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ABSTRACT  
   

In this thesis I introduce a new direction to computing using nonlinear 

chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us 

to (1) build better computers that have a flexible instruction set, and (2) carry out 

computation that conventional computers are not good at it. Here I start from the 

theory, explaining how one can build a computing logic block using a chaotic 

system, and then I introduce a new theoretical analysis for chaos computing. 

Specifically, I demonstrate how unstable periodic orbits and a model based on 

them explains and predicts how and how well a chaotic system can do 

computation. Furthermore, since unstable periodic orbits and their stability 

measures in terms of eigenvalues are extractable from experimental times 

series, I develop a time series technique for modeling and predicting chaos 

computing from a given time series of a chaotic system. After building a 

theoretical framework for chaos computing I proceed to architecture of these 

chaos-computing blocks to build a sophisticated computing system out of them. I 

describe how one can arrange and organize these chaos-based blocks to build a 

computer. I propose a brand new computer architecture using chaos computing, 

which shifts the limits of conventional computers by introducing flexible 

instruction set. Our new chaos based computer has a flexible instruction set, 

meaning that the user can load its desired instruction set to the computer to 

reconfigure the computer to be an implementation for the desired instruction set. 

Apart from direct application of chaos theory in generic computation, the 

application of chaos theory to speech processing is explained and a novel 

application for chaos theory in speech coding and synthesizing is introduced. 

More specifically it is demonstrated how a chaotic system can model the natural 
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turbulent flow of the air in the human speech production system and how chaotic 

orbits can be used to excite a vocal tract model.  

Also as another approach to build computing system based on nonlinear 

system, the idea of Logical Stochastic Resonance is studied and adapted to an 

autoregulatory gene network in the bacteriophage λ.  
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CHAPTER 1 

INTRODUCTION  

1.1. Computers and Computation 

A computer is a physical device to carry out computation; in other words 

one can consider a computer as an implementation of a computation. Notice that 

in this chapter by saying computer I am not addressing modern, general-purpose 

digital computers; instead I define any physical device that can implement some 

computation as a computer, including modern digital computers as well.   

To be an implementation of a computation, some sort of congruency 

between the behavior and nature of the physical computer and the type of 

computation is required.  

The history of computers goes back to the stone age. The next section 

summarizes the history of computers and their evolution over the course of time. 

This study of the evolution of computers will clarify the needs and requirements 

for a new computing system and a new logic, which will be introduced in this 

thesis. 

1.2. History of Computers 

1.2.1. Devices for Counting 

Man’s fingers were probably the first computer used by humankind! This 

simple computer was used as a counting device through simple one-to-one 

correspondence [1].   

The first reported computer hardware built by humankind seems to be the 

tally stick. Again, this computer was used as a device for counting (through one-

to-one correspondence) as well as storing the numbers. The most ancient 
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discovered tally stick is the Ishango Bone, which is on exhibition at the Royal 

Belgian Institute of Natural Sciences.  It is believed to be more than 20,000 years 

old [2].  

 

Fig. 1.1. Ishango Bone, the oldest discovered stick tally; it dates back to 

more than 20,000 years ago. Picture is from the Royal Belgian Institute of Natural 

Sciences [3]. 

Tokens are other ancient computing devices that date back to 8000-3000 

BC. These clay artifacts have geometric forms such as cones, spheres, disks, 

cylinders, or others that take naturalistic shapes such as miniature animal heads, 

vessels, tools, and furniture [4].  

Tokens were counters used to keep track of goods with each token form 

standing for one specific unit of a commodity. The number of units of 

merchandise was shown in one-to-one correspondence. It is known that, in the 

fourth millennium BC, the tokens were an accounting device used by the 

Mesopotamian temple administration to record entries or expenditures of goods 

offered by worshippers during monthly religious festivals [4]. Pictures of 

discovered tokens are illustrated in Fig. 1.2. 
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The ancient computing devices introduced in this section were mainly 

used for counting and representing the numbers and the main idea was very 

simple and primitive: one-to-one correspondence between each unit of goods 

and one finger/notch/token. Counting and representing the numbers were useful 

to keep track of livestock, grain, etc., but it wasn’t enough. The ancients needed 

some computation and mathematics like addition, subtraction, or multiplication 

and a computing system that help them to do such computation. In the following 

chapter the next generation of computing devices is introduced, where the device 

stores numbers and helps the user to do primitive operation on the stored 

numbers. 

        

Fig. 1.2. Left: Plain tokens, Mesopotamia, Iraq, 4000 B.C. The cone, 

spheres and disk represented various grain measures; the tetrahedron stood for 

a unit of labor. [Credit: Denise Schmandt-Besserat, The University of Texas at 

Austin [4]]. Right: Naturalistic tokens representing animals, a vessel and a fruit, 

Iran, 3300 B.C. Credit: Musée du Louvre, Département des Antiquités Orientales, 

Paris. 
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1.2.2. Devices for Pseudo-computing  

The next generation of computing devices wasn’t just for representing the 

numbers; instead they helped the user to do computation on the stored numbers 

as well. At this stage, the computation wasn’t fully automated inside the 

computing device. The device helps the user keep track of numbers as they do 

the computation, hence the name pseudo-computing device. The abacus and 

counting rods are examples of this generation of computing devices.  

The abacus is a calculating tool used for performing arithmetic. 

Sumerians built the first abacus about 2700 BC [5]. This simple, but efficient 

computing system became popular in all ancient civilizations, including Rome, 

Persia, Greece, China, etc., and it has lasted even until now when it is still used 

as a simple calculator.  

 

Fig. 1.3. A Korean-style abacus, dating back to early 1900 AD, Credit: Gwen and 

Gordon Bell [6] 
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Counting rods were used in ancient China, Japan, and Korea to perform 

mathematical and algebraic calculations. The most ancient specimens of 

counting rods were discovered from Chinese tombs dating from the second to 

first centuries BC [7]. Counting rods are placed either horizontally or vertically to 

represent any number and any fraction. The method for using counting rods for 

mathematical calculation was called rod calculation and by using it the ancient 

mathematicians were able to solve problems as hard as systems of linear 

equations or roots of numbers [7]. 

Such computing devices were a great help for computation. However, the 

user himself needs to know the method for computation and these devices were 

used as a tool to perform the computation. The turning point in the history of 

computing devices was introduced by mechanical computers designed for 

astronomical computation, where the computer physically models the dynamics 

of the system and as a result the computing system automatically solves the 

problem. 

 

Fig. 1.4. The metal counting rod of the western Han Dynasty [8]. 
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1.2.3 Mechanical Computers for Astronomical Computation  

The introduction of mechanical computers for calculating astronomical 

positions was an important historical turning point for computing systems, 

because the computer was able to automatically carry out the requested 

computation with no help from the user. A non-expert user could easily enter the 

input data, e.g., the calendar date and local time, and the computer automatically 

gives the astronomical positions of the sun, moon, or other planets or vice versa.  

Ancient scientists were the first to learn that a device that models a 

specific computation can be used as a computer for carrying out that type of 

computation. This is indeed the main and basic idea behind any other computer 

system that has since been built. Mechanical computers for astronomical 

computation are the first series of computing devices built based on this idea.  

Such computers were composed a series of mechanical gears whose movement 

models the celestial and planetary system. As a result such a device can 

automatically calculate the astronomical positions of planets or stars given the 

local time and date.  

The most ancient specimen of a mechanical analog computer used for 

astronomical computation was discovered from a shipwreck named Antikythera 

in 1901 and it was called the Antikythera mechanism [9]. Studies revealed that 

this computing machine dates back to 100-150 BC and that it calculated and 

displayed celestial information, particularly cycles such as the phases of the 

moon and a lunisolar calendar [9]. 
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Fig. 1.5. Left: The Antikythera mechanism discovered from a shipwreck. Credit: 

National Archaeological Museum, Athens, Greece [10]. Right: A reconstructed 

schematic view of the Mechanism to illustrate the position of major inscriptions 

and dials [9]. 

The Astrolabe [11], the Planisphere [12], and the Equatorium [13] are 

other mechanical and analog computers used for astronomical calculation that 

were invented and used during ancient days and middle ages.  

These computers were built for calculating celestial information and 

lunisolar calendars because (1) for ancient societies timing agricultural activity 

and fixing religious festivals had great importance, (2) eclipses and planetary 

motions were often interpreted as omens, while the calm regularity of the 

astronomical cycles must have been philosophically attractive in an uncertain 

and violent world [9].  

There have been a few other important and interesting achievements in 

computing systems during Middle Ages and renaissance, famous examples are 

Pascal's calculator Da Vinci’s clock, however we don’t see a new generation of 

computers until industrial revolution. Industrial revolution introduced new 

problems and computations to humankind which required advanced types of 
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computers. Mechanical calculators and early models of mechanical 

programmable computers are the devices designed and built based on these 

new needs. 

1.2.4. Mechanical Calculators and Mechanical Programmable Computers 

The industrial revolution put a new and limitless set of problems to solve 

in front of humankind, which in turn required more sophisticated forms of 

computer.  This new quest for sophisticated computers started from the 18th 

century, when different scientists started to build new calculators and 

programmable computers. The common characteristics of these new series of 

computers were that (1) they were mainly mechanical and (2) the designers were 

trying to make these computing systems general purpose and programmable. 

Babbage’s difference engine and analytical engine were probably the 

most famous computer systems of this era. The difference engine was designed 

to compute values of polynomial functions. Also Babbage recruited the idea of 

punched card programming introduced by Joseph-Marie Jacquard in 1801 and 

tried to build a programmable, general-purpose mechanical computer, named the 

analytical engine. However his efforts to build it failed because of lack of enough 

funding. Recent studies have proved that his designs and architectures for the 

difference engine were correct and working versions of his design have been 

built successfully [14].  
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Fig. 1.6 Left: Difference engine built by Babbage.  Right: A trial version of 

the analytical engine built by Babbage. Both pictures are from science museum, 

London, UK [15]. 

At this era, a few technologically and commercially successful calculator 

machines were built and introduced too. The arithmometer patented by Thomas 

de Colmar and manufactured from 1851 to 1915 is a good example [16]. This 

computing device was a mechanical calculator that could add and subtract 

directly and could perform long multiplications and divisions effectively by using a 

movable accumulator for the result.  

The quest for building a programmable general-purpose computer mainly 

failed because of the lack of the necessary technology or funding until the mid 

20th century. Meanwhile analog computers continued progressing and they 

extended their scope from solving algebraic problems and equations to 

differential equations. 
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Fig. 1.7. Thomas de Colmar's Arithmometer, 1890 AD. Credit: science 

museum, London, UK [15] 

1.2.4. Modern Analog Computers for Differential Equations 

In late 19th and early 20th centuries, advances in engineering and 

technology introduced new problems to solve.  Based on Newtonian mechanics, 

differential equations govern the motion of an object, the trajectory of a bullet, the 

growth rate of the economy, etc.  This need for computers capable of solving 

differential equations initiated dozen of different projects and resulted in the 

invention of new analog computers for solving differential equations during the 

early 20th century. 

The trajectory of a missile and the dynamics of a simple spring-dashpot 

mechanical system can be governed by the same differential equation. This 

similarity between the dynamics was the main idea behind analog computers: 

build a simple mechanical or electrical system that is governed by the differential 

equation of interest. The time evolution of the system is the solution of the 

differential equation for the other.  
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Fig. 1.8. Left: An integrator block of differential analyzer, MIT. Right: Vannevar 

Bush standing near to his analog computer. Pictures are from MIT’s online 

museum [17]. 

The differential analyzer of MIT is a famous example of this generation of 

computers built in MIT by Vannevar Bush and his students during 1928–1931 

[18].  This analog computer was composed of 6 mechanical integrators that had 

been introduced by William Thomson (Lord Kelvin) as well as thousands of other 

gears and rods [19].  

These analog computers were a huge step forward. However they suffer 

from critical weaknesses. The most important problem was that their computation 

was restricted to solving differential equations. These analog computers were 

able to solve any problem or equation that was buildable on the mechanical 

hardware. If the problem was outside the dynamical behavior of the hardware, 

the computer fails to solve the problem. The other problem was the 

programmability of these computers. Not only were these computers 

programmable to just a narrow set of problems, but also this programming 

required mechanical reconfiguration of the connections and setup. Claude 

Shannon, the famous American engineer and mathematician, operated and 

reconfigured the differential analyzer of MIT early in his career. During his work 
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with this machine, he discovered that switching circuits, used in the controller 

part of the differential analyzer, can be modeled and simplified using a then 

relatively unknown branch of mathematics named Boolean algebra. This 

discovery opened the doors to the invention of digital programmable computers.  

1.2.5 Digital Computers 

1.2.5.1 Digital Logic 

George Boole, a British mathematician, was interested in formulating a 

calculus of reasoning, and in 1847 he published a pamphlet titled “Mathematical 

Analysis of Logic” [20]. In this article he developed and introduced novel ideas on 

logical reasoning and argued that logic should be considered as a separate 

branch of mathematics, rather than being considered a part of philosophy. Boole 

argued that there are mathematical laws to express the operation of reasoning in 

the human mind [20]. Boole’s work on what is now called Boolean algebra 

remained relatively unknown for many years as it seemed to have little practical 

use to society. However, Claude Shannon in his master's thesis, A Symbolic 

Analysis of Relay and Switching Circuits, proved that Boolean algebra could be 

used to simplify the arrangement of the electromechanical relays then used in 

telephone routing switches and, much more importantly, he proved that it should 

be possible to use arrangements of relays to solve Boolean algebra problems 

[21]. This concept, of utilizing the properties of electrical switches to do logic, is 

the basic concept that underlies all digital computers. 

Boolean algebra (Boolean logic) was a new, abstract way to express 

reasoning and computation, and, via the introduction of switching circuits as an 

implementation of Boolean logic, a new generation of computers was developed. 
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However, this new computer still wasn’t programmable. It was Von Neumann and 

his architecture for a stored program computer that described how to build a 

general-purpose programmable computer. 

1.2.5.2 Von Neumann Architecture 

The earliest computing machines had fixed programs that were designed 

(hardwired) to do a specific task. For example, the Antikythera mechanism was 

only able to calculate planetary positions. The limitation of a fixed (hardwired) 

program computer is that it is designed and programmed to do a specific task. If 

it is required to change the program, then it is usually necessary to re-wire and 

re-design the machine, which was a complex manual process and which involved 

engineering designs and physical changes (if re-wiring and re-designing was 

possible at all).  

Von Neumann architecture explains how one can build a general 

purpose, programmable computer. It says that a general-purpose computer must 

store data and a program (or sequence of instructions from and instruction set) in 

a storage structure and then call and execute these instructions one by one in a 

CPU [20].  

The main idea behind Von Neumann architecture is to define a set of 

basic instructions that can encode any problem (an instruction set) and then 

implement these fundamental instructions within the hardware. Then for any 

problem one can write a program, which consists of instructions from this 

instruction set, and then feed this program along with the corresponding data 

inputs to the computer. The computer reads this program and executes it line by 

line. Execution of an instruction is nothing more than sending the appropriate 
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data to the hardware implementing each specific instruction. Almost all modern 

computers have been designed and built based on this idea.  

In the next chapter, conventional computers and their drawbacks are 

described. 

1.3 Need for a New, Dynamic-based Programmable Computer 

The main problems of modern digital computers are that (1) although the 

technology used for implementation can be extremely fast, the computation can 

remain relatively slow. The reason is that, in modern digital computers, instead of 

direct calculation of the problem a programmed version of the problem in terms 

of that computer’s instruction set of the computer is executed. Such programs 

are executed instruction by instruction, with each instruction initiated by a master 

clock.  Each instruction takes one or more cycles (unless parallelism is available 

and feasible). (2) The second problem is that, although the computer is 

“programmable”, ironically the hardware is not programmable. As said before, for 

each instruction in the fundamental set of instructions, there is one physically 

separate hardware implementation, and, at the arrival of each instruction to be 

run, the corresponding hardware implementation of that instruction is used while 

the remainder of the hardware is idle.  As a result, inside the hardware for a 

programmable digital computer, there are dozen of implementations for 

instructions, but at each cycle, just one of them is used. These unused 

implementations of instructions are just wasting power and chip area. 

In this thesis a new programmable computer will be introduced, which 

reconfigures itself to be the exact implementation for each instruction 

encountered in the program. This new computer system will utilize all of its 
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hardware, with minimal redundant, unused hardware. Such a computer extends 

the meaning of programmability to new levels, where the intrinsic dynamics of the 

system is programmable. The enabling technology for such a brand new 

computer is based on a novel idea for building logic circuits called chaos 

computing [22,23,24,25,26,27,37,28,29,57,58,59,60,61,70].  

Chaos computing is a new approach to implementing a logic circuit. 

Similar to ancient mechanical computers, or 19th century analog computers, the 

intrinsic dynamics of a chaos computing engine models a function. Furthermore, 

since a chaotic system exhibits different behaviors and patterns, it can implement 

different types of functions [37,24,25,26,27,28,29]. 

In this thesis, after introducing and studying the chaos-computing model, 

a new computer architecture designed for these logic blocks (which replace the 

hardwired instruction set of digital computers) will be introduced. This 

architecture will use these chaos-based logic blocks to obtain a truly 

reconfigurable computer, in which the hardware of the computer is truly 

reprogrammable. Such a computer will utilize all of its resources, so there will be 

no waste of power or IC area. Furthermore, since the hardware itself is deeply 

reconfigurable, the programmability of the computer will not be restricted to just 

an instruction set, and the user will be able to program the computer to be an 

almost exact implementation of his application. 

1.4. Need for a New Logic 

The operations of modern digital computers are restricted to a basic set of 

instructions. The problem is that in some applications it is really hard, if not 

impossible, to describe the problem and solution in terms of the basic 
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instructions. Famous examples are pattern recognition, artificial intelligence, 

perception, etc.   

In this thesis, even beyond introducing a new chaos-based 

implementation for the logic and computation, a new form of computation 

employing chaotic dynamics will be introduced for applications like speech 

modeling and artificial intelligence.  

The main idea is that I will show that a chaotic system can and should be 

used for modeling speech. Since a chaotic system can better physically model 

the process of speech production (speech production involves turbulence, a form 

of chaos), it can provide a superior implementation for modeling speech.  

1.5. Organization of the Thesis 

The main concepts of chaos theory are introduced and explained in 

chapter 2. The focus of this chapter is on the main ideas and concepts of chaos 

theory that will be used in next chapters of this thesis.  In this chapter the 

importance of chaos and nonlinearity will be discussed in detail and it will be 

explained why chaotic dynamics can be very beneficial in computation.  

In chapter 3 a short review of chaos computing is presented. I will show 

how one can build different digital functions using a chaotic system. 

In chapter 4 a new theoretical analysis for chaos computing is presented. 

Until now no direct technique has been introduced to determine the possible 

functions that a given chaotic system can implement or the control inputs that 

select these instructions.  Rather the evolution of any chaotic computing model 

under different inputs is observed and monitored to determine its instruction set. 

In this chapter the computational capabilities and properties of a chaos-based 
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computer are connected to the dynamical properties of the underlying chaotic 

system. Specifically I demonstrate that the instructions that a chaotic system can 

implement can be directly determined from the periodic orbit structure and the 

dynamics of the system.  Furthermore, in Chapter 5 I use the unstable periodic 

orbit (UPO) theory and the UPO model to estimate the robustness of a chaotic 

system in doing computation.  

Examples for application of UPO in chaos computing and determining 

and estimating the functionality and robustness of chaotic system in computation 

are presented in Chapter 6. 

Furthermore, since UPOs are experimentally extractable from a time 

series, one can determine the computational functionality of a chaotic system 

and its robustness based on a time series with no need to know exact dynamical 

equations of the system. In chapter 7 I explain how from a time series one can 

reconstruct a UPO based model for chaos computing and how this model can be 

used in determining and estimating the functionality and robustness of the 

underlying chaotic system in computation. An example of this extraction of 

functionality and robustness from a time series is presented in chapter 8. UPOs 

and their eigenvalues are extracted to reconstruct the UPO model and to 

estimate the functionality and robustness of underlying chaotic system in doing 

computation. 

In chapter 9 a brand new architecture for chaos computing is proposed. 

This architecture explains how one can arrange chaos-based logic blocks beside 

each other to obtain a computing system. The computing system I build will have 
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a flexible instruction set, meaning that the user has the option to choose the 

desired suitable instruction set for his application. 

In chapter 10 I describe how chaotic systems can be used in coding and 

synthesizing human speech. In this chapter the focus is on a famous speech 

coding and modeling technique, named CELP, and I demonstrate how random 

number generators and random series can be replaced with chaotic systems and 

chaotic time series to obtain better performance. Chaotic excitation of the filter 

which models the vocal tract is more biological oriented and it results in better 

performance.  

In chapter 11 a new nonlinear dynamical systems-based approach for 

computation, named logical stochastic resonance, is introduced and it is adapted 

on a regulatory gene network, named lambda phage λ.  This genetic regulatory 

based logic block is able to build AND and OR gates.  

At the end Chapter 12 presents the conclusions I can draw from this work 

and it explains the future directions following the thesis. 
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CHAPTER 2 

CHAOS THEORY, THE MAIN CONCEPTS 

Even large dedicated books for chaos theory fail to cover all aspects of 

this new and broad branch of modern science, so there is no way I can introduce 

and explain all aspects of chaos theory in this short chapter. Instead I will 

introduce the main concepts and ideas of chaos and nonlinear dynamical 

systems theory that I will use in my work in next chapters. Furthermore, I keep 

the mathematics and definitions as simple as possible in favor of meaning, 

implication and application of each concept.  The main reason is the aim of this 

thesis is to apply chaos theory in information processing. The main idea is to 

bridge the concepts between chaos theory and information processing systems, 

and find counterparts for each concept of information processing in chaos theory. 

The counterparts in chaos theory will be a realization of the information-

processing concepts. For such pairing of concepts, having a deep conceptual 

understanding of chaos theory is more important than the mathematical details 

and equations. Therefore the main focus of this chapter, which covers the 

background of chaos theory, will be on the main ideas and concepts. I start from 

the definition of a nonlinear system, and will explain why and how it differs from 

linear systems, and what the implications of nonlinearity are.  

Readers who are seeking more mathematical details of the chaos theory 

and dynamical systems theory are encouraged to refer these text books [30,31]. 
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2.1. Dynamical System 

A Dynamical system is a system described by a set of equations that 

gives the time evolution of the state of the system from an initial state. These 

equations present the continuous-time evolution of the system: 

 𝐱 = 𝐅(𝐱) (1) 

where x is a state vector of the system, or the equations can be discrete, 

presenting the discrete-time evolution of the system: 

 𝐱𝐧!𝟏 = 𝐅(𝐱𝐧)  (2) 

where xk represents the state of the system at time step k. The sequence of 

states trace an orbit in state vector space of the system.  

Maxwell’s equations for plasma, the Navier-Stokes equations for a fluid, 

and Newton’s equations for a motion of a particle are examples of dynamical 

systems. 

A dynamical equation can be linear or nonlinear. In either case, the 

chosen variables which comprise the system’s state vector must span the state 

space.  That is, they must completely describe the current state of the system.  A 

corollary is that they consequently also fully describe all future states of the 

system. 

2.1.1. Linear Dynamical System  

A linear dynamical system is a system whose dynamical equations are 

linear; that is, the dynamical variables describing the properties of the system, 
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e.g. position, velocity, acceleration, current, voltage, etc., appear in the equation 

in a linear form. 

A linear system can be broken down into parts, each part can be solved 

separately, and finally these solutions are recombined to get the answer to the 

linear system. This reduction allows a huge simplification of the complex 

systems. Laplace transforms, Fourier transforms, and the superposition 

argument are examples of the application of such simplifications in a linear 

system, where the system is described and solved in terms of a basis set of 

simple solutions.  

The good thing about a linear dynamical system is that one can solve it 

and obtain a closed-form equation for its time evolution. Having such a closed-

form solution for the linear dynamical system implies that knowing the initial 

condition of the system results in full knowledge about its entire future evolution. 

One basically needs to put the initial condition in the closed form solution of the 

system and it will give him the exact state of the system at any time of future.  

Notice in nature there is no perfect linear system. Any system that 

appears to be linear in some range of parameters will eventually behave 

nonlinearly if we change or increase the parameter values. A linear dynamical 

system usually models the behavior of a real life system in some specific range 

of parameters. However, because of its ease of use and closed form solutions, 

scientists prefer to approximate and model real life systems with a linear model 

at some range of parameters. 
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2.1.2. Nonlinear Dynamical Systems 

A nonlinear dynamical system is a system whose dynamical equations 

are nonlinear; that is, some of the dynamical variables describing the properties 

of the system, e.g. position, velocity, acceleration, current, voltage, etc., appear 

in the equation in a nonlinear form.  

Most nonlinear systems are impossible to solve analytically. In a 

nonlinear system, the solution of the system is not simply the combination of the 

solution of the subsystems. There is an extra solution which arises from 

nonlinear interactions too. Also superposition doesn’t hold true for a nonlinear 

system. A solution of a nonlinear system to a combination of inputs is not the 

combination of the solutions of the system to the individual inputs. The bottom 

line is there is no generic, global method for solving a nonlinear dynamical 

system and obtaining a closed form solution.  

This nonlinearity has different implications: (1) the system solution and 

output can be different and more than the sum of the solutions of its subsystems. 

Some brand new and novel features and behaviors may emerge from a nonlinear 

system without having any root in subsystems of the system. (2) At some range 

of parameters the solution of the nonlinear system can be very sensitive to initial 

conditions, which makes the long-term future prediction of the system impossible, 

even though the dynamical equation and initial condition of the system is known 

and in hand. These two important concepts are discussed in next two sections. 

2.2. Emergence from Nonlinear System 

A nonlinear system is more than a combination of subsystems. It may 

show some behaviors or features that cannot be tracked down to a specific 
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subsystem. Such newborn features and behaviors arising from nonlinearity and 

complexity are called emergent behaviors.  

Most of interesting features, orders, behaviors, and even concepts in 

nature seem to be emergences from the nonlinearity of nature [32,33,34]. 

Famous examples of such emergent orders or concepts are the temperature of a 

gas, intelligence, or even the life itself [32,33,34]. Many of the concepts that have 

troubled the scientist in understanding nature are usually emergences from 

complexity and nonlinearity. The old approach of science, reductionism, which 

says reduce the system to subsystems and study the individual subsystems to 

understand the overall system fails in understanding an emergence. The reason 

is obvious. An emergent behavior arises from nonlinear and complex 

interactions, and it usually has no clear track in the individual behavior of 

subsystems. But when these subsystems are put together and nonlinearity 

comes into the equation, the emergent behavior emerges from nonlinear 

interactions that are hard to understand and solve.  

A famous emergent behavior from a nonlinear system is the phenomenon 

of chaos. Chaos is a random-like behavior from a fully deterministic system. I will 

return back to this concept below. 

2.3. Sensitivity to Initial Conditions 

At some parameter values of a nonlinear system, a small change of initial 

condition results in a dramatic change of orbit path. Such divergence of nearby 

orbits in a nonlinear system is a signature of a phenomenon called chaos. In a 

chaotic system the behavior of the system is aperiodic and it’s “apparently” 

random. The keyword apparently is here to emphasize the fact that the system is 
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not random; it is fully deterministic. But the behavior of the system is random-

seeming and unpredictable in the long term.  

As an example, in Fig. 2.1 a very simple and 1-D map like the Logistic 

map, xn+1=4xn(1-x), is iterated from two different, but nearby initial conditions. The 

orbits starting from these slightly different initial conditions behave completely 

differently after a few initial iterations.  
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Fig. 2.1. Two orbits starting from nearby initial conditions diverge from each other 

and behave very differently. This sensitivity to initial conditions is a signature of a 

chaotic system. 

2.4. Determinism and Unpredictability, Are They Collectable in One 

System? 

A chaotic system is a deterministic system, meaning that knowing the 

dynamical equation and initial state of the system the future evolution of the 

system should be known [35]. But a chaotic system looks to be unpredictable. 

The question is how can these two paradoxical concepts be gathered together? 
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Sensitivity to initial conditions is the answer. If someone knows the exact initial 

condition, and can integrate the dynamical equations precisely without any error, 

he will be able to know the exact time evolution of the system and the orbits will 

be predictable. But in real life, we can not in principal know the exact value of the 

initial condition of a system or, for that matter, its exact equations, and even if we 

do, the next problems will be (1) round-off errors, arising from the fact that we 

can not store a real number in a memory element with finite precision, (2) 

truncation and discretization error in numerical integration of the nonlinear 

system. On the other hand in real life and as an experiment, by setting the initial 

state of a chaotic system to some initial value and running the system for some 

time, we are not going to see the same time evolution. The imprecisions in 

setting the initial conditions and the background noise are enough to diverge the 

orbits and as a result again the system behavior will look unpredictable and 

random-like.  

To sum up, I can say that the future of a chaotic system is indeterminate 

even though it is a deterministic system.  

2.5. Nonlinearity, Good or Evil? Motivation of the Thesis 

The lack of analytical methods and generic closed form solutions for 

nonlinear systems has made them hard to cope with. For a science or 

engineering undergraduate student, a nonlinear differential equation can be the 

hardest, most unpleasant and unappealing problem to solve. The majority of the 

science and engineering community have been engaged in studying nonlinear 

systems and problems and millions and even billions of dollars each year is 

dedicated for funding such research. Based on these facts one may conclude 



 26 

that we would have a better life if the world were linear. But the truth is that 

nonlinearity plays a vital role in nature and furthermore without nonlinearity there 

would be no life! The implications, importance, and applications of nonlinearity 

and chaos are discussed in the following. 

2.5.1. Chaos and Information 

A chaotic system provides us with both determinism and unpredictability 

at the same time. Based on Shannon’s information theory point of view, 

unpredictability is information [36]. So I can say that unpredictable orbits of a 

chaotic system convey and represent information. To clarify the concept let’s 

compare a chaotic system with a periodic system. In a periodic system periodic 

evolution of the system represents no information since it’s just repeating itself 

and the observer learns nothing new by watching different repetitions of a cycle.  

But a chaotic evolution is aperiodic and unpredictable, so there is information 

(unpredictability) embedded in it. The question that arises here is where this 

information is coming from? In other words, a chaotic orbit is aperiodic and will 

not repeat itself, so it represents an infinite amount of information. Where is the 

source of this infinite amount of information? The answer is connected to the 

sensitivity to initial conditions in the chaotic system. We need infinite precision in 

setting the initial condition of a system so that we precisely determine the infinite 

evolution of the system.  

The determinism in a chaotic system allows us to encode information in a 

chaotic system though initial condition setting. But the need for infinite precision 

in setting the initial conditions seems to be problematic. However the problem 

can be easily solved by restricting the evolution time of the orbits. A finite 
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precision in setting the initial conditions suffices to encode the information 

required to represent the unpredictability in this limited evolution of the system. I 

used this idea to build chaos-based computing system [22,23,37,61,70] as I will 

review it in chapter 3.  

2.5.2 Chaotic System as a Rich Library of Different Patterns and Behaviors 

Unlike	
   linear	
   systems,	
   in	
   a	
   nonlinear	
   system	
   with	
   a	
   change	
   of	
  

parameters	
   the	
   system	
   may	
   undergo	
   qualitative	
   as	
   well	
   as	
   quantitative	
  

changes	
   in	
   its	
  behavior.	
  As	
  an	
  example,	
  consider	
   the	
  bifurcation	
  diagram	
  of	
  

the	
  logistic	
  map,	
  𝑥!!! = 𝜆𝑥!(1− 𝑥!),	
  where	
  𝜆	
  is	
  the	
  bifurcation	
  parameter	
  as	
  

depicted	
   in	
   Fig.	
   2.2.	
   A	
   bifurcation	
   diagram	
   represents	
   the	
   steady	
   state	
  

solutions	
  of	
  a	
  chaotic	
  system	
  versus	
  a	
  given	
  parameter,	
  called	
  the	
  bifurcation	
  

parameter.	
  Bifurcation theory itself is the mathematical study of the qualitative 

change of a dynamical system when parameters change [30]. As is illustrated in 

Fig. 2.2, by change of one parameter the system exhibits completely different 

behaviors. At some parameter values the system is periodic, and at some others 

it’s chaotic (periodic with periodicity of infinity). Furthermore, at parameter values 

where there is chaos, the system is composed of an infinite number of unstable 

periodic orbits [64,35].  
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Fig. 2.2. Bifurcation diagram of the Logistic map is depicted. At different 

values of the parameter, the system behavior qualitatively as well as 

quantitatively changes. 

A linear system lacks such a broad range of patterns and behaviors. 

Changing a parameter of a linear system results in change of amplitude and/or 

frequency of the system solution.  It is nonlinearity and chaos that provide us with 

a library of different patterns and behaviors, and furthermore, since the dynamics 

is deterministic, these patterns or behaviors are distinct and can be selectively 

stabilized, as will be discussed in section 2.7. Thus the main idea of the following 

chapter is:  

Utilizing a chaotic system as a library of different patterns 

and behaviors, in which we can select each pattern or behavior 

based on our needs. 

2.5.3. Chaos and Emergence  

It seems that most of the interesting things we see in this world are 

nothing more than emergences from complex and nonlinear systems. Examples 
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are like intelligence, temperature, or life itself. Without nonlinearity there will be 

none of these entities.  

2.6. Three Main Characteristics of Chaos 

There is no main mathematical definition for chaos. Instead there are 

three main characteristic behaviors that are associated with a chaotic system 

[38]. They are (1) sensitivity to initial condition, (2) density of unstable periodic 

orbits in a chaotic attractor, (3) Topological transitivity.  

2.6.1 Sensitivity to Initial Condition 

Sensitivity to initial conditions was discussed as the main signature of 

chaos earlier in section 2.3. In a chaotic system nearby orbits diverge 

exponentially. The Lyapunov exponent is a famous quantitative test to detect 

whether a system is chaotic in terms of average divergence of nearby orbits, and, 

if the system is found to be chaotic, how strongly chaotic it is, again in terms of 

average divergence rate. Consider simple 1-D map. Let x0 be the initial condition, 

and 𝑥! + 𝛿! be another nearby initial condition, where 𝛿! is extremely small. Let 

𝛿! be the separation after n iterations (assuming that the dynamical system is 

discrete). If 𝛿! ≈ 𝛿! 𝑒!", then 𝜆 is called the Lyapunov exponent. A positive 𝜆 

indicates chaos, the exponential divergence of initial conditions. Notice some 

references call this definition a local Lyapunov exponent. 

By knowing the exact dynamical equations of the system, one can easily 

compute the Lyapunov exponent. Assume the system is discrete, and xn+1=f(xn). 

After taking logarithms from the definition of Lyapunov exponent and noting that 

𝛿! = 𝑓! 𝑥! + 𝛿! − 𝑓! 𝑥! , I obtain 
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𝜆 ≈ !
!
𝑙𝑛 !!

!!
= !

!
𝑙𝑛 !! !!!!! !!! !!

!!
= !

!
𝑙𝑛 𝑓! !(𝑥!)  (3) 

and based on our assumption, 𝛿! → 0. By expanding the nth order derivative 

based on the chain rule I have 

𝜆 ≈ !
!
𝑙𝑛 𝑓!!!!

!!! 𝑥! = !
!
𝑙𝑛 𝑓!!!!

!!! 𝑥! = !
!

𝑙𝑛!!!
!!! 𝑓!(𝑥)!  (4) 

Similar calculations can be carried out to compute the Lyapunov 

exponent for a continuous system too [39]. Also the Lyapunov exponent can be 

computed from experimental time series as well [40].  

2.6.2. Density of Unstable Periodic Orbits 

A chaotic attractor is composed of an infinite number unstable periodic 

orbits (UPOs) and these UPOs approach every point in the attractor arbitrarily 

closely [64,30,31]. UPOs play a very critical role in a chaotic system because 

they are the skeleton of the chaotic attractor [64]. Furthermore, periodic orbit 

theory [64,65] says that a collection of short UPOs is enough to model a chaotic 

attractor and to estimate invariant measures of the system [64,65]. In chapters 4 

and 5 I will use a similar UPO-based model to describe a chaotic system and to 

explain and estimate the computational functionality of the system.  

The other interesting property of UPOs, which makes them even more 

fascinating, is that a UPO is experimentally extractable from the time series [64]. 

In chapter 7 I will show how this extractability of UPOs from a time series enables 

us to model the underlying chaotic system and estimate its functionality and 

robustness in doing computation solely from the time series.  
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2.6.3 Topological Transitivity 

Topological transitivity (topological mixing) in a chaotic system means 

that under chaotic evolution of the dynamical system a mapping of points 

residing in one region of the phase space will, after a sufficient number of 

mappings, visit any other given region of the space.  This concept is closely 

related to, but not identical with, ergodicity. 

2.7. Manipulating Chaos  

Unpredictability and random-like behavior in chaotic evolution of a system 

can arise from a deterministic system. As a result determinism enables us to 

reliability manipulate the observed chaotic evolution. Here I list a few of these 

important techniques, where the underlying determinism is utilized to select, 

control, or synchronize the chaotic evolution.  

2.7.1. Initial Condition Selection 

Chaotic systems are sensitive to their initial conditions, and because of 

our inability to precisely set the initial condition of the chaotic system, I will not be 

able to accurately select a certain desired orbit through setting the initial 

conditions. A minor error and deviation will exponentially magnify via the chaotic 

evolution of the system and at some point, the system behavior will be 

completely different from the desired orbit. However, by selecting initial condition 

with finite precision and a small error, the short-term evolution of the system will 

be the same as the desired one. This technique simply allows us to program 

short term evolution of a chaotic system by simply setting the initial condition of 

the system to an appropriate value.  
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In this technique, the evolution time is restricted, so with finite precision in 

initial condition setting I can program the system orbit. However the system is still 

chaotic, so we have a broad range of behaviors to select in this way. I have used 

this simple technique for building chaos-based computing systems [37,61,70]. 

2.7.2. Chaos Control 

I introduced a chaotic attractor as a library of different patterns. Since the 

system is deterministic, I can modify or control the dynamics to stabilize the 

desired patterns. As an example, as discussed before, a chaotic system is 

composed of an infinite number of UPOs. We can explain the chaotic dynamics 

and evolution using these UPOs. Starting from an initial condition, the chaotic 

orbit stays in a neighborhood of the nearby UPO, but after a short time because 

of the fact that UPOs are dense, the orbit will be nearer to another UPO, so it will 

diverge from the first UPO and will follow the new UPO. However, again, after a 

short time there will another newer and nearer UPO and the orbit will follow it, 

and this processes continues. The overall motion is like the chaotic orbit is 

wandering between these dense and infinite numbered UPOs. The main idea in 

chaos control is to stabilize a UPO so that the orbit remains near to it. 

In 1990 two separate groups of researchers, a theory group at the 

University of Maryland in College Park, and an experimental research group the 

Naval Surface Warfare Center, theoretically and experimentally showed how the 

chaotic, unpredictable motion of a system can be tamed and stabilized around 

one of the pre-existing UPOs using time dependent, tiny perturbations to a 

system parameter [41, 42]. The discrete-time technique is called OGY, after the 
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name of three authors, Ott, Grebogi and Yorke, of the theoretical paper and it 

was followed by numerous extensions and treatments.  

Two years later Pyragas introduced a new time-delayed feedback 

controller for continuous chaos control [43].  Similar to OGY, this method for 

chaos control stabilizes one of many existing UPOs of the chaotic attractor, but 

here it works in a continuous fashion. Again, this paper initiated a series of 

extensions, all named time-delayed feedback control of chaos. 

Another class of chaos control techniques is open loop control methods 

[44]. As the name suggests, there is no feedback from the current state of the 

chaotic system; instead the controller excites the chaotic system with some 

stimulation function which is usually periodic or quasiperiodic [44]. In such control 

techniques the chaotic system is not stabilized to a desired pattern; instead the 

chaos is suppressed and system behavior is stabilized to some pattern or orbit 

that did not necessarily arise from the existing UPO structure of the system [44].  

These aforementioned approaches to chaos control are the three 

historically earliest and most actively developing directions of research. However 

there are other directions to chaos control as well. Another approach to chaos 

control is to use conventional classic control theory techniques in controlling 

chaos. For example, in [45] a linear control technique is introduced to control 

chaos, or in [46,47,48] more elaborate nonlinear techniques are used for chaos 

control.  Note that it has been shown that the OGY method also fits into this 

category since it is equivalent to using pole-placement theory to control the 

system [49]. 
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A threshold controller is another simple, but effective technique for 

controlling chaos [50]. In this technique whenever the state of the system 

exceeds some threshold the state is reset to the threshold value. Using this 

technique one can stabilize the chaotic system to different periodic orbits. 

However these periodic orbits don’t belong to the main attractor of the 

uncontrolled system; instead they are created because of the coupling of system 

and controller [50]. 

Also for chaos control modern approaches of control have been 

introduced too. The examples are neural networks [51,52] or fuzzy modeling and 

control [53] are applied too.   

2.7.3. Chaos Synchronization 

In 1990 Pecora and Carroll showed that two chaotic systems could be 

synchronized [54]. It was a very interesting finding because in two chaotic 

systems, in which (1) parameters will differ from each other no matter how 

precise the process of manufacturing and (2) no matter how exact the initial 

conditions of the two systems are set to the same value, there will be still some 

error, orbits of the systems naturally tend to diverge from each other because of 

chaos. Pecora and Carroll demonstrated that by designing a common link 

between two chaotic systems so that the Lyapunov exponents of the subsystems 

are negative, one can synchronize the two chaotic systems. 

Furthermore, it is demonstrated that two different chaotic systems can be 

synchronized as well [55,56], and it is called generalized synchronization of 

chaos. 
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2.8. Summary and Discussion 

Nonlinearity is introduced as the main source and cause of important 

features and phenomena in the nature, including life and intelligence. At some 

parameter values of a nonlinear system chaos can happen, which shows itself as 

extreme sensitivity of orbits to initial conditions. Such sensitivity to initial condition 

causes the orbits to seem unpredictable and random.  

A chaotic attractor is composed of an infinite number of UPOs, where 

these UPOs are dense. UPOs can be utilized for modeling an attractor and play 

a critical role in chaos theory.  

A chaotic system was introduced as a library of different patterns and 

behaviors, and since chaos arises from a deterministic system these patterns are 

selectable.  

Three main methods were introduced for manipulating a chaotic system 

to select a desired pattern: (1) initial condition choice, where we set the initial 

condition of a system to program the system to behave based on our desire for a 

short-term evolution, (2) chaos control, where a controller is recruited to stabilize 

a pattern, (3) chaos synchronization, where the behaviors of two chaotic systems 

are synchronized, so that one precisely follows the other’s chaotic evolution.  

Having such a rich library of patterns, named chaos, in one hand, and 

being able to program it on the other hand, makes a chaotic system a suitable 

candidate for implementing information processing tasks.	
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CHAPTER 3 

CHAOS COMPUTING, THE MAIN IDEA 

The main idea of chaos computing is to harness the library of 

orbits/patterns inherent in chaotic systems to select out logic operations and to 

utilize the sensitivity to initial conditions of such systems to perform rapid 

switching (morphing) between all of these logic functions [70].  These features 

are sufficient to perform reconfigurable logic operations using the chaotic system.  

Data and control inputs to a chaotic system (either continuous or discrete) 

may be encoded as either the initial conditions of the chaotic system or the 

parameters of the system.  Here I focus on the former technique.  After applying 

the inputs, the system is allowed to evolve for a predefined time, after which time 

this “final state” of the chaotic system is decoded as the computation’s output.   

To be more precise, consider the m digital data inputs, 

€ 

XData
1 ,XData

2 ,...,XData
m

, to a 

computing engine and the n digital control inputs, 

€ 

XControl
1 ,XControl

2 ,...,XControl
n

.  

Computation with this system consists of three steps: 

Step 1:  Each set of data and control inputs is mapped to a point on the 

unstable manifold of the chaotic system.  This point will be used as the 

initial condition for the chaotic system.  Let T map (encode) the m data 

and n control inputs onto the space of the initial conditions.  If L is a 

binary set {0,1}, then 

€ 

L(n+m )represents the domain of T, which consists of 

all the possible combinations of digital data and control inputs.  Let 

€ 

β be 

the unstable manifold of the chaotic system, 

€ 

Rs the general state space of 

the chaotic system, and Y the output of the encoding map on the unstable 
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manifold.  In this case the general form of the encoding map, T, is as 

follows: 

 

€ 

T : L(n+m ) →β, β ⊂ Rs, L = {0,1}
Y = T(XData

1 ,XData
2 ,...,XData

m ,XControl
1 ,XControl

2 ,...,XControl
n )

 (5) 

Step 2: Starting from the initial conditions produced by the encoding map, 

the chaotic system evolves for a fixed time (or for a fixed iteration 

number, if the chaotic system is discrete).  

Step 3: After the evolution time, the system stops working and its state at 

the end of the evolution time is sampled and decoded to the outputs using 

a decoding map.  

 

Fig. 3.1. Schematic of chaotic computing model. Inputs are mapped to an 

initial condition of the chaotic system working as a computing engine, and 

the final state of the chaotic system is decoded to output. 

A schematic of this computing model is shown in Fig. 3.1. The encoding map 

maps different sets of the inputs to different points on unstable manifold of the 

chaotic system and these points are used as initial conditions for the chaotic 

system.  Since the system is on the unstable manifold, the orbits of the chaotic 
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system are very sensitive to the inputs and the orbits dramatically change with 

just a one-bit change in the control input.  Thus control inputs can select a 

chaotic logic function.  To evaluate which digital function is selected with a 

particular control input, one notes the association of this control input with the 

logic function and then enumerates all possible combinations of data inputs to 

construct the truth table of the function. 

By changing the control input and repeating this procedure (of 

constructing the truth table of the digital function), one may observe a second 

digital function different (with high probability) from the first one.  This is the 

meaning of the reconfigurability of chaos computing.  By using all possible 

control inputs and finding the type of function that the chaotic system 

implements, I obtain the full instruction set of the chaotic system [70].  

So far different implementations for chaos-based computing have been 

introduced [57,58,59,60,61,62]. These implementations were mainly for proof of 

concept, showing that the idea of chaos based computing is practically possible 

and realizable. As an example, in Fig. 2.2 a picture of a circuit that I designed 

and built in [61] to implement chaos computing model is depicted. This realization 

of chaos computing, which is called a chaos based logic block, is able to 

reconfigure to construct any two input, one output digital functions. In this chaos-

based logic block there is a chaotic Chua circuit which works as computing 

engine.  
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Fig. 3.2. Chua circuit-based logic block. 

In what follows I address the important remaining questions: Why do we 

observe a specific form of logic function from a chaotic dynamic system?  What 

are all the possible logic functions that we can obtain from any given chaotic 

system?  How can we connect computation to the dynamics of chaos 

computing? In the next part these questions are addressed by connecting the 

chaos computing model to the dynamics of the chaotic system. 
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CHAPTER 4 

DYNAMICS AND COMPUTATION 

Let x be the dynamic state of a chaotic system and let the chaotic 

discrete evolution of the system be governed by the dynamical equation: 

 

€ 

xp+1 = f (xp )  (6) 

The aim is to compute directly the spectrum of functions that a given 

chaotic system can implement and the robustness of these functions against 

noise from the dynamical Eq. (6). 

The description of a low-dimensional chaotic system in terms of unstable 

periodic orbits, which is known as periodic orbit theory, is a powerful tool for the 

analysis of chaotic systems [64,65,66,63].  Periodic orbit theory is an efficient 

approach to study a chaotic dynamical system in terms of the fundamental orbits 

of its attractor [64].  Here I explain, model, and study chaos computing in terms of 

these basic periodic orbits.  

Periodic orbits were introduced into the theory of dynamical systems by 

Poincare, and they have played a primary role in the mathematical work on 

dynamical systems ever since [64,65,66].  Periodic orbits provide a detailed, 

invariant characterization for deterministic low dimensional dynamical systems 

[64,65,66].  As a result, explaining chaos computing in terms of these periodic 

orbits has profound theoretical consequences.  

A chaotic system is composed of an infinite number of unstable periodic 

orbits (UPOs) [67].  It is known that a collection of short-period UPOs is enough 

to obtain a very precise approximation of a sufficiently low dimensional chaotic 
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system [64,65,66].  Here I approximate the chaotic system with an appropriate 

collection of short period orbits to estimate the computational functionality and 

robustness of the chaotic system.  As was mentioned in chapter 3, during step 2 

of computation, the chaotic system undergoes a specific number of iterations, 

which I denote as p.  I claim that, in one dimensional unimodal chaotic maps 

where the critical point xc is mapped to unity and f(0)=f(1)=0, for the p iterations 

that the chaotic system undergoes, approximating the chaotic system by all of its 

UPOs of length p+1 is enough to determine the function set of the chaotic system 

and to approximate the robustness of these functions against noise. This method 

works for any other chaotic system where all symbolic sequences are admissible 

and therefore the topological entropy is ln(2). But in other chaotic systems we 

might need to use slightly higher length UPOs to model the system. This case 

will be studied in the Gaussian map example.  

In a unimodal map, where the height of the map is unity and where 

f(0)=f(1)=0, there are 2p different unstable periodic points of order p, including 

repetition of  periodic points of lower order [68]. For example, there are 24 

unstable periodic points of period 4, which includes two unstable fixed points and 

two unstable periodic points (one unstable periodic orbit) of period 2.  Thus in a 

unimodal map of height unity, there are exactly 24 possible symbolic sequences 

of length 4, and for each symbolic sequence there is a neighborhood of initial 

conditions where all the initial conditions have the same four-symbol iterates. 

Therefore there is a one-to-one relationship between UPOs and the 

neighborhood of similarly-behaved initial conditions. The same argument is 

correct for any other chaotic system that has no forbidden symbolic sequence or, 
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equivalently, whose topological entropy is ln(2) [68]. Fig. 4.1(a) shows how all 

periodic orbits of length two produce a polygonal approximation of the unimodal 

map.  The unimodal map has two period-1 unstable fixed points, which are at the 

intersection of the map and the identity line, and two period-2 unstable fixed 

points.  Two repetitions of the period-1 unstable fixed points are considered as 

periodic orbits of length two as well.   

Because the behavior of the dynamical system in the neighborhood of 

each of these points may be approximated linearly, the unstable fixed point and 

nearby points lying on a straight line are a good approximation of the dynamics 

near that unstable fixed point.  If we have sufficient numbers of these linear 

approximations, we can approximate the map in its entirety.  Therefore each 

fixed point neighborhood is one of the four faces of the polygonal (piecewise) 

approximation for the map, as illustrated by red (period-1) and green (period-2) 

tangent lines in Fig. 4.1(a). 

As explained above, each face of the approximation is composed of an 

unstable fixed point or periodic point, plus all close-by points.  These points are 

those whose Jacobian is qualitatively similar.  Notice that projecting each face of 

the polygonal approximation on the x-axis results in a neighborhood around each 

periodic point, where all the initial conditions within this neighborhood 

symbolically (in the symbolic dynamics sense) behave the same as the periodic 

orbit.  In unimodal maps the critical point, 𝑥!, can be used for partitioning of state 

space and assigning symbolic itineraries to initial conditions.  As an example, the 

symbolic itinerary for 𝑥 = 𝑥!  is 𝑋!𝑋!𝑋!…𝑋!, where each succeeding digit in the 

itinerary denotes the next iteration of the map. I (arbitrarily) choose 𝑋! = 0 if 
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𝑓 ! 𝑥! < 𝑥! and 𝑋! = 1 if 𝑥! < 𝑓 ! (𝑥!).  Therefore, each periodic point locally 

explains the symbolic behavior of the initial conditions around itself during a 

specific number of iterations of the map. More specifically, UPOs of length p+1 

represent the symbolic behavior of nearby orbits during the first p iterations of the 

chaotic map.  Furthermore, the measure of the robustness against noise of each 

periodic orbit in terms of eigenvalues is a good approximation for the robustness 

of orbits around it until the pth iteration of the chaotic map.   

 

                  a                          b 

Fig. 4.1.  The figure at the left (right) shows how UPOs of length two (three) and 

the neighborhoods around them can be used to determine the functionality of the 

system when it undergoes one (two) iteration(s).  Consider the left graph and 

recall that I have chosen 𝑋! = 0 if 𝑓 ! 𝑥! < 𝑥! and 𝑋! = 1 if 𝑥! < 𝑓 ! (𝑥!).  

Any set of initial conditions in the area denoted “00” will return to that area, 

generating the symbolic itinerary 00.  An initial condition in the region denoted 

“01” will start below xc but the next iteration will take it above xc, thus generating 

the symbolic itinerary 01.  Similarly for the other regions.  Note that some UPO 

neighborhoods are not used to implement the function of interest here. 
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In Figure 4.1(a) on the x axis, the neighborhoods of initial conditions that 

symbolically behave the same as the UPOs are denoted in the same colors.  As 

an example, the first neighborhood on the x axis, which is illustrated by red color, 

contains the initial conditions that symbolically behave the same as the UPO at 0 

and all of which produce the symbolic itinerary 00 when they evolve under the 

chaotic map, i.e., for any initial condition in this neighborhood x0, x0<xc and 

f(x0)<xc..  In Fig. 4.1(b) a different polygonal approximation for the chaotic map 

using period three UPOs is illustrated.  This approximation is composed of two 

unstable fixed points and two new UPOs of period three, resulting in an eight- 

faced polygonal approximation. Two faces of the polygonal approximation are 

delineated by the two unstable fixed points of the chaotic system, and the 

remaining six faces are related to two unstable periodic orbits of period three, 

each unstable fixed point of the periodic orbit centering a face.  In these two 

approximations, the boundaries between neighborhoods on the x-axis are the 

preimages of the critical point, xc.  

As described above, chaos computation encodes the data as well as the 

control inputs to form the initial conditions, next evolving the chaotic system from 

these initial conditions for some number of iterations, and lastly decoding the final 

state to obtain the output of the computation.  The technique for obtaining the 

instruction set of a chaotic system for use in computation is as follows: when the 

chaotic system is iterated p times, approximate the chaotic system by its UPOs 

of length p+1.  Determine in which UPO neighborhood the encoding map places 

each initial condition and the characteristic itinerary (e.g., (0,1) in Fig. 4.1(a)) for 

that neighborhood.  The last symbol of this itinerary represents the output of the 
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computation for those specific data and control inputs.  By applying this 

technique for all combinations of data and control inputs, instruction set of the 

chaotic system can be directly obtained.   

Consider as an example a one-humped map, as shown in Fig. 4.1(a).  

This might be the logistic map or any other similar map.  Now let us consider that 

this chaotic system undergoes one iteration and that, as explained above, I will 

be using period-2 UPOs.  If I denote the selected control inputs from Eq. 5, 

, collectively as C0, all four possible initial conditions 

produced by the encoding map are illustrated on the x-axis.  Here, the aim is to 

implement a two-input function; therefore we have four different combinations of 

initial conditions.  In this example, the encoding map encodes the data inputs 

(0,0) to the point (0,0,C0), (0,1) to (0,1,C0) , (1,0) to (1,0,C0), and (1,1) to (1,1,C0).  

The initial condition (0,0,C0) falls in the first neighborhood on x-axis, which 

produces 0 after one iteration.  Therefore the output of the computation for the 

(0,0) input is 0. The second and third initial conditions, (0,1,C0) and (1,0,C0), fall 

in the second neighborhood, which is represented by the periodic orbit 01, and 

so the output of the computation for these two inputs is 1.  The last initial 

condition, (1,1,C0), settles in the third neighborhood, which corresponds to the 11 

periodic orbit.  Therefore the output of the computation will be 1.  As a result 

control inputs C0 thus constructs an OR gate.  This procedure can be repeated 

for other control inputs to obtain the instruction set of any given chaotic system.  

The instruction set of the chaotic system for other iteration numbers can 

be obtained in a similar way.  As a further example, I show this for iteration 

number two in Fig. 4.1(b). From the figure it is clear that the set of control inputs 

€ 

XControl
1 ,XControl

2 ,...,XControl
n
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C0 constructs a function that produces the output 1 when the inputs are (0,0) and 

(0,1), but produces the output 0 when inputs are (1,0), and (1,1). 

Here functionality of a chaotic system in doing computation is determined 

based on UPOs and their neighborhoods. In next chapter I demonstrate how 

UPOs and UPO model can be used to estimate the robustness of these 

computational functionalities. 
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CHAPTER 5 

ROBUSTNESS AGAINST NOISE 

UPOs can also help us in approximating the robustness against noise of 

the chaotic system while doing computation.  The robustness of each UPO 

against noise can be measured by evaluating its Jacobian matrix.  In our 1-D 

case, the measure of the robustness of each UPO is simply the product of the 

slopes of all the tangent lines at each UPO.  For example, for the dynamical 

system xn+1=f(xn), the robustness against noise for a UPO of length p+1, 

𝑥!!"# , 𝑥!!"# ,… , 𝑥!!"# , 𝑥!!!!"# = 𝑥!!"# is 𝜆!×𝜆!×…×𝜆! where, 𝜆! = 𝑓!(𝑥!!"#) 

[70].  

This robustness measure for each UPO can be used as an approximation 

for the robustness of orbits that start in the neighborhood of the UPO.  To 

construct a specific function, the chaotic system maps the initial conditions 

produced by the encoding map to the final states.  Therefore to evaluate the 

robustness of each function in doing computation, the robustness for each orbit 

needs to be obtained, and the overall robustness of the function is the 

robustness measure of the least robust orbit, i.e. the worst case.    

We assume the noise to the system is additive,  where 

D is the intensity of the noise and  is the white noise.  We also assume the 

noise is approximately Gaussian white noise with zero mean and unit variance, 

.  Earlier we claimed that, when the chaotic system iterates  times, 

approximating the chaotic system by its UPOs of length  is sufficient to 

determine the robustness against noise of the functions implemented by the 

chaotic system. To demonstrate this, let the chaotic system f iterates p times 

€ 

xn+1 = f (xn ) +Dε(t)

€ 

ε(t)

€ 

ε(t) = N(0,1)

€ 

p

€ 

p +1
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from a given initial condition, x0, producing the noisy orbit: 

  (7)
 

By use of the polygonal approximation by UPOs of length , the orbit 

can be approximated by: 

  
 (8) 

where  and is an iterate of the UPO into whose 

neighborhood  places the iterate of the initial condition, x0.  

Since  is a normal Gaussian random variable, , the 

deviation of the final state in the noisy case from the original final state will be a 

Gaussian random process: 

(9) 

Let y be the minimum distance of the noiseless final state, , from 

the boundaries of the neighborhood in which it resides.  If the deviation 

introduced by the noise exceeds this value, the orbit will enter another 

neighborhood, and it may result in an incorrect (undesired) output symbol.  

Therefore the output symbol is robust to noise only if the noise cannot move the 

final state out of the neighborhood where it settles.  If  is a Gaussian random 

variable, , the probabilities that  is greater than , , and  are 

€ 

x0 +ε(0), f (x0 +ε(0)) +ε(1), f ( f (x0 +ε(0)) +ε(1)) +ε(2),...
..., f (...( f ( f (x0 +ε(0)) +ε(1)) +ε(2)) + ...) +ε(p)

€ 

p +1

€ 

x0 +ε(0), f (x0) +Dλ1ε(0) +ε(1), f 2(x0) +Dλ1λ2ε(0) +Dλ2ε(1) +ε(2),...
..., f p (x0) +Dλ1λ2...λpε(0) +Dλ2 ...λpε(1) + ...+ε(p)
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84.2%, 97.8%, and 99.9% respectively. We observe that the probability of  

is just 0.1%.  This fact suggests that if , where  is the standard deviation 

of , then the outcome will be robust against this noise 99.9% of the time.  Since 

 is the minimum distance of final state, , from the boundary of the 

neighborhood, it can be easily computed. Therefore the noise intensity should be 

limited by: 

  (10)
 

Therefore the symbol of the final state is robust against noise when the 

signal to noise ratio (SNR) is greater than , where  is the root 

mean square of  over all x.  Notice that because of the ergodicity of the 

chaotic map, ,  does not depend on the selection of the initial condition.   

Here we derived a measure of the robustness of an orbit against noise.  

To compute a robustness measure for a function, we apply the procedure to all 

orbits produced by the encoding map and set the lowest allowed SNR (highest 

D), as determined over all the orbits. 
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CHAPTER 6 

EXAMPLES FOR DETERMINING THE TYPE OF COMPUTATION FROM 

DYNAMICS 

6.1. Logistic Map 

As an example, consider the functionality of the logistic map for doing 

computation and approximate the robustness of the resulting functions against 

noise.  In this example we assume that an additive noise perturbs the dynamics 

as follows: 

  (11) 

A simple digital-to-analog converter with 10 binary digital inputs will be 

used as the encoding map.  Two inputs are allocated for data, which enables us 

to construct two input functions, and the eight remaining inputs are used as 

controls to reconfigure the chaotic system by morphing between different 

functions.  As the first step of the 3-step computing algorithm, the two binary data 

inputs and 8 binary control inputs are each encoded to either 0 or 1, yielding a 

combined initial value in [0, 1), as follows: 

  (12) 

where I1, I2 are the two binary data inputs, and C1, C2, …,C8 are the eight control 

inputs.   

At the second step of the algorithm, we allow the logistic map to undergo 

different numbers of iterations in order to determine the instruction set for each of 

those different numbers of iterations.  

€ 

xn+1 = 4xn (1− xn ) +Dε(t)

€ 

x0 = (0. I1I2C1C2 ...C8)base2
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As the last stage of the computing model, the final state of the system is 

decoded to obtain the output of the computation as follows:  

  (13) 

where x has obviously been converted to base 10.  We have computed period 2, 

3, 4, 5, 6 and 7 UPOs for the logistic map.  Then we have found the 

aforementioned neighborhoods around these UPOs and have computed the 

robustness of these UPOs against noise. Then for each iteration, e.g., p-1, we 

approximate and model the chaotic logistic map with period p UPOs.  By use of 

this model we directly compute the instruction set of the chaotic logistic map 

when it undergoes p iterations.  The results are listed in Table I for different 

values of p, 1 ≤ 𝑝 ≤ 6. 

In Table I each instruction set consists of 4-tuples, the first element being 

the type of function that the logistic map constructs.  The format that we use for 

identifying each of these functions is as follows: Table II presents the truth table 

of a sample function. We denote this function by a function number defined as 

.  Based on this definition, a chaotic system 

would present a 2-input AND gate (with outputs 1000) as function number 8 and 

a 2-input OR gate (with outputs 1110) as function number 14.   

The second element of the 4-tuple is the control inputs that construct this 

sample function. There are 8 binary digital control inputs to the system, so the 

control inputs are numbered from 0 to 255. To evaluate the accuracy of our 

method in obtaining the functionality obtainable from a chaotic map, we have 

€ 

output =
0 if x ≤ 0.5
1 if x > 0.5
# 
$ 
% 

€ 

23 ×O3 + 22 ×O2 + 21 ×O1 + 20 ×O0
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applied the computed control inputs to the logistic map and in practice we have 

observed computationally that they construct the same functions that were 

predicted based on the periodic orbit approximation.   

The third element of each 4-tuple is the computed SNR using the UPO 

approximation.  To examine the precision of these SNRs, we experimentally 

compute the SNR (called SNRe) for all functions and report it as the forth element 

of each 4-tuple.  To compute these experimental SNRs, we statistically compute 

the probabilities that the desired functions are constructed, when the noise 

intensity is changed.  For this example, we choose the noise intensity such that a 

given threshold value for noise intensity results in 99.9% success in constructing 

the desired function.  We then use this same noise intensity to compute SNRp, 

based on the formula 20  𝑙𝑜𝑔 !!"#
!!!!"#!!"#

 .  In order to facilitate understanding of the 

last two elements of the 4-tuples, the estimated SNR and the experimental 

SNRs, we compute the statistical mean and variance of the differences between 

these two SNRs, defined as 𝑟 = 𝑆𝑁𝑅! − 𝑆𝑁𝑅! , for different iteration numbers, p-

1.  As explained above, 𝑆𝑁𝑅! is the predicted SNR based on UPOs of order p 

and 𝑆𝑁𝑅! is the experimental SNR.  The results are plotted as solid lines in Fig. 

6.1.  The overall trend is that with increasing iteration number, the mean and 

variance of the error signal grow.  The predicted SNRs are not very accurate, 

since we approximate a large portion of the map, f, or the iterated map, f(p-1), with 

a straight line.  To obtain more accurate SNR predictions, we need more precise 

modeling and approximation.  In this example we have computed all the UPOs 

up to period-7, so an alternative, more precise (and no additional cost) 
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approximation would use these already-computed period-7 UPOs for a better 

calculation of the SNRs for lower iteration numbers as well.  

 

Fig. 6.1.  Statistical measures, mean and variance, of the error in estimating 

robustness of different instructions against noise are reported. The error is the 

difference between the estimated SNR and the experimental SNR for each 

instruction. The mean of these errors at each iteration is reported in the left 

panel, and the variance of the error at each iteration is presented in right panel. 

The solid lines denote cases where, for (p-1) iterations of the map, period p 

UPOs are used for modeling.  Dashed lines denote the means and variances 

when period-7 UPOs are used for predicting the SNR.  Dotted lines show the 

means and variances of the difference r, where linearization is performed along 

each orbit. 

The mean and variance of the error, 𝑟 = 𝑆𝑁𝑅! − 𝑆𝑁𝑅!, where 𝑆𝑁𝑅! is the 

predicted SNR based on UPOs of order 7, is computed for different iteration 

numbers. The results are presented in Fig. 6.1 by dot-dashed lines.  We observe 

that when the iteration number is less than 6, these predicted SNRs are 

considerably more precise than the previous predicted SNRs, because of more 
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accurate modeling and approximation. Based on Fig. 6.1, we observe that 

modeling the chaotic orbits by their nearby UPOs results in a very good 

approximation of the symbolic behavior of the orbits during limited iteration of the 

chaotic map. This observation follows the main claim of periodic orbit theory: a 

collection of short-period UPOs is enough to obtain a very precise approximation 

of a sufficiently low dimensional chaotic system  [64]. 

Finally, to examine the accuracy of the approximated SNRs by use of 

UPOs, we approximate SNRs directly based on the slopes of the orbits, starting 

from the chosen initial conditions.  Thus, instead of finding a nearby UPO and 

using its robustness measure, we compute directly the slope of the main orbit at 

various points on the orbit and we use these slopes directly in the formula 

𝐷!"# =
!

!× !!!!!!!!!…!!!!!!!!!!…!!!!⋯.!!!!!!
,  where 𝜆! = 𝑓 ! !(𝑥!) and 𝑥! is the 

initial condition produced by the encoding map.  The mean and variance of the 

error is plotted in Fig. 6.1 by dashed lines. We see that using UPOs of order 7 for 

predicting SNRs is as precise as using direct slopes, when the iteration number 

is less than 6. 

6.2. Gaussian Map 

As a second example, we determine the functionality of the Gaussian 

map for doing computation and estimate the robustness of the resulting functions 

against noise. The Gaussian map is studied in detail in [69]. Again, in this 

example we assume that an additive noise perturbs the dynamics as follows: 

  (14) 
xn+1 = e

−bxn + c+Dε(t)
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The phenomenon of chaos is observed in this map at some parameter 

values [69].  In this work I set b = 6.5 and c = -0.54 in order to make the 

Gaussian map chaotic. The chaotic attractor of the Gaussian map lies in [-0.28, 

0.5].    Similar to the logistic map example, a simple digital-to-analog converter 

with 10 binary digital inputs, two inputs for data and eight inputs for control, will 

be used as the encoding map. As the first step of the 3-step computing method, 

the combination of two binary data inputs and 8 binary control inputs are, with an 

initial value in [-0.28, 0.5), as follows: 

  (15) 

where I1,I2 are the two binary data inputs, and C1,C2,…,C8 are the eight control 

inputs.  Notice that the coefficient value, -0.28, and the additive value, 0.78, are 

inserted to insure that the initial condition is situated inside the attractor.  

At the second step of the algorithm, we let Gaussian map undergo 

different numbers of iterations in order to determine the instruction set at each 

iteration number. 

As the third and last stage of the computing model, the final state of the 

Gaussian map is decoded to obtain the output:  

  (16) 

There is an important difference between the logistic map and the 

Gaussian map examples. When the bifurcation value of the logistic map is 4, for 

any symbolic sequence X0, X1,…,Xp there is a unique UPO of length p+1 that has 

x0 = -0.28+0.78× (0. I1I2C1C2...C8 )base2

output =
0 if x ≤ 0
1 if x > 0
"
#
$



 56 

the same symbolic itinerary. This one-to-one relationship between any possible 

symbolic sequence and a unique UPO describes any other one-humped map, 

where the attractor is between [0, b] and the critical point xc is mapped to b [68]. 

Therefore the collection of all UPOs of length p+1 can model the behavior of the 

chaotic map over the next p iterations. But the Gaussian map does not have this 

property and there are some neighborhoods of initial conditions with admissible 

symbolic itineraries of length p for which there is no UPO of length p+1 with the 

same symbolic itinerary. But we know that, since the UPOs are dense over the 

chaotic attractor, there is therefore at least one UPO that comes inside the 

neighborhood and which can model this portion of the attractor during the next p 

iterations. Therefore we can easily overcome the problem by using higher order 

UPOs, such as p+2 or p+3, to model the next p iterations of the map. All we need 

to do is to compute the pre-images of the critical map to find the neighborhood of 

initial conditions that symbolically behave the same during limited iterations of the 

map. Then we compute the UPOs until we can find at least one UPO in any 

neighborhood. This collection of UPOs can be used to model the chaotic map 

over a limited number of iterations. In the Gaussian map example, we observe 

that UPOs of length eight are enough to model the attractor during any iteration 

up to six iterations. By use of this model we directly compute the instruction set of 

the chaotic logistic map when it undergoes p iterations.  The results are listed in 

Table III for different values of p, . The format of data in Table III is the 

same as the format in Table I. We observe that, in a noise-free simulation, this 

technique determines the instruction set of the chaotic system precisely. Also 

simulation results illustrate that after modeling the Gaussian map by period-8 

€ 

1≤ p ≤ 6
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UPOs, the robustness of the instructions against noise are predicted with very 

high precision. 
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Table I: Instruction set of the logistic map for different iteration numbers. 

P
   

Instruction Set 

1 {(6,129,39.39dB,39.9dB), (7,255,26.74dB,26.11dB), (14,0,26.67dB,26.31dB)}  

2 {(5,255,32.95dB,34.2dB), (9,123,30.73dB,31.8dB), (10,0,35.48dB,33.7dB),  
 (11,52,42.72dB,48.79dB), (13,207,44.89dB,46.3998dB)}  

3 {(2,89,50.46dB,57.09dB), (3,53,38.59dB,38.79dB), (4,165,52.28dB,52.59dB), 
(5,255,45.29dB,46.89dB), (6133,36.32dB,42.2dB), (10,0,47.52dB,45.79dB), 
(11,20,46.80dB,47.79dB), (12,211,37.62dB,42dB),    (13,233,45.92dB,51.89dB)} 

4 {(1,228,50.83dB,50.39dB), (3,200,52.73dB,58.89dB),  (5,93,40.41dB,45.19dB), 
(6,126,44.13dB,46.79dB), (7,114,49.45dB,59.49dB),  (8,24,49.45dB,59.89dB), 
(9,20,48.56dB,59.89dB),  (10,17,40.40dB,42.59dB),  (11,8,47.01dB,51.29dB), 
(12,59,50.89dB,62.2dB), (13,62,49.98dB,61.89dB),  
(14,144,53.41dB,54.89dB)}  

5 {(1,177,54.97dB,59.69dB), (2,98,50.07dB,57.39dB), (3,106,47.72dB,51.89dB), 
(4,43,50.83dB,53.09dB), (5,170,57.96dB,63.39dB), (6,35,54.85dB,60.99dB), 
(7,29,62.30dB,67.79dB), (8,80,54.69dB,57.79dB), (10,85,59.64dB,64.49dB), 
(11,195,47.40dB,48.69dB), (12,146,48.20dB,47.79dB),(13,58,47.30dB,48.19dB),
 (14,228,63.97dB,70.39dB),  (15,128,55.34dB,58.19dB)}  

6 {(0,110,60.66dB,62.69dB), (1,106,58.20dB,58.99dB), (2,232,61.11dB,62.59dB), 
(3,140,58.56dB,69.69dB), (4,66,59.67dB,71.59dB), (5,68,55.76dB,62.19dB), 
(6,35,66.87dB,69.19dB),  (7,173,55.50dB,57.89dB), (8,56,56.42dB,63.49dB), 
(9,53,53.76dB,61.29dB),  (10,92,57.01dB,63.09dB), (11,46,55.98dB,60.39dB), 
(12,118,60.55dB,65.19dB), (13,210,59.97dB,60.49dB),(14,123,55.1dB,64.69dB), 
(15,126,54.21dB,62.39dB) } 

 

Table II: Truth table of a typical two input, one output function. 

Data 
inputs 

Output 

00 O0	
  

01 O1	
  

10 O2	
  

11 O3	
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Table III: Instruction set of the gaussian map for different iteration numbers. 
P
   

Instruction Set 

1 {(7,133,18.90dB,19.7dB), (15,0,45.79dB,45.89dB)} 

2 {(9,0,23.62dB,25.50dB), (12,192,33.15dB,34.20dB), (13,118,28.42dB,28.80dB)} 

3 {(6,0,26.47dB,26.40dB), (7,88,36.24dB,37.2dB), (11,246,25.50dB,25.80dB), 
(15,147,36.4dB,36.5dB)} 

4 {(6,191,34.45dB,35.5dB), (7,246,40.37dB,40.89dB), (10,118,55.71dB,56.69dB), 
(11,88,29.73dB,33.60dB), (14,138,35.51dB,36.4dB), (15,0,51.85dB,51.79dB)} 

5 {(4,89,37.62dB,39.89dB), (5,106,36.81dB,38.6dB), (9,187,41.931B,42.29dB),
 (12,47,35.42dB,43.19dB), (13,30,40.96dB,40.39dB), (15,0,36.88dB,37.3dB)} 

6 {(2,6,45.40dB,44.99dB), (3,22,45.96dB,48.69dB), (7,45,38.81dB,49.39dB), 
(8,244,44.09dB,47.19dB), (9,255,62.52dB,62.39dB), (10,223,41.67dB,51.49dB), 
(14,213,47.67dB,48.79dB), (15,79,39.77dB,36.1dB)} 

In this chapter I have demonstrated how chaotic computation could be 

explained, modeled, and predicted in terms of the dynamics of the underlying 

chaotic systems.  Unstable periodic orbits of the chaotic system were used first to 

model it and then to approximate it.  These periodic orbits and the polygonal 

approximations based on them can be used for obtaining the computational 

functionality (the instruction set) of the system.  In this way I have elucidated the 

deep connection between the structure of the system dynamics and the system’s 

ability to perform computation.  This connection intimately depends on the 

periodic orbit structure of the system.   

Low-period periodic orbits are experimentally extractable from time 

series.  This contributes practical importance to our ability to explain chaos 

computing in terms of basic periodic orbits; e.g., it enables us to predict and 

determine the instruction set that a chaotic system can implement and the 

stability of those instructions against noise just by having access to a time series 
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from the chaotic system.  The next chapter focuses on this subject and I 

demonstrate given a time series from an unknown chaotic system how I can 

determine and estimate the functionality of the system in doing computation.   
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CHAPTER 7 

DERIVING INSTRUCTION SET FROM A TIME SERIES 

In this chapter I assume I am given only a time series from a chaotic 

system, e.g., zn, n = 1,2,3,...  No further information about the underlying chaotic 

dynamics is provided. The aim is to obtain the functions that can be constructed 

from the chaotic dynamics and to understand the robustness of these functions 

against noise.   

To do this, (A) recover a generating partition from the time series to be 

able to define its symbolic itineraries.  (B) For a chaotic system which is iterated 

p times, find a suitable collection of UPOs as described in chapter 5 (C) Find the 

neighborhood of each UPO.  Each UPO will then represent its neighborhood in 

an approximation of the chaotic system.  (D) Find the eigenvalues of the UPOs.  

(E) Design local predictors for the time series to predict how close the orbits get 

to the neighborhood boundaries.  This is required for estimating robustness.  By 

extracting all of this dynamic information from the time series, I can obtain the 

library of functions for the underlying chaotic system as well as their robustness, 

using techniques introduced in chapter 4 and [70] as detailed below [71,72].  

7.1.  Extracting a Generating Partition from the Time Series 

To estimate a generating partition from the time series, different methods 

and approaches have been introduced. [73,74]  Here I introduce a novel 

technique using the topological entropy to locate the generating partition.  The 

topological entropy is a basic measure of how much flexibility there is in the 

dynamics, how many different kinds of patterns it can produce, and how much 

the past of the process constrains its future behavior.   
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To begin, partition the state space of the attractor and label each partition 

with an unique symbol.  The passage of the system through its state space then 

generates strings of symbols.  The topological entropy is defined as following: 

  (17) 

where N is the size of a given string using a particular partitioning A of the 

attractor, WN(A) is the collection of all possible N-strings which appear in the 

attractor, and the vertical bars indicate the size of this collection.   

By applying a generating partition, a partitioning scheme which 

maximizes the topological entropy, to create symbolic itineraries for the orbits, we 

preserve the unpredictability of the chaotic dynamics.  I use this definition to find 

the generating partition from the time series.  Changing partitions to find the 

maximal topological entropy rate is an optimization problem: 

  (18) 

where A* is the generating partition.  

In the example provided in chapter 8, I use a hill-climbing algorithm to 

maximize the topological entropy.  However this technique is not durable for 

higher order systems or for systems with more complicated (e.g., higher-

dimensional and/or fractal) boundaries.  In these cases more sophisticated 

techniques are required. [73,74] 

€ 

h(A) = lim
N→∞

logWN (A)
N

h(A*) =max
over A

(lim
N→∞

logWN (A)
N

)
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After constructing a generating partition, we can assign symbolic itineraries to 

orbits and, based on that symbolization, we can define the logic and the logical 

outputs.  

7.2.  Extracting UPOs from Time Series 

A chaotic system is composed of unstable periodic orbits, and it is known 

that a collection of short period UPOs is enough to obtain a very precise 

approximation of the chaotic system [64,65,66].  In [70] it is demonstrated that, 

by approximating the chaotic system with an appropriate collection of short-

period unstable periodic orbits, the functionality and robustness of the chaotic 

system in computation can be obtained. Ref. [70] assumes that the dynamic 

equations are given, so UPOs can be computed analytically or numerically. In 

this work I assume that I do not have access to the underlying dynamics; 

however the importance of using UPOs is that they can be easily extracted from 

a time series. Here to extract UPOs from a time series, I follow the classic 

technique introduced by Cvitanovic in [63].  To find unstable periodic orbits of 

length p, I monitor the time series zn  and evaluate if 𝑧! − 𝑧!!! < 𝜀 , where 𝜀 is 

some small number defining the neighborhood of the UPO.  Here I use the 

Euclidian norm to measure the distance between 𝑧! and 𝑧!!!.  If the inequality 

holds for a specific n, say n0, then the series 𝑧!! , 𝑧!!!!, 𝑧!!!!,… , 𝑧!!!!!! will be 

recorded as a UPO.  Internally, the algorithm uses a parameter , which is the 

minimum distance for two observed UPOs to be recorded as distinct; otherwise 

they will be recorded as a single UPO. 

 

 

σ
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7.3.  Extracting the Neighborhoods of the UPOs 

In chapter 4 polygonal approximation is used for modeling a chaotic 

system, where each face of the approximation was identified and approximated 

by a UPO.  Each face of the approximation is composed of an unstable fixed 

point or unstable periodic point plus all close-by points with qualitatively similar 

Jacobians; i.e., whether the Jacobian flips or does not flip along the unstable 

eigendirection.  The projection of each face of the polygonal approximation onto 

the x-axis results in a neighborhood around each periodic point.  In that 

neighborhood all the initial conditions symbolically behave the same as the 

periodic orbit for some minimum number of iterations. In section and [70], since 

the dynamical equations were in hand, these neighborhoods could be computed 

analytically or numerically from the equations.  But here I need to derive them 

from the time series.  To find the set of initial conditions that symbolically 

behaves the same as a UPO with a symbolic itinerary c0,c1,c2,…,cp-1, I trace the 

itineraries of candidate initial conditions (which we can select from any point in 

our time series) and, if any possess the same itinerary as the UPO, I add them to 

our set.  The closure of this set is one face of the polygonal approximation as 

modeled by the UPO.  

After extracting all the faces of the polygonal approximation for the 

underlying chaotic system, I examine the approximation to ensure that it covers 

the entire attractor.  As mentioned before, it may in some situations be necessary 

to use higher period UPOs to achieve this coverage. 

At this point we can obtain the functionality of the system for doing 

computation. The technique I use here is the same is introduced in chapter 4 and 
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[70]. To summarize, the technique for obtaining the computational functionality of 

a chaotic system is as follows: when the chaotic system iterates p times, 

approximate the chaotic system by its UPOs of length p+1 and determine the 

neighborhood of each UPO by tracing initial conditions to determine their 

symbolic behavior. The last symbol of the itinerary determined by the 

corresponding UPO is the computational output for those specific data and 

control inputs. By applying this technique for all combinations of data and control 

inputs, the computational functionality of chaotic system can be directly obtained. 

7.4.  Extracting the Eigenvalues and Estimating Robustness 

To estimate the robustness against noise of the computational 

functionality of the system, we need the eigenvalues of the UPOs at each point of 

the periodic orbit and also the minimum distance of the final state of the orbit 

(which represents the output of the computation) from the partition boundaries, 

as described in chapter 4.  

To compute the eigenvalues, I obtain a tangent linear map in the vicinity 

of each UPO by a least squares fit.  The eigenvalues of this tangent map 

approximate the eigenvalues of the chaotic map. More specifically, to compute 

the eigenvalues at a UPO si, find all samples in the time series so that  

  (19) 

where the Euclidian norm is used for measuring the distance between states. 

The matrix H representing the linear map is obtained by least mean square fitting 

such that 

€ 

si − z j ≤ r
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  (20)  

The eigenvalues of H are the desired eigenvalues at the point si. 

For simplicity the dimension of the underlying chaotic system and the 

embedding dimension are both unity.  Thus the slope of the tangent line at the 

point si, denoted by , replaces the matrix H.  This is the same value that we 

need for Eq. 10. 

7.5.  Forecasting Chaotic Orbits to Compute the Minimum Distance from 

Partition Boundaries 

To forecast a chaotic orbit starting from a given initial condition, different 

techniques have been introduced. [75] 

To design chaotic systems from a given time series, I use local constant 

predictors.  The main idea of local methods is to predict subsequent samples of a 

time series solely by use of nearby samples in a training time series. Nearby 

samples are defined as the samples that fall into some neighborhood of the state 

that we wish to forecast.  I use the Euclidian norm as a metric to measure the 

distance between states in order to detect whether the training sample falls into 

the neighborhood or not.  The size of the neighborhood is a predictor algorithm 

parameter that is adjusted during each simulation.  

In local constant models the prediction is accomplished by averaging or 

integrating the behavior of the nearby trajectories.  In the averaging method one 

notes the subsequent iterates of points in the neighborhood and averages them 

to obtain the predicted sample.  In the integrating method instead of averaging 

the iterates, one measures the differences between the neighborhood points and 

H × si − zj ≈ si+1 − zj+1

€ 

λ
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their iterates at the next time step.  Then I average the differences and add this 

value to the state in question to obtain the predicted value.  Here I use the 

integrating method, since it is accurate for extrapolation as well as interpolation 

of the training data for forecasting [76].  

There are two methods for predicting p steps ahead, direct prediction and 

iterated prediction. In the direct method a model is built to directly predict the 

state p steps in the future for the given time series. On the other hand, iterated 

prediction jumps one-step ahead p times. Iterated prediction is usually used 

because of its superior short-term accuracy.  However, one should use this 

method with caution since medium- to long-term forecasts can be worse because 

of accumulated error in the input vector [76].  The choice is critically dependent 

upon the numerical details of the iteration algorithm. 

In this case I implement the forecasting method as follows: 

1- Use the time series 𝑧! , 𝑛 = 0, 1, 2,… , 10! as the training data set.  

2- For predicting p steps ahead, find all the nearby training samples that fall 

inside a neighborhood around the current state. Use the Euclidian norm to 

determine whether the training samples are inside a neighborhood of size  or 

not.  

3- Measure the differences between the current value of the nearby training 

samples and their values p time steps ahead. Then average the differences and 

add this value to the current state to predict the value p steps ahead.  

 

ε
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7.6.  Putting It All Together 

Chapters 7.1-7.5 extract all the information that we need in order to 

design a chaos-based computing system and to estimate both its functionality 

and its robustness against noise from a time series.  In this section I examine all 

this extracted information in order to discover the computational properties of the 

underlying chaotic dynamics as well as its computational robustness. I 

summarize the process as follows: 

1- Extract the generating partition (7.1).  

2- Extract all UPOs of length p+1 (or, if needed, slightly higher length) for 

modeling the p iteration of the map (7.2).  

3- Find the neighborhood around each UPO where the UPO approximates all 

points in this neighborhood (7.3).  

4- Encode the data and control inputs via an encoding map to develop an initial 

condition for the underlying chaotic system.  For each produced initial condition, 

determine in which UPO neighborhood it falls.  We know the effect of iterating 

this UPO p times; therefore the chosen initial condition’s final symbol is also 

known without iteration.  For any control input, repeat this procedure with 

different combinations of data inputs to estimate the type of function that the 

underlying chaotic system will construct with a given control system. To compute 

the complete instruction set of the underlying chaotic system, repeat the 

procedure for different control inputs.   
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5- Find the slope (eigenvalue) of the tangent map at each point of the UPO (7.4). 

The result 𝜆 is used in Eq. 10 for estimating robustness against noise.  

6- For any initial condition produced by the encoding map, forecast the final state 

of the underlying chaotic system after p iterations (7.5).  Compute the minimum 

distance of this final state from the partition boundary.  This gives us y, which is 

used in Eq. 10.  

7- For any initial condition, estimate the robustness of the orbit against noise as 

was discussed in chapter 5. To compute a robustness measure for a specific 

function, apply the procedure for all orbits of the function, starting from different 

initial conditions produced by the encoding map and choose the highest required 

SNR, as obtained from individual orbits. 
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CHAPTER 8 

EXAMPLE FOR DERIVING THE INSTRUCTION SET FROM A TIME SERIES 

As an example, here I assume I am given a time series of length 105 

generated from evolution of the logistic map (after transients have died out).  

However, for the purposes of this exercise, I use no prior knowledge about the 

underlying dynamics and all the required information will be extracted solely from 

the time series.  

To derive the instruction set of the chaotic system and the robustness of 

these functions against noise, I follow the 5 stage algorithm introduced in chapter 

7. I repeat the algorithm for different iteration numbers p = 1, 2, ..., 6.   

1- To extract the generating partition from the given time series, I start from a 

random partition and compute the topological entropy obtained by the use of this 

initial partition. Then I apply a hill-climbing optimization algorithm to maximize the 

topological entropy by change of the initial partition. The optimization technique 

converges to the partition boundary xb=0.495605, which is very near to the real 

generating partition of the logistic map which is xb=0.5. Notice that, since the 

generating partition is not a function of iteration number of the chaotic system, 

there is no need to repeat this step again and again for different repetitions of the 

chaotic system.  

2- Using the technique introduced in chapter 7.2, I extract all the UPOs of length 

p+1.  I choose the neighborhood and distance parameters (defined in chapter 

7.2) as  and .   

3- Applying the technique explained in chapter 7.3, I obtain the neighborhoods 

around each UPO of length p+1 such that the UPO approximates the behavior of € 

ε = 0.00003

€ 

σ = 0.000031
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all the points in its neighborhood during evolution.  Examine the total 

approximation and, if necessary, increase the length to p+2 or higher and return 

to step 2.  In the example shown in Table III, although it was not necessary to 

achieve the desired function set, I used UPOs of length 7 to obtain the highest 

possible robustness. 

4- Knowing that the time series does not include any transient (non-stationary) 

behavior, by monitoring the time series I observe that the chaotic attractor is 

between x=0 and x=1. Therefore the encoding map should encode the data and 

control inputs to a point in this interval. The encoding map I use here is where I1, 

I2 are two binary data inputs, and C1, C2, ...,C8 are eight control inputs. Determine 

in which UPO neighborhood the encoding map places each initial condition and 

the characteristic If chaotic map iterates for p times, the (p+1)th symbol of the 

symbolic itinerary of UPO is the output of computation for this specific set of data 

and control inputs. By applying this technique for all combinations of data and 

control inputs, instruction set of the chaotic system can be directly obtained.   

5- Using the technique introduced in chapter 7.4 I compute eigenvalues for all 

UPOs extracted from the time series. 

6- For any initial condition produced by the encoding map, I forecast the state of 

the chaotic system starting at this initial condition and iterated p times. Then I 

compute the minimum distance y from the partition boundary.  This distance is 

used to compute the robustness of the orbit as in chapter 7.5.  
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7- To compute a robustness measure for a specific function, I apply the 

procedure introduced in chapter 4 to all orbits of the function, starting from 

different initial conditions produced by the encoding map and choosing the 

highest required SNR obtained from individual orbits.  A chaotic system can 

construct different functions by applying different control inputs.  

The obtained instruction set is presented in Table IV for different values of 

p. In the table each instruction set consists of 4-tuples, the first element being the 

type of function that the logistic map constructs.  The format that I use for 

identifying each of these functions is the same as I used for Table I. The first 

element represents function number based on Table II. The second element of 

the 4-tuple is the control inputs that construct this sample function. There are 8 

binary digital control inputs to the system, so the control inputs are numbered 

from 0 to 255. To evaluate the accuracy of our method in obtaining the 

functionality obtainable from a chaotic map, I have applied the computed control 

inputs to the logistic map.  They construct the same functions that were predicted 

based on the periodic orbit approximation.  The third element of each 4-tuple is 

the estimated SNR using the UPO approximation. To examine the precision of 

these SNRs, I experimentally compute the SNR for all functions, as reported as 

the forth element in each 4-tuple. To compute these experimental SNRs, I 

change the noise intensity and statistically compute the probability that the 

desired function is constructed.  I choose the noise intensity that results in 99.9% 

success in constructing the desired function and use it to compute the SNR.  I 

observe that the estimated robustness of the functions against noise in terms of 

SNR is very near to the experimental results.  
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Here I explain how one can design a chaos computing system from a 

given chaotic time series without having access to the underlying dynamical 

equations. Two key things that enable us to do this are: 1- chaos computing is 

directly connected to the dynamics of chaotic systems in terms of the short-

period UPOs of the system; 2- These short-period UPOs and their robustness 

against noise are easily extractable from the time series. After extracting these 

UPOs and modeling the chaotic system with a combination of these UPOs, one 

can extract the instruction set of the underlying chaotic system and the 

robustness of these instructions against noise.   
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Table IV.  Instruction set of the logistic map for different iteration numbers 

obtained from a time series. 

P Instruction Set 

1 {(6,128,39.22dB,40.39dB), (7,255,24.30dB,25.8dB), (14,1,24.20dB,26.1dB)} 

2 {(5,255,35.64dB,34.4dB), (9,128,30.73dB,31.6dB), (10,1,30.35dB,34.2dB), 
(11,48,46.01dB,46.09dB), (13,207,46.05dB,45.99dB)} 

3 {(2,91,51.14dB,53.29dB), (3,54,37.85dB,38.79dB), (4,164,52.10dB,52.69dB), 
(5,255,48.17dB,46.79dB), (6,128,38.84dB,40.69dB), (10,1,36.71dB,46.79dB), 
(11,18,46.5107dB,47.39dB), (12,203,38.55dB,39.19dB), (13,23,45.9dB,48.69dB)} 

4 {(1,228,50.23dB,50.49dB), (3,199,56.76dB,56.99dB), (5,88,40.70dB,42.69dB), 
(6,127,44.91dB,46.19dB), (7,112,54.68dB,54.49dB), (8,27,49.88dB,51.99dB), 
(9,19,55.87dB,55.99dB), (10,168,41.18dB,42.89dB), (11,7,50.02dB,52.59dB), 
(12,57,56.66dB,56.89dB), (13,25,47.74dB,54.29dB), (14,14,54.6dB,54.79dB)} 

5 {(1,176,56.85dB,58.29dB), (2,213,51.04dB,52.69dB), (3,109,48.08dB,47.99dB),   
(4,160,51.36dB,52.79dB), (5,170,62.62dB,62.49dB), (6,34,58.72dB,59.89dB), 
(7,29,66.32dB,67.19dB), (8,80,56.47dB,58.19dB), (10,86,60.70dB,62.79dB), 
(11,195,43.62dB,48.79dB), (12,147,47.86dB,47.89dB), (13,60,43.2dB,48.29dB), 
(14,227,65.79dB,67.59dB), (15,128,56.99dB,58.19dB),} 

6 {(0,110,60.66dB,63.09dB), (1,106,58.20dB,59.19dB), (2,232,61.11dB,62.59dB), 
(3,140,58.56dB,69.89dB), (4,66,59.67dB,72.29dB), (5,68,55.76dB,62.39dB), 
(6,35,66.87dB,69.59dB), (7,173,55.50dB,57.19dB), (8,56,58.70dB,63.69dB), 
(9,52,56.37dB,57.89dB), (10,187,59.1dB,59.69dB), (11,46,55.98dB,60.39dB), 
(12,118,60.55dB,65.69dB), (13,210,59.97dB,60.29dB), (14,123,55.09dB,64.9dB), 
(15,126,54.21dB,62.49dB)} 
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CHAPTER 9 

COMPUTER ARCHITECTURE FOR CHAOS COMPUTING 

9.1. Need for a New Architecture for Chaos-based Computers 

The Chaogate (chaos-based logic blocks) presented in chapter 3 can be 

used to construct all the basic logic gates, e.g., two-input AND gates, OR gates, 

etc.  But in the real world much more sophisticated forms of computation are 

desired and demanded.  The science called Computer Architecture and Design 

collects such basic blocks and connects and organizes them to obtain a 

computing machine that is capable of executing programs and performing 

sophisticated computations.  Since chaos computing contributes many novel 

features and methods for computation (e.g., dynamic reconfiguration) 

conventional computer architectures and designs are not applicable to a chaos-

based computer, although some of their methods and approaches can be 

modified and adapted to use in designing chaos-based computers.  Therefore a 

new generation of computer architecture and design is required for chaos-based 

computers in order to manipulate the novel morphing capability of single chaotic 

logic gates and to transform them into a morphable chaos-based computer.   

In this chapter I develop methods and techniques for designing chaos-

based system out of Chaogate, then, I design a chaos-based computing system 

that can morph to build different instruction sets and even processors. Finally I 

develop a simulator to simulate the designed chaos-based computing system. 
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9.2. From One Chaogate to a Lattice of Chaogates 

9.2.1. One Chaogate  

 

Fig. 9.1 Schematic view of a Chaogate is illustrated. There are three 

types of inputs, the data, the instruction, and the clocks, and one output, 

representing the output of computation. 

A diagram for a single abstract Chaogate is depicted in Fig. 9.1. By 

abstract I refer to the fact that at this stage of design I don’t take into account the 

details inside the block, instead I consider the Chaogate as a black box, and the 

only things that matter is the instruction set of the single Chaogate (the 

correspondence between control inputs and the type of function the Chaogate 

builds) and the timing of the Chaogate. The timing describes (1) the time 

intervals, when I need to feed the inputs to the Chaogate, (2) the evolution time 

of the Chaogate, and (3) the time interval, when the outputs are ready to be read 

at the output of the Chaogate. This abstraction is an important concept in 

computer architecture to keep different stages of design separate from each 

other and to hide the unnecessary details of each stage.  At each stage of 

design, the abstract model contains just the necessary information that is needed 

and required at that stage. In chapters 4 and 5 I have studied the functionality 
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and robustness of the Chaogate in detail and I have derived the instruction set 

and the timing of the Chaogate. These are the only information that we need to 

know about a Chaogate to be able to arrange a series of them in a lattice, 

organize them, and build a computer out of them.  

There are three types of inputs to the Chaogate: Data, control, and 

Clocks. There is one output line that carries the output of the computation. As 

described in chapter 3, the Chaogate needs three clocks because of the internal 

three-stage computing procedure of Chaogate, the initial condition setting, the 

evolution, and the output production stage. Each clock trigs each stage of the 

computing. The frequencies and the duty cycles of these clocks depend on the 

type of technology used for implementing Chaogate the and the implementation 

details of the Chaogate. This information should be handed from Chaogate circuit 

design to the chaos-computer architecture stage. Here this mentioned 

information is available and I continue based on it. 

 

Fig. 9.2. Three clocks required for operation of a Chaogate 
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These three clocks are illustrated in Fig. 9.2. The Data and Instruction 

inputs should be ready and kept fixed when the first clock, Initializing clock, is on 

(the binary symbol of clock is 1). The second clock initiates the chaotic evolution 

of the Chaogate, and the third clock trigs the output production mechanism of the 

Chaogate.   

User feeds the Chaogate with the data input and appropriate 8-bit control 

inputs to instruct the Chaogate to do the desired operation on the data.  Notice 

the need for 8-bit control input comes from the random-process analysis of the 

Chaogate and the fact that to have a universal 2-bit computing engine, one 

needs to have 8-control bits [37]. However, one may reduce the number of 

control bits to less than 8 to obtain a reduced set of functions. But in either case, 

usually the required number of control bits to instruct a Chaogate exceeds the 

number of required bits to address and count the available functions inside a 

Chaogate. As an example, in introduced Chaogate in chapter 3, 8 control bits 

were used to instruct the Chaogate to build 16 different digital functions. But we 

know that 4 bits are enough to address 16 different digital functions. As 

discussed in chapter 3, this need to extra number of bits returns back to the fact 

that different control inputs may result in the same digital function and that is why 

the number of different control inputs exceeds the number of available functions 

in a Chaogate. The bottom-line is, here, these 8 control bits are carrying less 

than 8 bits of information, and this excessive use of wires and inputs is not 

desirable in computer architecture. For example, the Chaogate will need 8 

control pins for programming, or when the user is writing a program to run it on a 
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Chaogate, he will need to write the long 8-bit operation code to instruct the 

Chaogate. 

The solution I present is using a simple micro-programmed control unit to 

hold the 8-bit control bits. This control unit is composed of an addressable 

memory, called control memory. This control memory can be considered as a 2-

D array, where rows are the 8-bit controls for programming the Chaogate. The 

number of rows equals to the number of available functions in the Chaogate or 

the number of functions a user needs to have. For example, here, the Chaogate 

is able to build all 16 2-bit digital functions; therefore, the number of rows will be 

16. Furthermore, I store the control bits for function number 0 in row number 0 of 

the array, control bits of function number 1 in row number 1, and the same for all 

other functions up to function number 15, which is stored in row number 15. 

Notice the function naming is the same as the one introduced in Table II of 

chapter 6. The 4-bit address lines of this memory element is used by the user to 

address one row of the memory, and the 8-bit output of the memory is connected 

to the Chaogate control inputs.   Now the user can program the Chaogate using 

just 4-bits of information. The schematic of the Chaogate and the micro-

programmed control unit is depicted in Fig. 9.3. Now for programming the 

Chaogate just 4 bits, named operation code, is required.  

This architecture enables us to implement all combinational digital 

functions that accept two bits of information and produces one bit output. These 

functions are like OR, NANAD, NOR functions, working on single bit operands.  
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Fig. 9.3. Chaogate controlled by a micro-programmed controller. This 

architecture reduces the size of operation code (or equivalently required pin 

number for programming) from 8 to 4.  

9.2.2. A Series of Chaogates Arranged in One Column 

So far the operand size was one bit. The Chaogate accepts two one-bit 

operands and carries out computation like AND, NOR, or XOR on them.  To build 

a computing system capable of performing bit-wise operations like AND or XOR 

on longer operands a column of Chaogates is needed. I propose the architecture 

illustrated in Fig. 9.4 for this purpose. Assume the goal is to perform simple bit-

wise operations on 4-bit operands. Similar to single bit operands, bit-wise 

operations on operands longer than one bit is performed on pair of corresponding 

bits. Therefore for 4-bit operands, 4 Chaogates is needed, where the first 

Chaogate performs the operation on the first pair of corresponding bits, second 

Chaogate performs the operation on the second pair of bits, and so on and so 

forth.  
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The next question is about programming this column of Chaogates to 

perform desired operation. I propose an extended version of micro-programmed 

controller depicted and explained in Fig. 9.3 to program this column of 

Chaogates. Now each row of this extended micro-programmed controller 

contains the control bits for all Chaogates. For example, here, since there are 

four Chaogates in the column and each Chaogate needs 8 control bits for 

programming; each row of the controller contains 32 bits of control bits. The first 

eight bits control the first Chaogate, the next 8 bits the second Chaogate and so 

on and so forth. Similar to single-Chaogate architecture, an operation code 

addresses and selects one specific row to program the column of the Chaogates. 

The number of rows of the micro-programmed controller depends on the number 

of functions (operations) in the instruction set of the single-column lattice of 

Chaogates. For example, to have 8 different functions, there should be 8 different 

rows of control bits in the controller and the operation code needs to be 3-bit, to 

be able to address each row of the controller. The proposed architecture is 

illustrated in Fig. 9.4. Notice that to reduce the complexity of the picture and to 

prevent unnecessary complications, the 8-bit wires from micro-programmed 

controller to each Chaogate is replaced with a thick line.  
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Fig. 9.4. Proposed architecture for single-column lattice of Chaogates. This 

computing system can perform bit-wise operations like AND, XOR, or NOR on 4-

bit operands. To implement such functions, micro-programmed controller needs 

to contain the corresponding control bits and the user needs to use appropriate 

operation code to address the rows containing control bits for desired function. 

9.2.3. A Lattice of Chaogates Arranged in Rows and Columns 

The single-column architecture introduced in Fig. 9.4 can perform any 

function that is realizable in one layer of logic gates. AND, OR, XOR operating on 

multi-bit operands are examples of such functions. However, for implementing 

other functions, like addition or subtraction we need higher number of layers of 

Chaogates. To expand the architecture from single layer (single column) to multi 



 83 

layer (multi column), two main things need to be addressed: (1) Flow of data from 

one layer to the next layers (connectivity) (2) controlling and programming such a 

multi-layer architecture.  

To answer these questions I propose a pipelined architecture, in which 

data and control inputs flow from one side of the lattice to the other side of the 

lattice, layer by layer, and the rate of flow is one layer at each instruction cycle. 

Notice that one instruction cycle is the summation of initial condition setting clock 

cycle, evolution clock cycle, and the output production clock cycle, as is shown in 

Fig. 9.2. This architecture has important advantages like locality of connections, 

ease of control, and parallelism of computations through deep pipelining. These 

advantages will be explained in detail. 

In our proposed pipelined architecture data inputs of each layer are 

selected outputs of Chaogates in the previous layer of architecture. The 

exception here is the first layer of lattice, in which the data inputs are the data 

operands. Fig. 9.5 shows how an input to a Chaogate is selected from outputs of 

Chaogates in previous layer using multiplexers. Here to select an input to the 

Chaogate from 4 outputs of the previous Chaogates, a 4 to 1 multiplexer is used. 

The selection is controlled using two select bits. Here I assume there are 4 

Chaogates in the previous layer, however it can be any arbitrary number, e.g. z. 

In this case we need a multiplexer of size z to 1, and the number of select bits 

should be the smallest integer not less than log2(z). Notice that for each data 

input to a Chaogate one multiplexer is needed. I am assuming the Chaogate is 2-

input, as a result two multiplexers for each Chaogate is needed. In Fig 9.5 To 

simplify the picture in Fig. 9.5 and for better clarification, just one Chaogate in 
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layer number two is depicted and the other Chaogates of the layer are omitted. 

The other Chaogates will have the same multiplexing system to select out 

outputs of previous layer as their inputs. 

One of the main advantages of this pipelined architecture is the locality of 

the connections. The inputs to each layer are the outputs of previous layer and 

the outputs of each layer are connected just to the next layer. Such locality of 

connections reduces the complexity of the design and removes the need for long 

wire running across the IC chip. Long wires are not desirable in VLSI because 

they reduce the system speed, and introduce inductive effects. 

 

Fig. 9.5. Multiplexers are used to select inputs to a Chaogate from outputs of 

previous layer. 
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Notice that in conventional pipelined design we need a register between 

any two layers of gates to insure that the output of fist layers are stored and 

preserved until the next layer reads them. In our proposed architecture, there is 

no need for these intermediate registers for data because the output of the 

Chaogate has been internally stored inside the Chaogate itself. As an example, 

in our Chua circuit based implementation [61], there is a sample and hold 

capacitor in output production circuit. This circuit holds the final state of the 

chaotic circuit and the output will remain fixed and stable until the next cycle. This 

embedded register inside a Chaogate is enough to keep the output of a 

Chaogate stable so that the next layer can use it in initial condition setting phase 

of next cycle. 

In our proposed architecture, the instructions (operation codes) 

themselves flow in the pipeline along with the data. This pipelined architecture for 

flow of instruction is illustrated in Fig. 9.6. Here I introduce a distributed micro-

programmed controller. Each layer of Chaogates has its own micro-programmed 

controller. Notice that in the second stage the micro-programmed controller is 

connected to the selector lines of the input multiplexers as well as the 

Chaogates. Each row of controller contains the control bits for programming the 

Chaogates of that stage plus selector bits for multiplexors for selecting the 

desired inputs to the Chaogates. For simplifying the picture, the data lines are 

omitted in Fig. 9.6. Also the 8 wires between the controller and the Chaogate is 

reduced to one single line, and also the selector wires between controller and the 

multiplexer is reduced to one single line too. Notice that to pipeline the instruction 

along the lattice a register is placed in between each micro-programmed 
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controller. This register allows the flow of the instruction stage by stage along 

with the flow of the data. It takes one instruction cycle for data to shift from one 

column of Chaogates to the right column. The instruction needs to be shifted to 

the right at the same rate. 

 

Fig. 9.6. A distributed micro-programmed controller programs the lattice of 

Chaogates. There is one micro-programmed controller for each column of 

Chagates . Also a register is placed between any micro-programmed controlled 

and its consequent micro-programmed controlled at the next column of 

Chaogates for flow of the instructions. The instruction and the data flow along the 

lattice at the same time. 



 87 

One may come up with an architecture that reconfigures the whole lattice 

of Chaogates to implement one single instruction at a time. Our proposed 

pipelined architecture is more efficient than these architectures because of its 

parallelism and higher throughput of instructions. When the first instruction 

(operation code) and the data is fed to the first layer, the instruction addresses 

one row of the controller of first column, and the content of that row reconfigures 

the Chaogates of the first column to build the first layer of the logic circuit for 

implementing the instruction.  At the second cycle of instruction, the second set 

of data and instruction is fed to the first layer, and as a result the first layer of 

Chaogates is reconfigured to be the first layer of circuit implementation for the 

second instruction. Meanwhile, the first instruction is shifted to the second stage 

of Chaogates, reconfiguring them to be the second layer of the logic circuit 

implementation of the first instruction. Also the controller selects the appropriate 

outputs of the first stage to be used as the inputs to the second stage of 

Chaogates during initializing stage of second instruction cycle. Notice these 

outputs are stored inside the Chaogate using sample and hold circuits and 

buffers described earlier. The content of these sample and hold circuits will 

remain fixed until the output production phase of the second instruction cycle. 

This process happens all along the lattice. As a result, a Chaogate lattice of size 

𝑚×𝑛, will hold and implement n different instructions at the same time, one 

instruction at a column of the lattice. Such pipelining enables us to reach the 

execution rate of one instruction at each instruction cycle. If I had allocated the 

whole lattice for implementing one instruction at a time, the rate of execution 
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would be one instruction at n instruction cycle, where n is the number of columns 

(layers) of the lattice. 

A very important feature of proposed architecture is that the distributed 

micro-programmed architecture can be loaded with desired bits, since it’s nothing 

more than a SRAM element. This enables us to change the instruction set of the 

computer.  

In a conventional computer controlled by a micro-programmed controller, 

read only memory (ROM) is used to implement the controller. The reason is the 

computing system has a fixed instruction set, which is already loaded to the 

controller. But in our proposed architecture for chaos computing, the lattice of 

Chaogates can implement any digital circuit that fits (in the sense of size) in it. 

The number of these possible circuits is so high that I am not able to load the 

instruction set for all of them in the controller. Even if I could, the size of micro-

programmed controller and the size of operation code necessary for addressing 

such a huge micro-programmed controller would be so large that it makes the 

system inefficient. To have some idea about the approximate number of possible 

logic circuits that our proposed architecture can build, let’s assume the size of 

lattice is 𝑚×𝑛, and each Chaogate accepts two inputs and produces one output. 

Each One Chaogate is able to build 16 different two-input, one-output functions. 

Also a Chaogate that is placed in second or latter columns of the lattice can be 

wired and connected to Chaogates of previous column in 𝑚! different ways. As a 

result, the lattice is able to build (16)(mn)(m2)(m(n-1)) different logic circuits. Notice 

that a group of these logic circuits may implement the same function, so the total 

number of different implemented functions is less than this number, however, this 
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approximation still suggests that the computational capacity of our proposed 

architecture is really high. As an example, if I assume m=n=4, the lattice of this 

size, can build 5.1923e+33 different logic circuits! Definitely I cannot micro-

program all of these logic circuits and instructions in a controller. Instead what I 

do is for each class of applications I select a manageable subset of these circuits 

and functions, named instruction set, whose are suitable for that specific 

application, and load it to the micro-programmed controller. In other words I can 

have different instructions sets, each tailored and suitable for different 

applications and needs and all of them loadable and implementable on the same 

hardware. For example, I can have one instruction set suitable for intense 

floating point computations, the other for digital signal processing, and another 

for a graphic processing, etc.  

Being able to load and change the instruction set of the processor has 

very profound advantages over conventional computers. Instruction set 

architecture of a computer is an important step in computer design, which 

involves deciding a set of instructions that optimizes the performance of the 

computer in processing. This optimization is usually measured and defined 

against benchmark programs. As a result, for any class of programs, a different 

instruction set suits well. In conventional computers, instruction set of a computer 

is fixed, the reason is the hardware and the implementation of instructions are 

hardwired and fixed. But this hardware is used to run different classes of 

applications. Some users use their computer for graphics applications, another 

user for signal processing, and someone else for statistical calculations. Our 

proposed architecture can address and solve the problem. Our chaos-based 
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computer can come with a library of different instruction sets. Each user, based 

on his needs, can load suitable instruction set to its chaos-based computer to get 

the maximum performance out of the hardware.  

Furthermore, a user can design its own custom instruction set and load it 

to the chaos-based processor to exactly implement its own application. This idea 

of loading different instruction sets is really similar to the idea of software and 

software engineering. Software comes as a package; the user installs the 

software on the computer and runs it. Similarly, here the user installs (loads) the 

instruction set on the computer and runs the custom made computer. 

Furthermore, our approach may open the doors for creation of hardware level 

software. For example, software can be implemented in hardware level through 

loading appropriate bits to the micro-programmed controller. The result will be a 

programmed hardware that dedicatedly runs the software in hardware layer and 

as a result the application will be faster and reliable than the case it runs as a 

software running on a generic processor. 

Furthermore, our proposed architecture can implement and emulate 

different types of processors, DSPs, and microcontrollers and work like them. For 

example, one can load the instruction set of an specific microcontroller to the 

chaos based computer, and the chaos based compute will morph to be the exact 

microcontroller and the user can run the programs developed for the 

microcontroller.  

Notice that here I have introduced two different types of programming. (1) 

Loading an specific instruction set to the micro-programmed controller, (2) 

running an instruction from the loaded instruction set. After loading an instruction 
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set to micro-programmed controller, the computer starts to read the program and 

run it. The program is composed of a series of instructions that are already 

loaded to controller. Any encountered instruction in the program, instructs the 

controller to dynamically program the lattice of Chaogates to be an exact 

implementation of the instruction. This is the instruction-level programming. The 

other type of programming is to load different instruction sets to the programmer. 

To load an instruction set, the computer needs halt processing for loading a new 

instruction set to the micro-programmed controller, and afterward it restarts 

processing based on the new loaded instruction set.  

Notice that in this thesis I am not deriving and presenting a sophisticated 

library of different instruction sets, instead I introduce new computer architecture 

for Chaogates that has flexible instruction set and different instruction sets can 

be loaded to it. Deriving a library of different instruction sets for the introduced 

hardware is a huge project by itself, however hardware description languages 

like VHDL or Verilog may ease the process and can automatically generate 

different logic circuit implementations for each instruction of desired.  

9.3. Hardware Simulation  

To test the proposed architecture a software for simulating the hardware 

is developed to demonstrate the performance of the computing system. This 

software simulates the proposed architecture wire by wire in details and it models 

the flow of signals. 

This hardware simulator is a critical step in chaos computing, first it 

demonstrates how and how well the single chaos based logic blocks can be 
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combined to build a processor, and second it bridges the software simulations to 

the physical hardware fabrications. 

In this project C++ language is used to develop the simulator. Object 

oriented features of the C++ enables us to represent the architecture in terms of 

its basic blocks like wires, chaos based logic blocks, pins, registers, etc. A C++ 

class is defined for any type of component used in the architecture. For any 

instance of the defined component type (class), which is used in the architecture, 

an object will be declared. There are two main inputs to the software: (1) the 

instruction set, which is a binary stream and is loaded to the distributed micro-

programmed controller. (2) The program, which is a sequence of instructions to 

be executed. These instructions belong to the instruction set that is already 

loaded to the micro-programmed controller.  

The initial idea was to design and simulate a simple 4-bit processor. 

During designing the architecture, I exceeded the initial specification (designing a 

simple 4-bit processor), and instead I proposed a computing system that can 

execute any instruction set, or any processor, that fits in the lattice. The main 

criteria for fitting is if the digital circuit implementations of instructions in an 

instruction set fit in the lattice of Chaogates, the system can execute that 

instruction set, or simply if it fits, it runs! 

I develop a hardware simulator for simulating a 𝑚×𝑛 lattice of Chaogates 

controlled by a distributed micro-programmed controller. m and n are arbitrary 

and are set as the parameters of the simulator. In simulation, I load an instruction 

set to this chaos-based computing system. Then I feed the program to the chaos-

based computer for execution. This program is consists of the instructions from 
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the loaded instruction set. The instructions reconfigure the lattice column by 

column while they flow through the lattice.  

9.4. Proposed Chaos-based Computing System Versus FPGA  

The idea of reconfigurable computing is not new. The first reconfigurable 

computing device was a PROM, which dates back to 1970 [77]. PROMs were 

originally intended to use as computer memory, however engineers started to 

use them for building simple digital functions. PROMs were composed of a lattice 

of AND gates and OR gates, with fuses in between. By burning different fuses 

one can implement a digital circuit. Programmable logic arrays (PLAs) were the 

first reconfigurable devices that were originally invented and commercialized for 

reconfigurable hardware [77].   

Field programmable gate array (FPGA) is the state of the art technology 

in conventional reconfigurable computing [77]. It’s composed of a lattice of logic 

blocks with programmable connection system running between blocks. These 

logic blocks and the connections are programmable and the FPGA can 

implement any logic design that fits inside. The programming is mainly performed 

using SRAM control bits for connections and look up tables for building logic 

blocks. These look up tables are again a type of SRAM memory. To program an 

FPGA it needs to be connected to a computer for loading the configuration bits to 

the FPGA. By loading these configuration bits the FPGA is programmed and is 

ready to use. However, to reprogram the FPGA again, if the technology allows, 

the FPGA needs to be stopped from execution of program, and then again it 

should be connected to a computer for loading the new configuration bits. In 
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other words, the FPGA hardware and the implemented functions inside are 

frozen after loading the programming bits. 

The main advantage of our proposed reconfigurable computing system 

over conventional reconfigurable systems is that our system can reconfigure and 

reprogram itself at any instruction cycle. In other words, any encountered 

instruction reprograms the hardware to be the exact implementation of that 

instruction. The hardware, the lattice of Chaogates, is continually reconfigured to 

be the exact optimal implementation for the encountered instruction.  

FPGAs are usually efficient only if a fixed computation needs to be 

carried out on a long stream of data [77]. In such cases the FPGA is reconfigured 

to be an implementation of this fixed computation. This computation is 

programmed and frozen in the FPGA and there will be no way to change or 

reconfigure it afterward. But in our proposed computing system, we can observe 

speed up in the computation, no matter the computation is fixed or continuously 

varying. Since the hardware is reconfigurable by encountering any new 

instruction, the hardware can dynamically change itself to build and implement 

the new type of computation. 
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CHAPTER 10 

CHAOS EXCITED LINEAR PREDICTOR CODING FOR SPEECH CODING 

AND PRODUCTION 

Chaos is a random-seeming behavior generated by deterministic systems 

[78]. In addition to numerous physical systems, chaotic activity has been reported 

in many physiological systems [79,80,81] and pathological systems [82,83]. Also 

different engineering applications have been introduced for chaotic systems, e.g., 

chaos-based computation [70,84] and chaos-based communication [85,86].  

Chaos has also been widely observed in nature [78]. It is thought [78] that 

such chaos enables a natural system to have a wider and more flexible range of 

behaviors than might be the case for a linear system. A case in point is the avian 

vocal system. In reference [87] it is demonstrated that, in addition to central 

neural control, the intrinsic nonlinearly oscillatory dynamics of the avian vocal 

organ expands the range and complexity of possible sounds.  The syrinx of a bird 

can produce a sequence of oscillatory states that are spectrally and temporally 

complex in response to the slow variation of respiratory or syringeal parameters. 

In similar research, the significance of nonlinear phenomena in mammalian vocal 

production for generating highly complex vocalizations without requiring 

equivalently complex neural control mechanisms is argued [88]. Also chaotic 

vibrations are observed in vocal folds [89,90,91,92,93,94,95] and experimental 

studies of excised larynges [96,97,98] and nonlinear dynamical analysis of 

human voice [99,100] have demonstrated the existence of chaos in the human 

voice production system.  
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The speech waveform is an acoustic sound pressure wave that originates 

from voluntary movements of anatomical structures, which make up the human 

speech production system [101]. A basic simplified acoustic block diagram of 

human speech production is shown in Fig. 10.1.  

 

Fig. 10.1.  A simple block diagram of the human speech production system. 

The entire combination of all these speech production cavities is referred 

to as the vocal tract and comprises the main acoustic filter.  The vocal tract 

provides resonance to human speech by changing its shape and dimension.  The 

vocal tract filter is excited by the organs below it, the vocal cords, lungs, etc., and 

is loaded at its main output by a radiation impedance at the lips.  The resonant 

structure of the vocal tract selects different resonant frequencies from the input 

excitation thereby producing different sounds [101]. There are two elementary 

types of excitations, voiced and unvoiced. Voiced sounds are produced by 

forcing air through the glottis or an opening between the vocal folds. The tension 

of the vocal cords is adjusted so that they vibrate in oscillatory fashion.  The 

periodic interruption of the subglottal airflow results in quasi-periodic puffs of air 

that excite the vocal tract [101]. Unvoiced excitations, producing unvoiced 

sounds, are generated by forming a constriction at some point along the vocal 

tract and forcing air through the constriction to produce turbulence [101]. 
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A trivial but not very effective method to transmit voice over a 

communications network is to record the waveform of the voice and then to 

transport the waveform.  But this method generates too much communication 

load on the network and requires a very high bandwidth, making it infeasible in 

many applications.  An alternative method is to extract a model for generating the 

waveform and to transport the model once to the receiver, letting the receiver 

synthesize the original waveform from the model and a reduced set of 

transmitted data.  Acoustic models are suitable for understanding the operation 

of the speech production system;  however to code and to synthesize speech, 

DSP models are required.  A common DSP model for the basic acoustic level 

block diagram of Fig. 10.1 is illustrated in Fig. 10.2.  

 

Fig. 10.2.  DSP block diagram for the speech production system shown in 
Fig. 10.1 [101]. 

In this block diagram, the vocal tract is replaced with a linear filter, H(z), 

and the acoustic excitations are replaced by a train of periodic excitations for the 

voiced sounds and a  random noise sequence for unvoiced sounds 

[101,102,103,104]. Linear predictive coding (LPC), which is the basis for many 

speech coding techniques, can be used to extract an estimation for the filter H(z).  

LPC is a very simple but effective method for coding voice and it assumes that 
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each sample of a voice can be predicted with a linear combination of its past 

samples.  The linear coefficients are the parameters of the filter.  These few 

coefficients can be sent to receiver as an estimation for the filter.  The remaining 

question is how to excite the filter.  For unvoiced sounds the excitation is a 

random-like signal.  However for voiced sounds, although they are periodic, there 

are slight cycle-to-cycle variations in the periodicity of the excitations as well as in 

their amplitude.  Sending the excitation waveform to the receiver is not an option 

because the excitation waveform takes just as many bits as the original speech 

waveform, so that this would not provide any compression.  Various attempts 

have been made to encode the excitation waveform in an efficient way.  The 

most successful methods use a codebook, or table of typical excitation 

waveforms, which is set up by the system designers.  In operation, the sender 

applies all possible excitations to the filter in the unvoiced sound case, or 

usesthese excitations to perturb the periodic excitation in the voiced sound case, 

and then compares the synthesized waveform with the original waveform and 

chooses the excitation waveform that results in the best approximation of the 

original signal.  This principal for determining the optimal excitation signal is 

called Analysis by Synthesis (AbS), signifying that the encoding (analysis) is 

performed by perceptually optimizing the decoded (synthesis) signal in a closed 

loop.  Since the receiver has the same codebook, the sender sends the index of 

the optimal excitation waveform to the receiver and the receiver excites the filter 

by use of this excitation signal to synthesize the speech signal.  

This stored codebook introduces a bottleneck in improving the CELP 

algorithm, since a codebook cannot be arbitrarily large because it will occupy too 



 99 

much memory.  It also slows down the CELP algorithm because it requires a 

memory fetch to read the long excitation sequences from memory [101,102].   

10.1 CELP 

For our purposes, a wide-sense stationary frame of speech, s(n), will be 

taken as one whose mean and autocorrelation do not change over time.  It can 

ideally be characterized by a pole-zero system transfer function of the form [101]: 

 
Θ(z) =Θ0

1+ b(i)z−i
i=1

L∑
a(i)z−i  (21)

 

However, for analytical reasons, the transfer function, 

€ 

Θ(z), is approximated by 

an all pole transfer function [101]: 
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The estimates 

€ 

a
^
(i) are the coefficients of the linear prediction (LP) model and 

constitute a parametric representation of the filter. In the time domain we have: 
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s(n) = a(i)
i=1

I
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Thus the name linear prediction comes from the fact that s(n) can be predicted 

using a linear combination of its past values driven by a phase-altered version, 

e’(n), of the excitation signal, e(n)  [101].  To obtain optimal values of the 

parameters 

€ 

a
^
(i), the root mean square criterion is used.  In this method I 

minimize the expected value of the squared error [101,102]: 
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and it results in the normal equation: 
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where rs is the temporal autocorrelation of s(n). Different techniques have been 

introduced for solving normal equations; here the well-known Levinson recursion 

is used to solve the equation and to obtain the coefficients of the filter [101].  

After computing the LP filter and reverse filtering the speech waveform, the 

signal e’(n) is obtained. Notice that this signal is not just the excitation signal; it is 

more like a residue signal, the difference between the LP coefficient-weighted 

sum of past values of the signal and the original signal, 

Θ0e
' (z) = s(n)− a(i)s(n − i)

i=1

I

∑ . The main part of this residue is the excitation; 

however the model error is included too.  

An estimation of the pitch period can be obtained by computing the 

autocorrelation of this residue signal. If the peak value of the computed 

autocorrelation is less than some threshold, I conclude that the speech signal is 

unvoiced, else the index value of the peak represents the pitch period of the 

periodic excitation. This estimation of the pitch period will be improved by 

exhaustive search around this initial estimation. 

A schematic of this CELP algorithm is presented in Fig. 10.3.  First 

LP analysis is used to compute the LP synthesis filter.  To shape the coding 

noise, a perceptual weighting filter is used to adjust the error between the 
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synthesized speech and the original speech to emphasize differences of 

physiological relevance: 

 𝑤 𝑧 = ! !

! !
!

  

 𝐴 !
!
= 1 − 𝑎!

!
!

!!
−⋯− 𝑎!

!
!

!!
   (26) 

and 𝑎!
  are the LP coefficients. 

To synthesize the excitations, a pitch synthesis filter, Θ!is used: 

 Θ! =
!

!!!"!!
 (27) 

and the time-domain output of this filter, which is the excitation to the LP filter, is: 

 𝑒 𝑛 = Θ!𝜌! 𝑛 + 𝑏𝑒(𝑛 − 𝑝) (28) 

Here Θ! is the gain, k is the index of excitation waveform in the codebook, ρ!(n) 

is the kth sample of the excitation waveform k in the codebook, b is a parameter 

controlling how strongly past excitations influence the current value, 0<b<1.4, 

and p is the pitch period. These parameters need to be selected so that the 

energy of the perceptually weighted error between the speech and synthetic 

speech is minimized. The optimal value of p is obtained by exhaustive search 

around the initial estimation of pitch period and b is obtained based on p. Θ! and 

k are chosen by exhaustive search of the Gaussian codebook to minimize the 

energy of the error.  
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Fig. 10.3.  Schematic of the CELP algorithm. 

10.2 Chaotic Excited Linear Predictor 

The selection of a suitable random excitation is one of the key factors in 

the performance of the CELP algorithm.  In the CELP algorithm described above, 

a codebook that is a collection of Gaussian random waveforms is used to provide 

the method with a suitable suite of random sequences to minimize the error 

signal.  The CELP algorithm is commonly used in mobile systems where memory 

is a restriction.  Thus the codebook cannot be arbitrarily large.  This limits the 

number of random waveforms that can be stored in the codebook.  The other 

problem with codebooks relates to the fetching and reading times from a device’s 

memory.  Reading from memory is always slow in comparison to processing.  

Since the CELP method reads all the random waveforms from the codebook and 
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applies them to the filter one by one to find the optimal one, the codebook access 

bandwidth and latency produce a bottleneck in the speed of the algorithm.  

Here I demonstrate a chaos-excited linear predictor or ChELP algorithm 

in which I substitute the random-seeming chaotic orbits generated from a simple 

chaotic map for the random waveforms stored in a codebook [105].  The 

presence of nonlinearity and chaotic behavior in human speech production 

system has often been reported and studied [89,90,91,92,93,94,95,96,97,98, 

99,100], however chaotic dynamics has not been widely exploited in speech 

coding and artificial speech production systems.  A chaotic map can be as simple 

as the logistic map, which requires just two multiplications and one subtraction to 

produce each waveform sample: 

 xn+1 = rxn (1− xn )  (29) 

Notice that there is no need to store the random-seeming iterations of the 

map in a codebook; instead the processor can generate them while it is coding 

the speech.  Additionally the generation of the orbit requires so little computation 

that, practically speaking, it will be faster than reading the orbit from the memory.  

Different random-seeming waveforms can be generated from a chaotic 

map just by changing the initial conditions.  Therefore the initial conditions can be 

used as indices for the excitation waveform.  In the sender, when the ChELP 

algorithm finds a suitable waveform, it would send the initial condition along the 

other ChELP parameters to the receiver.  The receiver would then use the initial 

condition to reproduce the same time series.  Note that in speech processing the 

speech is encoded and synthesized frame by frame, and thus the excitations are 
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short waveforms as well.  Therefore the chaotic orbit will not be long enough so 

that noise, in this case the difference in rounding errors from the sending 

processor to the receiving processor, dramatically changes the orbit.  

Since in chaos-excited linear predictor coding the chaotic orbits are not 

stored and memory is not an issue any more, chaos-excited linear predictor 

coding can exploit and search a higher number of chaotic orbits to find better 

random-like excitations, in the sense of less error.  

In the human speech production system there is no random number 

generator;  instead the vocal tract bends to produce turbulence, which is a 

random-seeming excitation.  This is very similar to the approach I take in the 

chaos-excited linear predictor, and therefore I can claim that the approach I 

introduce here is more biologically oriented than the original CELP.  

To test the idea, replace the codebook in Fig. 10.3 with a simple logistic map.  

The index to identify and to generate the random-like excitations is the initial 

condition of the logistic map.  (Here I have repeatedly used the terms random-

seeming or random-like to denote the output of a chaotic map.  In reality this 

output is highly deterministic.  Nevertheless it shares many qualities in common 

with random numbers; so much so that many random number generators are in 

fact based upon chaotic generating functions.  In what follows I will simply use 

the word random, but always with the caveat explained here.)  In the logistic map 

there is a tuning parameter, r.  By setting r = 4, I get the maximum amount of 

randomness from the map.  The simulation results are shown in Fig. 10.4. Three 

phrases, “chaos computing”, “applied chaos lab”, “nonlinear speech processing”, 

denoted by S1, S2, and S3, and spoken by two different speakers, are the 
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benchmark. I choose the power of the error signal, which is weighted by the 

perceptual filter introduced in Eq. (26), as the measure for evaluating the 

performance. White bars represent the power of the error signal when sentences 

are coded and synthesized by use of a codebook containing 512 Gaussian 

random waveforms, and grey bars represents the power of error signal when 512 

orbits of the Logistic map are used for coding. The power of the error signal is in 

the same range as that of the Gaussian codebook. As we see, a very simple and 

primitive chaotic map can perform almost as well as the state of the art codebook 

of Gaussian random waveforms. 
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Fig. 10.4. Three sentences, S1, S2, and S3, spoken by two different speakers, 

are used for evaluating the performance. White, grey, and black bars represent 

the power of the perceptually-weighted error signal when a Gaussian code book, 

the Logistic map, and a coupled map lattice are used for excitation, respectively. 
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To investigate the interrelationship between the amount of chaotic 

behavior in a map and the performance of ChELP, in Fig. 10.5 I plot the power of 

perceptually weighted error signal of the ChELP algorithm in synthesizing the 

speech signal versus the Lyapunov exponent of the map. The Lyapunov 

exponent quantifies the degree of chaos in the system. To obtain this plot I 

change the bifurcation parameter of the logistic map, and for each bifurcation 

value, I compute the Lyapunov exponent and the error of the ChELP in modeling 

speech. This error is plotted versus the Lyapunov exponent. Notice that at some 

values of the Lyapunov exponent I have more than one data point. The reason is 

multiple bifurcation parameters can result in the same Lyapunov exponent and 

as a result I have more than one error for such values of the Lyapunov exponent. 

The overall trend is that as the Lyapunov exponent increases, the error of ChELP 

in synthesizing speech reduces. This result motivates us to investigate more 

highly chaotic maps;  to do this I examine a coupled map lattice (CML) to 

produce the excitations. 
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Fig. 10.5. Power of perceptually weighted error signal of ChELP algorithm versus 

different values of Lyapunov exponent. As the Lyapunov exponent increases, the 

algorithmic error reduces. 
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A CML is an array of normal chaotic maps coupled together [106]. Here 

by increase of lattice size the dimensionality of the chaotic orbits of individual 

nodes increases [106]. The dynamics of the CML I study in this research is: 

 un+1(i, j) = (1−ε) f (un (i, j))+
1
4
ε f (un (i

', j ' ))
nn i' , j '
∑  (30) 

where (i’, j’) are nearest neighbors of (i, j). The function f(x) is the chaotic map, 

and in this research it is simply the logistic map introduced in Eq. (24).  is 

coupling strength between nodes, here I simply set it to be 0.4. I use torus 

topology for the CML, therefore boundary conditions will not be an issue here. 

The orbits of any node can be used as the excitations. However the sender and 

receiver should use the same node for generating the excitations. 

For generating high dimensional excitations I use CMLs of different sizes. 

A CML of size 8x 8 improves the performance of ChELP and makes it as efficient 

as Gaussian noise excited linear predictor. The power of error of 8 x 8 CML-

excited ChELP is depicted in Fig. 10.4 by black bars. Since each node is a 

simple iterated map, simulating a lattice of 64 of such iterated maps is not 

computationally intensive.  

As described earlier, the initial condition of the chaotic system needs to 

be sent to the receiver as an index to produce the correct excitation.  The 

problem with a CML is that, for an L× L CML-based ChELP, I need L× L

individual initial conditions for all the different nodes in the lattice.  This larger 

number of initial conditions adds an overhead to the bandwidth of the 

communication system and reduces the compression ratio of the algorithm.  The 
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solution I use here is take a single number as a seed index and to use a function 

to generate different initial conditions of the nodes in CML from that seed index.  

Both sender and receiver share the same function and thus by sending the single 

seed index the receiver will be able to initialize the CML in the exact way that the 

sender did and therefore the CML will provide the same excitation for the 

algorithm.  An ideal function for this purpose can be a pseudorandom number 

generator, where the seed index is fed to the function as the initial seed.  The 

first random numbers produced by the generator can be used as the initial 

conditions for the nodes of the lattice.  Unfortunately good pseudorandom 

number generators are not fast and require too many CPU clock cycles for 

practical use and thus will reduce the performance of the CML ChELP in terms of 

speed.  However our studies show that even a very simple and basic generator 

function is enough to produce different initial conditions for the nodes from a 

single seed index.  The function I use in this research to compute the initial 

condition of node (i, j) in a CML of size from given seed index value, k: is 

 x0 (i, j,k) =
i× j × k

L× L× kmax
 (31) 

where k=1,2,…,kmax and i, j=1,2,…,L.  By use of this function I can initialize 

different nodes to numbers between 0 and 1.  This function is very efficient for 

small CMLs, but when the size increases, correlations between different nodes of 

the CML appear.  Worse, excitations initiated by nearby index values are also 

highly correlated, which means that subsequent excitations of the lattice will not 

be independent.  As a result the CML fails to provide the algorithm with a diverse 
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set of excitations, and therefore the performance reduces. Fig. 10.6(a) shows the 

mean squared error versus L. Increasing L increases the error.  Based on our 

further investigations it turned out that by use of a small sized CML that is 

initialized by use of function in Eq. (31) I can get almost the same amount of 

performance when a large sized CML initialized by use of a pseudorandom 

number generator is used. The mean squared error of CML CELP algorithm 

versus lattice size L, when the lattice is initialized by use of a pseudorandom 

number generator is illustrated in Fig. 10.6(b). Based on these performances, I 

conclude that a small CML initialized by use of function in Eq. (31) is the optimal 

choice for producing the excitation. It is small, therefore it requires fewer CPU 

clock for simulating the lattice, and by use of a very simple function for initializing 

it provides the algorithm with highly diverse excitations, which results in a very 

low error in coding. 
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Figure 10.6.  (a) The error of CML versus lattice size when the function in 

Eq. (31) is used for initializing the CML.  (b) The error of CML versus lattice size 

when a pseudorandom number generator is used for initializing the CML. 

Here chaotic excited linear predictor method for speech coding and 

synthesizing was introduced. In this method instead of stored random waveforms 
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a chaotic map was used to generate random-seeming waveforms upon demand.  

I started from a simple chaotic map and the initial condition of the map is used as 

an index to produce different waveforms and the same index is sent to the 

receiver to generate and use the same waveform. To compare the performance, 

I synthesize a sample speech signal once by use of a codebook filled with 

Gaussians random numbers, and then I code and synthesize the same waveform 

by use of the chaotic orbits of the simple chaotic map. We observed that the 

performance of the new method is almost as good as the conventional CELP. 

For further improvement of the method I used a CML for producing excitations. 

The CML is initialized by use of a single index and a simple function, and the 

index is sent to the receiver to produce the same excitation. The root mean 

square error of this CML based CELP is the same and even slightly less than 

that of the original CELP method. The main advantages of chaotic excitation 

linear predictor are: 1- Since the waveforms are generated online there is no 

memory limitations and a more number of waveforms can be used to find better 

excitations resulting in better performance.  2- The waveforms are not read from 

a memory, and they are generated by a just a few basic machine instructions, 

therefore the new method can be faster than the previous method. 3- The new 

method is more biological oriented. 4- CMLs are known to model the turbulence 

and we already know the turbulence in our speech production system produces 

the random like excitations. Therefore the current work introduces the possibility 

of direct estimation of random like excitations in speech waveform by use of a 

CML. 
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CHAPTER 11 

LOGICAL STOCHSTIC RESONANCE AND SYNTHETIC BILOGY 

11.1 Logical Stochastic Resonance 

Logiscal Stochastic Resonance (LSR) is a new dynamics-based direction 

in computation [107,108,109,110,111]. In the field of electrical engineering, with 

the present tendency to scale down each element in the circuit toward the 

nanometer region, noise has become an element that cannot be eliminated or 

neglected.  Noise is relevant to both circuit characterization and functionality.  For 

instance, noise immunity in an electrical circuit has become the recurring 

objective of significant research efforts in this field.  Similarly, in biology, when 

working in nano-scale dimensions and with a small number of elements, small 

fluctuations may greatlly affect the system behavior.  In traditional circuits, noise 

can cause logic gates to fail and not behave according to truth tables. The 

common approach is to find a solution that reduces the noise intensity in order to 

obtain as stable and predictable a performance as possible.  

Consequently, it is counterintuitive that noise would enhance the stability 

and predictability of a circuit.  Instead of conceiving noise as a disturbance, a 

possible approach to noise is to exploit it.  In order to undergo LSR, a 

nonlinearity—such as a bistable potential function—and a noisy signal have to be 

present. 

The typical logic gate-the core of a digital circuit-is a system that converts 

two inputs into a single output that corresponds to a particular logic function. An 

AND gate, for example, will output a “one” only if both inputs are “one”; on the 

other hand, an OR gate will output a “zero” only when both inputs are “zero”. The 
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necessary bistability is related to the two possible output values that the logic 

gate can have: “zero” or “one”.  

To explain the main idea of LSR, let’s imagine our logic gate as a bistable 

potential function. Because the potential function is bistable, its shape will have 

two steady states (we can define them as the left and right wells) and an 

unstable state (obviously between the two steady states).  The difference 

between the potential function value at the unstable state and the potential 

function value at one of the two steady states is called a barrier. If the potential 

energy function is symmetric, the calculated barrier with respect to the left state 

is equal to the calculated barrier with respect to the right state.  On the contrary, 

if the potential function is asymmetric, the two barriers will have different values.  

Moreover, if the noise intensity is comparable to the barrier value, the system will 

have the correct amount of energy to randomly overcome the barrier and to 

change its well.  For the logic gate functionality, an asymmetric configuration is 

preferable.  In accordance with the truth table, a deeper barrier characterizes the 

desired output value. 

Now consider a noise intensity that allows the system to switch from the 

“wrong” stable state to the “correct” stable state (the one with a deeper barrier).  

The same noise intensity will not be sufficient to let the system to switch back in 

a reasonable time (because the “correct” well will have a deeper barrier, higher 

than the noise intensity value).  Finally, the measured output state will be the one 

according to the truth table.  
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Fig. 11.1: The two asymmetric potential function configurations. In the left panel 

the “zero”output value is expected, while in the  right panel the “one” output 

values is expected. 

What has been explained since now is the behavior generated by the 

interplay between bistability and noise. LSR exploits this phenomenon in order to 

create a morphable logic gate, robust to noise. With the Logical Stochastic 

Resonance we are in the presence of a single system that can switch between 

two logic gates. To better understand LSR, consider a general SDE: 

x = F(x,a,b,...)+Dnξ (t)                                                        (32) 

where x is the measured output, while F is related to the potential function 

represented in Fig. 11.1, and Dnx(t) is the term that represents the presence of 

noise. In particular, F depends on several parameters (for example a and b in Eq. 

(32)). To implement the LSR paradigm, the input signal is encoded by adjusting a 

parameter of the nonlinear function (for example adjusting a). As explained 

previously, in this work I am encoding the sum of our two logical inputs, this 
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means that I will need only one parameter (as suppose it will be a), instead of 

two parameters as in the traditional case. At the same time, a tuning control 

parameter is needed to switch between the two logic gate functionalities; in our 

particular case, to switch between the AND gate to the OR gate (for example, b 

is the parameter). 

Changing and tuning the parameters a and b means to adjust the 

potential function asymmetry (see Fig. 11.1) in a way that the system is able to 

exploit noise in order to jump from the “wrong” well to the “correct” well. With 

performance I define the ratio of the success in realizing the desired gate over 

the number of attempts. This ratio is the probability of realizing the desired gate.  

Eq. (32) is a general form that describes the LSR paradigm. According to 

the particular implementation of the LSR, the function F in Eq. (32) will assume 

different forms, moreover all the variables and parameters will have different 

meanings. 

Here I want to apply the LSR paradigm to a single gene network, where 

the noise is always present and the computing paradigm must be robust to the 

high level of noise.  

11.2 Creating Logical Stochastic Resonance in an Engineered Gene 

Network 

The LSR paradigm is adapted to a synthetic gene network derived from 

the bacteriophage λ [112,113,114,115]. Consider, first, a deterministic model 

describing the temporal evolution of the concentration of protein in a single-gene 

network from bacteriophage λ. Bacteria and their temperate phages, like 

Escherichia coli (E. coli) and λ, exist in symbiotic relationships. After the virus λ 
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infects the bacteria, its evolution proceeds down one of two pathways: lytic 

(wherein the λ replicates its DNA autonomously, assembles virions and lyses the 

host) and lysogenic (wherein the phage DNA is incorporated into the host 

genome) [113,114]. Hence, the bacteriophage λ GRN displays bistability in the 

choice of one of the two pathways with the characteristics of its stable attractors 

adjustable by changing the system parameters. Such binary decision-making has 

also been demonstrated by a gene network with positive feedback loop [115]. 

Following this, LSR uses the data inputs to adjust the (relative) depths of the two 

(stable) wells of the potential energy function so that the well representing the 

desired output (as defined by the truth tables [109]) of the computation becomes 

deeper than the other well. In the bacteriophage λ GRN the two main (adjustable) 

parameters to implement LSR are α (related to the basal rate of production of the 

repressor CI), and γ (proportional to the degradation rate of CI) [115]. Hence, the 

logic inputs sets ((0,0), (0,1)/(1,0), and (1,1)) are encoded via α, and control 

inputs representing the type of computation (AND or OR gates), are encoded 

through γ. This leads us to a reconfigurable GRN-based logic device whose 

workings are underpinned by the interplay between its (intrinsic) nonlinearity and 

the noise [115,116]. The output of the computation can be decoded from the final 

state of the dynamical system; this is 0 or 1 depending on the potential well that 

the system settles into. Precise definitions of α and γ are provided later in this 

work. Our system is a DNA plasmid consisting of a promoter region PRM that 

regulates the cI gene. This promoter consists of three tandem operational sites, 

OR1, OR2 (activated transcription) and OR3 (repressed transcription). These 

genetic elements provide a positive feedback loop. Bistability is reached in the 
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system only when a correct mutual relation between the production and the 

degradation of protein is realized. Operatively, the logic gate inputs can be 

adjusted in several ways, e.g. via the bacteriophage response to UV light [117], 

while the gate reconfiguration can be obtained by varying the degradation term 

through its response to temperature changes [118,119]. 

The biochemical reactions that control λ phage are very well 

characterized [10,16]. They are, naturally, divided into fast and slow categories 

(table V). Then, defining the concentrations of network components as dynamical 

variables, x = [X], x2 = [X2], d0 = [D], d1 = [D1], d2 = [D2D1], and d3 = [D3D2D1], it is 

possible to write the evolution of the concentration repressor CI for the monomer 

and dimer forms: 

 

x = −2k1x
2 + 2k−1x2 + nkt p0 (d1 + βd2 )− kxx + εd0

x2 = k1x
2 − k−1x2 − kyx2

  (33) 

where the concentration of RNA polymerase, p0, is assumed to remain constant 

over time, ℰ is the basal production rate of the repressor CI, and Ki =ki/k−i are 

equilibrium rate constants (i=1, . . . , 4). To accurately model the evolution of the 

chemical species x, I can sum x and x2 to consider the total number of 

biomolecules. The system can be reduced by exploiting the fact that the 

dimerization reactions occur on a time scale that is much faster than the other 

reactions [115,116]. 
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Table V: Biochemical reactions of the presented network are summarized. X, X2, 

and D denote the repressor, the repressor dimer, and the DNA promoter site, 

respectively; Di denotes dimer binding to the ORi site, and in order, each fast 

reaction is characterized by a rate constant: K1, K2, K3 = σ1K2, and K4 = σ2K2. σ1 

and σ2 represent the binding strengths relative to the dimer OR1 strength. Slow 

reactions are the transcription, dilution and the degradation (with rates kt, ky = 

kx/20 and kx): P denotes the concentration of RNA polymerase, n is the number 

of repressor proteins per mRNA transcript. The dimer occupation of OR2 

enhances the transcription rate of a factor β >1 and it appears only in the second 

slow biochemical reaction. 

Fast Reactions Slow Reactions 

X+X⇔X2 D1+P → D1+P+nX 

D+X2⇔D1 D2D1+P → D2D1+P+nX 

D1+X2⇔D2D1 X → f 

D2D1+X2⇔ D3D2D1 X2 → f 

 

After considerable calculations I obtain, in terms of the dimensionless 

variables x
~
= x K1K2 , t

~
= trK2

4
 and 𝑟 = ℰ𝑑! (I have suppressed the overbar on 

x):
  

 
x = (α −1)x2 +σ1(αβ −1)x4 −σ1σ 2x

6

(τ + x)(1+ x2 +σ1x
4 +σ1σ 2x

6 )
+
1−γ x −γ yx

2

τ + x
+ Dnξ(t)

 (34)
 



 118 

where I set α = nkt p0dT
r

, γ = kx
( K1K2 r)

, γ y =
2ky
(rK2 )

, τ =
K1K2

4K1
and I have 

added a noise term representing, phenomenologically, the fluctuations affecting 

the system. In addition, I set (and retain throughout this work) the degree of 

transcriptional activation as β = 11, the equilibrium constant for cI dimerization as 

K1 =0.05 (nM)-1, the equilibrium constant for cI –OR reaction as K2 =0.33 (nM)−1, 

the binding affinity for cI dimer to OR2 relative to OR1 as σ1 =2, and the binding 

affinity for cI dimer to OR3 relative to OR1 as σ2 =0.08 to maintain the connection to 

biologically accessible parameter ranges [114,119]. Here, I focus on the 

(additive) external noise that can stem from random variations in the (external) 

control parameters. ξ(t) is zero-mean Gaussian noise (<ξ(t)> = 0), and I assume 

that random fluctuations have correlation time scale smaller than any other 

reaction time scale in the system, so that the noise can be taken to be delta 

correlated, i.e., <ξ(t)ξ(t’)> = δ(t−t’), with Dn being the measure of the noise 

intensity. Equation (33) is the core of the computing model. 

The potential function of the (deterministic, i.e. ξ(t) =0) system in Eq. (33), 

U(x) (fig. 11.2), is obtained analytically by integrating the right-hand side of (29) 

with α and γ the two accessible parameters (taken in the regime of bistability). 

The plotted curves of U(x) represent the most robust configuration in the limited 

range of parameters, α and γ, germane to the biological system in the bistable 

configuration. Several simulations have been made to exhaustively search (in the 

parameter space) the most robust configuration of parameters that yields the 

best logic gate performances. For the “conventional” LSR paradigm [109,120], I 

obtained (numerically) α=7.8, 9.1, and 10.4 (respectively, for (0, 0), (0, 1)/(1, 0), 
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and (1, 1)), and γ =41.9 yields the AND gate and γ =36.5 the OR gate as the 

control input for programming the gate. 

 

Fig. 11.2. Potential functions for different data inputs for the AND gate 

(left panels) and the OR gate (right panels), using the modified LSR paradigm 

(see text) (the two upper panels), and the “conventional” LSR paradigm [4] (the 

two lower panels). The red curve represents the (0,0) case, the blue curve 

represents the (0,1)/(1,0) cases, and the black curve is for (1,1) case. Values in 

the accessible parameter range, related to the most robust configuration (see 

text), have been chosen. 

With these α and γ values, the stochastic differential Eq. (33) is solved via 

the Euler-Maruyama method on the dimensionless interval [0, 7000]. In 

simulations, it is observed that 7000 is longer than the mean escape time 

required to switch from the “wrong” to the “correct” (depending on the desired 

logic outcome) well; this time length also ensures the expected logical output for 
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a large number of trials. However, the fundamental observation is that the 

desired logical output occurs consistently and robustly only in an optimal range of 

noise values, in line with the tenets of stochastic resonance [121,122]. In the 

absence of a noise floor, this model does not work correctly; orbits may be 

trapped in the wrong well. Increasing the noise intensity beyond its optimal range 

leads to random switching between wells and the output no longer conforms to 

the truth tables. To quantify this behavior with respect to noise in this (designed) 

logic gate I measured its performance as defined as the ratio of success in 

realizing the desired gate over the total number of attempts; this ratio is the 

probability of realizing the desired gate and is shown (for OR and AND gates) in 

Fig. 11.3. I note that the probabilities in the left panel of Fig. 11.3 do not take the 

value unity, in contrast to the results presented in [109]. This can be traced back 

to the structure of the potential function for this GRN model, which is bistable 

only in a restricted regime of parameter values [115]; hence this model does not 

yield enough dynamic range to realize a failure-free implementation of the LSR 

paradigm. Moreover, in our performance definition, for each noise value I have 

checked the agreement between the simulated logical outputs for all the three 

data inputs ((0, 0), (0, 1)/(1, 0), and (1, 1)) and the respective truth table values of 

the gate under study. If one of the outputs does not realize the desired gate, I 

mark that as a failure. If, for example, we consider one of the panels in Fig. 11.2 

for each noise value the least robust potential configuration (among the three 

plotted) will have the highest influence on the performance quality of this 

considered gate. This procedure is repeated 500 times. Different combinations of 

parameters have been tried, but unsuccessfully, because of the restricted 
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dynamic range implicit in the model and the biological properties that are 

endemic to bacteriophage λ. This has lead us to propose a new version of the 

LSR principle, via a manipulation of the “conventional” LSR principle [109], to 

achieve a bacteriophage λ configuration that is still biologically correct. 

As detailed above, the LSR paradigm works in the range of α and γ 

parameters that induce bistability, and for all the distinct logic input sets (0,0), 

(0,1), (1,0) and (1,1). To “adjust” the bacteriophage λ to conform to the LSR 

paradigm implies limiting the parameter interval to a narrow region. In the 

enhanced LSR paradigm, the idea is to encode inputs as parameters of the GRN 

model so that the undesired well (almost) disappears and to take advantage of 

stochastic resonance for the cases where the unwanted well cannot be removed 

from the potential function, U(x). The second case usually happens when the 

inputs are (0,1)/(1,0). With this proposed model, we are still working in a 

parameter interval that is biologically meaningful, without restricting our study to 

the bistable region [115]. In other terms, it can happen that the (0,0) or (1,1) 

cases can be realized when U(x) is monostable as shown in Fig. 11.2 (red curve 

of the upper left panel). By “controlling” the second parameter, γ, we can deepen 

either well selectively; hence with the appropriate amount of noise, trajectories 

will switch to the deeper well and remain there. This updated model for 

computing is, underpinned by the (numerically obtained) data inputs α=6.3, 9.8, 

and 13.1. I note now that γ = 50 yields the AND gate and γ = 36 the OR gate. All 

numbers for the α definition and the γ values have been obtained through several 

simulations (as mentioned above). The potential functions for AND and OR gates 

for different data inputs are presented in Fig. 11.2 (lower panels) with the 
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probability of realizing these gates, using the modified paradigm, shown in Fig. 

11.3 (right panel). I note that the two gates are robust to noise in the same range 

of noise and amenable to the design of a morphable logic gate; in addition we 

observe a range of noise intensities for which P(logic) = 1. The enhanced LSR 

paradigm yields greater robustness to external fluctuations.  

 

Fig. 11.3. Performance of logic gates OR and AND using the “conventional” LSR 

paradigm [109] (left), and the modified paradigm (see text) (right). α and γ values 

as in the text. 

 

Fig. 11.4. Performance of logic gates AND (left) and OR (right) vs. noise intensity 

Dn, and α. γ values as in the text. 
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Finally I note that, to obtain the best performance in the logic gates, two 

possible solutions can be assessed: the change of noise intensity [123,124] or 

the variation of the parameter values, thereby adjusting the system dynamics to 

an optimal configuration, so that P(logic)∼1 as desired; for a nonlinear system 

this is tantamount (as already noted earlier) to changing the transfer 

characteristic, thereby “tuning” the noise. In Fig. 11.4, the gate performance is 

plotted vs. noise intensities and α values (while γ =50 for the AND gate and γ =36 

for the OR gate). For a fixed value of noise (for example the one mandated by 

nature) it is possible to select the “best” α value. It is interesting to note that (for 

our particular choice of model parameters) if noise intensity values are in the 

[0.7, 1] regime, there is a reasonably large range of α values for which P(logic) 

∼1, as desired. 
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CHAPTER 12 

DISCUSSIONS 

In this research I introduced a different direction for computation and 

demonstrated how the library of patterns and behaviors of a chaotic system can 

be used in computation. Different digital functions can be built based on a chaotic 

system.  

Here I introduced a new analytical analysis for chaos computing using 

periodic orbits and UPO theory. A direct connection (in terms of UPOs) between 

computational functionality of a chaotic system and the dynamics of the chaotic 

system was introduced. Based on the connection one can obtain the functionality 

and robustness of a chaotic system in doing computation from the dynamical 

equations of the system.  

Furthermore, I showed how one can obtain and estimate the functionality 

and robustness of a chaotic system in doing computation just by using a time 

series without knowing the exact dynamical equation of the system. The main 

idea is reconstruct an UPO-based approximation for the chaotic system and use 

it for estimating the functionality and robustness. The simulation results showed 

that based on an UPO-based approximation one can easily obtain the 

functionality of the underlying chaotic system and estimate the robustness of 

these functions.  

After studying single Chaogates, I proposed a new computer architecture 

to put the Chaogate together to build a sophisticated computing system out of 

them. The new computer has a flexible instruction set, in which the user can load 

his desired optimal one to the computer. Such flexibility enables the computer to 
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meet the requirements of the application. For example, for statistical 

computation, an instruction set suitable for statistical calculation can be loaded to 

maximize the performance. For digital signal processing a suitable instruction set 

for DSP can be loaded. Furthermore, a user can have his own customized 

instruction set.  

A software for simulating the hardware was developed to test the 

architecture and to demonstrate the capability of the hardware in running 

different instruction sets. C++ language was used to develop the simulator. 

Object oriented features of the C++ enables us to represent the architecture in 

terms of its basic blocks like wires, chaos based logic blocks, pins, registers, etc. 

A C++ class was defined for any type of component used in the architecture. For 

any instance of the defined component type (class) which is used in the 

architecture, an object was declared. The inputs to the hardware simulator were 

(1) Instruction set (2) program in terms of binary instructions.  

This hardware simulator is a critical step in chaos computing, first it 

demonstrated how and how well the single chaos based logic blocks can be 

combined to build a processor, and second it bridges the software simulations to 

the physical hardware fabrications. 

Apart from digital computation, it is explained how a chaotic system can 

be used in speech coding and synthesizing and it is demonstrated that such a 

chaos-based coder can be efficient than conventional methods like CELP. In our 

chaos based excited linear predictor coding method, chaotic systems were used 

for exciting a filter that models the vocal tract. The main advantages of chaos 

excited linear predictor are: 1- Since the waveforms are generated online there is 
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no memory limitations and a more number of waveforms can be used to find 

better excitations resulting in better performance.  2- The waveforms are not read 

from a memory, and they are generated by a just a few basic machine 

instructions, therefore the new method can be faster than the previous method. 

3- The new method is more biological oriented. 4- CMLs are known to model the 

turbulence and we already know the turbulence in our speech production system 

produces the random like excitations. Therefore the current work introduces the 

possibility of direct estimation of random like excitations in speech waveform by 

use of a CML. 

As another approach for digital computation, I implemented and 

enhanced LSR in a GRN, specifically, the bacteriophage λ. The resultant 

computing device is able to work as an AND or OR gate interchangeably in the 

presence of noise. LSR on a GRN, that has the capability of being reconfigured, 

could be combined, in the near future, with other logic modules (done by different 

sets of input/output signals) to increase the computational power and 

functionality of an engineered GRN.  

The research and the results of this thesis open new doors to us and new 

threads of research have already started following it. The main topics of future 

research areas are listed below. 

Fabricating chaos-based processor is one of the main aims to reach after 

graduation. As a part of Ph.D. project, a hardware simulator software was 

presented for a chaos based computer. This hardware simulator is very 

beneficial in physical fabrication of the processor, because it defines and 

simulates the processor in terms of a group of basic blocks that have been 
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already fabricated. So far different circuit implementations have been introduced 

for the chaos-based logic block [57,58,59,60,61] and a proof of concept VLSI 

implementation is presented [125]. However it might be required to introduce a 

new VLSI fabrication for the chaos based logic block, which is more compatible 

with the introduced computer architecture. There are hardware description 

languages like VHDL or Verilog, which can synthesize the architecture by use of 

provided library of layouts for the basic blocks, used in the architecture. The 

hardware simulator software I developed is very similar to a VHDL program that 

describes the architecture in terms of its blocks. Therefore having such a 

software in hand will make developing the VHDL program easy in this stage of 

the work. The output of the hardware description language will be a layout for 

fabricating a chaos based processor chip.  

Another filed of research following this thesis is extending the UPO and 

time series analysis introduced in chapters 4-8 to higher dimensional chaotic 

maps and chaotic flows.   

In chapters 4-6 it is demonstrated how the functionality and the 

robustness of a one-dimensional chaotic map in computation can be obtained 

from its UPOs. The techniques can be extended to be higher dimensional system 

and flows too. As to future work, the focus will be on improving, adapting, and 

changing the introduced techniques to derive the instruction set of a given higher 

dimensional chaotic map or chaotic flow from its dynamic equations and to 

estimate the robustness of these systems in performing computation.  

Also in chapters 7 and 8 it was presented how one can obtain and 

estimate the instruction set and the robustness of the instruction set of a given 1-
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D map from a given time series. With some modifications these techniques can 

be applied to higher dimensional chaotic maps and flows as well. In the future 

these techniques will be improved to be applicable to higher dimensional chaotic 

maps and flows as well. 

Designing a new LSR based computer is another future project. Herethe 

idea of logical stochastic resonance is explained and it was adapted to a GRN 

model. The constructed logic block was able to build simple functions like AND or 

OR. To perform sophisticated computations a group of these blocks are required 

to work together. In chapter 9 the idea of designing a new architecture for a 

chaos-based computer was introduced. The exact same architecture will not be 

applicable to the LSR paradigm, because chaos computing and LSR have 

different instruction sets and timings. However a similar architecture can be 

developed for the LSR computing paradigm.  
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