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ABSTRACT 

  Voltage Control Oscillator (VCO) is one of the most critical blocks in 

Phase Lock Loops (PLLs). LC-tank VCOs have a superior phase noise 

performance, however they require bulky passive resonators and often calibration 

architectures to overcome their limited tuning range. Ring oscillator (RO) based 

VCOs are attractive for digital technology applications owing to their ease of 

integration, small die area and scalability in deep submicron processes. However, 

due to their supply sensitivity and poor phase noise performance, they have 

limited use in applications demanding low phase noise floor, such as wireless or 

optical transceivers. Particularly, out-of-band phase noise of RO-based PLLs is 

dominated by RO performance, which cannot be suppressed by the loop gain, 

impairing RF receiver’s sensitivity or BER of optical clock-data recovery circuits. 

Wide loop bandwidth PLLs can overcome RO noise penalty, however, they suffer 

from increased in-band noise due to reference clock, phase-detector and charge-

pump. The RO phase noise is determined by the noise coming from active devices, 

supply, ground and substrate.  

The authors adopt an auxiliary circuit with inverse delay sensitivity to 

supply noise, which compensates for the delay variation of inverter cells. Feed-

forward noise-cancelling architecture that improves phase noise characteristic of 

RO based PLLs is presented. The proposed circuit dynamically attenuates RO 

phase noise contribution outside the PLL bandwidth, or in a preferred band. The 

implemented noise-cancelling loop potentially enables application of RO based 
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PLL for demanding frequency synthesizers applications, such as optical links or 

high-speed serial I/Os.  

The PLL is fabricated in a 90 nm CMOS technology. The core of the IC 

occupies 0.38mm × 0.32mm silicon area. The current consumption of the PLL is 

24.7 mA when the cancellation technique enabled. PLL output spectra at 5.1 GHz 

when the PLL divider is modulated with a 10 MHz clock signal. Phase noise 

reduces in the cancellation bandwidth up to 20 MHz with a 200 kHz PLL loop 

bandwidth. The proposed cancellation loop suppresses the phase noise at 1 MHz 

offset by 12.5 dB and reference spur by 13dB, with a quiescent power 

consumption of 3.7 mA.  
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CHAPTER 1 

INTRODUCTION 

Phase noise is important consideration in many wireless communication 

applications. Phase noise in a system can degrade the bit error rate of a 

communications link. In many wireless applications, a phase locked-loop circuit 

for providing low noise clock signals is required. 

The role of oscillator in transceiver systems is frequency translation. Local 

oscillator uses to up-convert or down-convert the signals for transmitting and 

receiving between wireless applications. Phase noise and spurious tones of 

oscillator determines the limitation of selectivity of a system while strong 

adjacent interferers are considered. 

In many digital and analog communications systems, when the signals are 

received and transmitted in channels, the data is modulated using not only the 

amplitude of the signal, but also the phase of the signal. PLL in the transceiver 

modulates and demodulate the desired information. Therefore, phase noise in PLL 

causes to degrade selectivity and sensitivity in translating the information to 

different frequency bands.  

A local crystal oscillator uses to generate reference frequency. However, 

in many communication systems, PLL easily generates clock or oscillator signals 

compared to the crystal oscillators. The sensitivity is the smallest detecting RF 

power at the input and recovering a digital signal at given signal to noise ratio. 

The noise produced by the passive and active components in the system can limit 

the sensitivity. The noise figure, which is the ratio of the signal to noise ratio at 
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the input to that at the output, determines the performance of the sensitivity. The 

other factor of performance in the transceiver is selectivity. The selectivity makes 

receiving signals from strong signal in adjacent channel or other channel bands. If 

the system products the distortion and the inter-modulated signal generates, this 

signal can swamp out the desired signal and we called blocker requirements in 

wireless system. 

In frequency domain, the close-in phase noise of the VCO is filtered by 

the PLL loop filter, however, the far-out noise of the VCO cannot be shaped and 

filtered by the PLL and which will impact the overall system performance.  For 

example, for data converters, the far-out noise, impacts the SNR. For high-speed 

optical communication, the jitter requirement is less than few ps and it can impact 

the SNR and the BER of the transceiver.  For RF transmitter, the far-out noise 

impacts the out-of-band transmit noise and the PSD of the transmitted signal. For 

RF receivers, the out-of band noise impacts the adjacent channel noise and will 

alias in receive band. 

 

1.1 PHASE NOISE SPECIFICATIOIN 

For the receiver, the purpose of the specifications is to ensure that the 

receiver is able to receive the wanted signal correctly in an environment where 

other users of the frequency spectrum are causing interference. The specifications 

typically include the minimum power of the wanted signal that the receiver should 

still be able to receive correctly. In addition, the interfering signals are specified 
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that the receiver is required to tolerate while still correctly receiving the wanted 

signal. The interferers can be much higher in power than the wanted signal. 

For the transmitter, the purpose of the specifications is to restrict the 

amount of interference cause by the transmitter to other users of the frequency 

spectrum, and to ensure that the quality of the transmitted signal is good enough 

to be received correctly with a receiver fulfilling the specifications of the same 

system. Typically, the specifications include a spectral mask, which means the 

maximum power level of the components of the transmitted spectrum at different 

offset frequencies. In phase modulated signals, this is typically the maximum 

phase error of the actual transmitted signal with respect to the ideal one. In more 

complex modulation types, the typical measure of modulation quality is error 

vector magnitude (EVM), which takes into account both the phase error and the 

amplitude error of the actual transmitted signal with respect to the ideal one. 

Phase noise determines the overall performance of the wireless system. 

Phase noise and spurious tones in the local oscillator translate the signal in the 

desired channel into the adjacent channel. The blocking specifications in the 

receiver also determine the acceptable phase noise and spurious levels in the 

sidebands of the local oscillator spectrum. In order to meet receiver blocking 

requirements, phase noise and spurious tone levels need to be smaller than any 

interfering signal compared to the desired. For a spurious tone, the amplitude of 

the tone needs to be below that of the carrier by an amount equal to the worst case 

difference in signal power levels plus the minimum signal-to-interferer ration 

required at the end of the receive chain. The requirements for phase noise are 
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similar to those for spurious tones. The power spectral density of the oscillator is 

integrated over that channel’s bandwidth to find the total power in a given 

channel band. This power level must be below the receiver’s signal-to-interferer 

noise requirements.  

The phase noise specification at large offset frequency can be calculated from 

adjacent channel interference requirements [2]. 

 

Figure 1.1 shows the effect of phase noise and adjacent channel 

interference. While the signal (PSig) is downconverted to DC by the LO signal 

(PLO), the interference (PInt) is also downconverted to DC by the phase noise (PN) 

and is added to the desired signal. The signal to noise ratio (SNR) of the baseband 

signal is the difference of the power of the two, and it must be larger than the 

minimum SNR required to meet the receiver bit error rate (BER) requirement 

 min)()( SNRPPPPPSNR BWNINTLOSig            (1.1)
 

f
DC fLO

PLO

PN

PINT

fBW

PINT + PN + PBW

PSig + PLO 

PSig

 

Figure 1.1 The effect of phase noise and interference. 
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 minSNRPPPPP BWINTSigLON 
                  

  (1.2) 

where PN - PLO denotes the phase noise requirement in dBc. For example, IEEE 

802.11a standard uses 64-QAM with OFDM in a 20 MHz channel bandwidth for 

highest data rate of 54 Mb/s. The standard specifies an adjacent interferer +32 dB 

stronger than the desired channel at 40 MHz away. The minimum SNR 

requirement for BER of 10
-6

 in 64-QAM system is 19 dB. 

MHzatHzdBc

SNRPPPPP BWINTSigLON

40/124197332

min





           
  (1.3)

 

The phase noise requirement at 1 MHz is lower than -108dBc/Hz according 

to 1/f
2
 phase noise spectrum. 

 

In narrow band systems, the reference spur coincides with the adjacent 

channels as shown in Fig. 1.2. It causes more serious problem. The spur 

requirements in frequency synthesizer can be determined by donwconverting the 

interference by the spurious tone.  

f
DC fLO

PLO PINT

PINT + PSpur

PSig + PLO 

PSig

PSpur

 

Figure 1.2 The effect of phase noise and interference. 
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min)()( SNRPPPPSNR SpurINTLOSig 
 
     (1.4)

 

minSNRPPPP INTSigLOspur            (1.5)
 

 

Where PSpur - PLO denotes the power of spurious signal in dBc. The SNR of the 

received signal is degraded by a pair of downconverted signals of itself due to 

spurs. For example, the standard specifies an interferer of +32 dB ( INTSig PP  ) at 

40 MHz away from the desired signal. The minimum SNR requirement is 19 dB. 

From equation (1.5), the spurious signal requirement is -51 dBc at 40 MHz. 

 

1.2 IMPACT OF PHASE NOISE IN WIRELESS COMMUNICATIONS 

In this section the impact of phase noise on BER performance of a digital 

communications system will be examined. 

1.2.1 Close-in Phase Noise 

Phase noise of the PLL changes the phase of the modulated signal and 

cause phase error. The effect of close-in phase noise shows the modulated signal 

in the constellation diagram. Fig. 1.3 shows the constellation diagram of a QPSK 

system in the presence of the closed-in phase noise. The deviation between the 

ideal vector and the real one in the constellation diagram can be modeled as a 

random signal with Gaussian distribution. The standard deviation of this random 

signal is equal to the RMS phase error of the PLL. If the RMS value of the phase 

error is large, it degrades the detectable signal and increase the BER in 

communication system. 
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Fig. 1.4 shows vector state diagram for QPSK system.  This diagram 

shows phase decision boundaries that determine the state of the received vector. 

The enclosed radial distance between boundaries is equal to 2π/M, where M=4 for 

θ
00

01

11

10

V

Phase decision 

boundary for 00

Phase decision 

boundary for 00
    

 

Figure 1.4 Error diagram for QPSK system. 

 

Q

I

 
 

Figure 1.3 Phase noise in constellation diagram. 
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this system. When the angle θ of received vector, V placed between - π/4 and π/4 

interprets this as the binary state 00. Variation in vector angle θ due to local 

oscillator phase noise are caused by the same random sources. The mean value of 

vector angle is zero and then the standard deviation is equal to RMS phase error 

Φrms [3]. If the AM noise is small relative to the phase noise, the mean square 

deviation in vector angle can be assumed to the integrated spectral density of 

phase fluctuations such as: 

 22

rmsrms                                  (1.6) 

The probability of error P(e) for an M state PSK system may be 

approximated as [4]: 

 

















MN

C
KeP

2sinexp)(                            (1.7) 

Where C/N is the mean-carrier power to mean-noise power ration 

specified in the double sided Nyquist bandwidth which equals the symbol rate 

bandwidth. The ration C/N may be equated directly with the total integrated 

mean-phase noise power to mean carrier power: 

 









mmrmsrms dffL
N

C
)(222

1

                        (1.8) 

It shows that BER can be estimated directly from the phase noise power 

spectrum. An example of BER versus C/N is shown in Fig. 1.5 for the QPSK 

system. QPSK modulation degrades the performance when rms phase error 

increases. 
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1.2.2 Far-out Phase Noise 

 The phase noise of the frequency synthesizer at large offset frequencies is 

specified. The reason for this is a phenomenon commonly referred to as reciprocal 

mixing. The phase noise tail of the local oscillator signal mixes with undesired 

interfering signals, and the mixing result ends up at the same intermediate 

frequency as the wanted signal, thus impairing the signal-to-noise ratio (SNR).   

 Since the interfering component can be much stronger that the wanted 

signal, the phase noise power of the local oscillator at the same offset frequency 

must correspondingly be much lower to maintain a useful SNR of the 

downconverted signal. The specification for the local oscillator power at a given 

offset frequency can be derived from the power levels of the wanted signal and 

 

Figure 1.5 C/N versus BER for different rms phase error. 
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the interfering signal, and the SNR required to guarantee signal reception at the 

desired bit error rate: 

 )log(10)( BWPSNRPfL unwanteddesired 
 
                (1.4) 

where BW is channel bandwidth. 

 For far-out frequencies, the phase noise properties of a PLL based 

frequency synthesizer are normally dominated by the voltage-controlled oscillator, 

since the noise from the rest of the loop components is low-pass filtered. 

 In the transmitter, modulated signal transmits without undesired spectral 

emissions. However, this is rarely the case and thus limits must be set for the 

levels of unwanted spectral emissions. The spectral mask requirements affect both 

in-band and out-band emissions. Unwanted emissions are caused by phase noise 

from frequency synthesizers. Phase noise changes the modulated spectrum and 

cause spectral mask violations. Although phase noise decrease as the frequency of 

interest moves away from the LO frequency, phase noise is still a major concern 

at large offset frequencies because the spectral mask often decreases faster than 

the phase noise as shown in Fig. 1.6. As a result phase noise at large offset 

frequencies is often problematic in transmitter design.  
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1.3 WIRELESS COMMUNICATION STANDARD 

The IEEE 802.11a wireless local area network (WLAN) employs 

Orthogonal Frequency Division Multiplexing (OFDM) and is allocated at 5GHz 

with the signal bandwidth of 300MHz. This band can reach high data 

transmission of 54 Mb/s or higher. As shown in Fig. 1.1, WLAN consists of three 

sub-bands, which are low band operating from 5.15 to 5.25GHz, middle band 

operating from 5.25 to 5.35GHz, and high band from 5.725 to 5.825GHz.  

IEEE 802.11a scheme defines four 20 MHz wide channels in each 100 

MHz of two lower bands. Each of these channels is subdivided into 52 subcarriers 

and each subcarrier has 312.5 kHz bandwidth. The data in each channel are 

modulated with binary/quadrature phase shift keying (BPSK/QPSK), 16 or 64 

-600 600400200100-100-200-400

0

-10

-20

-30

-40

-50

-60

-70

Figure 1.6 GSM spectral mask. 
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quadrature amplitude modulation (QAM) and mapped into 52 subcarriers of an 

OFDM signal.  

 

The IEEE 802.11a standard and key parameters for the RF circuit designer 

are summarized in Table 1.1 [1]. 

5.15G 5.25G

20MHz

52 carriers in channel, 

each 312.5KHz wide

40mW

200mW
800mW

5.825G5.725G5.35G

 

Figure 1.7 Channel allocation of the IEEE 802.11a standard. 
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20MHz wide channel spacing relaxes the loop bandwidth limitation of 

frequency synthesizer. In an integer-N synthesizer, output frequencies can 

synthesize only integer times of fREF. Because of the relaxation of bandwidth 

limitation, the integer-N architecture will be adopted instead of fractional-N 

architecture. 

 

1.4 Thesis Organizations 

The rest of chapters are described as follow. Chapter 2 provides 

background material including phase noise in oscillators, methods of measuring 

phase noise, and explanation of phase-locked loop (PLL). In chapter 3, proposed 

adaptive phase noise cancellation PLL is described. Analysis of noise in 

cancellation loop and noise transfer function is explained detail. Chapter 4 

introduces transistor level implementation of proposed PLL system. Chapter 5 

Table 1.1 IEEE 802.11a Standard 

Attribute IEEE 802.11a 

Frequency Band 

 

5.150-5.350 GHz 

5.725-5.825 GHz 

Maximum Data Rate 54 Mb/s 

Channel Spacing 20 MHz 

Interference +32 dB at 40 MHz 

Modulation 

 

OFDM 

(BFSK, QPSK, 16-QAM, 64-QAM) 
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presents the measurement results and comparison of performances. Finally, the 

conclusions are drawn in chapter 6. 
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CHAPTER 2 

BACKGROUND 

 In designing integrated wireless transceiver, the frequency synthesizer is a 

major design challenge. It has to satisfy stringent and conflicting requirements, 

which have enough rejection from the unwanted signals. One of the main 

drawbacks of integer-N architecture is the spurious tones caused by the reference 

frequency through the phase frequency detector (PFD) and charge pump (CP). 

Specially, in narrow band communication systems, the spurious tones occur at 

other channel bands and may downconvert the adjacent channels into the desired 

channel. If the reference frequency is smaller than the channel bandwidth, the 

spurious tone of the reference frequency downconverts within the desired signal. 

The spurious tones degrade the bit error rate (BER) in the receiver chain. In 

designing the frequency synthesizer, narrow loop bandwidth can improve the 

reference spur rejection. However, narrow loop bandwidth causes slow settling 

time.  

 

2.1 PHASE NOISE 

The most critical specification for any oscillator is its spectral purity. The 

output spectrum of an ideal oscillator is an impulse at ω0, as shown in Fig. 2.1. 
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An ideal oscillator can be described as a pure sine wave in time domain,  

 )sin()( 00 tVtV                              (2.1) 

where, V0 and ω0 are nominal amplitude and nominal frequency and Δω is offset 

frequency from ω0. 

However, in any practical oscillator, the spectrum has power distributed 

around the center frequency (ω0) as shown in Fig. 2.1. This leads to the noise 

sidebands on either side of ω0. The instantaneous output of a practical oscillator 

be represented by 

))(sin()](1[)( 00 tttAVtV                  (2.2) 

where A(t) and Φ(t) represent amplitude modulation (AM) noise and phase 

amplitude (PM) noise. Since oscillators typically run with fully saturated mode 

resulting in extreme compression of the AM noise, AM noise is negligible relative 

to PM noise. Therefore, the phase noise dominates the noise power spectrum of 

an oscillator. 

ωω0 ωω0

Ideal Oscillator Actual Oscillator

Δω
 

 

Figure 2.1 The output spectrum of an ideal oscillator and actual oscillator. 
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By taking the Fourier transform of V(t), we represent the power spectrum of 

V(t) in the frequency domain. The power spectrum is measured by the power 

dissipated in a specified load resistor as a function of frequency. When the noise 

is ignored, normalized carrier power is described by 

)(
2

)(

2

watts
V

fP C

C                       (2.3) 

When the power spectrum is normalized to unity the power spectral density, 

this is express as: 

)(1)( wattdffPn 



        (2.4) 

The power spectrum from a spectrum analyzer is able to determine what 

portion of the noise power at the offset frequencies is a result of phase noise or 

amplitude noise. This method is, we called, direct spectrum measurement in the 

frequency domain. This method involves measuring the PSD of the single where 

phase noise is represented in the sideband power on either side of the carrier. The 

offset frequency, Δf, is the frequency difference between a specified spectral 

component and the fundamental carrier frequency f0.  Phase noise is extracted by 

measuring the sideband spectral density, Sv(f0±Δf) at a given frequency offset. 

Sv(f0±Δf) is defined the PSD of the voltage fluctuations and measured in Watts/Hz 

and includes both amplitude and phase noise. If AM noise is negligible related to 

PM noise, Sv(f0±Δf) can measure the phase fluctuations of a signal. 

 As mentioned before, the power spectrum has two independent 

components. One is the spectral density of phase fluctuations SΦ(Δf) and the other 
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is the power spectral density of amplitude fluctuations Sv(Δf). These two 

quantities are clarified in [5]. 
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where Φrms(Δf) is the rms phase deviation and the εrms(Δf) rms voltage amplitude 

deviation measured at an offset frequency Δf from the carrier frequency f0 in a 

bandwidth BW. The RMS phase and amplitude error can be extracted by taking 

the inverse relations of equation (2.5) and (2.6). 
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2.2 PHASE NOISE IN OSCILLATOR 

 Phase noise and jitter in the RO can arise from many sources, including 

supply noise, and coupling from other circuits and via the power supply. 

Moreover, each RO stage’s phase error impacts also the switching time of the 

next stage, thus accumulating phase noise. 
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There are mainly two types of phase terms appearing at the output spectrum 

of oscillator. The first type appears as a distinct component in the spectrum, and it 

is referred to as a spurious tone or signal. The second type appears as random 

phase fluctuations, and it is referred to as phase noise as shown in Fig. 2.2. The 

phase noise in an oscillator is mainly due to internal noise sources such as thermal 

noise and active device noise source (flicker noise or 1/f, shot noise) [7]. They are 

random in nature. The internal noise sources set a fundamental limit for a 

minimum obtainable phase noise in oscillator design.  

The spurious tones are due to external noise sources such as noise on control 

voltage, power supply, and bias current coupled clock signals. They are 

deterministic in nature. The spurious tones are not directly related to the oscillator 

but are important in the frequency synthesizer output and the PLL design 

specifications. 

ω [Hz]
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B
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Figure 2.2 Power spectral density of oscillator output signal. 
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As shown Fig. 2.3, the phase noise of an oscillator is typically quantified by 

the single-side band (SSB) phase noise, which is defined as the ratio of noise 

power in a 1 Hz bandwidth at an offset, Δf, to the signal power. Single-sideband 

(SSB) phase noise is specified in dBC/Hz at a given frequency offset, Δf, from the 

signal frequency f0. 
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      (2.9) 

The equation (2.9) is also can be written as:  
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where Vn,rms is the rms value of the sinusoid representing the phase noise 

sideband at the offset frequency Δf and Vc,rms  is rms value of the carrier signal. 

Single sideband phase noise can be measured by phase modulation 

techniques [6]. 

Frequency

Carrier Power

PNoise
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f0 f0+fmf0-fm
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Figure 2.3 The power spectrum of an oscillator with phase noise. 
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A sinusoidal signal source V(t) with phase modulation can be expressed as: 

))(2cos()( 00 ttfVtV  
    

                (2.11) 

where V0 is the peak voltage amplitude and Φ(t) is the phase modulation.  

Equation (2.11) is expressed as: 
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      (2.12) 

where fm is the modulation frequency and ∆f is the peak frequency deviation. 

In phase noise calculation, the noise power in the sidebands assumes very 

small relative to the carrier power. This assumption means that small phase 

deviation, ∆f/fm<<1, allows following approximations. 
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Therefore, equation (2.12) is extended as:  
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The above equation shows upper and lower sidebands of the carrier signal at 

amplitude of ∆f/2fm. Using equation (2.9), the phase noise, L(f), is expressed as 

the power in a sideband of 1 Hz bandwidth relative to the carrier power: 
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rms phase deviation, ∆frms, is used from peak phase deviation 
2

f
frms


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The equation (2.16) can be rewritten: 
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Since the sidebands are correlated the single sided spectral density of phase 

fluctuations is the sum of both sidebands. Therefore, the power spectral density of 

the phase fluctuations can be expressed as: 
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Substituting (2.18) into (2.17) yields the relation between L(f) and SΦ(f) as: 
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Above the approximations, L(f) could be expressed in rad
2
/Hz and also be 

properly expressed in dBc/H when the assumption holds for ∆f/fm<<1. If phase 
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error is large enough, the spectral density of phase fluctuations is not a power 

spectral density. 

 

2.3 METHOD OF MEASURING PHASE NOISE 

All measurements of phase noise could be made at the carrier frequency of 

the source. Different techniques for measuring phase noise have been developed 

[9], [10]. We can categorize them into three major methods. There are direct 

measurement, phase detector measurement and delay line discriminator 

measurement. 

 

2.3.1 Direct Measurement 

If a synthesized signal source is multiplied by a high frequency reference 

signal, the phase noise sidebands are multiplied by the same factor as the 

frequency. In this case, direct RF spectrum measurements at the multiplied 

frequency are a good approximation of the phase noise sidebands. When corrected 

and normalized to the carrier power, the sidebands represent the phase noise of 

the signal, L(f), described below equation: 
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      (2.20) 

where Psignal represents the DUT signal power. 

This straightforward method of phase noise measurement is typically used 

in spectrum analyzers. However, this method has limitations of equipments’ 
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dynamic range, resolution, and LO phases noise. Moreover, the noise power of a 

DUT cannot distinguish a different from measuring amplitude noise and phase 

noise in direct measurement.

 

 

2.3.2 Phase Detector Measurement 

 

As shown in Fig. 2.4, one way to achieve better resolution is to convert the 

test signal down in frequency to the range of an analyzer with the desired IF 

bandwidth [11]. Double balanced mixer and a low pass filter is used in this 

method. A Fast Fourier Transform (FFT) analyzer or a spectrum analyzer 

measures the output of signal. The DUT source and the reference are used at 

identical frequencies. This method has disadvantage. Phase noise sidebands from 

DUT
Mixer LPF LNA

FFT

PLL

REF

 

Figure 2.4 Basic diagram of phase detector method. 
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the reference frequency are down-converted by mixer. Therefore, the reference 

frequency has better phase noise performance than the DUT phase noise.

 

 

 

When two input signals defines the same frequency and have AM and PM 

noise, the VD(t) and VR(t) are expressed as: 

))(sin()](1[)( 0 tttAVtV DDDD  

 

      (2.20) 
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      (2.21) 

where VD and VR are the AM noise free amplitude of signals and AD(t) and AR(t) 

are the AM noise components and ΦD(t) and ΦR(t) are the PM noise components. 

The output of the mixer VIF(t) is the product of the two signals. 
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Figure 2.5 Operation of mixer as phase detector. 
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The low pass filter will remove high frequency term at 2ω0t and the output 

signal VO(t) is expressed as: 

))()(cos()](1)][(1[)( tttAtAVVtV RDRDRDO  

 

 (2.23)  

Below equations, the output signal VO(t) can detect AM or PM noise 

depending on the phase difference of two signals.  
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where k is an integer and assumes ∆Φ(t)<<1 and ∆Φ(t) is instantaneous phase 

fluctuations. When the two input signals are in-phase, the output can detect AM 

noise. When the two signals are 90 degrees out of phase, the output can detect PM 

noise. To measure the phase noise, the phase difference of two input signal 

maintains 90 degrees out of phase.  

Consider Km that mixer conversion gain in volts/rad and two input signal of 

mixer are locked at quadrature. The mixer conversion gain is the slope of the 

mixer sine wave output at the zero crossings. The output of the mixer is expressed 

by: 
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 (2.45) 

This yields a direct linear relationship between the voltage fluctuations at the 

mixer output and the phase fluctuations of the input signals. The voltage output of 

the mixer as a function of frequency will be directly proportional to the input 

phase deviations. Taking the frequency transform to both sides of the above 
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equation, the power spectral density of the output signal is proportional to the rms 

sum of the phase noise contribution of the DUT and reference sources: 

)(2)()( fVfKVfV rmsmO  

  

 (2.46)
  

∆Φrms(f) measured on the spectrum analyzer can be expressed as: 
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Therefore, the phase noise of DUT signal can be expressed as: 
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The phase noise of the DUT can be calculated by measuring the power 

spectral density of the output voltage signal and then adjusting for the gain factor 

and error due to the phase noise of the reference signal. Using phase detector 

method, the phase quadrature is the point of maximum phase sensitivity and the 

region of the most linear operation. However, any small deviation from 

quadrature results in a measurement error. 

 

2.3.3 Delay-line Frequency Discriminator Measurement 

A noise source can distinguish amplitude noise and phase noise. Phase noise 

is defined as the noise generated from random fluctuations in the phase of a 

frequency source. Amplitude is defined as the noise generated from random 

fluctuations in the amplitude of a frequency source. 
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Advantage of a frequency discriminator is insensitive to amplitude noise 

when measuring phase noise. In addition, compared to phase detector method, the 

frequency discriminator method does not require a second reference signal phased 

locked to a DUT. These advantages provide to be able to measure high-level, low-

rate phase noise or high close-in spurious sidebands, which can impose serious 

problems for phase detector method [12]. 

In order to understand the function of the delay line as a discriminator, Fig. 

2.6 shows the process of differentiation implemented by a time-delay line. 
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Since, by definition: 
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Figure 2.6 Discriminator implementation using time delay. 
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Through the delay-line discriminator, the voltage fluctuations can be 

measured by the spectrum analyzer and converted phase noise units. 

 

As shown Fig. 2.7, the delay line and mixer implementation of a frequency 

discriminator converts frequency fluctuations into voltage fluctuations that can be 

measured by a baseband spectrum analyzer. The conversion is a two part process, 

first converting the frequency fluctuations into phase fluctuations, and then 

converting the phase fluctuations to voltage fluctuations. a delay line and mixer 

(i.e., delay-line discriminator) are used to convert instantaneous phase deviations 

of an oscillator to voltage deviations, enabling an on-chip phase noise 

measurement system with -124 dBc/Hz sensitivity. This technique does not 
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Figure 2.7 Block diagram of delay-line frequency discriminator system 
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require a spectrally clean reference clock and can extract phase noise for a wide 

range of frequency offsets from carrier by using selective filters. 

The frequency fluctuation to phase fluctuation transformation (∆f→ ∆Φ) 

takes place in the delay line. When the small frequency changes, the phase shift 

passed through the fixed delay (td) proportionally changes. The delay line 

converts the frequency change at the line input to a phase change at the line 

output when mixing with the un-delayed signal arriving at the mixer in the second 

path. The mixer transforms the phase fluctuations into voltage fluctuations 

(∆Φ→∆V). The voltage output is proportional to the input phase fluctuations.  

The output of DUT is described by: 
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Where f is frequency fluctuation and mf  is frequency offset from the 

carrier. 

The frequency fluctuation to phase fluctuation transformation takes place in 

the delay line. The output signal of the delay line is shown in equation 2.54. 
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The frequency arrives at the mixer at a particular phase. As the frequency 

changes slightly, the phase shift incurred in the fixed delay time will change 

proportionally. The delay line converts the frequency changes at the line input to a 

phase change at the line output when compared to the un-delayed signal arriving 

at the mixer. 
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After mixing the two signals, the output is the multiplied form of the two 

signals. Passing through a low pass filter, the high frequency term is removed and 

the output is expressed as: 

)2cos2cos())(2cos)(2cos()( 00

2 tf
f

f
tfttf

f

f
ttfGKVtV m

m

dm

m

dmixDO 







(2.56) 

where Kmix is the mixer gain and G is the LNA gain.  

When the two signals adjust the quadrature and small phase deviation 

assumes ∆f/fm<<1, equation 2.56 can be derived as: 
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(2.57) 

The voltage fluctuations can be measured by a baseband spectrum analyzer 

and converted to phase noise units. The output signal power can be expressed in 

mean square value of Vo(t) as follows: 
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After transforming the frequency domain, the power spectral density of the 

frequency noise is below: 
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(2.59) 

The power spectral density of the phase noise is described as: 
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(2.60) 

The phase noise of DUT can be measured at a given offset frequency (f). The 

sensitivity of frequency discriminator is related with discriminator constant KΦ. 

To get high sensitivity, the delay line should be longer and keep quadrature 

signals to make high mixer constant (Kmix). 

 

2.4 PHASE LOCKED LOOP (PLL) 

The basic block diagram of a PLL is shown in Fig. 2.8 
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Figure 2.8 Basic block diagram of a PLL. 
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PLL is a feedback system that maintains a defined phase relationship 

between its input and output. In general, a PLL consists of a phase detector, a low 

pass filter, and oscillator, and a frequency divider. The phase detector compares 

the input phase with the divider output phase and produces the phase error in Fig. 

2.8, which is an error signal that is proportional to the phase difference between 

the output of reference clock and divider. The phase error is then filtered by the 

low-pass filter to eliminate its high-frequency components and produce the Vctrl. 

The output frequency of the VCO is proportional to the VCO is proportional to 

the Vctrl. Therefore, the VCO frequency is updated as the phase error signal 

changes in the loop. The frequency divider divides the PLL output frequency to a 

lower frequency in the range of the input clock. The divider is needed in systems 

where the output clock frequency is much higher than the input clock frequency, 

for example, in clock generation and frequency-synthesis applications. The 

system tries to align the inputs to the phase detector and to produce an output 

clock synchronized to the input reference clock. The output frequency in a PLL 

with a divider is equal to the input frequency multiplied by the division ratio. 

 

2.4.1 Charge Pump PLL 

PLL with charge pump phase comparators are widely used in wireless 

applications. Charge pump PLL has advantage of no false locking problems, and 

the input and output are exactly in phase when the PLL is in lock. In addition, the 

static phase error is zero if mismatches and offsets of charge pump are negligible. 
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The charge-pump PLL is analyzed in many published papers [13], [14].  The 

schematic block diagram of a PLL is shown in Fig 2.9. 

 

It consists of four basic functional blocks. First, the voltage-controlled 

oscillator (VCO) runs at its natural frequency assuming the control voltage is 

arbitrary at the beginning. The PFD compares the phase difference between the 

reference signal Φ IN and the VCO output divided by the frequency divider, ΦDIV. 

The output of the PFD is a series of pulses whose duty cycle is proportional to the 

phase difference ΦIN - ΦDIV. The CP converts the voltage pulses into current 

pulses with pre-determined amplitude I. The loop converts the current pulses into 

a low-pass filtered voltage signal that controls the frequency of the VCO. If the 

feedback is negative, the error between ΦIN and ΦDIV gradually become smaller 

and smaller until ΦIN = ΦDIV. In this state the loop is referred to be locked. Once 

the loop is locked, the frequency of the VCO output is equal to the frequency of 

the reference multiplied by the feedback factor N. 
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Figure 2.9 Basic block diagram of charge pump PLL. 
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The process of locking is not instantaneous because the loop has a limited 

bandwidth. The transfer function of the loop has to be studied to estimate the 

behavior of the loop during its transient operation. Since the operation of the PFD 

and CP is performed in the discrete-time domain, the complete transfer function 

becomes complicated due to the z-transform representation. A more intuitive 

equation can be obtained by assuming the phase error is small. With this 

assumption, the PFD and CP are modeled as simple gain blocks, 1/2π and I 

respectively, as shown in Fig. 2.9. During the initial transient, PLL goes into non-

linear operating region as the VCO tries to find the correct frequency. As soon as 

the loop is in the locked condition, the small-signal linearized model can be used. 

The charge pump output is filtered by the low-pass filter and generates a control 

voltage for the VCO. The filter output varies the output frequency of the VCO. 

Because phase is the integral of frequency, the S-domain transfer function for 

VCO is KVCO/s. the divider in feedback path divides the VCO output frequency by 

N and has a transfer function of 1/N.  

The linear approximation gives two critical equations useful for the initial 

design of a PLL. The first equation is an open-loop transfer function which is 

ΦOUT/ΦIN assuming the loop is opened between the frequency divider and the 

PFD. 
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where KD=I/(2πC1N), ωz=1/(R1C1) and ωp=1/(R1C2). The open-loop transfer 

function is important because its phase margin indicates how stable the system 

will be after the loop is closed. Note that there are two poles at the origin and a 

stabilizing zero is required to compensate for them. 

The second equation is a closed-loop transfer function ΦOUT/ΦIN. It can be 

also calculated from ))(1/()( sHsH openopen  . 

)/()/(/1

/1

)(
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(2.63) 

 For simplicity, it is assumed that ωp is placed at very high frequency with 

respect to the natural frequency, 
vcoDn KK  ,then the transfer function 

becomes second order. 
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(2.64) 

The step response of the closed-loop transfer function shows the locking 

transient, and settling time performance can be determined from the transient 

waveform. 

 

2.4.2 Phase Noise in PLL 

The phase errors in electronic system fall into two categories of random 

variations and systematic variations. Thermal noise and 1/f noise in the active and 

passive devices in a circuit are the main sources of random variations. The phase 

error due to the supply and substrate noise in the circuit components is the main 



 

 

37 

source of systematic variations. Power supply or substrate results from the 

switching operations of clock generating system. In addition, the reference clock 

in a PLL contributes the systematic variations. In the frequency domain, these 

interfering signals represent spurious tones in the oscillator spectrum. 

In frequency synthesizer, phase noise and spurious tones has negative 

effect on the signal purity. Phase noise associates with physical devices in PFD, 

loop-filter, VCO and frequency divider and degrades the synthesized signal from 

pure sine wave. Spurious tones are relatively high-energy. It appears at multiples 

of the comparison frequency. Usually, spurs are caused by either a leakage or a 

charge pump mismatch. Depending on their cause, reference spurs have 

differently when the offset frequency or the loop filter is changed. 

The VCO noise is the contributor of the synthesizer out-of-band noise. All 

other noise sources such as PFD, CP, divider, and loop filter are the contributor of 

the in-band noise. The in-band noise transfer function has a lowpass characteristic. 

At high offset frequencies, this noise is suppressed by the lowpass filter. As a 

result, the noise coming from the PFD, CP, divider, and loop filter contributes to 

the in-band noise at the output of the PLL. On the other hand, the VCO noise 

transfer function is different and has a high pass characteristic. At low offset 

inside the loop bandwidth, the VCO noise is suppressed by highpass filter. As a 

result, the VCO noise contributes to the out-band noise at the output of the PLL. 
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2.4.3 PLL Phase Noise Analysis 

Phase noise of a VCO placed inside a PLL is shaped by PLL noise transfer 

functions. A free running VCO phase noise is will be called as simply VCO phase 

noise, and phase noise of a VCO locked inside PLL lock will called PLL output 

phase noise. 

 

 

A linear phase-domain model of a PLL with additive noise sources is shown 

in Fig 2.10. ΦRef represents the noise appearing on the reference input of PFD. It 

includes the crystal oscillator and crystal buffer noises. ΦPFD is the phase of PFD. 

In,cp is the noise of the CP current. ΦVCO is the phase noise of the VCO. The 

transfer functions from these noise sources to the output can be written as: 
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Figure 2.10 Phase noise model 
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The transfer functions, G(s) and H(s), are defined as: 
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where ICP is the CP current. KVCO is the VCO gain. F(S) is the loop filter transfer 

function. 

Analysis of the noise transfer function reveals more information about PLL 

noise shaping effect. The common factor for reference, divider, PFD and CP noise 

is 
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SG
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(2.71) 

Noise sources experience different transfer functions to the output. For the 

noise present at the phase detector input, the transfer function is a low-pass filter. 

The noise is enhanced by the divider ratio in the pass-band and falls off beyond 

the PLL loop bandwidth. For the noise at the charge pump output, it is subject to a 

band-pass response where the pass-band of the band-pass transfer function 

depends on the pole/zero location of the loop filter. 
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The amplitude response of this common factor is shown in Fig 2.11. It 

exhibits low pass characteristics, and at low frequencies, the noise of the PLL is 

dominantly contributed by the reference, divider, PFD and CP noises. Also the 

noise contributions from references, divider, PFD and CP are increased by the 

feedback divider ratio N inside the loop bandwidth. The amplitude response of 

common factor, 1/[1+G(S)H(S)], for VCO is shown in Fig 2.11.  It exhibits high 

pass filter behavior. 

 

 

 

The PLL bandwidth determines the total PLL noise shape. For minimization 

residual phase error at the PLL output, the PLL bandwidth is chosen at the 

intersection of close-in noise and VCO noise as shown in Fig. 2.12 (a). 

Performance loss occurs if a non-optimum bandwidth is used as shown in Fig. 

2.12 (b) and (c). Wide bandwidth loop filter has less attenuation for the noise 

f

20log(G/(1+GH))

fz fc fp

f

20log(1/(1+GH))

fz fc fp

(a) (b)  

Figure 2.11 (a)Transfer function of reference, PFD, and CP noise (b) Transfer 

function of the VCO. 
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from the reference oscillator and suppresses more noise of the VCO, but the noise 

from the reference input and the other components (PFD, CP, and divider) are less 

suppressed. On the other hands, decreasing the loop bandwidth suppresses more 

noise from the reference clock, PFD, CP and divider, but the VCO noise is less 

suppressed. Therefore, there is a trade-off between the close-in phase noise and 

the loop bandwidth.  

 

 

A typical phase noise of a PLL is shown in figure 2.13. The phase noise 

behavior exhibits three different regions. The first phase noise region is the 

reference oscillator noise. The second region is called close-in noise, which is 

dominantly contributed by PFD, CP and divider noise. The third region beyond 

the loop bandwidth is practically the VCO noise. The first and third regions are 

primarily determined by the crystal and VCO. Usually the close-in phase noise 

has less impact than the VCO phase noise on the overall receiver performance. 

The PLL loop filter suppresses the close-in noise, but the far-out noise of the RO 
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Figure 2.12 (a) Optimum PLL bandwidth (b) PLL bandwidth is too large (c) 

PLL bandwidth is too narrow. 

 



 

 

42 

VCO will not be filtered. The overall RO   The phase error accumulation in the 

ring oscillators can be  modeled as a phase error integrator with the power 

spectrual density of the phase integration represented as  1/f
2
. 

 

 

 

 

 

fc

PLL Noise

f

 

Figure 2.13 Typical PLL output phase noise. 
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CHAPTER 3 

PROPOSE ADAPTIVE PHASE NOISE CANCELLATION PLL 

The design of low phase noise frequency synthesizer requests in high-

performance wireless communication system. The phase noise is determined by 

the noise coming from active devices, supply, ground and substrate. Due to ring 

oscillator (RO) supply sensitivity and poor phase noise performance, they have 

limited use in applications demanding low phase noise, such as wireless or optical 

transceivers. Recently, different approaches have been proposed to minimize RO 

PLL phase noise through cancellation techniques [15-18]. A current-steering 

DAC in parallel to the charge-pump is employed in [16] to cancel the  

modulator quantization noise in a fractional-N PLL. In [17], a dedicated supply 

regulator is used to attenuate RO supply noise at the cost of reduced voltage 

headroom and power efficiency. Open loop noise cancellation technique with 

negative supply compensation is explored in [18]. This chapter introduces the 

proposed adaptive phase noise cancellation PLL. A feed-forward, delay-

discriminator based noise-cancelling architecture that improves phase noise 

characteristic of ring-oscillator based PLLs in an arbitrary bandwidth is presented. 

The proposed topology enables application of RO based PLL for highly sensitive 

frequency synthesizers that can be used for RF Transceivers, Optical 

communication, and data converters. 
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3.1 PROPOSE PLL ARCHITECTURE 

The system level block diagram of the proposed PLL architecture is 

shown in Fig. 3.1. 

 

Fig. 3.1 shows the block diagram of the proposed PLL with RO and 

adaptive feed-forward phase noise-cancelling architecture, which employs a 

delay-line discriminator for phase noise extraction. In [19], a delay line and mixer 

(i.e., delay-line discriminator) were used to convert instantaneous phase 

deviations of an oscillator to voltage deviations, enabling an on-chip phase noise 

measurement system with -124 dBc/Hz sensitivity. This technique does not 

require a spectrally clean reference clock and can extract phase noise for a wide 

range of frequency offsets from carrier by using selective filters. The proposed 

PLL utilizes a similar delay-line discriminator to extract RO’s instantaneous 
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Figure 3.1 Block diagram of the delay-discriminator based feed-forward phase 

noise cancellation PLL. 
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phase noise in a given bandwidth, and cancel it with a matched delay element. As 

shown in Fig. 3.1, the noise-cancelling loop consists of a polyphase filter, mixer, 

band-pass filter (BPF) and a variable gain amplifier (VGA). The proposed 

approach exploits the ring-oscillator architecture as a delay-line discriminator 

together with the mixer, converting phase fluctuations to a voltage signal.  

A charge-pump phase comparator is followed by a loop filter, which 

produces the VCO control voltage. The PLL utilizes a N-stage ring oscillator and 

an analog phase detector (mixer) is used to extract the phase difference between 

(N-1) stages of the ring. The phase shifter maintains two signals within quadrature 

to get maximum mixer conversion gain. This signal is then high-passed to remove 

the static phase offset and feedback to the control the VCO control voltage of 

ring’s N-th stage. In this way any jitter due to the N-1 stages is corrected 

modulating the delay of the N-th stage. The output of the VCO is fed back to the 

input of PFD through a frequency divider. In proposed PLL architecture, the 

reference frequency is 10MHz and the output center frequency of the PLL is 5  

GHz, resulting in the divider ration of 512. 

 

3.2 PHASE NOISE IN VCO 

 When an oscillator is free running without noise, the output of the 

oscillator runs at its center frequency and zero-crossings would be uniformly 

spaced in time and phase also increases uniformly as shown in Fig 3.2. 
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However, the oscillator with noise causes phase fluctuations which results 

non-uniformly spaced in time in the zero-crossing times as shown in Fig 3.3. 

Vout(t)

t

ωout=ωc

Φ(t)

dΦ/dt=ωc

 

Figure 3.2 Ideal free running oscillator. 
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 In a free-running RO, each variable delay cell exhibits random phase error 

due to active device noise and supply noise sources. The source of phase noise in 

each inverter device is from thermal and/or shot noise, and device non-linearity.  

The RO phase error consists of the phase noise for each inverter stage and the 

previous stage noise, which accumulates and impacting the overall VCO phase as 

shown in Fig. 3.4. 

 

Vout(t)

t

Φ(t)

 

Figure 3.3 Free running oscillator with noise. 
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Accumulating phase error in ring oscillator can model as a phase error 

integrator [20]. In frequency domain, the phase error accumulation is represented 

by the 1/f
2
 region of phase noise power spectral density as shown in Fig. 3.5. 

 

 

In a phase-locked RO, the phase error accumulation is bounded by the 

PLL dynamics, and steady-state phase error is determined by the noise 
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Figure 3.5 Jitter accumulation and phase noise in free-running RO. 
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Figure 3.4 Free running oscillator. 
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characteristics of the reference frequency and phase/frequency detector, as shown 

in Fig. 3.6. 

 

In frequency domain, the PLL phase noise is dominated by the RO’s 1/f
2
 

characteristic only at frequency offsets higher than PLL bandwidth as shown in 

Fig. 3.7. 
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Figure 3.7 Jitter accumulation and phase noise in phase-locked RO. 
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Figure 3.6 Ring oscillator in a PLL. 

 



 

 

50 

 For an N-stage RO, the mixing product of the output phase and output of 

the (N-1)
th

 delay stage can be represented as 
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(3.1) 

Where n(t) is the instantaneous phase deviation from its carrier and  is the 

mixer gain. The high frequency terms represent high order harmonics and far-out 

phase noise. In a closed loop PLL, the DC component of the tuning voltage and 

close-in phase noise are determined by the loop filter, and the loop gain 

suppresses low frequency deviations within the PLL bandwidth. Assuming the 

DC terms and higher harmonic component are filtered from the mixer output, the 

bandpass filtered output of the cancellation loop contains the phase noise 

information of the oscillator inside a desired bandwidth. In the proposed approach 

the extracted phase noise at the bandpass filter output is inverted and applied to 

the tuning port of an auxiliary delay stage to cancel instantaneous phase error 

outside the PLL loop bandwidth, as shown in Fig. 3.8. 
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3.3 CANCELLATION LOOP NOISE ANALYSIS 

 The cancellation loop implements phase shifter, mixer, band pass filter 

and VGA. Voltage noise of cancellation loop contributes phase noise of ring 

oscillator by voltage gain constant (Kv). Therefore, cancellation loop noise floor is 

lower than phase noise of ring oscillator itself. This chapter will discuss the noise 

contribution of cancellation loop. 
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Figure 3.8 Jitter accumulation and phase noise in the proposed delay-

discriminator based noise-cancellation architecture. 
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The noise of cancellation loop is contributed by thermal noise and 1/f noise 

of phase shifter, mixer, BPF, and VGA as shown in Fig 3.9. The output referred 

noise power of cancellation loop, 2

,cancelnV ,can be extracted by summing each noise 

source multiplied by each gain. 
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The phase noise in oscillator can increase due to noise of Vcancel node. The 

relationship phase noise and control voltage nose is described by 
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Figure 3.9 Noise model of cancellation loop. 
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where KΦ = GPS GMixer GBPF GVGA is overall system gain. 

The higher gain reduces noise contribution of the cancellation loop as shown 

in equation 3.4. On the other hand, higher voltage gain introduces higher noise 

contribution of the cancellation loop. 

To check the output referred noise of cancellation loop, the test set up 

performs as shown in Fig. 3.10. 

 

The output referred noise of cancellation loop is about 140nV/sqrt(Hz) at 100 kHz 

as shown in Fig. 3.11 

 

 

Figure 3.10 Test setup for the output referred noise of cancellation loop 
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Next, the phase noise contribution from cancellation loop is verified by 

injecting the white noise to Vcancel node in oscillator as shown in Fig 3.12 

 

CL

OSC

Output

VDC

Vctrl

Vcancel

V
2

n

 

Figure 3.12 Test set up for cancellation loop noise to phase noise in oscillator. 

 

 

Figure 3.11 Output referred noise of the cancellation loop and equivalent phase 

noise contribution. 
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In PSS noise simulation results, phase noise increases every 3dB by 

increasing 2uV/sqrt(Hz) injection white noise as shown in Fig 3.13. 

 

The plot shows less than 2uV/sqrt(Hz) noise from cancellation loop is 

required to minimized on oscillator phase noise. In addition, the noise 

contribution from cancellation loop has minor impact on oscillator phase noise. 

 

 

 

 

 

 

Figure 3.13 Phase noise of RO with free running and noise inject 
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3.4 SMALL SIGNAL MODEL ANALYSIS 

 

When the loop is in the locked condition, the small signal model can be 

used. Fig. 3.14 is a small signal AC model of each building block in adaptive 

noise cancellation PLL. The phase detector compares the phase difference 

between two inputs, and the charge pump converts the phase difference into a 

voltage signal. The charge pump output is filtered by the low pass filter and 

generates a control voltage for the VCO. The transfer function for the loop filter is 

H1(s), and the filter output varies the output frequency of the VCO. Because phase 

is the integral of frequency, the s domain transfer function for VCO is Kdelay/S. the 

divider in the feedback path divides the VCO output frequency by N and has a 

transfer function of 1/N. In cancellation loop, the mixer has phase detector 

constant Kmixer. Two signals from different stages in ring oscillator go through the 

mixer and detect the phase error. The transfer function for the BPF is H2(s), and it 

filters out the high frequency and DC term. So phase error information remains 
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Figure 3.14 Adaptive noise cancellation PLL small signal model. 
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after BPF. Voltage noise after BPF calibrates gain matching from VGA gain of A. 

After calibrating, the voltage noise injects to last stage of delay cell and 

transforms voltage to phase by Kdelay. 

 Fig. 3.15shows the transfer function of output phase noise to VCO phase 

noise and represents as: 
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 (3.5) 

where KD is discriminator gain and KVCO is VCO gain. 

 

Fig. 3.16 shows phase noise characteristic of with and without active noise 

cancellation loop in PLL. PLL has high pass filter characteristic for VCO phase 

 

Figure 3.15 Transfer function of output phase noise to VCO phase noise. 
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noise. Phase noise attenuates -20 dB/c per decade below PLL bandwidth. In 

addition, phase noise reduces by cancellation enabled in far-out PLL bandwidth.  

 

 

 

 

Figure 3.16 RO contribution to PLL phase noise with and without active noise 

cancellation enabled. 
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CHAPTER 4 

CIRCUIT IMPLEMENTATIONS 

The schematic of the proposed RO and delay-discriminator based noise-

cancelling loop is shown in Fig. 4.1. Ring oscillator is implemented with 5 

pseudo-differential variable delay inverter cells. The delay cells topology uses 

active inductors to compensate for parasitic capacitors’ speed limitation. Although 

active inductors avoid the drawbacks of passive spiral inductors such as large die 

area and substrate noise coupling, they suffer from broadband noise generated due 

to active devices. 
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Figure 4.1 Schematics of ring oscillator delay cells with active inductors and 

feed-forward noise-cancelling loop. 
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A polyphase filter is used in the discriminator to maintain the phase 

difference of mixer input signals in quadrature. The quadrature configuration 

achieves maximum phase discriminator sensitivity and linearity. Fully differential 

double-balanced passive mixer with transimpedance amplifier (TIA) provides a 

first order low-pass filtering. Passive mixer operating in triode mode is selected 

guarantees high linearity and low flicker noise compared to active mixers. A two-

stage TIA structure minimizes the input referred noise of the measurement chain. 

TIA with single RC pole determines the phase noise measurement bandwidth of 

LPF and rejects higher mixer harmonics. 

The DC component of the discriminator output determines the steady-state 

frequency of the RO and should be filtered before being applied to the 

cancellation delay element. As shown in Fig. 4.1, a DC feedback path through 

gm1 and gm2 removes DC offset at the mixer output providing a high pass pole. 

The high-pass cut-off frequency of the BPF is controlled by changing 

transconductance gm1 and gm2. The high-pass pole can be placed outside the PLL 

bandwidth to benefit from noise cancellation effect. An active-RC integrator is 

used to implement a high linearity low-pass filter. Finally, a current-steering fully 

differential VGA provides high linearity and wide gain tuning range to 

compensate for variations in the variable-delay cell tuning characteristics. 

 

4.1 VOLTAGE CONTROL OSICLLATOR (VCO) 

A voltage control oscillator is an oscillator whose frequency is controlled 

by a voltage or current. In general, LC and ring oscillators are widely used in 
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recent applications. The tuning range of LC oscillators is usually small, and 

process and temperature variations affect the output frequency to a great extent. 

LC oscillators also occupy a large area, which is needed for inductor. Therefore, 

the fabrication cost is high in comparison with ring oscillators. Ring oscillators 

are popular due to their low cost and wide tuning range. These oscillators are used 

in integrated circuit applications where their phase noise is small enough for the 

specific application. 

 

Ring oscillators are realized by placing an odd number of inverters in a 

feedback loop, as shown in Fig. 4.2. The loop gain should be greater than unity 

when the phase shift around the loop is 180 degrees. This condition guarantees 

that the loop is unstable and oscillation occurs. Each half period, the signal is 

inverted by propagating around the loop once. The oscillation frequency is 

delayOSC

OSC
TNT

f



2

11

  

where N is the number of inverters, and Tdelay is delay of 

one inverter.  

Controlled oscillators are realized by making the delay of the inverter 

programmable. This delay can be programmed by changing the inverter’s current 

Output

 

Figure 4.2 Ring oscillator with 5 stage delay cell. 
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or its supply voltage. A popular method for programming the VCO frequency in 

PLLs is converting the VCO control voltage to the current that changes the delay 

of the inverters. 

For differential ring oscillator, the total power dissipation is given by: 

ddddVNIP 
   

 

 (4.1)  

Where N is the number of stages, Idd is the total current of the differential pair, 

and Vdd is the supply voltage. The frequency of oscillation can be derived by: 
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where Ctot is the total capacitance of load and Vswing is the maximum single-ended 

voltage swing at the output of each stage. 

For differential ring oscillator using short-channel devices, one may derive 

the following lower bound on the signal-sideband phase noise in the 1/f
2
 region 

[21]. 
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where the offset frequency is denoted by fm, the distance of the offset frequency 

from carrier. This equation shows that phase noise is related to the ration of the 

center frequency to the offset frequency squared, times a factor related to delay 

cell device design. kT in the numerator is  the thermal noise factor, and is 

multiplied by the term F. This term is a simplified constant equal to the interstage 

gain times the noise contribution factor in silicon.  
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Phase noise is a strong function of power consumption in observation of 

the equation. Increasing the current consumption reduces the phase noise. For ring 

oscillator design, since the device sizes are scaled with the current, this implies an 

increase in area as well. 

 

4.1.1 Ring Oscillator with Active Inductor Load 

 The design of the ring oscillator for 5GHz applications is especially 

challenging. The proposed noise-cancelling architecture can benefit speed-up 

from active inductors, without the noise penalty due to active cancellation. 

Inverter’s topology uses active inductors to minimize parasitic capacitors’ speed 

limitation in this project. The simplified schematic of the proposed inverter in 

shown in Fig 4.3. 

 Active inductors are realized by MOS active loads formed by Mn1-Mn2 

and MOS variable resistors Mg1-Mg2. The impedance seen at Mn1-Mn2 sources 

shows an inductive behavior with inductance value determined by the equivalent 

resistance at Mn1-Mn2 gates. By adjusting Mg1-Mg2 variable resistors, the 

equivalent impedance at the inverter load is changed thus varying the stage delay 

and, ultimately, the RO’s oscillation frequency. The implemented ring oscillator 

operates from 3.5GHz up to 7.1GHz. 
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To avoid the drawbacks of passive spiral inductors including extremely 

area consuming, small inductance, and strong interaction with the substrate, active 

inductors can be used. The self-bias active inductor is applied in [22]. Using the 

first order analysis and neglecting Cgd, we obtain the impedance looking into the 

active inductor 
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Figure 4.3 Ring oscillator delay cell with active inductors. 
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<  < p and resistive when  > p . The condition that the active inductor 

exhibits an inductive characteristic is z < p . 

 

Fig. 4.4 represents the measurement result of ring oscillator with active 

inductor load. The frequency of oscillator operates up to 7.1GHz respect to 

control voltage from 350mV to 750mV. Oscillator voltage gain (Kv) is about 

900MHz/V. 

 

4.2 STATIC DC PHASE OFFSET CANCELER 

 There are several DC offset cancellation schemes established in recent 

papers [23-25]. In paper [23], the shunt capacitor is applied negative feedbakc to 

flow the mixer load. Utilizing baseband processor senses the DC offset and 

 

Figure 4.4. Frequency range respect to control voltage. 
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controls the current to cancel the DC offset digitally [24]. Both DC offset 

cancellation schemes are not applied to passive mixer. 

 

To cancel the static DC phase offset, we have to cut out some portion of 

the spectrum around DC using high pass filtering. We adopt a DC feedback loop 

shown in Fig. 4.5 as a static DC offset canceller. A DC feedback loop creates a 

high pass pole at a frequency close to DC to remove a static DC offset. We could 

use an AC coupling capacitor or a high pass filter instead of a DC feedback loop 

to create a high pass pole. Also, we can easily control the high pass cutoff 

frequency with smaller capacitance values. 

LPF
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gm

C

Vout

 

Figure 4.5 Static DC offset canceller. 
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The transfer function of the static DC offset canceller shown in Fig. 4.6 can be 

found as: 
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Where ro is the output resistance of the transconductance (gm) cell and SLPF is 

the low pass pole created by the low pass filter (LPF). Assuming LPF
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transfer function can be approximated near DC as: 
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Figure 4.6 Frequency response of the static DC offset canceller. 
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which clearly shows that the DC feedback loop functions as a high pass filter. Fig. 

4.6 shows the frequency responses for the static DC offset canceller. By fixing the 

value of gm and ro and changing the value of C, we can easily change the high 

pass cutoff frequency of the static DC offset canceller. 

 

Fig. 4.7 is the detailed block diagram of the static DC offset canceller 

implemented in this project. Often, the output of the mixer is current mode, so the 

transconductance cell is gm included in the feedback path is also to convert the gm 

C integrator output into the current so that the feedback current is subtracted from 

the input current. 

DC feedback path through gm1 and gm2 removes DC offset at the mixer 

output providing a high pass pole. The high-pass cut-off frequency of the BPF is 

controlled by changing transconductance gm1 and gm2. The high-pass pole is 

placed outside the PLL bandwidth to avoid any impact to the synthesizer’s 

dynamic response. An active-RC integrator is used to implement a high linearity 

low-pass filter. 

Mixer LPF
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gm1 gm2

C

Gain=A
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Figure 4.7 Detailed block diagram of static DC offset canceller. 
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The output of the mixer contains DC term representing the LO frequency 

and close-in phase noise and high frequency terms representing higher harmonics 

and far out phase noise. In a closed loop PLL, the DC term and low-frequency 

phase noise is controlled by the loop filter and the loop gain suppresses low 

frequency deviations within the closed-loop bandwidth. When the DC terms and 

second harmonic component is filtered out, the band-pass filter output contains 

the phase noise of the oscillator for a desired bandwidth. In the proposed approach 

the extracted phase noise at the band-pass filter output is inverted and used as a 

tuning port of the auxiliary delay stage to cancel instantaneous phase error outside 

the PLL loop bandwidth. 

 

The frequency response is illustrated in Fig. 4.8. The cut-off frequency of 

low pass filter was set to 20 MHz, and the location of the high pass pole was 

 

Figure 4.8 Simulation frequency response of static DC offset canceller. 
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made at 100 kHz. By varying the value of capacitance, we can change the high 

pass cut-off frequency. 

 Tradition active mixers can provide higher signal gain than passive mixers. 

However, they suffer from the noise generated by the transconductor and the 

switching transistors [26]. 

Although passive mixers have less gain and even introduce loss, they are 

more linear than active mixers. The other advantage of using a passive mixer is 

that is does not consume any DC power [27]. 

 The main task in designing a passive mixer is to determine the sizes of the 

four transistors, since the noise figure, linearity, and conversion gain all depend 

on the widths of these transistors. As the widths of the transistors increase, 

linearity improves due to the decrease of the series resistances of the transistors. 

However, the conversion gain decreases as the series resistances decrease. As a 

result, the design of the widths of the transistors is a trade-off between noise, 

linearity and conversion gain. Fig. 4.9 shows schematic of the passive mixer used 

in cancellation loop. 
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 The passive mixer architecture is current input and current output. 

Transimpedance amplifier (TIA) provides the low impedance not at the mixer 

output [28]. Fig. 4.10 shows the schematic of TIA. TIA is composed of a two 

stage op amp with a 200 MHz unity gain bandwidth. RC feedback in low-pass 

filter is applied around the op amp to produce a 20 MHz pole frequency.  
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Figure 4.9 Passive mixer circuit schematic. 
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4.3 VARIABLE GAIN AMPLIFIER (VGA) 

 A current-steering fully differential VGA provides high linearity and wide 

gain tuning range to compensate for variations in the variable-delay cell tuning 

characteristic. 
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VFB Vbias2
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Figure 4.10 Schematic of TIA stage. 
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Fig. 4.9 shows a core of VGA. Vin+ and Vin- are the differential input 

signal and Vr and Vc are the control voltage from reference bias circuit [29]. A 

current steering circuit is adopted for high linearity consideration and gain of this 

circuit is given by: 
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Figure 4.11 VGA circuit schematic. 
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(a) AC simulation result of VGA 

 

(b)Simulation result of P1dB compression point 

Figure 4.12 Simulation results of VGA 
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-3 dB frequency of VGA has 300 MHz when gain is 25 dB. The gain has a 

function of external control voltage (Vc) with a range of 22 dB. 1dB compression 

point is at least 13 dBm. Simulation results of AC response and 1dB compression 

point shows in Fig 4.10. 

 

4.4 POLYPHASE FILTER 

The mixer acts as an ideal phase detector by forcing the input signals to be 

in quadrature. Considering the mixer in a standalone operation, any deviation 

error from quadrature results in an output amplitude error, which is very small 

when the deviation around quadrature is small. For example, a 1 degree offset 

from quadrature results in an amplitude error of -0.001 dB. In the delay-line 

discriminator is much worse than the standalone mixer case. The deviation from a 

quadrature condition is amplified by the delay, which results in significantly 

larger dc offset and amplitude detection errors. Polyphase filter maintains the 

output of the ring oscillator in quadrature to reduce the dc offset errors. 
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The passive polyphase filter is lossy and needs additional buffers among the 

stages to compensate the loss. Furthermore, the variation of resistances and 

capacitances should be kept within a desired small range. When it comes to on-

chip implementations, passive elements such as varactors, capacitors and 

inductors are very limited. On the other hands, active polyphase filters have the 

general advantages of low power dissipation, small chip area and high signal gain.  
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Figure 4.13 The active polyphase filter. 

 



 

 

77 

In active polyphase filter, the resistors are replaced by transconductances 

as shown in Fig. 4.12. This topology of active polyphase filter has benefit of high 

input impedance and relaxes the loading of the preceding stage. The effective gm 

can be implemented with CMOS inverters. Active polyphase filter avoids the 

degradation of gain among stages [30]. In addition, sufficient gain and isolation 

can be achieved without additional buffers compared to passive polyphase filter. 

 

4.5 PHASE FREQUENCY DETECTOR 

Fig. 4.13 shows the block level schematic of PFD. all the blocks use 

standard CMOS logic circuits [31]. The delayed reset signal path made by two 

inverters resolves deadzone issue.  

Vin Vout

 
 

Figure 4.14 CMOS inverter with internal resistor feedback. 
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Figure 4.15 PFD schematic. 
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CHAPTER 5 

EXPERIMENT RESULTS 

 The PLL was fabricated in a 90nm CMOS technology. The chip was 

mounted on a standard FR4 PC board. The current consumption of the PLL is 

24.7mA when the cancellation technique enabled. Die photo is shown in Fig. 5.1. 

The core of the IC occupies 0.38mm × 0.32mm silicon area. 

 

 Fig. 5.2 shows the test setup for measuring PLL performances. Agilent 

E4443A spectrum analyzer is used to measure the spectrum and the phase noise 

of the output. The frequency synthesizer was tested with a reference frequency of 

10 MHz. Signal generator provides the control signal of the divider and external 

modulated noise signal to use the calibration of cancelation the loop gain. 
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Figure 5.1 Micrograph of the IC 
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 Fig. 5. 4 shows the single tone (ST) sensitivity of delay-line discriminator 

in the cancellation loop. The equivalent phase noise sensitivity is calculated from 

the ST results by averaging the three consecutive ST results.  
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Figure 5.2 Test setup. 
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 Fig. 5.1 shows the phase noise measurements before and after enabling 

cancellation loop. Phase noise reduces in the cancellation bandwidth up to 20 

MHz with a 200 kHz PLL loop bandwidth. The cancellation loop attenuates the 

phase noise at 1 MHz offset by 12.5 dB. The measured phase noise at 1 MHz 

offset is -105 dBc/Hz. 

 

 

 

 

 

Figure 5.3 Single tone (ST) sensitivity (left), and equivalent phase noise 

sensitivity (right) of the proposed feed-forward delay discriminator noise 

cancellation path as a function of offset frequency from carrier. 
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Fig. 5.2 shows PLL output spectra at 5.1GHz when the PLL divider is 

modulated with a 10 MHz clock signal. The cancellation loop reduces the 10 

MHz spurious tone level by 13 dB. This result shows that the proposed 

architecture can also be used to mitigate out of band quantization noise of  

fractional-N frequency synthesizers. 

Without 
Cancellation

With 
Cancellation

12.5dB

 

Figure 5.4 Measured PLL output phase noise with and without phase noise 

cancellation. 
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(a) Noise-cancelling loop OFF 

 

(b) Noise-cancelling loop ON 

Figure 5.5 PLL output PSD with 10MHz digital divider modulation showing 

13dB spur reduction (a) PSD without noise-cancelling loop. (b) PSD with loop 

enabled. 

 

Figure 5.1 Measured PLL output phase noise with and without phase noise 

cancellation. 
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Ring oscillator has strong trade-off between phase noise and power 

consumption in the equation 4.3. Fig. 5.2 shows a comparison to previous work 

reported on ring oscillators. The performance of the implemented PLL is 

summarized in the table of Table. 5.1. 

 

Figure 5. 6 Performance comparison of state-of-the-art ring oscillators with 

respect to the proposed approach, with and without active noise cancellation. 
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Table 5.1 PLL performance summary. 

Main Parameters 

Technology 90nm CMOS 

Supply Voltage 1.2V 

Operating Frequency 5GHz 

Tuning Range 3.5GHz – 7.1GHz 

Reference Frequency 10MHz 

Loop Bandwidth 200kHz 

Phase Noise @1MHz (5GHz) -105dBc/Hz 

Reference Spur -64.8dBc 

Phase Noise Cancellation Bandwidth 100kHz – 20MHz 

Phase Noise Cancellation @1MHz 12.5dB 

Current Consumption (@5GHz) 

VCO 7.3mA 

Cancellation Loop 3.7mA 

Charge-pump, PFD, Divider and Bias Circuitry 13.7mA 

Total 24.7mA 

Core Die Area 

0.38mm×0.32mm 
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CHAPTER 6 

CONCLUSIONS 

Voltage Control Oscillator (VCO) is one of the key components in Phase 

Lock Loops.  LC tank based VCOs have a superior phase noise performance, and 

narrower loop bandwidth which makes it suitable for RF and high-speed optical 

communication, however, its performance is limited by the large area of the 

resonator circuit, it has higher power consumption, and has limited tuning range. 

Ring Oscillators (RO) are widely used in PLL and has a wider loop bandwidth 

and is suitable for circuits with more relaxed phase noise requirement such as 

clock generation and clock synchronization in microprocessors, and data recovery. 

The (RO) PLL is preferred due to its reduced size, lower power consumption, 

scalability, and ease of implementation in the digital process. However, the RO 

VCO has higher jitter and phase noise due to active device noise, thermal noise, 

supply, ground noise, and substrate noise coupling which limits is application for 

RF transceiver, data converters, serial I/O bus, and high-speed optical 

communications. Although LC tank VCO generally has better phase noise 

performance, there is a strong motivation to develop RO with comparable phase 

noise. Particularly, out-of-band phase noise of RO-based PLLs is dominated by 

RO performance, which cannot be suppressed by the loop gain, impairing RF 

receiver’s sensitivity or BER of optical clock-data recovery circuits. The 

implemented noise-cancelling loop potentially enables application of RO based 

PLL for demanding frequency synthesizers applications, such as optical links or 

high-speed serial I/Os. The objective of the adaptive feed-forward noise 
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cancelation is on-chip far-out phase noise measurement and cancelation to 

achieve low phase noise performance. The proposed PLL utilizes a similar delay-

line discriminator to extract RO’s instantaneous phase noise in a given bandwidth, 

and cancel it with a matched delay element. This thesis presents design, 

integration, and measurement of an adaptive noise canceling RO based PLL 

fabricated in 90nm IBM process.  
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