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ABSTRACT 

 Over the past century in the southwestern United States human actions 

have altered hydrological processes that shape riparian ecosystems. One 

change, release of treated wastewater into waterways, has created perennial 

base flows and increased nutrient availability in ephemeral or intermittent 

channels.  While there are benefits to utilizing treated wastewater for 

environmental flows, there are numerous unresolved ecohydrological issues 

regarding the efficacy of effluent to sustain groundwater-dependent riparian 

ecosystems.  This research examined how nutrient-rich effluent, released into 

waterways with varying depths to groundwater, influences riparian plant 

community development.  Statewide analysis of spatial and temporal patterns of 

effluent generation and release revealed that hydrogeomorphic setting 

significantly influences downstream riparian response.  Approximately 70% of 

effluent released is into deep groundwater systems, which produced the lowest 

riparian development.  A greenhouse study assessed how varying concentrations 

of nitrogen and phosphorus, emulating levels in effluent, influenced plant 

community response.  With increasing nitrogen concentrations, vegetation 

emerging from riparian seed banks had greater biomass, reduced species 

richness, and greater abundance of nitrophilic species.  The effluent-dominated 

Santa Cruz River in southern Arizona, with a shallow groundwater upper reach 

and deep groundwater lower reach, served as a study river while the San Pedro 

River provided a control.  Analysis revealed that woody species richness and 

composition were similar between the two systems.  Hydric pioneers (Populus 

fremontii, Salix gooddingii) were dominant at perennial sites on both rivers. 

Nitrophilic species (Conium maculatum, Polygonum lapathifolium) dominated 
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herbaceous plant communities and plant heights were greatest in effluent-

dominated reaches.  Riparian vegetation declined with increasing downstream 

distance in the upper Santa Cruz, while patterns in the lower Santa Cruz were 

confounded by additional downstream agricultural input and a channelized 

floodplain.  There were distinct longitudinal and lateral shifts toward more xeric 

species with increasing downstream distance and increasing lateral distance 

from the low-flow channel.  Patterns in the upper and lower Santa Cruz reaches 

indicate that water availability drives riparian vegetation outcomes below 

treatment facilities.  Ultimately, this research informs decision processes and 

increases adaptive capacity for water resources policy and management through 

the integration of ecological data in decision frameworks regarding the release of 

effluent for environmental flows.  
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1. INTRODUCTION 

 Over the past century in the southwestern United States, rapid economic 

growth, expanding urban centers and agriculture have driven steep increases in 

freshwater demands, which have been met through groundwater pumping, 

surface flow diversions, and dams - all of which alter water availability and flow 

patterns in rivers (Sala et al., 2000).  These shifting baseline conditions 

combined with episodic drought, have led to the drying of river reaches that were 

once perennial and a decline in the extent of riparian habitat from historical 

coverage (Logan, 2002; Lite and Stromberg, 2005; Webb and Leake, 2006). 

While development and consumption patterns have impacted groundwater 

resources available to riparian ecosystems, these patterns have also produced 

treated wastewater, or effluent, much of which historically has been discharged 

into nearby river channels.  This dynamic has led to the emergence of effluent-

dominated waterways, or rivers that derive a large percentage of their surface 

flows from the daily production and release of effluent into a stream channel 

(Brooks et al., 2006).   

 Treated wastewater, or effluent, has become an increasingly important 

component of the freshwater landscape, particularly in more water-limited 

regions (Bouwer, 2002).  Today, effluent is a potential water resource for the 

restoration and maintenance of riparian systems.  However, effluent-dominated 

systems are fundamentally different from the intermittent or ephemeral streams 

they displace.  Numerous ecohydrological issues have emerged concerning the 

influence of effluent on riverine ecosystems and their associated riparian plant 

communities.  For example, the introduction of treated wastewater into a stream 

can alter stream flow sufficiently to change the composition of the riparian 
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community (Marler et al., 2001; Brooks et al., 2006).  The hydrogeomorphic 

setting into which the effluent is released can also dictate the degree to 

vegetation is restored within the multiple zones that comprise a riparian corridor.  

Increased nutrient levels in treated wastewater may bolster vegetation growth but 

can also lead to changes in plant species composition and dominance, leading to 

a reduction in species richness (Craine et al., 2002; Mathewson et al., 2003; 

Verhoeven et al., 2006).  High nitrogen levels can also foster biological activity 

within the channel that can lead to the formation of clogging layers in surface 

sediments which can act as a seal the bottom of the stream channel, decreasing 

infiltration and recharge and hindering the connection between surface water, 

subflow, and groundwater, changing conditions for phreatophytic plants (Lacher, 

1996; Brunke and Gonser, 1997; Boulton et al., 1998). 

 Ensuring that treated wastewater contributes to, rather than degrades, 

riparian function hinges on an understanding of riparian plant community 

response to hydrological dynamics and water quality impacts in various 

hydrogeomorphic settings.  While there are many benefits to utilizing effluent for 

riparian ecosystem restoration, there is little knowledge about how riparian plant 

communities respond to long-term, continuous release of effluent.  Ultimately, 

lack of understanding about the dynamics of effluent-dominated streams 

underscores the growing need for suitable methods to evaluate the ecological 

integrity of these systems (Brooks et al., 2006). 

 This knowledge gap is particularly compelling within the context of water 

scarcity, the call for increased water reuse in arid and semi-arid regions, and the 

need for integrated water resources management.  In the absence of historical 

policy precedent or planning practice, the shift from ephemeral to perennial 
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stream flows poses new challenges for both the scientific and planning 

communities.  Existing water policies may be insufficient to address these 

problems, and decision makers lack adequate scientific models to develop new 

programs or standards.  Currently, resource managers must resort to a 

patchwork of borrowed practices based on historical ecosystems or imported 

models from different regions.  Uncertainties about the ecological effects of 

increased nutrient loads and hydrologic variability on the establishment of 

riparian plant communities along effluent-dominated waterways call for research 

to improve water resources planning and management through scientific analysis 

(Duran and Spencer, 2004; White et al., 2007). 

 The main objectives of this research were to assess riparian vegetation 

response in effluent-dominated waterways and provide insight into the potential 

use of effluent to restore or enhance riparian ecosystems.  To accomplish these 

goals, this dissertation is organized into four chapters.  In Chapter 1, we 

assessed opportunities and challenges in securing effluent for riparian 

ecosystem restoration given current water policy frameworks.  This work was 

divided into two parts: an analysis of the history of water policy and management 

in Arizona and spatial analysis of riparian habitat development on effluent-

dominated waterways to inform recommendations for integrated water resources 

management.  Chapter 2 was a greenhouse experiment investigating how 

streamside herbaceous communities from varying hydrologic settings 

(ephemeral, perennial, effluent-dominated) responded to nutrient-rich effluent.  

Specifically, we quantified the influence of perennial effluent flows, with 

associated elevated nitrogen and phosphorus concentrations, on riparian plant 

community composition and biomass.  Using the effluent-dominated Santa Cruz 
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River as a study river, Chapters 3 and 4 were designed to compare woody and 

herbaceous riparian plant communities between an effluent-dominated riparian 

ecosystem with a shallow water table (Upper Santa Cruz reach), an effluent-

dominated riparian ecosystem with a deep water table (Lower Santa Cruz reach), 

and a non-effluent control (San Pedro River).  Further, we examined plant 

community patterns with distance downstream from effluent outfall points 

(longitudinal analysis) and contrasted zonal patterns among river types (lateral 

analysis) across spatial and temporal scales.  
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2. UNCERTAIN WATERS: THE ROLE OF WATER POLICY AND SCIENCE IN 

EFFLUENT RELEASE AND RIPARIAN ECOSYSTEM RESTORATION 

ABSTRACT 

 Increasing freshwater demands coupled with concerns over water 

scarcity have resulted in an intense and complex conflict between the 

development of rivers as water and energy sources, and their conservation as 

biologically diverse, integrated ecosystems.  Nowhere is this conflict more 

apparent than in Arizona, where the continued support and survival of expanding 

urban and rural areas depend greatly on what choices are made regarding water 

management, including the maintenance of agriculture and other industries, and 

sufficient future environmental and riparian protection.  It has become 

increasingly evident that established water policies under the current laws and 

management regimes do not have the inherent adaptive capacity needed to 

address the challenges facing water demand in the 21st century.  Yet Federal and 

state approaches to water legislation remain somewhat fragmented and limited 

institutional and policy steps have been taken to develop new tools and 

approaches addressing these challenges.  The lack of clear, reliable data on 

wastewater generation has led to a serious gap in knowledge regarding water 

reuse and environmental needs in Arizona.  Spatial and temporal analyses of 

wastewater treatment, effluent generation, and release revealed that that 

hydrogeomorphic setting significantly influences downstream riparian response. 

Current practice has just under 50% of effluent generated released into nearby 

channels or waterbodies.  Additional analysis showed that approximately 70% of 

sampled discharge points released effluent into ephemeral or deep groundwater 

systems.  These scientific outputs inform recommendations which include the 
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need to recognize riparian habitat as beneficial use for instream flows, develop 

criteria specific to effluent dominated waterways, and increased adaptive 

capacity within management approaches.  A shift toward more integrated 

decision frameworks will improve sustainable outcomes for future water reuse 

practices throughout Arizona. 

INTRODUCTION 

 Much of the western United States suffers from a scarcity in natural water 

supplies. Yet it is the part of the country that has experienced the greatest 

population growth over the past half century.  In the 1990s, western states 

experienced 20% population growth compared to a national average of 13% 

(Travis, 2007). Nevada, Arizona, Colorado, Utah, and Idaho grew at 37% during 

that same period (Getches, 2010).  Since 1980, Arizona’s population has more 

than doubled, increasing from approximately 2.7 million to over 6.3 million 

residents by 2006 (Gober and Jones, 2007).  Today, Arizona remains one of the 

fastest growing states in the country, with population growth primarily 

concentrated in urban areas.  The state population is projected to grow to almost 

13 million by 2050, with more than 60 percent of that growth predicted by 2020 

(USEPA, 2007). These patterns underscore the need to identify more sustainable 

approaches to water management in Arizona (Eden and Megdal, 2005). 

 As municipal growth increases and freshwater demands continue to 

intensify and strain existing water supplies, water resources policy and 

management are topics that increase in both complexity and consequence. 

Historic management of rivers has been aimed at creating or maintaining water 

supplies through engineering and political lenses focused on ensuring reliable 

water supplies, limiting flood damage, and reducing pollution (Karr & Chu, 2000).  
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One consequence has been the modification of watercourses, with more than 

ninety percent of riparian areas altered or degraded in the western United States 

(Gibbs, 2000; Patten, 2006).  While these strategies have been deemed 

successful in the past, the critical discourse of sustainability questions how much 

these approaches should be continued (Gleick, 2010). 

 Realizations that riparian and wetland ecosystems provide many 

beneficial services have shifted thinking in science and policy circles toward 

more “socioecological” (or “socionatural”) frameworks (Medema et al., 2008).  

Through this framing, complexity, variation, and uncertainty are accepted as 

inherent properties of linked social and natural processes (Gunderson and 

Holling, 2001; Naiman et al., 2005; Brauman et al., 2007).  In response, a 

number of management frameworks (e.g., adaptive management, integrated 

water resources management) have emerged in the last thirty years.  These 

frameworks have been organized to serve as testable premises, or prescriptions, 

designed for knowledge production and feedback loops to achieve specified 

desirable outcomes and manage uncertainty (Medema et al., 2008).  However, 

integration of these frameworks into practice has proved difficult to achieve. 

 Nowhere is this conflict more apparent than in the arid and semi-arid 

southwestern United States, a region with growing populations and limited water 

supplies highly dependent upon annual variability.  During the twentieth century, 

the development of dams, storage reservoirs, delivery infrastructure, and 

improvements in groundwater withdrawal added to the reliability of water supplies 

and encouraged population growth (BRP, 2010).  Freshwater consumption for 

urban and agricultural practices has led to significant declines in groundwater 

levels and the loss of approximately 35% of perennial surface flows in Arizona 
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(Turner and Richter, 2011).  Paradoxically, rapid urbanization has also led to the 

production of large volumes of municipal wastewater often discharged into 

nearby channels propagating the development of effluent-dominated riparian 

ecosystems (Tellman, 1992).   

 Despite progress in recognizing the need for sustainable water supplies, 

water policy and management in Arizona remain fundamentally driven by 

uncertainty over water scarcity, calling for alternative water supply and water 

reuse options.  Consequently, policy makers and resource managers face a new 

challenge: create distribution systems that balance water for human consumption 

with environmental needs.  Decision makers must determine how and how much 

to change management frameworks and water development strategies to meet 

the goals of sustainability.  There are several ways in which they may do so.  

One approach is by integrating ecological information into decision frameworks 

with the overall goal of linking release, recharge, and overall renewability of water 

supply.  A second way is by more deliberately engaging and reconciling the value 

of water used for human development and water for the environment.  For 

example, there is value in releasing water as environmental flows, as well as 

reusing it to support direct human uses.  These uses are in increasing opposition 

to each other as policy makers look to increase water supply, and managers 

need ways to consider and balance economic value of ecosystem services.  A 

third method is using an integrated water resource management (IWRM) 

approach that encourages more reflexive, adaptive styles of decision making, 

which leading thinkers suggest are needed to manage critical resources in the 

21st century  (Holling, 1973; Gunderson and Holling, 2001; Medema et al., 2008). 
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 Although water policy has many dimensions, in this paper we focus 

specifically on treated wastewater (effluent). The goal of this work is use current 

science to inform policy regarding the use of effluent for environmental flows.  In 

the first part of the chapter we examined the history of water policy driving the 

management and release of effluent.  Next, we explored spatial patterns of 

effluent release in the Arizona landscape.  Finally, we devised recommendations 

for a more integrated water resources management approach.  Ultimately this 

work will inform decision frameworks for policy makers and managers regarding 

the release of effluent to maintain or restore riparian ecosystems. 

Part 1. Arizona water policy: reframing of effluent as a resource 

 As a result of a long and complicated legal history, Arizona water policy 

differentiates water resources into four categories: surface water, groundwater, 

Colorado River water, and effluent.  Each is managed through different systems, 

under different agencies, and subject to various levels of regulation.  Water 

quality is managed separately from water supply, with the federal government 

generally governing water quality and state laws governing water rights and 

quantity management.  Additionally, each water resource is considered a discrete 

entity, without continuity or interconnections in the hydrological cycle, further 

obscuring the advancement of integrated management and sustainability. 

 For the past few decades, Arizona has largely managed to meet its water 

demands through groundwater overdraft, supplemental surface water supplies 

from the Colorado River and local rivers, and limited water reuse.  Arizona water 

law is governed by the prior appropriation doctrine, which can generally be 

summed up as “finders-keepers,” giving superior water rights to those who first 

diverted surface water over those who later attempted to divert it (Gillian and 
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Brown, 1997).  Under this doctrine, the State has traditionally been able to adapt 

and evolve to changing user needs and fluctuations in surface and groundwater 

supplies (Jacobs & Holway, 2004).  However, as uncertainty over water scarcity 

intensifies, maintaining current water supplies is growing increasingly challenging 

and demands for alternative water supplies are mounting.  

 An important moment in the history of Arizona water law occurred in the 

early 1930s with the Arizona Supreme Court decision in the Southwest Cotton 

case, which established the beneficial use doctrine.  The decision had severe 

consequences on groundwater levels in Arizona - it allowed overlying landowners 

to pump groundwater from below if the water was put towards a “beneficial use,” 

which went largely undefined and unregulated (Gelt, 2008).  During the following 

decades, technological advancements improved groundwater pumping 

efficiency, bringing large amounts of groundwater to the surface and resulting in 

extreme levels of depletion and loss of surface flows (Evans, 2008).  The need 

for regulated management and control grew, but did not truly appear until the 

1980s, with the Groundwater Management Act of 1980 (Act) (Pearce, 2007).  

 The Act established a timeline for reduction and elimination of 

groundwater pumping  in certain areas of the state by creating active 

management areas (AMAs) and irrigation non-expansion areas (INAs) (August & 

Gammage, 2007). This also led to the formation of the Arizona Department of 

Water Resources (ADWR), which is charged with overseeing the State’s water 

resources, managing the AMAs and INAs, and achieving long-term dependable 

water supplies (ADWR, 2009a).  However ADWR’s administrative authority to 

quantify and limit groundwater use extends only to the groundwater basins under 
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the AMAs, which comprise a small portion of the State’s land area but most of its 

population (Jacobs and Holway, 2004). 

 The 1989 Arizona Supreme Court decision (Arizona Public Service Co. v. 

Long) had significant impacts on the generation and fate of effluent. This ruling 

identified effluent as water rather than some novel substance, but it did not retain 

the ‘character’ of the waters that compose it (groundwater and surface water in 

varying ratios) (Evans, 2008).  Effluent was also established as the property of 

the entity that treated the water, since it is no longer of the same character as 

surface water.  From this outcome, treatment facilities are not obligated to 

discharge their effluent for the appropriation of downstream users – it can be put 

to any reasonable use they see fit.  If a treatment facility discharges its effluent to 

a stream in an effort to dispose of it, the water becomes ‘surface water’ once 

again, and is subject to appropriation like any other surface water in the State 

(Arizona Public Service, Co. v. Long, 1989).  The facility may also use a natural 

channel for conveyance to a designated downstream user – they are not required 

to use a piping system.  The Arizona legislature retains legislative and regulatory 

control over the use of effluent, though it is currently only restricted by its reuse 

application type based on its treatment quality (by the Arizona Department of 

Environmental Quality [ADEQ] and the U.S. Environmental Protection Agency 

[EPA]) and is not subject to regulation by ADWR (Woodard & Jacobs, 1990). The 

Arizona Public Service, Co. v. Long (1989) case “enabled the formation of a 

market in effluent for which the legal and institutional barriers are relatively low” 

(Eden et al., 2008). 

 One of the main failures resulting from the Act is a lack of recognition of 

the interdependence of surface and groundwater resources.  An unintended 
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effect of this vast legislation that focuses extensively on groundwater rights, but 

largely ignores surface water rights, has been an increase in the importation and 

depletion of surface water supplies, mostly from streams (Evans, 2008).  Thus, 

the separate water law schemes for groundwater, surface water and effluent 

represent one historical barrier to managing the resources conjunctively.  ADWR 

has little authority to limit surface-water users or any legal control over reclaimed 

water (Glennon, 2007).  Despite the fact that further restrictions were placed on 

groundwater use with the passage of the Act, some prior uses were 

grandfathered in -new irrigation is prohibited for groundwater users in the AMAs, 

and all new developments must show a 100-year‘Assured Water Supply’ to prove 

the availability of a renewable water supply (Glennon, 2007).  This piecemeal 

management makes it difficult to plan for sustainable water resource 

management, as already witnessed by the predicted difficulty in attaining 

groundwater ‘safe yield’ in the AMA by 2025.  In addition, the legal system in 

Arizona does not recognize environmental instream flows as a ‘beneficial use’ of 

water, leaving the environment almost completely out of the equation for water 

resource managers as they consider how to balance all demands with a limited 

supply (MacDonnell, 2009). 

 Policy fragmentation: consequences for effluent release.  Water quality 

laws at both the federal and state levels are simply designed to assure that if 

there is water in a stream, the quality of that water will be protected.  Additionally, 

water quality regulations have become increasingly rigid, sometimes resulting in 

less water released into a waterway.  While Arizona’s state law emphasizes 

protecting groundwater from contamination there is nothing in these laws to 

require that flows remain in the channel.  The Long decision made it very difficult 
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for ADWR to regulate the use of effluent.  It also made it difficult for treatment 

plant operators to negotiate contracts with downstream users since once effluent 

is discharged into a watercourse it becomes appropriable as surface water.  This 

means that a discharger who desires to maintain downstream flow to benefit a 

riparian area cannot be sure that the water will remain in the channel after 

discharge because it can be appropriated by a downstream user and removed 

from the waterway.  Finally, there is no law designed to protect streams as a 

whole from both the water quality and water supply perspectives, nor does any 

agency have this responsibility (Tellman, 1992).   

Part 2: Spatial patterns of effluent-dominated waterways 

 Introduction.  The need for spatial information and reliable data on the 

quantity and location of available treated wastewater has become an increasingly 

important part of developing a more integrated water management approach 

(ADWR, 2010a).  While dischargers have been required to provide monthly data 

reports as part of their permitting process, those data have not been monitored or 

maintained on a statewide level (ADWR, 2010a).  Because of this, there is some 

uncertainty as to the exact amounts and locations of treated wastewater 

generated across the state.  Further, there is no compiled information on the 

types of stream channels (or other locations) into which the effluent was 

discharged, an issue of importance given that the long-term ecological outcomes 

of releasing effluent into intermittent vs. ephemeral river channels may be quite 

different.  Additionally, there has not been a comprehensive assessment of viable 

reuse options for each point of effluent generation (Fox, 2010).  During the 

writing of the State Water Atlas, there were attempts to collect and quantify these 

data (ADWR, 2010b), however integrating the data from a variety of sources with 
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variable consistency in data management has been challenging (Rock et al., 

2009).  The objectives of this section are to assess spatial and temporal patterns 

in treated wastewater generation and effluent-dominated waterways across the 

state, quantify variability in riparian response given physical conditions (i.e., 

depth to groundwater, geology) and use these data to inform a decision 

framework for maintenance and restoration of riparian habitat.   

 Methods.  To identify patterns in treated wastewater generated 

throughout the state, we obtained data using permit data from the Arizona 

Department of Environmental Quality (ADEQ).  First, we identified facilities under 

the Arizona Pollutant Discharge Elimination System (AZPDES) Permit Program, 

which is required of all facilities discharging pollutants from any point source into 

waters of the United States (navigable waters).  Pollutants can enter waters of 

the United States from a variety of pathways, including agricultural, domestic and 

industrial sources (ADEQ, 2004).  We then corroborated those data with Aquifer 

Protection Permits (APP) which are required if you own or operate a facility that 

discharges a pollutant either directly to an aquifer or to the land surface or the 

vadose zone (the area between an aquifer and the land surface) in such a 

manner that there is a reasonable probability that the pollutant will reach an 

aquifer (ADEQ, 2004).  Those two sources allowed us to identify locations legally 

allowed to discharge, but does not mean those permits were necessarily in use.  

To increase accuracy even further, we also used Self-Monitoring Report Form 

(SMRF) data where possible.  All facilities with an APP or Reuse Permit are 

required to submit discharge reports to ADEQ quarterly to demonstrate 

compliance (ADEQ, 2004).  The SMRF data reflects actual quantities of treated 

wastewater generated on a monthly basis, rather than a simply approved 
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discharge levels.  However, it is important to note that there are limitations to 

these data as a number of data reports were missing for significant periods of 

time and reporting requirements are not consistent across all facilities, making it 

difficult to compare information between them.  Also, ADEQ’s database only 

extends back in time until the early 1990s, when requirements were established 

by the EPA and only limiting data are available from the EPA for periods before 

then. 

 While these data provide information on discharge locations and volumes, 

we were interested in obtaining more insight into the facility history, fate of 

effluent discharge, and environmental conditions.  To do so, an interview protocol 

was designed through a grant from the Arizona Water Institute (Rock et al., 2009) 

in which treatment plant managers were a series of questions to obtain more 

historical and environmental insights (n = 48).  From these data points we were 

able to determine depth to groundwater at effluent outfalls and then categorized 

the existing effluent-dominated waterways into four hydrogeomorphic categories 

(Table I).  Category 1 was defined as perennial (continuous surface flow, shallow 

groundwater or a confining bedrock layer within 0 – 6 m from the surface).  

Categories 2 and 3 were intermittent (flow present only during certain periods) 

and spatially interrupted (perennial stretches with intervening intermittent or 

ephemeral sections [7 -15 m] for category 2; and intermittent stretches with 

intervening ephemeral sections [16 – 30 m] for category 3).  Category 4 was 

defined as ephemeral (flowing on in direct response to precipitation, 31+ m; 

Meinzer, 1923).  Finally, we used aerial photography and geographic information 

systems (GIS) to quantify the extent of riparian habitat downstream of release 

points for each category.   
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 Results. Arizona has had a long history of effluent generation, and today 

effluent comprises approximately 3% (or 205, 400 acre-feet) of the water 

landscape in Arizona (ADWR, 2010).  The first wastewater treatment facilities 

(WWTPs) in the state were constructed in the 1950s near urban centers (Figure 

1).  In the decades following, the abundance of wastewater treatment facilities 

quickly grew, with the most significant increases during the 1980s and 1990s 

(Figure 1).  During this period, most of the facilities constructed were smaller 

dischargers (<5 million gallons per day [MGD]), designed to accommodate 

expanding suburban development.  However, there were also expansions and 

upgrades to existing WWTPs, contributing significantly to the volumes of effluent 

generated. For example, City of Phoenix 91st Avenue WWTP, one of the largest 

WWTPs in the state, expanded from a treatment capacity of 5 MGD in 1958, to 

45 MGD in 1965, and reached its current capacity of over 180 MGD in the 1990s 

(City of Phoenix, 2008; Figure 2).   

 As the number of WWTPs and treatment volumes expanded, increasing 

volumes of effluent were discharged into nearby channels bolstering the 

development of effluent-dominated waterways.  Currently, the Arizona 

Department of Environmental Quality has identified and legally characterized 

thirty-eight waterways as dependent upon effluent waters (Figure 3; Arizona 

Administrative Code, R18-11-113).  However, the number of waterways receiving 

effluent is much higher, though not legally designated as effluent-dominated and 

are found in a variety of settings throughout the state and comprise 

approximately 91 miles (146 km) of flow (Rock et al., 2009; Appendix I).  

Based on a sample of 33 treatment facilities we found that the treated 

wastewater generated has a number of different end uses ranging from municipal 
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and agricultural reuse to release into waterways (Figure 4).  We found that 

approximately 45% of the treated wastewater generated from these facilities is 

discharged into waterways and another 3% into waterbodies (Figure 4).  Of the 

volume of treated wastewater released into channels, approximately 45% 

discharge into category 4 (ephemeral), 25% into category 3 (intermittent, 

interrupted), nearly 20% into category 2 (perennial, interrupted) interrupted, deep 

waterways, and approximately 10% into category 1(perennial; Figure 5A).   

Because the long-term ecological outcomes of releasing effluent into 

intermittent and ephemeral river channels are not well understood, questions 

remain regarding how surface and groundwater interactions influence the spatial 

extent and development of riparian ecosystems receiving effluent.  Aerial photo 

analysis revealed that riparian vegetation response in terms of vegetated river 

kilometers and hectares of forest differs strongly depending on the type of 

waterway into which treated wastewater is discharged.  In perennial systems 

nearly 24 hectares of habitat is maintained by the release of 1 million gallons per 

day (MGD) while in ephemeral systems 1.2 hectares of riparian habitat is 

supported by 1 MGD of treated wastewater (Figure 5B). Figures 6, 7, 8, and 9 

provide examples of treatment facilities releasing effluent in each 

hydrogeomorphic setting and highlight the downstream area of riparian 

vegetation supported in each system.  Habitat response also varies based on the 

interaction of discharge volume and hydrogeomorphic setting.  Habitat response 

in perennial systems is high even with lower amount of effluent release, although 

it is more difficult in these systems to identify how much the effluent subsidizes 

flow and downstream vegetation Figure 10A).  When looking more closely at 

systems with less than 20 MGD release, patterns emerge revealing that effluent 
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subsidy results in greater riparian response in systems with more shallow 

groundwater tables (Figure 10B). 

Part 3: Opportunities and challenges for securing effluent for 

environmental flows. 

 Until recently, effluent was considered a ‘nuisance commodity’ to be 

disposed of as cheaply as possible (Pearce, 2007).  This perception led to the 

disposal of wastewater into nearby channels, and the emergence of effluent-

dominated waterways in Arizona.  Today, views of treated wastewater have 

begun to shift from effluent as a little-appreciated and under-utilized resource to 

an increasingly valuable water source in sustainable management frameworks 

(Chapman, 2005).  With stricter water quality standards, improvements in 

treatment technology, and growing municipal and agricultural demands for 

freshwater, wastewater reuse continues to emerge as a vital component of 

sustainable water supply and demand management (Levine & Asano, 2004). 

However, existing water policy and management in Arizona lacks the adaptive 

capacity to allow decision makers to consider the dynamic relationships among 

water consumption, effluent generation and release, riparian ecosystems, and 

overall reuse goals.  

 In this last section, we explore opportunities to secure effluent for 

environmental flows, using scientific evidence from the spatial analysis, field data 

and greenhouse studies to inform decision processes.  Assuming that riparian 

ecosystem maintenance and restoration are goals of a more sustainable water 

management framework, best practices for effluent release need to be developed 

as part of an integrated approach.  The recommendations are designed to 

provide ideas for preserving and restoring riparian habitat within a landscape of 
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water reuse and sustainability.  Reforming water management and policy will 

have to occur across multiple levels of government – local, regional, state, 

federal – and will require integration across those levels.  We have devised some 

recommendations and ideas for changing the rules to secure effluent for 

environmental flows, but we do not discuss potential trade-offs within these 

changes. 

Recommendation #1 - Development of criteria specific to effluent-

dominated waterways 

 Under Arizona State law, “water of the state” means “all waters within the 

jurisdiction of this state including all perennial or intermittent streams, lakes, 

ponds, impounding reservoirs, marshes, watercourses, waterways, wells, 

aquifers, springs, irrigation systems, drainage systems and other bodies or 

accumulations of surface, underground, natural, artificial, public or private water 

situated wholly or partly in or bordering on the state” (A.R.S. § 49-201.40).  

Because water is regulated through a patchwork of laws and doctrines, the 

United States has a history of using the courts, rather than legislative bodies, to 

apply overarching laws to specific cases.  As such, default environmental 

protection has been provided to Arizona’s water bodies through the application of 

federal laws that do not account well for regional climate and water differences 

(Leshy, 2009). 

 The basis for permit determinations has historically been through the 

development of criteria documents, often applied through a one-size-fits-all 

approach.  What this means is that water quality standards for ephemeral 

watercourses have been the same as those applied to large rivers.  While there 

have been improvements in recognizing climatic and hydrologic variation by 
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regions (Omernik et al., 2011), effluent-dominated systems and of effluent-

dominated their unique characteristics have not been recognized or incorporated 

into existing policy frameworks.  Studies on ephemeral and intermittent systems 

that highlight their contribution to biological diversity and how they fundamentally 

differ from perennial systems have informed resource management in water-

limited regions(Stromberg et al., 2008, Katz et al., 2009).  Similar studies are 

needed for waterways driven by urban water sources, such as effluent.  

Recommendation #2 - Establish legal relationships between ground and 

surface water that includes effluent. 

 Arizona has been gradually taking steps towards implementing the 

features of a conjunctive management system.  For example, the establishment 

of the Central Arizona Water Conservation District and Arizona Water Banking 

Authority has been successful in accumulating significant water storage credits 

and off setting groundwater withdrawals (Feller, 2007).  This has been an 

important step Arizona has taken in implementing features of a conjunctive 

management system (Evans, 2008).  However, skeptics still see these measures 

as temporary, and argue that riparian areas remain at the forefront of 

environmental concerns associated with excessive groundwater pumping and 

failed water management policies that have resulted in lowered river and surface 

water levels. 

 If Arizona continues to recognize the need to change its long-standing 

loyalty to the bifurcated system of water law, legal recognition of the 

interdependencies and interconnectedness of ground and surface water, 

including specific management for effluent, needs to occur.  This would provide a 

progressive step toward integrated management in which comprehensive 
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legislation that includes effluent for environmental flows could be developed.  

This type of management would have to be adaptive across multiple levels of 

government to address geographic differences on area and specific needs. 

Recommendation #3 - Refine the instream flow permitting process with 

specific guidelines for effluent release and environmental flows.  

 Arizona water law has provisions for appropriating water for wildlife, fish, 

and recreation.  ADWR implements these provisions through an instream flow 

permit, a special type of permit to appropriate surface water and leave it in the 

stream at a particular location for those end uses (wildlife habitat, recreation) 

(ADWR, 2004).  However, the instream flow program has developed through 

interpretation of statutes, and does not have a specific legislative mandate.  

Because effluent is available and an increasing source of water, an instream flow 

permit would seem the ideal way to preserve riparian habitat adjacent to an 

effluent-dominated waterways.  Specifically, all a downstream user would have to 

do is file for an instream flow permit to specifically maintain effluent discharge.  

The process, however, is not that straightforward. Under the appropriation 

doctrine, instream flow rights are junior to existing rights which means that a 

permittee is given rights to water through the instream flow permit only as long as 

it’s discharged.  Thus, a discharger could, at any time, decide not to release the 

water.   

 Strengthening the value of instream flow permits for the preservation of 

habitat along effluent-dominated waterways offers the opportunity for increased 

coordination between local, regional, and state governments.  The program 

would have to be administered at the state level, but local ecological knowledge 

and regional data can help guide decision processes.  Scientific research can 
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help to inform where instream flows may provide the most habitat and economic 

values.  Thus, if a discharger chooses to cooperate with a downstream 

landowner or agency to maintain habitat, an instream flow permit could protect 

the flow from the discharge point to the protected area, without another user 

appropriating the flow in between.   

Recommendation #4 - Recognition of riparian vegetation and passive 

recharge as beneficial use. 

 In Arizona, current state-recognized beneficial uses include domestic, 

municipal, irrigation, stockwatering, power, mining, recreation, wildlife and fish, 

and groundwater recharge (ADWR, 2010).  Riparian habitat is not currently 

included as beneficial use, although it is highly valued and public concern is high 

regarding the impact that limited water will have on Populus-Salix (cottonwood-

willow) forests (Bush et al., 2006).  If laws were amended to include “riparian 

vegetation” as a beneficial use, the applicability of instream flow permits would 

be strengthened.  Science can help inform this decision process.  The differential 

responses of downstream riparian vegetation in different hydrogeomorphic 

settings reveals that there may be locations better suited to maximize riparian 

response.  

 In tandem with recognition of riparian vegetation as “beneficial,” the value 

of passive recharge needs to be more significantly recognized, including the 

amount of credits given for releasing water into channels.  There are three 

principle means of conducting recharge are (1) constructing facilities such as 

recharge basins or ponds that allow water to soak into the ground (direct 

recharge), (2) allowing water to run down existing stream channels and infiltrate 

(passive recharge), (3) paying a farmer to reduce groundwater pumping by 
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accepting an alternative water supply, generating “credits” to pump the saved 

groundwater in the future (in lieu recharge) (Baker, 2009).  Currently, focused 

recharge is being prioritized in Arizona as the method to offset municipal 

freshwater demands and augment water supply (Lohse et al., 2010).  The law 

regarding the status of treated wastewater could be amended to prioritize 

passive recharge credit for effluent discharged for environmental flows.  Such 

change could also prevent anyone else from appropriating that water and would 

consider recharge within the stream as beneficial use, subject to the same rules 

as beneficial uses.  Scientific information could further inform this process by 

identifying waterways with more ideal environmental conditions in which riparian 

response would be maximized.   

Recommendation #5 - Build adaptive capacity and design integrated 

approaches for effluent release and riparian ecosystem development 

 Building sustainable urban water systems requires designing them to 

adapt to changing conditions and needs (Holway, 2009).  With increased 

recognition that traditional patterns of water development have taken a heavy toll 

on freshwater ecosystems, much more attention is being given to securing water 

for the environment (environmental flows) (Poff et al., 2010).  Many state laws 

provide a number of ways to ensure environmental flows, including putting flow-

protecting conditions on water use permits and approvals of water transfers, but 

these tools tend to be used sporadically.  To maximize riparian habitat 

preservation and restoration potential, Arizona needs to design effective, 

comprehensive programs to secure flows for riparian habitat preservation and 

recovery.  This research has shown that hydrogeomorphic conditions, volume of 

discharge, and quality of treated wastewater impact the outcome of riparian 
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vegetation response.  Ecological conditions for the river setting should be 

determined and should also include societal values, which can be accomplished 

through stakeholder participation to establish ecological and cultural values to be 

protected or restored through river management 

 Few states have programs that aim for systematic and comprehensive 

protection of ecologically based flows.  Moreover, when such tools do exist, they 

often focus narrowly on protecting aquatic wildlife, even though this may not be a 

good proxy for general ecological health (Leshy, 2009).  Building sustainable 

urban water systems requires designing them to adapt to changing conditions.  

As freshwater demands continue in the water-limited Arizona landscape, both the 

policy frameworks and the institutions overseeing decision processes must be 

able to evolve and adapt, identify clear goals and outcomes, and establish 

thresholds to trigger feedback and adaptive capacity within water management.  

Good data on historic and current conditions, coupled with future projections, are 

a fundamental prerequisite for identifying thresholds and integrating scientific 

information into water management (Holway, 2009).  Scientific research can help 

inform best management practices and increase adaptive capacity for water 

reuse planning, prioritizing effluent release for riparian habitat preservation and 

restoration.  

CONCLUSIONS 

 In water-limited regions, increasing municipal freshwater consumption 

raises the need for, and attractiveness of, reclaiming treated wastewater and 

using the resulting effluent to meet a range of growth-driven water demands.  As 

human uses for water continue to outweigh the values of flowing streams and 

riparian habitat, questions remain about where the environment, and more 
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specifically riparian restoration, fits in.  Technological advances and engineering 

solutions have advanced urbanization in the modern landscape, but not without 

the alteration or loss of perennial surface flows.  The riparian areas that still exist 

(whether perennial, ephemeral, or intermittent) remain extremely important for 

supporting biodiversity in a semi-arid landscape.  Today, many rivers - Santa 

Cruz River downstream of Nogales and Tucson, the Salt River downstream of 

Phoenix, and Rio de Flag in Flagstaff – maintain perennial flows due to effluent 

subsidy.  Yet little is known or understood, both ecologically and from a policy 

perspective, about effluent-dominated waterways.  This research has shown that 

the composition and amount of habitat are drastically different along effluent-

dominated systems in varying hydrogeomorphic settings.  Appropriate decision 

rules that utilize scientific information are needed to inform future sustainable 

water resources management approaches.  However, current water resources 

management is governed by an intricate, three-dimensional mosaic of laws that 

have accreted in layers at both the federal and state levels resulting in an inert 

system that does not readily admit change (Leshy, 2009).  It is growing 

increasingly more urgent to integrate scientific data in the advancement of an 

adaptive decision framework for the management of wastewater that recognizes 

the value of riparian ecosystem restoration as an outcome. 
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Table I.  Hydrogeomorphic categories for waterways receiving effluent discharge. 
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Figure 1.  Spatial and temporal patterns in the development of wastewater 
treatment facilities in Arizona since the 1950s. 
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Figure 2. Permitted effluent outfall locations and discharge volumes throughout 
the state of Arizona. *does not indicate effluent is currently being discharged.  
(Rock et al., 2009) 
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Figure 3.  Permitted effluent outfall locations and volumes with downstream 
effluent-dominated waterways in Arizona (Arizona Administrative Code, R18-11-
113) (Rock et al., 2009) 
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Figure 4.  Fates of generated effluent in the modern landscape.  Based on 
sample of 42 treatment facilities 
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Figure 5.  (A) Number of waterways receiving effluent by hydrogeomorphic 
category, (n = 33). Category 1 = perennial; Category 2 = perennial interrupted; 
Category 3 = intermittent interrupted; Category 4 = ephemeral. (B) Riparian 
habitat by hydrogeomorphic setting. Areas are normalized by volume of 
discharge to represent hectares per 1 MGD.  
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Figure 6.  Extent of riparian habitat supported downstream in a category 1 
(perennial) setting (0-6 m).  The representative site is downstream of Nogales 
International Wastewater Treatment Facility.  17 MGD of effluent supports 480 
hectares of riparian habitat over 45 kilometers in length. 
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Figure 7.  Extent of riparian habitat downstream of a category 2 river (perennial, 
interrupted with deep groundwater [7 -15 m]).  The site is downstream of Casa 
Grande Wastewater Treatment Facility. 6 MGD of effluent supports 35 ha of 
riparian habitat over 9 kilometers in length.   
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Figure 8. Extent of riparian habitat downstream of a category 3 river (intermittent, 
interrupted with very deep groundwater [16 - 30 m]).  The site is downstream 
Roger and Ina Roads Treatment Facilities. Approximately 78 MGD of effluent 
supports 340 ha of riparian habitat over 65 kilometers. 
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Figure 9. Extent of riparian habitat downstream of a category 4 river (ephemeral 
channel with deep groundwater [31+ m]).  The site is downstream of El Mirage 
Wastewater Treatment Facility. 4 MGD of effluent supports 4.8 ha of riparian 
habitat over 1.3 kilometers.   
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Figure 10.  Discharge volumes and riparian habitat area (ha) supported (A) from 
all sampled WWTPs (n = 33); (B) Riparian habitat area supported by discharge 
volumes < 20 MGD.  
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3. NUTRIENTS AND NITROPHILES: EFFECTS OF TREATED WASTEWATER 

ON DRYLAND RIPARIAN PLANT COMMUNITIES 

ABSTRACT 

During the twentieth century, nutrient inputs to aquatic and riparian 

ecosystems worldwide increased dramatically leading to changes in community 

composition and ecosystem function.  For riparian ecosystems of the 

southwestern United States, declines in surface water flows coupled with the 

release of treated municipal wastewater have resulted in the emergence of 

effluent-dominated waterways.  However, little is known about the riparian plant 

communities that are created and sustained by treated wastewater.  I conducted 

a greenhouse experiment and gathered field data to determine how elevated 

nutrient levels in treated municipal wastewater influence riparian plant community 

response in three different hydrologic settings.  Plants from soil seed banks 

collected from ephemeral, perennial, and effluent-dominated rivers were 

monitored in a greenhouse to address how varying concentrations of nitrogen 

and phosphorus would influence richness, biomass, density and composition.  

Streamside herbaceous vegetation was sampled for two years at twelve sites 

along the effluent-dominated Santa Cruz River and at nine sites along the San 

Pedro River, our control.  I used a modified Ellenberg index to further assess 

composition and found that effluent-dominated systems had greater abundance 

of nitrophilic species, those with higher nitrogen affinity, such as Conium 

maculatum and Polygonum lapathifolium, in both the experiment and field 

settings.  In all settings, biomass and plant height increased while stem density 

and richness decreased with increasing nutrient concentrations.  Hydrologic 

setting is also an important factor on community response, as biomass and 
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density were significantly higher in the perennial and effluent-dominated seed 

banks.  As anthropogenic nitrogen inputs currently equal or exceed natural N 

inputs in many ecosystems and as larger scale restoration is planned for entire 

landscapes, this study revealed that water quality and hydrologic setting are 

important ecological variables influencing herbaceous plant community 

development and population-level processes in waterways receiving treated 

wastewater. 

INTRODUCTION 

Nitrogen (N) and phosphorus (P) frequently limit primary productivity 

across multiple scales, from individual plant growth and reproduction to 

ecosystem level patterns and processes (Vitousek & Howarth, 1991; Noe et al., 

2001; Elser et al., 2007).  Over the last 200 years, human modification to the 

landscape has significantly increased the amount of nitrogen and phosphorus 

available to biotic organisms through the production of synthetic fertilizers, land 

management changes, fossil fuel combustion, and waste management practices 

(Elser et al., 1990; Pasari et al., 2010).  Elevated inputs of these nutrients have 

been implicated worldwide in changes in biological diversity and ecosystem 

services (Smith et al., 1999), reflecting the fact that global cycles of N and P have 

been amplified by c.100% and c. 400%, respectively, by postindustrial human 

activities, mainly the production of synthetic fertilizers (Falkowski et al., 2000; 

Elser et al., 2007). 

Riparian ecosystems occupy a unique area in the landscape; as ecotones 

between aquatic and terrestrial ecosystems, they have a diverse array of 

biological and physical processes, and a mosaic of vegetation types and 

structural components due frequent disturbance from floods (Malanson, 1993; 
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Naiman and Decamps, 1997).  Today, nutrient enrichment has been identified as 

a pervasive disturbance to aquatic and riparian ecosystems, contributing to shifts 

in community composition and changes to ecosystem function (Boorman and 

Fuller, 1981; Ostendorp, 1989; Davis et al., 1994; Svengsouk and Mitsch, 2000; 

Verhoeven et al., 2006).  During the twentieth century, nutrient inputs to river 

systems worldwide increased dramatically, due primarily to expanding use of 

fertilizers and treated municipal wastewater discharge (Falkowski, 2000; Tilman 

et al., 2000; Nicola, 2003; ICPDR, 2009).  Other important anthropogenic 

sources of N and P that contribute to nutrient loading in river systems include: 

deposition of atmospheric N, runoff from animal corrals and feedlots, fertilizer 

applied to lawns, leaky septic tanks, and the increased abundance of symbiotic 

N-fixing plants (Verhoeven et al., 1996; USEPA, 1999).  These trends are 

predicted to continue with global rates of nitrogen and phosphorus fertilization 

projected to be 2.5 times and 2.4 times, respectively, that of current levels by 

2050 (Tilman et al., 2000).   

Ecological theory predicts, and empirical studies have shown, that 

nutrient availability can have strong effects on diversity and species composition 

of plant communities (Tilman, 1987; Berendse and Elberse, 1990; Morris, 1991; 

Wisheu et al., 1991; Pringle et al., 1993; Lamers et al., 2001; ICPDR, 2009).  

Anthropogenic nutrient enrichment has also been linked to plant invasions across 

ecosystems worldwide (Drake et al., 1989; Vitousek et al., 1996; Brooks, 2003).  

While the dynamics of riparian ecosystems and nutrient enrichment in agricultural 

landscapes in the eastern U.S. and Western Europe have been well studied 

(Peterjohn and Correll, 1984; Gilliam, 1994; Hill, 1996; Bennett et al., 2005), less 

is known about plant communities that arise from, and are sustained by, nutrient-
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enriched urban waters, such as treated municipal wastewater.  The effects of 

increased nutrient levels in treated wastewater on plant community composition 

and diversity may be even more profound in streams arid and semi-arid regions 

as the availability of soil nutrients, primarily nitrogen and phosphorus, limits plant 

productivity in North American deserts (Grimm and Fisher, 1986; Schlesinger et 

al., 1996; Fisher et al., 2004). 

Although the quantity of N and P is important to plant productivity, only 

certain constituents of N and P are readily available to plants.  Response of 

wetland and riparian plants to nitrogen enrichment will vary according to plant 

traits, form of nitrogen introduced (ammonia, nitrate, or gaseous NOx), and 

amount of nutrient deposited (Scherer-Lorenzen et al., 2007).  Plants absorb and 

assimilate both NO3
-and NH4

+ most readily, and these are the soluble forms of 

nitrogen found in treated wastewater that move quickly through soils in the 

shallow groundwater to adjacent river systems (Coffman, 2007).  Increases in 

nitrogen availability can lead to increased productivity, reductions in plant density 

and diversity, and increases in the size and abundance of high nitrogen, or 

nitrophilic, species (Pasari et al., 2010).  For example, in the Danube River delta, 

nutrient pollution (including nitrogen, phosphorus and sulfate) has been linked to 

eutrophication and increases in non-native species (Lamers et al., 2001; Pringle 

et al., 1993; ICPDR, 2009). 

Plants can uptake phosphorus only when dissolved in water as 

orthophosphates or polyphosphates, which are the forms in treated wastewater 

(Shuman, 1994).  Phosphorus enrichment can lead to eutrophication and 

dominance by opportunistic species with high growth rates, short leaf longevity, 

and root systems with higher ratios of surface area to volume, many of which are 
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non-native species (Schachtman et al., 1998; ICPDR, 2009).  Required for many 

metabolic processes, P is absorbed rapidly into plant roots but requires active 

uptake due to steep concentration gradients between the soil solution and plant 

roots (Shuman, 1994).  Wetland and riparian ecosystems appear to be highly 

responsive to small changes in P concentrations, leading to dominance by 

certain species, such as Typha and Arundo (Noe et al., 2001).  Changes in 

community composition may be perceived as undesirable, particularly if they lead 

to a shift toward non-native species or a loss of species diversity.  In the Florida 

Everglades phosphorus pollution from agriculture, in part, has resulted in the loss 

of a plant community tolerant of low phosphorus conditions (Davis, 1991; Chiang 

et al., 2000). 

A key question in need of investigation is how nutrient enrichment will 

affect wetland and riparian ecosystems in arid and semi-arid regions where water 

is a limiting resource.  Rivers in dryland regions exhibit both spatial intermittency, 

having stretches with perennial and non-perennial flow, and temporal 

intermittency, with seasonal periods of no flow (Vidal-Abarca et al., 2001; 

McMahon & Finlayson, 2003; Stromberg et al., 2009).  These flow dynamics 

shape diverse ecological processes and maintain distinct aquatic and riparian 

communities (Brooks et al., 2006; Beauchamp et al., 2007; Stromberg et al., 

2009).  Societal demands have also modified the natural variability of flow 

through surface water diversions, groundwater pumping, and, more recently, the 

discharge of treated wastewater.  Whether water limitation overrides effects of 

nutrient addition is a question of importance to scientists and decision makers 

when assessing water resources and riparian ecosystem management.  As 

surface flows have continued to decline and the urban population has continued 
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to increase in the desert southwest, treated wastewater has increasingly been 

used to supplement and replace base flow, resulting in effluent-dominated 

streams or ‘‘water bodies [that have] instream flows [that] are entirely dependent 

on effluent discharges’’ (Brooks et al., 2006).  While nitrogen enrichment to 

riparian ecosystems from agricultural runoff has been extensively studied, much 

less is known about the effects of long-term release of point source nutrients, 

such as treated wastewater, on riparian ecosystems in water-limited 

environments (Adams, 2003).  

Hydrogeomorphic setting significantly influences both the extent and 

composition of riparian habitat that develops downstream of the point of 

discharge.  In Arizona, many of the channels that receive effluent discharge are 

either ephemeral or intermittent waterways (White, in prep.)  These effluent-

dominated systems are fundamentally different in water quality and hydrology 

from the dry or intermittent streams they displace.  When treated wastewater is 

discharged, base flows become perennial, altering temporal and spatial water 

variability.  Further, temperature, dissolved oxygen regimes, nutrient 

concentrations, and other chemical constituent loadings are altered (Brooks et 

al., 2006).  Concerns that the modified flow regime and increased nutrient 

loading of treated wastewater alter processes and subsequently change riparian 

community composition are my impetus for examining effluent dominated 

systems in semi-arid regions.  

The objectives of this study were to determine 1) how riparian plant 

communities from a dryland region respond to increasing concentrations of 

nitrogen and phosphorus, and how response differs between nitrogen and 

phosphorous; and 2) whether riparian plant communities in ephemeral, perennial, 
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and effluent-dominated systems respond differently to the introduction of treated 

wastewater, using richness, abundance, composition and biomass as community 

metrics.  For objective #1, we expect to see a corresponding decrease in species 

richness, increase in plant height and biomass, and increase in shoot:root ratios 

as phosphorus and nitrogen availability increases.  We also expect to see a shift 

in community composition toward nitrophilic species as nitrogen increases. With 

respect to objective #2, we expect to have higher biomass and abundance in 

communities emerging from seedbanks obtained from sites with perennial base 

flows for all treatments, including the non-nutrient control.  How riparian plant 

community composition and productivity may change with increased nutrient 

availability is important for the management and potential restoration of riparian 

ecosystems in the southwestern United States 

MATERIALS AND METHODS 

Experimental Design: Greenhouse Studies 

 To address our first question, we designed a two-factor controlled 

greenhouse experiment at Arizona State University to investigate the response of 

vegetation from riparian soil seed banks to elevated nutrient concentrations 

(nitrogen and phosphorus).  The experiment was conducted from August 15 - 

December 15, 2008.  Air temperature ranged from 19 - 42o C, with an average 

daytime temperature of 28 o C. Treatments were arranged as a series of nine 

stations each receiving nutrient-enriched water to simulate conditions found in 

effluent-dominated waterways in the southwestern United States. There were 

three concentrations of nitrogen (low, med, high) and three of phosphorus (low, 

med, high), resulting in a 3 x 3 factorial design (9 total treatments) (Table I). 
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 To address our second question, we carried out the above experiment for 

seed banks collected from three hydrological stream types.  Each station 

consisted of nine five-gallon pots (pot dimensions: 22 cm at base, 25 cm at top, 

31 cm tall) and included three replicates of riparian seed banks from ephemeral, 

perennial, and effluent-dominated waterways.  Replicates were color coded and 

randomly arranged within the station. A tenth pot was established in each station 

to monitor soil moisture and soil pH to eliminate disturbance for seeds and 

seedlings in the experimental replicates. 

Seed bank sources.  Seed-containing soil was collected along perennial 

reaches of the San Pedro River (3 Links Farm, 32o 09' 52" N, 110o 17' 45" W and 

32o 10' 48" N, 110o 17' 51" W), effluent-dominated reaches of the Santa Cruz 

River (Santa Gretudis Lane, 31o 33' 43" N, 111o 02' 45" W and Chavez Siding 

Road, 31o 38' 45" N, 111o 02' 51" W), and ephemeral reaches of the 

Hassayampa River (Patton Road 33o 44' 22" N, 112o 41' 38" W and CAP canal 

33o 39' 40" N, 112o 42' 00" W) in June 2008.  Sites were approximately five 

kilometers apart.  Ninety samples were collected along two 300-meter reaches 

for a total of 180 samples per river.  Each sample was a composite of three sub-

samples collected within a two meter wetted zone of the low flow channel to 

more completely sample the streamside community.  The litter layer was 

removed, and soil was collected to a depth of 2.5 cm using a 5-cm diameter split-

core soil sampler.  Samples were transported to Arizona State University, mixed 

to homogenize the seed bank by river type, and stored in a cold room until the 

experiment was initiated.   

Each five-gallon pot was filled with a sterilized sandy loam soil mix 3 

centimeters from the top edge.  Sampled riparian soils were homogenized by 
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hydrologic setting and spread across the surface of the sterilized substrate to a 

depth of 2 cm (981.25 cm3).  Gravel was placed in the bottom of each pot to help 

plug larger drainage holes.  Cheesecloth was wrapped around the bottom of 

each pot to minimize soil loss while still allowing for water drainage.   

 Watering and Fertilization.  Pots were watered using a standard hose-

and-bib system and a manifold with nine automatic fertilizer-dispensing systems 

(EZ-FLO). A timed fertilization system was chosen because it is specifically 

designed to liquefy highly concentrated, water-soluble fertilizers and proportion 

them into the water stream.  Soils were initially saturated with tap water through a 

drip irrigation system for a full 24 hours prior to the initiation of the experiment. To 

maintain soils at or near field capacity and eliminate water stress as a variable, 

water was delivered via timed drip irrigation for four minutes, twelve times per 

day using four 0.5 gallon per hour drip emitters per pot.  The EZ-FLO technology 

ensured that the proportion of concentrated nutrients to water remained constant, 

at a chosen feed rate of 1:500.  All delivery concentrations were calculated using 

that feed rate. 

 Nutrient concentrations were created using ammonium nitrate (NH4NO3) 

and monosodium phosphate (NaH2PO4), both commonly used chemicals in 

fertilizers.  N:P ratios were derived to represent concentrations found in both 

perennial and effluent-dominated systems (Table II).  Nitrogen concentrations 

were derived from EPA drinking water and treated wastewater standards; 

phosphorus values were informed by water samples taken from perennial and 

effluent-dominated waterways.  Based on feed rates and gallons of water 

delivered per day, NH4NO3and NaH2PO4were changed out every twenty days to 

maintain concentration levels and chemical quality over the sixteen-week period. 
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All other macro- and micronutrients were assumed to be in the tap water at 

concentrations sufficient to minimize potential nutrient deficiencies.  

 Plant Monitoring and Harvest.  The experiment was monitored for sixteen 

weeks, during which time the number and species identity of emerging plants 

was determined.  Some individuals in the seed bank and extant vegetation could 

only be identified to genus.  Plants were identified using Hickman (1993), 

Kearney and Peebles (1960), and recent treatises; nomenclature follows the 

USDA Plant database (http://plants.usda.gov/).   

Vegetation was harvested from December 15 - 24th 2008.  Individual 

plants were counted and heights measured.  Aboveground plant material was 

clipped at the soil surface and separated by species, by pot, into paper bags. 

Plants were dried at 80o C in an oven for 48 hours in paper bags and weighed to 

determine aboveground plant dry weight.   

 Root biomass was measured in January 2008.  Because soils had been 

compacted from watering and root growth, pots were cut into quarter sections 

using a handsaw.  We extracted roots from one quarter-section using gentle 

water pressure and sieves.  Root material was not separated by species. The 

extracted roots were laid out to dry for 24 hours and placed in paper bags labeled 

with pot information.  Roots were dried at 60 o C in an oven for 48 hours and then 

weighed to determine dry weight.  Because we only captured one-quarter the 

roots, values were multiplied by 4 for data analysis comparing above and below 

ground biomass allocation. 

Experimental Design: Field Studies 

 As a further test, we sampled streamside vegetation from two rivers, the 

effluent-dominated Santa Cruz River and perennial and intermittent sections of 
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the San Pedro River, during pre- and post-monsoon seasons in 2007 and 2008.  

Herbaceous cover by species was visually estimated in 1-m2 plots within two 

meters of the low flow channel.  Three plots were sampled on each bank at three 

transects per site, for a total of nine plots per site.  Cover was quantified using 

modified Braun-Blanquet cover classes (1-5, 5-25, 50-75, 75-100%) (Braun-

Blanquet, 1932).  Voucher specimens were collected and placed in the Arizona 

State University herbarium. 

Data Analysis 

Species richness, biomass, plant height and density were compared 

across nutrient treatments within each river using two-factor ANOVA in PASW 18 

(alpha of 0.05).  Data were assessed for normality using histograms and 

quantile-quantile plots, and transformed when necessary.  Levene’s test for 

equality of variances was used to test for homogeneity of variances.  

To determine how distinct the plant communities were among treatments 

within each river, Bray-Curtis similarity index was calculated in Estimate S 8.2.0 

(Magurran, 2004).  To identify how nutrient concentrations correlate with 

community composition and biomass response, data were analyzed using non-

metric multidimensional scaling in PC-ORD 5.   

We classified plants into water-quantity based functional groups based on 

probability of occurrence in wetlands for the Southwestern region 

(http://plants.usda.gov/), wherein we designated obligate and facultative wetland 

species as hydric, facultative and facultative upland species as mesic, and 

upland species as xeric.  We then calculated weighted-average wetland indicator 

scores for the experimental treatments and for the field data.  
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Finally, we assigned modified Ellenberg N (Ellenberg, 1979) scores to 

assess shifts in community composition and dominance.  The Ellenberg Index is 

a comprehensive indicator system that describes the response of individual 

species to a range of ecological conditions (including nitrogen) for vascular plants 

of central Europe.  Ellenberg N scores have been used to assess both regional 

and local scale changes and have correlated well with measured N deposition 

(Ellenberg, 1979).  We assigned N scores to species using either data in the 

Ellenberg index or, for genera that could not be found in the index, we estimated 

modified Ellenberg N scores using biomass and density as response indicators.  

We calculated weighted average N-scores so that the overall community has a 

score on a scale of nutrient poor to nutrient rich (Ellenberg, 1979; Ellenberg et 

al., 1991).  Ellenberg N scores were calculated for commonly occurring species 

in the greenhouse experiment treatments (≥ 3 stations) and in the streamside 

plant communities (≥ 3 sites) on our effluent-dominated study river, the Santa 

Cruz River, and its control, the San Pedro River. 

RESULTS 

Greenhouse experiment: Seed banks and hydrologic stream type 

 Within the no-nutrient control, biomass differed significantly across the 

three seed banks (Figure 11A; ANOVA: F2,8=5.957, P=0.038), indicating that 

hydrologic setting alone influences riparian seed banks and overall plant 

community response to the wetting of soils.  Biomass was nearly two times 

higher in the two seed banks with perennial stream flows.  A Tukey means 

separation test revealed a significant difference between the effluent-dominated 

river and the ephemeral river (Table III). 
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 Species richness (Figure 11B) and plant density (Figure 11C) also 

differed significantly across river types (ANOVA: F2,8=10.5, P=0.011; F2,8=8.267, 

P=0.019 respectively).  Differences in richness were significant between the 

ephemeral river seed bank and those from the systems with higher water 

availability (Table III).  Richness was highest in the ephemeral system, with an 

average of 7 species per pot, but plant density was lowest in this seed bank, with 

an average of 15 individuals per pot.  Plant density was greatest in the perennial 

system, with a mean of 46 individuals recorded per pot while the effluent-

dominated system averaged 36 individuals.  

 Composition differed among the three systems based on moisture class 

requirements.  The ephemeral system was dominated by xeroriparian species, 

with an average wetland indicator score of 4.2, while systems with perennial 

stream flows were dominated by hydric species, with an average wetland 

indicator score of 1.8 (Figure 12). 

Greenhouse experiment: Nutrients and community response 

Biomass.  Nitrogen had significant effects on biomass, plant height and 

shoot:root ratios for all rivers (Table IV).  Regardless of river setting, as nitrogen 

concentrations increased, biomass increased.  Highest biomass occurred in the 

pots with highest nitrogen and intermediate phosphorus concentrations.  

Biomass in the ephemeral system was about half as great as the effluent-

perennial and perennial rivers (Figure 13A).  In both perennial river seed banks, 

there were significant differences in biomass response between low and medium, 

and low and high nitrogen treatments (Tables V, VI, VII). 

Phosphorus trends revealed that biomass was highest at intermediate 

concentrations in all three seed banks (Figure 14A).  In both systems with 
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perennial flow, however, biomass response was greatest at the high nitrogen, 

medium phosphorus concentrations, while the ephemeral system was greatest at 

medium phosphorus and medium nitrogen concentrations. 

Plant height.  Higher nitrogen concentrations significantly increased 

average plant height (Figure 13B).  In the effluent-perennial seed bank, there 

were significant differences in plant height for all three nitrogen treatments (Table 

IV).  Plant heights were greatest at medium and high phosphorus concentrations 

in the effluent perennial and perennial seed banks (Figure 14B).   

Shoot:root ratios.  Shoot:root ratios increased as nitrogen increased for all 

three rivers, further indicating that nitrogen is the major growth-limiting mineral 

element (Figure 13C).  When this resource is scarce, plants often allocate a 

greater proportion of their biomass to the root system.  In this case, as nitrogen 

increases in availability, allocation to aboveground biomass increases.  Patterns 

in above and below ground biomass allocation were less clear with phosphorus, 

although ratios appeared to be greatest at intermediate P concentrations (Figure 

14C).  

Plant density.  Plant densities decreased with increasing nitrogen within 

each river type (Figure 15A). Phosphorus trends were less clear, with density 

highest at lower nitrogen and intermediate phosphorus levels (Figure 16A).  In 

the ephemeral and perennial seed banks, plant density was significantly different 

among low and medium and low and high P concentrations, while the significant 

differences in the effluent-dominated system were between low and high P 

concentrations (Tables V, VI, VII).   

Richness.  A total of fifty species were identified in the experiment, with 

32 species in the ephemeral-river seed bank and 23 and 36 species in the 
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perennial and effluent-dominated systems, respectively.  Fourteen species were 

non-native (Appendix II).  The ephemeral and perennial seed banks differed in 

average number of species across treatments, with values highest in the 

intermediate nitrogen and phosphorus treatments (Figures 15B &16B).  There 

were no significant differences in species richness among treatments for the 

effluent-perennial seed bank. 

Composition.  For all river types, there was dissimilarity across nutrient 

treatments, based on the Bray-Curtis similarity index (Tables VIII, IX, 

X).Increasing nutrient concentrations led to decreasing similarity in composition 

for all three seed banks.  Non-metric multidimensional scaling showed that 

increasing concentrations of nitrogen and phosphorus explained much of the 

variation in community response, but was dependent on seed bank type (Figures 

17, 18, 19).  The ephemeral seed bank was unusual in that phosphorus and 

nitrogen both had strong influences on community composition.  The patterns in 

the effluent-perennial seed bank indicate a strong shift toward nitrophilic species 

in stations receiving nitrogen-enriched water. 

 Modified Ellenberg N scores further substantiated a shift in composition 

toward nitrophilic, species in treatments with higher nitrogen (Figure 20). 

Although these shifts were apparent in all hydrologic settings, they varied in 

extent.  The treatments with higher nitrogen concentrations in the perennial and 

effluent-dominated seed banks were dominated by nitrophilic species such as 

Conium maculatum, Echinochloa sp., Nasturtium officianale, and Polygonum 

lapathifolium.  Of the fourteen non-native species identified in the experiment, 

eleven had Ellenberg scores greater than 6.  Ellenberg N scores were highest in 

the effluent-dominated seed bank, with an average score just under 7 on a scale 
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from 1 to 9, with higher numbers indicating higher nitrogen affinity.  The perennial 

river had mean Ellenberg N scores of just above 5 while the ephemeral river 

scores were around 4 (Table XI).  

Field studies: Streamside plant communities 

Streamside plant communities followed similar patterns to the experimental 

seed banks, in that plant communities along the Santa Cruz River were 

dominated by nitrophilic species such as Polygonum lapathifolium and Conium 

maculatum (Figure 21).  The average Ellenberg N score for the 2008 Santa Cruz 

River streamside data fell between 7 and 8, which indicates species more 

tolerant of nutrient-rich conditions.  In contrast, the average Ellenberg N scores 

were less than 6 for the perennial control river (San Pedro) and vegetation along 

the control river had higher species diversity but lower biomass than the effluent 

system. 

DISCUSSION 

Because nitrogen is required by plants in the greatest quantity relative to 

other nutrients, and is often limiting to productivity (Chapin et al., 1987, Vitousek 

and Howarth, 1991; Venterink et al., 2003), species were expected to show an 

increase in primary production with the addition of N.  Biomass and plant height 

increased with higher nitrogen concentrations for all three seed bank types, 

supporting our hypothesis.  These patterns were similar regardless of hydrologic 

setting; however, the amount of biomass response was significantly different 

based on site hydrology.  According to our data, releasing treated wastewater 

into an ephemeral waterway will result in less than half the biomass response 

than in waterways with shallow groundwater tables, at least during the initial 

months.  Longer-term patterns will depend on the degree to which the effluent-
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receiving site is connected to species-rich sites which can serve as a source of 

colonization for plants that thrive under conditions of abundant water and 

nutrients.  Maintaining longitudinal and vertical connectivity in riverine 

ecosystems will increase dispersal, allow for colonization after disturbance 

events, and maintain the biodiversity necessary for ecosystem function and 

community resilience in novel environments, such as effluent-dominated 

waterways (Loreau et al., 2003) 

Although some wetlands and some wetland species have shown high 

sensitivity to P (Chiang et al., 2000; Noe et al., 2001), phosphorus patterns were 

less distinct for the desert riparian systems we studied.  Concomitant with the 

nitrogen-fueled increase in biomass was a decrease in species richness and low 

plant density at the medium and high P concentrations.  This pattern may 

indicate a threshold for P toxicity in treated wastewater, particularly in the 

ephemeral system, which showed a significant decrease in stem density and 

richness at the higher nutrient ratios.  These patterns in species richness 

observed in this study have been demonstrated in many terrestrial and wetland 

fertilization studies (Tilman, 1987; Bedford et al., 1999; Day et al., 2004).  

Species richness is expected to be highest at intermediate levels of fertility and 

decrease with higher plant production (Bowman et al.1993).  Based on the 

results of this study and others (Drexler and Bedford, 2002), we speculate that 

constraints on species richness will occur at nitrogen levels above 10 mg/L in 

waterways receiving treated wastewater. 

 Shoot:root patterns revealed that plants allocated relatively more energy 

into root biomass at lower nutrient concentrations and that shoot production 

increases as nitrogen increases regardless of hydrologic setting.  As nitrogen 
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concentrations increased, a greater proportion of energy was invested into shoot 

biomass production, particularly in the effluent and perennial seed banks.  

Models of plant allocation to shoot or root growth have shown that an individual 

plant will respond to a light or CO2 limitation with increased shoot growth; 

whereas, a water or nutrient limitation will result in greater allocation to root 

growth (Brouwer, 1963; Brouwer, 1983; Tilman, 1988).  When nutrients are 

scarce, a species may gain dominance if it is capable of allocating more biomass 

to root production, thereby acquiring nutrients and reducing the pool of nutrients 

available to competitors (Gleeson and Tilman, 1990, Craine et al., 2005). 

 Shifts in plant community composition correlated strongly with increasing 

nutrients, particularly nitrogen.  By the end of the experiment, treatments with 

more nitrogen-tolerant species had greater individual mass and lower stem 

density, indicating that nitrophiles likely modulate many responses to N addition.  

Successful acquisition or conservation of limiting resources requires that a 

species possess certain advantageous physiological and structural traits (Chapin 

et al., 1986).  However, Diekmann & Falkengren-Grerup (2002) found that many 

life history traits poorly predicted species responses to elevated N, and instead 

developed ‘attribute syndromes’ to predict suites of traits favored with N addition. 

From this perspective, the community can be viewed as an expression of multiple 

suites of traits that are either reinforced or become obsolete with changing 

conditions, or disturbances.  In effluent-dominated waterways, ecological 

conditions are altered through the creation of perennial stream flows and 

increased nutrient availability, which modifies the dynamics for streamside 

community development.  
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 Explanations for the processes driving the patterns of riparian plant 

communities are of importance to managers, some of whom have approached the 

community change by attempting to eradicate non-native species.  In arid and semi-

arid ecosystems, the mitigation of two key limiting resources, water and nutrients, 

shifts the competitive balance between functional types and between non-native and 

native plants.  Research on invasibility has shown that opportunistic plants take 

advantage of high resource availability and that low resource availability is 

associated with low invasibility (Planty-Tabacchi et al., 1996; Alpert et al., 2000; Kolb 

et al., 2002; Davis et al., 2003; Richardson, 2006).  Greenhouse experiments have 

revealed that high nutrient or water availability can increase the ability of certain non-

nativeplant species to compete with natives (Wedin & Tilman, 1993; Claassen & 

Marler, 1998).  Field experiments have shown interactive effects of resource 

availability and competition on invasibility (Burke & Grime, 1996; White et al. 

1997;Thompson et al. 2001).  In the case of the effluent-dominated Santa Cruz 

River, long-term nutrient enrichment of the stream (with discharge having begun in 

1951) has led to a shift toward nitrophilic species, many of which are non-native. 

This synthesis offers insight for resource managers and decision makers on 

how to utilize treated wastewater to promote the establishment of vegetation 

dependent upon hydrologic setting.  From this study we also provide information that 

illustrates how water quality gradients influence the structure and function of the 

herbaceous plant community in waterways receiving treated wastewater.  Current 

and future wastewater treatment plants upgrades on the upper and lower Santa 

Cruz River offer the opportunity to further examine the effects of water quality on 

riparian streamside communities as reductions in n-load may shift non-nitrophiles to 

replace nitrophiles. 
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CONCLUSIONS 

As anthropogenic nitrogen inputs continue to equal or exceed natural N 

inputs in many ecosystems and as larger scale restoration is planned for entire 

landscapes, this study reveals that water quality and hydrologic setting are 

important ecological variables influencing herbaceous plant community 

development and population-level processes in waterways receiving treated 

wastewater.  Our findings of the effects of N and P enrichment and variation 

within different hydrologic settings have important implications for understanding 

the potential outcomes of treated wastewater discharge on riparian plant 

communities.  First, they call attention to the need for local assessments of 

ecological limiting factors, such as hydrogeomorphic setting, in effectively 

predicting quantity and quality of riparian habitat response.  Second, the dual 

importance of N and P limitation indicates that alterations of a particular nutrient 

may result in quantitative changes, such as biomass production as well as 

qualitative shifts, such as the composition of riparian plant communities or 

increases in non-native species.  Finally, our results reveal that enrichment by 

either N or P can increase primary production but that nitrogen appears to have a 

stronger influence on level of production, largely due to nitrophilic species 

capable of outcompeting other plants less-equipped to take advantage of the 

excess nutrients.  
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Table II.  Experimental design of N:P treatments for three different seed bank 
types (ephemeral, effluent-dominated, and perennial).  Each treatment was 
delivered to a station containing 9 pots with three replicates of each seed bank 
type. n = 81 (experiment); n = 27 (within seed bank). 
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Table III.  Comparison of riparian plant community response (biomass, richness, 
density, plant height) to the introduction of water in three different hydrologic 
settings.  Bold values indicate a significant difference between river types (Tukey 
test, P<0.05).  
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Table IV.  ANOVA results for community variables across varying concentrations 
of nitrogen and phosphorus. (Bold font denotes significance, alpha = 0.05, n = 
27) 
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Table XI.  Average Ellenberg N scores by seed bank for each level of nitrogen 
treatment.  The effluent-dominated system was dominated by nitrophilic species. 
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Figure 11. When water is introduced to three different hydrologic settings, 
(ephemeral, effluent dominated and perennial), biomass (A) is significantly higher 
in systems with perennial flows.  Species richness (B) is highest in the ephemeral 
system where water availability is a limiting factor. Density (C) is highest the two 
systems with perennial base flow.  Plant height (D) is highest in the effluent 
dominated system.  Letters indicate significant differences based on Tukey test 
(P < 0.05). (SE = standard error, n = 9, alpha = 0.05) 
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Figure 12.  Density partitioned by moisture requirement across river type, with 
number of species labeled.  Seed banks from systems with perennial base flows 
are dominated by hydric species while the ephemeral seed bank has more xeric 
species. Data show emergence from the experimental control treatment (water, 
minimal nutrient addition).  Bold numbers indicates species richness per moisture 
class group.  
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Figure 13.  Biomass (A), plant height (B), and shoot:root ratios (C) increased with 
nitrogen additions across all river types.  Data displayed are mean values with 
standard error (SE) from a two-factor ANOVA with N as the main divisions along 
the x-axis.  Increasing concentrations of P are displayed within each N group.  
Letters above the bars indicate a significant difference between treatments 
(Tukey test, P<0.05>) 
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Figure 14.  Biomass (A) and plant height (B) were highest at intermediate P 
concentrations. Shoot:root ratios (C) decreased with increased water availability, 
although no significant trends emerged with P.  Data displayed are mean values 
with standard error (SE) from a two-factor ANOVA with P as the main divisions 
along the x-axis.  Increasing concentrations of N are displayed within each P 
group. 
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Figure 15.  Density (A) and richness (B) decreased with increasing nitrogen 
across all river types.  Data displayed are mean values with standard error (SE) 
from a two-factor ANOVA with N as the main divisions along the x-axis.  
Increasing concentrations of P are displayed within each N group. 



72 

 

Figure 16.  Density (A) and richness (B) decreased with increasing phosphorus 
across all river types.  Data are mean values with standard error (SE) from a two-
factor ANOVA with P as the main divisions along the x-axis.  Increasing 
concentrations of N are displayed within each P group. Letters above bar graphs 
indicate a significant difference between treatments (Tukey test, P<0.05). 
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Figure 17.  NMS ordination of plots in species space for the ephemeral seed 
bank.  Only common species (occurring >3 stations) are shown.  Length of 
correlation vectors represents the strength of the correlation. Diamond = species, 
circle = pots.  Lines show correlation vectors (radiating from the centroid) of 
environmental characters with the ordination: Phosphorus (P) and Nitrogen (N). 
*=nitrophilic species with modified Ellenberg score >6. 
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Figure 18.  NMS ordination of plots in species space for the effluent-dominated 
seed bank.  Only common species (occurring >3 stations) are shown.  Length of 
correlation vectors represents the strength of the correlation. Diamond = species, 
circle = pots.  Lines show correlation vectors (radiating from the centroid) of 
environmental characters with the ordination: Phosphorus (P) and Nitrogen (N). 
*=nitrophilic species with modified Ellenberg score >6. 
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Figure 19.  NMS ordination of plots in species space for the perennial seed bank. 
Only common species (occurring >3 stations) are shown.  Length of correlation 
vectors represents the strength of the correlation.  Diamond = species, circle = 
pots.  Lines show correlation vectors (radiating from the centroid) of 
environmental characters with the ordination: Phosphorus (P) and Nitrogen (N). 
*=nitrophilic species with modified Ellenberg score >6. 
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EllenbergN scale (1 = low N, 9 = high N) 

1 9 2 3 4 5 6 7 8 

A: Effluent-dominated River 

B: Perennial River 

 

C: Ephemeral River* 
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Biomass (g/m2) Figure 20.  Ellenberg N scores for vegetation response in 
three different hydrologic settings in the greenhouse 
experiment.  A value of “1” indicates low nitrogen species 
and a value of “9” indicates high nitrogen species.  Each 
circle represents a commonly (>3 pots) occurring species.  
The size of the circle indicates aboveground biomass.  The 
effluent-dominated river has a higher biomass response 
and tendency toward nitrophilic species. (*denotes missing 
Ellenberg scores) 
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Ellenberg N scale (1 = low N, 9 = high N) 
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Figure 21.  Ellenberg N scores for vegetation response 
along the effluent-dominated Santa Cruz River and its 
control, the San Pedro River.  A value of “1” indicates 
low nitrogen species and a value of “9” indicates high 
nitrogen species.  Each circle represents a commonly 
occurring species (>3 sites).  The size of the circle 
indicates aboveground biomass.   
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4. LONGITUDINAL AND LATERAL PATTERNS OF HERBACEOUS PLANT 

COMMUNITIES IN AN EFFLUENT-DOMINATED RIPARIAN ECOSYSTEM 

ABSTRACT 

 Patterns and distributions of herbaceous plant communities in desert 

riparian zones are often reflective of multiple environmental gradients shaped by 

connections between vertical, longitudinal, and lateral water movement.  Over 

the past century in the southwestern United States, there have been many 

anthropogenic alterations to the hydrological processes that shape riparian 

ecosystems.  One change, the release of treated wastewater into nearby river 

channels, has created perennial base flows and increased nutrient availability in 

otherwise ephemeral or intermittent channels.  While there are many benefits to 

utilizing treated wastewater for the maintenance of environmental flows, there are 

numerous unresolved ecohydrological issues regarding the efficacy of the 

release of surface effluent into groundwater-dependent riparian systems.  This 

study examined how effluent, providing both water and increased nutrient 

availability, may contribute to restoring and/or maintaining riparian communities 

and how hydrogeomorphic setting may influence riparian response.  Specifically, 

I compared riparian herbaceous plant communities between the effluent-

dominated, shallow-groundwater upper Santa Cruz, the effluent-dominated, 

deep-groundwater lower Santa Cruz, and a non-effluent control, the San Pedro 

River (Arizona, USA).  Richness, cover, and community composition were 

assessed along longitudinal gradients of water and nutrient availability (surface 

flow permanence, distance from the point of discharge) and lateral gradients 

across the floodplain (distance from channel).  I found that plant community 

composition shifted toward more nitrophilic species, such as Conium maculatum 
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and Polygonum lapathifolium, and mean plant heights were at least two times 

greater at the perennial sites along the effluent-dominated reaches, indicating 

that both surface flow and water quality influence streamside patterns.  I also 

found that hydrogeomorphic setting affects vegetation response to effluent 

discharge both laterally and longitudinally.  Both effluent-dominated reaches 

maintained wetland plants for approximately 40 km downstream of respective 

discharge points, despite the fact that in the deep groundwater system, three 

times the volume of effluent is released.  Lateral patterns showed that 

herbaceous cover and richness declined considerably outside of the first 10 

meters of floodplain, and community composition abruptly shifted toward more 

xerophytic species, particularly in the deep-groundwater lower Santa 

Cruz.Overall, we conclude that effluent is a suitable option for maintaining 

environmental flows for near-channel riparian habitat in arid and semi-arid 

regions, and is more successful in sustaining floodplain vegetation in systems 

with shallow aquifers.   

INTRODUCTION 

The structure and dynamics of riparian ecosystems are the result of a 

suite of abiotic and biotic processes functioning at multiple spatial and temporal 

scales (Naiman et al., 2005).  In river floodplains, distribution patterns of 

overlapping plant communities characterized by different suites of species arise 

from gradients of resource availability and disturbance from the active channel to 

the uplands (Patten et al., 1998; Hupp & Osterkamp, 1996; Marti et al., 2000).  

Many of these patterns are due to key subsurface linkages between the stream 

channel, the parafluvial zone (the area of the active channel not covered by 

water), and the riparian zone via vertical, longitudinal, and lateral water 
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movement (Dahm et al., 1998; Illhardt et al., 2000).  

Rivers in arid and semi-arid regions can be differentiated from more 

mesic systems in that they function under intrinsic properties of water scarcity 

and associated hydrologic variability (Kingsford, 2006).  In these regions, the 

hydrological regime exerts strong control on the biota with groundwater playing a 

key role in the hydrology-vegetation linkage by providing a sub-surface water 

source and contributing to the stream base flow (Katz et al., 2009).  Thus, 

riparian plant communities are especially sensitive to fluctuations in subsurface 

water availability.  Perennial streamflow is associated with high plant cover and 

species richness; abundance, survivorship and productivity of many riparian 

plants is greater on floodplains underlain by shallow, stable water tables. 

(Stromberg et al., 1996; Tabacchi et al., 1996; Meyer et al., 1999; Bagstad et al., 

2005; Lite and Stromberg, 2005).  As streamflow becomes increasingly 

intermittent, herbaceous plant cover and species richness decline along the low-

flow channel and across the floodplain (Lite et al., 2005; Doody and Overton, 

2009; Stromberg et al., 2009).   

In addition to inherent water scarcity and hydrologic variability, riverine 

ecosystems in the southwestern United States have been increasingly subjected 

to changes in flow conditions from agricultural pressures and urban development.  

These shifting baseline conditions, combined with episodic drought, have led to 

the drying of river reaches that were once perennial and a decline in the extent of 

riparian habitat from historical coverage (Brinson et al., 1981; Segelquist et al., 

1993; Busch and Smith, 1995; Logan, 2002; Malmqvist and Rundle, 2002; Lite 

and Stromberg, 2005; Webb and Leake, 2006).  Paradoxically, while 

development and consumption patterns in urbanized regions have impacted 
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groundwater resources available to riparian ecosystems, these patterns also 

produce treated wastewater, much of which historically has been discharged into 

nearby river channels.  Treated wastewater, or effluent, has become an 

increasingly important component of the freshwater landscape, particularly in 

more water-limited regions.   

Treated wastewater is a potential water resource for the restoration and 

maintenance of riparian systems.  However, numerous ecohydrological issues 

surround the influence of treated wastewater on river systems and their 

associated riparian plant communities.  The introduction of treated wastewater 

into a stream can alter stream flow sufficiently to change the composition of the 

riparian community (Marler et al., 2001; Brooks et al., 2006).  Increased nutrient 

levels in treated wastewater may bolster vegetation growth but can also lead to 

changes in plant species composition and dominance, leading to a reduction in 

species richness (Marler et al., 2001; Craine et al., 2002; Mathewson et al., 2003; 

Verhoeven et al., 2006).  The hydrogeomorphic setting into which the effluent is 

released dictates the degree to which effluent discharge can restore vegetation 

within the multiple zones that comprise a riparian corridor, but this has yet to be 

studied.  

Ensuring that treated wastewater contributes to, rather than degrades, 

riparian function hinges on an understanding of riparian plant community 

response to hydrological dynamics and water quality impacts in various 

hydrogeomorphic settings.  In Arizona, treated municipal wastewater is often 

released into ephemeral channels with deep water tables, with some also 

released into intermittent or perennials streams.  However, few studies have 

investigated how riparian vegetation response to the discharge of treated 
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wastewater differs given underlying hydrology.  We focused on an effluent-

dominated waterway that spans two hydrological settings (deep groundwater 

disconnected from the stream flow, and shallow groundwater hydraulically 

connected to the stream flow) as our study river and a non-effluent control in the 

semi-arid southwestern United States to examine longitudinal and lateral patterns 

of herbaceous plant community response in the riparian zone.  Our objectives 

were to increase our understanding of the ecological effects of the continuous 

release of treated wastewater by answering the following questions: 

1. How does the riparian plant community in an effluent-dominated waterway 

vary longitudinally from the point of discharge given depth to groundwater, 

canopy cover and stream flow permanence? 

2. How do riparian plant communities along the low-flow channel in effluent 

dominated waterways differ from non-effluent rivers in the southwestern 

United States with respect to composition, cover and richness?  

3. How do composition, cover and richness in an effluent-dominated waterway 

vary laterally across the floodplain in relation to distance from channel, and 

do these zonal patterns differ from that in control streams? 

We expected the following: (1) herbaceous riparian vegetation along effluent-

dominated reaches would have greater cover, height, and abundance of 

nitrophilic species (but lower species richness) compared to perennial control 

reaches, due to the combination of perennial base flow input and elevated 

nutrients.  (2) Herbaceous species richness and cover would decline within the 

effluent dominated river reaches with increasing distance from the point of 

discharge, and composition would shift toward more xerophytic species with 

increasing downstream distance and flow intermittency.  (3) Across the riparian 
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corridor in all stream types, species richness and cover would be highest within 

the near channel zone, with these traits declining most sharply with distance from 

the channel for the effluent-dominated reach in the deep-groundwater basin.  

Ultimately, our objective is to provide scientific evidence regarding potential 

outcomes of releasing treated wastewater into waterways with different 

hydrogeomorphic settings, so as to inform the restoration or maintenance 

riparian ecosystems in arid and semi-arid regions. 

METHODS 

Study Design 

Our basic study design compared herbaceous riparian plant communities 

between an effluent-dominated riparian ecosystem with a shallow water table 

(Upper Santa Cruz reach), an effluent-dominated riparian ecosystem with a deep 

water table (Lower Santa Cruz reach), and a non-effluent control.  Further, we 

examined plant community patterns with distance downstream from effluent 

outfall points (longitudinal analysis) and contrast zonal patterns among river 

types (lateral analysis).   

Twelve study sites were selected along the Santa Cruz River in southern 

Arizona.  In the upper Santa Cruz basin, two sites located five and ten kilometers 

upstream of the Nogales International Wastewater Treatment Plant (NIWWTP) 

provided non-effluent controls.  Five effluent-dominated sites were situated within 

a 55-kilometer reach downstream from the point of discharge of the NIWWTP to 

capture changing flow conditions.  Similarly, five sites were established along a 

60-kilometer reach in the lower Santa Cruz to capture a gradient of flow 

intermittency downstream from the Roger and Ina Roads Wastewater Treatment 

Facilities.  Nine sites were located along the San Pedro River, a less urbanized, 
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non-effluent control river; three of these had perennial flow and six had 

intermittent or ephemeral flow (Figure 22; Table XII). 

Study Area: effluent-dominated Santa Cruz River 

 The Santa Cruz River originates in the San Rafael Valley, part of the 

Madrean Archipelago ecoregion, an area characterized by basins and ranges, 

with medium to high relief spanning from 1000 to 1500 meters characterized by 

fault-block mountains separated by valley fill alluvium (AWWQRP, 2002).  The 

river initially flows south and continues into Mexico following a 50-kilometer loop 

in which it turns northward and re-enters Arizona approximately eight kilometers 

east of Nogales.  From the international border, the Santa Cruz River continues 

northward for 170 kilometers to the confluence of the Gila River (ADWR, 1999a; 

Figure 22).  Historically, flow was perennial from its headwaters to near the town 

of Tubac, Arizona, approximately 65 kilometers north of the U.S./Mexico border.  

The river downstream of Tubac to the Gila River was characterized by 

intermittent and ephemeral reaches (Tellman et al., 1997).  Today the portion of 

the river that flows north in the U.S. can be divided into two effluent-dominated 

reaches, the upper and lower Santa Cruz River. 

 In the upper Santa Cruz reach, flow becomes perennial near the town of 

Rio Rico, approximately 21 kilometers north of the U.S./Mexico border, where 

treated wastewater is discharged from the NIWWTP into Nogales Wash 

immediately upstream from its confluence with the Santa Cruz River.  The Santa 

Cruz River at the NIWWTP drains an area of approximately 1400 square 

kilometers, with approximately 900 square kilometers in Mexico (AWWQRP, 

2002).  The NIWWTP treats wastewater from Nogales, Arizona and surrounding 

communities, as well as wastewater from Nogales, Sonora.  Release of treated 
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wastewater into the upper Santa Cruz River began in 1951, and in 1972 the 

facility was upgraded and renamed the Nogales International Wastewater 

Treatment Plant (IBWC, 2005).  In 1992 major upgrades to the treatment plant 

were completed, giving it a capacity of 17.2 million gallons per day (MGD) 

(AWWQRP, 2002).  Technology upgrades were completed in 2009, leading to 

increased removal of nitrogen compounds and improvement of overall quality of 

the discharged water (IBWC, 2010).  The effluent-dominated perennial flow in the 

Santa Cruz River extends from the NIWWTP approximately 50 kilometers north 

beyond Tubac, Arizona, where flow intermittency increases with increasing 

distance from the point of effluent release. 

 The lower Santa Cruz River begins in the Tucson metropolitan region, 

and extends downstream to the confluence with the Gila River.  This floodplain 

experienced a complex alluvial history culminating in a major cut and fill cycle 

between 500 and 300 years ago (Rosen, 2005).  Prior to the onset of European 

settlement, the lower Santa Cruz River was a shallow stream occupying a broad, 

flat floodplain covered with mature mesquite forests and cottonwood trees 

(Johnson and Haight, 1981).  Flows were historically variable and highly 

dependent on season.  By the early 20th century, flows were becoming 

increasingly intermittent in many areas due to groundwater pumping for 

agricultural practice and urban development.  Growth patterns have continued to 

lower the water table to over 50 meters below the surface (AWWQRP, 2004).   

 Today, the lower Santa Cruz River has perennial flow at present only 

because of discharges of treated wastewater from the Roger Road Wastewater 

Treatment Plant (WWTP) and Ina Road Wastewater Reclamation Facility (WRF). 

More than 50 million gallons per day (mgd) of treated wastewater is discharged 



86 

into the river channel, creating base flows for nearly 50 kilometers that support a 

narrow band of Salix-dominated forest, set within a relatively dry floodplain.  In 

the urbanized landscape, the floodplain is narrow and incised and flood scour 

tends to be severe (PCFD, 2005).  Further downstream where Avra Valley opens 

into the Santa Cruz Flats near the Pinal County line the floodplain become less 

constricted and flow becomes increasingly intermittent.  However, in this area, 

agricultural run-of combined with treated wastewater to support a central riparian 

corridor with marshy grounds and ponds and a mesquite bosque (forest). 

Study Area: non-effluent San Pedro River 

 The San Pedro River is an undammed river that flows northward from its 

headwaters in Sonora, Mexico, to its confluence with the Gila River near 

Winkelman, Arizona (Figure 22).  Based on geomorphic differences, the river is 

divided into two basins within the San Pedro River watershed (Tuan, 1962).  The 

upper basin extends from its headwaters (elevation 1500 m) to a geologic 

constriction known as the Narrows (elevation 1000 m) and the lower basin 

extends from the Narrows to the confluence with the Gila River (elevation 580 

m).  

 The San Pedro River is an interrupted perennial river; perennial reaches, 

with year-round surface flow, are interspersed with intermittent reaches (dry for 

part of year) and ephemeral reaches (dry for most of the year) (Katz et al., 2009). 

Groundwater pumping for agriculture and mining activities have decreased 

surface water and groundwater levels leading to an increase in flow intermittency 

in some parts of the river. In some areas, water availability in the riparian zone 

has fallen below threshold levels needed to sustain Populus-Salix forests and 

emergent wetlands (Lite and Stromberg, 2005; Stromberg et al., 2005).  In these 
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reaches, stream channels are wide and dry, supporting little herbaceous 

vegetation with Tamarix shrublands as the predominant woody cover. 

Climate and Hydrology Data 

 Precipitation in the Santa Cruz and San Pedro study areas is bimodal, 

with convective thunderstorms creating a summer monsoon rains and Pacific 

frontal storms providing precipitation in winter.  In the upper Santa Cruz reach, 

mean annual flow at the USGS Nogales gage (USGS #09480500) for years 2007 

and 2008 was 0.195 m3s-1 and 0.087 m3s-1 respectively.  The Nogales gage is 

located approximately 15 kilometers upstream of NIWWTP, outside of the 

effluent influence.  Within the effluent-dominated reach of the upper Santa Cruz 

River, mean annual flow at the Tubac gage (USGS #09481740) for study years 

2007 and 2008 was 0.87 m3s-1 and 0.78 m3s-1 respectively.  For the effluent-

dominated lower Santa Cruz River, mean annual flow at Cortaro gage (USGS # 

09486500) measured 2.27 m3s-1 and 2.08 m3s-1 for study years 2007 and 2008. 

This gage is located approximately 10 kilometers downstream from Roger Road 

outfall (Table XXIII).   

 In the upper basin of the San Pedro River, mean annual flow at 

Charleston (USGS #09471000) for study years 2007 and 2008 was 1.01 m3s-1 

and 0.97 m3s-1 respectively.  The gage near Redington Bridge (USGS # 

09472050) measured mean annual flow in 2007 and 2008 as 0.54 m3s-1 and 0.69 

m3s-1 for the lower San Pedro basin. For both rivers, stream flow varies widely 

among years  (Figure XXIII). 

Field sampling 

 Streamside and floodplain herbaceous vegetation were sampled four 

times: early summer dry season (late May–early June) and late summer wet 
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season (late August–early September) of 2007 and 2008.  In the Sonoran and 

Chihuahuan Deserts, May - June is usually a period with low rainfall and low 

stream flow rates.  During this time, herbaceous riparian vegetation patterns 

most strongly reflect base flows and groundwater hydrology, as opposed to being 

influenced by precipitation or flood pulses (Lite et al., 2005).   

 The streamside zone was defined as the zone of direct influence of the 

low-flow stream channel, including channel bars, benches and stream banks, 

and inclusive of areas with shallow water (up to 10 cm) and emergent aquatic 

vegetation.  At each site, data were collected at three streamside locations 

separated by a distance of 100 m.  Six 1-m2 herbaceous plots were randomly 

located within two meters of the stream edge along a 20-meter span at each 

transect (18 total per site).  Percent cover of each herbaceous species was 

estimated using modified Braun-Blanquet cover classes (Hurst & Allen, 2007).  

Percent canopy cover was also recorded at each plot.  Data were also collected 

on height of the tallest herbaceous plant per plot. 

 Floodplain vegetation was sampled along two transects, 100 meters 

apart, per site.  Each transect was perpendicular to the primary channel, and 

extended from the thalweg (channel low point) to closed Prosopis velutina forest 

or Sporobolus wrightii grassland on the terrace or, in some cases, anthropogenic 

land use.  Transects encompassed the zone vegetated by forests of Populus 

fremontii - Salix gooddingii as well as shrublands of Tamarix ramosissima, 

Baccharis salicifolia, Baccharis sarothroides, Hymenoclea monogyra, Ericameria 

nauseousa, and young Prosopis velutina.  Floodplain width, thus transect length, 

ranged from 65 to 215 m on the Santa Cruz River (mean of 123 m) on the Santa 

Cruz River and from 71 to 550 m (mean of 305 m) on the San Pedro River.  
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 Herbaceous plots were located in a stratified random fashion, with two 1-

m2 plots embedded within larger woody quadrats within identified patch types. 

Vegetation patches along transects were classified using a rule-based system 

defined by dominant woody species, canopy cover class, tree size class, and 

fluvial geomorphic surface.  Herbaceous vegetation measurements followed the 

same protocol as streamside vegetation, using modified Braun-Blanquet cover 

classes (Hurst & Allen 2007).  If patches along transects were wider than 25 m, 

we added two randomly sampled herbaceous plots for each additional 25 m of 

that patch. 

 Plants were identified to species, when possible.  Nomenclature follows 

Kearney and Peebles (1960) and recent taxonomic treatments published as part 

of the Vascular Plants of Arizona project (e.g. Wilken and Porter, 2005).  Voucher 

specimens were collected and placed in the Arizona State University herbarium. 

Plant species were classified according to water availability needs using wetland 

indicator scores (WIS) for the southwest (Region 7; USDA-NRCS, 2007).  These 

scores signify the probability that a species will occur in a wetland environment.  

For our study, obligate and facultative wetland species were grouped as hydric, 

facultative and facultative upland as mesic, and non-wetland as xeric.  

Herbaceous species were also classified based on lifespan and nativity to North 

America (http://plants.usda.gov/).  Annuals included species with predominantly 

annual or biennial life spans; perennials were those that live three or more years.  

Ellenberg N (nitrogen) scores (Ellenberg, 1979) were assigned when possible, 

and modified to an average for genus if specific-species information was not 

available. 
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Data analysis- longitudinal patterns 

Pearson correlation analysis was used to determine whether streamside 

vegetation metrics - herbaceous cover, species richness, plant height, canopy 

cover, weighted average wetland indicator score and weighted average 

Ellenberg N score - varied with distance downstream from effluent outfall points 

for the sample of 5 sites on the Upper Santa Cruz and 5 sites on the Lower 

Santa Cruz.  Analyses were conducted for each of the 4 seasonal data sets, 

using plot averages per site (n=18).  To account not only for distance from 

effluent effects but also for canopy cover differences among sites, multiple 

regression analyses were conducted on this same set of vegetation metrics with 

distance from outfall and canopy cover as the independent variables.  To visually 

compare plant diversity among sites and seasons, species accumulation curves 

were generated from random permutations of the data (Gotelli & Colwell, 2001) 

using expected richness per plot via Sobs (Mao Tau) in Estimate S 8.2.0 

(Colwellet al., 2004). One set of curves was generated from the 18, 1-

m2herbaceous streamside plots across four sampling seasons at all 21 sites (12 

on Santa Cruz River; 9 on San Pedro; n = 378 plots annually, except for pre-

monsoon 2007 where n = 306). 

Data analysis – comparison among river types 

To compare richness, abundance, and composition of streamside 

herbaceous communities among river settings (upper Santa Cruz, lower Santa 

Cruz, San Pedro), two-factor analysis of variance was conducted using the 

General Linear Models procedure in PASW 18.  This analysis was restricted to 

comparison of perennial sites (n=3 for each river setting), using elevation and 

river setting as independent variables.  Analysis of variance also was conducted 
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in SAS v. 9 (SAS Institute Incorporated, 2007) for all sites using river setting and 

flow permanence as independent variables on the 2008 data only.  For this 

analysis, flow permanence was categorized into three groups: 0-30% flow, 31-

99% flow, and 100% flow.  Differences were highlighted using Tukey HSD post-

hoc multiple comparisons.  Statistical relations were considered significant at p < 

0.05, and variables were transformed as necessary to meet assumptions for 

normality and equality of variance. 

Data analysis – lateral patterns 

 Similar to the longitudinal analyses, another set of species curves was 

generated for floodplains, using data from the 1-m2herbaceous plots located in 

the floodplain, using expected richness per plot via Sobs (Mao Tau) in Estimate 

S 8.2.0 (Colwellet al., 2004).  For these curves the number of plots per site varied 

depending on floodplain width.  

To assess changes in herbaceous plant communities with lateral distance 

from the channel, three zones were established: the streamside zone (0-2 meters 

of channel), near floodplain (2-10 meters) and far floodplain zone (10+ meters). 

The number of plots per zone varied among sites with the minimum number 

being 8.  A one-way ANOVA for each site comparing richness, abundance, and 

other community metrics among zones was conducted in PASW 18.  We used 

pre-monsoon 2008 site data (Upper Santa Cruz, n = 7; Lower Santa Cruz, n = 5; 

San Pedro, n = 9 sites) to emphasize the influence of effluent flows. 
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RESULTS 

Longitudinal patterns: changes in streamside plant communities with 

distance downstream from effluent-discharge points 

 Upper Santa Cruz River (ESG).Herbaceous species richness, cover, plant 

height, canopy cover, and nitrogen (N) scores were all negatively correlated with 

distance from the point of treated wastewater release in the shallow-groundwater 

upper Santa Cruz River, with some variance in strength of correlations among 

seasons (Figures 24&25 Table XIV).  For species richness, the decline in 

streamside species richness with distance was significant across all sampling 

seasons, with lowest richness at the two sites that had the least effluent influence 

and thus intermittent flow (Table XIV).  Species accumulation curves also 

revealed a pattern of decline in streamside species numbers with increasing 

distance from the point of discharge (Figure 26).  

  Streamside canopy cover, which decreased with increasing distance, 

interacted with effluent flow to influence understory vegetation (Table XV). 

Herbaceous cover had high negative correlations with distance in all seasons 

except one of the two monsoon samplings (Table XIV).  Analysis with multiple 

regression showed that canopy cover had an overriding effect on herbaceous 

cover during the monsoon season, while distance was the variable most strongly 

linked to cover for the pre-monsoon baseflow season (Table XV). Sites with the 

highest streamside canopy tended to have less herbaceous cover (and lower 

species richness and shorter understory plants) than those sites in which sunlight 

could reach the understory.   

 Streamside plant community composition shifted with downstream 

distance.  Species with higher nitrogen affinity, such as Conium maculatum and 
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Polygonum lapathifolium, were found at perennial flow sites close to the point of 

treated wastewater introduction.  Wetland indicator scores increased 

downstream, in tandem with increasing intermittency of flow.  Species common 

at perennial sites were obligate and facultative wetland species, such as 

Nasturtium officinale, Veronica anagallis-aquatica, Hydrocotyle verticillata, 

Conium maculatum and Polygonum lapathifolium, and shifted toward mesic and 

upland species such as Cynodon dactylon, Schismus barbatus, Amaranthus 

palmeri, and Salsola tragus at the drier sites.  

 Lower Santa Cruz River (EDG).  Species richness, herbaceous cover, 

plant height, and nitrogen score of the streamside plant community were also 

negatively correlated with distance from the point of treated wastewater release 

in the lower Santa Cruz River (Figures 24 & 25; Table XIV).  Declines in 

streamside species richness and cover occurred in both the wet and dry seasons 

(Table XIV).  In contrast to the ESGreach, streamside canopy patterns in this 

reach increased with increasing distance downstream likely owing to the input 

from agricultural inflows in the downstream reaches.  Multiple regression of 

distance combined with canopy cover indicated effects of both of these 

independent variables on streamside herbaceous cover, richness, wetland 

indicator score, and N score (Table XV). 

Similar to the upper Santa Cruz, wetland indicator scores decreased 

significantly with increasing distance, reflecting less effluent influence and 

increased flow intermittency.  Close to the point of effluent introduction, obligate 

and facultative species such as Typha domingensis, Veronica anagallis-aquatica 

and Polygonum lapathifolium were common, and further downstream 

composition shifted toward species such as Cynodon dactylon and Amaranthus 
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palmeri.  N scores were highest nearest the effluent outfall, with dominance by 

high-N species including Typha domingensis, Polygonum lapathifolium, Setaria 

grisebachii, and Echinochloa sp.  

Comparing streamside plant communities between effluent and non-

effluent rivers  

 Species richness.  Focused analysis on the perennial sites indicated that 

mean streamside richness per 1-m2 plot was higher in the ESG and EDG reaches 

than on the control during the post-monsoon season (Figure 28B; Table XVI).  

Values did not differ among river types during the pre-monsoon season.  Pre-

monsoon plots averaged 3.2 and 3.0 and post-monsoon 3.1 and 3.0 species per 

m2 in the ESG and EDG reaches respectively.  Perennial sites on the control river 

had an average of 2.4 and 2.1 species per m2
. 

 Multi-site analysis (Table XVII) indicated that plot richness was related to 

stream flow permanence, but only for the pre-monsoon season.  Highest 

streamside species numbers, overall, occurred at intermittent sites of the control 

following the monsoon season (Figures 26 & 27). 

 Pre- and post-monsoon values for cumulative streamside herbaceous 

richness averaged 10 and 11 species per site in ESG and 11 and 14 species per 

site in EDG.  Control numbers were slightly lower with 9 and 8 species.  For the 

rivers as a whole, there were a combined total of 82 species in the streamside 

zone of the twelve effluent-dominated Santa Cruz River sites and 84 species in 

the nine sites of the control river (Appendix III). 

 Herbaceous cover.  Surface flow permanence had significant effects on 

herbaceous cover although river setting did not (Table XVII), with values highest 

at the perennial flow sites for all three rivers.  Post-hoc Tukey tests indicated that 
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river setting also had an effect, with cover during the pre-monsoon season 

significantly higher in ESG and EDG reaches than in the control (Figures 29A and 

30A; Table XVII).  For post-monsoon samples, herbaceous cover also was 

highest in the EDG.  Restricting the analysis to the perennial sites only (n = 3, 

each river type) confirmed that river setting had a significant effect on 

herbaceous cover (F(2,4) = 9.424, p <0.05) independent of flow, with cover higher 

on the effluent-dominated reaches (Figure 28).  This river setting effect at the 

perennial sites likely reflects interactions with canopy cover, in that herbaceous 

cover was highest in the streamside zone of EDG, which had lower canopy 

density than did the perennial sites of the ESG and control (Figure 28).   

 Streamside canopy cover.  Canopy cover was highest on the control river 

and lowest in EDG (Figure 28; Table XVI).  This between-river pattern is most 

likely a result of differences in stream hydrology rather than in nutrient effects.  

Neither river setting nor elevation had significant effects on canopy cover, 

whereas surface flow permanence had significant effects on canopy cover with 

denser canopy at wetter sites (Figures 28 & 29; Table XVII) 

 Plant height.  Plant heights were significantly greater at the perennial 

sites in the effluent-dominated system compared to the control (Table XVI).  On 

average, tallest plants were in the EDG reach, averaging 119 cm and 96 cm in the 

pre- and post-monsoon seasons.  In the ESG reach, plant height averaged 76 cm 

and 65 cm in pre- and post-monsoon samples.  Plant heights in the control river 

were significantly lower with 36 and 21 cm for pre- and post-monsoon seasons, 

respectively (Figure 28D).  Flow permanence was an important influence on plant 

height, but river type retained a strong significant effect after accounting for flow 

(Figures 29D & 30D).   
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 Composition. The comparison of perennial sites for all three river settings 

did not reveal any significant differences in wetland indicator scores in either pre- 

or post-monsoon season (Figure 28E; Table XVI).  Flow permanence had a 

significant effect on wetland indicator scores, but river setting did not (Figures 

29E &30E; Table XVII).  N scores were more revealing regarding compositional 

differences at perennial sites based on river setting (Table XVI).  N scores were 

significantly different between all three river settings for pre-monsoon samples 

when effluent influence is not dampened by seasonal precipitation (Figure 28F).  

River setting and flow permanence both yielded significant differences in N 

score, with the highest N scores occurring at perennial flow sites of both the ESG 

and EDG reaches (Table XVII).  N scores in the streamside perennial sites 

averaged of 6.8 and 7.1 in the ESG and EDG reaches, and 5.5 on the control. 

Among flow categories, differences in N scores were most pronounced for the 

perennial flow sites (Figures 29F & 30F). 

 Ordination analysis patterns for pre-monsoon 2008 data yielded a 2-D 

solution related to flow permanence and river type (final stress = 11.397, final 

instability = 0.0156; Figure 31A) and accounted for 96% of the variability in the 

data set.   Axis 1 was positively correlated with river setting (r = 0.506) and flow 

permanence (r = 0.165).  Axis 2 was most significantly related to flow 

permanence (r = 0.739) and also positively correlated with river setting (r = 

0.316) and flow permanence (r = 0.739).  Post-monsoon data also yielded a 2-D 

solution (final stress = 10.642, final instability < 0.0001; Figure 31B) and 

accounted for 84% of the variability in the data set.  Axis 1 was positively 

correlated with river setting (r = 0.482) and flow permanence (r = 0.262).  Axis 2 
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was negatively correlated with river setting (r = -0.196) and flow permanence (r = 

-0.400). 

Lateral patterns: changes in herbaceous plant communities across 

floodplains of effluent-dominated and non-effluent rivers 

 Herbaceous cover.  On the control river, herbaceous cover differences by 

zone varied strongly by site, reflecting site hydrology and canopy cover 

heterogeneity.  For perennial sites, cover in the streamside zone was significantly 

lower than in near or far floodplain zones, likely due to high density of canopy 

cover along the channel (Table XIX; Figure 36).  Most of the intermittent and 

ephemeral sites, in contrast, had significantly higher cover in the streamside 

zone compared to zones further from the channel (Table XVI, Figure 37).  On the 

effluent river, herbaceous cover declined more frequently with increasing 

distance from the perennial flow channel.  The patterns were strongest in the 

deep-groundwater lower Santa Cruz with less canopy influence.  In the EDG 

reach, herbaceous cover declined significantly with increasing distance across 

the floodplain at all 5 sites (Table XVIII; Figure 35).  In the ESG reach, however, a 

dense riparian forest influenced herbaceous cover at the sites closest to the 

treatment facility.  At sites 15, 25, 35, and 45 km downstream, however, cover 

declined significantly from the streamside to far floodplain.  The site 55 km 

downstream had very little effluent input and herbaceous cover in the floodplain 

did not change significantly with distance from the low flow channel (Table XVIII; 

Figure 34).   

Herbaceous species quadrat richness.  Lateral patterns of herbaceous 

species richness on the control river varied by flow permanence (Figures 36 & 

37; Table XIX). Most perennial and intermittent sites had higher pre-monsoon 



98 

species richness in the near floodplain (2-10 m) zone and far floodplain 

compared to the streamside (Figure 36).  Of the two ephemeral sites, one 

(Narrows) did not have significant differences across zones and the other had 

high richness in the floodplain.  Additionally, there were no significant differences 

in species richness across floodplain zones at the non-effluent sites control sites 

upstream of NIWWTP in the ESG reach (Figure 34; Table XVIII).   

In contrast to the control sites, there was a significant decline in 

herbaceous species richness in both effluent-dominated reaches with increasing 

distance from the perennial flow channel, particularly in the deep-groundwater 

reach.  Species richness in the EDG and ESG reaches declined significantly with 

distance from channel for nearly all the sites (Table XVIII; Figures 34 & 35). 

Species richness in both reaches was highest in streamside zones, and declined 

significantly within 10 meters of the low flow channel in the EDG reach in 

particular.  Average species/m2 for combined pre-monsoon data was 2.6 in the 

near floodplain zone (2 - 10 m from channel) and 1.7 in the far floodplain zone 

(10+ m) in the ESG.  Post-monsoon data averaged 2.5 species/m2 and 1.8 

species/m2 for the near and far zones respectively.  Sites along the EDG reach 

averaged 2.8 and 1.4 species/m2 and post-monsoon data averaged 2.8 and 1.5 

species/m2 in the near and far floodplain zones respectively.  Sites along the 

control river averaged 2.9 and 2.2 species/m2 (pre-monsoon) and 3.0 and 2.6 

species/m2 (post monsoon) in the near and far floodplain zones. 

Species accumulation curves showed that species numbers were 

significantly higher in the floodplains of the control river and seasonal variation 

was more evident in floodplain patterns, with more species occurring in post-

monsoon seasons (Figures 32 & 33).  Numbers of species were similar in the ESG 
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and EDG reaches, but both reaches were significantly lower than the control 

(Figures 32 & 33).  Total numbers of herbaceous species in the floodplains of the 

ESG, EDG and control varied based on surface flow permanence and floodplain 

width. 

 Canopy cover.  On the control river, lateral patterns for canopy cover 

varied with site hydrology.  Two of the three perennial sites on the control had 

significant differences across floodplain zones, with canopy decreasing with 

distance from the channel (Table XIX; Figure 36).  Intermittent site trends for 

canopy cover were more variable (Figure 37).  The two ephemeral sites 

(Narrows, HE3) had highest canopy cover in the far floodplain zone, which was 

dominated by Prosopis velutina and Tamarix ramosissima.  There were no 

significant differences between zones for the two upstream non-effluent sites on 

the Santa Cruz.   

Lateral patterns for canopy cover also varied with site hydrology in the 

ESG reach.  In the perennial sites of ESG nearest to the point of effluent discharge, 

Populus-dominated canopy cover was highest in the streamside and near 

floodplain zones and declined further out in floodplains, similar to patterns at the 

perennial controls (Figure 34).  As flow intermittency and downstream distance 

increased, however, there were no significant differences across the floodplain 

(in contrast to the control), largely because tree species were no longer present 

in any zone. 

 In the EDG reach, perennial sites closest to the point of discharge did not 

have significant differences across zones.  For sites farther downstream, canopy 

(dominated by Salix goodinggii) increased in the streamside and near floodplain 

zones but was not maintained in the far floodplain (Table XVIII; Figure 34).   
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 Composition.  At the control river, wetland indicator scores were lowest in 

the streamside and near floodplain zones, and were higher in the far floodplain. 

Differences among zones were significant for all three perennial sites and for the 

four of the six intermittent and ephemeral sites (Table XIX; Table XVIII; Figures 

36 & 37).  In the two control sites on the Santa Cruz River upstream of the 

NIWWTP, there were no significant differences across floodplain zones in 

wetland indicator (Figure 34).  The patterns for wetland indicator scores in the 

two effluent-dominated reaches were similar to those on the San Pedro control, 

in that values increased (i.e. became drier) with increasing distance from the low 

flow channel and decreasing water availability (Table XVIII; Figure 34 & 35).  The 

magnitude of change across zones was most pronounced for perennial sites in 

the EDG reach, with WIS scores shifting from an average of 1.9 in the streamside 

zone to 4.2 in the far floodplain.  Differences in WIS between zones were 

diminished with distance downstream (and increasing intermittency) because 

very few wetland species were supported in the streamside zone at these sites.    

 At the control river, nitrogen scores tended to be lowest further away from 

the low flow channel, but patterns were not as strong as for the effluent reaches.  

Differences for N score at the control river were significant across zones for all 

three perennial sites (Table XIX; Figure 36), but did not differ among zones at the 

six intermittent or ephemeral sites (Figure 37) nor at the two control sites on the 

Santa Cruz River upstream of the NIWWTP (Figure 34).  In the effluent-

dominated reaches, in contrast, N score declined significantly from the 

streamside to far floodplain at all but one site (Table XVIII; Figure 34 & 35). 



101 

DISCUSSION 

 Our investigation of streamside and floodplain herbaceous plant 

communities revealed differences in community structure between effluent-

dominated and non-effluent rivers in the semi-arid southwestern United States.  

We were able to identify four factors that significantly influenced herbaceous 

plant community patterns and development along effluent dominated rivers.  Our 

research verified water quality and surface flow hydrology as two important 

drivers shaping riparian plant community diversity, abundance, and composition.  

Depth to groundwater also emerged as an influential variable as distinct zonal 

patterns emerged in herbaceous cover, species richness and composition with 

increasing distance from the perennial effluent particularly in reaches with greater 

depth the groundwater.  Lastly, canopy cover also affected streamside 

community metrics, particularly at perennial sites that supported significant 

Populus-Salix forest.   

Nutrient influences 

 Effluent-dominated streams have unique water quality characteristics 

because treated wastewater is typically high in ammonia, nitrate, and phosphate 

(Grimm & Fisher, 1986b; Marler et al, 2001; Brooks et al., 2006).  Flows in the 

Santa Cruz River have been supplemented by treated wastewater for more than 

40 years, and portions are listed as an impaired waterbody (USEPA, 2007) for 

ammonia, nitrogen, phosphorous and 7 other compounds (ADEQ, 2008). The 

elevated nutrients in effluent discharge are a concern for many treatment plant 

managers (AWWQRP, 2002) and numerous studies have shown accelerated 

growth or biomass production with increasing nitrogen concentration (Kowalik & 

Randerson, 1994; Karpsicak et al., 1996; Hubbard et al., 1999; Marler et al., 
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2001).  Our results are consistent with others in that we found average 

streamside herbaceous plant heights along the effluent-dominated reaches to be 

at least two times greater than those on the non-effluent control.  We also 

documented compositional shifts on the Santa Cruz River toward nitrophilic 

species that can tolerate and thrive in elevated nutrients.  Greater plant height in 

the effluent-dominated system (and thus presumably greater biomass) largely 

reflected these compositional shifts, with nitrophilic species (such as Conium 

maculatum and Polygonum lapathifolium) tending to grow larger than non-

nitrophiles.   

 Upstream of the NIWWTP, total Kjeldahl nitrogen (TKN) and total 

phosphorus in 1993 were below 1.0 mg L-1, similar to findings for other natural 

Arizona streams (Grimm & Fisher, 1986b; Stromberg et al., 1993).  Since that 

time, flow upstream of NIWWTP has become increasingly intermittent due to 

extensive groundwater pumping and a period of drought.  Downstream of the 

treatment facility, vegetation response to the pulse of nutrients and water 

released from the NIWWTP is substantial.  Nutrient dynamics then change 

longitudinally downstream from the point of discharge (Patten et al., 1998) as 

nutrients are utilized quickly by the aquatic and streamside communities (Schade 

et al., 2005), resulting in declines in concentrations of nutrients with increasing 

distance from the discharge point (Patten et al., 1998; Duran and Spencer, 

2004).  Our results indicated similar patterns as plant heights and dominance of 

nitrophiles also declined with increasing distance from the point of discharge.  

Finally, lateral zonation patterns showed that abundance of nitrophilic species 

was highest within the first two meters of the effluent-dominated reaches, but 

compositional shifts were still evident within the first ten meters of the effluent 
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flows.  Further out in the floodplain, outside of the immediate zone of effluent 

influence, herbaceous plant communities were not shifted toward plants with 

higher nitrogen affinities. 

Surface flow influences 

 Riparian plant community distributions and patterns are often reflective of 

multiple environmental gradients (Stromberg et. al, 2009; Chessman & Royal, 

2010) and in effluent-dominated systems, some gradients may be amplified 

(nutrients) while others are somewhat dampened (surface flow intermittency).  

Both study reaches are interrupted perennial rivers with effluent discharge 

influencing the extent of perennial base flow, and thereby influencing the 

vegetation.  For both effluent-dominated reaches of the Santa Cruz River, sites 

with perennial flow closer to the point of effluent introduction supported higher 

herbaceous cover and species richness and had more wetland species 

compared to downstream sites outside of effluent influence.  This is consistent 

with previous research which has shown that reliably wet habitats in arid 

environments support distinct groups of wetland species that do not occur in 

uplands (Stromberg et al. 2005; Rhazi et al., 2009; Katz et al., 2009).  The two 

furthest downstream sites in the upper reach were consistently dry, and low 

species numbers and no wetland species reflected these environmental 

conditions.  In the lower reach, species numbers remained consistently higher 

and wetland species persisted, largely due to greater effluent volumes and 

additional agricultural input further downstream.  Finally, when comparing the 

effluent-dominated reaches with the control, streamside community composition 

and plant height differences were most significant at perennial sites.   
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Groundwater effects 

 Our study also reveals how hydrologic setting with respect to groundwater 

shapes the response of riparian plant communities to effluent discharge, 

particularly in floodplain zones.  The upper Santa Cruz effluent-dominated reach 

had a shallow riparian water table whereas the effluent surface channel in the 

lower Santa Cruz reach was disconnected from the stream aquifer owing to 

historic depletion by groundwater pumping.  Across the floodplains of the 

effluent-dominated system, species richness and herbaceous cover declined and 

there was a distinct shift toward more xerophytic species with increasing distance 

from the low flow channel.  These shifts were especially evident in the deep-

groundwater lower Santa Cruz reach, likely reflecting the xeroriparian nature of 

the lateral zones. 

 One key management question is how much riparian habitat can be 

sustained by effluent discharge and how hydrogeomorphic conditions may 

influence response.  On both reaches of the Santa Cruz, the longitudinal extents 

of wetland plants along the stream channel were similar (40 km downstream from 

the NIWWTP when surface flows dissipate completely, 50 km downstream from 

Roger and Ina WWTPs, where flow is supplemented by agricultural runoff).  This 

occurred despite the fact that the deep-groundwater lower Santa Cruz reach 

receives over 50 MGD of effluent flow while the shallow-groundwater upper 

reach receives approximately 17 MGD of effluent.  Much of the effluent in the 

lower Santa Cruz reach likely infiltrates into the stream bed (Galyean, 1996), 

thereby reducing the water available to riparian plant communities, and indicating 

that underlying hydrology (depth to groundwater) is an also important in shaping 

longitudinal patterns.   
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 Zonation patterns for abundance and community composition across the 

floodplain of the effluent-dominated reaches were much more pronounced than 

in the floodplain of the control river.  In the non-effluent San Pedro River, 

herbaceous cover and species richness were highest at the intermittent sites, 

particularly in post-monsoon conditions.  These patterns were consistent with 

previous research, which has found that intermittent sites may be most ideally 

suited for accumulating species-rich plant assemblages over time due to 

variability in hydrology and geomorphic heterogeneity (Berlow et al., 2008; Katz 

et al., in review).  

Canopy effects 

 Effluent release indirectly affects streamside herbaceous patterns by 

influencing forest growth along the low-flow channel.  Streamside forest canopy 

was associated with reduced herbaceous cover and species richness in the 

perennial-flow sites along the shallow-groundwater upper Santa Cruz and San 

Pedro Rivers.  These sites had dense growth of broad-leaved trees along a 

relatively narrow active channel, in contrast to intermittent sites, which had less 

tree cover and deeper groundwater tables.  Dense tree canopy may shape 

understory communities through various mechanisms including temperature 

moderation, shading, substrate stabilization, litter inputs, and uptake of nutrients 

(Follstad-Shah and Dahm, 2008; Katz et al., 2009).  These factors also create a 

more geomorphically stable environment than non-perennial reaches (Heffernan 

2008), enhancing accumulation and retention of hydric seeds while also limiting 

opportunities for species turnover (Katz et al., 2009).  Thus, streamside 

herbaceous cover and species richness were higher in the lower Santa Cruz 
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reach sites with perennial effluent influence and lower forest canopy, but declined 

significantly with increasing downstream distance and flow intermittency.  

CONCLUSIONS 

 Management and maintenance of river systems in the southwestern 

United States is becoming increasingly complex due to human impacts, multiple 

and competing water needs, and climate variability.  The use of effluent as a 

source of water for the environment raises important questions about the benefits 

and impacts of effluent on riparian structure and function, particularly in the 

context of drought, societal freshwater needs and environmental flows.  The 

Santa Cruz River in southern Arizona has proven an ideal laboratory in which to 

study ecological dynamics of an effluent-dominated riparian system and begin 

developing tools for monitoring and managing other similar systems.  Our 

research has shown that effluent-dominated systems have clear longitudinal 

patterns driven by the increase in water availability and nutrients.  Previous 

studies have indicated that long-term water resource availability can mediate 

plant community response to short-term rain and flood events.  For example, 

Stromberg et al. (2009) found that cumulative richness of streamside species 

through multiple seasons was higher at intermittent sites than at perennial sites 

because water limitation increased bare ground and allowed for greater turnover 

of annual species in response to short-term water pulses from rain and floods.  

The long-term, continual release of effluent sustains streamside herbaceous 

cover, but spatial and temporal dynamics are dampened, and diversity is affected 

as community composition shifts toward more nitrogen-tolerant species.  From a 

management perspective, a threshold change in vegetation composition 

highlights the complex relationships between external factors (i.e., climate) and 
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system-specific components (i.e., water quality).  Ultimately, the current lack of 

understanding about systems receiving effluent underscores the growing need 

for suitable methods to evaluate ecological dynamics of these systems.  Although 

some biotic and abiotic attributes varied between reaches, the overall picture 

shows structural and functional similarities in the riparian vegetative communities 

established on the control and effluent reaches.  
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Table XIV.  Pearson correlation (r values) relating distance from effluent outfall to 
traits of herbaceous streamside plant communities along the effluent-dominated 
Santa Cruz River.  Values are shown for four sampling seasons. Bold values 
denote significance, alpha = 0.05, n = 5 (Upper Santa Cruz) and n=5 (Lower 
Santa Cruz). 
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Table XV.  Standardized beta coefficients from multiple regression analyses 
predicting traits of streamside plant communities based on distance from outfall 
and canopy cover at 10 sites (5 in the upper reach, 5 in the lower reach) along 
the effluent-dominated Santa Cruz River.  Only significant results are shown.  ( ) 
= Standard error. 
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Table XVI.  Comparison of the effects of river setting and elevation on streamside 
herbaceous community variables at perennial sites across the upper and lower 
effluent-dominated Santa Cruz River and non-effluent San Pedro. Bold values 
denote significance, p < 0.05, n = 3, each river. 
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Table XVII.  Comparison of the effects of streamflow and river setting on 
streamside herbaceous community variables across the upper and lower 
effluent-dominated Santa Cruz River and non-effluent San Pedro. Bold values 
denote significance, p < 0.05, n = 3, each river. 
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Figure 22.  Map of effluent-dominated study river (Santa Cruz) and control river 
(San Pedro) showing locations of study sites, wastewater treatment facilities 
(WWTPs) and USGS stream gages.  Site information is listed in Table 1.  
Climate and hydrologic information can be found in Table 2.   
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Figure 23.  Average annual streamflow for the Santa Cruz and San Pedro Rivers.  
Effluent contributes a steady and increasing supplement to the surface flow of 
the Santa Cruz River in both its upper (A) and lower (B) reaches. For the upper 
reach, the stream gage is located upstream of the point of effluent release. In the 
lower reach, the gage measurements reflect the addition of effluent. 
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Figure 24.  Relationship of streamside herbaceous cover, species richness, and 
canopy cover with increasing distance from point of effluent discharge for the 
upper and lower Santa Cruz River. Results are from pre- and post-monsoon 
seasons in 2007 & 2008. Table 3 shows corresponding correlation data. 
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Figure 25.  Relationship of plant height, WIS, and Ellenberg N score with 
increasing distance from point of effluent discharge for the upper and lower 
Santa Cruz River. Results are from pre- and post-monsoon seasons in 2007 & 
2008. Table 3 shows corresponding correlation data. 
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Figure 26.  Species accumulation curves for streamside herbaceous plots (n=18, 
10 effluent-dominated sites) in the (A) upper and (B) lower Santa Cruz River. 
Results are from pre- and post-monsoon sampling in 2007 & 2008.   
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Figure 27.  Species accumulation curves for streamside herbaceous plots (9 
sites, n=18) on the San Pedro River.  Results are from pre- and post-monsoon 
sampling in 2007 & 2008. 
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Figure 28.  Pre- and post-monsoon comparisons of streamside plant community 
metrics at perennial sites in the upper Santa Cruz (USC), lower Santa Cruz 
(LSC), and San Pedro (SP) Rivers.  Significant differences are highlighted with * 
for pre monsoon and  for post monsoon data.  Error bars = +/- 1 SE 
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Figure 29.  Pre-monsoon comparisons of plant community metrics at sites with 
varying flow conditions in the upper Santa Cruz (USC), lower Santa Cruz (LSC), 
and San Pedro (SP) Rivers.  Significant differences are highlighted with * for pre 
monsoon data.  Error bars = +/- 1 SE 
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Figure 30.  Post-monsoon comparisons of plant community metrics at sites with 
varying flow conditions in the upper Santa Cruz (USC), lower Santa Cruz (LSC), 
and San Pedro (SP) Rivers.  Significant differences are highlighted with * for post 
monsoon data.  Error bars = +/- 1 SE 
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Figure 31.  NMS ordination for Axis 1 and 2 of (A) pre- and (B) post-monsoon 
streamside herbaceous data sampled in 2008 along  the upper Santa Cruz (n = 
7), lower Santa Cruz (n = 5) and San Pedro Rivers        (n = 9; 21 total sites).  
Correlation vectors are plotted if r2> 0.10.    
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Figure 32.  Species accumulation curves for floodplain herbaceous plots in the 
(A) upper and (B) lower Santa Cruz River. Results are from pre- and post-
monsoon sampling in 2007 & 2008.  The gray bar indicates the “near” floodplain 
zone (2-10 meters).    
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Figure 33.  Species accumulation curves for floodplain herbaceous plots on the 
non-effluent San Pedro River.  Results are from pre- and post-monsoon sampling 
in 2007 & 2008.  The gray bar indicates the “near” floodplain zone (2-10 meters).    
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Figure 34. Patterns of plant community variables across floodplains for pre-
monsoon 2008 data in the upper Santa Cruz River.  Significant differences 
(p<0.05) from Tukey pairwise comparison are indicated by different numbers of 
asterisks (*).  Sites with a gray background are within-river non-effluent controls 
located upstream of NIWWTP.  
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Figure 35. Patterns of plant community variables across floodplains for pre-
monsoon 2008 data in the lower Santa Cruz River.  Significant differences 
(p<0.05) from Tukey pairwise comparison are indicated by different numbers of 
asterisks (*). 
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Figure 36. Patterns of plant community variables across floodplains for pre-
monsoon 2008 data for perennial sites on the San Pedro River.  Significant 
differences (p<0.05) from Tukey pairwise comparisons are indicated by different 
numbers of asterisks (*).   
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Figure 37. Patterns of plant community variables across floodplains for pre-
monsoon 2008 data for intermittent sites on the San Pedro River.  Significant 
differences (p<0.05) from Tukey pairwise comparisons are indicated by different 
numbers of asterisks (*).  Sites with a gray background are ephemeral.  *SHP has 
been intermittent since 2003. 
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5. SPATIAL AND TEMPORAL VEGETATION PATTERNS OF RIPARIAN 

VEGETATION IN EFFLUENT-DOMINATED WATERWAYS 

ABSTRACT 

 Riparian ecosystems are among the most diverse and threatened 

ecosystems in the southwestern United States and consequently the focus of 

much conservation and restoration efforts.  During the twentieth century stream 

diversion and groundwater withdrawals have lowered water tables in stream 

aquifers and negatively impacted the abundance and distribution of the many 

riparian tree species on dryland rivers.  Other alterations, such as the release of 

effluent from municipal wastewater treatment facilities, have provided stable, 

perennial base flows supporting the development of riparian habitat downstream 

of the treatment plant.  Little is known about the ecological dynamics of these 

effluent-dominated riparian ecosystems and our goal was to assess how 

increased water availability from effluent released into the Santa Cruz River has 

influenced spatial and temporal patterns of vegetation change.  Using a time-

series of aerial photographs (1955–2010) combined with collected field data we 

quantified changes in extent, abundance, and composition of riparian woody 

vegetation in the riparian zone of an effluent-dominated waterway that spans two 

hydrological settings (deep groundwater disconnected to the stream flow, and 

shallow groundwater hydraulically connected to the stream flow).  We used the 

San Pedro River, with its similar hydrologic regime and geographic setting, as 

our non-effluent reference system. 

 Analysis indicated that species richness was similar between the 

systems. Hydric pioneers, including Populus fremontii and Salix gooddingii, were 

dominant at perennial sites on both rivers, particularly those with shallow 
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groundwater.  Riparian vegetation in the shallow-groundwater upper Santa Cruz 

clearly declined with increasing distance from effluent release while patterns in 

the deep-groundwater lower Santa Cruz were confounded by the additional 

agricultural input and an extremely channelized floodplain closest to the 

treatment facility.  In floodplains of the effluent-dominated system, there was a 

distinct shift toward more xeric species with increasing stream flow intermittency 

and distance from the low-flow channel.  Differential response between the upper 

and lower reaches of the effluent dominated Santa Cruz indicates that water 

availability is the driving variable of downstream riparian plant community 

structural development.  This study revealed that effluent has contributed to the 

restoration and maintenance of woody vegetation on the Santa Cruz, with 

cottonwood-willow gallery forest more successfully maintained in shallow 

groundwater settings.  Analysis of spatial and temporal interactions of 

geomorphic, hydrological and terrestrial processes provides the long-term 

perspective needed to inform conservation and management of rivers subsidized 

by effluent.  

INTRODUCTION 

 Riparian ecosystems are recognized as biologically important 

components of landscapes worldwide that link aquatic and terrestrial habitats and 

serve as interfaces that influence, and are influenced by, these systems (Bendix 

and Hupp, 2000).  As a result, riverine ecosystems are dynamic; fluvial 

processes including, flooding impact the spatial and structural heterogeneity of 

riparian plant communities by shaping geomorphic, topographic and biological 

features within the floodplain (Bendix and Hupp, 2000; Latterell et al., 2006; 

Charron et al., 2008; Stromberg et al., 2008).  In addition to fluvial dynamics, 



134 

water availability is an important driver that impacts the area, composition, and 

age structure of riparian plant communities, particularly in arid and semi-arid 

regions (Sala et al., 2000; Webb et al., 2007). 

 In the semi-arid southwestern United States, stream diversion and 

groundwater withdrawals for urban, agricultural, and industrial uses have 

converted many perennial rivers to intermittent or ephemeral systems and 

lowered water tables in stream aquifers.  These changes have affected 

abundance and distribution of the many riparian tree species that are 

phreatophytes, meaning they extract water from aquifers or the capillary fringe 

above the water table and are particularly sensitive to subsurface water 

availability (Meyer et al., 1999).  The phreatophytes that grow along rivers of the 

southwestern United States, which include Salix gooddingii (Goodding willow), 

Populus fremontii (Fremont cottonwood), Tamarix ramosissima (tamarisk), and 

Prosopis velutina (velvet mesquite), differ in root depth and architecture, water 

use rate, tolerance to drought and fluctuating water tables, and in their capacity 

to shift between seasonally varying water sources (Lite and Stromberg, 2005).  

Salix and Populus are considered to be obligate phreatophytes, requiring 

permanently available shallow ground water, while Tamarix and Prosopis, deep-

rooted, facultative phreatophytes that obtain water from saturated and 

unsaturated soil, are physiologically adapted to a higher degree of water stress 

(Busch et al., 1992; 2001a; Snyder and Williams, 2000; Stromberg et al., 2008).  

Extraction of freshwater, combined with episodic drought, have shifted conditions 

suitable for maintaining forests of the pioneer trees, Populus and Salix, and in 

some settings, these forests have been replaced by shrublands or woodlands of 

more drought-tolerant taxa. 
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 Paradoxically, while societal water demands have led to the contraction 

and, in some cases, complete disappearance of areas supporting riparian forests 

(Busch and Smith, 1995; Logan, 2002; Webb and Leake, 2006; Webb et al., 

2007), urban centers are producing large volumes of treated wastewater, which 

is often released into nearby stream channels.  This dynamic has led to the 

emergence of effluent-dominated waterways, or rivers that derive a large 

percentage of their surface flows from the daily production and release of effluent 

into a stream channel.  Effluent-dominated systems are fundamentally different 

from the intermittent or ephemeral streams they displace.  Effluent is both 

nutrient rich and continuously released, fluxing diurnally with urban consumption 

patterns.  High nitrogen levels can benefit riparian vegetation by stimulating 

growth (Patten et al., 1998; Marler et al., 2001) and can also foster biological 

activity within the channel that can lead to the formation of clogging layers in 

surface sediments (Boulton et al., 1998; Hancock, 2002).  These clogging layers 

can act as a seal the bottom of the stream channel, decreasing infiltration and 

recharge and hindering the connection between surface water, subflow, and 

groundwater, changing conditions for phreatophytic plants (Lacher, 1996; Brunke 

and Gonser 1997; Boulton et al., 1998).  Although Populus, Salix and other 

riparian trees are primarily phreatophytic in natural river settings, stream base 

flows and perched aquifers can be a water source for their growth at the stream 

edge (Smith et al., 1991).  Physiological responses of phreatophytes and shifts in 

riparian plant community structure to declines in surface flow and groundwater 

levels have been well studied, but there is little knowledge about how riparian 

vegetation in different hydrologic settings responds to long-term, continuous 

inflows of effluent.  A lack of understanding about the dynamics of effluent-
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dominated streams underscores the growing need for suitable methods to 

evaluate the ecological integrity of these systems (Brooks et al., 2006).  This 

knowledge gap is particularly compelling within the context of prolonged drought 

and increasing freshwater demands, which may remove the effluent currently 

being discharged into river channels. 

 Riparian systems can be understood through spatial and temporal 

interactions of geomorphic, hydrological and terrestrial processes (Gregory et al., 

1991; Ward et al., 2002).  Using the effluent-dominated Santa Cruz River in the 

semi-arid southwestern United States as our study river, our research 

investigated spatial and temporal patterns of woody vegetation in the riparian 

zone of an effluent-dominated waterway that spans two hydrological settings 

(deep groundwater disconnected to the stream flow, and shallow groundwater 

hydraulically connected to the stream flow).  We used the San Pedro River, with 

its similar hydrologic regime and geographic setting, as our non-effluent control.  

Grounding our work in both community and landscape ecology, we investigated 

how long-term effluent subsidy, land use, and management practices are 

interacting to structure riparian forest patterns on an effluent-dominated, dryland 

river.  Our objectives were to increase understanding of the ecological effects of 

the continuous release of treated wastewater in these two settings by answering 

the following questions: 

1. How do spatial and temporal patterns of woody riparian vegetation of 

effluent-dominated waterways differ from non-effluent rivers in the 

southwestern United States? 

2. Are riparian forests and woody plant abundance and composition different 

in effluent-dominated systems compared to non-effluent systems? 
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3. Within the effluent-dominated system, how do woody vegetation patterns 

vary longitudinally from the point of discharge in different hydrologic 

settings? 

4. How does woody vegetation in an effluent-dominated waterway vary 

laterally across the floodplain, and do these zonal patterns differ from that 

in control streams? 

 We expected the following: (1) shifts in vegetation from phreatophytic 

species to other woody vegetation would be highest in floodplains of deep-

groundwater effluent-dominated systems.  (2) Woody vegetation abundance 

(basal area, stem density, canopy cover) would decline within the effluent 

dominated river reaches with increasing distance from the point of discharge, and 

composition would shift away from hydric pioneers with increasing distance and 

flow intermittency.  (3) Across the riparian corridor, near channel zones would 

support the highest woody vegetation and would decline most sharply with 

distance from the channel for the effluent-dominated reach in the deep-

groundwater basin.  The central aim of this research is to inform natural resource 

management and contribute to ecological understanding of effluent-dominated 

riparian systems through analysis of vegetation change at multiple temporal and 

spatial scales. 

METHODS 

Study Design 

We used two methods for contrasting structure and dynamics of woody 

riparian plant communities between the floodplains of an effluent-dominated 

riparian ecosystem with a shallow water table (Upper Santa Cruz reach), an 

effluent-dominated riparian ecosystem with a deep water table (Lower Santa 
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Cruz reach), and a non-effluent control.  First, we analyzed temporal and spatial 

changes in patch types over a 50-year period using Geographic Information 

Systems (GIS).  Secondly, we sampled woody vegetation traits in the field to 

explore longitudinal community patterns in the effluent-dominated systems and to 

contrast lateral floodplain patterns across the three river settings.  

Field data were collected during 2007 and 2008 from twelve study sites 

along the Santa Cruz River and nine study sites along the San Pedro River in 

southern Arizona.  The twelve effluent-dominated sites were apportioned into two 

effluent-dominated reaches: the shallow-groundwater upper Santa Cruz reach 

which receives its effluent input from the Nogales International Wastewater 

Treatment Plant (NIWWTP) and the deep-groundwater lower Santa Cruz River 

downstream (north) from Roger and Ina Roads Wastewater Treatment Facilities 

in Tucson, Arizona.  In the upper Santa Cruz reach, two of the 12 sites were 

located five and ten kilometers upstream of the NIWWTP to serve as within-river, 

non-effluent controls.  Downstream of the NIWWTP, five sites were situated 

within a 55-kilometer effluent-dominated reach to capture changing flow 

conditions with increasing distance from the point of discharge.  Similarly, five 

sites were established along a 60-kilometer effluent-dominated reach in the lower 

Santa Cruz to capture a gradient of flow intermittency downstream from the 

Roger and Ina Roads Wastewater Treatment Facilities.  Nine sites, inclusive of 

perennial, intermittent and ephemeral flows, were located along the San Pedro 

River, a less urbanized, non-effluent control river (Figure 38; Table XX). 

Study Area: effluent-dominated Santa Cruz River 

 The Santa Cruz River originates in the San Rafael Valley, and initially 

flows south into Mexico following a 50-kilometer loop in which it turns northward 
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and re-enters Arizona approximately eight kilometers east of Nogales.  From the 

international border, the Santa Cruz River continues northward for 170 kilometers 

to the confluence of the Gila River (ADWR, 1999a; Figure 38).  Historically, flow 

was perennial from its headwaters to near the town of Tubac, Arizona, 

approximately 65 kilometers north of the U.S./Mexico border.  Downstream of 

Tubac, the river was characterized by intermittent and ephemeral reaches to its 

confluence with the Gila River (Tellman et al., 1997).  Today, the portion of the 

river that flows north in the U.S. can be divided into two effluent-dominated 

reaches, identified here as the upper and lower Santa Cruz River. 

 The upper Santa Cruz is a bi-national river flowing through the rapidly 

growing urban areas that encompass Nogales, Sonora (Mexico) and Nogales, 

Arizona.  Characterized by mild winter temperatures and high summer 

temperatures, the region is distinguished by a bimodal precipitation regime, with 

convective thunderstorms creating summer monsoon rains and Pacific frontal 

storms providing precipitation in winter (Adams and Comrie, 1997).  Average 

annual precipitation recorded at Tumacácori between 1948 and 2009 was 

approximately 40 cm.  

 The floodplain aquifer of the upper Santa Cruz reach is characterized by 

a series of shallow and undulating micro-basins (Nelson, 2007; Villarreal, 2010).  

Flows are driven by surface runoff, groundwater discharge, and effluent from the 

NIWWTP, which is released approximately 21 kilometers north of the 

U.S./Mexico border at the confluence of Sonoita Creek and the upper Santa 

Cruz.  The NIWWTP treats wastewater from Nogales, Arizona and surrounding 

communities, as well as wastewater from Nogales, Sonora.  Perennial, effluent-

dominated flow extends from the NIWWTP outfall approximately 50 kilometers 
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north beyond Tubac, Arizona where surface flow intermittency increases.  

Release of treated wastewater into the river began in 1951, and in 1972 the 

facility was upgraded and renamed the Nogales International Wastewater 

Treatment Plant (IBWC, 2005).  In 1992 major upgrades to the treatment plant 

were completed, giving it a capacity of 17.2 million gallons per day (mgd) 

(AWWQRP, 2002).  Technology upgrades in 2009 led to increased removal of 

nitrogen compounds and improvement of overall quality of the discharged water 

(IBWC, 2010).  For the 2007 and 2008 study years, mean annual flow at the 

USGS Nogales gage located approximately 15 kilometers upstream of the 

NIWWTP (USGS #09480500) was 0.195 m3s-1 and 0.087 m3s-1.  Within the 

effluent-dominated reach of the upper Santa Cruz River, mean annual flow at the 

Tubac gage (USGS #09481740) for study years 2007 and 2008 was 0.87 m3s-1 

and 0.78 m3s-1. 

 The lower Santa Cruz reach begins in the Tucson metropolitan region, 

and extends downstream to the confluence with the Gila River.  Similar to the 

upper basin, a bimodal precipitation regime drives flow dynamics and annual 

precipitation averaged from 1948-2009 was 37 cm.  Prior to the onset of 

European settlement, the lower Santa Cruz River was a shallow stream 

occupying a broad, flat floodplain covered with mature mesquite forests and 

cottonwood trees (Johnson and Haight, 1981).  Flows were historically variable 

and highly dependent on season.  By the early 20th century, flows were becoming 

increasingly intermittent in many areas due to groundwater pumping for 

agricultural practice and urban development. 

 Today, the floodplain of the lower Santa Cruz is narrow, incised and often 

scoured from flooding (PCFD, 2005).  Growth patterns have continued to lower 
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the water table to over 50 meters below the surface (AWWQRP, 2004).  

Perennial flows are sustained by daily effluent discharge from the Roger Road 

Wastewater Treatment Plant (WWTP) and Ina Road Wastewater Reclamation 

Facility (WRF), which release more than 50 million gallons per day (mgd) of 

treated wastewater into the river channel, supporting a narrow band of Salix-

dominated forest for over 50 kilometers downstream.  Mean annual flow at 

Cortaro gage (USGS # 09486500) measured 2.27 m3s-1 and 2.08 m3s-1 for study 

years 2007 and 2008. This gage is located approximately 10 kilometers 

downstream from Roger Road outfall.   

Study Area: non-effluent San Pedro River 

 The San Pedro River is an interrupted perennial river that flows northward 

from its headwaters in Sonora, Mexico through the Chihuahuan and Sonoran 

deserts to its confluence with the Gila River.  Stream flow varies widely among 

years; the alluvial aquifer is recharged by flood flows from rainstorms and by 

groundwater inflow from the regional aquifer.  Surface flow duration and depth to 

groundwater vary along the length of the river due to geologic differences in 

depth to bedrock, proximity to tributaries, and groundwater pumping from 

agricultural and municipal use. In some areas, water availability in the riparian 

zone has fallen below threshold levels needed to sustain Populus-Salix forests 

and emergent wetlands (Lite and Stromberg, 2005; Stromberg et al., 2005).  In 

these reaches, stream channels are wide and dry, supporting little herbaceous 

vegetation with Tamarix shrublands as the predominant woody cover. 

 Based on geomorphic differences, the river is divided into two basins 

within the San Pedro River watershed (Tuan, 1962).  The upper basin extends 

from its headwaters (elevation 1500 m) to a geologic constriction known as the 
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Narrows (elevation 1000 m) and the lower basin extends from the Narrows to the 

confluence with the Gila River (elevation 580 m).  In the upper basin of the San 

Pedro River, mean annual flow at Charleston (USGS #09471000) for study years 

2007 and 2008 was 1.01 m3s-1 and 0.97 m3s-1.  The gage near Redington Bridge 

(USGS # 09472050) measured mean annual flow in 2007 and 2008 as 0.54 m3s-1 

and 0.69 m3s-1 for the lower San Pedro basin.  

GIS and aerial photo analysis 

 To quantify changes in vegetation patch types for the twelve study sites 

on the effluent-dominated Santa Cruz and 9 study sites on the San Pedro River, 

we analyzed historic aerial photographs from the 1950s through 2010.  While 

methods for establishing historical vegetation conditions are numerous and vary 

according to time scale and questions being addressed (Swetnam et al., 1999), 

repeat historical photographs cover a relatively short timeframe and contain a 

large amount of visual detail and information.  Therefore, we used repeat small-

scale aerial photographs, which were digitized, georeferenced, and imported into 

GIS to quantify spatial characteristics of vegetation change. 

 Early historic aerials (1935) were obtained from the Arizona State 

University Map Library and scanned at 700 dpi.  For images through the mid 

1990s, digital scans were obtained from various federal and state agencies 

(USGS, USDA, ADOT).  Scanned photographs were georeferenced in ArcMap 

using spatially referenced Digital Orthorphoto Quarter Quads (DOQQs) as base 

maps. We identified up to 50 control points (e.g., road intersections, building 

corners) per image and used 2nd or 3rd order polynomial transformations to 

convert scanned photographs to approximate rectified orthoimages, with a root 

mean square error of less than 4 for all photographs.   
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Hydrogeomorphic zones.  Polygons were drawn on historic aerial images 

at a scale of 1:5000 to differentiate between hydrogeomorphic zones (terrace, 

floodplain, channel).  Using the 1935 historic aerials which often pre-date 

theconversion of riparian lands to farm or other land uses, a static boundary 

between the riparian zone and adjacent uplands was delineated based on visual 

differences in vegetation and topography.  Due to low resolution, we also used 

the 1955 aerial images to improve the accuracy of georeferencing.  Aerial photo 

analysis and digital elevation maps derived from LIDAR data (Farid et al., 2006) 

were used to derive a boundary between the river terraces and the active 

floodplain (Stromberg et al., 2010).  Because floodplain boundaries are more 

dynamic, they were recreated for every photo year based on topographic and 

vegetation differences detected on the photos.  The active channel was 

delineated as the zone of bare sediments adjacent to the low-flow channel, and 

the low-flow channel was identified by presence of surface water.  For 

intermittent-flow reaches, the most recently visible scoured channel thread was 

delineated as the low-flow channel. 

Riparian cover types.  To map cover types, polygons were drawn around 

homogeneous vegetation patches while viewing the images at a scale of1:3000. 

A minimum polygon size was established at 2,500 square meters (50 m x 50 m) 

and within each polygon, percent cover of vegetation type was visually estimated 

using cover classes of 0, 1–5%, 6–20%, 21–40%, 41–60%, 61–80% and 81–

100%.  Two investigators (M. Tluczek and M. White) performed all photographic 

analysis and polygon data were cross-referenced and inspected for error.  To 

standardize the identification process, a decision matrix was developed for each 

photo series that specified the appearance of each cover type with respect to 
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shape, texture and color (Stromberg et. al, 2010).  Six cover types emerged as 

distinguishable when comparing DOQQ aerial imagery with field data collected 

on both rivers (Table XXI).  Mature Populus fremontii and Salix gooddingii trees 

were identifiable on photographs by their height, broad-leaved foliage, and large 

canopy.  All other woody vegetation was classified as woodland-shrubland 

(woody other) and consisted primarily of P. velutina and Tamarix sp., shrubby 

trees that are difficult to distinguish from each other on aerial photographs 

(Nagler et al., 2005).  Herbaceous patches were delineated from bare ground 

based on color and texture, but estimates of change have high uncertainty given 

that annual plant cover varies seasonally and each photo series was flown in a 

different month.  Bare ground included sediments in the active channel and 

unvegetated areas of the floodplain and terrace.  Areas for each patch type 

within a stream reach were calculated by summing products of the cover class 

midpoint for each polygon and a polygon’s relative area in the reach.  

Temporal and spatial changes in patches.  To assess temporal changes 

in patch types, a cover type table was generated by establishing a lattice of grid 

points for each of the 12 1-km sites on the Santa Cruz and for the 9 1-km sites 

on the San Pedro River in ArcMap.  We classified each point by the predominant 

cover type within its polygon and values were tabulated for every photo year 

sampled.  We then calculated values by cover type for the fraction of points that 

maintained the same cover type through time and for the fractions that arose 

from other cover types to capture changes by decade.  

Field data collection 

 Field data were collected during 2007 and 2008 from twelve study sites 

along the Santa Cruz River and nine study sites along the San Pedro River in 
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southern Arizona.  Sites were selected to capture a range of hydrologic 

conditions along both rivers to include intermittent and perennial flow reaches.  At 

each site, two transects were established that extended perpendicular to the river 

on both sides, from the edge of the low-flow channel to the edge of the Prosopis 

– Sporobolus (mesquite-sacaton) terraces.  This zone encompassed the active 

channel bars and the floodplain, which includes fluvial surfaces built of sediments 

deposited in the present regime of the river (Graf 1988). 

Vegetation patch types along the two transects at each site were 

classified based on physiognomy and floristics, following rules developed for the 

National Vegetation Classification system (Grossman et al., 1998).  

Physiognomic classes included forest (canopy layer >60% cover), woodland 

(canopy 25–60%), shrubland (canopy <25% and mid-stratum >25%), grass- or 

forbland (canopy and mid-stratum <25% and groundcover >25%), and open 

(cover in all three strata <25%).  Patch types were further divided based on 

composition and stem size class of the dominant woody species.  Cottonwood-

willow woodlands and forests were combined into one woodland-forest type, and 

three broad age classes were recognized: Young stands (maximum stem 

diameters <20 cm, which equates to age <10 years based on equations that 

relate stem diameter to tree age (Stromberg, 1998a), mature (stems 20-90 cm, 

age ca. 10-50 years), and old (stems >90 cm, age >50 years).  

 Due to substantial differences in floodplain widths between river settings, 

vegetation plots were sampled at one transect per site on the San Pedro River 

and on both transects on the Santa Cruz River.  Study plots were 5 x 20 m (long 

axis parallel to the river) and randomly stratified within each discrete patch.  The 

number of plots sampled varied among sites depending on floodplain width and 
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number of patch types.  If patches were wider than 25 m, another plot was added 

for each additional 25 m of that patch (i.e., 2 plots for patches 26–50 m wide).  

Within each study plot, data were collected on abundance and stem size 

structure for all woody species.   

 Vegetation abundance measures were collected by species, and included 

canopy cover, stem density, and basal area.  Canopy cover was measured at 

two spots per plot using a spherical densiometer, and the average of those 

measurements were calculated.  Stem density was calculated by counting each 

live tree and shrub stem emerging from the ground in the study plots, and basal 

diameter of each stem was measured using a diameter tape or calipers.  

Abundance data were reduced to the site level by weighting the plot-level values 

by the percent of the floodplain occupied by the respective patches. 

Species were placed into functional groups as a method of collapsing 

phylogenetic data into ecological groupings.  Species within a functional group 

respond similarly to disturbance and resource availability (Tabacchi et al., 1996). 

Species were divided into five functional groups (Table XXII; Grime, 1977) based 

on water stress tolerances, response to disturbance and life history 

characteristics as described in the USDA PLANTS National Database (USDA-

NRCS, 2011) and the USFS Fire Effects Information Systems 

(http://www.fs.fed.us/database/feis/).   

Data analysis 

 Woody stem density, basal area, and canopy cover were compared between 

river settings with nonparametric Kruskal-Wallis tests, as assumptions of normality 

and variance were difficult to consistently satisfy.  When the Kruskal-Wallis showed 

that significant difference existed between treatments, a post-hoc, nonparametric 
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multiple comparison test was employed (Bonferroni), as described in Zar (1984).  

Nonparametric Kruskal-Wallis tests were also used for lateral analysis as sample 

sizes were low and unequal, and assumptions of normality were difficult to 

consistently satisfy.  Longitudinal patterns were analyzed with Pearson correlation 

analysis.  All analyses were conducted in PASW 18 (SPSS, Inc. 2011). 

RESULTS 

Historic and present vegetation patterns 

 Following the establishment of the NIWWTP in 1972, effluent subsidy in 

the shallow-groundwater upper Santa Cruz reach has supported patches of 

woody vegetation, while woody vegetation upstream of the facility has steadily 

declined.  Another major event that has shaped the vegetation during this time 

period was the powerful 1983 flood event, which is bracketed by our photo 

datasets 1975 and 1984.  Representative transition matrices for each site are 

presented to illustrate vegetation dynamics between 1955 and 2010. 

 Woody vegetation at two non-effluent sites upstream of the NIWWTP 

declined in the upper Santa Cruz reach from 1955 to 2010.  At the site furthest 

upstream, 50% of Populus-Salix forest shifted to bare ground and 50% to other 

woodland vegetation, while 17% of the woody vegetation at the upstream site 

closest to the treatment facility arose from former Populus-Salix forest (Figure 39; 

Table XXIII).  There was a slight increase in woody cover in the decade following 

the 1983 flood at both sites, followed by a decrease leading to less than 10% 

woody vegetation in 2010.  The floodplains of both sites were predominantly 

herbaceous and open cover types in 2010.  

  

 The effluent-dominated reach downstream of the NIWWTP supported 
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Populus-Salix forest for approximately 25 kilometers.  In general, woody 

vegetation declines considerably with increasing distance downstream from the 

NIWWTP.  At the sites 15 and 25 km downstream (Santa Gertudis and Chavez 

Siding, respectively) woody vegetation occupied more than 40% of the floodplain 

throughout 1955 – 2010, with the exception of the 1983/4 flood years.  Since 

1983 woody vegetation has increased at Santa Gertudis, with over 80% of the 

floodplain supporting woody vegetation in 2010, 60% of which was Populus-Salix 

forest. Chavez Siding supported <10% Populus-Salix forest in 2010, and had 

approximately 40% woody cover since the 1983 flood.  Further downstream as 

surface flow becomes increasingly intermittent, vegetation shifts to herbaceous 

cover or open ground. Between 35 km (Amado) and 55 km (Sahuarita) 

downstream, herbaceous and open patch categories comprised more than 70% 

of the 2010 floodplain on average, with no forest cover and less than 20% 

identified as woody vegetation.  Two sites (Continental, 45 km and Sahuarita, 55 

km) are outside the influence of effluent subsidy, and woody cover declined from 

over 40% in the 1950s to less than 15% of the floodplain in 2010. At these sites, 

herbaceous and open patches comprise over 70% of the 2010 floodplain (Figure 

39; Table XXIII). 

 Vegetation patterns in the deep-groundwater lower Santa Cruz reach are 

vastly different from the upper reach. Woody vegetation, particularly Populus-

Salix forest, comprises much less of the floodplain (Figure 40; Table XXIV).  

Woody cover in this reach is largely dominated by shrubland-woodland 

comprised of young Salix goodingii, Hymnoclea sp. and Baccharis sp.   At Ina 

Road, the site closest to the closest to the Roger and Ina Roads WWTPs, less 

than 20% of the 2010 floodplain was comprised of woody vegetation, with 
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approximately 10% Populus-Salix forest (Figure 40).  Between 1955 and 2010, 

Populus-Salix forest was replaced by herbaceous and open categories, which 

comprised over 60% of the floodplain from 1983 through 2010.  Further 

downstream at Avra Valley Road (15 km) there were no significant changes in 

vegetation patterns from 1955 – 2010, with more than 50% of the floodplain 

occupied by herbaceous vegetation or bare ground.  Just over 10% of the 2010 

floodplain supported woody vegetation, and was predominantly Hymnoclea sp. 

and Baccharis sp.  At Hardin Road (30 km downstream), woody vegetation has 

comprised approximately 40% of the floodplain from 1955 – 2010, and since 

1983 composition has shifted with Populus-Salix forest covering nearly 20% of 

the floodplain in 2010 (Figure 40; Table XXIV).  At Sasco Road (45 km) woody 

vegetation mapped in 1955 shifted by 11% and 22% in 2010 to herbaceous and 

bare ground, respectively.  Woody vegetation is comprised of mainly shrublands 

with Prosopis sp. and Hymonoclea sp. and covers nearly 60% of the 2010 

floodplain.  Woody vegetation at the site furthest downstream (55 km) remained 

low (<40%) between 1955 and 2010.  In the 2010 floodplain, over 20% of the 

floodplain 55 km downstream was identified as Populus-Salix forest and field 

verified as a narrow band of Salix immediately adjacent to the low flow channel 

and subsidized by agricultural irrigation run-off.  

 On the non-effluent San Pedro River, perennial sites supported the 

highest percentages of Populus-Salix forest area.  In the upper basin (n = 5; 

Figure 4) the percentage of floodplain area occupied by woody vegetation 

increased from 1955 – 2005, with a slight decrease from 2005 to 2010 (Figure 

41). Populus-Salix forest expanded by 78% in the floodplain of the perennial 

Lewis Springs site from1955 to 2010 (Table XXV). Woody vegetation dominated 
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floodplains of intermittent sites, with the driest site in the upper basin ephemeral 

sites (Narrows) supporting no Populus-Salix forest area, but with approximately 

60% woody vegetation cover in 2010.  Patterns were similar in the lower basin of 

the San Pedro River (n = 4, Figure 42; Table XXVI), with perennial sites 

supporting the highest percentage of Populus-Salix forest.  Woody vegetation 

comprised approximately 60% of the floodplain of the driest site in this basin 

(H&E 3), with no Populus-Salix forest area (Table XXVI).  There was more 

change over time in the types of vegetation cover in the lower basin, with 

shrublands-woodlands arose primarily from preexisting shrubland-woodland, 

bare ground or grassland. 

Vegetation composition and structure in effluent and non-effluent systems 

Site composition by patch types. Field data supported analyses of the 

aerial photographs. At the two intermittent sites upstream of NIWWTP, 

herbaceous and shrubland patches comprised of over 75% of the floodplain, and 

no Populus-Salix forest occurred (Table XXVII; Figure 43).  Downstream of the 

NIWWTP, in the shallow groundwater, effluent-dominated portion of the upper 

Santa Cruz, woody vegetation declined with increasing distance downstream.  

The two site closest to the effluent release point supported more than 80% and 

30% Populus-Salix forest, respectively while downstream sites outside the 

influence of effluent had little woody vegetation and more than 80% herbaceous 

and open patches (Table XXVII; Figure 43). 

Patterns in the deep groundwater, lower Santa Cruz were considerably 

different from the upper reach.  In this system, woody vegetation increased with 

increasing distance downstream (Table XXVII; Figure 44).  At the two sites 

closest to the effluent input (8 km and 15 km) woody vegetation, including the 
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shrubland category, occupied less than 20% of the floodplain.  At the site 

sampled 30 km downstream, woody vegetation increased to 30% of the 

floodplain, 20% of which was Salix forest.  The two sites furthest downstream (45 

and 60 km) supported the most woody vegetation with nearly 40% of both 

floodplains supporting woodland or shrubland patches (Figure 44).  

Landscape heterogeneity (number of patch types) was highest on the 

San Pedro River, a non-effluent control. Populus-Salix forest occurred at six out 

of nine sites (67%), and comprised from 25% to over 50% of the perennial site 

floodplains (Table XXVIII; Figure 45). The intermittent and ephemeral sites were 

mainly comprised of woodland and shrubland patches, which averaged 

approximately 65% of the floodplains of these sites (n=6).   

Species richness and functional groups.  Eighteen species (two identified 

only to genus) of woody plants were identified in the upper and lower Santa Cruz 

River reaches. Nineteen species) were present on the control river (Table XXII).  

Sixteen species were common to both systems.  With respect to functional group 

distribution, the effluent-dominated portion of the upper Santa Cruz reach had 

high percentages (>20%) of species occurrences in hydric pioneer, xeromesic 

pioneer, and xeromesic non-pioneer functional groups, with hydric pioneers (e.g., 

Populus fremontii) as dominant (Table XXII).   Vegetation patterns in the lower 

Santa Cruz reach followed similar trends, but dominance shifted toward the 

xeromesic functional group (e.g., Tamarix and Prosopis) and hydric pioneers 

were largely represented by Salix gooddingii (Table XXIX).  The upper and lower 

basins of the San Pedro River had high percentages (>20%) of species 

occurrences in hydric pioneer, xeromesic pioneer, and xeromesic non-pioneer 

functional groups.  Hydric pioneer species dominated perennial sites (Populus 
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fremontii, Salix gooddingii) while intermittent sites had higher occurrences of 

xeromesic groups including Tamarix and Prosopis (Table XXX). 

 Vegetation abundance.  In all three river settings, the hydric pioneer 

functional group had the highest basal area (Figure 46; Tables XXXI & XXXII).  

On the Upper Santa Cruz and San Pedro Rivers, the basal area was derived by 

fewer large stemmed species (Populus fremonti, Salix gooddingii) whereas on 

the lower Santa Cruz the abundant stems of smaller woody species (e.g., 

Baccharis salicifolia) accounts for the high basal area in this category (Figures 46 

& 47).  Stem density and basal area were significantly higher at the perennial 

flow sites of the Santa Cruz River.  The San Pedro River was more 

heterogeneous, with some intermittent sites having higher stem densities than 

perennial (Figure 47; Tables XXXII & XXXIV).  

 Basal area and stem density of the perennial sites (n = 3) did not differ 

significantly between perennial sites of the upper and lower Santa Cruz River 

and San Pedro Rivers (Figure 48).  However, the highest recorded basal area 

occurred at perennial sites in the shallow-groundwater upper Santa Cruz and the 

lowest were in the deep groundwater lower Santa Cruz.  Although not 

significantly different, stem densities were greater at perennial sites of the 

effluent-dominated reaches, with B. salicifolia and H. monogyra as the primary 

species contributing to this difference.  There were significant differences in 

canopy cover at the perennial sites among the three settings (H=7.547, 2 d.f., P 

= 0.023).  Canopy cover did not differ between the upper Santa Cruz and the San 

Pedro Rivers, but both of these had greater canopy than at the Lower Santa Cruz 

reach (USC-LSC, P<0.05; SP-LSC, P<0.05; Figure 48). 
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Longitudinal trends within an effluent-dominated system 

 In the upper Santa Cruz River, basal area and canopy cover declined 

significantly with increasing downstream distance as indicated by correlation 

analysis (basal area: Pearson’s = -.880, P = 0.048; canopy cover: Pearson’s = -

.893, P = 0.041; Figures 46 & 49; Table XXXI).  Hydric species, specifically 

Populus and Salix, comprised the majority of the basal area and canopy cover in 

this reach.  There was a shift toward xeromesic functional groups approximately 

35 km downstream of the NIWWTP.  Stem density patterns were a little less 

clear and there was no significant correlation with increasing distance.  However, 

stem densities were highest at the site closest to the NIWWTP and at the 35 km 

downstream point (Figures 47 & 49).  Hydric species (Populus and Salix) 

comprised the majority of stems closest to the point of effluent release, and at the 

35 km point, xeromesic species (Hymonoclea, Tamarix) became more abundant.  

Importance values also reflected this dynamic, as numbers shifted from 66% for 

hydric pioneer 15 km downstream to 71% for xeric pioneers 55 km downstream 

(Table XXXI).  

 In the lower Santa Cruz reach, there were no significant correlations 

between increasing downstream distance and woody vegetation abundance 

metrics (basal area, stem density, canopy cover), although there was a pattern of 

increasing woody vegetation with increased distance.  Hydric species, 

specifically S. gooddingii and B. salicifolia, comprised the majority of the basal 

area and stem densities at these sites.  There was a shift in functional groups 

toward more xeromesic species with increasing distance downstream (Figures 

46 & 47).  Calculated importance values support this pattern, as hydric pioneers 

had higher scores at sites closer to the treatment facilities and xeromesic 
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functional groups had higher scores further downstream (Table XXXI). Canopy 

cover was low at sites both near and far from the point of effluent introduction, 

and highest at the site 30 km downstream (Figure 49).   

Lateral trends in an effluent-dominated floodplain 

 In the upper and lower reaches of the effluent-dominated Santa Cruz 

near-channel zones supported the highest stem densities (Figures 50 and 51).  

The San Pedro River had more evenly distributed stem densities across 

floodplain zones regardless of site hydrology. Similarly, in the control reach of the 

Santa Cruz River upstream of the NIWWTP, there were no significant differences 

in woody stem densities between near (<25 m) and far (>25 m) floodplain zones.   

 Within the effluent-dominated upper Santa Cruz reach, the site located 15 

km downstream from the NIWWTP (Santa Gertudis) Populus and Salix stems 

occurred in both both near and far floodplain zones, with highest densities within 

25 m of the channel.  Differences were significant in other woody vegetation 

stems, comprised mainly of Celtis and Fraxinus (H= 8.221, P[small] = 0.04).  At 

Chavez Siding (25 km), Populus and Salix stem densities were significantly 

higher in the near channel zone (H=3.844, P[small] = 0.05; H = 4.436, P[med] = 

0.02), while other woody vegetation was significant higher in the far floodplain 

zone (H=2.852, P[small] = 0.05).  Further downstream at Amado (35 km) where 

flow becomes increasingly intermittent, there were significantly more Populus 

and Salix stems in the near channel zone (H = 3,832, P[med] = 0.05; Figure 50).  

Stem densities of other woody vegetation (Hymonoclea and Tamarix) were far 

greater at this site, but differences were not significant by zones.  The two 

furthest downstream sites (45 and 55 km) had no Populus and Salix stems and 

no significant differences of the other woody stems across the floodplain.  
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 In the lower reach of the effluent-dominated Santa Cruz, there were no 

significant differences in Populus and Salix stems between near and far channel 

zones at Ina Road (8 km), but other woody vegetation stem densities were 

significantly higher in the far floodplain (H = 3.23, P[small] = 0.05; Figure 51).  At 

Avra Valley (15 km), there were no significant differences in either Populus and 

Salix or other woody vegetation across the floodplain (Figure 51).  There were no 

significant differences between near and far floodplain Populus and Salix or 

woody other stem densities at Hardin Road (30 km), although densities were 

highest in the near channel zone for both groups (Figure 51).  Other woody stem 

densities were significantly higher in the near floodplain zone Sasco Road (45 

km) (H= 5.534, P[small] = 0.019; Figure 51).  At Wheeler (60 km) Populus and 

Salix stem densities were significantly higher in the near channel zone (H =5.369, 

P[small] = 0.02; Figure 51).   

 For the San Pedro River, Three Links Farm #1, a perennial flow site in the 

upper basin, was representative of perennial flow sites.  At this site type, there 

were no significant differences in Populus and Salix stem densities between near 

and far floodplain zones, but other woody stems were significantly denser in the 

far floodplain (H = 4.545, P[small] = 0.033; Figure 52).  Three Links Farm #3, 

representative of an intermittent site, had significant differences in both Populus 

and Salix stem densities and other woody stem densities, with higher densities in 

the near floodplain zone (H = 3.868, P[med] = 0.049; H = 4.083, P[small] = 0.04).  

At the Narrows, one of two ephemeral sites on the San Pedro, there were no 

Populus and Salix stems in the floodplain and no significant differences between 

the near and far floodplain for other woody vegetation stems. 
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DISCUSSION 

 This investigation revealed differences in woody vegetation and 

community structure between effluent-dominated and non-effluent rivers in the 

semi-arid southwestern United States.  By combining field data with historic 

aerial analysis, we were able to identify how release of effluent into the Santa 

Cruz River corridor since the 1970s has affected the distribution, composition 

and amount of riparian vegetation, and how this response varies depending on 

hydrologic setting. In both deep-ground water and shallow-groundwater settings, 

there were sharp contrasts upstream and downstream of the effluent discharge 

point, with riparian vegetation upstream either absent or in a state of decline.  

Distinct zonal patterns were apparent with increasing distance from the perennial 

effluent in the low flow channel, particularly in reaches with greater depth to 

groundwater.  By contrasting the Santa Cruz with a reference river, the San 

Pedro, we were able to determine that discharge of effluent into the shallow-

water table section of the Upper Santa Cruz is maintaining a riparian ecosystem, 

at least for several kilometers, that resembles the control river with respect to 

woody species richness and composition of the dominant functional group.   

Temporal changes in woody vegetation along effluent-dominated and non-

effluent rivers 

 Temporal changes in vegetation patterns in both effluent-dominated 

reaches, upstream of the NIWWTP, and along the San Pedro River reflect base 

flow dynamics and flood disturbance regimes.  For both river systems, a large 

flood event in 1983/4 scoured floodplains and set in motion changes in riparian 

forest dynamics.  Bare soils were exposed following this event that allowed for 

pioneer trees including Populus and Salix to establish (Stromberg et al., 2010).  
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Vegetation dynamics also have been influenced by larger historical flood events 

(Stromberg et al., 2010).  The pioneer vegetation that has established after 

flooding on the San Pedro differs spatially between Populus/Salix (wetter 

reaches) and Tamarix (drier reaches), depending on local extent of stream 

diversion and groundwater pumping to sustain urban and agricultural land uses 

(Kingsford, 2000; Fitzhugh and Richter, 2004).  

 The upper and lower Santa Cruz reaches experienced similar 

groundwater withdrawals and subsequent declines in surface flow due to 

increasing demands for freshwater in Nogales and Tucson (AWWQRP, 2002).  

On this system, effluent subsidies from those same urban centers have 

established perennial surface flow since the 1970s in both the upper and lower 

reaches. Vegetation dynamics on the Santa Cruz have varied through time, 

particularly on the lower Santa Cruz, but support more woody vegetation since 

the introduction of effluent in the 1970s through 2010. 

Vegetation composition and structure in effluent and non-effluent systems 

 Species richness and functional groups.  Only slight differences existed in 

overall species richness between the three river types, although the contribution 

to this richness varied with more xeric species in effluent-dominated reaches, 

especially the deep-groundwater lower Santa Cruz.  There also were pronounced 

differences in functional groups. Xeromesic and xeric functional groups had 

higher importance values on the effluent-dominated reaches and appeared at the 

majority of sites sampled.  These groups were especially prevalent throughout 

the deep-groundwater lower reach and at sites further downstream in upper 

Santa Cruz beyond the influence of the effluent recharge.  The hydric pioneer 

functional group was dominant at sites with perennial flow in effluent-dominated 
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and non-effluent systems.  In the shallow groundwater upper Santa Cruz reach 

and at perennial sites on the San Pedro, Populus fremontii and Salix gooddingii 

were the predominant hydric species while in the deep-groundwater lower Santa 

Cruz Baccharis salicifolia and young Salix gooddingii prevailed. In the Lower 

Santa Cruz, conditions limit recruitment of these hydric species to a narrow zone 

along the effluent channel, allowing the floodplain to be colonized by drought 

tolerant species not dependent on shallow groundwater or high soil moisture 

such as Hymenoclea monogyra (Stromberg et al., 2005).  Despite the effluent 

subsidy, the long-term effects of groundwater pumping in the lower reach is 

limiting recruitment or survivorship of P. fremontii and S. gooddingii (Horton et al., 

2001; Lite & Stromberg, 2005) especially further out in the floodplain where the 

effluent subsidy has little to no effect.  These findings are consistent with the idea 

that along arid region rivers, irregular water availability exerts more of an 

influence on woody plant richness and diversity than does disturbance (Hupp and 

Osterkamp, 1996; Tabacchi et al., 1996). 

 Vegetation abundance. When comparing perennial sites in all three 

systems, the effluent-dominated upper Santa Cruz and the San Pedro River had 

higher basal area, stem density and cover than the lower Santa Cruz reach.  

Hydric species comprised the majority of basal area and stem densities at 

perennial flow sites, with these numbers on lower Santa were due to primarily to 

Baccharis salicifolia and young Salix gooddingii rooted immediately adjacent to 

the surface flows.  It appears the continuous flow of effluent plays a critical factor 

in sustaining obligate riparian forest communities on the Santa Cruz River, 

supporting similar findings for other semi-arid riparian ecosystems (Stromberg, 

1993b; Tickner et al., 2001; Marler, 2005).  Vegetation patterns along effluent-
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dominated systems, however, are reflective of “top down” hydrology, where 

surface flows are sustained even in losing reaches.  Water quality differences 

also cannot be overlooked when comparing effluent-dominated to non-effluent 

systems, as changes in nutrient availability, specifically increased nitrogen 

concentration may play a role in improving seedling survivorship (Adair & 

Binkley, 2002), but appears to have limited influence on growth rates of P. 

fremontii and S. gooddingii (Marler et al., 2001). 

Longitudinal trends within an effluent-dominated system 

 One key management question is how much riparian habitat can be 

sustained by effluent discharge and how hydrogeomorphic conditions may 

influence response. On both reaches of the Santa Cruz, longitudinal extents of 

woody vegetation along the stream channel were somewhat similar (40 km 

downstream from the NIWWTP when surface flows dissipate completely, and 55 

km downstream from Roger and Ina WWTPs).  Surprisingly, hydric species were 

sustained for greater lengths in the deep-groundwater lower reach, but greater 

effluent volumes, channelization, and agricultural runoff help to explain this 

difference.  In the lower reach, nearly three times the volume of effluent is 

released into the channel, and flows extend for more than 50 km downstream.  

However, run-off from adjacent agricultural lands supplements this surface flow, 

which may explain the vegetation patterns.  In both systems, vegetation patterns 

appears to indicate that water quantity may be more critical than water quality in 

the development of maintenance of a structurally diverse riparian ecosystem.  

 There have been changes through time in the length of the riparian 

forests.  In the upper reach, flows extended 40 km downstream until 2009, when 

a technology upgrade improving the quality of wastewater has increased 
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infiltration downstream.  Current data show that perennial effluent extends 

approximately 20 km downstream (FOSCR, 2010).  On the upper reach of the 

Santa Cruz, effluent subsidy has maintained significant Populus-Salix forest for 

approximately 25 km downstream. In spring 2005, however, sudden mortality of 

Populus fremontii and Salix gooddingii species were documented along the 

upper reach.  Aerial photographs and satellite imagery from the previous year did 

not indicate that the riparian vegetation was exhibiting typical physical responses 

to drought or groundwater decline (Villarreal, 2010), such as canopy die-back or 

leaf senescence (Rood et al. 2000, Amlin and Rood 2003, Pearce et al. 2006).  

Given the absence of typical drought response signals, the die-off event in 2005 

appeared suddenly and may suggest a threshold change in vegetation 

composition (Villarreal, 2010).  Further downstream, floodplains have remained 

more homogeneous, comprised of mainly herbaceous and open patch types, 

with limited woody vegetation supported at Amado Road (35 km).  Amado once 

received effluent subsidy and now largely falls outside the influence of effluent, 

which may lead to a further decline in woody vegetation.  

 Basal area and canopy cover were significantly higher closer to the 

NIWWTP In the shallow-groundwater upper reach.  The floodplain at our first site 

supported an expansive Populus-Salix forest with stem sizes ranging from 10 - 

42 cm.  However, Populus-Salix forest was sparse at the next site downstream 

(25 km) and disappeared altogether even further downstream.  Stem density 

patterns were less linear, but reflective of shifts in functional groups as densities 

of xeromesic species, such as Hymenoclea and Tamarix, increased with 

downstream distance and increasing flow intermittency. 
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 The deep-groundwater, lower reach had higher basal area, stem 

densities and canopy cover at middle distances downstream.  The site 

immediately downstream of the Ina WWTP outfall is channelized and has limited 

floodplain area for the woody vegetation to develop.  With increasing distance, 

the floodplain widens and opportunities for woody species to establish increase, 

as reflected by the data.  In the lower reach, only Salix was the dominant hydric 

pioneer, with very little Populus occurring.  

Lateral trends in an effluent-dominated floodplain 

 Many factors co-vary along lateral floodplain gradients, and untangling 

their effects can be challenging. However, zonation patterns for stem density and 

size class across the floodplain of the effluent-dominated reaches were much 

more pronounced than in the floodplain of the control river.  In the non-effluent 

San Pedro River, a mosaic of woody vegetation and size classes were 

distributed across the floodplain, with plant community patterns reflecting 

individual species tolerance to depth to groundwater, flood intensity, and 

geomorphic surfaces (Lite et. al, 2005; Stromberg et. al, 2008).   

Across the floodplains of the effluent-dominated system, stem densities 

were greater in the near channel zones of both effluent-dominated reaches.  In 

the upper Santa Cruz reach, larger size classes tended to be supported at sites 

closer to the treatment facility.  Zonation patterns and shifts toward more 

xeroriparian species became more apparent with increasing streamflow 

intermittency.  These zonation patterns were most pronounced in the deep 

groundwater lower reach of the Santa Cruz, regardless of distance from 

treatment facility.  If any Populus and Salix stems were supported, they tended to 

be smaller size classes and within the first 25 meters from the low flow channel.  
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The far floodplain of this effluent-dominated reach only supported a few woody 

stems of xeroriparian species, indicating that the disconnection from groundwater 

significantly impacts woody structure in effluent-dominated systems.  These 

trends indicate that the surface flows from effluent support a narrow band of 

woody vegetation, but further out in the floodplain patterns are similar to an 

ephemeral system.  

CONCLUSIONS 

 Anthropogenic alterations to rivers and associated riparian plant 

communities have grown increasingly evident throughout the southwestern 

United States, with surface flow diversions, groundwater pumping, and discharge 

of effluent into stream channels making management and maintenance of river 

systems increasingly complex.  The long-term release of effluent for riparian 

restoration and management raises important questions about outcomes on 

riparian ecosystem structure and function.  Understanding patterns and 

distributions of current vegetation in an effluent-dominated system requires at 

least some elemental understanding of historical vegetation trends and their 

interactions with anthropogenic and natural disturbance legacies.  Long-term 

perspectives are needed for assessing directional change and forest 

conservation needs (Stromberg et al., 2010).  The combined approach of field-

based data collection with historical aerial photo analysis has provided a clearer 

understanding of these interactions, and may serve as guidance for riparian 

restoration and conservation in human-altered landscapes. 

 The Santa Cruz River in southern Arizona has proven an ideal setting in 

which to study vegetation changes along a system given its varying depths to 

groundwater and surface flows long-driven by effluent release.  Our research has 
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shown that effluent-dominated systems maintain longitudinal patterns driven by 

the increase in water availability.  Underlying hydrologic conditions influence the 

abundance and composition of woody vegetation floodplain patterns both 

laterally and longitudinally.  These findings are similar to those of Stromberg et 

al. (1993), AWWQRP (2002), Marler (2005), and Villarreal (2010) showing 

greater development of the vegetation community with perennial effluent flows 

downstream of a treatment facility.  The San Pedro River, one of the few 

undammed perennial rivers in the southwestern United States, also provided an 

example of target riparian conditions for restoration and management.   

 Ultimately, the current lack of understanding about systems receiving 

effluent underscores the growing need for suitable methods to evaluate 

ecological dynamics of these systems.  Although some biotic and abiotic 

attributes varied between reaches, the overall picture shows structural and 

functional similarities in the woody communities established on the control and 

effluent-dominated reaches.  The changes observed in this study indicate that 

the influence on vegetation may not be directional and is perhaps subject to 

thresholds mediated by local and regional environmental factors.  Insights from 

temporal and spatial patterns of riparian forest expansion and contraction along 

effluent-dominated waterways allow managers to develop tools for monitoring 

and managing other similar systems.  
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Table XXII. Functional groups of woody species on San Pedro and Santa Cruz 
Rivers. 
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Table XXIII.  Cover type origin table. Values indicate the percentage of points 
mapped in 2010 that arose from cover types as mapped in the 1950s for the 
floodplain and channel zone and terrace of 1-km sites along the effluent-
dominated Upper Santa Cruz River. 
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Table XXIV.  Cover type origin table. Values indicate the percentage of points 
mapped in 2010 that arose from cover types as mapped in the 1950s for the 
floodplain and channel zone and terrace of 1-km sites along the effluent-
dominated Lower Santa Cruz River. 
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Table XXV.  Cover type origin table. Values indicate the percentage of points 
mapped in 2010 that arose from cover types as mapped in the 1950s for the 
floodplain and channel zone and terrace of 1-km sites along the Upper San 
Pedro River. 
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Table XXVI.  Cover type origin table. Values indicate the percentage of points 
mapped in 2010 that arose from cover types as mapped in the 1950s for the 
floodplain and channel zone and terrace of 1-km sites along the Lower San 
Pedro River 
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Table XXVII.  Summary of Upper and Lower Santa Cruz site characteristics, 
including floodplain width and patch types. Sites are listed from upstream to 
downstream. 
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Table XXVIII.  Summary of San Pedro site characteristics, including floodplain 
width and patch types.  Sites are listed from upstream to downstream. 
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Table XXIX.  Frequency of occurrence for species recorded along Upper and 
Lower Santa Cruz transects.  P indicates a species was not recorded within a 
study plot, but was present along the 20 m wide belt transect. 
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Table XXX.  Frequency of occurrence for species recorded along transects in the 
upper and lower San Pedro River basins.  P indicates a species was not 
recorded within a study plot, but was present along the 20 m wide belt transect. 
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Table XXXI. Canopy cover, basal area, stem density and importance values by 
functional groups for the upper and lower Santa Cruz River.  Canopy cover and 
stem density reported as weighted mean ± 1 standard deviation.  Importance 
values are calculated as the average of relative stem density and relative basal 
area for each species. 
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Table XXXII. Canopy cover, basal area, stem density, and importance values by 
functional groups for the San Pedro River.  Canopy cover and stem density 
reported as weighted mean ± 1 standard deviation.  Importance values are 
calculated as the average of relative stem density and relative basal area for 
each species. 
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Table XXXIII. Site-level canopy cover, basal area, and stem density for the upper 
and lower Santa Cruz reaches 
 

 
 
 
 

Table XXXIV. Site-level canopy cover, basal area, and stem density for sites 
along the San Pedro River. 
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Figure 38.  Map of effluent-dominated study river (Santa Cruz) and control river 
(San Pedro) showing locations of study sites, wastewater treatment facilities 
(WWTPs) and USGS stream gages.  Site information is listed in Table XX. 
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Figure 39.  Changes in patch types from the 1950s to 2010 shown as a 
percentage of the floodplain in the effluent-dominated upper Santa Cruz River.  
Each graph represents a 1-km site. 
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Figure 40. Historic patch changes shown as a percentage of the floodplain in the 
effluent-dominated lower Santa Cruz River.  Each graph represents a 1-km site 
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Figure 41. Historic patch changes shown as a percentage of the floodplain in the 
upper basin of the San Pedro River.  Each graph represents a 1-km site. 
 



182 

 
 
Figure 42. Historic patch changes shown as a percentage of the floodplain in the 
lower basin of the San Pedro River.  Each graph represents a 1-km site 
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Figure 43. Relative areas occupied by different vegetation patch types in the 
upper Santa Cruz River.  Surface flow permanence and distance from NIWWTP 
outfall are indicated along the x-axis 
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Figure 44. Relative areas occupied by different vegetation patch types in the 
lower Santa Cruz River.  Surface flow permanence and distance from Roger and 
Ina WWTPs are indicated along the x-axis 
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Figure 45. Relative areas occupied by different vegetation patch types along the 
San Pedro River.  Surface flow permanence is indicated along the x-axis. 
 



186 

 
 
Figure 46. Basal area by moisture requirement of species along the (A) effluent-
dominated Santa Cruz River and (B) the non-effluent San Pedro River.  Sites 
with perennial flow tended to have greater basal area and a large percentage of 
that basal area was hydric species. 
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Figure 47. Stem density by moisture requirement of species along the (A) 
effluent-dominated Santa Cruz River and (B) the non-effluent San Pedro River 
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Figure 48.  Kruskal-Wallis comparisons of woody plant community metrics at 
perennial sites in the effluent-dominated upper Santa Cruz, effluent-dominated 
lower Santa Cruz, and non-effluent San Pedro Rivers.  Significant differences are 
highlighted with an asterisk (*).  Error bars = +/- 1 SE 
 



189 

 
 
Figure 49. Relationship of basal area, stem density, and canopy cover with 
increasing distance from point of effluent discharge for the upper and lower 
Santa Cruz River.  
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Figure 50.  Kruskal-Wallis comparisons by size classes in the near and far 
floodplain zones of the effluent-dominated upper Santa Cruz.  Significant 
differences are highlighted with an asterisk (*).  Error bars = +/- 1 SE 



191 

 
 
Figure 51.  Kruskal-Wallis comparisons by size classes in the near and far 
floodplain zones of the effluent-dominated upper Santa Cruz.  Significant 
differences are highlighted with an asterisk (*).  Error bars = +/- 1 SE 
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Figure 52.  Kruskal-Wallis comparisons by size classes in the near and far 
floodplain zones ofthe non-effluent San Pedro River.  Each graph represents one 
of three site types (perennial [3 Links 1], intermittent [3 Links 3], and ephemeral 
[Narrows]) sampled (total sites = 9).  Significant differences are highlighted with 
an asterisk (*).  Error bars = +/- 1 SE 
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6. CONCLUSIONS 

 The management and maintenance of river systems in the southwestern 

United States is becoming increasingly complex due to human impacts, multiple 

and competing water needs, and policy barriers. The interrupted perennial Santa 

Cruz River in southern Arizona provided a valuable setting in which to study 

ecological dynamics of an effluent-dominated riparian ecosystem with varying 

underlying hydrologic conditions. A control river, the San Pedro, provided a 

important contrast.  Analysis of the riparian plant communities in the upper and 

lower Santa Cruz River revealed an increase in riparian vegetation downstream 

of effluent discharge points.  Both effluent reaches had distinct longitudinal 

trends, with composition shifting from hydric species nearest the effluent release 

points to more xeromesic species further downstream as streamflow 

intermittency increased.  In the shallow-groundwater, upper Santa Cruz River,  

we found a clear trend of decreasing abundance with increasing distance from 

treatment facility.  The trends in the deep-groundwater, lower Santa Cruz were 

confounded by increased agricultural input further downstream.   

 Effluent discharged into the upper Santa Cruz supports is sustaining a 

mixture of obligate riparian floodplain species that require a dependable and 

accessible water supply and facultative species that are able to survive greater 

water level fluctuation. The dominant phreatophytes of along this reach of the 

Santa Cruz are Fremont cottonwood (Populus fremontii), Goodding willow    

(Salix gooddingii), elderberry (Sambucus nigra), mesquite (Prosopis velutina), 

and netleaf hackberry (Celtis laevigata var. reticulata), and are similar in scope to 

those of the control river.  In the deep-groundwater lower Santa Cruz reach, the 

effluent sustains a narrower strip of woody vegetation that included Goodding 
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willow (Salix gooddingii), mesquite (Prosopis velutina), single-whorl cheesebush 

(Hymenoclea monogyra), and tamarisk (Tamarix ramosissima).  There was very 

little Fremont cottonwood (Populus fremontii) supported in the deep-groundwater 

lower reach, for reasons that remain unknown.  

 Herbaceous vegetation patterns were most revealing of water quality and 

lateral water availability, with the majority of herbaceous cover occurring within 

the first two meters of the channel and decreasing with lateral distance from the 

channel.  This sharp decline across the floodplain was especially pronounced in 

the deep-groundwater lower reach.  Finally, high levels of nutrients increased 

biomass in the streamside plant communities of both reaches, and shifted plant 

community composition toward more nitrophilic, or high nitrogen, species.   

 This work contributes to baseline knowledge regarding riparian vegetation 

dynamics along effluent-dominated systems across multiple spatial and temporal 

scales.  It also underscores the growing need for additional research to evaluate 

the ecological integrity and longevity of these systems.  From a management 

perspective, some of the changes in vegetation composition (e.g., nitrophiles) 

highlight the complex relationships between external factors (i.e., water 

availability) and system-specific components (i.e., water quality).  This research 

also has shown that the composition and amount of habitat are drastically 

different along effluent-dominated systems in varying hydrogeomorphic settings 

and these dynamics need to be considered in management frameworks.  

 Our analysis of existing water policy and law further illuminates the 

importance of integrating scientific information into decision frameworks to 

increase adaptive capacity and evaluate options for water reuse and supply 

management.  Appropriate decision rules that incorporate scientific information 
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are needed to inform future approaches to secure effluent for riparian ecosystem 

maintenance and restoration.  
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