 

valued control laws. Typical examples of these hybrid systems include constrained 

robotic systems, biological systems [2], flight control and management systems and 

analog/digital circuit co-design and verification. 

In Figure 1 I include the Simulink model for the Power Train System which clearly 

depicts the interaction between discrete and continuous behaviors for a hybrid system. 

In this model the Switched Continuous System with resets indicates the continuous 

dynamics for the hybrid system whereas the State Flow Charts indicate the discrete 

behavior for the hybrid system.  

Analysis and safety verification of hybrid systems is generally considered to be critical 

and challenging because of the complex behaviors these systems can exhibit. 

Therefore practitioners are inclined to manual testing of individual components of the 

hybrid system as this gives them more control on the testing process. This process 
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however is extremely time-consuming and hence various authors have come up with 

several methods for the safety verification [3] – [6] of hybrid systems. These methods 

take into consideration the complex behaviors that the hybrid systems can exhibit and 

also the user specifications. 

 
Figure 1: Power Train System in Simulink 
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Classic temporal logics have limitations on modeling real time systems as they cannot 

deal with quantitative temporal requirements. As a result Metric Temporal Logic which 

includes quantitative requirement on the elapse of time is used in this work. Metric 

Temporal Logic which was introduced by Koymans [7] is very useful for describing 

the user specifications/ real-time requirements of hybrid systems. MTL is essentially a 

formal language which closely resembles the natural language and hence can be used 

by practitioners easily to describe the specifications for hybrid systems. 

MTL falsification of hybrid systems involves the ability to prove as well as falsify 

temporal logic properties of systems. Informally MTL falsification is the search 

through all the possible system trajectories to find a trajectory that does not satisfy the 

system specification. In this thesis I use the robust semantics of MTL as described in 

[8]. This semantics can be used to indicate if a system trajectory satisfies a given 

specification. Moreover it can be used to indicate how robustly it satisfies the 

specification which is of importance. 

As an example, we describe a MTL specification for the Power Train System which 

captures a certain property that we are trying to falsify. Say the specification for the 

system is that there exists a gear transition “second-to-first-second” during the course 

of the simulation of the hybrid system. This is the specification that we try to falsify 

using S-Taliro. 

 
1.2 Problem Formulation 

In this section we describe the formal definition of the problem that we are trying to 

solve. We consider a system Σ which essentially maps a set of initial conditions    and 

input signals   to output signals  . Essentially we define the system as 
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i.e. given a point   ∈    and an input signal  ∈  , then  

           

Our goal in this case is to verify the correctness of the system by keeping track of the 

output signals for particular input signals and initial conditions. Essentially we are 

trying to find those system trajectories that falsify or are closest to falsifying a given 

specification for the system. By falsification, we intend to find the system trajectories 

with “negative robustness” with respect to the specification or trajectories with 

minimal positive robustness if a falsifying trajectory is not found.  

In this context, robustness is informally defined as the bound on the perturbation that 

the system trajectory can handle such that the system trajectory satisfies the same 

specification. We define the robustness metric as: 

      

 

where φ denotes the MTL specification we are trying to falsify and   is a finite 

duration test signal. The robustness metric essentially describes how robustly the test 

signal satisfies or falsifies the given specification for the system [10]. The satisfaction of 

a given specification takes a quantitative value rather than a Boolean value.  

Because the satisfaction of a given specification is a quantitative value we can now 

convert the decision problem into an optimization problem given by: 

Minimize       for all possible system trajectories 

 
Therefore, now we can use an optimization algorithm to search through all the 

possible system trajectories and, eventually, find a particular system trajectory that 

minimizes the robustness with respect to the system specification. The falsification 
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problem searches for the system trajectory that yields a negative robustness value. 

However we use the above mentioned minimization problem as this could be used to 

find how robust the system is with respect to the specification, even if the system 

satisfies the specification for the system. 

 
1.3 Contribution 

As suggested earlier, an optimization algorithm can now be utilized to search for 

trajectories of minimal robustness for the MTL falsification problem. In this context I 

modify the Extended Ant Colony Optimization (EACO) algorithm so that it can be 

applied to the temporal logic falsification of hybrid systems problem. ACO is 

essentially a stochastic optimization technique which is inspired from the manner in 

which ants make and locate paths from their colonies to food sources. EACO is 

mainly an extension to the continuous domains of the more general discrete ACO 

algorithm. In order to search through the input space to find the system trajectories 

with minimal robustness the search space needs to be parameterized. In this context 

we use interpolating polynomials like cubic spline to parameterize the input space. 

Cubic Spline curves are essentially piecewise polynomial functions which are very 

popular for their simplicity in construction and ease of evaluation. Therefore these 

curves have been utilized to parameterize the input space based on the range of the 

input signals for the MTL falsification problem. The EACO algorithm has been 

developed using C (Matlab executable), has been interfaced with Matlab code and has 

been packaged into fully functional Matlab toolbox which can be used for the 

temporal logic falsification of hybrid systems problem. Overall, my contribution in this 

thesis can be summarized as follows: 
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1) Modified the EACO Algorithm and applied it to the MTL falsification problem of 

hybrid systems.  

2) Found optimal parameters for EACO by running the algorithm against couple of 

benchmark problems. 

3) Have developed a fully functional Matlab toolbox named S-Taliro which 

incorporates the various optimization algorithms and solves the MTL falsification 

problem of hybrid systems. 

4) Parameterize the input space using interpolating polynomials like cubic spline to 

solve the MTL falsification problem of hybrid systems.  

In [9] I report my experience with ACO for Temporal Logic Falsification of Hybrid 

Systems. 

1.4 Related Research 

Testing, in general for hybrid system are difficult and time consuming because of the 

un-decidability in the manner in which the systems behave for extreme cases. As a 

result lot of research is being carried out to investigate testing approaches to the 

verification of hybrid systems (related research section in [10]). Two main approaches 

exist for the testing of hybrid systems. The first approach focusses on choosing the 

inputs in an orderly fashion to cover the entire state space while the second approach 

deals with robust simulations trajectories. However most of the research focusses on 

parameter estimation [11, 12]. Research in Temporal Logic Falsification of 

specifications describing the properties of the hybrid system is growing rapidly, though 

there are very few publicly available tools to solve this problem. Currently the only 

publicly available tool that supports the computation of robustness of temporal logic 
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formulas is BREACH [12]. However this tool does not solve the problem of temporal 

logic falsification for Simulink/State flow models. MathWorks also provides System 

Test [13] and Simulink Design Verifier [14] along the commercial lines for this 

problem. 

Lot of work is also being carried out in Ant Colony Optimization to extend it to the 

problem of falsification of hybrid systems. In [15] the authors talk about Fuzzy Ant 

Colony Optimization for Optimal Control using fuzzy partitioning of the state space 

system to parameterize the input space. In this thesis I use spline functions to 

parameterize the input space. In [16] authors use a different pheromone update rule in 

the form of noting a number of candidate solutions to update the pheromone based 

on Gaussian functions. 

1.5 Organization of the Thesis 

The reminder of this thesis is organized into 6 chapters.  

Chapter 2 – Ant Colony Optimization: This chapter introduces the Ant Colony 

Optimization Algorithm and its application to the Travelling Salesman Problem and 

the MTL falsification problem.  

Chapter 3 – The S-Taliro Tool: This chapter introduces the S-Taliro tool, describes 

the architecture of the toolbox and gives a detailed description of the interface to the 

tool. 

Chapter 4 – Tuning of Parameters: This chapter describes the experimental analysis 

performed to find the optimal parameters of EACO by running the algorithm against 

few benchmark problems. 
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Chapter 5 – Results: This chapter shows a performance comparison between MC, 

UR and ACO by applying these algorithms to couple of bench mark problems. 

Chapter 6 – Conclusion: This chapter comprises of the final summary of the 

research done and possible future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  9 

Chapter 2 

ANT COLONY OPTIMIZATION 

2.1 Related Background 

Ant Colony Optimization is a Meta heuristic optimization algorithm inspired by the 

foraging behavior of ants. This algorithm was first proposed by Marco Dorigo and 

his colleagues [16] as a multi- agent approach for solving combinatorial optimization 

problems. Ant Colony Optimization is a essentially a member of the Ant Colony 

Algorithms family and the first algorithm was mainly aimed at finding an optimal 

path in a graph based on the manner in which ants find a path between their colonies 

and food locations. From the initial idea of finding an optimal path in a graph this 

algorithm has diversified to meet the requirements of many optimization problems 

and solve them effectively. 

Common examples of combinatorial problems include scheduling, finding the 

minimum spanning tree, travelling salesman problem etc. These problems are in 

general difficult to solve and therefore heuristic methods (like ACO) are used to find 

solutions to these problems. Solving combinatorial problems involves finding 

optimal objects from a finite set of objects. This is done by operating on the input 

domains of the optimization problems to find the best solution. Initially this process 

was performed only for discrete solutions but later was applied to continuous ranges. 

The limitation for applying combinatorial optimization algorithms to these kind 

problems is that the continuous ranges have to be converted to sets of finite size 

which is difficult if the initial ranges are large. 

A lot of work has been done to create an algorithm based on Ant Colony 

Optimization methods to solve continuous optimization problems. The first attempt 
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in this direction was made in [17] which initially provided only local search 

capabilities. This is was at a later time extended to Continuous Ant Colony 

Optimization (CACO) algorithm [18] which solved the problem of local search but 

was not completely based on the ACO principles. In this work I utilize the concepts 

of the ACO methods to propose an algorithm for the MTL falsification of hybrid 

systems which is a continuous optimization problem. 

2.2 Introduction to Ant Colony Optimization 

The Ant Colony Optimization algorithm has been inspired from the manner in 

which ants effectively find food, lay pheromone (chemical secreted or excreted by 

ants) along the path to and from the food location and return to their colonies. 

Initially the ants move around randomly to search for food, but once they do find 

food at a certain location they keep laying pheromone in the path between the food 

locations and their colonies. Other ants have the capability to detect pheromone 

trails left by their counterparts and therefore are more likely to follow a path which is 

laid by pheromone than choose a path at random. Moreover these ants choose that 

particular path which is more densely laid by pheromone that any other path. If these 

ants do find food along this path then they return back to their colonies with the 

food along the same path thereby reinforcing (laying more pheromone) it so that 

other ants can detect and use this particular path to locate food sources. 

Pheromone evaporation is extremely important for the ants and the algorithm in 

general as this has the advantage of avoiding convergence to a locally optimal 

solution or path in the case of the ants. If pheromone never evaporated, then the 

paths that were chosen by the first ants would have more pheromone on them and 

hence would be excessively attractive to the subsequent ones. This would lead to 
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ants not exploring all the possible paths and hence result in a local optimal path 

between their colonies and food sources. 

Briefly, the following is a simple model illustrating the behavior of ants to find food 

sources. 

1) An ant randomly travels around the colony in search of food. 

2) Once the ant finds food, it returns back to its colony depositing pheromone along 

the path. 

3) Ants which are close to the pheromone deposited path get attracted to it. 

4) They find food, and return back to their colonies along the same path thereby 

reinforcing the path. 

5) Shorter paths to food sources from ant colonies will be the ones that are more 

travelled and hence will have greater deposition of pheromone. 

6) This is will result in shorter paths becoming more attractive. 

7) Because of pheromone evaporation the longer path loses its pheromone and 

eventually no ant chooses this path. 

8) All the ants keep reinforcing the shorter path and follow only this path to move 

between their colonies and food sources.   

2.3 ACO for the Travelling Salesman Problem 

In this section we apply the Ant Colony Optimization algorithm to the Travelling 

Salesman Problem (TSP) to get a better understanding of the semantics of the 

algorithm. TSP has been chosen for this illustration because  

1) TSP is NP hard problem. 

2) TSP is considered a standard problem for performance evaluation of algorithms. 
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3) TSP is simple to understand and therefore the ACO‟s behavior to this problem 

can be seen clearly. 

The TSP is the problem of a salesman who wants to find a shortest possible route 

from his home town through a given set of cities and return back to his hometown, 

without visiting a city twice. When ACO is applied to the problem of TSP, ants act 

as simple agents to make tours by moving from one city to another. These tours are 

guided by pheromone trails and local distance based decisions to find the shortest 

optimal tour. 

At the beginning, each of the ants is placed on a city that is chosen randomly. At a 

particular city, an ant choses an unvisited city with a probability that is proportional 

to the pheromone deposit on that edge along with locally available heuristic 

information. This heuristic is a function of the distance between the connecting 

cities. This means that ants are more inclined to visiting cities which are closer in 

distance to their current city and have more pheromone deposition along the edge 

connecting the cities. All the ants make choices based on the above information and 

complete their tours. 

Once all the tours are completed, the pheromones trails along each of the edges 

connecting neighboring cities are updated through evaporation and deposition. This 

pheromone update is done in a way such that shorter tours receive a higher amount 

of pheromone deposition so that they can be chosen with a greater probability in the 

next iterations. This means that shorter paths will tend to have more pheromone, 

which results in attracting a majority of the ants. This eventually leads to the 

convergence of the algorithm to an optimal shortest route, thereby providing a 

solution to the TSP. 
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2.4 ACO for the MTL Falsification Problem 

In this section I modify EACO algorithm [19] to apply it to the problem of MTL 

falsification of hybrid systems. In the MTL falsification problem the user needs to 

specify the bounds on the initial conditions    and input range  . Based on the 

number of control points that are assigned to each of the inputs, the regions which 

the ants have to visit are defined. These regions are essentially one dimensional set‟s 

which are bounded by the ranges of the initial conditions and the input ranges. 

Each of these regions   is divided into finite sets of intervals   . These interval 

points are called stations which each ant can visit in each region. All these intervals 

are of the same length which can be set by the user while defining the options for the 

EACO algorithm. The manner in which an ant chooses to visit a particular station   

in a region   depends on the probability factor which we define below. All the 

stations in each of the regions are initially laid with a certain amount of pheromone 

deposition         where c refers to the particular cycle during which the choice is 

being made by the ants. The probability with which the choice is made by each of 

the ants is given by: 

         
      

       
  
   

 

Each of the ants use this probability measure to visit the stations in each of the 

regions defined. For each ant   its exact location within each region at a particular 

cycle is denoted by    
    . This choice is made at random based on uniform 

distribution. Based on the probabilities that are assigned to each of the stations, the 

exact location to which ant visits is decided by choosing a random number and 
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comparing it with the probabilities assigned to the stations. We make this choice at 

random because this gives a greater state space exploration possibility. 

Once all the ants have finished their tours in a particular cycle, the pheromone 

depositions at each of the stations in each region need to be updated. This must be 

done so that the ants converge to that particular tour that eventually falsifies the 

hybrid system. After the completion of each of the cycles we have sample trajectories 

        for each of the ants. The robustness estimate of each of these trajectories is 

calculated and the ant which produced the least possible robustness value is used to 

update the pheromone deposits at each of the stations in each of the regions defined. 

In this thesis four different deposition techniques have been implemented and tested 

on various benchmark problems: 

1) Deposition by the cycle best ant (the ant that found the best solution during the 

current cycle) and the global best ant (the ant that found the best solution during all 

the previous cycles). 

2) Deposition by either the cycle best ant or the global best ant according to an 

option that is specified by the user which switches the deposition method after a 

given number of cycles (Auto Switch method) 

3) Deposition by the cycle best ant (Cycle Least method) 

4) Deposition by the global best ant (Global Least method) 

Irrespective of the algorithm that is used pheromone values need to be updated at 

the end of each cycle. The pheromone deposition values in the next cycle are given 

by the following formula: 
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Where   is the rate of evaporation and  

    
      

          
           

 

  

              
 

Where   is the parameter that is used to define the decay rate of the exponential 

distribution and   is a user defined constant.  

Pheromone is updated in this manner at the end of each cycle and this process 

terminates either if a falsifying trajectory is found or if the maximum number of 

iterations are completed. In either case the trajectory with the least robustness along 

with the robustness values are returned to the user for analysis. 
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Chapter 3 

THE S-TALIRO TOOL  

3.1 About the Tool 

In this thesis we present our tool S-Taliro for temporal logic falsification of hybrid 

systems. S-Taliro is a fully functional Matlab toolbox that essentially searches for 

counterexamples to MTL properties (which describe the specification for the hybrid 

system) through global minimization of robustness metric. The global minimization is 

performed using stochastic optimization techniques which are used to find a system 

trajectory with minimal robustness. These optimization algorithms essentially perform 

a random walk over the initial states and input ranges to find the minimal robustness 

trajectory. Currently the tool supports three optimization algorithms in the form of 

Uniform Random, MC and ACO. 

To use this toolbox the user needs to specify the MTL specification, the initial 

conditions and the bounds on the input range. S-Taliro uses these inputs to generate 

test initial conditions and input ranges which are used to simulate the hybrid system. 

The simulation trace is then provided as an input to Taliro [20] which computes the 

robustness estimate of the MTL formula. Global minimization of this robustness value 

is carried out using optimization algorithms (ACO/MC/UR) to generate new test 

initial conditions and input ranges which are again used to generate simulation traces 

which are closer to falsifying the MTL formula. Traces with negative robustness values 

are falsifications of temporal logic properties. Traces with positive but low robustness 

values are also of great importance because they indicate how robust the system is 

against the given user specification. These system trajectories with small positive 

robustness values are closer in distance to falsifying traces using a mathematically well-
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defined notion of distance between trajectories and user specifications which are 

defined user temporal logic properties. 

S-Taliro has been developed in a modular fashion in Matlab with respect to the 

optimization algorithms, and therefore other optimization algorithms can be added 

given a Matlab interface to their simulators. Though a basic understanding of using the 

MTL formulae is necessary to describe the specifications for the hybrid system, the 

entire design of the toolbox is extremely user friendly with extensive help 

documentation. It has a simple command line interface along with an in-built parser 

for the easy input of MTL formulae. These features make the tool easy to understand 

and solve the problem of temporal logic falsification of hybrid systems. 

3.2 Overall Architecture 

The figure below clearly depicts the overall architecture of the S-Taliro toolbox. The 

toolbox contains a temporal logic robustness analysis engine (Taliro) that works in 

tandem with a stochastic sampler. This stochastic sampler suggests an input array 

which comprises of the initial conditions, input ranges and any other parameters which 

are needed to execute the system implemented as an m-function or a Simulink/State 

flow model. The Simulink/State flow environment returns a simulation trace which is 

analyzed against the MTL formula for the hybrid system. For this purpose we have a 

robustness analyzer which eventually returns a robustness value for the system trace. 

This value is computed depending on the results of convex optimization problems 

which are used to compute signed distances. These signed distances are essentially 

distances between the trace and the MTL formula which we trying to falsify. Once we 

have the robustness value, this is used by the stochastic sampler to decide on the next 

inputs which can be used to generate another simulation trace. During this process if a 
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falsifying trace is found i.e. a trajectory that does not satisfy the MTL formula, then it is 

returned to the user for examination. Moreover if the toolbox is unable to falsify the 

MTL formula then the trajectory with the least robustness value is returned along with 

the robustness value. This information is extremely valuable to know, how robust the 

system is with respect to the MTL user specification. 

 

Figure 2: The Architecture of the S-Taliro Tool 

3.3 S-Taliro User Guide 

S-Taliro has been designed to be seamlessly integrated in the model based design 

process of Matlab/Simulink (TM). Currently, S-Taliro can be applied to three kinds 

of inputs: 

1) Simulink Models 

2) Matlab functions 

3) Hybrid Automaton 

In case of the Simulink models, the user specification can be defined either over the 

state space of the model or over the output space. This is an explicit option which is 
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provided to S-Taliro to make the distinction. If the model does not have external 

inputs, then the search for the falsifying trajectory is performed only over the set of 

initial conditions. On the other hand, if the user would like to verify the MTL 

property over a Simulink model with external inputs, then the user has to make sure 

that the these inputs are defined as input ports to the Simulink model. The interface 

to the Simulink models is clearly explained in the description of input arguments for 

S-Taliro. 

In case of Matlab functions, the input model must be provided as a function handle, 

where the function handle represents a pointer to the Matlab function. There is an 

options in S-Taliro called „black_box‟ which can be set/reset depending on whether 

the user wants his implementation of the hybrid system to be considered as a black 

box or not. Therefore if the model is a function pointer and the black box option is 

set to 0, then the function is passed to the ODE solver indicated by the option 

„ode_solver‟. If the model is a function pointer and the black box options is set to 1, 

then it is assumed that the model will be given the time stamps, the initial conditions 

and input signals and it will output the time stamps, the state trajectory, the output 

trajectory and optionally the graph and guards depending on the option „taliro_metric‟. 

On a higher level, with these settings S-Taliro will treat the input function as a black 

box. The options which are also inputs to the tool will be described in detail in the  

S-Taliro options section. 

In case of hybrid automata, the input model must be an object of class „hautomaton’ 

which has been defined in the S-Taliro toolbox. The user needs to understand the 

interface to the „hautomaton’ class and define the initial continuous set, the dynamics 

in each location, the adjacency list, and guards for the transitions between locations, 
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the unsafe set and the target set. A description of all these parameters is given in the 

input arguments section. Given below is a table that clearly illustrates the choices 

provided by S-Taliro for model inputs. 

Input Model Input Type Example 

Simulink model String Model  =‟sim_model‟ 

Matlab function Function handle Model  = @function_name 

Hybrid automaton Object of type hautomaton  Model  = hautomaton object 

Table 1: Choices provided by S-Taliro for model input 

No matter what the type of the model we provide to S-Taliro, we also need to 

specify the set of initial conditions as well as the constraints on the input signals. In 

the current version of the toolbox both must be provided as hyper cubes. Note that 

if the user does not want to search for a falsifying trajectory over the set of initial 

conditions or if the hybrid system does not have any inputs, then that particular 

input needs to be set as an empty array. If the system does accept input signals, then 

in this case we need to parameterize the input function space using a finite set of 

points in time. For this particular reason the user needs to provide two more 

parameters: the type of interpolating function and the number of control points in 

time for each input signal. Currently S-Taliro supports all the interpolating functions 

provided in Matlab using the „interp1‟ function and some more such as the piecewise 

constant and constant value functions. 

Given below is the description of the interface to the tool. The user needs to provide 

the following parameters as inputs to the tool. 

Syntax 
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[rob, rtime, nIter, samples] =  

s_taliro (model, icond, irange, cparray, phi, pred, tt, opt);  

In the following sections we describe the above parameters in detail. More 

information on declaring the parameters and using the S-Taliro tool can be obtained 

by typing „help staliro‟ at the Matlab command prompt. 

3.4 Input Arguments 

S-Taliro requires that the following parameters be defined before providing them as 

inputs to S-Taliro. The input arguments to S-Taliro are as follows: 

1) ‘model’ : As described earlier S-Taliro can currently handle three different kinds of 

inputs in the form of Simulink models, Matlab functions and Hybrid Automaton. 

Therefore the input argument must be either a string, function handle or an object of 

the „hautomaton‟ class as depicted in Table 1. 

The only requirement for the Simulink input other than the ones discussed above is 

that the user must provide the Simulink model in the current directory. Moreover the 

input signals must be provided to the Simulink model through the input ports if they 

exist. 

For the Matlab function case, as discussed earlier the user can model his system as a 

black box and set the appropriate option in S-Taliro. By doing so, black box 

computation is performed. In this case the user must provide the following interface 

to the Matlab function 

[T, X, G] = function(X0, ET, TS, U) 

Where: 

X0: the initial conditions as a vector. 
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ET: the end time for the simulation. It is assumed that the start time is 0. 

TS: the time stamps that correspond to the sampling instances for the input signals 

in U. 

U: the input signals. This is an array where each column corresponds to a different 

signal and each row to time instance that corresponds to TS. This is optional if no 

input signals are required. 

T: the new time stamps 

X: the state/ output trajectory as an array where each column corresponds to a 

different state variable. If hybrid distances are used then the last column must be the 

trace (location trace) on the state machine of the system. 

G: the graph that corresponds to the discrete transition graph of the system. This is 

required when hybrid distance metrics are used. 

For the hybrid automata case, the user must understand the „hautomaton‟ class files to 

carefully define the following parameters to build an object of that particular class 

which will work as an input to S-Taliro. The interface for declaring this object is as 

follows: 

object = hautomaton (init, loc, adjList, guards, unsafe, target) 

The input parameters in this interface are as follows: 

init: is the initial continuous set.  

loc: holds the dynamics in each location which is a Matlab structure: 

adjList: is the adjacency list for each location which is a Matlab cell array. 

guards: is the guard set which contains the guards for the transitions between 

locations. This is also a Matlab structure. 
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unsafe:  is essentially a conjunction of half spaces indicating regions which should not 

be reached by the system trajectory. 

target: is the target set that needs to be reached by the system trajectory.  

More details on using these parameters and defining the hybrid automaton can be 

found by typing „help hautomaton‟ at the Matlab command prompt. 

2) icond: This input argument must be a hypercube which defines the set of initial 

conditions. It must be of type real. The input can be empty (indicating no initial 

conditions) or of dimension m by 2, where m is an integer and indicates the number 

of initial conditions. Each row in this input argument defines the minimum and 

maximum bounds on each of the initial condition. 

For example: 

icond = [3 6; 7 8] 

Indicates two initial conditions where, the first initial condition is bounded between 

3 and 6 and the second initial condition is bounded between 7 and 8. 

For example: 

icond = [] 

Indicates no initial conditions 

3) irange: This input argument must also be defined as a hypercube defining the set of 

constraints on the input signals. It must be of type real. This input argument can be 

empty (indicating no inputs) or of dimension m by 2, where m is an integer and 

indicates the number of input signals to the hybrid system. Each row in this input 

argument defines the minimum and maximum bounds on each of the input signals 

to the hybrid system. 

For example: 



  24 

irange = [3 5; 6 8] 

Indicates two input signals where, the first input signal is bounded between 3 and 5 

and the second input signal is bounded between 6 and 8. 

For example: 

irange = [] 

Indicates no input signals to the hybrid system. 

Defining the initial conditions and input signals as hyper cubes is not an inherent 

restriction of our method but rather we have observed that usually engineers do not 

provide constraints on the initial conditions that have variable dependencies. We 

plan to remove this constraint in the future versions of the toolbox. 

4) cparray: This input argument contains the number of control points for the 

interpolating function associated with each input signal. This input argument must be 

of type real. This input can be empty (indicating no inputs to the hybrid system) or 

must be a 1 by n array (indicating n inputs to the hybrid system) where each of the n 

values refer to the number of control points associated with each input signal. Note 

that the number of rows in irange must be equal to the number of columns in cparray 

as each input signal needs to have a particular number of control points associated 

with it. 

For example: 

cparray = [10 14] 

Indicates 10 control points for the first input signal and 14 control points for the 

second input signal 
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5) phi: This input argument must be a string in Matlab with the MTL formula that 

needs to be falsified. More information on defining MTL formulae can be found by 

typing „help taliro‟ at the Matlab command prompt. 

6) pred: This input argument must be a Matlab structure with the atomic proposition 

mapping. More information on defining the predicates for an MTL formula can be 

found by typing „help taliro‟ at the Matlab command prompt. 

7) tt: This input argument contains the total simulation time for the hybrid system. 

The input must be of type real. 

8) opt: This input argument refers to the various options provided by S-Taliro. Table 

2 indicates the default values for the options provided by the tool. The user can set 

the default options for the tool using the following command: 

opt = staliro_options() 

Given below is a description of each of the options provided by S-Taliro: 

1)  optimization_solver: This option indicates the optimization algorithm to be used by 

S-Taliro to solve the MTL falsification problem. This option can be set to any one of 

Ant Colony Optimization or Uniform Random or Monte Carlo optimization 

algorithms.  

2) ode_solver: This options selects the ODE solver to be used by S-Taliro. The default 

option is „ode45‟. It is recommended that this option be set to „default‟ for Simulink 

models. For Simulink models, the default option uses the default solver inside the 

Simulink model. 
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Property Default Value 

optimization_solver „MonteCarlo‟ 

ode_solver „default‟ 

interpolationtype {„pchip‟} 

black_box 0 

runs 100 

n_tests 1000 

ants_number 20 

spec_space „Y‟ 

loc_traj „none‟ 

SampTime .05 

dispinfo 1 

taliro_metric „none‟ 

map2line 1 

rob_scale 100 

taliro „taliro‟ 

sa_params sa_parameters 

hasim_params [1 0 0 0] 

Table 2: Default values to the options provided by S-Taliro 

3) interpolationtype: This option must be defined as a Matlab structure where each one 

of its elements must be a string and refers to an interpolation type for each of the 

corresponding input signals. If the interpolation type is a structure variable 

containing only one element, then that particular interpolation type is applied to all 
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the input signals.  The options for interpolating functions are the same as the options 

for interp1. The additional options are „pconst’ for piecewise constant signals and 

„const’ for constant signals. When the „const’ interpolation type is used, only one 

control point must be provided for the corresponding input signal. 

4) black_box: This option is set/reset when using function handles as the inputs to 

the tool. When this option is set S-Taliro will treat the input function as a black box. 

When this option is set to 0, the function is passed to the ODE solver indicated by 

the „ode_solver’ option. 

5) runs: This options sets the total number of iterations for which S-Taliro is 

executed against the MTL formula. It is recommended that this option be set to a 

large value (default is 100) as the optimization algorithms used are stochastic which 

would yield better overall results for a larger number of runs. 

6) n_tests: This option indicates the maximum number of tests that the tool can make 

to find a falsifying trace in each run. 

7) ants_number: This option indicates the number of ants to be used by the Ant 

Colony Optimization algorithm to solve the problem of MTL falsification. 

8) spec_space: This option is set to „X‟ when the MTL specification is over the 

trajectories of the state variables of the system. This option is set to „Y‟ when the 

specification is over the output signals of the system. 

9) loc_traj: This option is used to define which output signal corresponds to the 

location trace in case of hybrid system trajectories generated by a Simulink model. 

This option can be set to: 

a) „none’: the output signals do not contain a location trace. All the output signals are 

used for the temporal logic robustness computation. 
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b) „end’: the location trace is in the last output port. 

c) integer: If the location trace is outputted from another port number, then this 

option should contain the corresponding port number. 

10) SampTime: This option indicates the sampling time to be used for the input 

signals for simulation. 

11) dispinfo: This option is set when the user needs the run number to be displayed on 

the Matlab command prompt. 

12) taliro_metric: This option indicates the type of the temporal logic metric to be used 

for the MTL falsification problem. This option can be set to the following values: 

a) „none‟: In this case only the continuous space is considered. Any location 

information on the predicates is ignored. 

b) „hybrid_inf‟: This metric considers the path distance between control locations 

and the Euclidean space distance. 

c) „hybrid‟: This metric considers also the distance to guards that enable a transition 

on the hybrid system. 

13) map2line: This options is set to 1 for using a standard optimization algorithm with 

hybrid distance values. In this case we map the hybrid distances on the real line using 

the inverse logit function (see description for the option „rob_scale‟). Setting this 

option to 0 will utilize more complicated algorithms that will attempt to directly 

minimize the hybrid metric. 

14) rob_scale: For using a standard optimization algorithm with hybrid distance values, 

we are mapping the hybrid distances on the real line using the inverse logit function: 

rob = h.dl + 2*(2*exp(h.ds/a)/(1+exp(h.ds/a))-1) 
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Where a is the scaling factor and h is the hybrid distance. If the scaling factor is not 

provided then, a=100. The scaling factor depends on the application and is 

important since a value of h.ds above 40 with a =1, already gives the upper bound 1 

for the inverse logit function. This implies that a large range of robustness values 

might be mapped to the same number. 

15) taliro: This option is set to „taliro’ which is a tool that computes the robustness 

estimate of an MTL formula with respect to a finite times state sequence. 

16) sa_params: This option is used to set the Simulated Annealing parameters with 

Monte Carlo Sampling. 

17) hasim_params: This option holds a vector of values which are used by the hybrid 

automaton simulator. For more information on setting this option please type „help 

hasimulator‟ at the Matlab command prompt. 

To change the default values of the options to user specified values, first create the 

default options object by calling the „staliro_options‟ class as described above. Then use 

this object to change its default properties. 

For example: to change the optimization solver to Ant Colony Optimization and to 

change the interpolation type to piecewise constant, follow the sequence of steps 

listed: 

opt = s_taliro_options() 

opt.optimization_solver = „ACO‟ 

opt.interpolationtype = {„pconst‟} 
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3.5 Output Arguments 

The following is a description of the output arguments that result after the MTL 

falsification problem. 

1) rob: This output argument holds the minimum robustness value that was found at 

each run of the simulation. 

2) rtime: This output argument holds the total running time until a falsifying trajectory 

is found or until the total number of stochastic tests is reached for each run of the 

simulation. 

3) nIter: This output argument holds the total number of iterations until a falsifying 

trajectory is found or the total number of stochastic tests is reached for each run of 

the simulation. 

4) samples: This output argument holds the vector containing the initial conditions 

and the inputs that produced a trajectory with minimum robustness for each run of 

the simulation. 
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Chapter 4 

TUNING OF PARAMETERS 

4.1 Optimal Parameters for EACO 

In this section the parameters of the EACO are modified and tested against few 

benchmark problems. This is done to get a general idea on the parameters and the 

deposition techniques which work well for most of the benchmark problems. Along 

with the four deposition techniques mentioned in the previous section we have two 

other parameters which are varied to gauge the performance of the EACO on the 

benchmark problems. 

1) Grid Size – denotes the number of stations/intervals in each region. 

2) Evaporation Rate ( ) - denotes the rate at which pheromone evaporates. 

These parameters are varied over a certain range and for each one of those 

combinations the benchmark problems are executed against S-Taliro to find the 

trajectories that falsify a particular MTL user specification. The following sections 

illustrate the results of the various experiments that were executed to find the 

optimal parameters.  

In the following tables: 

1) Runs indicate the total number of independent simulations of the problem 

2) #Falsifications indicate the times S-Taliro was able to falsify the formula.  

3) Robustness indicates the minimum, average and maximum positive robustness. 

4) Tests indicate the minimum, average and maximum number of tests.   

We only list the positive robustness values as this would be useful to determine how 

robust the system is when compared to the specification. 
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Based on the experimental analysis that was performed on the benchmark problems 

in the following sections, it was observed that on an average the following 

parameters showed good results: 

1) Deposition by both the cycle best and global best ants. 

2) Gridsize of 10 

3) Evaporation rate of 0.5 

This result was based on calculating the average number of tests that each of the 

deposition technique required to falsify each of the benchmark problems. This value 

was the least for the case where deposition of pheromone was done by both the 

cycle best and global best ants.  

4.2 EACO on the Delta – Sigma Modulator 

The first benchmark against which the experiments are performed is the Delta – 

Sigma Modulator whose description can be found in [21]. The third order Delta – 

Sigma modulator has initital conditions in the range             and a one 

dimensional input signal that ranges between        . For finding the optimal 

parameters for this model the input ranges have been chosen to be             . 

The specification for this model that S-Taliro tries to falsify is that the state of the 

system should always remain in the set        . 
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Deposition by the Global Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 94 .0040, .0109, .0190 20, 248.6, 1000 

100 0.7 98 .0013, .0204, .0395 20, 160.4, 1000 

100 0.5 97 .0027, .0150, .0383 20, 179.6, 1000 

100 0.3 99 .0341, .0341, .0341 20, 179.6, 1000 

100 0.1 97 1.4735e-4, .0095, .0177 20, 177.8, 1000 

Table 3: Global Least Method for gridsize of 10 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 92 .0016, .0223, .0503 20, 300.8, 1000 

100 0.7 92 3.9447e-4, .0215, .0530 20, 356.2, 1000 

100 0.5 93 .0084, .0384, .0626 20, 324.6, 1000 

100 0.3 89 .0015, .0239, .0406 20, 378.6, 1000 

100  0.1 94 .0024, .0171, .0594 20, 319.2, 1000 

Table 4: Global Least Method for gridsize of 32 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 91 .0035, .0269, .0575 20, 308, 1000 

100 0.7 91 .0035, .0170, .0378 20, 348, 1000 

100 0.5 94 4.6015e-4, .0238, .0607 20, 301.8, 1000 

100 0.3 87 .0015, .0177, .0554 20, 380, 1000 

100 0.1 92 .0021, .0208, .0510 20, 326.4, 1000 

Table 5: Global Least Method for gridsize of 60 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 89 4.8651e-4, .0299, .0719 20, 381, 1000 

100 0.7 93 1.5687e-4, .0201, .0504 20, 358.4, 1000 

100 0.5 90 4.5552e-4, .0222, .0688 20, 348.4, 1000 

100 0.3 95 8.6144e-4, .0431, .0744 20, 348.2, 1000 

100 0.1 86 3.1873e-5, .0240, .0743 20, 399.8, 1000 

Table 6: Global Least Method for gridsize of 90 on Delta-Sigma 
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Deposition by the Cycle Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 100 0, 0, 0 20, 156.6, 760 

100 0.7 100 0, 0, 0 20, 156.8, 660 

100  0.5 100 0, 0, 0 20, 153.2, 460 

100  0.3 100 0, 0, 0 20, 160.6, 680 

100 0.1 100 0, 0, 0 20, 183.2, 740 

Table 7: Cycle Least Method for gridsize of 10 on on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 94 .0759, .0993, .1253 20, 321.6, 1000 

100 0.7 100 0, 0, 0 20, 274.8, 880 

100  0.5 99 .0966, .0966, .0966 20, 294.8, 1000 

100  0.3 97 .0469, .0696, .1067 20, 291.4, 1000 

100 0.1 98 .0886, .0929, .0973 20, 291.6, 1000 

Table 8: Cycle Least Method for gridsize of 32 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 97 .0156, .0452, .0620 20, 318.8, 1000 

100 0.7 96 .0099, .0870, .1331 20, 279.8, 1000 

100  0.5 98 .0573, .0632, .0690 20, 287.6, 1000 

100  0.3 94 .0086, .0616, .1398 20, 314, 1000 

100 0.1 96 .0788, .1152, .1523 40, 275.2, 1000 

Table 9: Cycle Least Method for gridsize of 60 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 91 .0150, .0843, .1462 20, 385.4, 1000 

100 0.7 99 .0579, .0579, .0579  20, 321.8, 1000 

100  0.5 95 .0110, .0644, .1352 20, 334.6, 1000 

100  0.3 97 .0499, .0833, .1182 20, 379.4, 1000 

100 0.1 98 .1132, .1225, .1319 20, 308.2, 1000 

Table 10: Cycle Least Method for gridsize of 90 on Delta-Sigma 
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Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles. 

Runs   #Falsifications Robustness  Tests 

100 0.9 100 0, 0, 0 20, 178.8, 820 

100 0.7 100 0, 0, 0 20, 157, 740 

100  0.5 100 0, 0, 0 20, 136, 640 

100  0.3 100 0, 0, 0 20, 175.2, 640 

100 0.1 100 0, 0, 0 20, 179.2, 640 

Table 11: Auto-Switch Method for gridsize of 10 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 96 .0012, .0166, .0526 20, 297.6, 1000 

100 0.7 100 0, 0, 0 20, 248.6, 1000 

100  0.5 98 .0020, .0082, .0145 20, 276.8, 1000 

100  0.3 99 6.2061e-4, 6.2061e-4, 6.2061e-4 20, 284, 1000 

100 0.1 96 .0042, .0147, .0253 20, 293.8, 1000 

Table 12: Auto-Switch Method for gridsize of 32 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 97 .0026, .0196, .0379 20, 327.8, 1000 

100 0.7 96 .0020, .0425, .0705 20, 284, 1000 

100  0.5 97 .0029, .0118, .0182 20, 304.4, 1000 

100  0.3 95 1.8723e-4, .0131, .0316 20, 328.8, 1000 

100 0.1 98 .0066, .0079, .0092 20, 352.2, 1000 

Table 13: Auto-Switch Method for gridsize of 60 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 96 .0022, .0246, .0507 20, 300.6, 1000 

100 0.7 96 .0098, .0352, .0629 20, 309.4, 1000 

100  0.5 95 .0066, .0335, .0650 20, 324.8, 1000 

100  0.3 97 .0044, .0170, .0268 20, 360.6, 1000 

100 0.1 94 .0012, .0102, .0251 20, 329.6, 1000 

Table 14: Auto-Switch Method for gridsize of 90 on Delta-Sigma 
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Deposition by the Cycle Best and the Global Best Ants 

Runs   #Falsifications Robustness  Tests 

100 0.9 100 0, 0, 0 20, 161.2, 960 

100 0.7 97 .0013, .0159, .0262 20, 204.2, 1000 

100  0.5 100 0, 0, 0 20, 168.4, 700 

100  0.3 99 .0182, .0182, .0182 20, 172.2, 1000 

100 0.1 98 .0073, .0154, .0235 20, 192, 1000 

Table 15: Cycle & Global Deposition for gridsize of 10 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 90 2.9453e-4, .0247, .0457 20, 326.8, 1000 

100 0.7 94 .0049, .0152, .0248 20, 304.2, 1000 

100  0.5 94 8.1405e-4, .0148, .0266 20, 310.4, 1000 

100  0.3 97 .0077, .0185, .0324 20, 274.8, 1000 

100 0.1 97 .0294, .0419, .0609 20, 293.8, 1000 

Table 16: Cycle & Global Deposition for gridsize of 32 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 91 1.8335e-4, .0259, .0676 20, 394.4, 1000 

100 0.7 88 3.3173e-4, .0299, .0669 20, 359.2, 1000 

100  0.5 91 .0026, .0155, .0447 20, 325.8, 1000 

100  0.3 95 .0178, .0363, .0653 20, 297.6, 1000 

100 0.1 87 .0039, .0260, .0586 20, 373, 1000 

Table 17: Cycle & Global Deposition for gridsize of 60 on Delta-Sigma 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 92 .0042, .0336, .0802 20, 360.8, 1000 

100 0.7 93 .0179, .0336, .0553 20, 327, 1000 

100  0.5 98 .0036, .0037, .0039 20, 283.2, 1000 

100  0.3 92 .0010, .0171, .0519 20, 317.2, 1000 

100 0.1 96 .0087, .0209, .0421 20, 303.8, 1000 

Table 18: Cycle & Global Deposition for gridsize of 90 on Delta-Sigma 
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4.3 EACO on the Navigation Benchmark Problem 

The second benchmark problem that we use to find the optimal parameters for 

EACO is the Navigation (NV) benchmark problem from [22]. This is a hybrid 

automaton benchmark with     discrete locations and 4 continuous variables 

            .        
  and          refer to the position and velocity of the system 

respectively. The invariant set of every location is the box that constraints the 

position of the system. The guards in each location are the edges and the vertices 

that bound the location. The formulas against which S-Taliro is executed to find 

falsifying trajectories in the navigation benchmark problem have been described in 

the [24]. 

To find the optimal parameters for EACO we use S-Taliro to falsify the fifth 

formula in [24] for the NV benchmark problem. 
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Deposition by the Global Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 61 1.0843e-7, 8.8661e-5, 1.9649e-4 40, 667, 1000 

100 0.7 53 2.9471e-5, 8.8853e-5, 1.9733e-4 80, 700.4, 1000 

100 0.5 62 1.2210e-5, 1.1245e-4, 2.0079e-4 40, 691.4, 1000 

100 0.3 64 1.1879e-7, 9.7389e-5, 1.9960e-4 40, 657.6, 1000 

100 0.1 58 8.0472e-6, 7.8040e-5, 1.9296e-4 20, 728.4, 1000 

Table 19: Global Least Method for gridsize of 10 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 47 3.0015e-6, 1.2148e-4, 2.0274e-4 60, 777.8, 1000 

100 0.7 48 3.1961e-6, 1.2192e-4, 1.9725e-4 40, 800.6, 1000 

100 0.5 46 1.9315e-5, 1.3334e-4, 1.9982e-4 60, 795.2, 1000 

100 0.3 45 1.9069e-5, 1.2670e-4, 2.0534e-4 60, 790, 1000 

100  0.1 38 2.3390e-6, 1.3442e-4, 2.0201e-4 20, 837, 1000 

Table 20: Global Least Method for gridsize of 32 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 41 3.4978e-5, 1.4302e-4, 2.0040e-4 20, 802, 1000 

100 0.7 45 3.2177e-5, 1.3841e-4, 2.0189e-4 80, 773.8, 1000 

100 0.5 33 4.2862e-7, 1.4419e-4, 2.0282e-4 60, 859, 1000 

100 0.3 36 4.8758e-6, 1.3776e-4, 2.1236e-4 80, 827.4, 1000 

100 0.1 39 3.4130e-5, 1.4559e-4, 2.0178e-4 100, 836.2, 1000 

Table 21: Global Least Method for gridsize of 60 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 31 5.6258e-7, 1.2861e-4, 2.0153e-4 40, 858, 1000 

100 0.7 46 7.4329e-6, 1.4064e-4, 2.0481e-4 20, 805, 1000 

100 0.5 40 1.8508e-5, 1.4216e-4, 1.9882e-4 60, 827.2, 1000 

100 0.3 34 1.9961e-5, 1.4703e-4, 2.0091e-4 180, 872.4, 1000 

100 0.1 39 2.5056e-6, 1.3171e-4, 2.0175e-4 160, 854.2, 1000 

Table 22: Global Least Method for gridsize of 90 on Navigation benchmark 
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Deposition by the Cycle Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 44 3.1510e-5, 2.2777e-4, 7.7005e-4 20, 780, 1000 

100 0.7 42 3.2003e-5, .0347, 2 60, 780, 1000 

100  0.5 45 3.7187e-5, 2.0166e-4, 6.2379e-4 40, 718.8, 1000 

100  0.3 42 3.0905e-5, .0347, 2 40, 798.6, 1000 

100 0.1 43 3.3164e-5, 2.4495e-4, 6.1270e-4 40, 778.8, 1000 

Table 23: Cycle Least Method for gridsize of 10 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 29 1.9543e-5, 3.2772e-4, 7.2911e-4 40, 842.8, 1000 

100 0.7 22 7.4857e-5, .0772, 2 80, 905.4, 1000 

100  0.5 19 6.3969e-5, .0744, 2 20, 898.8, 1000 

100  0.3 20 4.9701e-5, .0253, 2 120, 898.6, 1000 

100 0.1 11 4.7541e-5, .1127, 2 60, 940.8, 1000 

Table 24: Cycle Least Method for gridsize of 32 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 12 9.2472e-5, .1140, 2 80, 941, 1000 

100 0.7 16 5.0001e-5, .0241, 2 40, 926.6, 1000 

100  0.5 16 6.1007e-5, .0480, 2 100, 919.8, 1000 

100  0.3 10 5.9755e-5, .0448, 2 100, 972, 1000 

100 0.1 14 8.3364e-5, .0469, 2 60, 934.6, 1000 

Table 25: Cycle Least Method for gridsize of 60 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 13 8.5167e-5, .0463, 2 100, 919.2, 1000 

100 0.7 12 6.3932e-5, 3.5545e-4, 6.9061e-4 40, 940, 1000 

100  0.5 9 4.3649e-5, .0443, 2 340, 967, 1000 

100  0.3 12 6.9424e-5, .0686, 2 40, 927, 1000 

100 0.1 7 5.0292e-5, 3.7626e-4, 6.9001e-4 40, 962, 1000 

Table 26: Cycle Least Method for gridsize of 90 on Navigation benchmark 
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Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles. 

Runs   #Falsifications Robustness  Tests 

100 0.9 57 2.9978e-5, 1.1490e-4, 2.1197e-4 40, 724.2, 1000 

100 0.7 53 1.0409e-5, 1.0392e-4, 2.0559e-4 60, 733.6, 1000 

100  0.5 58 2.9811e-5, 9.0305e-5, 2.0971e-4 40, 726.4, 1000 

100  0.3 52 2.2560e-5, 8.5693e-5, 1.9677e-4 20, 722.6, 1000 

100 0.1 55 3.0438e-5, 9.7972e-5, 2.0313e-4 40, 709.8, 1000 

Table 27: Auto-Switch Method for gridsize of 10 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 33 8.8470e-6, 1.3923e-4, 2.1117e-4 20, 865.6, 1000 

100 0.7 34 2.3765e-5, 1.4987e-4, 2.1416e-4 100, 886.8, 1000 

100  0.5 31 2.6572e-5, 1.3519e-4, 2.1251e-4 120, 877, 1000 

100  0.3 35 1.3833e-5, 1.3969e-4, 2.1329e-4 100, 882.8, 1000 

100 0.1 19 3.4106e-5, 1.2139e-4, 2.1083e-4 60, 928.4, 1000 

Table 28: Auto-Switch Method for gridsize of 32 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 28 3.7765e-5, 1.5181e-4, 2.1111e-4 40, 888.2, 1000 

100 0.7 28 4.9210e-7, 1.6060e-4, 2.1078e-4 60, 890.6, 1000 

100  0.5 23 3.4208e-5, 1.3895e-4, 2.0727e-4 40, 917, 1000 

100  0.3 18 3.7446e-6, 1.5026e-4, 2.1007e-4 20, 933.8, 1000 

100 0.1 22 3.3875e-5, 1.3627e-4, 2.1041e-4 40, 925, 1000 

Table 29: Auto-Switch Method for gridsize of 60 on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 26 2.4225e-5, 1.5131e-4, 2.1444e-4  100, 898.4, 1000 

100 0.7 20 3.5574e-5, 1.5484e-4, 2.1325e-4 120, 912.6, 1000 

100  0.5 26 2.3164e-5, 1.4312e-4, 2.1184e-4 160, 932, 1000 

100  0.3 19 3.1702e-5, 1.5347e-4, 2.1357e-4 100, 955, 1000 

100 0.1 16 7.6385e-6, 1.3620e-4, 2.1160e-4 100, 936, 1000 

Table 30: Auto-Switch Method for gridsize of 90 on Navigation benchmark 
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Deposition by the Cycle Best and the Global Best Ants 

Runs   #Falsifications Robustness  Tests 

100 0.9 61 7.6669e-6, 9.0180e-5, 2.0307e-4 20, 689.8, 1000 

100 0.7 61 2.9697e-5, 1.0288e-4, 2.0469e-4 40, 653.8, 1000 

100  0.5 64 1.9084e-5, 8.6082e-5, 2.0035e-4 20, 642.4, 1000 

100  0.3 59 8.3212e-6, 8.8875e-5, 1.9925e-4 40, 666.2, 1000 

100 0.1 55 8.2749e-7, 6.5438e-5, 1.9271e-4 20, 713, 1000 

Table 31: Cycle & Global Deposition (gridsize 10) on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 43 3.1174e-6, 1.2027e-4, 2.0650e-4 20, 807, 1000 

100 0.7 47 4.8341e-6, 1.3059e-4, 2.1350e-4 140, 782.6, 1000 

100  0.5 39 3.1822e-6, 1.0807e-4, 2.0957e-4 60, 788.6, 1000 

100  0.3 45 4.0260e-6, 1.2392e-4, 2.0250e-4 40, 803.8, 1000 

100 0.1 31 3.5347e-5, 1.2037e-4, 2.0558e-4 140, 877.6, 1000 

Table 32: Cycle & Global Deposition (gridsize 32) on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 39 2.6717e-5, 1.3852e-4, 2.0092e-4 160, 850.6, 1000 

100 0.7 46 2.6741e-5, 1.4144e-4, 2.0185e-4 140, 829.4, 1000 

100  0.5 39 3.3047e-5, 1.2794e-4, 2.0470e-4 80, 844.2, 1000 

100  0.3 38 6.1733e-6, 1.3827e-4, 2.0510e-4 60, 839.2, 1000 

100 0.1 34 7.0868e-6, 1.2344e-4, 2.0385e-4 140, 873, 1000 

Table 33: Cycle & Global Deposition (gridsize 60) on Navigation benchmark 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 31 2.2009e-6, 1.2757e-4, 2.0737e-4 160, 870.6, 1000 

100 0.7 38 7.5714e-7, 1.4011e-4, 2.0051e-4 100, 863, 1000 

100  0.5 37 8.2471e-6, 1.3061e-4, 2.0638e-4 80, 830.4, 1000 

100  0.3 35 2.0519e-5, 1.2926e-4, 2.0147e-4 80, 871.4, 1000 

100 0.1 26 3.0209e-6, 1.3233e-4, 1.9908e-4 60, 896, 1000 

Table 34: Cycle & Global Deposition (gridsize 90) on Navigation benchmark 
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4.4 EACO on the Automatic Transmission Model 

The third benchmark problem that we use to find the optimal parameters for EACO 

is the Automatic Transmission Model(AT). This is a model of an automatic 

transmission controller which has one input and two outputs. The only input to the 

system is the throttle schedule, while the break schedule is set to 0 for the entire 

simulation duration. The time of simulation is 30s. The outputs to the system are the 

engine speed and the vehicle speed. A description of the model and the formulas 

against which S-Taliro is executed to find falsifying trajectories in the automatic 

transmission model have been described in [24]. 

To find the optimal parameters for EACO we use S-Taliro to falsify the fourth 

formula in [24] for the AT Model. 
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Deposition by the Global Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 41 .0023, 1.63, 8.24 60, 770.2, 1000 

100 0.7 49 .03, 1.42, 12.34 60, 720.4, 1000 

100 0.5 39 .0015, .88, 8.06 40, 761, 1000 

100 0.3 39 .0044, 1.48, 7.28 40, 785.4, 1000 

100 0.1 33 .013, 1.01, 9.88 60, 802.4, 1000 

Table 35: Global Least Method for gridsize of 10 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .07, 4.3, 33.15 1000, 1000, 1000 

100 0.7 0 .08, 3.47, 19.85 1000, 1000, 1000 

100 0.5 0 .07, 3.92, 19.71 1000, 1000, 1000 

100 0.3 0 .08, 3.75, 18.48 1000, 1000, 1000 

100  0.1 0 .07, 3.72, 20.07 1000, 1000, 1000 

Table 36: Global Least Method for gridsize of 32 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .22, 7.05, 26.84 1000, 1000, 1000 

100 0.7 0 .04, 6.69, 20.24 1000, 1000, 1000 

100 0.5 0 .18, 7.49, 29.31 1000, 1000, 1000 

100 0.3 0 .17, 7.27, 25.81 1000, 1000, 1000 

100 0.1 0 .26, 7.16, 29.08 1000, 1000, 1000 

Table 37: Global Least Method for gridsize of 60 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .16, 5.36, 21.97 1000, 1000, 1000 

100 0.7 0 .31, 7.28, 35.87 1000, 1000, 1000 

100 0.5 0 .21, 6.52, 19.72 1000, 1000, 1000 

100 0.3 0 .36, 8.08, 31.12 1000, 1000, 1000 

100 0.1 0 .21, 7.5, 36.94 1000, 1000, 1000 

Table 38: Global Least Method for gridsize of 90 on Automatic Transmission 
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Deposition by the Cycle Best Ant has been used to generate the following tables. 

Runs   #Falsifications Robustness  Tests 

100 0.9 23 .13, 4.66, 40.72 80, 815.4, 1000 

100 0.7 29 .11, 4.16, 38.41 40, 758.2, 1000 

100  0.5 19 .098, 5.62, 57.84 40, 843, 1000 

100  0.3 25 .12, 3.37, 21.5 20, 796, 1000 

100 0.1 26 .14, 3.27, 27.64 80, 797.6, 1000 

Table 39: Cycle Least Method for gridsize of 10 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .18, 9.61, 375.56 1000, 1000, 1000 

100 0.7 0 .14, 6.22, 71.4 1000, 1000, 1000 

100  0.5 0 .10, 3.9, 23.73 1000, 1000, 1000 

100  0.3 0 .11, 6.14, 122.58 1000, 1000, 1000 

100 0.1 0 .12, 7.48, 195.09 1000, 1000, 1000 

Table 40: Cycle Least Method for gridsize of 32 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .43, 7.87, 40.44 1000, 1000, 1000 

100 0.7 0 .43, 7.08, 33.67 1000, 1000, 1000 

100  0.5 0 .42, 14.29, 542.26 1000, 1000, 1000 

100  0.3 0 .14, 7.04, 29.31 1000, 1000, 1000 

100 0.1 0 .28, 7.87, 22.4 1000, 1000, 1000 

Table 41: Cycle Least Method for gridsize of 60 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .18, 5.84, 20.36 1000, 1000, 1000 

100 0.7 0 .25, 7.89, 33.22 1000, 1000, 1000 

100  0.5 0 .24, 8.07, 31.12 1000, 1000, 1000 

100  0.3 0 .42, 8.04, 28.32 1000, 1000, 1000 

100 0.1 0 .33, 8.73, 24.84 1000, 1000, 1000 

Table 42: Cycle Least Method for gridsize of 90 on Automatic Transmission 
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Auto-Switch between Cycle Best and Global Best Ants depositions after 25 cycles. 

Runs   #Falsifications Robustness  Tests 

100 0.9 21 .0072, 6.89, 161.83 60, 823.2, 1000 

100 0.7 27 .089, 2.11, 18.75 40, 796.8, 1000 

100  0.5 27 .039, 3.34, 20.51 40, 776.6, 1000 

100  0.3 26 .069, 3.73, 23.82 60, 799.6, 1000 

100 0.1 30 .094, 3.34, 22.86 60, 762, 1000 

Table 43: Auto-Switch Method for a grid size of 10 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .166, 5.24, 28.13 1000, 1000, 1000 

100 0.7 0 .079, 4.84, 100.61 1000, 1000, 1000 

100  0.5 0 .12, 5.15, 23.85 1000, 1000, 1000 

100  0.3 0 .087, 5.86, 50.42 1000, 1000, 1000 

100 0.1 0 .14, 4.87, 22.4 1000, 1000, 1000 

Table 44: Auto-Switch Method for a grid size of 32 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .22, 7.61, 24.56 1000, 1000, 1000 

100 0.7 0 .33, 7.34, 23.19 1000, 1000, 1000 

100  0.5 0 .31, 7.23, 24.95 1000, 1000, 1000 

100  0.3 0 .36, 7.74, 23.64 1000, 1000, 1000 

100 0.1 0 .33, 9.08, 36.74 1000, 1000, 1000 

Table 45: Auto-Switch Method for a grid size of 60 on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .27, 6.18, 29.73 1000, 1000, 1000 

100 0.7 0 .134, 6.76, 29.34 1000, 1000, 1000 

100  0.5 0 .13, 7.28, 29.94 1000, 1000, 1000 

100  0.3 0 .16, 6.5, 21.71 1000, 1000, 1000 

100 0.1 0 .37, 7.85, 24.66 1000, 1000, 1000 

Table 46: Auto-Switch Method for a grid size of 90 on Automatic Transmission 
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Deposition by the Cycle Best and the Global Best Ants 

Runs   #Falsifications Robustness  Tests 

100 0.9 21 .02, 1.65, 10.47 60, 818, 1000 

100 0.7 21 .069, 1.38, 11.48 40, 827.6, 1000 

100  0.5 17 .0023, 1.57, 11.05 40, 859.8, 1000 

100  0.3 15 .0051, 1.64, 11.08 120, 878.2, 1000 

100 0.1 32 .039, 1.51, 9.91 60, 734, 1000 

Table 47: Cycle & Global Deposition (grid size 10) on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .07, 3.69, 25.38 1000, 1000, 1000 

100 0.7 0 .07, 4.89, 19.71 1000, 1000, 1000 

100  0.5 0 .138, 4.65, 22.79 1000, 1000, 1000 

100  0.3 0 .072, 4.38, 24.42 1000, 1000, 1000 

100 0.1 0 .088, 3.97, 21.96 1000, 1000, 1000 

Table 48: Cycle & Global Deposition (grid size 32) on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .21, 6.98, 33.78 1000, 1000, 1000 

100 0.7 0 .207, 6.28, 25.18 1000, 1000, 1000 

100  0.5 0 .16, 8.45, 28.07 1000, 1000, 1000 

100  0.3 0 .25, 8.01, 27.63 1000, 1000, 1000 

100 0.1 0 .277, 9.66, 25.87 1000, 1000, 1000 

Table 49: Cycle & Global Deposition (grid size 60) on Automatic Transmission 

 

Runs   #Falsifications Robustness  Tests 

100 0.9 0 .18, 5.59, 23.49 1000, 1000, 1000 

100 0.7 0 .14, 5.58, 23.51 1000, 1000, 1000 

100  0.5 0 .15, 6.36, 21.39 1000, 1000, 1000 

100  0.3 0 .13, 6.61, 22.7 1000, 1000, 1000 

100 0.1 0 .31, 7.9, 26.36 1000, 1000, 1000 

Table 50: Cycle & Global Deposition (grid size 90) on Automatic Transmission 
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Chapter 5 

RESULTS 

5.1 Comparison between Optimization Algorithms 

In this section we make a comparison between the optimization algorithms provided 

by S-Taliro against the benchmark problems discussed in the previous section. The 

optimization algorithms provided by the tool are: 

1) Uniform Random 

2) Monte Carlo 

3) ACO 

For the Delta-Sigma modulator benchmark problem, the initial conditions are in the 

range             and the following input ranges are considered: 

1)              

2)            

3)              

The specification is that the state of the system must remain in the set       . Each 

of the three algorithms are run against this specification for each of the input ranges 

and a comparision is made on the performance of the algorithms. 

Algo. #Fals Robustness Tests Time(sec) 

UR 82 .0019, .0087, .0186 5, 465.64, 1000 .1967, 17.7552, 38.3188 

MC 78 .0032, .0394, .0756 10, 549.37, 1000 .3999, 21.3301, 38.9293 

ACO 96 3.2863e-4, .0086, .0200 20, 206.2, 1000 .7668, 7.9251, 38.4502 

Table 51: Comparison on Delta Sigma Modulator with input range [-.45, 45] 
 
 

Algo. #Fals Robustness Tests Time(sec) 

UR 37 2.2727e-4, .0259, .0595 10, 811.91, 1000 .3923, 31.3805, 39.1409 

MC 63 .0029, .0588, .0979 4, 650.33, 1000 .1634, 25.4940, 39.2649 

ACO 98 .0020, .0033, .0047 20, 252.4, 1000 .7630, 9.6045, 38.0263 

Table 52: Comparison on Delta Sigma Modulator with input range [-.4, 4] 
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Algo. #Fals Robustness Tests Time(sec) 

UR 0 .0141, .0656, .1199 1000, 1000, 1000 39.9770, 40.3558, 45.5991 

MC 32 7.8402e-5, .08, .1482 165, 873.67, 1000 6.6135, 35.1957, 41.750 

ACO 82 .0030, .0225, .0809 20, 493, 1000 .7825, 19.3393, 39.3373 

Table 53: Comparison on Delta Sigma Modulator with input range [-.35, 35] 
 
 
For the navigation benchmark problem similar comparison between the optimization 

algorithms is performed for each of the 5 formulas described in [24]. The following 

tables illustrate the comparison. 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 27 9.987e-7, 8.979e-5, 1.81e-4 54, 859.1, 1000 49.78, 787.5295, 926.61 

MC 43 6.025e-7, 9.395e-5, 1.82e-4 5, 869.87, 1000 5.66, 803.1635, 975.97 

ACO 66 2.01e-6, 8.494e-5, 1.76e-4 20, 557, 1000 18.38, 544.388, 1.07e3 

Table 54: Comparison on Navigation benchmark for the first formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 2,53.58, 234 1.102, 26.914, 114.3076 

MC 100 0, 0, 0 2, 47.36, 197 1.244, 26.488, 126.6534 

ACO 100 0, 0, 0 20, 35.6, 100 8.784, 19.675, 55.7264 

Table 55: Comparison on Navigation benchmark for the second formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 2,12.52, 162 .929, 6.342, 79.6583 

MC 100 0, 0, 0 2, 24.66, 117 1.05, 12.1023, 53.2432 

ACO 100 0, 0, 0 20, 21.2, 60 8.6791, 10.8967, 26.951 

Table 56: Comparison on Navigation benchmark for the third formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 2, 67.07, 303 1.196, 35.4733, 159.843 

MC 100 0, 0, 0 2, 56.49, 195 1.4964, 32.25, 102.263 

ACO 100 0, 0, 0 20, 45.2, 160 9.0459, 24.927, 87.384 

Table 57: Comparison on Navigation benchmark for the fourth formula 
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Algo. #Fals Robustness Tests Time(sec) 

UR 9 3.24e-5, 9.135e-5, 1.885e-4 23, 964.7, 1000 11.937, 490.043, 521.04 

MC 46 3.701e-5, 1.225e-4, 1.92e-4 43, 767, 1000 32.616, 502.292, 688.31 

ACO 61 1.411e-5, 8.3e-5, 2.01e-4 20, 665, 1000 11.08, 383.302, 675.49 

Table 58: Comparison on Navigation benchmark for the fifth formula 

For the Automatic Transmission Model similar comparison between the 

optimization algorithms is performed for the formulas described in [24]. The 

following table illustrates the comparison. 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 2, 32.8, 287 .2, 3.38, 29.5823 

MC 98 5.1361, 11.68, 18.23 2, 131.81, 1000 .2, 13.59, 103.22 

ACO 99 .0774, .0774, .0774 20, 41, 1000 2.0409, 4.2, 102.35 

Table 59: Comparison on Automatic Transmission for the first formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 4, 81.57, 373 .48, 9.85, 44.84 

MC 86 4.47, 8.84, 18.22 3, 271, 1000 .36, 32.89, 121.59 

ACO 75 .137, 4.03, 12.02 20, 291.6, 1000 2.39, 35.25, 121.29 

Table 60: Comparison on Automatic Transmission for the second formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 0 .114, .87, 3.11 1000, 1000, 1000 120.84, 121.14, 121.44 

MC 82 .0043, 6.64, 23.23 75, 412.38, 1000 9.13, 50.27, 122.02 

ACO 30 .015, 2.59, 13.82 20, 757.6, 1000 2.41, 91.87, 121.83 

Table 61: Comparison on Automatic Transmission for the third formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 0 .207, .625, 2.89 1000, 1000, 1000 123.84, 124.31, 130.89 

MC 0 .155, 1.56, 18.23 1000, 1000, 1000 124.58, 125.05, 125.52 

ACO 19 .053, 1.57, 11.83 20, 846.2, 1000 2.47, 105.25, 124.75 

Table 62: Comparison on Automatic Transmission for the fourth formula 
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Algo. #Fals Robustness Tests Time(sec) 

UR 0 5.89, 6.05, 6.37 1000, 1000, 1000 117.66, 118.08, 118.68 

MC 0 5.86, 6.67, 18.22 1000, 1000, 1000 118.18, 118.42, 118.64 

ACO 0 5.64, 6.17, 11.81 1000, 1000, 1000 117.84, 118.82, 119.08 

Table 63: Comparison on Automatic Transmission for the fifth formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 100 0, 0, 0 4, 147.73, 510 .42, 15.47, 53.40 

MC 100 0, 0, 0 2, 125.05, 406 .22, 13.17, 42.73 

ACO 84 5.24e-4, .0079, .037 20, 230, 1000 2.09, 24.11, 105.01 

Table 64: Comparison on Automatic Transmission for the sixth formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 97 1.11e-4, 2.96e-4, 6.18e-4 3, 379.03, 1000 .31, 39.7, 104.7 

MC 100 0, 0, 0 3, 153.73, 476 .32, 16.18, 50.06 

ACO 84 1.55e-4, .0083, .0278 20, 268.4, 1000 2.09, 28.14, 105.18 

Table 65: Comparison on Automatic Transmission for the seventh formula 

 

Algo. #Fals Robustness Tests Time(sec) 

UR 0 1.97e-5, .001, .0029 1000, 1000, 1000 104.52, 104.64, 104.82 

MC 0 1.89e-7, 3.5e-4, 7.55e-4 1000, 1000, 1000 104.97, 105.18, 106.41 

ACO 0 3.88e-7, .0018, .03 1000, 1000, 1000 104.53, 104.63, 104.95 

Table 66: Comparison on Automatic Transmission for the eighth formula 

 

5.2 Observations 

In the case of the Delta-Sigma modulator benchmark problem, the performance of 

the algorithms vary depending on the ease/difficulty with which the specification is 

falsified. It is evident from the tablular results that ACO comes up with a greater 

number of falsifications in each of the three instances of the Delta-Sigma modulator. 

Moreover ACO comes up with lower average robustness values at lower average 

runtimes which indicate greater performance at a lower computational cost. 
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In the case of the Navigation benchmark problem, it is observed that the 

performance of all the algorithms is comparable in terms of the number of 

falsifications and computation time for the second, third and fourth formulas. On 

harder problem instances, however it is clearly eveident that ACO performs better 

than MC and UR in terms of both the computation time and the number of 

falsifications. Moreover the average number of tests needed to falsify also are lesser 

when ACO is used on the Navigation Benchmark problem. 

In the case of the Automatic Transmission Model, it is observed that the 

performance of the algorithms vary depending on the ease/difficulty with which the 

specification is falsified.  

Algo. #Fals Robustness Tests Time(sec) 

UR 0 .207, .625, 2.89 1000, 1000, 1000 123.84, 124.31, 130.89 

MC 0 .155, 1.56, 18.23 1000, 1000, 1000 124.58, 125.05, 125.52 

ACO 47 .0086, 1.05, 11.96 80, 742.6, 1000 9.97, 93.26, 126.08 

Table 67: Global Least Method (fourth formula) on Automatic Transmission 

On easier problems performance of MC, UR and ACO were comparible, but on 

tougher problems (fourth formula) ACO was able to falsify 19 times where MC and 

UR could not find a falsifying trajectory. We then used the global least deposition 

technique for the fourth formula and the performace improved as the results indicate 

in Table 67. We remark that this may be a special case since ACO was optimized on 

this formula. This result seems to suggest that the problem may not have many 

minima and hence using the global best ant converges faster. Moreover the structure 

of the formula also seems to play a role in the rate at which an algorithm converges. 

Following is a summary of the comparison made between MC and ACO for the 

various problem instances that have been discussed in the previous sections. All the 
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formulas have been described in [24]. Table 68 has been generated by setting the 

taliro_metric  = „none‟ whereas Table 69 has been generated by setting the taliro_metric  

= „hybrid_inf‟. 

Problem Formula Number of Falsifications 

MC ACO 

AT   
   98 99 

AT   
   86 75 

AT   
   82 30 

AT   
   0 19 

AT   
   0 0 

             
          78 96 

           
         63 98 

             
         32 82 

Table 68: Comparison between MC & ACO with „Euclidean metric‟ 

 

Problem Formula Number of Falsifications 

MC –H0 ACO 

AT   
   100 84 

AT   
   100 84 

AT   
   0 0 

NV   
   43 66 

NV   
   100 100 

NV   
    100 100 

NV   
   100 100 

NV   
   46 61 

Table 69: Comparison between MC & ACO with „hybrid distance metric‟ 
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Chapter 6 

CONCLUSION 

6.1 Conclusions 

In this thesis we have applied the Extended Ant Colony Optimization (EACO) 

Algorithm to the problem of MTL falsification of hybrid systems. The algorithm was 

initially applied to the Delta-Sigma Modulator problem and the Navigation Benchmark 

problem to find the optimal parameters in EACO which best suit both the benchmark 

problems. The optimal parameters which worked well for the Delta-Sigma Modulator 

problem were different from the optimal parameters found for the Navigation 

Benchmark Problem. However, from the results it was evident that the algorithm, 

where the cycle best ant and the global best ant were used to update the pheromone, 

showed better results in the form of minimum number of tests needed to falsify the 

MTL specification for both the problems on an average. The performance was 

observed to be better with EACO parameters, grid size set to 10 and evaporation rate 

set to 0.5. These optimal parameters were set in the EACO algorithm and a 

comparison was made with Monte Carlo and Uniform Random Algorithms on various 

problem instances. The results of EACO on the problems that were easy to falsify 

were comparable with Monte Carlo and Uniform Random Algorithm. However on 

tougher problems the results indicate that EACO performed better that Monte Carlo 

and Uniform Random Algorithms in terms of the number of falsifications and the 

computational time. 

The results obtained from the experimental analysis are very promising and we hope 

that the toolbox with all the inbuilt optimization algorithms will be very useful for test 

engineers of hybrid systems.. S-Taliro has been developed to handle the falsification 
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problem of hybrid systems which are implemented as Simulink/State flow models or 

Matlab functions. The toolbox can be used not only to falsify MTL specifications of 

arbitrary systems but also to find how robust a hybrid system is with respect to a given 

specification. This can be especially useful in systems that have been proven to be 

correct. 

6.2 Future work 

In the experiments that were performed, four deposition techniques were used along 

with varying grid sizes and evaporation rates to find the optimal parameters for the 

Extended Ant Colony Optimization Algorithm which could be used on all the 

benchmark problems in general to find near optimal solutions. The rate at which this 

algorithm converges to a good solution varies based on the parameters being used 

and therefore additional tuning of the pheromone update rule could be done to 

better the rate at which the algorithm converges to a good solution. As future work 

we could look at: 

1) Incorporating lower and upper bounds on the pheromone deposition. 

2) Regular re-initialization of pheromone deposits on the regions. 

3) Implement parallel ant colonies and gauge the performance of the algorithm on 

various benchmarks. 

Moreover some of the results indicated that there might be some structure in the 

systems being considered or the formulas that makes one algorithm converge faster 

and perform better than others. This is a very interesting prospect for future 

research.  
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