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ABSTRACT 

 Bioanalytes such as protein, cells, and viruses provide vital information 

but are inherently challenging to measure with selective and sensitive detection.  

Gradient separation technologies can provide solutions to these challenges by 

enabling the selective isolation and pre-concentration of bioanalytes for improved 

detection and monitoring.  Some fundamental aspects of two of these techniques, 

isoelectric focusing and dielectrophoresis, are examined and novel developments 

are presented. 

 A reproducible and automatable method for coupling capillary isoelectric 

focusing (cIEF) and matrix assisted laser desorption/ionization mass spectrometry 

(MALDI-MS) based on syringe pump mobilization is found.  Results show high 

resolution is maintained during mobilization and β-lactoglobulin protein isoforms 

differing by two amino acids are resolved.  Subsequently, the instrumental 

advantages of this approach are utilized to clarify the microheterogeneity of 

serum amyloid P component.  Comprehensive, quantitative results support a 

relatively uniform glycoprotein model, contrary to inconsistent and equivocal 

observations in several gel isoelectric focusing studies.  Fundamental studies of 

MALDI-MS on novel superhydrophobic substrates yield unique insights towards 

an optimal interface between cIEF and MALDI-MS.  Finally, the fundamentals of 

isoelectric focusing in an open drop are explored.  Findings suggest this could be 

a robust sample preparation technique for droplet-based microfluidic systems. 

 Fundamental advancements in dielectrophoresis are also presented.  

Microfluidic channels for dielectrophoretic mobility characterization are designed 
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which enable particle standardization, new insights to be deduced, and future 

devices to be intelligently designed.  Dielectrophoretic mobilities are obtained for 

1 µm polystyrene particles and red blood cells under select conditions.  

Employing velocimetry techniques allows models of particle motion to be 

improved which in turn improves the experimental methodology.  Together this 

work contributes a quantitative framework which improves dielectrophoretic 

particle separation and analysis. 
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Chapter 1 

Introduction 

1.1  Role of separation science in analytical chemistry 

 One of the most important principles of analytical chemistry is selectivity.  

Selectivity is defined as the “degree to which a method is free from interference 

by other species contained in the sample matrix” [1].  The integrity of any 

chemical measurement depends on a mechanism to selectively interrogate the 

desired component in a mixture.  Selective probing techniques exploit a unique 

chemical or physical property associated with the analyte of interest.  For 

example, energy states (spectroscopy and electrochemistry), mass to charge ratio 

(mass spectrometry), chemical reactivity (titrations), and ligand affinity (assay 

and biosensor) are frequently targeted to acquire selective chemical 

measurements.  Often times, however, the targeted analyte does not have a 

distinctly unique property that can be targeted.  In these instances chemical labels 

that react with the analyte of interest can be added to further enable improved 

selectivity.  Common modifications include the addition of a fluorophore or 

chromophore (e.g., protein, DNA, or cell labeling) [2], isotope labeling [3], and 

enzyme or ligand linking [4] among many other techniques [5, 6].  Analytical 

measurements are limited by selectivity when probing mechanisms have 

insufficient selectivity, labeling methods are impractical, or mixed samples 

contain interfering species.  The universal solution to overcome the limitation of 

analytical selectivity is chemical separations [7]. 
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 Separations allow for the isolation of pure components from mixtures so 

that a probes’ response can be associated directly with a particular material.  This 

opportunity was first realized and practiced through extractions where specific 

solvents could be used to isolate pure materials [7].  Today the field of separation 

science is now so advanced that enantiomers, protein isoforms, and single base 

differences in DNA are readily isolated from their very similar counterparts.  In 

addition to purifying samples, separations can also serve as an analytical probe by 

monitoring outcomes spatially or temporally.  The position or time in which a 

certain species is detected can be used to qualitatively identify it.  Thus, 

separation science has and will continue to be an integral part of analytical 

chemistry by improving selectivity through purification and acting as an 

independent analytical probe. 

1.2  Linear vs. gradient separations 

For this dissertation, separation techniques are classified as being either 

linear or gradient.  A linear separation is one characterized by a uniform transport 

force along the separation length.  Chromatography and electrophoresis are 

common techniques exemplifying this where samples are loaded at one end, 

separation occurs due to differential transport rates, and species travel 

unidirectional towards the opposite end.  Gradient separations on the other hand 

are characterized by having a multi-directional velocity gradient that varies across 

space.  Some representative gradient separations include isoelectric focusing 

(IEF) and gradient dielectrophoresis (DEP).   
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The distinction between gradient and linear separations is important when 

considering the effects on analyte concentration relative to detection limits. “The 

most generally accepted qualitative definition of detection limit is that it is the 

minimum concentration or mass of analyte that can be detected at a known 

confidence level” [1].  In other words, analytical measurements become null when 

the amount of analyte falls below the detection limit.  Thus, it is imperative to 

consider the effect a separation mechanisms has on the analyte concentration at 

the time of detection.  This is particularly concerning for bioanalytes which are 

typically relatively dilute, costly or difficult to obtain, and exist in limited 

quantities. 

 In the case of linear separations, an analyte zone experiences a uniform 

transport force and is diluted over time through diffusion and other mechanisms 

such as multiple paths, heterogeneous flow profile, and mass transport effects 

(Fig. 1.1A).  Sometimes conditions can be optimized to minimize these effects; 

however, even subtle dispersion processes can compromise the detection of 

bioanalytes which are near the detection limit threshold.  Therefore, in many cases 

linear separations cannot be used when starting with relatively dilute or low total 

mass samples.  

 Gradient separations, in contrast, provide a restoring force to counteract 

the dispersion processes.  The velocity profile varies across space such that 

analytes experience a net zero velocity in certain regions.  They are transported to 

this focal point from all directions and they experience a restoring force if 

dispersion processes transport them away.  In most instances the restoring force 
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can be used to increase the analyte concentration above starting levels (Fig. 1.1B).  

In addition, the position of the focal point in gradient separations depends on the 

properties of a particular analyte.  Gradient separations are thus capable of 

simultaneously pre-concentrating and isolating individual components.  Gradient 

separations are a highly advantageous alternative to linear separations when 

considering detection limits. 

 

 

Figure 1.1.  Linear vs. gradient separations.  Hypothetical analyte concentrations 
as a function of time and space in (A) linear and (B) gradient separations. 
 

1.3  The importance of bioanalytes 

 The trajectory of health care is headed towards that of personalized 

medicine [8-10].  This means the diagnosis, prognosis, and treatment of ailments 

is becoming increasingly more personalized and assessed on an individualized 

basis.  Leading the charge for this movement are the ‘omic’ fields (genomics, 

proteomics, metabolomics, etc.) where unique expression patterns of biological 

molecules are observed between individuals.  Thus, the reliance of multi-billion 

dollar industries such as diagnostics and pharmaceuticals on biomolecular 
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information is at an all-time high.  Therefore, analytes of biological origin 

(bioanalytes) represent a vital source of information with enormous economic 

impact.  Additionally, bioanalytes are critical to many other sectors including 

forensics, national security, food safety, and energy. 

 The value of bioanalytes is clear, however, their inherent complexity in 

terms of size, concentration, and diversity makes selective analysis very 

challenging.  Ultimately, the understanding of biological systems and ability to 

discern relevant information directly depends on the availability of selective tools.  

Separation science has enormous impact towards this.  Different types of 

bioanalytes are discussed below.  In all instances, gradient separation technologies 

can improve bioanalysis by improving selectivity and pre-concentrating 

components. 

1.3.1  Nucleic acids 

DNA and RNA are highly valuable targets that describe the genetic code 

of organisms.  These molecules provide key insights into biological mechanisms, 

enable biological engineering, and have enormous economic, social, and 

environmental impact.  The properties of different nucleic acid strands are 

essentially identical because they are polymeric molecules assembled from only 

four different base nucleotides.  Additionally, there are several thousand unique 

sequences of nucleic acid within a single cell.  Therefore, separations are vital in 

the selective interrogation of nucleic acids [11].  Electrophoretic separations are 

the mostly widely used and are still being rigorously advanced today to enable 

rapid, highly specific DNA sequencing [12, 13]. 
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1.3.2  Proteins 

Proteins are the functional units of biology and are being increasingly 

sought after as targets to provide vital information about biological systems.  

Human cells have the capacity to express over 10,000 unique proteins which are 

polymeric molecules having anywhere from 20-2,000 of the twenty different 

amino acid monomers.  This gives rise to shear diversity of the natural world and 

also makes analytical measurements very difficult.  Therefore, in virtually all 

protein analyses a separation or purification step is employed to allow the proteins 

of interest to be targeted.  Seemingly all separation techniques have been used for 

proteins, but most popular are immunoprecipitation [14], liquid chromatography 

[15], two-dimensional gel electrophoresis [16], and capillary electrophoresis [17].   

1.3.3  Cells, organelles, and viruses 

 Larger bioparticles such as cells and viruses pose a unique separation 

challenge because of their size and dilute concentrations [18].  Many successful 

applications avoid employing separations altogether and selectively target 

cells/viruses with highly specific antibodies [19-21].  Although this approach is 

very successful, the use of antibodies is far from a universal solution because 

antibody production has its limitations and assays can require long times [22].  

Therefore, technologies capable of performing cheap and fast purification and 

enrichment of cells and viruses are of high demand.   

1.3.4  Other bioanalytes 

 In addition to those mentioned above many other bioanalytes provide vital 

information including: carbohydrates, lipids, bioparticle complexes, inorganic 
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materials, and metabolic derivatives.  These molecular groups contain a diverse 

number of molecules having very similar structures.  Thus, selective 

measurements are equally challenging for all types bioanalytes. 

1.4  Overview of isoelectric focusing and dielectrophoresis 

 The bulk of this dissertation primarily employs two different gradient 

separation techniques: isoelectric focusing (IEF) [23] and dielectrophoresis (DEP) 

[24].  A brief introduction to these techniques is discussed here while Chapter 2 

provides much more comprehensive detail.  IEF relies on the force of electric 

fields on net charge while DEP is the force of electric field gradients acting on 

dipoles.  pH gradients are employed in IEF while spatial gradients are employed 

in DEP to form velocity gradients.  Besides these differences there are also many 

commonalities.  Both techniques utilize an electric field within a defined 

geometry to move the sample components with a velocity that is dependent on 

their composition.  Finally, these techniques are highly complementary in nature 

where DEP is best suited for large bioparticles (> 50 nm) and IEF is best suited 

for proteins (< 50 nm).  Together they can enhance selectivity across the entire 

size spectrum of bioparticles while providing enrichment capabilities [25].  The 

applications within this dissertation are on protein separations in Chapters 3-6 and 

cell separations in Chapters 7-8. 

1.5  Overview of MALDI-MS 

  Mass spectrometry (MS) exploits the separation of gas phase ions based 

on their mass and charge velocity dependence.  Many different instruments exist 

and they can be distinguished by ionization source and ion selection method.  
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Methods for attaining ion selectivity include ion cyclone resonance, quadropole, 

fourier transform, and time of flight (TOF).  There are also numerous ionization 

methods for introducing samples into the MS instrument.  Matrix assisted laser 

desorption/ionization (MALDI) is a popular MS ionization mode for larger 

molecules including bioparticles [26].  In this technique, a laser is fired at a 

crystalline sample deposit enriched with an organic matrix.  The matrix absorbs 

the laser light and becomes highly energetic leading to the vaporization and 

ionization of the analyte molecules.  Studies of the fundamental processes reveal 

that multiple mechanisms may be involved and a precise understanding of the 

desorption/ionization dynamics remains out of reach [27, 28]. 

 Like all MS analysis, MALDI-MS is useful because it allows for the 

structural and qualitative information to be determined.  Usually singly charged 

ions are produced allowing the ions’ mass to be directly determined.  Therefore, 

MALDI-MS is highly valuable because it can provide very good resolution and 

unmatched qualitative detail of bioanalytes.  Proteins are the most popular targets 

but all bioparticles are actively studied with MALDI-MS [29].  While the bulk of 

this dissertation emphasizes gradient separation techniques, MALDI-MS is a sub-

topic because of its utility for bioanalyte detection. 

1.6  Superhydrophobic surfaces 

  Hydrophobicity and hydrophilicity describes the degree to which a 

material is repelled and attracted to water, respectively.  This property is 

quantified for solid surfaces by the contact angle of a resting water droplet 

between the solid-liquid and liquid-air equilibrium contact lines.  Hydrophilic 
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materials have water contact angles less than 90°, hydrophobic between 90-150°, 

and superhydrophobic materials greater than 150°.  Hydrophilic materials include 

polar materials such as glass and metals while hydrophobic materials include non-

polar organic materials such as plastics and lipids.  These are complex properties 

that depend on several factors including polarity, structure, and roughness [30, 

31].  A roughened surface causes an enhancement in hydrophobicity or 

hydrophilicty compared to the same material having a smooth surface because of 

the increased interfacial surface area interacting with water.  Therefore, 

superhydrophobic surfaces (SHS) are produced when a hydrophobic surface is 

roughened.  SHS can be found among the leaves of many plant species where 

micro and nano scale fibers create roughened structures on the leaf [32].  There 

are several methods to synthetically roughen surfaces so that they become SHS 

[33]. 

 Superhydrophobic surfaces provide a unique ability to control and 

manipulate aqueous droplets for some unique applications.  Droplets have 

minimal surface area contact, maintain well defined spherical or ellipsoidal 

geometries, and have negligible surface adhesion.  The field of droplet 

microfluidics utilizes these features to perform numerous automated, parallel, and 

small volume fluid manipulations.  Using electric or magnetic fields, droplets can 

be moved, mixed, and split enabling means to perform chemical sample 

preparations in a unique format.  Therefore, SHS play an important role in 

analytical chemistry and in bioanalysis by enabling new technologies.  For this 
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dissertation SHS are utilized in Chapter 5 to study MALDI-MS signal 

dependencies and Chapter 6 to enable isolectric focusing in a drop. 

1.7  Dissertation objectives  

 The purpose of this dissertation is to advance IEF and DEP to further 

enable high resolution bioanalysis.  These techniques are related because they 

both rely on electric fields to move material in a composition specific manner, but 

they are suited best for different yet complimentary bioanalytes (IEF for proteins 

and DEP for cells).  Together they provide a powerful platform for proteomic 

analysis: DEP provides means to isolate larger particle mixtures while IEF could 

subsequently separate protein substructures.  However, both of these techniques 

are in need of a better understanding and technological advancement before such 

rich bioanalysis becomes commonplace. 

 Some weaknesses of IEF protein separations include poor detection 

capabilities and difficulty in automation.  Chapter 3 presents some developments 

in coupling capillary IEF with mass spectrometric detection.  In addition to 

improving the limits of detection, coupling to mass spectrometry enables 

unprecedented resolution in protein analysis.  Furthermore, utilizing a capillary 

separation with MS detection lends itself to being completely automatable.  These 

improvements are applied in Chapter 4 to characterizing a glycoprotein, serum 

amyloid P component (SAP), which allowed for an improved assessment of its 

microheterogeneity profile.  In Chapter 6 droplet-based IEF (dIEF) is introduced 

as a potentially high-throughput, automatable sample preparation technique.  

Together the IEF related research in this dissertation demonstrates a number of 
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technological improvements which advance its suitability to protein analysis.  

Chapter 5 discusses findings and limitations of efforts to pre-concentrate analytes 

for MALDI-MS on a patterned superhydrophobic surface. 

 Current limitations in the field of dielectrophoresis include a lack of 

quantitative metrics and an understanding of behaviors within particle 

populations.  Quantitative insights about dielectrophoretic responses of particles 

would greatly advance the field.  Chapters 7-8 present a novel methodology for 

the determination of dielectrophoretic mobilities. Using simple, linear electric 

field gradients the dielectrophoretic motion of particles is quantitatively assessed.  

Advancements in the method and dielectrophoretic mobility findings are 

presented. 

 Cumulatively, the work presented here improves bioanalytical selectivity 

with advances in the complimentary techniques of isoelectric focusing and 

dielectrophoresis. 
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Chapter 2 

Overview of Electrokinetic Techniques  

2.1  Principle of charge, electric fields, and electrokinetic separation 

techniques 

 Molecules and larger units of matter (polymers, particles, etc.) have a 

highly diverse composition and distribution of elementary charged particles.  The 

origin of this principle stems from the fact that every atom contains a different 

numbers of positive and negative charges in protons and electrons, respectively.  

In fact, this fundamental property of atomic charge gives rise to many other 

uniquely observable physical and chemical properties.  Chemical reactivity and 

acid/base properties add to the higher order charge diversity by selectively 

altering chemical structures.  Therefore, every molecule has a unique distribution 

of charge even if it is net neutral or an isomer.  Naturally, this broad diversity 

suggests that charge distribution can be exploited to separate chemical mixtures.  

In principle, unique forces (F) can be exerted on different molecules by targeting 

either net charge (q) or dipole (p) using an electric field (E) based on the 

following equations: 

EqF                  (1) 

EpF                  (2) 

Eq. (1) and Eq. (2) state differential forces can be applied to molecules composed 

of different charge or different dipoles by employing an electric field or electric 

field gradient, respectively.  If a unique force can be generated for a particular 
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analyte than systems can be engineered which enable the isolation of that analyte 

from mixtures. 

 The electromagnetic force is one of the four fundamental forces of nature 

and for the purpose of this dissertation only the electric component will be 

introduced.  An electrical or Coulombic force exists between charged particles 

and is described as follows: 

2
21

r

qq
F                  (3) 

The magnitude of force is proportional to the magnitude of each charge (q) and 

inversely proportional to the distance separating the charges (r) squared.  The 

electric force can be modeled by stating each charge emits an unobservable 

electric field (E) which interacts with other charges as in Eq. (1).  This is identical 

to the concept of an unobservable gravitational field which interacts with mass.  

Although the physicality of real systems is simplified by discussing electric fields, 

it is important to recognize the charges are the actual source of electric fields.  A 

significant goal of this dissertation is to intelligently design electric fields so that 

Eqs. (1-2) can be applied to the separation of sample mixtures. 

2.2  Engineering electric fields for separations  

Various materials and geometries are used to shape and control electric 

fields throughout this dissertation.  In all instances charged electrodes are used to 

initiate an electric field, insulating materials are used to direct electric fields, and 

conductive aqueous mediums are used to propagate the fields.  These systems can 

be described as an electrochemical circuit where the following occurs: a voltage 
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generator produces a charged anode (voltage greater than ground) or cathode 

(voltage lower than ground), the opposite electrode is grounded, molecules lose 

electrons via oxidation at the anode, molecules and particles experience forces in 

accord with Eqs. (1-2) as applicable, and molecules gain electrons via reduction at 

the cathode. 

 Ohm’s law states that the voltage drop across two points is proportional to 

the resistance between them.  Therefore, points of greater electrical resistance will 

have the largest voltage drops and thus the highest electric fields.  This is an 

important consideration because cross sectional area can be used to spatially alter 

electrical resistance and thus spatially alter electric fields.  A generic illustration 

of these principles demonstrates that the electric field is uniform where the cross 

sectional area is uniform (Fig. 2.1).  However, sharp boundaries produce localized 

field non-uniformities. 

 

 

Figure 2.1.  Generic illustration of an electric field.  A conductive medium, with 
insulating material at the boundaries, contains an anode and cathode.  The electric 
field was determined using finite elements methods in COMSOL software 
(arbitrary parameter inputs). 
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 If the charge or polarization properties of a given species are understood 

then electric fields can be precisely engineered to achieve a particular outcome.  

The applied voltage and the geometry of the insulated medium determines the 

electric field.  Therefore, these parameters can be intelligently adjusted to 

optimize a particular separation experiment.  Uniform capillaries are used for 

most isoelectric focusing experiments because homogeneous electric fields are 

required.  On the other hand, high resolution fabrication techniques are used to 

precisely vary the cross-section of a microfluidic channel for dielectrophoresis 

experiments.  Finite elements multiphysics modeling software (COMSOL 

Multiphysics) is used to compute engineered electric fields (Fig. 2.1).  Either the 

net transport of species can be modeled by inputting particle properties or the 

properties can be deduced by monitoring particle motion (Eqs. 1-2). 

2.3  Electrokinetic separation techniques 

2.3.1  Electrophoresis 

 Electrophoresis is historically the oldest and most common electrokinetic 

separation technique [1].  It exploits differences in charge via Eq. (1) and size via 

frictional drag force as the sample migrates through a gel or aqueous medium.  

Together the charge and size dependency are described by the single term 

electrophoretic mobility (µEP): 

r

q
EP 


6

   and              (4) 

Ev EP                 (5) 
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where (η) is the medium viscosity, (r) is the effective particle radius, (v) is the 

electrophoretic velocity.  In the case of larger particles (>100 nm) it is important 

to note that the net charge becomes complicated and is better described by 

electrical double layers [2].  The principles are the same although the effective net 

charge becomes altered because of this effect. 

Typical electrophoresis experiments start with a localized injection of the 

sample at the start of separation medium.  An electric field is subsequently 

applied.  Analytes having different electrophoretic mobilities migrate with 

different velocities (Eq. 5) and are separated in space.  Detection is conducted 

either spatially with imaging techniques (whole column scans or staining 

techniques) or temporally by fixed point detection (absorbance, fluorescence, etc.) 

whereby migrating species pass at different times [3, 4]. 

In addition to electrophoretic transport, systems with small cross sectional 

areas (<1 mm) and charged walls produce electroosmotic flow [5].  This fluid 

flow is the result of a body force exerted on the fluid which originates from an 

ionic double layer migrating via Eq. 1.  Therefore, the net motion of an analyte is 

the sum of that from electrophoretic (µEP) and electroosmotic (µEO) components: 

 EEv EPEONet                 (5) 

This is an important factor because it allows the simultaneous unidirectional 

transport of positive, neutral, and negative species without externally induced 

fluid flow. 

Electrophoresis tends to have the least degree of band broadening of all 

linear separation techniques and therefore, can provide the highest resolution [6].  
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However, the subtle dispersion effects can still be problematic for dilute samples 

near detection limits.  Thus, it is not surprising then that many gradient separation 

techniques have been developed to exploit differences in electrophoretic mobility 

while pre-concentrating analytes [7].  These include but are not limited to: 

isoelectric focusing [8], temperature gradient [9], dynamic field gradient [10], and 

counter flow techniques [11].  In addition, many microfluidic-based 

electrophoretic techniques have been developed which exploit unique features and 

operations [12].  Of these, isoelectric focusing is a main emphasis of this 

dissertation. 

2.3.2  Isoelectric focusing 

The development of isoelectric focusing has a relatively long history and 

has long been an alternative technique to electrophoresis [13].  It is essentially an 

electrophoresis experiment that is carried out with a buffered pH gradient along 

the separation medium.  It takes advantage of the acid/base properties of 

biopolymers where net charge is altered by exchange of protons with the solution 

(mostly protein, but sometimes cells, DNA, and other applications).  The pH 

gradient produces a velocity gradient for each analyte (Fig. 2.2).  At the low and 

high pH extremes species tend to have net positive and net negative charge, 

respectively.  Therefore, electrophoretic transport is towards a focal pH, the 

isoelectric point (pI), where a particular species has no net charge (Fig. 2.2).  In 

the early years of the technique (1960-1970s), the most important development 

was finding suitable means to engineer stable pH gradients with synthetic buffer 

mixtures called ampholytes [14].  More recently, an alternative strategy has been 
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developed which uses immobilized and spatially patterned polymers called 

immobilized pH gradients (IPGs) [15].  With the development of these methods, 

isoelectric focusing has become a central tool for the separation of bioanalytes. 

 

 

Figure 2.2.  Illustration of isoelectric point.  A hypothetical gradient velocity 
profile is plotted across space.  The driving force from all directions is towards 
the position of zero velocity where the pH produces a net neutral molecule.  

 

 An isoelectric focusing experiment can be broken down into four distinct 

parts: 1) sample loading, 2) transient state, 3) steady state, and 4) detection (Fig. 

2.3).  To begin an experiment, the ampholyte and analyte solution is loaded across 

the whole length of the separation medium.  Then the terminal ends are 

submerged in acid (anode) and base (cathode) solutions.  In some instances the 

ampholyte is added first and the analytes are added later.  Then the transient state 

is initiated by application of high voltage to cause electrophoretic migration of the 

sample components.  During this phase the sample components migrate and the 

ampholyte buffers begin controlling localized regions of pH.  This process has 

been observed to propagate from the terminal ends where the extreme pH zones, 

and thus highest charge states, are experienced [16].  After some period of time, 

the steady state phase is reached whereby sample components are separated from 
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one another and focused into their respective isoelectric points.  This simplistic 

model is typically used although ampholytes have been observed to have much 

more complex distributions at steady state [17].  If the analytes were omitted in 

the initial sample loading then they are introduced at this point and undergo a 

separate transient state.  The steady state is characterized by the mass transport 

balance between diffusion (D) and electrophoretic transport.  This balance allows 

the steady state concentration (C) distribution about its isoelectric point (xpI) for a 

given species to be described mathematically when one dimension (x) and a 

constant electrophoretic mobility gradient (ρ) are assumed [18].   

  D
xxE
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
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



              (6) 

 Finally, detection is conducted once a steady state is reached.  Gel 

mediums mostly employ staining and spatial imaging detection techniques.  

Capillary and microchannel systems typically utilize fixed point detection 

(temporal), and thus, require a mobilization phase where the contents are 

mobilized past the detector.  The offline detection and analysis of collected 

fractions is an alternative approach for all mediums. 
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Figure 2.3.  General depiction of isoelectric focusing.  Schematic illustration of 
the four main stages of an isoelectric focusing experiment: 1) sample loading, 2) 
transient state, 3) steady state, and 4) detection.  Detection is carried out via 
spatial scanning, mobilization for fixed point temporal detection, or fraction 
collection for offline detection. 
 

2.3.2.1  Gel isoelectric focusing 

Just like electrophoresis, isoelectric focusing first evolved from gel based 

mediums.  Gel materials were initially desired because of their ease to engineer, 

low diffusion coefficients (minimal dispersion), and compatibility with simple 

imaging based detection techniques [13].  Overtime however, gel isoelectric 

focusing became very popular because of the establishment of two-dimensional 

gel electrophoresis techniques which multiplicatively increased resolution and 

peak capacity [19, 20].  With its broad use in two-dimensional separations, gel 

isoelectric focusing has become one of the most universally applied bioanalytical 

techniques and in particular is used in many proteomic applications.  Agarose and 

polyacrylamide derivatives are the most common polymers used for gel 

production [21].  Furthermore, there is a large body of literature available for 
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selectively controlling the properties of gels including pore size, surface charge, 

and viscosity [20, 21].   

Although the ability to engineer desired properties with gels is desirable, it 

also represents a source of limitation for isoelectric focusing.  This flexibility 

requires manual manipulations and results in broad variations in gel properties 

and detection.  These factors make it difficult to compare data sets, introduce 

errors into experiments, and cause varied results [22].  This is particularly true for 

isoelectric focusing because the pI has a strong dependence on temperature, 

structure, and equilibrium properties with the medium.  Therefore, gel variations 

have strong influence on the outcomes of experiments. An example of this 

argument is detailed in Chapter 4.  This limitation of gels serves as perhaps one 

explanation for the evolution of capillary based techniques in the 1980s. 

2.3.2.2  Capillary isoelectric focusing 

 Compared to gel isoelectric focusing, capillary isoelectric focusing (cIEF) 

offers the advantage of better heat dissipation (allowing higher field strengths), 

faster run times (minutes versus hours), smaller sample handling (100 fold), and 

less manual manipulation [23].  It is not as good, however, when considering 

preparative scale applications and multi-dimensional coupling.  It provides 

equivalent resolving power, but this is sometimes compromised with the added 

need for a mobilization step.  Overall, the capillary format is very complimentary 

and has its own particular niche compared to gels [23].  More recently similar 

arguments would hold true for microfluidic based operations which offer certain 

advantages over capillaries [12]. 
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 The instrumentation is essentially the same except a small bore capillary 

(<200 μm) is used instead of a relatively large gel slab.  Unless whole column 

detection is performed [16], the focused contents of the capillary are mobilized 

past a fixed point detector or eluted from the capillary for offline analysis.  This 

can be done chemically [24], with electroosmotic flow [25], or pressure driven 

flow [26] and each approach offers different advantages and disadvantages [8]. 

2.3.2.3  Droplet-based isoelectric focusing 

 The field of droplet based microfluidics (DMF) is relatively new within 

the last 20 years.  DMF offers the potential for high throughput, small volume 

analysis through the manipulation of discreet fluid volumes (droplets) [27].  Using 

either pressure, electrical, or magnetic fields droplets are actuated on hydrophobic 

surfaces or within immiscible fluids.  This arrangement minimizes surface 

interactions which can be lead to sample losses and system fouling.  There are 

many different manipulations demonstrated in DMF systems including: droplet 

merging and splitting [28-30], immunoassays [31], analytical electrochemistry 

[32], large particle isolations [33, 34], study of reaction kinetics [35], and many 

other sample preparations.  However, one clearly lacking and difficult application 

is droplet based separations [36]. 

 The mechanism of isoelectric focusing lends itself well to be applied to 

droplet based microfluidics.  This is a unique format where the confining chamber 

(column, channel, slab gel, etc.) normally present in separations is not needed.  A 

superhydrophobic substrate is used on one side and air acts as the insulating 

material on the remainder of the drop. Droplet based isoelectric focusing only 
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requires metal electrodes and means to generate stable pH gradients.  Chapter 6 

demonstrates the principles of this technique.  This is a beneficial approach 

because aqueous capillary and micro-channel systems are impractical for 

preparative purposes and gel systems are often difficult to automate.  The 

fundamentals examined in this technique enable automatable, high throughput 

separations that could be fully integrated into droplet microfluidic systems. 

2.3.3  Dielectrophoresis 

 Dielectrophoresis (DEP) acts on particle dipoles (charge distribution) 

rather than net charge and is described by Eq. 2.  Large electric field gradients (>1 

×105 cm4 V-2 s-1) and large particle sizes (>20 nm) are needed for the magnitude 

of this force to be significant relative to thermal motion and other forces.  This 

means DEP is best suited to target large DNA or protein, viruses, cells, and other 

large bioparticle complexes.  This is a complimentary niche because other 

electrokinetic techniques are well suited for targeting smaller molecules.  The 

DEP dependence on high field gradient demands that devices be engineered at 

micro scales to provide precise control and avoid excessive joule heating.  Two 

approaches are predominant where either electrodes or insulating structures are 

patterned to produce the field non-uniformities. 

 Applied electric fields have the effect of moving charges and thus 

inducing dipoles across polarizable particles.  The theory of dielectrophoresis is 

typically derived from a spherical particle with the assumptions that it is 

homogeneously and linearly polarizable.  Thus, the dipole moment (p) depends on 

the field, and thus by substitution into Eq. 2 the DEP force depends on the 
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gradient of the field squared.  This makes DEP uniquely different from other 

electrokinetic forces because the direction of the motion does not depend on the 

direction of the field but rather on the direction of the field gradient.  The DEP 

motion is either towards that of greater or weaker field strength regardless of field 

orientation. 

 The DEP force can be exploited in different ways to achieve sample 

separation including bifurcation [33], differential deflection [37], or trapping [38].  

Usually, other forces such as electrophoresis, electroosmosis, and hydrodynamic 

flow are also employed in order to transport material through the medium and/or 

produce velocity gradient focusing zones.  DEP is a powerful approach because it 

targets the intricate parameter of polarizability while other electrokinetic 

techniques only target charge and size.  The polarizability of a particle depends on 

shape, rigidity, and electrical properties among other particle properties.  This 

sensitivity also makes it more difficult because precise control is needed over all 

physical parameters: pH, conductivity, temperature, surface properties, particle 

composition, and local electric fields. 
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Chapter 3 

Capillary Isoelectric Focusing Coupled Offline to MALDI-MS with Syringe 

Pump Mobilization 

3.1  Introduction 

 As already introduced in the previous chapters, protein analysis can 

provide insight into the health and disease state of humans.  Protein analytics 

often requires the examination of complex samples and heterogeneous expression 

patterns, thus highly selective tools are critical.  A key technique that can 

contribute towards the goal of protein analysis is capillary isoelectric focusing 

(cIEF) coupled offline to matrix assisted laser desorption/ionization mass 

spectrometry (MALDI-MS).  The coupling of cIEF with MALDI-MS has been 

only demonstrated a few times [1-6] and is in need of further development in 

order to reach its full potential.  The technical details presented here provide a 

basis for expanding the use of the technique to solve greater proteomic/analytical 

problems.  

 In cIEF, carrier ampholyte mixtures are used to establish a stable pH 

gradient inside a capillary suspended between an acid and base reservoir.  

Amphoteric analytes, typically proteins, will migrate with their local 

electrophoretic mobility until reaching the pH where their net charge is zero, 

defined as the isoelectric point (pI).  Once steady state is achieved in cIEF, the 

focused analytes are typically mobilized for detection and/or fraction collection.  

Most commonly this is either through chemical, electroosmotic, or hydrodynamic 

mobilization [7].  Of these, hydrodynamic mobilization is arguably the best 
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choice for interfacing with fraction collection for MALDI-MS detection.  It does 

not cause significant band broadening when the potential field is maintained [8], 

allows for predictable elution profiles unlike cathodic mobilization [9], and is 

compatible with internally coated capillaries known to improve cIEF performance 

[7].  In this work the syringe pump mobilization method is investigated.    

 Even though the syringe pump is designed to improve the ease of cIEF 

coupling to MALDI-MS, the additional hardware can cause failed runs if not 

handled properly.  These malfunctions are most often attributed to a disruption of 

the electric field or fluid flow by a large particle or gas bubble.  Such events can 

have detrimental effects to the electric and/or flow fields resulting in poor 

separations and null results.  Particles arise from sample contamination or 

precipitation during the focusing process, and resolving this problem has been 

discussed elsewhere [7].  Gas bubbles are a consequence of electrolysis, joule 

heating, and hardware handling issues at the site of liquid/air interfaces.  This is 

easily avoided in other mobilization modes since the capillary is suspended 

between reservoirs open to atmosphere.  Air bubbles are more frequent and 

problematic in syringe pump mobilization due to the additional capillary lines, 

dynamic junctions, and the need for air tight pressure seals.  The work here 

demonstrates the proper hardware and protocol necessary to make syringe pump 

mobilization compatible for cIEF and MALDI-MS interfacing.  Following careful 

protocol, reproducible elution times of markers (RSD < 5%) and accurate pI 

determination of proteins is demonstrated. 
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3.2  Materials and methods 

3.2.1  Chemicals and materials 

 Sinapinic acid, myoglobin (from equine skeletal muscle), β-lactoglobulin 

A & B mixture (from bovine milk), acetonitrile, trifluoracetic acid, fluorescent 

IEF markers (pI: 7.6, 6.8, 6.2, 5.5, 5.1, & 4), & BioChemika ampholyte pH 5-8 

were obtained from Sigma-Aldrich (St.Louis, MO, USA). Pharmalyte pH 3-10 

was obtained from Amersham Biosciences (Poscataway, NJ, USA).  Fused silica 

capillaries with an electroosomotic flow suppression coating were obtained from 

Microsolv (Long Branch, NJ, USA).  A Nanopure UV Ultra water system from 

Branstead/Thermolyne (Dubuque, IA, USA) was used to provide deionized 

nanopure water.  

3.2.2  Capillary isoelectric focusing 

 cIEF was performed on an in-house system utilizing a 50 cm x 75 μm (id) 

coated capillary (proprietary) for electroosmotic flow suppression (Fig. 3.1).  

Absorbance detection (325 nm) was carried out 7 cm from the capillary end using 

a capillary flow cell, DH-2000 deuterium light source, and USB 4000 bench top 

spectrometer (Ocean Optics, Dunendin, FL, USA).  For assessment of pI marker 

reproducibility, the sample solution was composed of 2% (w/v) Pharmalyte 3-10 

and six fluorescent pI markers (pI: 4.0, 5.1, 5.5, 6.2, 6.8, & 7.6) adjusted between 

6-50 μg/mL.  For validation of cIEF-MALDI-MS, the sample solution contained 

2% (w/v) carrier ampholytes of BioChemika 5-8, five fluorescent pI standards (pI: 

5.1, 5.5, 6.2, 6.8, & 7.6) adjusted between 6-50μg/mL, myoglobin (70 μg/mL), 

and a mixture β-lactoglobulin A & B (70 μg/mL).  The capillary was filled with 
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the sample solution using a pressure of 20 psi for approximately 25 seconds.  

Isoelectric focusing was run at 15 kV for 20 minutes in all experiments, using 10 

mM phosphoric acid as the anolyte and 20 mM ammonium hydroxide as the 

catholyte and sheath flow.  For the mobilization step, a syringe pump was used for 

capillary elution and sheath flow delivery at flow rates of 0.75 μL/min and 2.6 

μL/min respectively.  At the start of mobilization, the catholyte reservoir was 

removed to allow for fraction collection at the capillary tip.  Fractions were 

collected in thirty second intervals, corresponding to 1.4 μL, by contacting a 

ground steel MALDI plate (96 well) to the developing droplet where the sheath 

and capillary flows combined.  This configuration allowed for absorbance 

detection of pI markers and MALDI-MS detection of standard proteins.  It took 

25.3 minutes for mobilization to the online detector (43 cm) and 30 minutes to 

elute the entire sample out of the capillary (50 cm).  

3.2.3  Hardware components for instrumentation 

 After sample injection, the focusing capillary is connected to the anolyte 

junction using a microtee joint and microferrules (Upchurch Scientific, Oak 

Harbor, WA, USA).  The anolyte junction provides an air tight seal to the anolyte 

vial while allowing the focusing capillary to be easily removed for rinsing and 

sample injection.  Initially it is filled with anolyte solution and is coupled to the 

anolyte vial by an 8 cm connecting capillary.  The anolyte vial consists of a 3 mL 

vial with an airtight cap ensured by sealing with epoxy.  It has an embedded 

platinum electrode, a capillary line connected to the syringe (in-line), and a 

capillary line connected to the anolyte junction (out-line).  
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 The sheath flow configuration allows for fraction collection while 

maintaining an electrical connection across the capillary to minimize 

hydrodynamic flow band broadening.  The focusing capillary is threaded 

coaxially through an 18 gauge stainless steel tube, and a micro tee fitting allows 

for allows for delivery of the sheath flow from the syringe pump.  A ground wire 

attached to the outer part of the tube allows for the electrical circuit to be 

completed while performing syringe pump mobilization. 

3.2.4  MALDI-MS 

 For cIEF-MALDI-MS experiments, a saturated solution of sinapinic acid 

in 70/30 0.1% trifluoracetic acid/acetonitrile was used as the MALDI-MS matrix.  

Immediately after collecting a fraction, 2 μL of matrix solution was added.  The 

droplets were allowed to evaporate at room temperature and pressure until 

completely dry (~ 15 minutes).  Mass spectral data was collected on a Bruker 

Daltonics (Billerica, MA, USA) Autoflex MALDI-TOF spectometer.  The 

instrument was operated in linear, positive ion mode and the data was collected 

with a 20 kV extraction voltage and 250 ns delay time.  Excitation of the SA 

matrix was achieved using a 337 nm nitrogen laser.  Samples were evaluated at a 

m/z range of 4,000 to 40,000 and 500 shot spectrums were accumulated for each 

sample.  
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Figure 3.1.  Schematic illustration of cIEF-MALDI-MS instrument. Syringe pump 
mobilization is used for mobilization.  The anode and cathode are marked by the 
positive and ground symbols respectively.  The inset illustrates the sheath flow 
arrangement allowing for fraction collection while maintaining the potential field.  

 

3.3  Results and discussion 

 At the start of a cIEF separation it is critical to ensure that no bubbles 

become trapped inside the junctions or capillaries. Bubbles can disrupt the applied 

field and/or prevent capillary elution causing poor cIEF reproducibility. To avoid 

this problem the anolyte vial and the connecting capillaries are completely filled 

with anolyte solution. Similarly, the junctions are filled with excess anolyte 

solution to prevent air entrapment upon connection of the fittings. The time of 

atmosphere exposure should be minimized for each air/liquid interface to prevent 

any significant height induced hydrodynamic flow or evaporation which could 

introduce air into the system. It is also important to vent the anolyte vial after 

multiple trials to remove any gas generation due to long periods of electrolysis or 

Joule heating. Establishing these protocols is critical since applying pressure to a 

system with bubbles can cause compression rather than fluid transport; thus, 
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capillary contents will fail to elute so long as the applied pressure is compensated 

by a compressible bubble. The collapsing bubble phenomenon can be identified 

by unusually long or inconsistent elution times. Chaotic changes in the current 

can also signal interference in the focusing or mobilization steps due to bubbles. 

 Following this procedure, reproducible cIEF separations of pI markers are 

observed over several trials. A representative electropherogram shows well 

defined peaks (A325nm) of six fluorescent pI markers in pH 3-10 (Fig. 3.2A). The 

poor resolution between pI 5.5 and 5.1 is not indicative of resolution loss due to 

hydrodynamic mobilization since the β lactoglobulin species exhibit better 

resolution although having a smaller pI difference (Δ pI ~0.2). The relative 

standard deviation of elution times for the pI markers are less than 5% for all 

peaks over ninety trials (Fig. 3.2B), which is comparable to non-coupled cIEF 

literature data [10]. However, the reproducibility of proteins would likely be less 

due to stronger surface interactions with the capillary wall [11]. It can be seen in 

the plot that the pH gradient does not exhibit uniform linearity over the entire 

range, and thus care must be taken in determining experimental pIs [12]. The 

elution times of the standard proteins was determined by MALDI-MS detection 

after correcting for the 4.1 minute delay between absorbance detection and 

fraction collection. The fraction having the highest MS signal was used for 

determining the experimental protein pI after the five pI marker elution times 

were fitted with a second order polynomial (R2 =0.99). Using this approach, the 

pI of myoglobin, β-lactoglobulin B, and β-lactoglobulin A was found to be 7.0, 
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5.3, and 5.0 respectively. These pI determinations are in good agreement with 

literature values [1-2].  

 

 

Figure 3.2.  cIEF Results from pI markers.  (A) cIEF elution UV absorbance trace 
(315 nm) showing the separation of six pI markers (pI labeled above each peak) in 
pH 3-10. (B) Corresponding pH gradient plot with standard deviation over several 
trials (n=90) as error bar.  

 

 The resultant MALDI-MS spectra obtained for all of the collected 

fractions reveal good separation between each protein species (Fig. 3.3A-B). Each 

of the proteins was found in two to three fractions and thus the peak widths are 1-
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1.5 minutes which is comparable to the pI markers. The myoglobin signal (pI 7.1; 

MW 16,950 Da) is well resolved from the two β-lactoglobulin species. Baseline 

resolution between β-lactoglobulin A (pI 5.0; MW 18,360 Da) and β-

lactoglobulin B (pI 5.3; MW 18,270 Da) was only observed when using the 

shallower pH gradient 5-8. The MS signals likely are subject to ampholyte 

suppression although the extent to which was not examined [6, 13]. Overall, 

MALDI-MS protein detection extends the applicability of cIEF by improving 

detection limits relative to absorbance measurement. 
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Figure 3.3.  cIEF-MALDI-MS results from standard proteins.  (A) All MALDI-
MS spectra of fractions collected from a cIEF separation of myoglobin (pI 7.1; 
MW 16,950 Da), β-lactoglobulin A (pI 5.0, 18,360 Da), and   β-lactoglobulin B 
(pI 5.3, 18,270 Da). (B) Individual spectra of the main pI fractions for each 
protein. 
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3.4  Concluding remarks 

 Syringe pump mobilization is found to be compatible in coupling cIEF 

with MALDI-MS for protein analysis. In this investigation, problematic or null 

cIEF experiments were primarily the result of bubbles entrapped in the system. 

Through careful attention to hardware components and interfaces, bubbles were 

eliminated and the syringe pump mobilization method was shown to have 

competitive reproducibility of pI markers and accurate pI determination of 

standard proteins. There does not appear to be significant cIEF resolution loss due 

to the fraction collection as the β-lactoglobulin A & B species were baseline 

resolved although differing by only two amino acids. 
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Chapter 4 

Examining Serum Amyloid P Component Microheterogeneity Using 

Capillary Isoelectric Focusing and MALDI-MS 

4.1  Introduction 

The developments in coupling capillary isoelectric focusing (cIEF) and 

matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) 

presented in Chapter 3 are used to examine the heterogeneity of human serum 

amyloid P component (SAP).  SAP is a member of the pentraxin protein family 

and is well known for its calcium dependent binding properties and presence in 

amyloid plaques [1].  It is a decameric/pentameric glycoprotein composed of 

monomers (M.W. ~ 25 kDa) each having a single complex biantennary N-linked 

glycosylation [2].  Interestingly, there are several conflicting findings regarding 

the source and number of existing SAP isoforms [2-6].  Two predominant themes 

are found in the literature regarding SAP microheterogeneity.  One theme, based 

on mass spectrometry, suggests that SAP is relatively homogeneous and observed 

glycan variance is primarily a result of different numbers of sialic acid residues 

[2, 6].  Both studies observed varying degrees of sialylation (three forms 

corresponding to disialo, monosialo, and asialo), but different conclusions were 

drawn in terms of the endogenous nature of these species.  The second theme 

suggests that SAP has much broader heterogeneity as determined by gel IEF or 

2D gel electrophoresis (2DE) visualized by protein staining [3-5].  In each of 

these gel separation studies a different number of isoforms were identified (4 to 8) 

with differing isoelectric points (pI) (4.7 to 6.1, Table 1).  Even more 



 42

incongruous, each of these studies concluded uneven sialylation was not the cause 

of the multiple bands. 

 

Table 4.1.  Literature pI values and isoforms for human SAP 

Reference [Urea] pI # of Isoforms 
Technique, Sample, 
Purification Method 

[25] 0 M 4.1 N/A Chromatofocusing, 
Pool, Sepharose 4B 

[5] 0 M 5.6-6.2 N/A Gel IEF, Individual, 
Sepharose 4B 

[7] 8 M 6 1 Gel IEF, Both, PE 
Sepharose 

[26] 6 M 5.7-5.8 1 Gel IEF, Pool, 
Sepharose 6B 

[3] 9.6 M 5.95-6.08 4 Gel IEF, Pool, 
Agarose 

[4] 8 M 5.65-5.87 6 Gel IEF, Individual, 
Sepharose 4B 

[5] 8 M 4.7-5.7 6 to 8 Gel IEF, Individual, 
Sepharose 4B 

 

 In terms of the second theme, there exists a large amount of experimental 

and statistical uncertainty.  It is difficult to discern quantitative and analytically 

significant information from these specific gel-based separations for several 

reasons.  In a general sense, the interpretation of the patterns and the intensities of 

these gels were limited to the broad estimation error associated with manual 

qualitative assessment.  This, along with potential experimental difficulties and a 

lack of further characterization, may account for the significant differences in data 

and interpretation.  In fact, one study even suggested the additional bands 

observed in gel IEF characterization to be the result of experimental error 

associated with impurities or the staining process [7].  
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 No matter the limitations of previous works, pI based separations of SAP 

have frequently revealed multiple bands suggesting mass spectrometric studies 

may not have completely identified all isoforms (e.g., unresolved peaks).  

Therefore, it would be insightful to separate SAP using a more controlled IEF 

method, characterize separated fractions with mass spectrometry, provide 

sufficient sampling to apply statistical significance, and examine both pooled and 

individual samples.  Such a comprehensive, quantitative analysis will provide new 

information to either support existing theories or elucidate novel isoforms. 

 cIEF was chosen for this study as a useful technique to examine SAP 

microheterogeneity since it is less reliant on manual manipulation (gels require 

manual preparation, loading, staining, and visualization), known to have 

comparable resolution to carrier ampholyte gels, and still compatible with mass 

spectrometry coupling [8].  As a very brief background for IEF, in general, a 

uniform electric field and pH gradient are applied to the separation length which 

is most often a gel or capillary.  This causes amphoteric species and proteins to 

change charge states while migrating electrokinetically due to acid/base reactions.  

Positively charged proteins migrate towards the cathode or higher pH region until 

becoming neutral and vice versa for negatively charged proteins.  The pH where 

the protein reaches a net neutral state and ceases to electromigrate is defined as 

the pI.  A more comprehensive comparison of gel and capillary separations can be 

found elsewhere [9]. 

 After steady state focusing is achieved in cIEF, the capillary contents are 

typically mobilized allowing for detection of concentrated bands by absorbance or 
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fluorescence [8].  These detection modes have limited applicability since 

absorbance detection requires high protein concentrations (LOD ~10 μM) and can 

suffer from ampholyte/background interference while fluorescence detection 

often requires the use of linked fluorophores.  Additionally, they make it difficult 

to interpret complex electropherograms, lacking alternative information aside 

from pI. 

 A less developed but more universal approach is to interface cIEF with 

MS [10].  This offers improved detection limits (LOD ~10 fmol or ~10 nM for 1 

uL capillary volume) relative to absorbance detection while providing orthogonal 

separation by molecular weight, similar to traditional 2DE.  Additionally, the 

accurate and precise determination of molecular weight allows for improved 

characterization.  Electrospray ionization (ESI) and MALDI are the two most 

compatible ionization modes for MS analysis of proteins.  With respect to cIEF 

coupling, ESI receives more attention probably owing to its online coupling 

ability [11].  On the other hand, cIEF-MALDI-MS has only been demonstrated a 

few times and its full potential has yet to be realized [12-18].  MALDI-MS uses 

offline coupling providing semi-permanent sample storage for multiple analyses 

and can generate simpler spectra.  Technically, this increases analysis time and if 

not performed properly can result in additional band broadening. 

 In the current work, a quantitative examination of SAP microheterogeneity 

with pooled and individual samples is undertaken.  This work clarifies the 

microheterogeneity profile of SAP isolated from a pooled serum sample by direct 

MALDI-MS and with cIEF-MALDI-MS.  Only sialic acid variants are observed 
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and SAP is found to be highly homogenous.  Additionally, SAP preparations 

isolated from several hundred individuals were analyzed using mass spectrometric 

immunoassay (MSIA).  Included in this population study were samples from 

individuals having type-2 diabetes, myocardial infarction, congestive heart 

failure, and cancer.  No significant population heterogeneity was observed 

amongst healthy and disease state individuals, which supports the uniform 

microheterogeneity model concluded from the pooled sample. 

4.2  Materials and methods 

4.2.1  Chemicals and materials 

 Acetonitrile (ACN), ammonium hydroxide, phosphoric acid, sinapinic 

acid, sodium chloride, sodium phosphate, and trifluoracetic acid (TFA) were 

obtained from Sigma-Aldrich (St. Louis, MO, USA).  Pharmalyte brand carrier 

ampholyte with a pH range of 4-6.5 was obtained from Amersham Biosciences 

(Amersham, UK).  Fluorescent pI markers 5.1 & 4.0 were obtained from Fluka 

(Buchs, Switzerland).  Neuraminidase and sodium citrate buffer were obtained 

from New England Biolabs (Ipswich, MA, USA).  Polyimide coated fused silica 

capillaries (75 μm inner diameter) with an internal coating for electro-osmotic 

flow suppression were obtained from Microsolv (Long Branch, NJ, USA).  Stock 

serum amyloid p component purified from pooled human plasma using a 

proprietary modification to a published method was obtained from 

Calbiochem/EMD Biosciences (La Jolla, CA, USA) [19].  Slide-a-Lyzer mini 

dialysis units were obtained from Pierce (Rockford, IL, USA).  Individual plasma 

samples were obtained from ProMedDX (Norton, MA, USA) under Institutional 
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Review Board approval.  Affinity pipette tips for mass spectrometric 

immunoassay (MSIA) were obtained from Intrinsic Bioprobes (Tempe, AZ, 

USA).  Anti-SAP polyclonal antibody was obtained from DakoCytomation 

(Carpinteria, CA, USA). Deionized water was generated using a Nanopure UV 

ultra pure water system from Barnstead/Thermolyne (Dubuque, IA, USA). 

4.2.2  Mass spectrometric immunoassay 

 SAP was analyzed from 374 individual plasma samples to carry out a 

population based study.  In addition to healthy individuals, the cohort including 

the following disease states: type-2 diabetes (T2D), congestive heart failure 

(CHF), history of myocardial infarction (hMI), and cancer.  The sample 

distribution is as follows: 133 healthy, 29 healthy (serum), 87 T2D, 25 CHF with 

T2D, 25 CHF and hMI, 29 with CHF, 17 CHF with hMI and T2D, and 29 cancer 

(9 prostate, 9 breast, and 11 colon cancer).  

 SAP was isolated from these plasma samples using MSIA tips derivatized 

with anti-SAP as previously described [20].  The tips were removed from storage 

in buffer (0.01 M HEPES, 0.15 M sodium chloride) at 4 °C and loaded onto a 

Beckman Multimeck 96 robotic workstation (Fullerton, CA, USA) capable of 

processing 96 tips in parallel.  Samples for affinity capture were prepared by 

mixing 67 μL of plasma and 33 μL of a detergent/buffer solution (4.5 % Tween 

20, 0.15 M octyl-β-glucopyranoside, 1.5 M ammonium acetate, 0.67 M sodium 

phosphate, and 1 M sodium chloride).  Each MSIA tip was washed with 30 μL of 

the sample 1000 repetitions: where one repetition equals one aspirate and 

dispense cycle.  After immuno-precipitation was complete, the tips were rinsed (5 
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repetitions of 150 µL) with the following solutions in the order listed: PBS (0.1 M 

sodium phosphate, 0.15 M sodium chloride, pH 7.2), HBS-P (0.01 M HEPES, 

0.15 M NaCl, 0.05% v/v Surfactant P20, pH 7.4), water, 0.1 M Tris-HCl (pH 4.6).  

The tips were rinsed a final time with water (10 repetitions of 150 µL) before they 

were dried by blotting with a towel.  Captured SAP was eluted from the tips by 

aspirating 4 µL of matrix solution (saturated sinapinic acid in 0.5% TFA/ACN 

(3/2, v/v)) and dispensing it onto a seeded plate.  The spotted protein preparations 

were quickly crystallized under vacuum for MALDI-MS analysis.  The thin layer 

of matrix or seeded plate was prepared by gently rubbing 100 µL of a matrix 

solution (sinapinic acid in isopropanol/acetonitrile/water (9/2/1 v/v)) across the 

plate with a towel until dry. 

For ESI analysis, MSIA tips were used to extract SAP from plasma and 

rinsed as described above along with HBS, distilled water, 2 M ammonium 

acetate/acetonitrile (3:1 v/v), and distilled water.  Captured SAP was manually 

eluted from the tips by aspirating 5.5 µL of a mixture of 100% formic 

acid/acetonitrile/distilled water (9/5/1 v/v/v), mixing for 20–30 seconds, and 

dispensing into a 96-conical well polypropylene autosampler tray.  An additional 

5.5 µL of distilled water was aspirated into the pipette tip which was used to 

dilute the eluted sample. 

4.2.3  Capillary isoelectric focusing 

 cIEF was performed on a lab-built instrument using a 40 cm x 75 μm id 

internally coated capillary for electroosmotic flow suppression.  For all cIEF runs 

10 mM phosphoric acid and 20 mM ammonium hydroxide were used as the 
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anolyte and catholyte reservoirs, respectively.  The instrument was configured to 

allow for online absorbance detection and fraction collection for offline MALDI-

MS detection.  Absorbance was monitored at 220 nm in capillary flow cell using a 

deuterium light source (Mikropack DH2000), fiber optic cables, and spectrometer 

(Ocean Optics USB 4000).  A sheath flow arrangement, as described previously, 

allowed for fraction collection without disrupting either the focusing voltage or 

pH gradient [18].  Briefly, the capillary was threaded through an 18 gauge 

stainless steel tube (1 mm protrusion) where the ground contact was made.  At the 

time of mobilization, catholyte solution was pumped at a steady rate through the 

steel tube in order to create catholyte droplets at the capillary tip. 

 Sample solutions prepared with volumes as low as 5 μL contained 100 

ng/μL SAP, 2% (w/v) pharmalyte (pH 4-6.5), and 20 ng/μL pI markers 5.1 & 4.0.  

The sample mixture was pressure injected through the entire capillary volume (1.8 

μL) using 10 psi nitrogen.  Then the anodic end of the capillary was threaded into 

the anolyte vial using Upchurch fittings to create an airtight junction and the 

cathodic end was submerged into the catholyte vial.  Focusing was conducted 

with an applied voltage of 12 kV for 10 min using a Spellman (Hauppauge, NY, 

USA) high-voltage power supply and the current decreased from 30 to 5 μA.  

Subsequently, the catholyte vial was removed and a syringe pump was used for 

pressure mobilization of capillary contents at 0.15 μL/min and delivery of 

catholyte sheath flow at 5.25 μL/min.  This generated droplets at the capillary tip 

(5.4 μL/min) where the sheath and capillary flows combined.  A MALDI target 

plate was lightly contacted to droplets in 10-30 second intervals in order to 
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capture them in discrete fractions (0.9-2.7 μL) for MALDI-MS analysis.  This led 

to fractions differing in pI by approximately 0.1 pH units.  The matrix solution 

(saturated sinapinic acid in 0.5% TFA/ACN (2/1, v/v)) was added immediately 

after collecting fractions on the plate, since adding it to the sheath flow can cause 

resolution loss during the spotting process [17]. 

4.2.4  Desialylation of SAP 

 A reaction mixture of stock SAP (250 ng/μL), neuraminidase (1.25 

units/mL), and pH 6 sodium citrate buffer (50 mM) were incubated at 37°C for 1 

hour to remove terminal sialic acid residues.  Afterwards the sample was dialyzed 

against 1 L of deionized water at room temperature for 1 hour to remove buffer 

components found to be problematic for cIEF.  Successful desialylation was 

confirmed by directly characterizing on MALDI-MS.  In one experiment, 

desialyated SAP was combined with stock SAP in order to enrich the asialo 

variant to create a mixed sample for cIEF-MS. 

4.2.5  Mass spectrometry 

 For the MSIA population study, MALDI-MS analysis was performed 

using a Bruker (Billerica, MA, USA) Ultraflex instrument operating in the 

positive ion, delayed-extraction, and linear mode with the following parameters: 

ion source 1 at 25.00 kV, ion source 2 at 23.10 kV, lens at 9.00 kV, 90 ns delayed 

extraction, and deflection signal suppression up to m/z 8000.  A 96 spot gold 

target was used to collect the eluted proteins.  Ten thousand laser-shots were 

accumulated for each mass spectrum.  The spectra were externally calibrated with 

a mixture of proteins supplied by Bruker (Cat. No. 206355 and 207234), baseline 
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subtracted, and smoothed using the Gauss algorithm (width 1 m/z, cycles 1) 

within Flex Analysis software. 

For ESI analysis, 8 µL of sample was loaded for pre-concentration/solvent 

exchange before eluting into a Bruker MicrOTOF-Q mass spectrometer following 

the parameters described previously [21].  For data analysis, approximately 1 min 

of recorded spectra were averaged across the chromatographic peak maximum 

followed by spectral deconvolution within 1000 Da to all identified peaks using 

Bruker data analysis v3.4 software.   

 For analyzing the cIEF fractions, a 96 spot ground steel target was used 

for all experiments.  Immediately after collecting each cIEF fraction, 2 μL of 

matrix solution was added to allow for dried droplet deposition.  Protein standards 

without cIEF separation (SAP and desialyated SAP, 500 ng each) were spotted 

directly onto the target plate and 2 μL of matrix solution was immediately added.  

Droplets on the target plate were allowed to air dry at room temperature and 

pressure.  All MALDI-MS spectra were generated on either a Bruker Microflex or 

Autoflex mass spectrometer generated by accumulating 500 shots.  The 

instrument was operated in positive ion mode with a 20 kV extraction voltage and 

300 ns delay time.  The spectra were calibrated externally using equine 

myoglobin, baseline subtracted, and smoothed using the Gauss algorithm (width 1 

m/z, cycles 1) within Flex Analysis software. 
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4.3  Results and discussion 

4.3.1  Pooled SAP sample assessed via MALDI-MS 

 The heterogeneity of pooled SAP was analyzed by directly placing 

samples on a MALDI target plate and subjecting them to mass spectrometric 

analysis (Fig. 4.1A).  The primary signal was at 25,460 m/z which is in good 

agreement with the theoretical molecular weight of the SAP monomer with two 

sialic acid residues (disialo) [22].  A peak at 25,170 m/z was observed and 

assigned to the loss of a single sialic acid residue (-290 Da).  Additional peaks 

were observed (25,670 and 25,380 m/z) with a mass shift of +220 Da and are 

consistent with matrix adducts of sinapinic acid (224 g/mol) of the disialo and 

monosialo species.  To prepare for and be consistent with experiments noted 

below, relatively high laser power for desorption and ionization was used, 

resulting in a small additional peak consistent with the asialo form at 24,880 m/z.  

This is caused by the sialic acid groups being somewhat labile in response to the 

ablation process, and is considered to be an artifact of the ionization process.  In 

ESI-MS analysis, only the disialo and monosialo signals were observed 

confirming that the asialo species is virtually non-existent in native SAP 

preparations and is likely an artifact in MALDI-MS (Fig. 4.1B).  Furthermore, the 

asialo signal dominates the overall spectra when using much higher laser powers 

(data not shown). 

Supporting this interpretation of the mass spectra is data collected from 

pooled SAP samples treated with neuraminidase (which selectively and 

quantitatively removes sialic acid), where signals at 25,460 m/z, assigned to the 
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disialo, and 25,170 m/z, assigned to monosialo, are minimized and the signal 

consistent with asialo (24,880 m/z) is significantly enhanced (Fig. 4.1C).  

Additional peaks are consistent with matrix adducts.  These quantitative results 

are significantly different than the much broader heterogeneity observed in the gel 

IEF analyses [3-5].  One possible explanation for the difference between these 

findings and previous results is that direct mass spectrometric analysis may not 

completely resolve all isoforms and another separation mode is warranted. 

 

 

 

Figure 4.1.  MALDI-MS results from pooled SAP.  (A) Representative mass 
spectra of  SAP from MALDI-MS, (B) SAP from ESI-MS with y-axis zoomed to 
show details, and (C) MALDI-MS of SAP after 1 hour incubation with 
neuraminidase at 37°C.   For native SAP, the peaks at 25,460, 25,170, and 24,880 
m/z represent the disialo, monosialo, and asialo SAP monomers, respectively.  
Additional peaks in (A) and (C) represent matrix adducts with a shift of 210-220 
Da corresponding to sinapinic acid (224 g/mol). 
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4.3.2  Pooled SAP sample assessed via cIEF-MALDI-MS 

 According to gel IEF studies of pooled and individual SAP, multiple 

bands were interpreted to be isoforms that differ in pI by at least 0.02 and as much 

as 1.0 pH units which can not be explained in light of mass spectrometry analysis 

(Table 1) [3-5].  The use of modern capillary-based isoelectric focusing allows for 

resolution of pH units as small as 0.05 and is compatible with MALDI-MS with 

minimal separation efficiency loss [17, 23].  In support of effective cIEF and 

MALDI-MS coupling, baseline resolution of variants β-lactoglobulin A and B 

(ΔpI 0.3) was demonstrated in Chapter 3, although differing by only two amino 

acids [18].  

 Only a single band along the pI dimension resulted from quantitative 

cIEF-MALDI-MS of pooled SAP, in both native and denaturing conditions (8 M 

urea), in distinct contrast to some gel IEF results (Fig. 4.2A-B) [3-5].  The single 

band had a pI 4.2 ± 0.1 (n=4) for the native form and 5.0 ± 0.1 (n=4) for the 

denatured one.  In all cases, the sialic acid variants were found at the same pI and 

no other mass spectral signals were found in any other pI zones.  Higher laser 

powers were used to ensure optimal detection limits for potentially dilute 

isoforms, and thus, a weak signal for the asialo protein was observed apparently 

from fragmentation.  The pI shift in the presence of urea is likely due to SAP 

denaturing and thus disassociating into monomers.  The pI was determined by 

calibrating the pH gradient with the use of pI markers 5.1 and 4 which were 

detected by online absorbance detection at 220 nm (Fig. 4.3) [24].  
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Figure 4.2.  cIEF-MALDI-MS results from pooled SAP samples.  (A) SAP, (B) 
SAP with 8 M urea, and (C) a mixture of SAP & desialylated SAP with 8 M urea.  
Desialylated SAP generated by incubating SAP with neuraminidase at 37 °C for 1 
hour.  No spectral signals were observed in any other fractions not shown. 
   

For pooled SAP without urea, the experimental pI agrees with the pI value 

of 4.1 as determined by chromatofocusing [25] but differs from the pI value of 

5.6-6.2 observed in gel IEF [5].  In the later case, it is possible that SAP was 

denatured in the sample preparation or in the acrylamide gel during focusing since 

this pI value agrees with pI of denatured SAP in other gel IEF experiments [3-5].  

For denatured pooled SAP in presence of 8 M urea, the pI is significantly lower 

than the average pI of 5.8 (± 0.3) from several gel IEF experiments [3-5, 7, 26], 

and can likely be attributed to the contrasting conditions of the medium, exposure 

of gel to atmosphere, or difference in temperature.  The pooled SAP focused close 

to the pI markers, suggesting possible interaction between the protein and 

markers.  However, experiments with and without markers produced identical 

results.  
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Figure 4.3.  Electrophorogram of pI markers.  Representative absorbance profile 
(220 nm) of cIEF run illustrating detection of pI markers (5.1 & 4.0) and steady 
decay of background absorbance due to ampholyte mixture.  The dashed line (10 
min) indicates the time at which mobilization is initiated. 
 

The single band observed in all cIEF experiments is in precise agreement 

with the uneven sialylation peaks identified in direct MS.  Sialic acid residues 

cause a subtle change in pI, on the order of 0.1 pH units for a different protein 

[27]. SAP sialo-forms are not expected to be resolved by pI since the fraction 

interval of 0.1 pH unit encompasses the expected pI difference.  Additionally, the 

situation is further complicated by artifacts from the ionization process causing 

some disialo species to be detected as mono or asialo ones (and mono detected as 

asialo).  The subtle pI difference is further supported in an experiment where the 

asialo species is enriched using neuraminidase and not completely resolved from 

disialo (Fig. 4.2C).  It is clear, however, that the species are partially resolved 

since the asialo species provides a unique signal for the pH 5.1 fraction.  

Nonetheless, the lack of pI resolution amongst SAP sialo-forms was not 
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concerning since they are easily separated by mass in the spectra.  Overall, these 

findings support the simple model that uneven sialylation is the main source of 

isoforms previously suggested using MS [2, 6]. 

 These cIEF MALDI-MS results do not support the level of heterogeneity 

interpreted from previous gel IEF studies [3-5] and a number of experimental 

details can account for these discrepancies.  Individual bands are not resolved 

from one another in Kubak et al., but data were interpreted as identifying three 

isoforms within 0.15 pH units (a fourth was observed in 2DE) [3].  Similarly, 

Serensen et al. reports significant problems with the profile and width of the pI 

markers suggesting considerable run-to-run variance, yet identifies six isoforms 

within just 0.22 pH units from only two data sets [4].  Nybo et al. details that the 

protein markers (carbonic anhydrase and ovalbumin) create multiple bands in the 

presence of urea, yet claim as many as seven SAP isoforms within 1 pH unit 

without discussing the obvious experimental problems [5].  Not surprisingly, there 

is considerable disagreement amongst these results and with other gel IEF studies 

which did not observe SAP isoforms [7, 26].  Although different, the pooled SAP 

data shown here using cIEF-MALDI-MS is more reliable than the aforementioned 

gel IEF studies since it is quantitative and relied on minimal manual 

manipulation. 

4.3.3  Mass spectrometric immunoassay of individual SAP samples 

 Within the pooled samples, an individual’s heterogeneous SAP variant 

may be diluted such that it is no longer detectable.  If there is a large variation 

among individuals, then the provenance of the samples in the previous studies 
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could provide an explanation for the varied results.  To determine the extent of 

heterogeneity across the population, SAP preparations isolated from 374 different 

individuals were analyzed using mass spectrometric immunoassay [6].  The 

MALDI-MS instrument was operated at a lower laser power to maximize peak 

resolution.  With the exception of one, identical spectra were obtained for all 

individuals, regardless of health state (Fig. 4.4).  The disialo and monosialo 

signals were consistent with direct and cIEF separated pooled SAP samples.  The 

one individual which is an exception showed an additional peak at 25,780 m/z (+ 

320 Da relative to disialo).  Currently, it is unclear what this peak represents and 

additional studies are needed.  The spectral uniformity was confirmed 

quantitatively as shown by the average relative peak areas and standard deviations 

across the population: disialo (25,460 m/z) 89 ± 1%, monosialo (25,170 m/z) 3.8 

± 0.8%, disialo matrix adduct (25,680 m/z) 4.0 ± 0.2%, and monosialo matrix 

adduct (25,385 m/z) 3.3 ± 0.5%.  The process of matrix adduct formation is 

poorly understood [28], and thus it is unclear why the relative matrix adduct 

signals are not proportional to their parent ions.  Overall, these results suggest that 

there is no significant population heterogeneity or any protein modifications 

specific to the disease states examined (unpublished results).  Thus, it is unlikely 

that previous conflicting findings of SAP isoforms are due to differences in 

sampling. 
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Figure 4.4.  Mass spectrometric immunoassay results of individual SAP samples.  
Representative MALDI mass spectra of SAP preparations from 20 individuals 
overlaid.  The primary peaks are at 25,460 m/z (disialo) and 25,170 m/z 
(monosialo), and the other peaks represent matrix adducts (25,680 and 25,385 
m/z).  These spectra are representative of 373 out of 374 samples tested from 
individuals as supported by the relative peak areas and standard deviations shown 
above each signal. 
 

4.4  Concluding remarks 

 Through this work, a comprehensive examination of SAP 

microheterogeneity is undertaken using pooled and individual preparations in 

order to clarify the inconsistent findings across SAP literature.  Only sialic acid 

variation was observed when analyzing pooled SAP with direct MALDI-MS and 

cIEF-MALDI-MS.  Here SAP isoforms disialo (25,460 Da) and monosialo 

(25,170 Da) were identified and found to have similar pIs of 4.2 ± 0.1 and 5.0 ± 

0.1 in its native and urea denatured states, respectively.  However, the relative 

amounts of these two species may be biased depending on the extent of sialic acid 

loss resulting from the laser induced fragmentation process.  Considering the 
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quantitative and instrumental advantages of the methods used, this data provides 

new information in support of the previous theory suggesting uneven sialylation is 

the primary microheterogeneity source.  Thus, it is concluded that SAP has no 

isoforms, frequent amongst the population, which were previously thought to 

exist but were uncharacterized.  The SAP population study supports this 

conclusion since 373 of 374 individual SAP preparations, across an array of 

disease states, generated essentially identical mass spectral data.  
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Chapter 5 

MALDI-MS Studies Using Photolithographically Patterned Silicon Nanowire 

Superhydrophobic Surfaces 

5.1  Introduction 

Mass spectrometry (MS) offers a number of advantages for biomolecular 

detection including low detection limits (on the order of 100’s of fmol), high 

sensitivity, and large molecular weight dynamic range (1,000 to 100,000 amu).  

As demonstrated in the previous chapters, MS can improve biomolecule detection 

for capillary separations by overcoming the limitations of absorbance and 

fluorescence.  Either electrospray ionization (ESI) or matrix assisted laser 

desorption/ionization (MALDI) are predominantly used as ionization modes for 

interfacing mass spectrometry with separation techniques.  These techniques have 

complimentary advantages and disadvantages, and thus no single method is 

universally employed [1].  The emphasis of this dissertation is on MALDI-MS. 

Although MALDI-MS can improve detection, it has its own set of 

limitations.  For instance, it is universally recognized to produce non-quantitative 

responses and often require optimized sample deposition specific to each sample 

[2].  This point is illuminated when considering many different deposition 

strategies have been developed to improve the performance of MALDI-MS: dried 

droplet [3], slow matrix crystallization [4], thin film matrix layer [5], fast 

evaporation [6], and various probe modifications [7].  Clearly, the crystal 

morphology and distribution of analyte in matrix plays a critical role in a 

MALDI-MS experiment [8], but there are a limited number of studies which 
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explore these dependencies and almost no quantitative physical investigations.  

Furthermore, a universal mechanistic role of the matrix is questionable as 

different analytes and matrices have been shown to produce contrasting results [9, 

10].   

 One potential limitation in MALDI-MS is the mismatch in typical spot 

size (1-2.5 mm) and laser size (~100 μm).  Thus, the laser only samples a 

heterogeneous portion of the deposited material at a given time [11].  The use of 

miniaturized deposition techniques has emerged as one tactic to help overcome 

this limitation [12].  It is hypothesized that a smaller spot size will increase the 

analyte density resulting in more sensitive detection and improve sampling 

homogeneity leading to better signal precision.  Various strategies have been 

developed including electrical droplet manipulations [13, 14], incorporation of 

small channels or vials [15, 16], and the use of hydrophobic materials [17-19].   

The work of Schuerenberg et al. is probably the most well-known 

contribution utilizing hydrophobic surfaces to miniaturize MALDI sample 

deposition [18].  They developed and commercialized a Teflon-coated plate with 

200 µm diameter gold, hydrophilic spots (AnchorChipTM plates) which improved 

MALDI-MS sensitivity and detection limit.  This and most other efforts report 

miniaturized deposition improves MALDI-MS sensitivity because of analyte 

enrichment.  Although logical, this is fairly presumptuous since there lacks 

sufficient control experiments to corroborate such a hypothesis.  The analyte 

density is increased through miniaturized deposition, but the effects of the altered 

crystallization and deposition conditions are unknown and arguably equally 



  64

influential [20].  Additionally, broad generalizations are not valid because 

different analytes and matrices do not undergo the same ionization mechanisms 

[9, 10].  An improved understanding of how various factors in the sample 

deposition step affect the MALDI-MS signal is needed. 

 As the analyte-matrix-solvent sample evaporates during deposition, the 

matrix nucleates, crystallizes, and envelops the analyte in conditionally dependent 

fashions.  Therefore, the inter-woven and non-linear processes of evaporation, 

mass transport, nucleation, and crystallization must be understood for each 

analyte/matrix/solvent system in order to completely optimize the sample 

deposition step [21].  Influencing factors include, but are not limited to: spot size, 

surface morphology, solvent evaporation rate, solvent composition, droplet 

contact angle, solubility, temperature, convection, diffusion, and 

nucleation/crystallization rates of matrix (Fig. 1). 

 

 

Figure 5.1.  Schematic illustration of the physiochemical influences on MALDI 
sample deposition. 
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Many of these physiochemical influences were investigated in the 

dissertation of Melissa McLauchlin, Ph.D. using silicon nanowire (SNW) 

superhydrophobic surfaces with laser ablated pinning sites [22, 23].  A brief 

summary of the findings from a sinapinic acid matrix/acetonitrile/water 

experimental framework are presented here.  Kinetic effects were found to dictate 

the matrix crystallization and rates of crystallization were found to have 

considerable importance.  In addition, spot morphology was found to play an 

important role when comparing CO2 and Nd:Yag laser ablation methods.  Finally, 

signal improvements were observed although they were often inconsistent 

suggesting crystallization effects had strong influence.  The current chapter here is 

an extension of the dissertation in mention. 

It can be hypothesized from the previous work that the heterogeneous, 

roughened nature of the laser ablated pinning sites negatively impacts the 

deposition process.  Therefore, a goal of the current work is to investigate this by 

using more uniform spots produced through photolithography.  In addition, 

analyte density, matrix density, and spot size are carefully investigated.  

Collectively, new insights about the resultant MALDI-MS signals are deduced 

that suggest crystallization processes outweigh the effect of analyte enrichment 

for a protein/sinapinic acid matrix system. 

5.2  Materials and methods 

5.2.1  Preparation of silicon nanowire superhydrophobic surfaces 

Circular pinning sites between 0.25 and 2.25 mm on SNW based 

superhydrophobic substrates were fabricated using standard photolithography on a 
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microscope slide.  Microscope slides were cleaned in piranha solution (2:1 

sulfuric acid:hydrogen peroxide) before processing.  Substrates were coated with 

2 nm gold through thermal evaporation to form self-assembled catalytic nanodot 

seeds for nanowire growth.  A photolithographic lift-off method using positive 

resist AZ 3312 was used to pattern gold onto the microscope slides to create 

nanowire free pinning sites (0.25-2.25 mm diameters in 0.25 mm increments).  

SNW were grown on the catalytic gold surface as previously described [23].  

Finally, the SNW substrates were incubated in a 0.1% 1H, 1H, 2H, 2H-

perfluorooctyltrichlorosilane (PFOS) solution in distilled toluene for 30 minutes 

to render them superhydrophobic. 

5.2.2  Substrate characterization and contact angle 

 An inverted microscope and 4x objective were used for substrate imaging 

(Olympus, Center Valley, PA, USA).  Images were collected using a miniVID 

USB video camera and ScopePhoto software (LW Scientific, Lawrenceville, 

GA,USA).  Droplets of varying volume were manually pipetted onto the patterned 

pinning sites.  Still images were collected and the contact angle of the droplet was 

measured every 2 min using a Goniometer model 100-00 and Drop Image 

Standard software (Rame-Hart, Inc., Succasunna, NJ, USA) until evaporation was 

complete. 

5.2.3  MALDI-MS analysis 

 Myoglobin solutions ranging from 40-170 ng/µL (2-10 µM) were 

prepared using skeletal horse myoglobin (Sigma Aldrich, St. Louis, MO, USA) 

dissolved in distilled water.  Sinapinic acid matrix solutions ranging from 0.08 to 
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8 µg/µL were prepared in a 70% water/30% acetonitrile solvent.  The matrix and 

protein solutions were combined in a 1:1 volume ratio to prepare working samples 

for experimentation.  Sample drops ranging in volume from 1 to 10 µL were 

manually pipetted onto a MALDI target plate and allowed to evaporate in air 

under ambient conditions.  The standard reference plate was a ground steel target 

having a 96 array of 2.5 mm diameter spots (Bruker Daltonics, Billerica, MA, 

USA).  Drops were also deposited onto the fabricated SNW plate.   

Analysis of the samples was performed using a Bruker Autoflex MALDI-

MS instrument. Spectra were collected by averaging the signal of 1,000 laser 

shots while randomly scanning the laser probe across the spotted deposit.  Three 

separate spectra were produced for each spot to assess precision.  Images of the 

crystal formations were collected from the instrument’s internal camera used for 

aiming the laser.  Flex Analysis software was used to identify the peak height of 

each of the myoglobin spectra.  In some experiments the mean peak height 

(signal) produced on the fabricated plate are normalized by the mean peak height 

(signal) on the standard reference plate.  In other experiments the mean peak 

height (signal) is normalized by the analyte density (mass of analyte per spot 

surface area). 

5.3.  Results and discussion 

5.3.1  Photolithographic plate characteristics 

 In an earlier study, pining sites on a SNW superhydrophobic coated 

substrate were fabricated via Nd:Yag laser ablation [22].  In contrast here, 

photolithography was used for spot fabrication.  The evident advantages of 
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photolithography compared to laser ablation are ease of engineering, spot size 

precision, and spot uniformity.  An array of various pinning site sizes (0.25-2.25 

mm) on a superhydrophobic SNW coated microscope slide were produced (Fig. 

5.2A).  Using optical microscopy, photolithography was observed to produce 

well-defined pinning sites characterized by a uniform depth and structure within 

spots (Fig. 5.2B).  On the other hand the morphology of the laser ablated sites was 

described previously as having a crater-like structure with melted material at the 

edges [23]. 

 

 

Figure 5.2.  Photolithographic plate images.  (A) Photolithographically patterned 
superhydrophobic substrate with an array of various size spots (2.25 mm back 
row to 0.25 mm front row). (B)  Microscopy image of pinning site showing 
coated glass (light) and SNW (dark). 
  

Initially, the surface wettability characteristics of the superhydrophobic 

surface were studied.  Contact angles between 130 and 165 ° were readily 

observed for drops pinned within the fabricated sites.  Higher contact angles were 

observed on smaller spot sizes because more SNW surface area interacted with 

the drop volume.  For the largest spot sizes (1.5-2.25 mm) the drop contact angle 

is largely dictated by the properties of the less hydrophobic coated glass surface 
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which produces a nominal contact angle of 120 °.  It is particularly important to 

understand how the contact angle changes during evaporation because this 

impacts the crystal deposition process.  High contact angles above 150 ° for a 6 

µL drop on a 0.25 mm spot were steadily maintained for most of the evaporation 

process (Fig. 5.3A-B).  In the last few minutes of drop evaporation, a rapid 

decrease in contact angle is observed because the drop size is small enough that 

no SNW surface area interacts with the resting drop.  All spot sizes produced a 

similar trend although the starting contact angle varied.  This finding suggests that 

as crystallization ensues the crystalline material will settle within the 

predetermined drop contact area. 

   

 

Figure 5.3.  Contact angle of an evaporating droplet.  (A) Still images of a 6 µL 
evaporating drop on a 0.25 mm site in four minute intervals.  (B) Water drop 
contact angles during the evaporation process. 
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Photolithographic spots produced similar contact angles and evaporation 

rates as the previously employed laser ablated sites.  This is expected since the 

two surfaces are virtually identical with the exception of the structure of the 

pinning site.  Additionally, the photolithographic pinning sites showed strong 

confinement of crystalline material.  Even when high levels of matrix were 

employed the crystals were confined within the photolithography spots except for 

the smallest site of 0.25 mm (Fig. 5.4).  This suggests that the liquid/solid contact 

diameter is larger than 0.25 mm such that solids settle outside of the site.  

Complete matrix confinement to the 0.25 mm site is possible when using reduced 

matrix concentrations or drop volumes to allow the contact diameter to shrink 

before crystallization commences.  Overall, the photolithographic sites 

demonstrate an improved confining ability over laser ablated sites where the 

crystals were observed to deposit outside of the 0.5 mm spot.  Most likely, this is 

a result of the photolithographic sites being more uniform and having a well-

defined interface. 
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Figure 5.4.  Matrix confinement images.  Each spot contains 20 µg crystalline 
matrix deposits produced from the evaporation of 5 µL droplets. 

 

5.3.2  MALDI-MS performance of superhydrophobic plates 

The superhydrophobic surfaces were designed with the goal of improving 

the detection limit, sensitivity, and/or precision of MALDI-MS.  A common 

presumption is that confining equivalent amounts of analyte to smaller surface 

areas will result in more frequent and uniform sampling by the laser and thus 

improved signal.  As already introduced, however, there are many competing 

variables involved in the deposition process which have to be considered and in 

fact may dominate behaviors in any given set of conditions [8]. Spot size, analyte 

density, and matrix density were studied in effort to better understand the nature 

of the MALDI-MS signal. 

In general, a more sensitive and precise signal was observed using 

superhydrophobic substrates compared to a standard MALDI-MS plate under 

typical conditions (Fig. 5.5).  However, the signal enhancements were far less 
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than expected based on the analyte density enrichment upwards of 100-fold.  On 

average, the superhydrophobic plate signal was roughly 3 times that of a standard 

stainless steel plate (2.5 mm spots) and had a relative standard deviation of 40% 

instead of around 70%.  Interestingly, the 2 µL drops produced larger 

enhancements than the 3 and 5 µL drops for unknown reasons.  The greatest 

signal enhancement observed was roughly 10 fold in all the experiments 

conducted.  Overall, the MALDI-MS performance of the photolithographic plate 

is equivalent to the Nd:Yag laser ablated plate.  Therefore, the spot morphology 

or uniformity for these surfaces fails to explain the shortcoming in performance.  

  

 

Figure 5.5.  Typical MALDI-MS signal enhancements.  A plot of mean and 
standard deviation spectral peak heights (normalized to the reference plate) from 
various size spots and different volume drops.  All samples contained 10 µM 
myoglobin and 4 µg/µL sinapinic acid matrix in 70% water/ 30% acetonitrile 
mixture.  Data was not collected where the data bars are not present. 
 

Ultimately, a global generalization about performance of the fabricated 

plates is difficult since the MALDI-MS signal is very dependent on conditions 

(Fig. 5.1).  For instance, there are probably conditions that would favor the 
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standard plate given the significant differences in dynamics between the two [2].  

This is even apparent within some of the data sets presented (Fig. 5.5).  

Nonetheless, improvements are typically observed although the origin of which is 

not entirely clear.  Analyte density alone is insufficient to understand the 

behaviors observed.  The following section examines this in greater detail. 

5.3.3  Examining analyte and matrix density 

A systematic increase in signal with decreasing spot size was expected 

since increasing analyte amounts should be sampled by the laser.  However, a 

consistent trend between signal and spot size was not observed under any 

experimental conditions tested (Fig. 5.5).  In fact, the only apparent trend is that 

signal may decrease with decreasing spot size, but this is a weak observation since 

the variances are large.  These results are somewhat surprising since contact 

angles, evaporation rates, and crystallization dynamics were seemingly identical 

between spot sizes.  However, one clearly evident difference between spots is the 

matrix density (amount of matrix per spot area) because each spot received a 

fixed amount of matrix resulting in different size deposits (Fig 5.4).  The matrix 

density (amount of matrix per spot area) was duly suspected to be an influencing 

factor. 

It is important to note that this definition of matrix density is not always a 

surface area description, but rather a normalization of the mass-of-matrix per spot 

area.  This means densities above a threshold value (approximately 10 µg/mm2) 

produce multi-layer deposits (Fig. 5.4).  In the case of multi-layer deposits, the 

surface area sampled by laser is not necessarily fully enriched in analyte because 
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the analyte becomes distributed vertically and the laser has a limited probe depth.  

Although this is an insightful consideration it fails to completely account for 

limitations because weak signals were observed with monolayer deposits as well.  

In summary, the amount of matrix dictates the deposit thickness and becomes a 

critical variable, but does not fully account for the shortfall in signal 

enhancement.  This suggests other factors must have greater influence in the 

MALDI process (Fig. 5.1). 

In general though, highly dense and disperse deposits did appear to reduce 

the ionization efficiency.  Therefore, most likely every analyte/matrix system has 

an optimal matrix density.  This was further examined for myoglobin/sinapinic 

acid by carrying out a broad range of experiments and normalizing signals to their 

respective analyte densities.  Four different concentrations were used at eight 

different spot sizes to produce a large data set across a wide range of matrix 

densities.  Results are variable, but there does appear to be an optimal matrix 

density between 2-4 µg/mm2 (Fig. 5.6).  It is important to note though this only 

applies to the fabricated plate and other plates including the standard reference 

plate may have a unique optimum. 
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Figure 5.6.  Effect of matrix density.  Average and standard deviation peak height 
signals normalized by analyte density are plotted against matrix density.  Drops 
were 2 µL containing 3 µM myoglobin and various matrix concentrations (0.7, 
1.6, 2.5, and 3.4 µg/µL).  Drops were spotted at all spot sizes (0.25, 0.5, 0.75, 1, 
1.25, 1.5, 1.75, 2, and 2.25 mm) 

 

To isolate the role of analyte density more clearly, experiments were 

carried out while the matrix density was fixed.  The starting matrix concentration 

was adjusted individually (between 0.08 and 8 µg/µL) such that the resultant 

matrix density at each spot size was 5 µg/mm2.  This density was chosen to 

prevent multi-layer deposit formation and is seemingly ideal (Fig. 5.6).  However, 

results from these experiments still did not produce a systematic trend with spot 

size as expected (data not shown).  While there are likely many contributing 

factors, one consideration is that each spot experienced altered 

nucleation/crystallization dynamics because each spot started with a different 

matrix concentration.  Rates of crystallization are expected to be very different 

between spot sizes.  In fact, unique crystal morphologies were observed on the 

various size spots suggesting this is a critical factor (Fig. 5.7).  This illustrates the 
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interwoven system dependencies and the difficulty in isolating variables 

individually.  All starting conditions impact more than one variable. 

 

 

Figure 5.7.  Variation in crystal morphology.  Images of crystal deposits on 0.75, 
0.5, and 0.25 mm spots where the starting matrix concentration was adjusted to 
0.74, 0.33, and 0.08 µg/µL, respectively.  The drop volumes were 3 µL and 
produced an ending matrix density of 5 µg/mm2. 
 

5.3.4  Alternative paradigms 

 One possible limitation of this work is that relatively high protein 

concentrations were employed.  Therefore, it is plausible that results did not meet 

expectations because the conditions were near the signal saturation limit.  More 

dilute concentrations could potentially improve the findings; however, brief 

efforts in doing produced equally inconsistent trends.  Further studies are needed 

though before completely ruling this out.  Another possibility is that protein 

MALDI is very different from peptide MALDI.  Most miniaturized sample 

depositions utilize peptides for proof-of-principle experiments [13, 16-19].  

Perhaps the desorption/ionization of peptides is much more efficient and linear 

such that they produce better results and are subject to greater benefit from 

surface enrichment strategies.  Instead of these hypotheses, it is suspected that this 

works greatest limitation is the difficulty in isolating variables individually and 
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carrying out control experiments.  Overall though, more data sets and more 

conditions need investigation before complete conclusions can be drawn. 

A better approach might be to carry out many experiments over a broad 

range of conditions while carefully tracking all outcomes and variables: crystal 

morphology, evaporation rates, sample composition, matrix density, spot size, 

analyte density, contact angle and diameter.  Using multivariate or chemometric 

methods large volumes of data could be analyzed to individually isolate variables 

[24].  This could lead to the development of crude, quantitative models of 

MALDI-MS.  Initial models would initiate a feedback loop where the 

experimental framework is improved, new data sets are collected, and more 

accurate and complex models are constructed. 

5.4  Concluding remarks 

Superhydrophobic surfaces with photolithographically patterned pinning 

sites were used to investigate some fundamental MALDI-MS behaviors of a 

protein/sinapinic acid matrix system.  Findings suggest that increasing analyte 

density does not sufficiently explain observed signal improvements, and that 

similar studies need to carefully examine this presumption before suggesting 

otherwise.  Results also show that subtle crystallization dynamics represent an 

equally if not more important variable.  Differences in spot morphology between 

photolithographic sites and Nd:Yag sites have negligible impact on MALDI-MS 

signals.  This work reinforces the same questions that are yet to be fully 

understood for MALDI-MS.  How do the interwoven dynamics of evaporation, 
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nucleation, and crystallization affect the analyte and matrix distributions?  Is there 

a quantitative relationship between analyte distribution and ionization efficiency?   

5.5  References 

[1] Stutz, H., Electrophoresis 2005, 26, 1254-1290. 

[2] Kussmann, M., Nordhoff, E., Rahbek-Nielsen, H., Haebel, S., Rossel-
Larsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll-Kristensen, A., 
Palm, L., Roepstorff, P., J. Mass Spectrom. 1997, 32, 593-601. 

[3] Karas, M., Hillenkamp, F., Anal. Chem. 1988, 60, 2299-2301. 

[4] Xiang, F., Beavis, R. C., Org. Mass Spectrom. 1993, 28, 1424-1429. 

[5] Xiang, F., Beavis, R. C., Rapid Commun. Mass Spectrom. 1994, 8, 199-
204. 

[6] Vorm, O., Roepstorff, P., Mann, M., Anal. Chem. 1994, 66, 3281-3287. 

[7] Xu, Y., Bruening, M. L., Watson, J. T., Mass Spectrom. Rev. 2003, 22, 
429-440. 

[8] Cohen, S. L., Chait, B. T., Anal. Chem. 1996, 68, 31-37. 

[9] Gluckmann, M., Pfenninger, A., Kruger, R., Thierolf, M., Karas, M., 
Horneffer, V., Hillenkamp, F., Stupat, K., Int. J. Mass Spectrom. 2001, 210, 121-
132. 

[10] Chang, W. C., Huang, L. C. L., Wang, Y.-S., Peng, W.-P., Chang, H. C., 
Hsu, N. Y., Yang, W. B., Chen, C. H., Anal. Chim. Acta 2007, 582, 1-9. 

[11] Garden, R. W., Sweedler, J. V., Anal. Chem. 2000, 72, 30-36. 

[12] Tu, T., Gross, M. L., Trends Analyt. Chem. 2009, 28, 833-841. 

[13] Tu, T., Sauter Jr, A. D., Sauter, A. D., Gross, M. L., Am. Soc. Mass 
Spectrom. 2008, 19, 1086-1090. 

[14] Bogan, M., J., Agnes, G. R., J. Am. Soc. Mass Spectrom. 2004, 15, 486-
495. 

[15] Little, D. P., Cornish, T. J., O'Donnell, M., J., Braun, A., Cotter, R. J., 
Koster, H., Anal. Chem. 1997, 69, 4540-4546. 

[16] Ekström, S., Ericsson, D., Önnerfjord, P., Bengtsson, M., Nilsson, J., 
Marko-Varga, G., Laurell, T., Anal. Chem. 2001, 73, 214-219. 



  79

[17] Gundry, R. L., Edward, R., Kole, T. P., Sutton, C., Cotter, R. J., Anal. 
Chem. 2006, 77, 6609-6617. 

[18] Schuerenberg, M., Luebbert, C., Elckhoff, H., Kalkum, M., Lehrach, H., 
Nordhoff, E., Anal. Chem. 2000, 72, 3436-3442. 

[19] Wang, J., Chen, R., Ma, M., Li, L., Anal. Chem. 2008, 80, 491-500. 

[20] Choi, C. H., Kim, C.-J., Langmuir 2009, 25, 7561-7567. 

[21] Baird, J. K., J. Cryst. Growth 1999, 204, 553-562. 

[22] McLauchlin, M. L., Chemistry and Biochemistry, Arizona State 
University, Tempe 2007, p. 138. 

[23] McLauchlin, M. L., Yang, D., Aella, P., Garcia, A. A., Picraux, S. T., 
Hayes, M. A., Langmuir 2007, 23, 4871-4877. 

[24] Brandt, H., Ehmann, T., Anal. Chem. 2010, 82, 8169-8175. 
 
 



 80

Chapter 6 

Isoelectric Focusing in a Drop 

6.1  Introduction 

Chapters 3 and 4 presented examples of high resolution separations where 

subtle variations were targeted.  There also exists a need for low-resolution 

separations capable of high-throughput, crude sample purification.  Moreover, 

devices that perform these separations with low-volume sample size are of 

growing interest.  Miniaturized devices that address these needs can provide lower 

cost, higher productivity, and more effective decision-making.  The 

miniaturization of this technology (along with other design elements) allows it to 

be broadly deployed to the sampling locations, rather than the current paradigm of 

transportation to a central laboratory with complex and expensive 

instrumentation.  Various microfluidic systems have been developed in this vein 

over the past ten years [1-6]. 

Microfluidic systems can be categorized either as flow, digital, or hybrid 

depending upon whether the fluid of interest is fed continuously through 

microchannels, moved as discrete drops, or is manipulated as discrete drops 

within a continuous immiscible liquid, respectively [7].  In any case, the ability to 

conduct molecular separations of complex samples is a desirable feature of such 

microfluidic systems.  Flow and hybrid systems typically require the use of 

microchannels which can create some challenges.  These range from difficult 

integration of sample pre-processing and surface fouling to channel blockages 

resulting from bubbles or particulates.  Digital microfluidic systems overcome 
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most of these obstacles by allowing discrete fluidic processing in open 

environments and minimizing surface area contact.  Perhaps the most daunting 

challenge in the digital system, however, is the implementation of a molecular 

separation step [8]. 

A few strategies for performing separations within drops have been 

explored recently.  Electrophoretic [9] and dielectrophoretic [10,11] forces were 

exploited to create binary separations of particles 1-10 μm which increased their 

concentration about two-fold.  Methods for collecting magnetic particles [12,13] 

and for extracting proteins by precipitation [14] have also been developed in 

drops.  In an alternative approach, a microchannel based separation was integrated 

onto a digital platform [15].  Although such sophisticated efforts open up new 

opportunities for digital microfluidics, the interest here is in exploring a 

separation mechanism which could separate more than two analytes and be 

carried out in the digital state.  Such a separation would maintain simplicity, avoid 

unwanted effects of microchannels, and be capable of integrating into any digital 

microfluidic platform regardless of actuation method (electric [8] or magnetic 

[16]).  Here the idea of performing a molecular separation within an open drop 

using droplet-based isoelectric focusing (dIEF) is explored. 

  Isoelectric focusing, traditionally carried out in gels and more recently 

capillaries [17,18], is a type of gradient separation which separates molecules 

based on their isoelectric point (pI) or pH of net neutral charge.  A uniform 

electric field and a pH gradient are applied along the separation length which 

causes molecules to focus in the region of net neutrality which is specific to their 
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chemical composition.  The term focusing comes from the fact that diffusion is 

counter-balanced by electrophoresis once a steady state is reached.  A molecule 

that diffuses out of the neutral zone towards the anode (lower pH region) will 

assume a positive charge and migrate back towards the focus point and vice versa 

if it diffuses towards the cathode.  Thus, the steady state concentration distribution 

of a 1D system is given by the following [19]: 
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where C is the concentration of a component, Co is the concentration maximum, 

ρ=dμ/dx is the slope of the electrophoretic mobility (µ): assumed to be constant 

within the focused zone, E is the electric field strength, x is the coordinate along 

the direction of current, xpI is the isoelectric point, and D is the diffusion 

coefficient.  This is a Gaussian concentration profile with standard deviation 

given by: 
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Eqs. (1-2) are insightful because they identify the important parameters for 

generating narrow bands of material and can be used to model more complex 

systems.  Proteins are particularly well suited for IEF because they have large 

mobility slopes (ρ) and small diffusion coefficients (D).  Applying these concepts 

within an open drop gives rise to the technique of dIEF. 

In addition to visualization, non-invasive light scattering measurements 

are used to confirm protein focusing in dIEF. Dynamic light scattering (DLS) was 
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originally developed to study the fluid dispersions of colloidal (size ≤1 μm) 

particles [20].  The ability of DLS to detect early changes in the molecular 

morphology of proteins has the potential to help develop new treatments to 

combat various ocular and systemic diseases prior to the onset of irreversible 

changes [21].  In a DLS experiment, a constantly fluctuating speckle pattern is 

seen in the far field when light passes through an ensemble of small particles 

suspended in a fluid [20].  This speckle pattern is the result of interference in the 

light paths and it fluctuates as the particles in the scattering medium perform 

random movements on a time scale of ≥1 μs due to the collisions between 

themselves and the fluid molecules (Brownian motion).  In the absence of 

particle-particle interactions (dilute dispersions) light scattered from small 

particles fluctuates rapidly while light scattered from large particles fluctuates 

more slowly.  Generally speaking, an increase in particle sizes (from nanometers 

to a few microns) and an increase in the number or density of these particles result 

in an increase in total scattered light intensity (static light scattering).  The 

experiments reported here utilize this feature. 

Superhydrophobic surfaces (SHS) provide some unique opportunities for 

manipulating fluids in the digital state [22-25], and much progress has been made 

in fabrication over the years [26,27].  An important realization is that aqueous 

drops take up well-defined shapes and do not spread on a SHS.  Thus, if 

manipulated properly the drop can be positioned and stabilized in shapes 

necessary for carrying out a separation without the need for a supporting chamber 

(e.g., channel, capillary, etc.).  With the interest of developing low cost, simple 
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devices a roughened polyethylene SHS is utilized to allow manipulation of drops 

[16,28,29].  This paper presents a preliminary yet detailed study of the dIEF 

principles. Through this work the generation of stable pH gradients, well behaved 

protein focusing, and accurate quantitative modeling is demonstrated.  These 

findings suggest that dIEF could be applied for sample purification of complex 

biological mixtures or integration into digital microfluidic devices. 

6.2  Materials and methods 

6.2.1  Chemicals and materials 

Unless mentioned otherwise all chemicals and materials were obtained 

from Sigma-Aldrich (St. Louis, MO, USA).  Pharmalyte brand ampholyte (pH 3-

10) was obtained from Amersham Biosciences (Postcataway, NJ, USA).  A stock 

universal indicator solution was prepared with 400 ppm phenolphthalein, 50 ppm 

thymol blue, 300 ppm bromothymol blue, and 150 ppm methyl red in 10% 

ethanol (v/v).  Electrodes were made from 0.5 mm diameter platinum wire which 

was shaped into 5 mm diameter loops.  A digital power supply was used for 

applying voltages and measuring current (SMU2064, Signametrics, Seattle WA). 

Superhydrophobic polyethylene surfaces were prepared as previously 

described [23].  Briefly, low density polyethylene was allowed to crystallize on a 

polyethylene substrate in the presence of a solvent and nonsolvent by slow 

heating and evaporation.  A USB camera (MiniVid, LW Scientific, Lawernceville 

GA) was used to capture all movies and images of the DIEF experiments. 
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6.2.2  Droplet-based isoelectric focusing 

For pH gradient visualization the samples contained 2 % (w/v) ampholyte 

pH 3-10 and 10 % (v/v) stock universal indicator.  For preliminary protein studies 

the samples contained 2 % (w/v) ampholyte pH 3-10 and 0.25 mg/mL myoglobin.  

Drops ranging in volume from 50-200 μL were pinned and stretched 0.5-2 cm 

between two loop electrodes on a superhydrophobic surface (Fig. 6.1).  This led to 

drops with an allantoidal shape where the drop body is cylindrical with rounded 

ends where it pinned to the electrodes.  Depending on the experiment, a low 

voltage was applied ranging from 5-30 V resulting in currents 0.1-1 mA.  

Voltages were applied for durations up to an hour.  Over this period the current 

decreased to about 40% of its initial value; a result typical of a loss of charge 

carriers in IEF.  The nominal electric field strength is estimated by dividing the 

applied voltage by the drop length.  Video footage was collected to characterize 

pH gradient formation.  For protein separation experiments, the drop was split as 

described below. 

 

 

Figure 6.1.  Schematic illustration of isoelectric focusing in a drop.  An allantoidal 
drop is supported on a superhydrophobic substrate and pinned between two loop 
electrodes.  Upon applying a voltage the electrolysis of water produces H+ and 
OH- at the anode and cathode, respectively.  Then the drop is split by lowering a 
superhydrophobic ‘guillotine’ to generate two new drops. 
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6.2.3  Drop splitting and protein quantification 

Drops were split using a thin superhydrophobic substrate to penetrate and 

separate the drop into two.  Initially, this surface was mounted on a slide 

positioned above the drop (Fig. 6.1).  When the dIEF experiment was complete 

the slide was lowered splitting the drop into two sections.  This action is capable 

of physically splitting a water drop to generate two new daughter drops.  When 

proteins or other surfactants are present, the superhydrophobic surface becomes 

wettable and the drop no longer has the necessary surface energy to independently 

form two new drops.  Nonetheless, the penetrated surface provides a barrier to 

separately collect the split portions without mixing.  Thus, after lowering the 

superhydrophobic ‘guillotine’ in these experiments the two separated portions 

were collected by pipette, weighed to determine volume, and stored for 

quantification.  

Myoglobin was quantified by absorbance measurements (λ = 405 nm, 

ε405nm = 245,000 M-1 cm-1) using a small-volume flow-cell built in house.  

This consisted of a 320 μm internal diameter capillary threaded into a CE flow 

cell with fiber optics delivering light from a DH-2000 deuterium lamp to a USB 

4000 bench top spectrometer (Ocean Optics, Dunendin, FL, USA).  This 

apparatus only requires 15 μL of sample while providing a reasonable path length 

and is well suited for quantifying the <100 μL fractions collected after drop 

splitting. 
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6.2.4  Light scattering detection 

 A compact fiber-optic light scattering probe was used to measure 

aggregation in the protein sample as the DC voltage was applied (Fig. 6.2).  It was 

mounted roughly 5 cm from the drop surface and scanned laterally across the 

length of the drop at a rate of 50 μm/s using a programmable stage motor.  The 

total time to collect a single scan (6 mm length) was 2 minutes.  Allowing time 

for the probe to return to its starting position, scans were collected every 2.5 

minutes for the duration of the dIEF experiment.  To successfully capture the 

progression, light scattering intensity was continuously recorded for the entire 

experiment duration.  The setup comprises a semiconductor laser (λ=639.4 nm, 

power=80 μW), a photodetector (avalanche photodiode based photon counting 

module), a DLS probe built at NASA for both static and dynamic light scattering 

configurations (scattering angle=163.0 degrees, focal length=16 mm, scattering 

volume ~50 µm3), a translation stage with a motorized actuator, for accurate 

positioning, (to which the DLS fiber optic probe is mounted on a multi axis 

translation stage), and a Pentium based computer containing a digital correlator 

card (BI-9000) for data acquisition.  This system has been previously used in 

protein crystal growth experiments [30], particle sizing applications in flowing 

dispersions [31], in protein characterization of ocular tissues in live animals [32], 

and in clinical ophthalmic applications for the early detection of cataract [33].  

Only the static (total intensity) light scattering measurements were made in the 

experiments reported here. 
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Figure 6.2.  Experimental setup used for light scattering detection. 

 

6.3  Results and discussion 

6.3.1  pH gradient formation 

 Electrolytic pH gradient generation has been demonstrated theoretically 

and experimentally for microfluidic systems [34,35], and it is hypothesized a 

similar process could take place within open drops.  It is based on the principle of 

oxidizing water at the anode to form H+ ions and reducing water at the cathode to 

form OH- ions.  As time evolves, these ions can be transported throughout the 

solution through diffusion, electromigration, fluid flow, and exchange with 

buffering ions.  Thus, a pH profile can develop across the solution and 

dynamically change until reaching an equilibrium state defined by the solution 

and electrical properties.  Buffering of the solution has a critical role in generating 

smooth, stable gradients since electrolysis of non-buffered solutions typically 

leads to a step-like pH profiles across the system length [36].  Therefore, the first 

phase of experimentation was to examine the possibility of forming smooth, 
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stable pH gradients by electrolyzing water in drops after positioning and 

stretching them on a SHS.  

A universal indicator dye sensitive to a pH range of 3-10 was used for 

visual characterization of gradient formation (Fig. 6.3I).  Not surprisingly, when 

25 mM phosphate is used step-like pH profiles develop rather than uniform 

gradients (data not shown).  In these experiments, extreme pH zones slowly 

evolve over time from the electrodes, pH<3 for the anode and pH>10 for the 

cathode, until a very narrow pH transition region remains.  This pH profile is 

likely formed because the rate of electrolysis exceeds mass transport and 

exchange with buffering ions (i.e., source exceeds sink).  Next, a common IEF 

ampholyte mixture (Pharmalyte pH 3-10) was used and this generated stable, 

uniform pH gradients as indicated by the color profile of the dye.  Still images 

show the formation of a pH gradient ranging from pH ~ 4 (light red, anode side) 

to pH ~ 9 (blue, cathode side) (Fig. 6.3A-D).  The gradient was formed in about 

10 minutes and was found to be stable over longer periods of applied voltage (at 

least 45 minutes).  This is an indication that the ampholyte buffers are distributed 

across the drop such that they buffer the pH and efficiently transport the continual 

generation of H+ and OH- ions.  The pH gradient was reversed by switching 

electrode polarity (Fig. 6.3E-H).  It took about 15 minutes for the gradient to 

reverse, but similarly a stable profile was observed over prolonged applications of 

voltage.  For comparison, reference pH solutions and their universal indicator 

color response are shown (Fig. 6.3I). 



 90

 

Figure 6.3.  Visualizing droplet pH gradients with a universal indicator.  (A-D) 
Still images over time showing the generation of a stable pH gradient using 2% 
pharmalyte 3-10 as the buffer. (E-H) The polarity of the electrodes is switched at 
t=15 min causing a reversal of the pH gradient. (I) Reference pH solutions and 
their corresponding color response. 
 

Traditional IEF theory predicts individual ampholyte species will focus 

into steady state zones, stacked in order of pIs, and will control local pH [37].  

Experimental investigations have demonstrated that ampholytes are often 

distributed in a much more random fashion [38].  Thus, it is uncertain how 

ampholyte components are distributed in these drop experiments.  An exponential 

reduction in current is observed over time characteristic of a decrease in 

conductivity from ampholyte focusing.  Overall these results demonstrate that pH 

gradients within drops can be generated, held stable with appropriate buffers, and 

reversed by switching polarity. 
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6.3.2  Characterizing protein focusing 

 The next phase of experiments involved characterizing the dIEF focusing 

behavior of a single protein and comparing the results to 1D steady state theory.  

Myoglobin (pI 7.2) was selected as a target since it has a chromophore allowing 

easy detection and its IEF properties were previously studied [39].  Assuming a 

linear pH gradient and defining the anode as pH 3 at x=0 and the cathode as pH 

10 at x=1.5 cm means that myoglobin would focus at xpI=0.9 cm.  Several trials 

were conducted where 5-20 V was applied across 150 μL drops for twenty 

minutes.  Subsequently, the drops were split at an average position of x=0.7 cm 

and the protein content in the two resultant droplets, defined as anode and cathode 

droplets, was quantified by absorbance measurements. 

Two clear observations arose from these experiments (Table 1).  The first 

is that the protein became more isolated to the cathode droplet side with 

increasing electric field.  This is an expected result since bandwidth becomes 

narrower with increasing field (Eq. (2)) and myoglobin’s pI lies on the cathode 

side of the droplet.  Thus, more protein is predicted to be isolated on the cathode 

side as the field increases.  The second observation is that the protein recovery 

decreased with increasing field strength, presumably as a result of an increasing 

current.  This suggests that significant protein oxidation and/or reduction is 

occurring as a result of direct contact with the electrodes which renders the 

protein undetectable.  In support of this interpretation is data collected where high 

protein recoveries were observed (>95%) when isolating the electrodes to 

reservoirs separated from the drop by dialysis membranes. 
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Table 6.1.  Experimental and theoretical findings for myoglobin at various electric 
fields in droplet isoelectric focusing. 
 

 
Experimental: Relative 
Myoglobin Mass 

 Theoretical: Relative 
Myoglobin Mass 

 
 

E (V/cm) Anode Cathode  Anode Cathode  % Recovery 

4.3 42% 58%  41% 59%  77% 

8.9 40% 60%  38% 62%  70% 

12.7 28% 72%  35% 65%  65% 

 

To construct an appropriate model of myoglobin focusing in a drop 

numerical values are substituted into Eq. (1).  The ratio of ρ/D, defined as α, can 

be determined by rearranging Eq. (2) and using experimental data to solve: 
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Previously, myoglobin focused into a band with a standard deviation of 

0.6 cm in a 40 cm capillary while applying 10 kV [39].  Thus, when the 

separation length is 40 cm then α=0.01 V-1 cm-1 for myoglobin. In the case of a 

1.5 cm drop using the same ampholyte mixture, α=0.27 V-1 cm-1 since ρ is 27 

times greater due to the different length scales (40 cm to 1.5 cm) and noting the D 

is unchanged.  Substituting α and xpI into Eq. (1) and normalizing the function so 

the peak area is 1 gives the following relation: 
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Plots of the model presented in Eq. (4) at various field strengths provide a 

quantitative sense of the expected steady state distributions of myoglobin in dIEF 

(Fig. 6.4).  The relative extent of protein isolation is determined by integrating Eq. 

(4) with respect to the split position and infinity.  Splitting the drop at x=0.7 cm 

results in 59-65% of myoglobin being isolated to the cathode droplet when the 

electric field is 4-13 V/cm.  Thus, the model is consistent with the experimental 

results collected at equivalent field strengths (Table 6.1).  Although the model is 

expected to be more accurate with narrowing bandwidth (finite size effects), the 

differences between the experimental and theoretical findings are attributed to the 

limited precision (~10% RSD) of the drop splitting mechanism.  This along with 

evaporative and redox effects makes it difficult to assess the model’s accuracy 

from the experimental results alone.  Nonetheless, the results suggest that dIEF 

approaches a steady state, under the conditions employed, similar to that predicted 

from 1D theory.  Furthermore, this simple model can be used to make predictions 

for other proteins with known α and xpI values. 
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Figure 6.4.  Modeling steady state protein concentration.  Concentration profiles 
of myoglobin focusing in dIEF at different field strengths (Eq. 4). Dashed line 
indicates position where drop was split (0.7 cm). 
 

To improve the separation efficiency of a particular protein either the 

electric field could be increased or the drop could be split further away from its 

pI.  For example, when 300 V/cm is applied (more typical of electrokinetic 

techniques) Eq. (4) predicts myoglobin would be 99.5% isolated to the cathode 

droplet when split at the same position (0.7 cm).  Experimentally, fields greater 

than 15 V/cm were not applied since high currents and excessive bubbling 

occurred.  Electrodes can be isolated to separate reservoirs to minimize these 

effects as is common practice in traditional electrophoretic techniques, with the 

caveat that the isolated zones must be relatively small volume and the electrodes a 

short diffusional/transport distance from the separations drop.  On the other hand, 

when splitting the drop at x=0.3 cm while applying a low field strength (13 V/cm) 

95% of myoglobin would be isolated to the cathode droplet.  Ultimately, this 
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approach requires precise engineering control over drop splitting and it would 

reduce the volume which is purified. 

6.3.3  Protein focusing detected by light scattering 

 Visible, unlabelled proteins such as myoglobin or cytochrome c often are 

precipitated in dIEF at the necessary concentrations for good visualization.  

Additionally, it is difficult to image the drop directly due to the non-linear optical 

reflective and refractive effects resulting from the drop’s curved surface. 

Therefore, light scattering was used to provide more direct characterization of 

protein focusing in dIEF, where the signal is due to aggregation of the target 

protein when the local concentration is very high.  In these experiments a light-

scattering probe, containing optical fibers to deliver light from source and to 

detector, was scanned across the drop.  For simplicity and speed, a smaller drop 

was used (50 μL and 5 mm length) and the SHS was removed allowing the drop 

to be suspended in the air.  

When a voltage is applied to a drop containing protein an intense 

scattering signal near 2.75 mm was observed after 18 minutes in three different 

trials (Fig. 6.5A).  The scattering signal was roughly 100 times greater than what 

is expected from the calibration curve generated by protein standards without 

applying a voltage (data not shown).  Considering its magnitude, this intense 

response is interpreted as the result of protein focusing which stimulates 

aggregation and leads to larger particles scattering more light.  Regardless of the 

exact mechanism, this scattering signal is not observed in control experiments 
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where either the protein or voltage is removed (Fig. 6.5B-C); confirming that it is 

a direct result of the protein’s presence while applying a voltage. 

 

 

Figure 6.5.  Light scattering detection of protein focusing.  Whole drop light 
scattering detection scans taken in 2.5 minute intervals (A) applying voltage to 
drop containing protein, (B) control experiment where protein is present without 
voltage, and (C) control experiment where voltage is applied without the protein’s 
presence. 
 

The light scattering data provides direct evidence of protein focusing in 

dIEF.  The consistent observation of a scattering signal near 2.75 mm confirms 

that myoglobin is focusing near pH 7.2. It is difficult to assess the bandwidth of 

the focused zone since the scattering signal is a result of protein aggregation and 

not protein concentration alone.  Additionally, this means the timescale for which 

the signal is observed, requiring time for aggregation, does not necessarily reflect 
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that for actual protein focusing.  Although it is difficult to say for certain, the 

protein achieves a steady-state focus after approximately 10 minutes since this is 

when the current stabilizes and the pH gradient is fully established (Fig. 6.3C). 

6.4  Concluding remarks 

 A preliminary investigation of isoelectric focusing within a drop is 

undertaken here in an effort to develop a separation mechanism compatible with 

digital microfluidics.  Through electrolysis and the use of ampholyte buffers 

stable pH gradients can be generated in drops on the order of 10 minutes.  

Furthermore, light scattering data provides evidence that proteins focus about 

their pI within the established pH gradient as expected.  Combining protein 

focusing with drop splitting leads to a mechanism for preparative separation.  

Characterizations using myoglobin reveal that differential protein concentrations 

are sustained after drop splitting, up to 70%:30% with an electric field of 13 V/cm 

and by splitting near its pI.  These results are found to correlate well to predictions 

based on quantitative modeling of IEF theory suggesting that dIEF is well 

behaved and reaches a steady state.  Ultimately, these results support the idea that 

dIEF can be used for purifying protein samples upwards of 99% and that it can be 

integrated into digital microfluidic systems.  This could also be very useful in 

container less processing of materials in space. 
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Chapter 7 

Dielectrophoretic Mobility Determination in DC Insulator-Based 

Dielectrophoresis 

7.1  Introduction 

Particles are ubiquitous in our bodies and our environment.  This class of 

materials includes cells, organelles, nanoparticles, aerosols, large proteins and 

DNA strands, bacteria, and viruses—among other organic and inorganic debris.  

Dielectrophoresis (DEP) has emerged as an important technique for manipulating 

micro to nano scale particles [1, 2].  The nature of this force, described over 50 

years ago by Pohl, depends on a particle’s polarizability in a non-uniform electric 

field (Eq. (1)) [3].  The dielectrophoretic force experienced by a spherical particle 

is described as follows: 
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where εf is the permittivity of the fluid, rp is the particle radius, Re(fcm) is the real 

part of the Clausius-Mossoti factor defined by the particle and fluid conductivities 

(σ) at low frequency (f), and E is the electric field.  At higher frequencies the 

conductivities are replaced with frequency dependent permittivities.  According to 

this relationship, to have a DEP force on a non-charge-containing species there 

must be a non-uniform field and a particle that has a different 

conductivity/permittivity relative to the fluid.   
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It is important to note that DEP can be operated in AC or DC modes using 

either shaped conductors or insulators to generate field gradients [4].  The 

emphasis in this work is on DC insulator-based dielectrophoresis (DC iDEP).  

The initial and most popular design for DC iDEP is a microfluidic channel 

employing an array of insulating structures (Fig. 7.1A) [5-19].  Channels with 

obstructions (Fig. 7.1B) [20-26], serpentine features [27, 28], and converging-

diverging or saw-tooth features (Fig. 7.1C) [29-33] have also been established in 

DC iDEP.  Similar iDEP designs employ AC fields (10 Hz – 10 MHz) to gain 

additional DEP control through  frequency modulation of the Clausius-Mossoti 

factor [34-38].  Additionally, a contactless AC iDEP approach where the sample 

is completely isolated from the electrodes has been shown [39, 40].  In all of the 

designs an insulating material (e.g., glass, polymer, etc.) is used to create regions 

where the electric field is constricted to generate a field gradient and a DEP force.  

These devices deflect, stream, or trap particles in a composition-dependent 

manner for separation or concentration. 

 

 

Figure 7.1.   Schematic illustrations of the most common iDEP devices.  
Examples shown include the (A) array of insulators [5-19, 35-38], (B) obstructed 
channel [20-26, 34], and (C) converging-diverging or saw-tooth [29-33]. 
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While Eq. (1) is widely accepted, it is usually only considered 

qualitatively when considering actual experimental data.  Most discussions of real 

data rarely advance beyond an analysis of positive (towards stronger fields) 

versus negative (towards weaker fields) DEP.  This is somewhat odd since there is 

extensive quantitative theory and modeling of DEP [31-34, 41, 42].    One 

detailed study did indicate some unique deviations from Eq. (1) from ionic effects 

[43].  Dielectrophoretic techniques are growing in popularity and with this interest 

it becomes increasingly important to develop detailed and quantitative metrics for 

the field.   

It is often unreasonable to accurately calculate the DEP force that is 

exerted on a particle from first principles and this provides, perhaps, one 

explanation for the relative paucity of quantitative application of theory to 

experimental data.  The difficulty arises from the uncertainties in the permittivity, 

particle size/shape, deformability, and local field gradients.  Furthermore, Eq. (1) 

assumes a spherical particle having a permanent or induced dipole and fails to 

describe complex shapes or multipolar states [44].  A practical solution to 

determining the DEP properties of particles is to experimentally determine the 

relative dielectrophoretic velocity in a known gradient.  This is analogous to the 

electrophoretic or electroosmotic mobility that is routinely measured in 

electrophoresis with a known electric field.  Previously, methodologies have been 

developed for measuring a dielectrophoretic mobility in AC-DEP [43, 45-47].  

Although useful for AC applications, these approaches are limited because they 

define the DEP mobility parameter to be dependent on the device-specific electric 
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field properties (device parameters actually appear in the definitions of the 

mobility).  Thus, the mobility constants are specific to the particular device 

geometries used and cannot be ported to iDEP systems.  To quantify 

dielectrophoretic effects from the complex geometries of current iDEP designs 

(Fig. 7.1A-C) and allow detailed investigations resulting in accurate models, a 

universal quantitative metric of the DEP particle properties is needed.  Moreover, 

if the DEP properties are known the electric field profile necessary for a particular 

outcome can be determined.  With the aid of modeling software, iDEP systems 

can be rationally designed to generate the necessary electric field to target specific 

analytes (e.g., bacteria or virus).  

In this work, a strategy to quantitatively determine dielectrophoretic 

properties of particles in iDEP settings is initiated by defining the 

dielectrophoretic mobility and demonstrating an approach to measure it in a 

converging microfluidic channel.  This method relies on streak-based velocimetry 

to generate the spatial velocity profile of particles.  From this the dielectrophoretic 

and electrokinetic mobilities of polystyrene particles are simultaneously 

determined. 

7.2  Materials and methods 

7.2.1  Device fabrication 

A microfluidic channel was fabricated using standard soft lithography 

using the elastomer PDMS from a Slygard 184 kit (Dow/Corning, Midland, MI, 

USA).  PDMS was cast over a master wafer that contained an AZ 4620 

photoresist pattern (AZ Electronic Materials, Branchburg, NJ, USA) to create 
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channel impressions.  The resist thickness was characterized with a Tencor P2 

Profilometer and found to have a depth of 10 μm.  After casting the PDMS over 

the master wafer it was cured at 70 °C for 1 hour and subsequently access holes 

were punched.  An oxygen plasma was used to render the channels hydrophilic 

and generate a self-sealing surface.  Finally, a clean glass microscope slide was 

used as a cover plate to enclose the microfluidic PDMS channel. 

7.2.2  Dielectrophoresis experiments 

The microfluidic channel was initially filled with buffer solution and 

allowed to equilibrate at rest for 10 minutes.  The buffer consisted of 5 mM 

aspartic acid pH 3.1 and had a conductivity of 250 μS/cm or specific resistivity of 

4,000 Ω•cm (Sigma Aldrich, St Louis, MO, USA).  Solution conductivities were 

measured using an Orion 3 Star conductivity meter (Thermo Fischer, Walthan, 

MA, USA).  Sulfated polystyrene particles 1 μm in size and fluorescently labeled 

(Invitrogen, Carlsbad, CA, USA) were diluted to a concentration of 

approximately 5 x 106   particles/mL in the working buffer and sonicated for 15 

minutes.  Particles were introduced into the device using hydrostatic pressure 

initiated by a height difference in the two reservoirs.  At the start of an experiment 

the pressure was equilibrated to stop hydrodynamic flow, and then 1,500 V was 

applied from a Bertran Series 225 power supply (Bertran, Brooklyn, NY, USA) 

using two platinum electrodes dipped into the reservoirs with anode in region 1 

and cathode in region 3.  Particle motion was imaged using an Osram mercury 

short arc H30 103 w/2 light source and a 4x objective on an inverted microscope 

(Olympus, Center Valley, PA, USA).  Movies were collected using a QICAM 
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CCD camera (Q Imaging Inc., Surrey, British Columbia, Canada) and Streampix 

III software (Norpix, Montreal, Quebec, Canada).  Depending on the experiment, 

the field of view was approximately 1.6 x 1.2 mm in region 1 or 2 (Fig. 7.2A) and 

the exposure time was adjusted to 30, 60 or 90 ms corresponding to 19.1, 16.6 or 

11.1 frames per second, respectively. 

7.2.3  Velocimetry and data analysis 

 The velocity data is automatically generated from the streaked particle 

images using an algorithm.  The details of the method have been described 

elsewhere but the main steps are briefly described here [48].  Frames captured 

during the imaging process serve as the algorithm input.  A 20 pixel strip is 

cropped from the center of the image frame and the streaks are identified from the 

background by image thresholding.  Velocities are estimated by dividing the 

streak length, identified as the distance between the starting and ending points of a 

streak, by the exposure time.  These velocities are then spatio-temporally 

averaged over the entire cropped region to generate the centerline velocity.  

Manual tracking of particles was done using ImageJ software 

(http://rsbweb.nih.gov/ij/).  The image stack was cropped to a region 20 pixels 

wide along the channel centerline.  The brightness and contrast was increased to 

allow for better visualization of particles and streaked images.  The x coordinates 

of a single particle were tracked as it moved through the region of view by 

manually selecting the center of the particle’s fluorescence.  There was no 

problem with particles defocusing since the channel depth is on the order of 10 

μm.  Dilute particle concentrations and optimal camera conditions provided well 
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resolved and continuous particle trajectories.  Therefore, particles were 

confidently identified in consecutive frames manually without need for a nearest 

neighbor algorithm.  For each experiment, at least 50 different particles were 

tracked in the same manner.  The x-component particle velocity as it moved from 

xa to xb was assigned to the mean position of xa and xb and was calculated as 

follows: 
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The elapsed time, Δt, between consecutive frames is the inverse of the frame rate 

(16.6 fps). 

 The mean velocity <vp> is determined from several hundred streak based 

velocity measurements from a single 90 ms exposure experiment within region 1 

(Fig. 7.2A).  The longer exposure time produced particle streak images allowing 

for streak velocity assessment.  In region 1 the electric field is uniform and the 

electrokinetic mobility (μEK) is calculated using the following convention: 
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where µEP is the electrophoretic mobility and µEO is the electroosmotic mobility.  

A linear best fit was obtained from the velocimetry data in region 2 (Fig. 7.2A, 

7.3B, and 7.4A-B). 

7.3  Results and discussion 

7.3.1  Particle motion and device design 

 In contrast to works based on AC-DEP [43, 45-47], the DEP mobility 

(µDEP) is defined independent of the electric field and thus becomes a universal 
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parameter, consistent with electrophoretic and electroosmotic mobilities, and 

follows the typical convention in iDEP (Eq. (4)) [6, 7, 12, 13, 16, 17, 31, 40].  In 

other words this definition of DEP mobility is intrinsic to the particle and 

represents the relative DEP velocity per unit electric field gradient squared as 

shown:  
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where vDEP is the DEP velocity and η is the fluid viscosity. Furthermore, an ideal 

method for quantifying iDEP ought to simultaneously quantify other 

electrokinetic effects (electroosmosis and electrophoresis).  This is particularly 

important considering electroosmotic flow can vary by more than 10% [6].  A 

clear approach to quantifying the dielectrophoretic velocity emerges by 

examining the equations of motion. 

The motion of a spherical particle with negligible particle-particle 

interactions under the influence of a DC electric field in iDEP is extensively 

described by Chen et al. [31].  The velocity along the x direction (vp,x), the axis of 

the applied current, is given by: 
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where s is the arc length along the field line, θ is the angle between the tangent of 

the field line and the x-axis, and R is the radius of curvature of the field line.  At 

the centerline of a symmetrical channel, the field lines are parallel to the x-axis.  

In other words θ=0 which simplifies Eq. (5) to: 
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where the combined electrokinetic mobility is defined as µEK =µEO +µEP.  

According to Eq. (6), µDEP can be calculated by measuring the x-component of the 

particle velocity along the channel centerline.  Traditionally, positive µEK  is 

defined as movement towards the negative electrode and positive µDEP is defined 

as movement towards high field strength.  The same convention is followed here 

since the experiments are carried out with these two conditions aligned.  

The microfluidic channel consists of a wide uniform area segment (region 

1), a constricting taper segment (region 2), and a narrow uniform area segment 

(region 3) (Fig. 7.2A).  The taper was designed to create a linearly increasing 

electric field, or a constant gradient, since this would generate the simplest DEP 

force (Eq. (6) and Fig. 7.2B-C).  This is similar in design to a conductive polymer 

used for equilibrium gradient focusing [49].  Given a constant channel height (h) 

determined by the photoresist thickness, the channel cross-sectional area (A) 

varies inversely with x as: 
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where w2 is the channel width of region 2, the taper starts and ends at x=0 and 

x=2.5 mm, respectively, w1 is the width of region 1, and k is the rate at which the 

channel tapers.  The electric field is defined along the length of the channel (E(x)) 

is calculated by substituting Eq. (5) into the current density (J(x)) relation: 
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Substituting Eq. (8) into Eq. (6) gives the velocity profile along the centerline 

(vp,x(x)): 
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Thus, particles experience a linear velocity increase as they move through 

the taper region.  The slope of the velocity profile depends on both a 

dielectrophoretic and electrokinetic term in Eq. (7).  Therefore, according to this 

logic, the velocity slope will be steeper in the case of positive DEP and shallower 

in the case of negative DEP compared to that predicted if there is no DEP force 

(Fig. 7.2D).  For these experiments w1= 2 mm, k= 12.93 mm-1, h=0.01 mm, γ= 8 

V/mm and the taper ended at x=2.5 mm. 
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Figure 7.2.  Design, electric field, and principles of mobility device.  (A) Diagram 
and dimensions of iDEP device used consisting of wide uniform segment (region 
1), taper segment (region 2), and narrow uniform segment (region 3). (B-C) 
COMSOL simulation of electric field of iDEP device.  Dashed box indicates 
region 2.  (D) Theoretical velocity profile in region 2 based on Eq. (9) in the case 
of positive, zero, or negative DEP using hypothetical mobility and electric field 
values. 
 

7.3.2  Streak-based velocimetry 

 One challenge in estimating particle velocities in iDEP devices is the wide 

range of velocities frequently encountered, which generate streaked particle 

images.  For example, the spatial field gradients typically employed can create up 

to a 100-fold increase in the electroosmotic transport velocity.  This led to the 

pursuit of a streak-based velocimetry approach rather than traditional micro-

particle image velocimetry techniques [50].   

Streak-based velocimetry operates by associating the length and trajectory 

of a streak in a blurred image with the exposure time to estimate the velocity field.  

As particles move from a weak to strong electric field they accelerate, and thus, 
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the distance traveled in a single exposure becomes greater as observed by streak 

lengths in a captured image (Fig. 7.3A).  An automated algorithm detects, 

processes, and determines the velocities traveled by the particles at all pixels 

across the image sequence.  The particle velocity linearly increases along the x-

axis and remains relatively constant along the y-axis (RSD 5%) within the 

depicted centerline strip (Fig. 7.3B).  This is consistent with the expectation that 

the electric field is parallel to the x-axis (Eq. (6)) and it linearly increases in 

magnitude (Eq. (8)) within this region.  The x-dimension has been cropped to 

exclude the beginning and ending portions of the taper where particles travel 

either too slow or fast for precise streak velocimetry assessment, respectively.  

Overall, Eq. (9) is considered to accurately describe the velocity profile.  

Furthermore, the constant velocity along the y-axis allows spatiotemporal 

averaging to improve the centerline velocity estimation. 

 

 

Figure 7.3.  Streak velocimetry processing and results.  (A) An overlaid image 
sequence showing particle streak images and (B) the resultant spatial velocity 
estimation deduced from streak analysis.  The region where data was analyzed 
and processed is highlighted by the light bounding box in (A). 
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In addition to streak-based analysis, particle velocities were assessed using 

manual tracking for comparison. Clearly, the automated streak analysis is more 

precise compared to the manual particle tracking (Fig. 7.4A-B), and thus there is 

greater confidence in the slope determined by streak analysis.  This difference in 

precision is associated with the elongation of the imaged particles as they 

accelerate.  Substantial uncertainty is introduced when manually tracking a 

particle’s center of mass if the particle motion produces a streaked image.  

Automated streak tracking avoids this problem since it relies on the blurred streak 

images for velocity estimation. 

 

 

Figure 7.4.  Velocimetry results for 1 μm polystyrene particles.  Comparison of 
velocimetry result between (A) manual particle tracking and (B) automated streak 
analysis (before averaging).  In each case several hundred velocity estimations 
were made across the device and linear best fits were generated. 
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7.3.3  Electrokinetic and dielectrophoretic mobilities 

 As defined in Eq. (4), the dielectrophoretic mobility describes a non-

charge containing particle’s polarizability in a particular fluid medium and 

primarily depends on a particle’s size and Clausius-Mossoti factor.  Thus, there 

will be a broad spectrum of dielectrophoretic mobilities given the diversity of 

particle sizes, charges, and ionic properties.  In fact the richness of this term 

suggests that within a single particle type there could be significant 

microheterogeneity to create sub-populations with unique mobility constants.  

Supporting this idea is the observation that charge properties of particles have 

been found to be much broader compared to molecules [51, 52]. 

 The streak-based velocity estimations were used to calculate the system 

properties. Using 1 µm polystyrene particles the electrokinetic mobility was 

estimated to be 3.5 x 10-4 cm2/(V•s) as calculated by Eq. (3) using the velocity 

data from region 1.  This is considered a reasonable result and is likely dominated 

by electroosmotic flow considering its similarity to other electroosmotic mobility 

estimations [6, 53].  The dielectrophoretic mobility of polystyrene particles was 

found to be -2 ± 0.4 x 10-8 cm4/(V2•s) from the slope in Eq. (9).  The statistics are 

from three separate experiments which involved over one thousand velocity 

measurements each. This result agrees with the general finding that polymeric 

particles exhibit negative dielectrophoresis under similar conditions [5, 8, 11].  

Subtle variations in electroosmotic flow, particle heterogeneity, and variance in 

the velocity estimation likely contribute to the 20% RSD observed. 
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 Under these particular conditions the electrokinetic velocity is about twice 

the magnitude of the dielectrophoretic velocity based on calculations of the 

individual terms in Eq. (9).  The relative DEP velocity could be increased by 

increasing the applied voltage, reducing electroosmotic flow, or utilizing steeper 

field gradients.  However, particle motion rapidly changes direction in these 

regimes complicating velocity associations.  For optimal quantitative analysis, the 

DEP motion must be observable but not predominant. 

7.4  Concluding remarks 

 An approach to simultaneously quantifying the electrokinetic and 

dielectrophoretic properties of particles in iDEP is discussed.  Critical to the 

success of such analysis is the accurate and precise estimation of particle 

velocities.  Presently, streak-based velocimetry was found to be more precise than 

manual particle tracking and has the advantage of automation.  From this 

approach polystyrene particles were found to have a dielectrophoretic mobility of 

-2 ± 0.4 x 10-8 cm4/(V2•s).  Quantitative approaches like this one enable an 

unprecedented evaluation of iDEP and provide a metric for standardization.  

Ideally, discussions will eventually evolve from subjective descriptions of particle 

behaviors to more objective quantitative responses. 
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Chapter 8 

Dielectrophoretic Mobility Characterizations Using a Symmetrical Channel 

8.1  Introduction 

Dielectrophoresis (DEP) is a unique approach to separating particle 

mixtures but has one distinct disadvantage compared to all other separation 

techniques.  DEP is limited because analyte-dependent properties are rarely 

monitored and assessed quantitatively.  In other techniques, for example, retention 

times (chromatography), electrophoretic mobilities (electrophoresis) [1], and 

isoelectric points (isoelectric focusing) [2] are analyte-specific properties that can 

be deduced.  Quantitative outcomes like these improve the utility of separations 

by allowing system calibration [3], unique mechanisms to be elucidated [4], and 

devices to be intelligently engineered [1].  The DEP mobility is a quantitative 

metric that offers such benefits to DEP, but there lacks sufficient and robust 

means to accurately measure it. 

  A method for DEP mobility determination was introduced in Chapter 7 

and proof-of-principle experiments were carried out.  Contrary to typical DEP 

experiments, this approach relied on simple electric field gradients to generate 

linear velocity profiles.  The linearized system allowed velocimetry methods to be 

feasibly employed and data sets to be confidently fit.  The velocity slope was 

described as follows: 
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where mp,x is the x-component particle velocity slope (dvp,x/dx), µEK and µDEP are 

the electrokinetic and DEP mobilities, and dE/dx is the electric field gradient 

defined by the product of the initial electric field (γ) and the rate of electric field 

increase (k).  The µDEP was calculated by solving Eq. 1: 
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Although this methodology is sufficient for rough measurements, there are some 

limiting factors that hinder the precision in the results. 

First, the uncertainty of the calculated DEP mobility (µDEP) is relatively 

high.  Each of the dependent variables has some inherent uncertainty because they 

are either experimentally measured or computed based on the device geometry.  

Therefore, the propagated uncertainty is on the order of 50-75% given the number 

of dependencies.  This is inevitable because there no reference standards for DEP 

and the electric field is approximated from the theoretical device design alone [1].  

Not only do these factors impact the results here, they are also endemic problems 

in all DEP experiments.  In some instances the system uncertainty can be so large 

that one cannot confidently state a DEP force is influencing the particle motion.  

Other devices have much more complex designs and the uncertainty in electric 

field gradients alone can exceed 100%.  These and other considerations likely 

explain the deficiency in quantitative characterizations of DEP motion. 

The approach from Chapter 7 is also limited because it relies on a number 

of assumptions that could introduce errors in the analysis: flow and electric field 
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lamina are identical within the field of analysis, the y-component forces are zero 

within the field of analysis, only electrokinetic forces impact particle motion, and 

pressure, temperature, and conductivity gradients are non-existent or negligible.  

In other words, the model used to analyze particle motion may be incomplete and 

thus the calculated results may be biased.  There are insufficient means to perform 

control experiments and validate these assumptions using the previous DEP 

mobility device. 

There exists a clear need to improve the methodology of DEP mobility 

determination to account for the limitations of the device used in Chapter 7.  

Ideally a new approach would minimize the systematic uncertainty and validate or 

rely on fewer assumptions.  The purpose of the current chapter is to demonstrate a 

new method for DEP mobility determination that makes some of these 

improvements.  Using a symmetrical channel, particle motion is cross-referenced 

to directly isolate DEP motion.  It is clear from this approach that other 

unanticipated forces, such as surface interactions, create noisy data sets that 

overwhelm the DEP signal.  Although the resultant data is currently difficult to 

interpret, the cross-referencing approach demonstrates vast improvement over the 

method from Chapter 7 because propagated uncertainty is reduced and 

assumptions can be experimentally tested.  From this, an assessment of DEP 

mobility for red blood cells (RBCs) is deduced. 

8.2  Materials and methods 

Materials, methods, equipment, and procedures are the same as described 

in Chapter 7 with some minor changes indicated here.  Polydimethylsiloxane 



  122

(PDMS) channels were cast from photolithographically patterned templates, and 

glass slides were bonded to enclose channels after plasma oxidation.  Red blood 

cell (RBC) samples were employed in experiments.  Whole blood was collected, 

washed, and cells were isolated by centrifugation.  Cells were washed in triplicate 

with phosphate buffer (115 mM, pH 7.4) containing ethylenediaminetetraacetic 

acid (EDTA) before fluorescently labeling using an Invitrogen staining kit.  The 

protocol consisted of a 15 minute incubation of 0.5% hematocrit in 5 µM Vybrant 

DiO dye at 37 °C [5].  The stained cells were pelleted and washed in duplicate to 

remove unbound dye before being diluted 100 fold volumetrically in phosphate 

buffer (130 mM, pH 7.4) for working samples.  In some instances bovine serum 

albumin (BSA) was added to samples at a concentration of 8 mg/mL.  Samples 

were introduced into the microfluidic device via gravity flow.  An inverted 

fluorescence microscope and camera were used to record movies of particle 

motion.  The imaged area was approximately 2 mm by 0.5 mm centered about the 

middle of the symmetrical channels (Fig. 8.1).  Manual particle tracking was 

carried out using ImageJ software to collect spatial velocity information. 

8.3  Results and discussion 

8.3.1  Symmetrical channel design and methodology 

 The linear field (constant gradient) was the most essential feature of the 

previous design and thus is retained for the new approach.  However, the new 

design employs a spatially symmetrical linear field.  A symmetrical channel taper 

is used to engineer this new feature where the field increases on one side and 

decrease on the other at equal rates (Fig. 8.1). 
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Figure 8.1.  Illustration of symmetrical channel device.  The new DEP mobility 
device features a symmetrical channel taper to produce a symmetrical electric 
field (field strength indicated by color).  The equations of motion for the two sides 
(labeled 1 and 2) are shown.  Dashed box indicates imaged region for velocimetry 
analysis. 
 

The reversal of the field gradient is important because the DEP velocity 

becomes asymmetrical while the electrokinetic velocity is symmetrical.  

Additionally, many other unforeseen influences on particle motion (e.g., pressure, 

temperature, or conductivity gradients) would also behave symmetrically.  

Therefore, the data sets from the two sides can be cross-referenced to allow more 

direct isolation of the DEP mobility.  Combining Eq. 1 with other unknown, 

symmetrical influences (A1, A2, etc.) the particle motion is described on the two 

sides as follows: 
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where all terms have the same magnitude on either side.  The DEP mobility can 

be directly isolated by summing Eqs. 3 and 4 to remove the symmetrical terms: 
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A positive value or negative value corresponds with positive or negative DEP, 

respectively. 

Thus, if pressure, temperature, conductivity or other symmetrical effects 

impact particle motion they will be removed without biasing the DEP mobility 

determination.  Also, any over- or under-estimation from the velocimetry 

techniques will also act symmetrically and be removed.  Most importantly the 

data is not influenced by electrokinetic heterogeneity or variations between 

lamina paths when Eq. 5 is applied to individual particles rather than averaged 

data sets.  The only requirement for this cross-referencing elimination is that the 

particle follows the same lamina on both sides or that the lamina within the field 

of analysis are not significantly different.  Finally, the propagated uncertainty is 

significantly reduced (fewer dependent terms) and this approach improves the 

confidence in DEP mobility determinations.  A hypothetical data set for positive 

DEP is presented and characterized by a net bias for all particles amongst some 

degree of noise (Fig. 8.2). 

 



  125

 

Figure 8.2.  Hypothetical velocity results within symmetrical channel.  On 
average, a net positive bias is observed although some particles experience equal 
magnitude velocity slopes on the two sides. 

 

8.3.2  Validating device symmetry and methodology 

 Control experiments were first carried out using only hydrodynamic flow 

to ensure the geometric symmetry of the system and validate the methodology of 

Eq. 5.  For a pressure differential of 100 Pa the average velocity slopes were 0.28 

and -0.29 s-1 for the two sides (Fig. 8.3A).  Therefore, on average RBCs 

experienced equal magnitude velocity slopes within reasonable error.  This is 

strong evidence that channel geometries are symmetrical and supports the 

methodology of Eqs. 3-5.  Furthermore, this suggests a pressure gradient can be 

applied without interfering with the DEP mobility determination.  This is a useful 

finding because it allows adjustable means to transport particles towards the 

region of interest and is decoupled from the electric field unlike electroosmosis. 
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Figure 8.3.  Velocity results with pressure flow.  (A)  The average velocity slopes 
for a population of RBCs in the symmetrical gradient device.  (B) The sum of the 
slopes for individual RBCs with propagated uncertainty for error bars. 

 

However, when individual particles are examined around 30% of them are 

observed to slightly deviate from this expected result (Fig. 8.3B).  In these 

instances a non-zero result is obtained between ±0.05 s when the two slopes are 

summed.  Furthermore, this net-bias is statistically significant when considering 

the propagated error of the slopes.  In other words, certain particles experience 

different velocity slopes on the two sides.  There is still strong evidence for device 

symmetry because both positive and negative biases are observed with equal 

frequency.  Instead this suggests there are other non-symmetrical influences that 

can occur randomly.  Some possible sources of this could be surface interactions, 

inter-particle interactions, or cross-over between different flow lamina.  

Regardless of the origin, however, this systematic noise must be considered and 

overcome for DEP mobilities to be confidently deduced.   These unknown 

influences could also be exacerbated when electric fields are applied. 

 



  127

8.3.3  Red blood cell characterizations 

After validating the geometric symmetry, experiments were carried out 

with applied electric fields and hydrodynamic flow.  One immediately distinct 

observation is the range of RBC velocities and slopes becomes much broader 

under these conditions (Fig. 8.4A).  The variation in particle behaviors makes it 

difficult to make generalizations at the population level and precise best fits were 

not obtained.  Additionally, the variance in population data sets becomes greater 

with increasing field strengths.  Instead, particles were assessed on an individual 

basis because good linearity was obtained for most particles (R2 > 0.9).    

Approximately 50% of particles experience a net bias, although both positive and 

negative biases (from -0.1 to 0.1 s-1) are observed with equal frequency (Fig. 

8.4B).  One interpretation of these results is that the RBCs have broad DEP 

heterogeneity that spans both positive and negative Clausius-Mossotti factors.  

This is a reasonable possibility considering both positive and negative DEP 

trapping behaviors of blood cell materials (e.g., fragments, lysed cells) has been 

previously observed [5].  However, another explanation could be that the data sets 

are unreliable because of unknown assymetrical influences which compromise the 

approach of Eq. 5.  These effects were observed in control experiments (Fig. 

8.3B) and could be exacerbated in the presence of electric fields. 
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Figure 8.4.  Velocity results with electric field and pressure flow.  (A)  The 
average velocity slopes for a population of RBCs in the symmetrical gradient 
device.  (B) The sum of the slopes for individual RBCs with propagated 
uncertainty for error bars. 

 

The range of signals observed (summed slopes) is from -0.1 to 0.1 s-1 

while the standard deviation in signal is on the order of ±0.1 s-1.  Therefore, the 

variability in individual particles makes it difficult to make a global conclusion 

about the DEP mobility of RBCs.  Nonetheless, this data set can provide an upper 

limit of DEP mobility by solving Eq. 5 from the maximum signals observed.  The 

electric field gradient is (dE/dx) is computed from COMSOL to be 3 × 103 V cm-2 

under these conditions.  From this the magnitude of the DEP mobility of RBCs is 

no larger than 6 × 10-9 cm4 V-2 s-1 ‒  although the sign is unknown or varies.  

Again, it is unclear if data variations are from particle heterogeneity or from 

systematic noise.  Nonetheless, this magnitude is a reasonable result compared to 

that observed in Chapter 7 for polystyrene particles (2 × 10-8 cm4 V-2 s-1).   

A stronger field gradient and/or reduced system noise is needed to more 

clearly elucidate the DEP signal.  In essence, higher fields could be employed, but 

the need for isotonic buffers (~130 mM) means that high currents (> 100 µA) and 
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excessive joule heating would result.  Additionally, high fields push the limits by 

which imaging and velocimetry techniques could be feasibly employed to monitor 

particle motion.  More studies are needed to identify the origin of and reduce 

system noise, but likely culprits are surface interactions, inter-particle 

interactions, and inter-lamina cross overs. 

The limitations of the approach from Chapter 7 are clearly elucidated from 

the new symmetrical experimental design.  It was previously assumed that only 

electrokinetic and DEP forces impact particle motion; however, other influences 

or biases are clearly apparent when cross-referencing data from the symmetrical 

device.  Although the resultant data sets are still difficult to interpret, the 

experimental validity is improved and the propagated uncertainty of the calculated 

DEP mobility is reduced with the symmetrical device. 

8.3.4  Reducing surface interactions 

 From the previous results there was clear indication that surface 

interactions were a strongly influencing particle motion.  This is reasonable 

considering the channel depth is on the order of 10 µm while the RBCs have a 

diameter on the order of 5 µm, surface adsorption of RBCs was clearly evident 

over prolonged periods, and the depth of field of the microscope is on the order of 

30 µm.  Experiments were carried out using BSA as a dynamic coating agent that 

was added to all solutions at 8 mg/mL.  This was suspected to block RBC-channel 

interactions because RBC surface adsorption was significantly reduced.  As 

expected, control experiments using only pressure flow showed better 

performance.  The number of particles whose motion differed in magnitude 
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between the two sides was reduced from 30% to 20%.  Additionally, the velocity 

linearity improved as indicated by an average increase in R2 values.   

Considering the reduction in systematic noise using BSA, it was expected 

that DEP signals would be more clearly elucidated.  Experiments were carried out 

across a range of voltages and multiple different particles were tracked.  Better 

linearity was obtained in the velocity slopes, but equally broad behaviors were 

observed (Fig. 8.5).  Furthermore, the average propagated uncertainty in the 

slopes increased with increasing voltage from 0.03 to 0.07 s-1 using 500 to 800 V, 

respectively.  These voltages correspond to electric field gradients between 2.4 × 

103 and 3.8 × 103 V cm-2.   This means the velocity results become less linear and 

Eq. 5 becomes less reliable as DEP forces become stronger.  In accord with Eq. 5, 

the magnitude of the summed slopes increased with increasing voltage.  However, 

this cannot be directly attributed to DEP because of the not all particles were 

systemically biased and the potential for unknown, asymmetries.  It is possible 

that the higher energy conditions promote unwanted effects such as inter-particle 

and surface interactions. 
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Figure 8.5.  Velocity results with dynamic coating.  The velocity slopes of 
individual RBCs are summed.  Different voltages are applied and a constant 
pressure flow of 100 Pa was applied in all experiments.  Each data point is a 
unique RBC and the results are sorted low to high.  An equal number of net 
negative and net positive biases are observed.  The propagated uncertainty (not 
shown for clarity) in the slopes ranges between 0.02 and 0.09 s-1. 

 

It is unclear why the DEP force is so elusive in attempts to quantitatively 

monitor it, but qualitative observations can provide some insights.  Particle 

motions are observed to become more complex when the DEP force is significant.  

This is characterized by rapid fluctuations in velocity magnitude and direction.  

Perhaps dynamic fluctuations in voltage, conductivity, or temperature strongly 

couple with DEP.  Another possibility is that fluctuations in particle properties 

such as orientation/shape, surface charge, counter-ion clouds, or membrane 

composition cause fluctuating forces.  This fluctuating and unanticipated behavior 

typical of DEP is illustrated under exaggerated conditions (Fig. 8.6B).  In 

comparison to low voltage conditions which produce linear predictable profiles 

(Fig. 8.6A), higher voltages produce a significant DEP force where particle 

motion can be arrested and it can unpredictably fluctuate directions (Fig. 8.6B).  

Only a few of these particles are immobilized to the surface, while the rest are 
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trapped in potential energy well from a balance of DEP, pressure, and 

electrokinetic forces.  Although these conditions are exaggerated beyond typical 

velocimetry experiments, similar ‘unsteady’ effects could be occurring that 

explain the imprecise data sets observed. 

 

 

Figure 8.6.  Still image sequence of particle motion.  (A) Particle motion at lower 
voltages when DEP force is weaker.  The particles follow very linear predictable 
paths.  (B) Particle motion at higher voltages when DEP force is strong and 
particle motion fluctuates unpredictably. 
 

8.4  Concluding remarks 

Although reliable DEP mobilities for RBCs were not obtained, some 

unique insights were observed.  The magnitude of RBC DEP mobility is less than 

1 × 108 although the direction was undetermined because other influences 

overwhelm DEP signals.  The experiments conducted illustrate the difficulty in 

isolating DEP forces from background noise and shed light onto future directions.   
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Attempts to increase the strength of DEP force with increasing voltage 

produced more noise.  However, this could be the result of excessive joule heating 

from the resulting high currents.  The present design tapers from 2 mm to 0.05 

mm in width over 1.75 mm in length.  An alternative approach would be to 

redesign the channel geometry to have a steeper geometric gradient, smaller 

cross-sections, and shorter lengths.  For instance, a channel taper from 0.5 mm to 

0.05 mm in width over 0.2 mm in length could provide better outcomes.  The 

smaller cross section would reduce current and heating loads, the resultant 

gradient would be twice as steep, and the reduced length significantly diminishes 

the probability of interference from surface or inter-particle interactions. 

 Additionally, there are some inevitable limitations of velocimetry 

techniques that can constrain this approach.  For instance, rapid imaging is 

required but decreased exposure times produce more noise in images.  

Additionally, velocimetry techniques are limited to larger particles (>400 nm), 

require fluorescent labels in many cases, and are limited to velocities less than 2 

mm/s.  An alternative and more universal approach would be to employ fixed 

point detection and time-based analysis.  Similar to electrophoresis, the travel 

time to a detector is directly dependent on the transporting forces.  Through 

careful design and analysis the DEP motion could be deduced. 

 The incorporation of a controlled injection apparatus into the microfluidic 

device could also improve results.  This could allow either single particle or 

ensemble populations to be monitored in a controlled fashion. 
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 In conclusion, with additional redesign of methodologies the DEP 

mobility measurements can be improved.  Ultimately, these metrics will enable 

particles to be standardized, mechanisms to be elucidated, and devices to be 

rationally designed. 
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Chapter 9 

Concluding Remarks 

9.1  Isoelectric focusing 

 High resolution protein analysis requires highly selective techniques and 

sample enrichment strategies.  Isoelectric focusing (IEF) has long been a powerful 

tool capable of meeting these requirements; however, detection limits, 

automation, and reproducibility still need improving.  These and other limitations 

necessitate solutions in order for isoelectric focusing to solve new and more 

difficult problems.  Methods for interfacing capillary IEF (cIEF) with matrix 

assisted laser desorption/ionization mass spectrometry (MALDI-MS) were 

advanced, validated, and applied to the analysis of serum amyloid P component 

(SAP) in Chapters 3 and 4.  Some fundamental dependencies of MALDI-MS 

were deduced in Chapter 5 which sheds light onto an optimal deposition strategy 

when coupling cIEF and MALDI-MS.  The cIEF-MALDI-MS platform offers the 

potential of higher resolution and more automatable protein analysis.  In addition, 

there is also a need for low-resolution, high-throughput sample preparations.  

Towards this goal, IEF was employed within open drops (dIEF) and the 

fundamental processes were characterized.  From this, it is evident that droplet 

microfluidic technologies could adopt the dIEF principles to enable inexpensive 

and rapid sample preparation.  Although the principals of IEF are not new, 

continual improvements of the technique are warranted because it offers the 

highly valuable combination of high-resolution and analyte enrichment.  Many 

elements within this dissertation contribute towards this goal. 
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9.2  Dielectrophoresis 

 Dielectrophoresis (DEP) is an incredibly rich tool for the separation and 

concentration of particles (>20 nm).  More than anything else, DEP is limited by a 

lack of means for the accurate, quantitative assessment of particle behaviors.  

Quantifying dielectrophoretic particle behaviors allows devices to be intelligently 

designed, insights and mechanisms to be deduced, and particles to be 

standardized.  Chapters 7 and 8 promote such quantitative investigations through 

the development of methods for dielectrophoretic mobility determination.  

Dielectrophoretic mobilities for 1 µm polystyrene particles and red blood cells are 

found.  More importantly, however, a foundation for quantitative 

dielectrophoresis is introduced which enables new and improved technologies.  

Although crude measurements are possible, additional efforts are needed to 

reduce system noise and increase dielectrophoretic forces. 
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