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ABSTRACT

This thesis focuses on the theoretical work done to determine thermody-

namic properties of a chalcopyrite thin-film material for use as a photovoltaic ma-

terial in a tandem device. The material of main focus here is ZnGeAs2, which was

chosen for the relative abundance of constituents, favorable photovoltaic proper-

ties, and good lattice matching with ZnSnP2, the other component in this tandem

device. This work is divided into two main chapters, which will cover: calcula-

tions and method to determine the formation energy and abundance of native

point defects, and a model to calculate the vapor pressure over a ternary material

from first-principles.

The purpose of this work is to guide experimental work being done in

tandem to synthesize ZnGeAs2 in thin-film form with high enough quality such

that it can be used as a photovoltaic. Since properties of photovoltaic depend

greatly on defect concentrations and film quality, a theoretical understanding of

how laboratory conditions a�ect these properties is very valuable. The work done

here is from first-principles and utilizes density functional theory using the local

density approximation. Results from the native point defect study show that the

zinc vacancy (V
Zn

) and the germanium antisite (Ge
Zn

) are the more prominent

defects; which most likely produce non-stoichiometric films. The vapor pressure

model for a ternary system is validated using known vapor pressure for monatomic

and binary test systems. With a valid ternary system vapor pressure model,

results show there is a kinetic barrier to decomposition for ZnGeAs2.
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Chapter 1

Introduction

This chapter will provide a brief summary of the foundations used through-

out this work. The first two sections will cover the methods behind the cal-

culation of material properties from first-principles using the density functional

theory. The remainder of the chapter will focus on a few properties used to

calculate thermodynamic properties in conjunction with density functional the-

ory, which will be a short introduction to statistical mechanics. The informa-

tion in this introductory chapter is primarily from the following reference books:

[PY89, Kub65, Rei65, Cal60].

1.1 Density Functional Theory (DFT)

To predict the electronic structure of matter the problem involves the solution of

a complicated many-body problem . The purpose of the density functional theory

is to replace a complex wave function that is a function of each particles’ position

vector, �(x1,x2, ...,xn), with the much simpler election density n(r), hence where

the name density functional theory originates. This section will cover a brief

summary outlining the principles of density functional theory (DFT).

Thomas-Fermi Model

The Thomas-Fermi model is the predecessor to DFT and it allows for the replace-

ment of the complicated wave function mentioned above with the simpler electron

density n (r). Thomas and Fermi realized that the distribution of electrons can

be approximated by statistical methods. Thomas in 1927 stated that “Electrons

are distributed uniformly in the six-dimensional phase space for the motions of

an electron at the rate of two for each h3 of volume” and that there is an is an

e�ective potential field that “is itself determined by the nuclear charge and this
1



distribution of electrons.” [PY89] Another break through for this approximation

is the use of local relations approximated as a homogeneous electron gas to the

electronic properties of a system. This is also know as the local density approxi-

mation and is very important to DFT. The main result from the Thomas-Fermi

model is a way to calculate the kinetic energy from the electron density:

T
TF

[n] = C
F

⁄
n5/3 (r) dr (1.1)

The total energy of an atom can then be expressed as:

E
TF

[n (r)] = C
F

⁄
n5/3 (r) dr≠ Z

⁄ n (r)
r

dr + 1
2

⁄⁄ n (r1)n (r2)
|r1 ≠ r2|

dr1dr2 (1.2)

Where the first term is the kinetic energy, the second is the repulsion from the ion

cores, and the third is the electron-electron interaction term. The equation for

the total energy of at atom depends only on the electron density. The downside

to this equation however is that it neglects any exchange and correlation terms

and breaks down with molecules (predicts no bonding).

Hohenberg-Kohn theorem

While the Thomas-Fermi model provides a good foundation for modern DFT, it

was not validated until Hohenberg and Kohn provided their two theorems – the

existence theorem and variational theorem.

Theorem 1 – existence theorem: the external potential V Õ
ext

(r) is determined,

within a trivial additive constant, by the electron density n (r).

This theorem provides the direct mapping of the external electron potential V Õ
ext

(r)

to the electronic density for the ground state of a many electron system

Theorem 2 – variational theorem: for a trail density ñ (r), such ñ (r) Ø 0

and
s
ñ (r) dr = N ,

E0 Æ EV
ext

[ñ] (1.3)
2



This theorem establishes the variational principle for DFT, which states that

ground state density minimizes the electronic energy of the system.

Kohn-Sham Method

In the Thomas-Fermi model and other similar methods approximations are made

for the electron density and potential, and there are di�culties going beyond these

approximations. Kohn and Sham invented an indirect approach for the kinetic

energy term which turned DFT into a practical tool. They did this by introducing

orbitals so that the kinetic energy can be calculated to good accuracy. Kohn and

Sham set up the problem such that the kinetic energy, T [n], is exact. The total

energy equation under Kohn and Sham then becomes:

E [n] = T
S

[n] + J [n] + E
xc

[n] +
⁄
V
ext

(r)n (r) dr (1.4)

The advantage of this method is that by separating out the kinetic energy term,

T [n], and the long range Hartree interactions the remaining exchange-correlation

term, E
xc

[n] can be approximated. The actual E
xc

[n] should be very complex, but

progress has been made in achieving accurate approximations. Another advantage

of this method is that it can be solved iteratively to self convergence.

Local Density Approximation (LDA)

With the Kohn-Sham method a way to calculate the kinetic energy accurately

is possible, the remaining di�culty remains in the exchange-correlation term,

this is where the local density approximation (LDA) is useful. In the Thomas-

Fermi model local uniform electron gas was used to calculate the kinetic energy.

However, this is not needed now with the Kohn-Sham method, in the LDA the

local uniform electron gas is used for the exchange-correlation part of the energy

functional. The local density approximation for the exchange-correlation energy

3



is:

ELDA
xc

=
⁄
n (r) ‘

xc

(n) dr (1.5)

This method is applicable for systems where the electron density varies slowly

over a de broglie wavelength and it becomes exact in the limit of a slowly varying

density. It becomes less useful in systems with strong energy gradients, due to

directional bonding, which is known to systematically overbind. Corrections and

approximations have been made to improve the accuracy of LDA such as the PBE

method [PBE96].

Full-Potential Linear Mu�n Tin Orbital (FP-LMTO) method

The calculations performed here for the total energies heavily rely on the FP-

LMTO method; a computational implementation of DFT and the LDA. Its main

advantage is the use of augmented smooth Hankel functions for the basis set to

reduce computation time. This method uses atom-centered basis functions of

well-defined angular momentum, constructed out of Hankel functions, as well as

augmentation to introduce atomic detail into the basis functions in the vicinity

of each nucleus [MvSC00]. This method uses a more complex basis set, which

happens to reduce computation time due to the reduced basis size.

1.2 Thermodynamics From First-Principles
Partition Functions

To calculate macroscopic thermodynamic properties from microscopic properties

(or first-principles) the methods of statistical mechanics are used. The partition

function is a key part of statistical mechanics. If it is known many physical

properties (e.g. energy, pressure, entropy) can be calculated from having various

derivatives. In statistical mechanics a near-universal method for the calculation

4



of macroscopic properties is to evaluate the partition function [Rei65]:

Z =
ÿ

r

e≠—Er (1.6)

This is an unrestricted sum, and if one knows all particles in the system, as well

as their interactions, it is possible to calculate this sum by knowing the quantum

states of the system. This however, is only possible for simple systems such as

an ideal gas. When moving beyond simple systems the mathematics become

extremely complex.

An important property of the partition function is the additivity of the

energy which leads to a simple product of partition functions when calculating

multiple noninteracting or weakly interacting systems. This is particularly useful

when performing calculations involving a gas phase with multiple species that

can be treated as an ideal gas. Using equation 1.6 the energy of a system is the

derivative of the natural log of the partition function:

E
r

= ˆlnZ
ˆ—

(1.7)

If the system consists of two states, the energy of the system is simply the sum of

the two states:

E = E
i

+ E
j

(1.8)

The partition function of the system then becomes:

Z =
ÿ

i,j

e≠(E
i

+E
j

)— =
ÿ

i,j

e≠Ei—e≠Ej— =
A
ÿ

i

e≠Ei—
BQ

a
ÿ

j

e≠Ej—

R

b = Z
i

Z
j

(1.9)

When taking the natural log to derive the energy from the partition function, it

becomes a sum:

lnZ = lnZ
i

+ lnZ
j

(1.10)

Which leads back to the initial assumption that the energy of the system is a sum

of the subsystems. Thus, two important properties of the partition function that

will be used here are the sum of energy states, and product of subsystem partition

functions (Eqs. 1.8 and 1.9).
5



Chemical Equilibrim

For a system consisting of N particles that is thermally isolated the most probable

configuration is the one in which entropy is maximized, i.e.:

S(E1, V1, N1;E2, V2, N2; ...;Ej, Vj, Nj) = max (1.11)

where

S = S1(E1, V1, N1) + S2(E2, V2, N2) + ...+ S
j

(E
j

, V
j

, N
j

) (1.12)

which leads to the condition that

dS = dS1(E1, V1, N1) + dS2(E2, V2, N2) + ...+ dS
j

(E
j

, V
j

, N
j

) = 0 (1.13)

where

dS
j

= 1
T
j

dE
j

+ pj
T
j

dV
j

≠ µj
T
j

dN
j

(1.14)

where T
j

is the temperature, p
j

is the pressure, and µ
j

is the chemical potential of

each species. Satisfying the maximization of entropy thus leads to the conditions

for chemical equilibrium:

T1 = T2 = ... = T
j

(1.15)

p1 = p2 = ... = p
j

(1.16)

µ1 = µ2 = ... = µ
j

(1.17)

If the system is constructed in such a way that the temperatures and pressures of

the components are equal, then one only needs to be concerned with satisfying the

third condition in Eq. 1.17. For a general chemical reaction, n
a

A + n
b

B æ n
c

C,

the condition for chemical equilibrium can be written as:

ÿ

j

n
i

µ
i

= 0 (1.18)

where the coe�cients on the products are taken to be positive, and those on the

reactants are taken to be negative. By using this equilibrium condition one can

calculate the number of atoms in a particular phase.
6



As mentioned previously, if one knows the partition function of the sys-

tem then all thermodynamic properties can be calculated from it. The chemical

potential, µ
j

of each component, which is defined as:

µ
j

= ˆFj
ˆN
j

(1.19)

can be calculated from the partition function. The free energy, F
j

, of a component

in terms of the partition function is defined as:

F
j

= ≠k
b

T lnZ
j

(1.20)

Thus the chemical potential can be written in terms of the partition function as

well:

µ
j

= ≠k
b

T
ˆlnZ

j

ˆN
j

(1.21)

By using Eqs. 1.18, 1.21, and the correct partition function the number of atoms

in a particle phase can be calculated from first principles.

7



Chapter 2

Native Point Defect Study
2.1 Introduction

The chalcopyrite material ZnGeAs2 is a group II-IV-V semiconductor that has

been selected as a candidate for inclusion in a high e�ciency tandem photovoltaic

thin-film device. There have been reports of ZnGeAs2 films with mobilities in ex-

cess of 50 cm2/V-sec [SG84, CCO+87, STP89] as well as minority carrier lifetimes

of approximately 150 ns [TB98]. When including this material in a tandem cell

design with ZnSnP2, there is good lattice matching, and ideal band gaps (1.15eV

and 1.65eV respectively). Additionally all constituents are naturally abundant.

With these favorable properties, ZnGeAs2 appears to be a very ideal compound

for photovoltaic devices, however the synthesis of this material is not simple.

Synthesis of high quality thin-films of ZnGeAs2 is primarily di�cult due to

the high volatility of the Zn and As species. There have been a number of reports

indicating the growth of ZnGeAs2 films are possible, but typically the conditions

are non-ideal, or there is a very narrow growth window. Shah and Greene [SG84]

have reported growth of single crystal ZnGeAs2 films by sputtering using substrate

temperatures of 450-520¶C with additional evaporation of Zn and As4 increasing

over-pressures to 1mTorr. Under these growth conditions almost none of the

Zn and As was incorporated into the film. Molecular beam epitaxy has also been

used [CCO+87] with substrate temperatures of 380¶C, but was only able to achieve

a growth rate of 50 nm/h. It is apparent that the synthesis of ZnGeAs2 requires

precise control over growth conditions as well as additional insight to the factors

that are limiting growth.

It is proposed that the di�culties with the synthesis of ZnGeAs2 films

can be explained by the formation of native defects, which can be controlled

8



by adjusting growth parameters. There have been theoretical studies performed

[ZWZKY98, JML05, BvSS94] which detail the calculation of defect formation

energies and their possible e�ects on material properties. The goal here is to

follow a similar approach to determine most abundant native defects as a function

of laboratory conditions that may hinder the synthesis of stoichiometric ZnGeAs2

thin-films. This study will cover the use of density functional theory for the

calculation of defect formation energies and defect densities from first-principles.

2.2 Defect Formation
Calculation of Formation Energies

A supercell approach has been taken here for the calculation of defect formation

energies in ZnGeAs2, using a supercell that consists of 128 atoms. Large atomic

systems are required for defect formation calculations to negate the e�ects of

the cell boundaries on the distortion as a result of the defect. A similar study

carried out by Jiang et. al. [JML05] on ZnGeP2 used a 64 atom cell which was

su�cient in performing defect formation calculations. Here it is assumed that a

128 atom supercell will provide an ideal level of accuracy, while not being overly

computationally expensive.

The defect formation energy is calculated by taking the perfect 128 atom

supercell and adding the defect to be studied, which in this case included the three

vacancies (V
Zn

, V
Ge

, V
As

) and the two cation anti-sites (Ge
Zn

, Zn
Ge

). It is assumed

these are the primary defects that will e�ect the ability to grow stoichiometric

photovoltaic quality thin-films. The formation energy of a neutral (q=0) defect –

in ZnGeAs2 is dependent on the chemical potentials [ZWZKY98]:

�H
f

(–, q = 0) = �E(–, q = 0) + n
Zn

µ
Zn

+ n
Ge

µ
Ge

+ n
As

µ
As

(2.1)

9



where

�E(–, q = 0) = E(–, q = 0)≠ E(ZnGeAs2) + n
Zn

µsolid
Zn

+ n
Ge

µsolid
Ge

+ n
As

µsolid
As

(2.2)

In Eq. 2.1, n
i

are the atomic species that are either added or removed from

the systems, and µ
i

are the chemical potentials of the atomic species, which

are controlled by laboratory conditions (pressure and temperature). Eq. 2.2 is

the expression for the di�erence in energy between the defect cell (E(–, q = 0))

and the perfect cell (E(ZnGeAs2)). These energies are obtained from density

functional theory calculations (DFT) of fully relaxed supercells. The n
i

terms are

the same as in Eq. 2.1, the solid chemical potentials, µsolid
i

, are the total energies

of the elemental solids, which are also obtained from DFT calculations. Also

using statistical mechanics, the chemical potentials of the elemental species can

be shown as a function of pressure and temperature.

Chemical Potential Limits

The chemical potentials in Eq. 2.1 are bound by the conditions where precipitation

of the solid elements will occur:

µ
Zn

Æ 0, µ
Ge

Æ 0, µ
As

Æ 0 (2.3)

Another boundary placed on the chemical potentials is the formation of the stable

ZnGeAs2 compound:

µ
Zn

+ µ
Ge

+ 2µ
As

= �H
f

(ZnGeAs2) (2.4)

where �H
f

(ZnGeAs2) is the formation energy of ZnGeAs2 calculated from DFT.

These two conditions can be used to form a stability diagram, which is similar to a

phase diagram, in that it displays where a certain compound, in this case ZnGeAs2

is stable as a function of chemical potential. With only these two boundary

10



conditions the diagram would be a simple triangle when plotted in 2-D (one

potential is set as zero, typically the anion).

In CuInSe2, another chalcopyrite material, it was determined that there

is a range of compounds that can exist [ZWZKY98] inside the conditions set by

Eqs. 2.3 and 2.4. The wide range of possible stoichiometric compounds existing for

this material was attributed to the formation of a defect complex which has a low

energy of formation. In another similar study conducted for ZnGeP2 [JML05],

it was determined that the same was not true for this chalcopyrite compound,

and that there were only two other possible compounds that could form inside

the stability triangle. Since the material of focus here (ZnGeAs2) and ZnGeP2

are both II-IV-V compounds, it was assumed they would be more similar, and

therefore it was assumed the stability diagram of ZnGeAs2 would be similar as

well. The stability diagram of ZnGeAs2 was constructed in a similar manner to

ZnGeP2, and it was found that the compounds Ge3As4 and Zn3As2 could also

exist within the boundaries of the stability diagram.

This then imposes the additional boundary conditions to the stability re-

gion:

3µ
Zn

+ 2µ
As

Æ �H
f

(Zn3As2) (2.5)

3µ
Ge

+ 4µ
As

Æ �H
f

(Ge3As4) (2.6)

Using the conditions for the chemical potentials such that the elemental species

do not precipitate, ZnGeAs2 forms a stable compound, and Ge3As4 and Zn3As2

do not form, a stability diagram can be constructed for this system. The construc-

tion of a stability diagram allows for the calculation of defect formation energies

over only the conditions under which synthesis of a stable ZnGeAs2 compound is

possible.

11



2.3 Defect Concentrations

The quasichemical formulation [Kro74] will be followed here for the calculation

of defect densities as a function of laboratory parameters. The primary focus

here will be to determine the abundance of native point defects which are charge

neutral for guidance in the synthesis of ZnGeAs2 thin-films. The calculations of

defect formation energies described above will be used here as well since the defect

densities are a function of the formation energy.

A similar study has been performed on the pseudobinary alloy Hg
x

Cd1≠xTe

[BvSS94], which will be the basis for this study. This system however di�ers in

that it must be treated as a ternary system, not as a binary alloy, due to the

fixed stoichiometry and the strict adherence to the specific cation (A and B) and

anion (C) sublattices in the chalcopyrite structure ABC2. In this system there

are three components (A, B, and C), and two phases (solid and vapor) – to stay

in accordance with Gibbs’s phase rule there must be three degrees of freedom.

Typically in binary systems there are two degree’s of freedom which can

include temperature, chemical potential, and pressure. The degrees of freedom

chosen are temperature, chemical potential, and stoichiometry. Temperature is a

very natural degree of freedom to control as it translates directly to experiment.

Chemical potential has been selected due to the formulation of the defect forma-

tion energy in Eq. 2.1, and with the use of statistical mechanics can be expressed

as a function of temperature and pressure. Stoichiometry has been chosen be-

cause the goal is to synthesize a stoichiometric ZnGeAs2 thin-film device, and it

is therefor of interest to control this parameter.

12



In the quasichemical approximation the law of mass action is used to de-

termine the density of non-interacting defects at small densities [Kro74]:

K
X

x = ◊ exp
3
≠FX

x

k
B

T

4
= [Xx] (2.7)

where F x is the formation energy of the neutral defect X, with density [Xx].

The term ◊ is the number of unit cells per volume to convert the result to de-

fects per volume. The formation energy, F
X

x is a sum of vibrational, electronic,

translational, and a degeneracy contributions:

F
X

x = F vib
X

+ F el
X

+ F trans
X

+ k
B

T ln(G) (2.8)

The electronic term (F el
X

) is the defect formation energy calculated from DFT

using Eq. 2.1, which also includes the translational term (F trans
X

) in the form of the

chemical potentials. Here it has been decided to ignore the vibrational term which

is a common practice as the electronic contribution tends to be the dominant term,

and it is assumed the vibrational contribution will not have a major impact on this

study. The degeneracy term, which accounts for the degeneracy of the reactants,

is take from the quasichemical approximation. For a reaction A+B æ C+D the

degeneracy G is equal to (g
C

g
D

)/(g
A

g
B

), where g
i

is the degeneracy of reactant i.

2.4 Computational Methods

The total energy calculations that were performed to determine defect formation

energies utilized density functional theory (DFT) with the local density approxi-

mation [HK64, KS65]. Total energy calculations were performed using a 128-atom

super cell with a 4x4x4 mesh of k points, to calculate the vacancy formation en-

ergy of the three atomic species. The defect super cell was relaxed using the

full-potential (FP) linearized mu�n-tin orbital (LMTO) method [MvSC00], on a

2x2x2 k point mesh.

13



2.5 Results
Defect Formation Energy

The calculated defect formation energies (Eq. 2.2) for charge neutral native point

defects in ZnGeAs2 are listed in Table 2.2, along with the corresponding atom ex-

changes to and from the vapor phase. A positive value signifies an atom moving

from the solid to vapor, with a negative representing the transfer from the gas

reservoir to the solid. For example, in the creation of a Zn
Ge

anti-site, a germa-

nium atom is first moved from the solid to the vapor (+n
Ge

), then the vacant site

is occupied by the zinc atom from the vapor (-n
Zn

).

Table 2.1: Electronic contribution to native point defect formation energy in
neutral charge state using Eq. 2.2

Defect Felec
x

[eV] n
Zn

n
Ge

n
As

V
Zn

1.866 +1 0 0
V
Ge

2.645 0 +1 0
V
As

3.310 0 0 +1
Zn
Ge

0.478 -1 +1 0
Ge
Zn

1.288 +1 -1 0

While the Zn
Ge

anti-site defect has the smallest electronic contribution,

it may not be the most abundant defect or have the lowest formation energy,

which also contains a contribution from the vapor phase reservoir. To determine

the range of chemical potentials to focus on for the calculation of the defect

formation energies a stability diagram of the ZnGeAs2 system, Fig. 2.1, has been

constructured according to the conditions outlined in Eqs. 2.4, 2.5, and 2.6. The

heats of formation required to determine the boundaries of the stability diagram

can be found in Table 2.2.

Without using a stability diagram it would be di�cult to calculate the

formation energies of defects as a function of chemical potentials in regions where
14



Figure 2.1: Stability diagram showing allowed ranges for Zn and Ge chemical
potentials to form ZnGeAs2 (area bounded by lines AB, BD, and DC).

Table 2.2: Heats of formation for various materials and compounds, calculated
from DFT

Material �H
f

[eV] Compound �H
f

[eV ]
Zn (s) -1.847 ZnGeAs2 -3.565
Ge (s) -4.468 Ge3As4 -3.824
As (s) –2.449 Zn3As2 -2.694

it is possible to synthesize pure ZnGeAs2. From this diagram four points where

the various phase lines intersect, have been labeled and the corresponding values

can be found in Table 2.3. Also it is important to note on this diagram that as

the chemical potential of either Zn or Ge becomes more negative this is indicative

of reducing the abundance of the constituent. For example, at the origin where

both chemical potentials are zero, this would be a region of Zn and Ge abundance,

where as if you were to move down the y-axis towards more negative values for

the Ge chemical potential these conditions would be come Ge deficient.
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Table 2.3: Neutral native point defect formation energies at points labeled in
Fig. 2.1 with corresponding chemical potentials. All values are in electron volts.

A B C D
µ
Zn

-1.635 -2.290 0 -0.898
µ
Ge

0 -1.275 -0.871 -2.667
V
Zn

0.231 -0.424 1.866 0.968
V
Ge

2.645 1.370 1.774 -0.022
Zn
Ge

2.115 1.495 -0.391 -1.289
Ge
Zn

-0.347 0.273 2.159 3.057

The line BD has been chosen as an area to study the defect formation

energy for the defects listed in Table 2.3 as it is a region that will have su�cient

amount of As2 gas present (µ
As

= 0), and it will show the e�ects of altering the

Zn and Ge compositions. In the experimental work [VTT+11] done in tandem

with this research, the di�culty has been to synthesize films with the correct 1:1:2

ratio of Zn, Ge, and As respectively. While there have been some samples grown

to be near stoichiometric, the majority have been Ge rich and Zn/As deficient. It

is therefor probable that film growth is occurring under conditions of su�cient or

excess Ge with Zn deficiencies.

In Fig. 2.2 the formation energies for the four native cation defects are

plotted as a function of chemical potential. The range of chemical potentials used

for the formation energies falls along the diagonal line running through points B

and D in Fig 2.1. The conditions mentioned above (Zn deficient, Ge rich) would

fall to the left side of this plot. Based on the defect formation energies here it

would appear that the zinc vacancy, V
Zn

and the anti-site Ge
Zn

, have the lowest

formation energies. These energies also appear to be negative under conditions

of increasing Zn deficiency. It would therefor be likely that these two defects are

present under current growth conditions which result in Zn deficient films. With

the anti-site having such a low (negative under some conditions) formation energy

this is likely the cause of o�-stoichiometry films.
16



Figure 2.2: Defect formation energy of native cation defects along the line line
that would run through points B and D on Fig. 2.1, i.e. µ

Zn

≠ µ
Ge

Defect Concentrations

Using the information gained from the defect formation energy calculations the

concentrations of these defects as a function of temperature and pressure have

been calculated as well in Fig. 2.3. Several plots have been made at temperatures

that span typical ZnGeAs2 synthesis conditions. The pressure values were derived

from the chemical potentials which contribute the translational formation energy

term. The defect concentrations were calculated at the pressures that would result

in chemical potentials for Zn and Ge that would fall along a line that runs from the

origin in Fig. 2.1 to a point on the line BD where the Zn and Ge chemical potentials

are equal. The chemical potential for As if fixed by the stability condition from

Eq. 2.4. The temperatures are held constant in each situation. Using these

17



conditions, the plots will represent the conditions that might occur during normal

growth.

Figure 2.3: Defect concentrations as a function of (total) pressure at various
temperatures. The pressure ranges are calculated from the chemical potentials
for Zn and Ge according to a line extending from the origin of Fig. 2.1 to the
point on the line BD where µ

Zn

= µ
Ge

.

From Fig. 2.3 it is apparent that the two most abundant defects, as pre-

dicted by the formation energies in Fig. 2.2, will be the zinc vacancy, V
Zn

and the

Zn
Ge

anti-site. While there are conditions where the As vacancy would be abun-

dant, these are at extremely high Zn and Ge pressures, which would be extremely

low As pressures.
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The defect concentration plots generated here only represent a small region

of possible growth or annealing conditions. As stated before these conditions were

derived from the stability diagram by following a line that would run from the

origin to the midpoint on the line running through points B and D. This was

done so that all the degrees of freedom could be met, which in this case fixed the

chemical potentials of Zn and Ge gases to be equal.

Figure 2.4: Defect concentrations as a function of (total) pressure at various
temperatures. The pressure ranges are calculated from the chemical potentials
for Zn and Ge according to a line running through points B and D on Fig. 2.1.
This plot follows the same chemical potential conditions as in Fig. 2.2 where the
chemical potential of As is zero.
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For defect concentrations that would most likely be more indicative of

typical growth conditions – Ge rich and Zn deficient – Fig. 2.4 was generated

by following chemical potential conditions that would occur along a line running

through points B and D in Fig. 2.2. In this figure one can see that the most

abundant defects appear to be the zinc vacancy, V
Zn

and the Ge
Zn

anti-site. This

can be explained by the fact that, by moving along a line starting under Zn

rich/Ge deficient (Point D) and moving towards point B, the partial pressure of

Zn decrease, and Ge increases. This would explain an increase in Zn vacancies,

and with addition Ge present, it is likely they will occupy the vacant Zn sites. This

could explain the reason for Ge rich films, where growth conditions may be Ge

rich and Zn deficient, or at least enough to cause a deviation from stoichiometry.

The two plots shown here only represent a small portion of the possible

growth conditions that may occur. By following the methods outlined here one

could readily generate addition plots for di�erent growth conditions, or possible

annealing profiles. These plots could be very useful tools in performing analysis

of growth or annealing conditions to eliminate (or increase) the concentration of

certain defects.

2.6 Conclusions

In conclusion, methods for the calculation of defect formation energies and the

prediction of defect concentrations have been shown. In calculating the defect for-

mation energies of native point defects in ZnGeAs2 a stability diagram was created

from the limits imposed on chemical potentials of the various species. From this

the range of chemical potentials to focus on the ranges that would translate to

typical growth conditions. Using the range of chemical potentials gained from

the stability diagram the formation energy for the two cation vacancies and anti-

sites was calculated and plotted. From this it was shown that the zinc vacancy
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(V
Zn

) and the germanium anti-site (Ge
Zn

) have the lowest formation energies,

and should therefore be the most abundant.

To gain a better idea of the abundance of these defects the concentrations

for the three vacancies (Zn, Ge, and As) and two anti-sites (Ge
Zn

and Zn
Ge

) were

calculated. These were thought to be the most likely to contribute to forming

o�-stoichiometry films, and it was found that under typical growth conditions

the zinc vacancy (V
Zn

) and the germanium anti-site (Ge
Zn

), would be the most

abundant, as predicted from their formation energies. While it appears that

under normal growth conditions it may be di�cult to limit their formation, the

information gathered here could be used to formulate annealing procedures to

reduce the native defects in as-grown films. To gain additional knowledge of

the defect physics occurring in ZnGeAs2 it would be useful to perform these

calculations for ionized defects to gain information for n/p-type doping as well as

the possibility of defect complexes that may form.
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Chapter 3

ab initio Vapor Pressure Model
3.1 Introduction

ZnGeAs2 has been identified as a promising material for the implementation of a

thin-film tandem photovoltaic device. This material has been chosen for several

reasons, which include hole mobilities in excess of 50 cm2/V-sec [SG84, CCO+87,

STP89], minority lifetimes of approximately 150 ns [TB98], as well as consisting

of relatively abundant materials. Additionally when paired with ZnSnP2 in a

tandem design, there is ideal lattice matching between the two species. There,

however, has not been widespread synthesis and use of ZnGeAs2 thin-films which

is likely due to the high volatility of Zn and As species.

To incorporate two volatile materials at high temperatures and achieve the

quality of films needed for photovoltaic applications, growth conditions must be

precisely controlled. There is most likely a narrow window of ideal growth condi-

tions that must be maintained, and knowledge of these conditions would greatly

improve device synthesis. ZnGeAs2 is a II-IV-V chalcopyrite material, which is

tetrahedrally coordinated, and is very similar in structure to III-V zincblende ma-

terials (e.g. GaAs). This system contains a cation A and B sublattice, as well as a

anion C sub lattice (i.e. ABC2), any deviation from this could have device killing

e�ects on the system, as seen in the As anti-site in GaAs. This only amplifies the

need to determine the window of growth in order to achieve stoichiometry, limited

defects, and crystalline films.

The goal of this work has been to develop a model for the calculation of

the equilibrium vapor pressure over ZnGeAs2, while working closely with experi-

mental material synthesis. With a vapor pressure diagram for this system much

needed insight can be gained towards the determine of the growth process such as
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thermodynamic and kinetic limits. This work is unique in that the vapor pressure

model described here has been designed from first principles, and should be adapt-

able to similar systems. The di�culty with developing this model was largely due

to the additional degrees of freedom that arise in a ternary system as a result of

Gibb’s phase rule.

The basis for this model is a statistical mechanic approach adapted from

a monatomic vapor pressure model [Kub65]. The approach taken here was to

adapt the monatomic model to a ternary system that could account for the addi-

tional complexity of the ternary system. The chemical equilibrium of the system

was viewed to be a function of competing defect formations which would lead

to an exchange between solid and vapor phases. Defect formation energies were

calculated using supercell density functional theory (DFT) calculations.

The procedure here was to first validate the use of the monatomic model by

using known experimental values of the vapor pressure for Zn, Ge, and Sn solids.

Once this model had been validated, the binary system GaAs was then studied

using a modified version of this model for binary systems. With a successful

model for monatomic and binary systems the model was then developed for the

ternary system ZnGeAs2, which is compared to experimental results that were

closely coupled with the theory outlined here.

This paper will outline the methods and theory used starting with the

monatomic test systems, adaptations for use with a binary system, and finally the

development of a ternary model. Results from these methods will be compared

and discussed to show the validation of this model.

3.2 Methods

Calculation of macroscopic thermodynamic properties using statistical mechanics

of a system at some temperature T (i.e. it is in contact with some heat reservoir),
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requires that only the partition function, Z, needs to be known. Once the partition

function is known thermodynamic quantities can be readily calculated by taking

derivatives of the partition function. The most general expression for the partition

function is the sum over all states of the system [Rei65]:

Z =
ÿ

j

e≠—Ej , (— = 1/k
B

T ) (3.1)

If one knows the state of all particles in the system, e.g. an ideal non-interacting

gas, the partition function can be readily calculated. Di�culties arise in more

complex systems, when there are interactions between the particles such as in

solids and liquids. Here the partition functions that will be used for an ideal

monatomic gas, diatomic gas, and solid are formulated and discussed.

Ideal monatomic gas

The simplest case is the ideal monatomic gas consisting of N
g

molecules with mass

m contained within a volume V . The total energy of this system is:

E =
N

gÿ

j=1

p

2
j

2m + U(r1, r2, ..., rN
g

) (3.2)

Where p

j

is the momentum of each particle, and U is the interaction energy

between each particle. Using this total energy of the system the partition function

of the gas can be written as:

Z = 1
h3N

⁄
e≠(—/2m)p2

1 ...
⁄
e≠(—/2m)p2

Nd3p
N

⁄
e≠—U(r1,r2,...,r

N

)d3r1...d
3
r

N

(3.3)

The kinetic energy is a sum of the terms for each particle and the corresponding

part in the partition function becomes a product of N
g

integrals, which have the

form:
1
h3

⁄
e≠(—/2m)p2

d3p (3.4)

Also because this is a system of non-interacting particles, the interaction energy

U(r1, r2, ..., rN), can be set to zero. The exponential in the integration over the
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interaction term then goes to one, and the integral is simply equal to the volume,

V :
⁄
e≠—U(r1,r2,...,r

N

)d3r1...d
3
r

N

=
⁄
d3r1...d

3
r

N

= V N (3.5)

Performing these two integrals for one particle results in the partition function

for a single particle:

z
g

(T, V ) = V
A

2fim
h2—

B3/2

(3.6)

The total partition function of a N
g

particle system can then be written as:

Z
g

(T, V,N
g

) = zg(T, V )Ng
N
g

! (3.7)

This form of the monatomic gas partition function will be used for calculation of

thermodynamic properties.

Diatomic Gas

The diatomic gas partition function has the same form as that for a monatomic

gas, the di�erence being the additional degrees of freedom (vibrational and ro-

tational) that arise in the diatomic molecule which must be accounted for. The

most general form of the diatomic partition function, Z
d

, has the same form as

that of the monatomic gas:

Z
d

(T, V,N
g

) = zd(T, V )Ng
N
g

! (3.8)

The additional degrees of freedom are included in the term z
d

, which can be

expanded as [Kub65]:

z
d

= z
g

◊ z
vib

◊ z
rot

(3.9)

where z
g

is the same as in Eq. 3.6, the vibrational term with vibrational frequency

‹ is:

z
vib

=
C

2sinh ◊v2T

D≠1

(◊
v

= h‹/k
B

) (3.10)

and the rotational term:

z
rot

= 8fi2I

h2—
(3.11)
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Debye model of solid

When choosing a model for the solid partition function the Einstein and Debye

models were two possible choices. The Debye model was chosen over the Einstein

model because it is known to be more accurate in predicting properties of a solid

that are dependent on lattice vibrations. The Einstein model assumes that each

atom is three linear independent oscillators. These oscillators are assumed to

vibrate with a single frequency and this is the main draw back of the Einstein

model. With the Debye model phonons were used to explain vibrations of the

lattice rather than treating each atom independently. Also in the Debye model

there is a range of frequencies, Ê to Ê + dÊ, that are allowed.

Debye frequency

The minimum frequency in the Debye model is typically taken to be zero to

correspond to infinite wave length, and the maximum is known as the Debye

frequency, Ê
D

. The Debye frequency corresponds to wave lengths that are on the

order of several lattice spacings. At low frequencies the Debye model assumes a

linear dispersion relation between the frequency and the wave number, k.

Ê = vk (3.12)

Where the slope is the velocity of sound waves in the material, v. There are

two possible types of waves, longitudinal and transverse, which travel at di�erent

velocities and need to be accounted for. At high frequencies the dispersion curves

deviate from the linear relation and flatten out. To use the Debye model it was

necessary to calculate the Debye frequency for each material, this can be done

by using the linear relationship between frequency and the wave number. The

following equation, which is equivalent to the density of states in the frequency
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range dÊ, can be used to determine the Debye frequency [Cal60]:

D(Ê) = V2fi2k
2(Ê)dk(Ê)

dÊ
dÊ (3.13)

V is the volume, here the unit cell volume was used, and k(Ê) is taken by solving

Eq. 3.12 for k. After doing so and accounting for the one longitudinal mode with

velocity v
l

and two transverse modes with velocity v
t

, Eq. 3.13 becomes:

D(Ê) = V2fi2

A
1
v3
l

+ 2
v3
t

B≠1

dÊ (3.14)

By integrating Eq. 3.14 over possible frequencies, and using the fact that this

must be equal to the total number of modes, 3N , the Debye frequency can be

found:
⁄
Ê

D

0
D(Ê)dÊ = 3N (3.15)

Ê3
D

= 18Nfi2

V

A
1
v3
l

+ 2
v3
t

B≠1

(3.16)

To use Eq. 3.16 the longitudinal and transverse wave velocities of the solids needed

to be determined. The following relation, between the elastic constant c
ij

and

material denisty fl, can be used to calculate the velocities:

v =
Û
c
ij

fl
(3.17)

Use of this equation allows for the calculation of the Debye frequency to be made

using ab inito methods, which are capable of calculating elastic constants of ma-

terials. The longitudinal and transverse velocities are dependent on crystal struc-

ture, which determine which elastic constant to be used for each velocity [Pol77].

For a hexagonal material (e.g. Zn) the longitudinal and transverse velocities are:

vhex
l

=
Û
c33
fl

(3.18)

vhex
t

=
Û
c44
fl

(3.19)
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and for cubic materials (e.g. Sn, Ge):

vcub
l

=
Û
c11
fl

(3.20)

vcub
t

=
Û
c44
fl

(3.21)

The velocities are also dependent on crystal direction and for both cases the [100]

direction was chosen. The elastic constants can be predicted fairly reliably using

density functional theory.

Solid partition function

The partition function of a solid can be factored into a term that corresponds to a

material with no phonons and into one containing the e�ects of phonons [Kub65].

In a solid with no phonons the energy contribution is ÷ (the binding energy per

atom at absolute zero), which can be calculated from total energy calculations

using density functional theory. There is some error in density functional theory

when using the LDA due to the well known over binding, but the total energy

is fairly accurate and improvements can be made by using the Perdew-Burke-

Ernzerhof (PBE) functional. The contribution from a solid without phonons is

simply:

z
s

= e≠÷—Ns (3.22)

The contribution due to phonons was then determined by using the Debye model

of a solid. This can be done by starting from the partition function for a harmonic

oscillator with angular frequency Ê
j

:

Z
j

=
Œÿ

n=0
e≠(n+ 1

2)h̄Ê
j

— =
Ë
1≠ e≠h̄Êj—

È≠1
(3.23)

The total partition function due to phonons in the solid then becomes:

z
phonon

=
Ÿ

j

Z
j

=
Ÿ

j

Ë
1≠ e≠h̄Êj—

È≠1
(3.24)
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By combining the contributions from the solid with and without phonons the total

Debye solid partition function is:

Z
s

(T,N
s

) = z
s

◊ z
phonon

= e≠÷Ns—
Ÿ

j

Ë
1≠ e≠h̄Êj—

È≠1
(3.25)

With appropriate partition functions for the solid and gas phases the free energy

can be determined, and the number of atoms in the gas phase can be found

satisfying the conditions for chemical equilibrium.

3.3 Single component system: Zn, Ge, Sn

The simplest case for the calculation of the vapor pressure over a solid is that of

a single component system that exists in a single phase solid and a monatomic

gas phase. Here three di�erent solids were studied; zinc, tin, and germanium.

Each system can be described by the same chemical reaction, M(s)æM(g), the

decomposition of the solid to the gas phase. This forward reaction will dominate

until there is a su�cient number of atoms in the gas phase colliding with the solid

such that there is a net flux of zero atoms leaving the solid. Using Eq. 1.18, the

condition for equilibrium of a single component system can be written as:

µ
g

≠ µ
s

= 0 (3.26)

where s and g represent the solid and gas phases respectively. This leads to the

following equation which must be solved for the number of atoms in the gas phase:

ˆlnZ
g

(T, V,N
g

)
ˆN
g

= ˆlnZs(T,Ns)
ˆN
s

(3.27)

After using Eq. 3.7 and applying Stirling’s approximation for the natural log-

arithm of a factorial the result of di�erentiating the left hand side of Eq. 3.39

is:
ˆlnZ

g

(T, V,N
g

)
ˆN
g

= lnN
g

≠ lnz
g

(T, V ) (3.28)
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The result from the right hand side of Eq. 3.39 using the solid partition function

in Eq. 3.25 is:

ˆlnZ
s

(T,N
s

)
ˆN
s

=
5
≠÷— ≠ 9

Ê
D

⁄
Ê

D

0
ln
Ë
1≠ e≠h̄Êj—

È
Ê2dÊ

6
= —µ

s

(3.29)

the complete derivation of Eq. 3.41 can be found in appendix A. By equating

Eqs. 3.40 and 3.41, the number of atoms in the gas phase can be solved for:

N
g

(T ) = z
g

(T, V )e≠—µs (3.30)

It was chosen to not solve the integral contained in Eq. 3.45 analytically, but

to instead solve it numerically when calculating the number of atoms in the gas

phase as a function of temperature. Having derived an equation for the number

of atoms in the gas phase the pressure due to the gas can be calculated using the

ideal gas law.

3.4 Binary system: GaAs

For a binary system, the same basic steps are followed as in the single component

system. However, complexities arise in that there can now be multiple solid

phases as well as multiple species in the gas phase. The decomposition of GaAs

was studied as an example binary system. The major complications that arise

from this simple binary system include: arsenic forms a diatomic gas, gallium

could decompose from GaAs as either a solid or gas, and GaAs forms a zincblend

solid phase only when the ratio of Ga to As is unity [Tsa93]. To simplify the

system it was chosen here that the solid would decompose into a vapor with same

composition as the solid, or:

GaAs(s)æ Ga(g) + 1
2As2(g) (3.31)

which leads to the equilibrium condition:

µ
Ga

+ 1
2µAs2 ≠ µGaAs = 0 (3.32)
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The equilibrium condition can also be written as:

lnN
As2 + 2lnN

Ga

= lnz
As2(T, V ) + 2lnz

Ga

(T, V )≠ 2—µ
GaAs

(3.33)

This equation however contains two unknowns, the number of arsenic and gallium

atoms in the gas phase. Since it was assumed that the composition of the gas

phase would be the same as the solid, the number of gallium atoms in the gas

phase must then be N
Ga

= 2N
As2 . The number of arsenic molecules in the gas

phase can now be calculated using the following equation:

N
As2 = 2

Ò
z
As2(T, V )z

Ga

(T, V )e≠2—µ
GaAs (3.34)

The vapor pressure of arsenic over GaAs can then be calculated using Eq. 3.34

for the number of arsenic molecules, and the ideal gas law for the corresponding

pressure.

3.5 Ternary system: ZnGeAs2

To calculate the vapor pressure over ZnGeAs2, it was assumed that only mech-

anism for atoms to enter the gas phase from the solid was by the formation of

vacancies described by the following reactions:

Znx
Zn

æ V x
Zn

+ Zn(g) (3.35)

Gex
Ge

æ V x
Ge

+Ge(g) (3.36)

Asx
As

æ V x
As

+ 1
2As2(g) (3.37)

Since it was assumed that vacancies are the only allowed defect, each species

could only exist in two di�erent states, either on its correct lattice site or in the

gas phase. To determine the vapor pressure the number of atoms in the gas phase

was calculated by minimizing the free energy of the system with respect to the

number of atoms in each phase. Even with this over simplification of allowing

vacancies to be the only defect present in the material, this assumption produces

a rather accurate prediction of the vapor pressure.
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Free energy minimization

Using Eqs. 3.7 and 3.25, the total free energy of the system can be written as:

F (T, V,N) = ≠k
B

T [lnZ
g

(T, V,N
Zn

, N
Ge

, N
As2) + lnZ

s

(T,N
Zn

, N
Ge

, N
As

)] 1

(3.38)

In an attempt to simplify the problem, an additional assumption as made that the

decomposition of the solid would occur stoichiometrically, i.e. N
Zn

= N
Ge

= N
As2

in the gas phase. This allows for the replacement of each atom number by a single

variable, N
g

. The same can be also done for the solid, where the individual N
i

can bet set to N
s

. To determine the equilibrium number of atoms in the gas phase

the free energy of the system must be minimized with respect to the number of

atoms in the gas phase:

ˆlnZ
g

(T, V,N
g

)
ˆN
g

= ˆlnZs(T,Ns)
ˆN
s

(3.39)

After using Eq. 3.7 and applying Stirling’s approximation for the natural log-

arithm of a factorial the result of di�erentiating the left hand side of Eq. 3.39

is:

ˆlnZ
g

(T, V,N
g

)
ˆN
g

= lnZZn
g

(T, V,N
Zn

)ZGe
g

(T, V,N
Ge

)ZAs2
d

(T, V,N
As2)1/2 ≠ lnN5/2

g

(3.40)

The result from the right hand side of Eq. 3.39 using the solid partition function

in Eq. 3.25 is:

ˆlnZ
s

(T,N
s

)
ˆN
s

=
5
≠÷— ≠ 3◊ 9

Ê
D

⁄
Ê

D

0
ln
Ë
1≠ e≠h̄Êj—

È
Ê2dÊ

6
= —µ

s

(3.41)

where

÷ = ÷
V

Zn

+ ÷
V

Ge

+ ÷
V

As

(3.42)
1
Take note that Ni in the gas and solid partition functions are not assumed to be equal
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With ÷ being the defect formation energy of a neutral (q=0) defect – in ZnGeAs2

which is dependent on the chemical potentials [ZWZKY98]:

÷(–, q = 0) = �E(–, q = 0) + n
Zn

µ
Zn

+ n
Ge

µ
Ge

+ n
As

µ
As

(3.43)

where

�E(–, q = 0) = E(–, q = 0)≠ E(ZnGeAs2) + n
Zn

µsolid
Zn

+ n
Ge

µsolid
Ge

+ n
As

µsolid
As

(3.44)

In Eq. 3.43, n
i

are the atomic species that either added or removed from the sys-

tems, and µ
i

are the chemical potentials of the atomic species, which are controlled

by laboratory conditions (pressure and temperature). Eq. 3.44 is the expression

for the di�erence in energy between the defect cell (E(–, q = 0)) and the perfect

cell (E(ZnGeAs2)). These energies are obtained from density functional theory

calculations (DFT) of fully relaxed supercells. The n
i

terms are the same as in

Eq. 3.43, the solid chemical potentials, µsolid
i

, are the total energies of the elemen-

tal solids, which are also obtained from DFT calculations.

After setting the two sides equal and solving for N
g

one finds the number

of atoms in the gas phase is:

N
g

(T ) =
Ë
(ZZn
g

(T, V )ZGe
g

(T, V )ZAs2
d

(T, V )1/2)≠1e≠—µs
È≠2/5

(3.45)

By then using the ideal gas law, the vapor pressure can now be found:

P (T ) = k
b

T
Ë
(ZZn
g

(T )ZGe
g

(T )ZAs2
d

(T )1/2)≠1e≠—µs
È≠2/5

(3.46)

The volume dependence is canceled out when the ideal gas law is substituted in

for N
g

= PV/k
B

T .

3.6 Results and Discussion
Monatomic Systems: Zn, Ge, Sn

The vapor pressures for the three materials studied was calculated using basic ma-

terials properties (mass, density, and unit cell volumes), properties calculated from
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ab initio electronic structure methods (total energies), and data from literature

(elastic constants). The materials data used for the vapor pressure calculations,

along with parameters calculated during the process can be found in table 3.1.

Table 3.1: Materials data used for calculation of Zn, Ge, and Sn vapor pressures

From Literature [Nye57, Ada04] Calculated
Zn c33 6.29◊ 1010 [Nm≠2] v

l

2.99◊ 103 [m s≠1]
c44 3.79◊ 1010 [Nm≠2] v

t

2.32◊ 103 [m s≠1]
m 1.07◊ 10≠25 [kg] Ê

D

1.65◊ 1013 [rad s≠1]
fl 7.04◊ 103 [kg m≠3] „

LDA

≠1.847 [eV ]
V
cell

2.00◊ 10≠28 [m3] „
PBE

≠1.095 [eV ]
Sn c11 6.90◊ 1010 [Nm≠2] v

l

3.46◊ 103 [m s≠1]
c44 3.62◊ 1010 [Nm≠2] v

t

2.50◊ 103 [m s≠1]
m 1.97◊ 10≠25 [kg] Ê

D

1.37◊ 1013 [rad s≠1]
fl 5.77◊ 103 [kg m≠3] „

LDA

≠3.835 [eV ]
V
cell

4.59◊ 10≠28 [m3] „
PBE

≠3.143 [eV ]
Ge c11 12.87◊ 1010 [Nm≠2] v

l

4.92◊ 103 [m s≠1]
c44 6.67◊ 1010 [Nm≠2] v

t

3.54◊ 103 [m s≠1]
m 1.21◊ 10≠25 [kg] Ê

D

2.22◊ 1013 [rad s≠1]
fl 5.33◊ 103 [kg m≠3] „

LDA

≠4.468 [eV ]
V
cell

3.03◊ 10≠28 [m3] „
PBE

≠3.747 [eV ]

The resulting vapor pressure calculations using the data in Table 3.1 are

displayed in figure 3.1. It can be seen in the figure that for each element the

fit using the LDA total energy falls below the experimental data [Mar67]. Each

fit however appears to have the correct trend in comparison with the data, this

indicated that the model was correct and that it was possibly the data being used

that was incorrect. The only values that were not basic materials properties pulled

from literature were the LDA energies and the Debye frequency. After comparing

the calculated wave velocities and Debye frequencies with literature [Ada04] it

was apparent that they were fairly accurate. This left the LDA energies as the

possible source of error. It is known that the LDA produces errors in total en-

ergy calculations due to over binding. To calculate more accurate total energies,

the calculations were redone, using the Perdew-Berke-Ernzerhof (PBE) functional
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[PBE96]. The resulting vapor pressures using the PBE functional in the total en-

ergy calculations is plotted along with the LDA results, and it can be seen that

they agree much better with experimental data.

Figure 3.1: Arrhenius plots of the comparison between experimental data [Mar67]
and theory (LDA and PBE calculations) for the monatomic systems A) Zn, B)
Sn, C) Ge, and the binary system D) GaAs

The results from the monatomic systems appear to validate the methods

used for these systems, and also show that the total energy calculations should be

performed using the PBE functional. The following section describes the results

from the version of this method adapted for binary systems.
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Binary System: GaAs

Transition from the monatomic to binary system was fairly straight forward, the

main di�erence was the additional agree of freedom according to Gibbs’s phase

rule. This additional degree of freedom is the partial pressure of the gas phase for

Ga and As2. It was found that for the theory to agree with the experimental data

the partial pressures had to reflect the stoichiometry of the solid, in this case 1:1.

The data used for these calculations can be found in Table 3.2.

Table 3.2: Materials data used for calculations of GaAs vapor pressure

From Literature [Ada04] Calculated
GaAs c11 1.19◊ 1011 [Nm≠2] v

l

4.73◊ 103 [m s≠1]
c44 0.60◊ 1011 [Nm≠2] v

t

3.36◊ 103 [m s≠1]
m 2.40◊ 10≠25 [kg] Ê

D

2.40◊ 1013 [rad s≠1]
fl 5.316◊ 103 [kg m≠3] „

LDA

≠3.920 [eV ]
V
cell

1.78◊ 10≠28 [m3] „
PBE

≠3.163 [eV ]

As in the monatomic systems it was found that the LDA total energies

resulting in vapor pressures that were several order of magnitude lower than ex-

perimental data. Once PBE total energies were used the resulting theoretical

vapor pressure again agreed very well with experiment, as show in Fig. 3.1. It

was found that the main adjustments that needed to be made to predict the vapor

press over a binary compound was how to handle the additional degree of freedom,

and making sure to account for the diatomic gas as described in the methods. As

stated the additional degree of freedom, the gas partial pressures, was chosen to

reflect the stoichiometry of the film. The diatomic gas is not specifically related to

the binary system, but it is to GaAs and will most likely be present with ZnGeAs2

as well.
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Ternary System: ZnGeAs2

Similar to transitioning from the monatomic to binary system, the transition

from binary to ternary meant that another degree of freedom was added to the

system. The main di�culty with this was to determine what the final state of

the system should be. With ZnGeAs2 consisting of 3 components, there was the

simplest case where each component simply evaporated from the solid to a gas, or

something more complex involving additional solid phases. It turned out though

that the simplest system appears to agree best with experimental data – each

species evaporating to a gas phase with no additional solid phases. The main

di�erence though that had to be accounted for was the di�erence in formation

energies of the three vacancies.

In the monatomic systems one simply only needs the heat of formation

for the solid to calculate the vapor pressure. Similarly in GaAs, since it is well

known that if one species evaporates the other will also evaporate, thus allowing

for the heat of formation to be used as the activation energy in the vapor pressure

calculation. However, in ZnGeAs2 the vacancy formation energy of each species

ranges from Zn having the lowest, to Ge having the largest, mostly due to the

contribution from solid Ge which must be accounted for in the defect formation

energy (Eq. 3.44).

The resulting vapor pressure for ZnGeAs2 is displayed in Fig. 3.2, which is

plotted alongside experimental data and the theoretical Zn vapor pressure from

Fig. 3.1. In comparison to the experimental results for sputtering [SG84], MBE

[STP89], and the decomposition data [VTT+11] it would appear that the va-

por pressure calculated here is too high. The explanation for this is that it has

been proposed there is a kinetic barrier to thermal decomposition of ZnGeAs2
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Figure 3.2: Arrhenius plot of the vapor pressure over ZGA in comparison to
thermal decomposition data, the vapor pressure over liquid ZGA at the melting
point [SW75], and arrival rates for Zn and As via sputtering [SG84] and As via
MBE synthesis [STP89]

[VTT+11]. This would explain the ability for growth below the theoretical vapor

pressure, which seems to occur in a meta-stable region. This is claim is further

validated from the vapor pressure over ZnGeAs2 at the melting point [SW75],

which is a better representation of the thermodynamical limit of the vapor pres-

sure, which falls almost perfectly on the theoretical vapor pressure calculated

here. Since the methods followed here were based in thermodynamic theory, it is

not possible to predict kinetically limited reactions with these methods. Similar

kinetic barriers are found in GaN [New97] which is a material that is strongly

bonded like ZnGeAs2, so it is very possible for there to be strong kinetic barriers

present in ZnGeAs2.
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3.7 Conclusions

In conclusion, it has been shown that the theoretical vapor pressure of a ternary

compound (e.g. ZnGeAs2) can be calculated from first principles. This was ac-

complished using methods adapted from statistical mechanics to predict the va-

por pressure over a monatomic solid [Kub65]. Once these methods were validated

(Fig. 3.1) using experimental data available for Zn, Ge, and Sn it was when

adapted for use with the binary compound GaAs. In the adaptation to a binary

system it was discovered that the additional degree of freedom was best chosen

such that the gas would retain the same stoichiometry of the solid. The adapted

binary method was also successful in predicting the vapor pressure of the GaAs

system with good accuracy (Fig. 3.1).

With a validated method for monatomic and binary systems it was then

possible to make the additional changes to predict ternary systems. Similar to

GaAs it was found that the gas should keep the same stoichiometry of the film

to predict the vapor pressure over a stoichiometric film. It was also discovered

that the formation energy for each of the three vacancies must be accounted for

an accurate prediction. Comparison of the theoretical vapor pressure predicted

here for ZnGeAs2 (Fig. 3.2) suggests that there are strong kinetic barriers to the

thermal decomposition of the material.
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Chapter 4

Summary
4.1 Native Point Defects in ZnGeAs2

In summary, methods for the calculation of defect formation energies and the

prediction of defect concentrations have been shown. In calculating the defect

formation energies of native point defects in ZnGeAs2 a stability diagram was

also created from the limits imposed on chemical potentials of the various species.

From this the range of chemical potentials to focus on the ranges that would

translate to typical growth conditions. Using the range of chemical potentials

gained from the stability diagram the formation energy for the two cation vacan-

cies and anti-sites was calculated and plotted. From this it was shown that the

zinc vacancy (V
Zn

) and the germanium anti-site (Ge
Zn

) have the lowest formation

energies, and should therefor be the most abundant.

To gain a better idea of the abundance of these defects the concentrations

for the three vacancies (Zn, Ge, and As) and two anti-sites (Ge
Zn

and Zn
Ge

) were

calculated. These were thought to be the most likely to contribute to forming

o�-stoichiometry films, and it was found that under typical growth conditions

the zinc vacancy (V
Zn

) and the germanium anti-site (Ge
Zn

), would be the most

abundant, as predicted from their formation energies. While it appears that

under normal growth conditions it may be di�cult to limit their formation, the

information gathered here could be used to formulate annealing procedures to

reduce the native defects in as-grown films. To gain additional knowledge of

the defect physics occurring in ZnGeAs2 it would be useful to perform these

calculations for ionized defects to gain information for n/p-type doping as well as

the possibility of defect complexes that may form.
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4.2 ab initio Vapor Pressure Model

In summary, it has been shown that the theoretical vapor pressure of a ternary

compound (e.g. ZnGeAs2) can be calculated from first principles. This was ac-

complished using methods adapted from statistical mechanics to predict the va-

por pressure over a monatomic solid [Kub65]. Once these methods were validated

(Fig. 3.1) using experimental data available for Zn, Ge, and Sn it was when

adapted for use with the binary compound GaAs. In the adaptation to a binary

system it was discovered that the additional degree of freedom was best chosen

such that the gas would retain the same stoichiometry of the solid. The adapted

binary method was also successful in predicting the vapor pressure of the GaAs

system with good accuracy (Fig. 3.1).

With a validated method for monatomic and binary systems it was then

possible to make the additional changes to predict ternary systems. Similar to

GaAs it was found that the gas should keep the same stoichiometry of the film

to predict the vapor pressure over a stoichiometric film. It was also discovered

that the formation energy for each of the three vacancies must be accounted for

an accurate prediction. Comparison of the theoretical vapor pressure predicted

here for ZnGeAs2 (Fig. 3.2) suggests that there are strong kinetic barriers to the

thermal decomposition of the material.
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Appendix A

Di�erentiation of Solid Partition Function
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Starting from Eq. 3.25 and taking the natural logarithm of a product can

be rewritten as a sum of the natural logarithm:

lnZ
s

(T,N
s

) = ≠÷N
s

— ≠
ÿ

j

ln
Ë
1≠ e≠h̄Êj—

È
(A.1)

The sum can then be changed to an integral over the frequency range, dÊ, by

the addition of a function describing the distribution of states. By combining

Eqs. 3.14 and 3.16 the distribution of states can be determined as a function of

frequency, number of atoms, and the Debye frequency. After the addition of the

frequency distribution Eq. A.1 can now be written as:

lnZ
s
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s
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s
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The 9N
s

/Ê3
D

term can be pulled out of the integral and the result is:

lnZ
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s
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This equation can now be easily di�erentiated with respect to the number of

atoms, and upon doing so:

ˆlnZ
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s

)
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s
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(A.4)
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