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ABSTRACT  
   

A low cost expander, combustor device that takes compressed air, adds 

thermal energy and then expands the gas to drive an electrical generator is to be 

designed by modifying an existing reciprocating spark ignition engine. The 

engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed 

air that is stored in a tank at a particular pressure will be introduced during the 

compression stage of the engine cycle to reduce pump work. In the modified 

design the intake and exhaust valve timings are modified to achieve this process. 

The time required to fill the combustion chamber with compressed air to the 

storage pressure immediately before spark and the state of the air with respect to 

crank angle is modeled numerically using a crank step energy and mass balance 

model. The results are used to complete the engine cycle analysis based on air 

standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at 

the baseline storage conditions (280 psi, 70OF) the modified engine does not 

meet the imposed constraints of staying below the maximum pressure of the 

unmodified engine. A new storage pressure of 235 psi is recommended. This only 

provides a 7.7% increase in thermal efficiency for the same work output. The 

modification of this engine for this low efficiency gain is not recommended.  
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Chapter 1 

INTRODUCION 

PROBLEM STATEMENT 

A low cost expander, combustor engine is to be developed by modifying 

an existing internal combustion engine to accept compressed air during its 

compression stage for the purpose of eliminating much of the parasitic pump 

work required for standard engine operation. The compressed air used will be 

stored in a storage tank at 280 psi.  

Compressed air energy storage (CAES) is an energy storage system, 

similar to a dam or battery, in which excess base load energy is used to compress 

air and stored in a cavern or underground mine as potential energy (Swider, 

2007). The principal motivation behind this storing is to take advantage of the 

significant difference between peak and off peak electricity prices. This stored 

compressed air is later combusted and expanded in a turbine during times of 

peak demand (Vasdaz, 2001). 

Interest in low cost expander. Southwest Solar Technologies (SST), 

an engineering company located in Phoenix, Arizona is developing a solar turbine 

that pairs with the CAES to increase their energy yield and to take advantage of 

the decoupling of compression. This allows them to run their compressors at 

night at a lower cost for storing and later produce power during peak hours 

(Technology, 2008).  

For a proof of concept design, SST is researching the use of large air 

storage tanks for a small scale energy producing plant (power plant). The use of 

turbines for such small scale is not feasible. So SST has shown interest in 
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modifying an existing internal combustion (IC) engine to run on the stored 

compressed air.  

 Proposed Modifications.  

 Modified engine main components. The IC engine in this 

paper refers to a direct injection, spark ignition, reciprocating engine based on 

the Otto cycle. Figure 1 below is a functional representation of the modified 

engine. It shows the main functional components involved during the modified 

engine operation.  Figure 1 is not to scale and only shows a single cylinder of an 

engine and excludes many components that might be part of the modification.  

The engine will be connected to the compressed air tank (1) through a connection 

(2) to the intake valve port controlled by the filling valve (3). As the filling valve 

opens, air from the compressed air tank flows in to the combustion chamber (11) 

through the filling connection. The exhaust valve (4) and port is connected to an 

exhaust/intake connection (5) which has a one-way valve (6) and in separate 

intake port (7) attached. The piston (8) moves up and down along the cylinder (9) 

to perform the required strokes for engine operation.  A spark plug (10) provides 

the required ignition. 

 
Figure 1. Modified IC engine functional components. 
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Process modifications to allow engine operation with  

compressed air and eliminate possible pump work. To understand how 

the modified engine works, knowledge of the standard engine cycle is required. 

An overview on the standard engine cycle is provided in the background 

information section in this chapter. 

 

 

Figure 2. Modified IC engine cycle stages. 

Combustion and Expansion Stroke.  This stage is similar to  

the standard IC engine cycle. 

Exhaust Blowdown and Exhaust Stroke. This stage is also  

similar to the standard IC engine cycle. At the expansion stroke, hot exhaust 

gases are pushed out as the piston continues to move from BDC to TDC with the 

exhaust valve (4) open.  

The compressed air (CA) tank is connected to the standard intake port. 

Opening the filling valve (3) during the intake stroke will introduce the 

compressed air into the cylinder during intake. This is not desirable if the goal is 
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to eliminate pump work since work will be done against a higher pressure during 

the following compression stage. Due to this, the intake stroke will be modified as 

follows. 

 Intake Stroke.  During this stage the piston travels from  

TDC to BDC with the exhaust valve still open from the exhaust stroke. The 

filling\intake valve remains closed while atmospheric air enters the combustion 

chamber through the exhaust valve.  This stage equalizes the cylinder pressure to 

atmospheric pressure. The work done here is assumed to be negligible. Some 

modifications to the exhaust port might be required to avoid a vacuum that would 

cause the exhaust to re-enter. For example: a one-way valve.  

Following the intake stroke, the piston starts moving from BDC to TDC. 

To avoid any compression, the exhaust valve needs to still remain open. Work is 

being done by the piston causing a change in volume in the cylinder against the 

atmospheric pressure. 

Filling Stage.  For the filling to take place, the exhaust  

valve is closed and the filling (intake) valve is opened at a particular crank angle 

before TDC (this angle needs to be determined from analysis).  The filling valve is 

opened to allow the compressed air to fill the combustion chamber (CC) for just 

enough time so that the cylinder reaches the desired pressure before spark is 

initiated. The filling valve is closed around 10o before TDC or less depending on 

when fuel is injected or the spark plug is activated.  

Compression does take place due to the upward movement of the piston 

during filling and after the closing of the valve before TDC. So strictly speaking, 

pump work is not entirely eliminated, but maybe significantly reduced.   
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Mechanical modifications to allow the modified engine 

operation. 

Valve train modifications.  

For the intake side: 

 The intake valve needs to be open during the compression stroke so that 

filling can take place. Addition of material on the cam shaft is needed.   

 Also the intake valve is closed during the intake stroke. Air is sucked in 

through the exhaust port.  Subtraction of material is needed on the 

camshaft. 

For the Exhaust Side:  

 Exhaust value is still open during the intake stroke. Addition of material 

to the camshaft is needed to keep the valve open after the exhaust stroke 

and into the compression stroke. 

Other Mechanical Modifications that might be required.  

  Intake and exhaust processes happen at the same port. Modification 

might be required not to cross-contaminate the intake and exhaust air.  A 

one-way valve type modification could be used. 

Challenges and Issues.   

 For the valve modifications, valve timings for each of the stages of a 

particular engine is required. 

 For the filling stage to take place with the least amount of pump work 

(compression) the filling valve needs to be opened for just enough time to 

fill to the desired pressure and closed right before combustion begins. If 
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this time period is small, mechanical valves will not be feasible.  This 

filling time could vary with engine speed due to variations in piston speed.  

 The exhaust valve is still open until the filling valve opens in the 

compression stage to eliminate pump work as much as possible.  

 Pump work is not eliminated entirely.  

  Lower engine speeds might be required to reduce fatigue on the valves or 

to stay within the original design.  

 The modification costs might not be justified by the performance gain.  
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PREVIOUS WORK 

Compressed air energy storage (CAES). According to Vasdaz, a 

CAES system consists of two main components 1) components that do the 

compression and 2) the storing technology. 

The compression has to be highly efficient for the technology to be 

sensible. Multistage compression, inter-cooling, heat storage, recuperation etc 

are possibilities with this design (Vasdaz, 2001). 

The storage technology typically used for storing compressed air on a 

large scale is currently the state of the art (SOA) for natural gas systems. These 

natural gas systems can be of the constant pressure or constant volume type. 

An adiabatic storage system attempts to retain or store the heat produced 

during compression and re-use this heat for improving thermal efficiency of a 

power cycle.  

For SST‟s small scale system, the use of such large storage systems is not 

reasonable. So, a compressed air storage tank is preferred for this design.    

Utilizing compressed air in engine cycle. 

Patents. The idea of introducing compressed air into an IC  

engine during its compression stroke is not a new idea. Below are two patents 

using the same concept to improve the efficiency of an IC engine.  

1) USP #4 300 486     11/17/1981  Lowther, Frank E.  

The goal of Lowther‟s (1982) idea is to develop an internal  

combustion engine in which no compression function is carried out.  This is done 

by providing the compressed air to the engine from a compressed air storage tank 

which is outfitted with a pressure regulator controlled by a foot pedal to control 
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the air flow in to the combustion chamber. The engine can also be controlled 

using the foot pedal connected to the fuel injectors. 

According to (Lowther, 1981) the compression that is carried out in the 

combustion chamber in IC engines is inefficient because the process takes place 

adiabatically with one stage in a hot cylinder. This compression process also uses 

a part of the power created by the engine.   

There is a potential of substantial fuel saving if the compression is carried 

out separately and more efficiently. 

Goals/Advantages: 

 Reduce the fuel consumption of an IC engine with minimal modification, 

and improve mileage. 

 The compression function is eliminated by feeding compressed air from a 

compressed air tank in to the combustion chambers. 

 Reduce the size of the engine. 

 When engine power is not required during operation the compression 

function is not carried out.  

Description of invention: 

In (Lowther, 1981) the invention the IC engine stages are such: 

During the start of the power stroke both the intake and the exhaust 

valves are closed and a fuel air mixture is being ignited in the combustion 

chamber using spark or compression causing the expansion. At the beginning of 

the exhaust stroke the exhaust valve opens and exhaust takes place. This is 

followed by the intake stroke but, the intake valve remains closed and no intake 

takes place causing a partial vacuum in the combustion chamber. The intake 

valve and the exhaust valve remains closed untill about 200 bTDC during the 
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compression stroke. At around 200 bTDC the intake valve opens and lets the pre-

compressed air from the tank in to the combustion chamber.  Fuel is injected and 

the fuel air mixture is ignited as the piston approaches TDC.  The 200 bTDC is 

not a critical value and other timings can be used.   

2) US 2010/0031934     02/11/2010  Tayyari, Seyyed Farhad.  

In this design an external compressor is used to compress the air  

and provide it to the combustion chamber of the engine as the piston moves from 

BDC to TDC. Fuel is added, mixed and ignited to create the combustive force to 

push the piston from TDC to BDC. 

Goal/Advantages:  

 An external compressor is used to perform intake and compression, 

combustion and exhaust takes place in the combustion chamber. The 

cycle is designed so that there is a combustion stage in each 

revolution. 

 The engine would have twice the power of a comparable 4 stroke 

engine with similar volume and cylinders. 

 If the additional power is not required the engine RPM can be reduced 

to half to increase fuel efficiency and engine durability. 

Description of invention: 

Functional- The piston moves from BDC to TDC for the exhaust stroke 

with the exhaust valve opens pushing the exhaust out. At around 40o to 50o 

degrees bTDC the primary entry valve and the intake valve opens and the 

compressed air enters the combustion chamber pushing the remaining exhaust 

out of the exhaust valve. The exhaust valve is closed and fuel is injected as the 

intake valve closes. The fuel air mixture may or may not be further compressed, 
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but is then ignited when the piston reaches TDC causing the power stroke. The 

piston moves from TDC to BDC and then back to the exhaust stroke continuing 

the cycle. According to the above scheme there is a power stroke every cycle. 

 The approach taken in this paper is very similar to Lowther‟s design. In 

his approach the overall pump work is higher because the pump work during the 

exhaust stroke is not offset by the pump work during intake stroke due to the 

vacuum being created. He also does not give a justification of the 20O bTDC 

value.  

In the proposed modification the exhaust stroke pump work is offset by 

the similar intake stroke pump work. It is also the goal of this paper to 

mathematically calculate the filling valve open angle.  

In both the patents there is no attempt to model what happens during the 

filling or mathematically predict the engine performance gained.  

 A thorough search of technical journals available was done using the 

research databases available at Arizona State University. Engineering Village 

Compendex, Engineering Village Inspec, Knovel, Energy Citations Database and 

Google Scholar are the databases used. The keywords used during the search are 

compressed air energy storage, internal combustion engine, CAES IC engine, 

stored air system combustion engine, internal combustion external compression 

engine, gas spring model or analysis, air filling piston moving upward, reduce 

pump work in IC engine, filling air in cylinder.  

Based on this through literature search, it is concluded that a 

thermodynamic analysis on the proposed modification has not been performed 

before. This provides a good opportunity to investigate the thermodynamics of 
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the proposed modification and gauge the performance and sensibility of the 

modification.  

BACKGROUND INFORMATION 

An internal combustion engine (ICE) can be classified in many different 

ways based on a variety of parameters such as type of ignition, type of cycle, valve 

location, etc (Pulkrabeck, 2003). In a reciprocating engine a piston is connected 

to a crankshaft through a connecting rod, thus forming a relational configuration 

between the piston and crankshaft.  As the crankshaft is rotating, it causes the 

piston to move up and down inside a cylinder which provides the space for the 

functions of an engine cycle. (Figure 3)  

The position of the piston when it stops at the farthest point away from 

the crankshaft is called the top dead center (TDC). And the bottom dead center 

(BDC) is the position of the piston when it stops at the point closest to the 

crankshaft.  

To facilitate the working of an engine, valves are used to allow for flow 

into (intake valve) and out of (exhaust valve) the cylinder.  A spark plug is also 

used to initiate combustion by use of a spark. 

 
Figure 3. Standard engine cycle stages. 
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Standard four stroke engine cycle. 

Intake Stroke: During this stage, the piston travels downward  

from top dead center (TDC) to bottom dead center (BDC) with the intake valve 

open and exhaust valve closed. This vacuum creating action draws air into the 

combustion chamber.  Fuel may or may not be injected into the air flowing in 

depending on the type of fuel injection system (Pulkrabeck, 2003). 

Compression Stroke: After the intake stroke, both the intake and  

exhaust valves are closed. During this stage the piston moves from BDC to TDC, 

compressing the air. Fuel could also be injected during the later part of this stage.  

At a very short period (spark advance) before compression stage ends, the spark 

plug is activated to start combustion (Pulkrabeck, 2003).   

  Combustion and Expansion Stroke: During this stage, the air fuel 

mixture is ignited which raises the temperature and pressure to high peak values. 

The high pressure created by the combustion pushes the piston from TDC to BDC 

creating work (Pulkrabeck, 2003).   

Exhaust Blowdown and Exhaust Stroke: After the expansion, the  

exhaust valve is opened and the hot exhaust gases are pushed out of the cylinder 

due to the pressure differential caused by the hot gases in the cylinder. As the 

piston continues to move from BDC to TDC the remaining exhaust gases are 

pushed out through the exhaust valve (Pulkrabeck, 2003). The intake valve opens 

at TDC to allow for intake, and the cycle continues.  
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RESEARCH QUESTION 

 The research question and its secondary questions are listed below: 

What is the decrease in fuel heat input (Qin) to an existing engine if 

stored compressed is used air to reduce compression work done by the piston? 

Other questions included in the scope of this work are: 

• How is the operation of a standard SI engine modified?  

• What modifications are required for the modified operation? 

• How can the compression stage of the modified engine be 

thermodynamically and numerically modeled and compared to the 

standard compression stroke? 

• What is the state of the air in the CC with respect to crank angle at 

the provided storage pressure and temperature of 280 psi and 

70OF respectively? 

• How does the above state compare to other storage pressures at 

the same temperature? 

• Is the engine feasible at the provided storage pressure and other 

considered storage pressures? 

• What is the thermal efficiency of the modified engine operation at 

the provided and considered storage pressures? 
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STATEMENT OF WORK 

In this paper the engine considered is a reciprocating, single cylinder, four 

stroke, spark ignition gasoline engine. The specifications of the Briggs and 

Stratton 6.5 hp INTEK ™ PRO Model Series 122600 are used for the numerical 

model.   

Deliverables. 

 Modifications necessary to achieve filling. 

 Mathematical modeling of the compression (filling) stroke 

applicable to any SI engine. 

 Thermodynamic behavior of the filling process.  

 Filling schedule of valve movements vs. crank angle for the design 

engine. 

 Predicted engine performance. 
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MODEL DEVELOPMENT  

 This chapter describes how the model was developed. The first section 

describes how the compression stage in a standard engine is modeled. The next 

section describes how this model is changed for the modified engine compression 

stroke. The equations for the remaining performance of the engine are then 

presented. Finally the model assumptions and constraints are presented in the 

final two sections of this chapter.     

STANDARD ENGINE COMPRESSION STAGE 

In a standard 4 stroke engine the compression stage begins a little after 

BDC when the intake valve closes (~10o aBDC) (Pulkrabeck, 2003). The air 

contained within the combustion chamber (CC) or cylinder is compressed as the 

piston moves towards TDC. In most cases the spark may be initiated before TDC 

to start combustion. 

Referring to Figure 4, the compression stage of the standard engine will 

be modeled from the crank angle at intake valve close Φi, to Φf (TDC). 

At Φi the state of the air in the combustion chamber is assumed to be at 

atmospheric conditions (14.7 psi and 70oF). The valves are closed and air 

contained within the combustion chamber forms a closed system. If it is assumed 

that the system is well insulated (adiabatic) and irreversibilities due to 

mechanical friction are negligible (air-standard assumptions) the compression 

can be considered to be an isentropic process. This process is discussed in 

chapter 7.4 of Chengel (2006). Ideal gas and constant secific heats are also 

assumed.  
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As the piston moves upwards the pressure P, and volume V, are related by 

equation 1. Since the mass of air in the CC is constant, the pressure and 

temperature in the cylinder at any crank angle simplifies to equation 2. 

                         
  

  
  

  

  
 
 
                       ( 1 )                                            

                                      
  

  
  

      

      
 
 
                           ( 2 )                                                                                                                                                  

  

The volume of air in the CC at any crank angle is given by equation 3, 

where Vc is the clearance volume, B is the bore of the cylinder, r is the connecting 

rod length, a is crank offset, and s is the piston position with crank angle or the 

stroke length from BDC. This term is defined by equation 4. Φ is the crank angle 

taken to be 0o at BDC. (Pulkrabeck, 2003) 

                                                  
 

 
                                                        (3) 

 

             θ               θ                                      ) 

 

The mass of the air in the CC is constant and is calculated by the ideal gas 

equation (5). R is the gas constant for air, and M is the mass of the air.  

                                     ,                                                                (5) 

 

Work done by the piston during this process (Chengel, 2006) is given by 

equation 6. 

         
           

   
              

     

     
                                (6) 
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Figure 4. Standard engine compression thermodynamic model. 

MODIFIED ENGINE COMPRESSION STROKE 

Based on the process modifications discussed, the modified engine 

“compression stroke” Φi to Φf can be divided in to 3 stages.  Referring to Figure 5 

they are:  (a) no compression stage (Φi to θi), (b) filling stage (θi to θf), and         

(c) further compression stage (θf to Φf). Constant specific heats at 300O K are 

assumed for all stages. 

 
Figure 5. Modified engine detailed compression stroke. 
 

(a)          No compression stage: During the no compression stage, the exhaust 

valve remains open (continuing from the intake stroke), while the filling valve 

remains closed. The pressure and temperature in the cylinder remains at 

atmospheric conditions while the volume changes as the piston moves from 

10oaBDC (Φi) to filling valve opening at θi.  
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Pressure and temperature remain constant at 14.7 psi and 70oF. The 

volume changes according to equation 3 and equation 4. The mass of the air 

in the CC at any time during this stage is given by the ideal gas equation 5.    

θi will be determined after analyzing the filling stage.   

Since the pressure in the CC is constant the work being done by the piston 

moving from φi to θi given by equation 6 simplifies to Wb=P (V (θi)-V (φi)). 

(b)        Filling stage:  This stage begins when the filling valve opens at θi. The 

exhaust valve closes at this point.  There is a pressure differential between the 

storage tank which is at constant pressure and the operating volume in the 

cylinder.  

The CC is being filled up due to this pressure differential and will stop 

when the pressure in the CC equalizes with pressure PCT in the compressed air 

storage tank.  

 The goal is to have the filling period as short and as late as possible, so 

that much of the compressive work that occurs after the valves are closed is 

eliminated. 

At θi the state of the air in the CC is known from the previous stage. To 

find the state of the air in the CC with respect to crank angle a 

thermodynamic analysis is done. Referring to Figure 6, the control volume 

forms an unsteady flow process due to the introduction of air in to the CC. 

Both the size and mass of the control volume are changing with time.  

In this case there is mass entering the system        and not exiting, so the 

mass balance simplifies to equation 7. Here w is the angular speed of the 

engine and Δθ is the crank step  

                                
                    (7) 
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If the system in Figure 6 is adiabatic and the moving piston does 

boundary work on the system the energy balance simplifies to equation 8 and 

equation 9. 

                                                             (8) 

   
              

  
                                                          (9) 

 Since the air is considered as an ideal gas, u and h are functions of 

temperature only (u=Cv T & h=Cp T). Cv and Cp are constant volume and 

constant pressure specific heats respectively. For air the change in Cp and Cv 

over 300K to 600k is around 3% only, so it is considered to be constant at 

300K. This assumption simplifies equation 9 to equation 10.  

   
          

              

     
                                           (10) 

Knowing the temperature T2, mass M2, volume V2 (θ2) of the next step 

the pressure is calculated by the ideal gas equation as in equation 5. Hence 

the state of the next step is determined.  

 
Figure 6. Filling stage thermodynamic model 

The boundary work on the system for the step of Δθ and the mass flow 

rate of air in to the CC needs to be determined. 

Boundary work or the work done by the piston is calculated for each step  
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of Δθ since the pressure varies with the work done by filling and boundary work. 

For each step, the previous pressure is assumed to be constant over the v0lume 

change.  After the new pressure is calculated using equations 7 -10 the pressure is 

updated for the next step. The total boundary work is calculated by adding the 

step works for the swept volume. Refer to equation 11 where N is the number of 

steps. 

                   
                                              (11) 

  The rate at which the air is entering the cylinder depends on this pressure 

differential. As long as the pressure differential is greater than the critical 

pressure ratio the flow is choked and has a limited mass flow rate.  

  If the pressure differential is lesser than the critical pressure the flow rate 

depends on the new pressure in the cylinder and the pressure in the tank. 

  Chocked and non chocked flow.  In the case in question, the mass of 

the air in the cylinder is not constant. It is increasing as the piston is moving up 

due to the filling. The mass flow rate into the cylinder depends on the resulting 

pressures in the two chambers.  

As soon as the valve is opened, the air rushes into the CC to equalize the 

pressure. The pressure in the CC is increasing to equal the pressure in the 

compressed air tank (CT).  This flow can be divided into two stages or regions 

based on the downstream pressure, choked and non-choked stages. 

The critical pressure is defined as:  

           
 
 

       
    

                                         (12) 

If the pressure in the CC P<Pcrt the mass flow rate is only a function of the 

source pressure and temperature and is given by equation 13.  
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                                (13) 

If the pressure in the CC P>Pcrt the mass flow rate is variable upon the 

source pressure, temperature and downstream condition. Mass flow rate is given 

by the equation 14 

           
 

    

 

   
  

 

   
 
 

  
  

 

   
 

   
  

                          (14) 

This divides the filling into choked flow (Pi to Pcrit) and non-choked flow 

(Pcrit to PCT) stages. 

(c)         Further compression stage. After the filling valve is closed, fuel is added  

and ignited to start the combustion process. The fuel filling is not included in this 

air standard model.  

 The mass of air inside is further compressed until the piston reaches  

TDC. Since this process now forms a closed system, isentropic relationships as in 

equation 1 and equation 2 can be invoked. 

 ENGINE PERFORMANCE 

  After the standard compression stage and the modified compression stage 

the cycle is considered to be the same for both cases (combustion and expansion). 

To compare the overall benefits and performance of the engine the states of the 

remaining stages are calculated as given below. These equations are from 

(Pulkrabeck, 2003).  

 Combustion in a spark ignition engine is constant volume. Heat (equation 

15) is added to raise the temperature and pressure (equation 16) to peak levels. 

Ma is the mass of the air in the cylinder and Mf is the mass of the fuel.  The air to 

fuel ratio (AF) is known Mf=Ma/AF.  T2 and T3 is the temperature of the air in 

the cylinder after compression and combustion respectively. QHHV is the higher 
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heating value of the fuel and ζc is the efficiency of combustion.P3 is the peak 

pressure in the CC. 

                                                                  (15) 

     
  

  
                                                                          (16) 

After combustion, isentropic expansion follows.  P4 and T4 are the 

pressure and temperatures in the CC after expansion.  

      
 

  
 
 
                                                                           (17) 

         
 

  
 
   

                                                                       (18) 

Work done by expansion is                 and so the thermal efficiency of 

the engine is     
       

   
. Another way of basing engine performance is 

through the mean effective pressure                 , where Vd is the 

displacement volume.  

ASSUMPTIONS 

•  Otto Cycle  

• Spark Ignition Engine  

•  Air-standard model  

• Simple compressible system and uniform unsteady flow during 

filling steps  

•  Cp, Cv constant ϒ=1.4 

•  Compression ratio=10 

• Combustion efficiency=1  

•  Baseline air storage at 280 psi, 700 F 

•  Previous pressure assumed constant for Δθ to calculate work and 

mass flow rate.  
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CONSTRAINTS 

•  Stratton 6.5 hp INTEK ™ PRO Model Series 122600 

•  Fill valve close 10o bTDC spark advance 

•  AF ratio stoichiometric =15 for gasoline 

• (P, T) peak modified <= (P,T) peak standard 
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NUMERICAL IMPLEMENTATION 

 This chapter describes how the equations presented in the previous 

chapter were implemented into a MATLAB model. 

1) Primary Algorithms (unsteadyflow .m) 

 

Figure 7. Block diagram for unsteadyflow.m,  filling stage  

 
The program “unsteadyflow.m” is a script file that runs through an algorithm 

to find the states of the air in the CC for the compression stage of both the 

standard and modified engines. It is divided in to three parts (filling, no filling, 

further compression) for the modified stage and one part for the standard engine.  

The block diagrams for each of the parts of the program are shown in Figure 7, 

Figure 8, Figure 9, and Figure 10. 

For all the parts the inputs are common and they are as follows:  
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Reservoir Condition (Compressed Air Tank Conditions) 

 Pressure Pin (Pa) 

 Temperature Tin (C) 

 gamma ϒ ,constant specific heat 

Engine Operation Condition  

 Engine Speed N (rev/min) which yields crank speed angular 

velocity w (rad/sec) 

 Compression stage beginning angle φi or intake valve close angle 

for standard engine   

 Fill valve open angle θi for modified engine  

 Fill valve close θF. 

  Compression stage ending  angle φf or TDC 

Initial Conditions in the Combustion Chamber  

 Pressure in the combustion chamber after intake stroke  P1 (Pa) 

 Temperature in the combustion chamber after intake stroke T1 (C) 

 Gas constant R (0.286E3 J/kg/K) 

Inputs for Calculation  

 Δθ for each section. It is smaller for the filling stage for more 

accuracy.  

 Constant specific heats for air Cp and Cv  (J/Kg/K) 

The outputs of each part are the states of the air in the combustion 

chamber with respect to crank angle.  
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State of the Air in the Combustion Chamber  

 Pressure in the combustion chamber P2 (psi) 

 Temperature in the combustion chamber T2 (C) 

 Volume at each step V1,V2 (m3) 

 Mass of the air in the combustion chamber M1,  M2 (kg) 

 Mass flow rate of the air in to the combustion chamber from the 

fill port mdot_in (kg/sec) at every step. 

Filling Time Period 

 Crank Angle required to reach the compressed tank pressure in 

the combustion chamber.  

 Time for intake derived from the crank angle. 

Engine Cycle States and Performance   

 Pressure and temperature after compression stage Pc (psi) and Tc  

 Pressure and temperature after combustion stage P3 (psi), T3  

 Pressure and temperature after expansion stage P4 (psi), T4  

 Pump Work for both standard and modified case (J) 

 Work Expansion Wexp (J) 

 Mass of fuel Mf (kg) based on constant air fuel ratio AF  

 Heat added in to the engine during combustion Qin (J) 

 Thermal Efficiency  

 Mean effective pressure (psi) 

For each part the algorithm is followed to complete the stroke from 

10OaBDC to TDC.  
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A θi is guessed; if pressure at fill valve close, θf equals the pressure in the 

compressed air tank, then the fill valve opening angle is found. If not a new θi is 

guessed. For each of the part the equations as presented in the model 

development section are followed. 

 

 

Figure 8. Block diagram for unsteadyflow.m, no filling stage 
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Figure 9. Block diagram for unsteadyflow.m further compression stage 

 

 

Figure 10. Block diagram for standard compression stage 
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2) Secondary Algorithms (CylinderStateSI.m , CylinderStateNCKSI.m, 

CylinderStateNoFlow.m) 

This is a function that calculates the operating volume of a combustion 

chamber with respect to piston position as specified by the crank angle and mass 

flow rate of the air from the compressed air tank into the combustion chamber.   

 
Figure 11. Block diagram for inline functions in unsteady flow.m 

 
All three programs have the same inputs and they are as follows: 

Variables  

 Crank Angle  θi  

 Current Pressure in the cylinder   P1 (Pa) 

Required Parameters  

Engine Characteristics.  

 Bore (m)  b, Connecting rod length (m) r,  Stroke (m) S, 

Crank offset length (m) a=S/2,   

 Compression Ratio (rc)  

 Displacement Volume  Vd,  Clearance Vol (m^3) 

Vc=Vd/(rc-1) 

 Valve diameter dv, Effective area of intake valve  

Av=pi*0.25*dv^2 ((Pulkrabeck, 2003)),  
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 Engine Speed N (rev/min) which yields crank speed 

angular velocity w (rad/sec)  

Compressed Tank Conditions Air  

 Pressure Pin (Pa), Temperature Tin(C), gas 

constant R,  Ratio of specific heats ϒ 

All three of the inline functions have the same outputs namely: 

Operational Outputs  

 Operational volume of the combustion chamber , V (m^3) 

 Mass flow rate of the air in to the combustion chamber, 

mdot_in (kg/sec) 

Other Outputs 

 Critical Pressure Pcrit (psi)based on the compressed air tank 

conditions  

The difference in the functions is whether there is flow or not, and if there 

is mass flow, whether the flow is choked or not. This is decided by the script 

unsteadyflow.m by checking if the calculated pressure is above or below the 

critical pressure and directed to the appropriate inline function. If the fill valve is 

closed CylinderStateNoFlow.m is used, if fill valve is open and the pressure in the 

combustion chamber is below critical pressure CylinderStateSI.m  is used and if 

the fill valve is open and the pressure in the combustion chamber is above critical 

pressure CylinderStateNCKSI.m is used. The equations used to calculate the mass 

flow rates are explained in the model development section under „choked and no 

choked flow‟. 
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RESULTS 

BASELINE CASE 

Baseline Engine. The baseline engine closely follows the Briggs and 

Stratton 6.5 hp INTEK ™ PRO Model Series 122600 specifications. Table 1 

presents the specifications used for the mathematical model. This data was 

obtained from Briggs & Stratton Engine Specifications, ( 2003) and Crankshaft 

Drawings, (2003 ). The valve size is determined using the optimal valve size 

derivation given in (Pulkrabeck, 2003)  

In Figure 12 and Figure 13 general states of the air in the CC during the 

compression stage of a standard engine are plotted with respect to the crank 

angle. Compression is taken to begin at 10o aBDC and end at TDC. 

Table 1 

Baseline Engine Specifications  

Specification English Units   Metric Units  

Bore (B) 2.69 in 68.3 mm 

Stroke (S) 2.04 in  51.8 mm 

Displacement  Volume (Vd)  11.58 in3 189.9 cc 

Compression Ratio rc 10 10 

Clearance Volume Vc=Vd/(rc-1) 1.28 in3 21.1 cc 

Crank Offset (a=S/2) 1.02 in  25.9 mm 

Connecting Rod (r=4a) 4.08 in 103.6 mm 

 Valve Diameter (dv) (2 valves) 0.272 in  6.9 mm 

Effective Valve Area ( *dv2/4) 0.058 in2 37.4 mm2  

Engine RPM  3600rpm 3600rpm 
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Standard  Operation. Figure 12 shows that the pressure in the CC rises 

from 14.7 psi (101.35 kPa) at 10o BDC to 366.59 psi (2527.56 kPa) at TDC.  

Figure 13 shows that the temperature rises from 70 o F (21.11o C) to 868.02o F 

(464.46oC).  

 
Figure 12. Pressure vs. crank angle standard engine 

 

 
Figure 13. Temperature vs. crank angle standard engine 
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Figure 14.  Pressure vs. volume standard engine 

The mass of the air in the CC is constant at 0.253 g and the volume 

changes based on equation 3.  Figure 14 is the pressure vs. volume diagram for 

the baseline engine. The pump work performed by the piston is calculated to be 

80.18 J.   

Performing a thermodynamic cycle analysis provides the states for each 

stage of the engine cycle. The air to fuel ratio is assumed to be close to 

stoichiometric at 15 for gasoline (47300 kJ/kg)(Fuel-Higher Calorific Values ).  

Table 2 gives a list of the pressure and temperature values for each stage, the 

work of expansion (WEXP), heat added to the system (Qin) and thermal efficiency 

(ζT).  
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Table 2 

Standard Engine States at Cycle Stages  
 Pressure Temperature 

1 101.3 kPa (14.7  psi) 21.1o C   (7o o F) 

2 2527.5 kPa (366.59 psi) 464.46 o C   (868.03 o F) 

3 16638.4 kPa (2412.9 psi) 4581.80 o C  (8279.24o F) 

4 66.4  kPa (96 psi) 1665.32o C   (3029.58 o F) 

WComp 80.18 J 

Qin 797.8 J 

WEXP 566.15 

ζT 60.9% 

 

Base Line Compressed Air Tank Conditions. For the baseline case 

the compressed air is stored at conditions described in Table 3. These are also the 

conditions provided by SST. 

Table 3 

Storage Tank Thermodynamic Specifications  

Parameter  English Units   Metric Units  

Storage Pressure (PCT) 280 psi 19.5 atm (193KPa) 

Storage Temperature  (TCT) 70 F  21.1 C 
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Baseline modified engine valve timing. It is assumed that for the 

baseline engine the spark is initiated at 170o aBDC so the fill valve is closed at this 

crank angle.  For the CC to reach the pressure of the baseline compressed air 

before sparking a Δθ of 35.4o is required as shown in Table 4. At these conditions 

the work done by the piston during the compression stroke until the end of filling 

part is 15.6 J and 3.7 J for further compression part. This gives a 76.3% gain in 

pump work.   

Table 4 

Baseline Engine Filling Valve Timing  
Valve Specs Angles 

θi 134.6 o 

θf 170 o 

Crank Angle  35.4 o 

 

State of air in baseline modified engine. For the baseline conditions 

the states of the air at the engine stages are given in Table 5.  

The mass of the air at the end of compression is 0.322 g; this is 21.7% 

more air compared to the normal cycle.  At the end of the compression stroke 

(state 2) the temperature is substantially lower than in the standard engine.  The 

AF ratio is assumed to be stoichiometric, the same as in the standard engine.  The 

WEXP, Qin and ζT are also calculated in table 5. There is a 24% increase in heat 

added to the cycle for a 76% decrease in pump work. This gives a 7.6% increase in 

thermal efficiency.   

The top pressure of the modified engine cycle has exceeded the standard 

cycle top pressure by 21%. This is not an acceptable design. 
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Table 5 

Baseline Engine States at Cycle Stages 
 Pressure Temperature 

1 101.3 kPa (14.7  psi) 21.1o C   (7o o F) 

2 2275.3 kPa (330.01 psi) 222.4 o C   (432.37 o F) 

3 21178.6 kPa (3071.7 psi) 4339.8 o C  (7843.66o F) 

4 846.9 kPa (122.83 psi) 1563.3o C  (2845.94 o F) 

WComp 19.3 J (76% saved ) 

Qin 1051.4 J 

WEXP 684.7 J 

ζT 65.5% 
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DYNAMICS OF FILLING BASELINE CASE   

Figure 15 to Figure 20 show the variations of mass flow rate,  pressure, 

volume and temperatures with respect to the crank angle for the baseline case.   

 
Figure 15. Mass flow rate of air into the combustion chamber after fill valve 
opens, (280psi, 170o).  

Figure 15 shows the variation of mass flow rate of the air from the 

compressed air tank in to the CC from the fill valve open to fill valve close. Note 

that the mass flow rate is constant within the choked flow region i.e. when the 

pressure in the CC is below the critical pressure (147.9 psi) and decreases to zero 

rather quickly (12o) as the pressure in the CC equalizes with the storage tank 

pressure at fill valve close.  
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Figure 16. Mass of the air in the CC from start of compression to fill valve close 
compared to the standard engine (280psi, 170o).  

Figure 16 shows the mass of the air in the cylinder as a function of crank 

angle. For the standard engine the mass in the CC is constant. For the modified 

engine the mass in the CC is not constant since the air is being pushed out 

through the exhaust valve as the piston moves from BDC to fill valve open 

(~134o). The exhaust valve closes and the filling valve opens to let air fill the CC 

until the filling valve closes. The rate at which the mass increases is linear untill 

the critical pressure is met. The mass of the air in the CC is higher at the end of 

filling than a standard engine, 0.253 g vs. 0.325g respectively.  This is due to a 

much higher rate of filling for the modified engine than during the intake stroke 

of a standard engine.  
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Figure 17. Pressure of air in the combustion chamber from start of compression 
stage to TDC, (280psi, 170o). 

 Figure 17 shows the pressure variation with crank angle for both the 

standard and modified engine. The pressure in the CC for the modified engine 

remains at 14.7 psi until the fill valve opens since the exhaust valve is open. As the 

exhaust valve is closed and the fill valve is opened, the filling and reducing 

boundary increases the pressure in the CC.  After the fill valve is closed the 

increase in pressure follows the same trend as in the standard engine since now 

the pressure only depends on the volume change as given in equation 1. It is 

interesting to note that the final pressure in the modified engine at TDC is lower 

than that for the standard engine. This is because at the end of filling (170o) the 

pressure (280 psi) ends below that of a standard engine (~327 psi) and since after 

filling the curve is parallel a lower pressure is reached. To attain the same 

pressure at the end of compression for the modified engine as the standard 
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engine, the storage pressure should equal to the pressure in the CC for standard 

engine at the fill valve close angles. For example for the fill valve closed at 160o , 

the storage pressure should be ~250psi to the attain same states as the standard 

engine. This is also shown in Figure 30. 

  

 
Figure 18. Temperature of air in the CC from the start of compression stage to fill 

valve close (280psi, 170o). 

 The temperature change with respect to the crank angle is shown in 

Figure 18. The temperature of the air in the CC is constant until the fill valve 

opens because there is not compressive heating and the exhaust valve is open. As 

soon as the fill valve is opened and the exhaust valve is closed,  the temperature 

starts to increase due to primarily the enthalpy imparted by the air entering the 

CC (94% of total energy) and boundary work by the piston (refer to equation 6). 
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After the fill valve is closed, the temperature increase is due to compressive 

heating.  

 The temperature at the end of the compression stage is much lower than 

that of the standard engine, this could be due to the short time involved in the 

filling and compression process (~45o) compared to 170o in a standard engine 

compression stage.  

 The lower temperature after the compression stage would require an 

increase in the amount of heat input required to obtain the same peak 

temperature (~26% more) as the standard engine.  This increases the work of 

expansion by ~21 % due to the increased mass of air and fuel. It would be wise to 

make sure the peak pressure is not surpassed so that the engine is not damaged.  

 
Figure 19.Pressure vs. volume of standard engine vs. the modified engine 
compression stage (280psi, 170o). 
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Figure 20. Pressure vs. specific volume of standard engine vs. the modified 
engine compression stage (280psi, 170o). 

 Figure 19 and Figure 20 are the pressure vs. volume and pressure vs. 

specific volume diagrams of the standard engine and modified engine. It is clear 

from Figure 19 that the pump work done by the modified engine during the 

compression stroke is much lower than that of the standard engine compression.  

This is due to 1) the pump work during the no fill stage does not increase the 

pressure but only decreases the volume and 2) the short volume change for the 

pressure to increase from initial conditions to desired pressure during the fill 

stage. The pump work saved is the difference between the two pump works 

(~76% saved).  

 In Figure 20 the volume occupied by one kg of air is given with respect to 

the pressure in the CC. As can be seen, at the end of the compression stage, there 

is more mass of air in the CC for the modified engine.  
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STEP SIZE ANALYSIS 

 As mentioned in the modeling section, the filling stage is analyzed for 

each step of Δθ because the pressure and mass flow rate is both unknown at any 

instant of time. The state one is known (M1, T1, P1, and V1). The next state is 

after a single step of Δθ and is at V2. Two main processes take place in-between 

the two states, filling and compression. In the analysis these processes are 

assumed to happen at state one.  P1 is assumed to be constant for the step of Δθ 

to find the boundary work, and mass flow in to the CC. The new mass in the CC 

and work yields the conditions at state point two (M2, T2, P2). This process is 

continued until the end of the filling stage.  

 It is critical to gauge how sensitive the parameters calculated are with 

values of Δθ. This will provide a convergence measure and justify the use of 

smaller Δθ for relative accuracy. 

Figure 21 thru Figure 24 and Table 6 shows the sensitivity of the mass 

flow rate, pressure, temperature and work for the baseline engine with decreasing 

step length (Δθ). The storage pressure is increased to 300psi. 
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Figure 21. Sensitivity of mass flow with Δθ  

In Figure 21, the mass flow rate of sensitivity is shown. The mass flow rate 

is not sensitive in the choked flow region since the mass flow rate is only a 

function of the upstream pressure which is kept constant.  

The point at which P critical begins varies from Δθ=1 to 0.1 by 2% but, 

then remains constant at lower Δθ values. 

The mass flow rates vary at a maximum (46% difference) between            

Δθ = 1 to 0.1.  From 0.1 to 0.01 the mass flow rate converges with less than 1% 

difference. Since non-choked mass flow rate is a function of cylinder pressure it 

could be assumed that the pressure values behave similarly. 
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Figure 22. Sensitivity of pressure in the CC with Δθ 

 Figure 22 shows the variation in pressure in the CC with smaller Δθ.  As it 

can be seen the sensitivity of the pressure is surprisingly small (about 3%) 

between Δθ=5 O to 0.05 O.  The pressure values remain constant at Δθ below 0.1 O. 
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Figure 23. Sensitivity of temperature in the CC vs. Δθ 

 Figure 23 shows the sensitivity of temperature in the CC with decreasing 

Δθ. The temperature values seem more sensitive to changes in Δθ . The 

temperature varies at a maximum of ~11% going from Δθ= 5O to 0.05 O, whereas 

between 1 and 0.05 the difference is only 2%.  

 Figure 24 shows the variation of the pressure volume diagram with 

changing Δθ values. Since the pressure was not very sensitive to Δθ the same is 

expected here since volume (V) is a function of θ. 
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Figure 24. Sensitivity of pressure with volume vs. Δθ 

 

Table 6 

Sensitivity of Work at Filling Stage with change in Δθ 
Δθ Work Filling Stage  (J) 

5 15.715 

1 15.719 

0.5 15.719 

0.1 15.719 

0.05 15.719 
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Table 6 shows the sensitivity of the work calculated with change in Δθ. 

Since the pressure volume values did not vary substantially the same is expected 

for the calculated work.  A maximum of 3% variation is observed from Δθ 5 O to 

1O, but at lower values the work calculated is constant. 

The mass flow is the most sensitive, but from the above analysis it is clear 

that a Δθ equal to or below 0.1O is a very reasonable estimate.  Δθ =0.01O is 

chosen to get a good resolution for the ending pressure at fill valve close which is 

the tank pressure.  

FILLING DYNAMICS  

 Figure 25 to Figure 29 show the trends of mass flow rate, pressure, 

temperature, and pressure volume at higher and lower tank storage pressures 

from the baseline case. The fill valve close angle is held constant at 170o aBDC. 

 
Figure 25. Mass flow rate trend for fill valve close at 170O aBDC 

In Figure 25 the mass flow rate in to the CC with higher and lower tank 

pressures are given. The tank storage pressure is also the target pressure at fill 
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valve close.  At higher tank pressure the mass flow rate is generally higher. This is 

expected since the mass flow rate in the choked flow region is only a function of 

upstream pressure. In the non-choked flow area the mass flow rate is a function 

of both tank pressure and pressure in the CC. As shown in the figure, note that 

the rate of change of mass flow rate for the higher pressure is faster than for the 

lower pressure.  At the same engine speed, the faster initial rate of filling 

increases the pressure in the CC and thus decreases the rate of filling later.  

 
Figure 26. Mass of air in the CC vs. crank angle trend for fill valve close at 170O 
aBDC. 

  
Figure 26 shows the mass of the air inside the CC with respect to the 

crank angle for higher and lower pressures from the baseline case. The higher the 

pressure the more mass ends up in the CC. For the higher pressure it can be seen 
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that that the filling starts a little earlier, this reduces the amount of air lost. The 

higher mass flow rates for the higher pressures also explain this trend well.  

 
Figure 27. Pressure vs. crank angle trend for fill valve close at 170O aBDC 

 
 Figure 27 shows the pressure in the CC vs. the crank angle for higher and 

lower pressures from the baseline case. At 170O, the pressure in the standard 

engine is ~327psi. It can be seen that if this is the target pressure for the modified 

engine, the ending pressure at TDC will be the same as that of the standard 

engine. This was predicted earlier in the paper.   

 If the tank pressure is above the standard pressure at fill valve close the 

ending pressure is higher and vice versa for the lower target pressure. 

The rate at which the pressure rises is higher for the higher pressure. This 

is due to the increased mass of air in the CC.    
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Figure 28. Temperature vs. crank angle trend for fill valve close at 170O aBDC 

 Figure 28 shows the variation of temperature in the CC for higher and 

lower pressures from the baseline case. It can be seen that the higher pressure 

has a very small effect on the temperature of the air in the CC. This trend can be 

attributed to most of the pump work being done by filling rather than the change 

in boundary.   

This trend also means that approximately the same amount of heat 

(depending on the mass of air) will be required to raise the temperature of the air 

during combustion to get the same peak temperature as in the standard engine. 
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Figure 29. Pressure vs. volume trend for fill valve close at 170O aBDC 

 Figure 29 shows the pressure volume diagram for the higher and lower 

pressures from the baseline case. It is interesting to note that the area under the 

250 psi curve is lower than that for the 350 psi curve. This means less piston 

work is done within the stroke for the lower pressure case. This is quite contrary 

to what was expected because a higher tank pressure was thought to do the least 

amount work.  

 If the ending pressure (TDC) is required to be constant then this trend 

probably will not hold because the lower pressure will need more change in 

volume to achieve it.   

 With the lower pressure more heat input might be required to get the 

same pressure after combustion as in the standard engine. But with the higher 



   53  

pressures care needs to be taken to make sure the pressure after combustion does 

not exceed the design pressure for the standard engine.  

 
Figure 30.  The final pressure after compression stage in the CC vs. storage 
pressure for different fill valve closing angles.   

 Figure 30 shows the final pressures in the CC after the compression stage 

for the modified engine for different storage tank pressures. This is done for the 

170O fill valve close angle and also for 160O as a comparison.  As shown in Figure 

27, if the pressure at the valve close (the storage pressure) is equal to the 

standard pressures at that angle then the ending pressure follows the standard 

engine.  This is ~ 245 psi for the 160O close angle. Therefore lowering the storage 

pressure lowers the ending pressure in the CC. 
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Figure 31. Percentage pump work saved from filling modification for different fill 
valve closing angles.   

Figure 31 shows the percentage of pump work saved from the standard 

engine by filling at 170 O aBDC and 160O aBDC fill valve closing angles.  

It is seen that more pump work is saved when the filling target pressure is 

lower for a particular fill valve closing angle. This is also seen from the area under 

the pressure volume diagram in Figure 29  that,  if the storage pressure is lower 

than the standard pressure at the fill valve close angle , the total work done by the 

piston is lower since the piston is working against a lower average pressure in the 

CC pressure. 

But for a reasonable comparison between standard and modified engines, 

the final pressure on the modified engine needs to be equal to the compression 

pressure for the standard engine pressure. The storage pressures to attain this are 

in Figure 30 (324psi for 170O aBDC, and 244psi for 160 O aBDC) and the pump 

work saved is 75% and 65% respectively.   
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Less pump work is saved when filling valve closing is earlier in the 

compression stroke because of the extended further compression. Also referring 

to Table 7, column 8 and 10 it can be seen that the pump work during filling 

decreases as the storage pressure increases, but the pump work during the 

further compression stage increases.  

From Figure 32 and Figure 33 it can be seen that the time required for the 

filling to reach the storage pressure is longer at higher pressures.   

 
Figure 32. Fill valve opening angles to achieve desired pressure for different fill 
valve closing angles  

Figure 32 and Figure 33 shows that it takes more time to reach the target 

pressure if the storage pressure is higher for any particular closing angle.   

But it is interesting to note that if the closing angle is earlier in the 

compression stroke (160O vs. 170 O) the filling takes place in a longer  period of 

time.  In general it takes longer to reach the desired pressure or storage pressure 

if the filling is started earlier in the compression stroke.  If the target pressure is 
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the same the mass flow rate in to the cylinder is the same and so is the critical 

pressure.  Earlier in the compression stroke the piston is faster and slows down 

as it reaches TDC. This causes the pressure rise to be to be higher earlier in the 

stroke thus reaching the critical pressure faster after which the mass flow rate 

decreases exponentially. This explains why it takes longer to reach a target 

pressure if filling starts earlier.  

 
Figure 33. Crank period required to achieve desired filling pressure for different 
fill valve close angles.  

 In the following section, the engine cycle for the modified  engine is 

completed with a constant AF ratio of 15 (stoichiometric for gasoline engine) 

using the air standard Otto cycle analysis as explained in the engine performance 

section in modeling. The fill valve closes at 170O aBDC.  
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MODIFIED ENGINE PERFORMANCE  

Figure 34 and Figure 35 show the pressure and temperature of the  

air in the CC of the modified engine after the constant volume heat addition 

(combustion) stage respectively. 

 
Figure 34. Pressure after combustion in the CC vs. storage pressures, constant 
AF.  

             
 

Figure 35. Temperature after combustion in the CC vs. storage pressures, 
constant AF.  
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 As it can be seen in Figure 34, at the baseline storage pressure condition 

(280 psi), the peak pressure in the modified engine is 20% higher than that of the 

standard engine. This storage pressure modification is not possible for the chosen 

engine. In Table 7 column 1, the mass of air in the CC is ~ 21% higher than in the 

standard engine. Even though the same specific heat will be added to the engine, 

the increase in mass will drive the pressure beyond desirable for the engine. This 

shows that being able to control the mass flow rate will be beneficial in this sort 

of an application.   

The peak temperature on the other hand, stays under the peak 

temperature of the standard engine because of the low starting temperatures.  

The T2 „s (Table 7) of the modified cases are  ~50% lower than the standard while 

the P2 for the baseline is only 10% lower than the standard.  

 

Figure 36. Net work done by the modified engine at the various storage pressures 
with the net work of the standard engine.  

 
 Storage pressures below ~235 psi are the only possibilities for the selected 

engine under the specified modification.  (Continued on page 60)
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Table 7 

Engine Cycle States and Performance for Selected Engine in Standard and Modified Configuration with Various 
Storage Pressures. 

Mass 
Air 
E-4 
kg 

Mf 
kg 

E-5 
kg 

PCT 
psi 

θi dθ 
Wfill 

J 
WS 

J 
Wcomp 

J 
WS 

j 
% 

Pump 
T2  
C 

P2 
psi 

T3 
C 

P3 
psi 

T4 
C 

Qin 
J 

Wexp 
J 

Wnnet 
J 

ζT 
FuelUse 

E-8 
kg/J 

2.53 1.69 
   

62.1 
 

18.1 
  

464.5 366.6 4581.8 2412.9 1659.6 797.8 566.2 486.0 60.9 3.47 

2.14 1.43 180 137.2 32.8 16.0 55.7 2.4 24.5 77.1 201.5 201.9 4318.8 1953.6 1554.9 674.2 452.6 434.2 64.4 3.28 

2.59 1.73 220 135.5 34.5 15.7 62.1 3.2 18.1 76.4 217.3 249.7 4334.7 2345.8 1561.3 816.2 549.8 530.9 65.0 3.25 

2.90 1.93 250 135.2 34.8 15.7 66.4 3.3 13.8 76.3 218.9 270.0 4336.3 2529.2 1561.9 914.5 616.2 597.2 65.3 3.24 

3.22 2.15 280 134.6 35.4 15.6 70.3 3.7 9.9 76.0 222.4 330.0 4339.8 3071.7 1563.3 1015.4 684.7 665.5 65.5 3.23 

3.44 2.29 300 134.3 35.7 15.6 72.8 3.9 7.4 75.7 222.2 336.5 4339.6 3133.3 1563.2 1084.7 731.5 712.0 65.6 3.22 

3.73 2.49 327 133.9 36.1 15.4 75.9 4.3 4.3 75.4 226.6 365.0 4343.9 3372.4 1564.9 1176.2 793.9 774.2 65.8 3.21 

3.97 2.65 350 132.3 37.7 15.3 78.4 4.6 1.8 75.2 230.9 370.0 4348.2 3392.4 1566.7 1251.9 845.7 825.9 66.0 3.20 

 

 The standard engine states and performance are given in bold. The modified engine is analyzed for 180, 220 

250 280 300 324, 350 storage pressures for a fill valve close at 170O aBDC.  
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 Figure 36 shows the net work calculated for the modified engine for 

various storage pressures. As it is seen there is more work out of the engine at the 

baseline condition but the specified engine is restricted to a 235 psi storage 

pressure. Below this pressure the net work of the engine drops below standard 

engine work out. At the maximum possible storage pressure (235 psi) the net 

work out of the engine is the same as the standard engine, hence no work output 

is gained.  

 
Figure 37. Thermal efficiency of the modified engine and standard engine vs. 
storage pressures.  

 Figure 37  shows the thermal efficiency of the modified engine operation 

for the various pressures with the standard engine. The efficiency of the modified 

engine operation increases with increase in storage pressure. As seen, the 

efficiency gain is not substantial for any of the storage pressures. For the chosen 

engine and storage pressure limit, the thermal efficiency for the same net work 

out is ~65.1%. That is only a 5 percentage  point increase in efficiency, which is 

about 7.7% less fuel usage for the same net work out.   
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CONCLUSIONS 

For the chosen Briggs and Stratton 6.5 hp engine, at baseline conditions 

with compressed air stored at 280 psi and 170O aBDC fill valve close angle, the 

engine fails the design constraint of staying below the standard engine maximum 

pressure. From the analysis a new storage pressure and design parameters are 

recommended as given in Table 8. 

Table 8 

Possible Design for Chosen Engine in Modified Operation.  
Parameter Design Point 

Fill Valve Opening ~135.2  aBDC 

Fill Valve Closing 170.0  aBDC 

Storage Pressure  Temperature 235 psi , 70oF 

Gain in Thermal Efficiency ~5 % points  (7.6% fuel saving) 

 

 Compressed air stored at a desired pressure in a storage tank is 

introduced into the CC of a reciprocating, 4 stroke, IC, SI engine via a connection 

to the intake port during its compression stroke at ~45O bTDC. This is done to 

reduce the pump work done by the piston.  The valve train of the engine is 

modified to operate in this mode.  

 During the intake stroke the intake valve is closed and exhaust valve 

remains open and continues to be open during the compression stroke until the 

fill valve (intake valve) is opened to start the filling process. The fill valve is closed 

at 10O bTDC for spark advance. At this point the pressure in the CC should equal 

the storage pressure. All valves are closed at combustion and exhaust takes place 

through the exhaust valve during the exhaust stroke.  
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Only the compression process of the modified engine cycle is modified. 

The other processes of the engine cycle continue as a standard engine cycle. The   

compression process has 3 parts namely: no fill, filling, and further compression. 

The filling process of the modified engine is thermodynamically modeled 

using a uniform unsteady flow, energy and mass balance model. Numerically the 

model is solved for the Briggs and Stratton 6.5 hp engine using a crank step 

approach in MatLab. The standard engine compression stage is modeled using 

isentropic relationships. 

At the baseline storage conditions, the pressure of the air in the CC 

remains constant until the fill valve opens (~134.6O aBDC). The filling begins and 

pressure in the CC rises to 280 psi. At the end of the compressions stroke the 

final pressure in the CC at TDC is ~310 psi, which is ~14% lower than that in a 

standard engine (Figure 17). The temperature in the CC also rises only after 

filling begins (Figure 18). The temperature rises to ~225O C at the end of the 

compression stroke. The temperature rise is only half as much as the standard 

case.  The mass of the air in the CC is ~22% higher than that of a standard engine.  

For other storage pressures, the general trend is as follows: As the storage 

pressure increases, the mass flow rate of air in to the CC increases (Figure 25, 

Figure 26). This also results in a higher mass of air in the CC at TDC. At higher 

storage pressures the filling valve need to be opened slightly earlier. The pressure 

rise is faster at higher pressures and the final pressure at TDC is also higher as 

the storage pressure increases (Figure 27, Figure 30).  The temperature in the CC 

is slightly higher as the storage pressure increases (Figure 28).   
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The lower temperatures results in substantial performance loss for the 

modified operation. The higher mass in the CC allows the engine to attain the 

same net work at the lower temperatures.  

As mentioned in the beginning of this chapter the modified engine 

operation fails to meet the imposed constraints. 
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RECOMMENDATIONS  

The modification of this engine is not recommended for such low 

efficiency gains in thermal efficiency.  

FURTHER RESEARCH 

 The research done can be improved by doing the following:  

Broadening the research question  

 Generalize results for other IC engines   

 Investigate other compressions ratios. 

 Investigate dependency of results with engine size.  

Improve mathematical model  

 Implement Cp and Cv dependency on air temperature in the 

numerical model.  

 Implement effects of increasing storage air temperature through 

recuperation.  

Engine Modifications  

 Possibilities of controlling mass flow rate in to the CC  

 Electronic valve  
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APPENDIX A  

MATLAB CODE  
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clear 
clc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
%An existing IC engine is being modified to accept compressed air 

at the compression  
%stage. This is done to eliminiate the parasitic pump work during 

engine operation  
% The air is compressed seperately and efficiently during off 

peak hours  
%and provided to the engine during peak hours to produce 

electricity  

  
% The engine is connected to a compressed air tank via a 

connection to the 
% intake valve port, the intake valve serves as the filling 

valve. To eliminate  
% as much pump work as possible 1) the filling valve needs to be 

opened for 
% just the time reqired to fill the cylinder with the reqired 

pressure before spark. 
% The pump work after spark(~10deg bTDC) is unavoidable because 

of 
% combustion design. 
% 2) The exhaust vlave remains open as the pistion moves up 

during the 
% copmression stage, and only closed when the filling valve 

opens.This 
% ensures no specific pump work due to the piston moving up is 

being done. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
% Pistion moving fron 10aBDC (ref 0=BDC) to TDC (ref 180=TDC) is 

analysed  
% for both modified and nomodified engine. 
% phi_i=10, phi_f=180 
theta_i=136.3*pi/180; % Fixing theta initial 'filling valve 

opening' %rad 

  
theta_f=170*pi/180; % Fixing theta final 'filling Valve closing' 

%rad 
% vary inital agle to complete intake by 5 to 10 deg bTDC 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%(1) We need to find the crank angle at which the pressure in the 

cylinder equals the critical pressure  

  
%(2) Also the initial angle angle that leads to reserviour 

pressure (280psi) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
%%%Reserviour Tank Conditions%%%(inlet conditions) SI Units  
Pin=230*6894.76; %psia to Pa 
Tin=(70-32)*5/9; %F to C 
gamma=1.4; %assumed to be ideal gas constant Cp Cv for air 

gamma=Cp/Cv for 300K 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 

  
%Engine Operating Characteristic  
%------------------------------- 
N=3600; %Engine speed (Rev/min) 
w=N*pi/30;% Crank speed  angular velocity rad/sec  
%--------------------------------- 
%%%%To change the engine characteristics modify CylinderStateSI 
%%%%CylinderStateNCKSI and CylinderStateNoFlow  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% 
% Initially %%% exhaust valve is open so pressure and temp is 

atmosperic 
P1=14.7*6894.76; %Pressure in cylider after intake (psia)to pa 
T1=(70-32)*5/9; %Temprature in cylinder after intake (F) to (C)  
R=0.286e3;%gas constant  J/kg/K  

  
% As the filling valve opens and exhaust valve closses there is 

pressure  
% differential between the storage tank and the operation volume 

isn the cylinder. 
% The cylinder is being filled up due to this pressure 

differential.  
% The rate at which the air is eneternig the cylinder depends on 

this  
% pressure differential. As long as the pressure differential is 

greater  
% than the critical pressure ratio the flow is choked and has a 

limited mass flow rate.  

  
% If the pressure differential is lesser than the critical 

pressure the 
% flow rate depends on the new pressure in the cylinder and the 

pressure  
% in the tank 

  
% CylinderStateSI program calculates the operating volume of the 

cylinder, the 
% mass added to the cylinder and massflow rate due to the choked 

flow,  
% it is valid within the critical pressure range Pi to Pstar 

only.  
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% Initial Properies  
X=CylinderStateSI(theta_i,theta_i);  %[V, M_added, massflow rate 

]=Cylinder state  
V1=X(1); %m^3) 
M1=P1*V1/R/(T1+273.15); %kg 
mdot_choked=X(3); %kg/sec 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% At critical pressure P str=Pin*(2/(gamma+1))^(gamma/(gamma-1)); 

For air 
% with contant gamma Pin/P ~1.9 is the critical ratio 

  
P_str=Pin*(2/(gamma+1))^(gamma/(gamma-1)); %(critical pressure 

Pa) 

  
%Solution procedure and methdology is provided in more detail in 

paper 

  
%The system is an unsteady flow system, we know initial 

properties  
% theta1 P1 V1 T1 M1 mdot (1)if we fix the theta2 V2 is fixed  
%(2) If we assume that the mass flow is contant for the period 

between  
% theta1 and theta2 the M2 is fixed. Knowing V2 and M2 we can 

find the T2  
%and V2 using mass blanace and energy balance for the system. 
% -Wb=Min*hin+M1U1-M2U2 
% If we assume that for the period between theta1 and theta2 the 

the 
% pistion pessure is P1, the boundary work Wb is P1(V2-V1) 
% U2 is solved  
% And for ideal gas contant specific heats assumption U=CvT 
% h=CpT (T=0K ref temprature) T2 is solved  

  
%For and ideal gas P2V2=M2RT2 

  
dtheta=.01*pi/180; % Very small increment of theta  
dsf=1 
S=theta_i:dtheta:theta_f;  % Filling period  

  
D=[theta_i*180/pi , P1, V1, T1, M1, mdot_choked]; % initializing 

matrix  

  
for T=1:length(S) 

  
theta_1=S(T); 
theta_2=S(T+1); 
X1=CylinderStateSI(theta_1,theta_1); 
V1=X1(1); 
P1=D(T,2); 
T1=D(T,4); 
M1=P1*V1/R/(T1+273.14); 

  
X2=CylinderStateSI(theta_2,theta_2); 
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V2=X2(1); 
M2=M1+mdot_choked*dtheta/w; 

  
B_Work=P1*(V2-V1); % (N/m2)*m3--N m--J 

  
Cv=0.718e3;    %J/kg/K 
Cp=Cv*gamma;   %J/kg/K 
h_in=Cp*(Tin+273.14); % J/kg 
U1=Cv*(T1+273.14);    %J/kg 

  
U2=(mdot_choked*dtheta/w*h_in-B_Work+M1*U1)/M2; 
T2=(U2/Cv)-273.14; 
P2=M2*(T2+273.14)*R/V2; 
if P2>=P_str 
    break; 
end 
D((T+1),:)=[theta_2*180/pi ,P2, V2, T2, M2, mdot_choked]; 

  
end 
%%%%%%%%%%% 
% Iterations are stopped when the pressure in cylinder exeed 

critical press 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 
% After the pressure in the cylinder reaches critical pressure 

the flow is 
% not choked ie the mass flow varys with time(crank angle)as the 

pressure 
% increases. 
% The mass flow rate is now a function of the cylinder pressure 

also.  
% When the presr in the cylinder reaches 280psi the mass flow 

rate is zero. 

  
% CylinderStateNCKSI program calculates the mass flow rate of the 

air  
% entering the cylinder based on cylinder pressure and tank 

pressure   
% and the operating volume of the cylinder,  
%  
% it is valid within the critical pressure range Pstar to Pfinal 

.  

  
P1=D(T,2); 
V1=D(T,3); 
T1=D(T,4); 
M1=D(T,5); 
theta_int=D(T,1)*pi/180; %angle at which critical pressure is 

reaced approx  

  
P_str/6894.76 

  
S2=theta_int:dtheta:theta_f; 



   71  

DD=[D(T,1), P1, V1 T1 M1 D(T,6)]; % transition point  

  
for TT=1:length(S2)-1 

     
theta_1=S2(TT); 
theta_2=S2(TT+1); 
P1=DD(TT,2); 

  
X1=CylinderStateNCKSI(theta_1,P1); % [massflow 

rate,V]=CylinderStateNCKSI  
V1=X1(2); 
T1=DD(TT,4); 
M1=P1*V1/R/(T1+273.14); 
mdot=X1(1); 

  
X2=CylinderStateNCKSI(theta_2,P1); 
V2=X2(2); 
M2=M1+mdot*dtheta/w; 

  
B_Work=P1*(V2-V1); % (N/m2)*m3--N m--J 

  
Cv=0.718e3;    %J/kg/K 
Cp=Cv*gamma;   %J/kg/K 
h_in=Cp*(Tin+273.14); % J/kg 
U1=Cv*(T1+273.14);    %J/kg 

  
U2=(mdot*dtheta/w*h_in-B_Work+M1*U1)/M2; 
T2=(U2/Cv)-273.14; 
P2=M2*(T2+273.14)*R/V2; 

  
DD((TT+1),:)=[theta_2*180/pi ,P2, V2, T2, M2, mdot]; 
 if P2>=Pin 
     break 
 end 
end 
%%%%%%%%%%% 
% Iterations are stopped when the pressure in cylinder exeeds 

tank pressure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
D(:,2)=D(:,2)/6894.76; %changing pressure to psi 

  
DD(:,2)=DD(:,2)/6894.76; %changing pressure to psi 

  

  
Crank_Angle=(theta_f-theta_i)*180/pi 
Time_for_intake=(theta_f-theta_i)/w 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
%Engine Compression for unmodified engine   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
phi_i=10*pi/180;  % If in an unmodified engine all valves close 

at 10deg aBDC  
phi_f=180*pi/180; % Air in being compressed till TDC even though 

spark may  
                  % be initiated earlier  

                    
% CylinderStateNoFlow program is used to find the operating 

volume of the cylinder only.   

  
X=CylinderStateNoFlow(phi_i,0);  %[V, M_added, 

mdotin]=CylinderStateNoFlow  
V1=X(1); 
P1=14.7*6894.76; % Pressure in cylider after intake (psia)to pa 
T1=(70-32)*5/9;  % Temprature in cylinder after intake (F) 
R=0.286e3;       % Gas constant  J/kg/K 

  
M1=P1*V1/R/(T1+273.14); %kg 

  
A=phi_i:5*pi/180:phi_f; % array of crank angles  

  
DDD=[phi_i*180/pi,P1,T1,V1,M1]; 

  
for Ts=1:length(A)-1 

     
    X1=CylinderStateNoFlow(A(Ts),0); %[V, 

M_added]=CylinderStateNoFlow  
    theta_1=A(Ts); 
    P1=DDD(Ts,2); 
    V1=X1(1); 
    T1=DDD(Ts,3); 
    M1=P1*V1/R/(T1+273.14); % Ideal Gas  

     
    X2=CylinderStateNoFlow(A(Ts+1),0);%[V, 

M_added]=CylinderStateNoFlow  
    theta_2=A(Ts+1); 
    V2=X2(1);  
    M2=M1+X2(2); % M1=M2 no mass added  
    P2=P1*(V1/V2)^gamma; %isentropic relationship 
    T2=(T1+273.14)*(V1/M1*M2/V2)^(gamma-1)-273.14;% isentropic 

relationship 

     
    DDD((Ts+1),:)=[theta_2*180/pi,P2,T2,V2,M2]; 
end 

  
DDD(:,2)=DDD(:,2)/6894.76; 
DDD; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% figure(6) 
% plot(DDD(:,1),DDD(:,2),'.') 
% title('Theta vs Pressure Normal') 
% xlabel('theta') 
% ylabel('pressure psi') 
% grid on 
%  
% figure(7) 
% plot(DDD(:,1),DDD(:,4)./DDD(:,5),'.') 
% title('Theta vs Specific Volume Normal') 
% xlabel('theta') 
% ylabel('v m3/kg') 
% grid on 
%  
% figure(8) 
% plot(DDD(:,1),DDD(:,3),'.') 
% title('Theta vs Temprature Normal') 
% xlabel('theta') 
% ylabel('T C') 
% grid on 
%  
% figure(9) 
% plot(DDD(:,4)./DDD(:,5),DDD(:,2),'.') 
% title('Pressure vs Specific Volume Normal') 
% ylabel('P psi') 
% xlabel('v in3/#') 
% grid on 
%  
% figure (10) 
% plot(DDD(:,4)./(.0254)^3,DDD(:,2),'.') 
% title('Pressure vs Volume Normal') 
% ylabel('P psi') 
% xlabel('V in3') 
% grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
% State in the modified engine cylinder before filling begins 10 

to theta_i 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 

  
%At this stage the exhaust valve is open as the piston is moving 

up and 
%the filling valve is closed. So there is no air flow in to the 

cylinder  

  
%The only changing parameter is the volume of the cylinder and 

thus mass of 
%air  but the specific voulme remains constant  

  
S=phi_i:dsf*pi/180:theta_i; 
P=14.7*6894.76; 
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Tm=(70-32)*5/9; 
Z=CylinderStateNoFlow(phi_i,0); 
V=Z(1); 
M=P*V/R/(Tm+273.14); 

  
SS=[phi_i*180/pi P V Tm M 0]; %initializing  
for s=2:length(S) 
    P=14.7*6894.76; 
    Tm=(70-32)*5/9; 
    Z=CylinderStateNoFlow(S(s),0); 
    V=Z(1); 
    M=P*V/R/(Tm+273.14); %ideal gas assumption  
    SS(s,:)=[S(s)*180/pi P V Tm M 0]; 
end 
SS(:,2)=SS(:,2)/6894.76; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% State in the modified engine cylinder after filling over 

theta_f to TDC 
%----------------------------------------------------------------

---------- 
%At this stage both the exhaust valve and filling valve is closed  
% as the pistion is moving up. Spark is usually initiated at 

10bTDC  
%but this will not be modeled here. 

  
%The filling valve is closed. So there is no air flow in to the 

cylinder  

  
% The air is being compressed and assumed to be isentropic   

  
F=theta_f:dsf*pi/180:phi_f; 

  
FT=DD(TT+1,:); 
FT(2)=FT(2)*6894.76; %Pa 

  
for f=1:length(F)-1 
    theta_1=F(f); 
    P1=FT(f,2); 
    V1=FT(f,3); 
    T1=FT(f,4); 
    M1=FT(f,5); 

     
    X2=CylinderStateNoFlow(F(f+1),0); 
    theta_2=F(f+1); 
    V2=X2(1); 
    M2=M1+X2(2); 
    P2=P1*(V1/V2)^gamma; %isentropic 
    T2=(T1+273.14)*(V1/M1*M2/V2)^(gamma-1)-273.14; %isentropic 

     
    FT((f+1),:)=[theta_2*180/pi,P2,V2,T2,M2,0]; 
end 
FT(:,2)=FT(:,2)/6894.76;  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Variables=['ThetaDeg' 'P (psi)' 'V(m^3)' 'Tem(F)' 'M(kg)' 

'mdot(kg/sec)'] 
NoFill=SS; 
Filling=[D;DD]; 
Compr=FT; 

  
[SS(1,:) 
D(1,:) 
D(length(D),:) 
DD(2,:) 
DD(length(DD),:) 
FT(length(FT),:)] 

  
[DDD(1,:) 
 DDD(length(DDD),:)] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 

  
figure(1) 
plot(D(:,1),D(:,6),'r') 
hold on  
plot(DD(:,1),DD(:,6),'') 
title('Theta vs Mass flow rate') 
xlabel('Crank Angle deg') 
ylabel('mdot kg/sec') 
grid on 
% 
figure(2) 
plot(SS(:,1),SS(:,2),'g') 
hold on  
plot(D(:,1),D(:,2),'') 
plot(DD(:,1),DD(:,2),'r') 
plot(FT(:,1),FT(:,2),'k') 
title('Theta vs Pressure ') 
xlabel('Crank Angle deg') 
ylabel('pressure psi') 
grid on 

  

  
figure(3) 
plot(SS(:,1),SS(:,3)./SS(:,5),'g.') 
hold on 
plot(D(:,1),D(:,3)./D(:,5),'.') 
plot(DD(:,1),DD(:,3)./DD(:,5),'r.') 
plot(FT(:,1),FT(:,3)./FT(:,5),'k.') 
title('Theta vs Specific Volume ') 
xlabel('Crank Angle deg') 
ylabel('v m3/kg') 
grid on 
% 
figure(4) 
plot(SS(:,1),SS(:,4),'g') 
hold on  
plot(D(:,1),D(:,4),'') 
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plot(DD(:,1),DD(:,4),'r') 
plot(FT(:,1),FT(:,4),'k') 
title('Theta vs Temprature ') 
xlabel('Crank Angle deg') 
ylabel('T C') 
grid on 

  
figure(5) 
plot(SS(:,3)./0.0254^3,SS(:,2),'g') 
hold on  
plot(D(:,3)./0.0254^3,D(:,2),'') 
plot(DD(:,3)./0.0254^3,DD(:,2),'r') 
plot(FT(:,3)./0.0254^3,FT(:,2),'k') 
title('Pressure vs  Volume ') 
ylabel('P psi') 
xlabel('v in3') 
grid on 

  
figure(11) 
plot(SS(:,1),SS(:,2),'k','LineWidth',2) 
hold on  
plot(D(:,1),D(:,2),'k','LineWidth',2) 
plot(DD(:,1),DD(:,2),'k','LineWidth',2) 
plot(DDD(:,1),DDD(:,2),'--k','LineWidth',2) 
plot(FT(:,1),FT(:,2),'k','LineWidth',2) 
title('Theta vs Pressure Modified vs Normal') 
xlabel('Crank Angle deg') 
ylabel('Pressure psi') 
grid on 
%  
figure(12) 
plot(SS(:,3)./SS(:,5),SS(:,2),'k','LineWidth',2) 
hold on  
plot(D(:,3)./D(:,5),D(:,2),'k','LineWidth',2) 
plot(DD(:,3)./DD(:,5),DD(:,2),'k','LineWidth',2) 
plot(DDD(:,4)./DDD(:,5),DDD(:,2),'--k','LineWidth',2) 
plot(FT(:,3)./FT(:,5),FT(:,2),'k','LineWidth',2) 
title('Pressure  vs Specific Volume Modified vs Normal') 
xlabel('Specific Volume m^3/kg') 
ylabel('pressure psi') 
grid on 
%  
figure(13) 
plot(SS(:,3)./0.0254^3,SS(:,2),'k','LineWidth',2) 
hold on  
plot(D(:,3)./0.0254^3,D(:,2),'k','LineWidth',2) 
plot(DD(:,3)./0.0254^3,DD(:,2),'k','LineWidth',2) 
plot(DDD(:,4)./0.0254^3,DDD(:,2),'--k','LineWidth',2) 
plot(FT(:,3)./0.0254^3,FT(:,2),'k','LineWidth',2) 
title('Pressure vs Volume Modified vs. Normal') 
xlabel('Volume in^3') 
ylabel('Pressure psi') 
grid on 

  
figure(14) 
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plot(SS(:,1),SS(:,4),'k','LineWidth',2) 
hold on  
plot(D(:,1),D(:,4),'k','LineWidth',2) 
plot(DD(:,1),DD(:,4),'k','LineWidth',2) 
plot(DDD(:,1),DDD(:,3),'--k','LineWidth',2) 
plot(FT(:,1),FT(:,4),'k','LineWidth',2) 
title('Temprature vs theta Modified vs. Normal') 
xlabel('Crank Angle deg ') 
ylabel('Temprature C') 
grid on 

  
figure(15) 
plot(SS(:,1),SS(:,5),'k','LineWidth',2) 
hold on  
plot(D(:,1),D(:,5),'k','LineWidth',2) 
plot(DD(:,1),DD(:,5),'k','LineWidth',2) 
plot(DDD(:,1),DDD(:,5),'--k','LineWidth',2) 
plot(FT(:,1),FT(:,5),'k','LineWidth',2) 
title('Mass of air  vs Theta Modified vs Normal') 
xlabel('Crank Angle deg') 
ylabel('Mass kg') 
grid on 

  
SS(:,2)=SS(:,2).*6894.76; 
D(:,2)=D(:,2).*6894.76; 
DD(:,2)=DD(:,2).*6894.76; 
FT(:,2)=FT(:,2).*6894.76; 
DDD(:,2)=DDD(:,2).*6894.76; 

  
b=2.69*0.025;     %Bore (m)  
r=4*1.020*0.025;    %Connecting rod length (m) 
St=2.04*0.025;   %Stroke (m) 
a=St/2;     %Crank offset length (m) a=S/2 

  

  

  
Wb_Eng1=((Pin*DDD(1,4)*(DDD(1,2)/Pin)^(1/gamma)-

DDD(1,2)*DDD(1,4))/(1-gamma)); 
Wb_Eng=(DDD(length(A),2)*DDD(length(A),4)-DDD(1,2)*DDD(1,4))/(1-

gamma); 
Wb_Eng2=(Wb_Eng-Wb_Eng1); 

  

  

  
for v2=1:s-1 
dVSS(v2)=SS(v2,3)-SS(v2+1,3); 
end 
for v3=1:T-1 
dVD(v3)=D(v3,3)-D(v3+1,3); 
end 
for v4=1:TT 
dVDD(v4)=DD(v4,3)-DD(v4+1,3); 
end 
for v5=1:f 
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dVFT(v5)=FT(v5,3)-FT(v5+1,3); 
end 

  
G1=SS(1:v2,2).*dVSS'; D(1:v3,2).*dVD'; DD(1:v4,2).*dVDD'; 
G2=FT(1:v5,2).*dVFT'; 

  

  
Wb_ModEng1=-sum(G1); 
Wb_ModEng2=-sum(G2); 

  
LostPerfm=Wb_Eng2-Wb_ModEng2; 
Wsaved=Wb_Eng1-Wb_ModEng1; 
QextraKJperKg=Cv*(DDD(length(DDD),3)-FT(length(FT),4))/1e3; 
Saved_PumpWork=(Wsaved)/(Wb_Eng); 
fprintf('%s\n', 'WSaved     Percent   ExtraWork  StdEngWork  

QExtra') 
fprintf('%-10.3f %-10.3f %-10.3f %-10.3f %-10.3f\n',Wsaved, 

Saved_PumpWork, LostPerfm, Wb_Eng,QextraKJperKg) 

  
fileName=sprintf('UFlow_%d_%d.txt',Pin/6894.76,theta_f*180/pi); 
dlmwrite(fileName,[[Wb_Eng1,Wb_Eng,Wb_ModEng1,LostPerfm,Wsaved,Sa

ved_PumpWork];[NoFill;Filling;Compr]]) 

  
%(pi*b^2/4)*(a*sin(pi+A)+a^2*sin(pi+A).*cos(pi+A))./(sqrt(r^2-

a^2*(sin(pi+A)).^2)).*(1*pi/180); 
AF=15; 
Ma_m=FT(length(FT),5); 
Mf_m=Ma_m/AF; 
M_m=Ma_m+Mf_m; 
%for std eng  
T3=4869.19; 
Qin_m=M_m*Cv*(T3-(FT(length(FT),4)+273.14)) %Joules 
T4=1938.46; 
Wexp_m=M_m*Cv*(T3-T4); 

  
Wc_m=Wb_ModEng1+Wb_ModEng2; 
Thermeff=(Wexp_m+Wc_m)/Qin_m 
[Wb_ModEng1,Wb_ModEng2,Wb_Eng1,Wb_Eng2,Wexp_m] 

 

function A=CylinderStateNoFlow(theta,theta_i) 
%Engine Specs%  
%-------------- 
%Clearance Volume  
b=2.69*0.0254;     %Bore (m)  
r=4*1.020*0.0254;    %Connecting rod length (m) 
S=2.04*0.0254;   %Stroke (m) 
a=S/2;     %Crank offset length (m) a=S/2 
rc=10;    %Compression Ratio rc=Vd+Vc/Vc 
Vd=pi*b^2/4*S; %Displacement Volume m^3 
Vc=Vd/(rc-1);  % Clearence Vol (m^3) 
dv=0.272*0.0254;    %m 
Av=pi*0.25*dv^2;% effective area of intake valve %eq 5-4 IC Book  

m^3 
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%Engine Operating Characteristic  
%------------------------------- 
N=3500; %Engine speed (Rev/min) 
w=N*pi/30;% Crank speed  angular velocity rad/sec  
%--------------------------------- 

  

  
Tin=(70-32)*5/9; %C 
R=0.287e3; %gas constant  J/kg/K 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
gamma=1.4; % ratio of specific heats assumed to be constant refer 

to IC book   

  
%We can use the isentropic equation to calculate pressure in 

terms of time 

  

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Choked Flow Analysis% 
gamma=1.4; % ratio of specific heats assumed to be constant refer 

to IC book   
%Critical Pressure  
P_star=Po*(2/(gamma+1))^(gamma/(gamma-1)); %  Pa   for air with 

gamma = 1.4   refer Thermo Book Online  
mdot_inCK=Po*Av/sqrt(R*(To+273.14))*sqrt(gamma)*(2/(gamma+1))^((g

amma+1)/(2*(gamma-1))); % kg/s 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

  
%Cylinder Volume and mass added wrt crank angle  

  
s=a*cos(pi+theta)+sqrt(r^2-a^2*(sin(pi+theta))^2); % m stroke 

length fron BDC 
V=Vc+(pi*b^2/4)*(r+a-s); %m^3 volume of the cylinder wrt crank 

angle  
M_added=mdot_inCK*(theta-theta_i)/w; % extra massed added due to 

choked flow of air in to the cylinder  
A=[V,M_added,mdot_inCK]; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Non Choked Flow Analysis% 
% Defining the mass flow rate equation  
K1=Pin*Av*sqrt((2/R/(Tin+273.14))*(gamma/(gamma-1))); 
s=a*cos(pi+theta)+sqrt(r^2-a^2*(sin(pi+theta))^2); %stroke length 

fron BDC 
V=Vc+(pi*b^2/4)*(r+a-s); %volume of the cylinder wrt crank angle  
% the top part is actually X(1)  
mdot_inNCK=K1*sqrt((P/Pin)^(2/gamma)-(P/Pin)^((gamma+1)/gamma)); 
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%JJ=mdot_inNCK(length(mdot_inNCK))-K1*sqrt((P/Po)^(2/gamma)-

(P/Po)^((gamma+1)/gamma)); 
J=[mdot_inNCK,V]; 
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APPENDIX B  

HAND CALCULATIONS 
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INPUTS: 
 
Engine Characteristics:  
b= 2.69*0.0254 (m)  
S= 2.04*0.0254 (m) 
R= 4*1.020*0.0254 (m) 
 rc=10 
 Vd=1.899 E-4  (m^3),   
 Vc=2.11E-5  (m^3),   
 dv= 0.272*0.0254, (m) (valve size) 
Av=pi*0.25*dv^2 =3.748 E-5 (m^2)  

 
Engine Operation:  
N =3600 rpm 
w =N*pi/30= 376.99 (rad/sec) 

 
Compressed Tank Air Properties:  
PCT= 280*6894.76 (psi to Pa) 
TCT= (70-32)*5/9 (oF to oC) 
R=0.286E3  (J/kg/K) 
  =1.4 
 
Cv=718 (J/kg/K) 

 
Spark Advance (Fill Valve close angle): 
θF=170 o  from BDC (10 o bTDC) 

 
Filling takes place in between the unknown θi to θF 

 
PROCEDURE: 
 
If we guess:  
 θi=138 o (filling valve opens) 

 
Filling: 
After the no fill stage the CC is in atmospheric condition so: 
 
Θ1=138 o 
P1 =14.7*6894.76 (psi to Pa) 
T1 = (70-32)*5/9 (oF to oC) 
R=0.286E3  (J/kg/K) 
  =1.4 
 
s= 0.1214 (m) 
V1 = 5.0864E-5 (m^3) 
M1= 6.1255E-5 (kg)  
 
Since P1 <Pcritical, the flow in to the CC is choked flow:  
Pcritical=1.0199E6  (Pa)  
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mdot_in=0.1705  (kg/sec) 
Δθ=1 o 
 
Θ2=139 o 
V2=4.9557E-5  (m^3) 
M2=6.9152E-5 (kg) 
Boundary WorkWb=P1(V2-V1)=-0.1325 ( J) 
U1=2.1127E5  (J/kg) 
U2=2.2284E5 (J/kg) 
 
T2=37.21 (C) 
P2=1.2386 e5 (Pa) 
 
P2 < Pcritical so we are still in choked flow  
 
Next Step  all 2s are now 1s  
Θ1=139 o 
T1=37.21 (C) 
P1=1.2386E5 (Pa) 
V1=4.9557E-5 (m^3) 
M1=6.9152E-5 (kg) 
U1=21127E5 (J/kg) 
 
Θ2=140 o 
V2=4.8272e-5 (m^3) 
M2=7.7047e-5 (kg) 
Boundary WorkWb=P1(V2-V1)=-0.1591 (J) 
U2=2.3237E5 (J/kg) 
 
T2=50.5 (C) 
P2=1.4774 E5 (Pa)  
 
[  θ          P               V                     T               M                   mdot 
  138  1.0135e5   5.0864e-5      21.111     6.1256e-5       0.17053 
  139  1.2386e5  4.9557e-5       37.217    6.9152e-5       0.17053 
140  1.4774e5  4.8272e-5       50.502   7.7047e-5       0.17053 
………………………………………………………………………………………………..] 

Continued till P2=> Pcritical  
 
Θ=160 P2 1.0404E5  Pa is > Pcritical –Switch to no choked flow equations.  
 
Now the flow is non choked: 
 
Θ1=159 o 
V1=2.8947e-5 (m^3) 
P1 = 9.7289 e5 (Pa) 
T1 = 160.5  (oC) 
M1= 2.2705E-4 (kg)  
U1=3.1140E5 (J/kg) 
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Θ2=160 o 
V2=2.823e-5 (m^3) 
mdot=0.1703  (kg/sec ) 
M2=2.3493 e-4 (kg) 
Boundary WorkWb=P1(V2-V1)=-0.6977 (J) 
U2=3.1384 E5 (J/kg) 
 
T2=163.96 (C) 
P2=1.0404 E6 (Pa)  
 
 
Since P2 <PCT, the filling still continues: 

 

Θ1=162 o 
V1=  2.627e-5 (m^3) 
P1 = 1.1823e6 (Pa) 
T1 = 170.36 (C) 
M1=  2.506 e-4(kg) 
U1= 3.184 e5(J/kg) 
 
Θ2=163 o 
V2= 2.6277e-5(m^3) 
mdot=0.16784kg/sec  
M2= 2.58e-4(kg) 
Boundary Work Wb=P1(V2-V1)=- 0.7303 (J) 
U2= 3.2058e5 (J/kg) 
 
T2= 173.34 (C) 
P2= 1.256 e6 (Pa)  
 
[θ          P               V                         T               M                   mdot 
159   9.7289e5    2.8947e-5       160.56   0.00022705    0.17053 
160   1.0404e6   2.823e-5         163.97   0.00023493     0.17031 
161    1.1103e6    2.7546e-5       167.23   0.00024282     0.17048 
162    1.1823e6   2.6895e-5       170.36   0.00025068     0.1697 
163    1.256e6     2.6277e-5       173.34   0.00025845      0.16784 
………………………………………………………………………………………………] 
Continues till θf 
 
At θf,  Pf=1.7653 e6 Pa  (256.43 psi)   
 
Pf should be the tank pressure—so θi needs to be a little smaller. 
 
For  θi=134.7O Pf=279.97 at  θf=170O 
Crank period required = 35o 

 

Wpump =P1ΔV at every step or sum of W 


