
Chaos Computing

From Theory to Application

by

Behnam Kia

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2011 by the
Graduate Supervisory Committee:

William Ditto, Chair

Liang Huang
Ying-Cheng Lai

Stephen Helms Tillery

ARIZONA STATE UNIVERSITY

December 2011

 i

ABSTRACT

In this thesis I introduce a new direction to computing using nonlinear

chaotic dynamics. The main idea is rich dynamics of a chaotic system enables us

to (1) build better computers that have a flexible instruction set, and (2) carry out

computation that conventional computers are not good at it. Here I start from the

theory, explaining how one can build a computing logic block using a chaotic

system, and then I introduce a new theoretical analysis for chaos computing.

Specifically, I demonstrate how unstable periodic orbits and a model based on

them explains and predicts how and how well a chaotic system can do

computation. Furthermore, since unstable periodic orbits and their stability

measures in terms of eigenvalues are extractable from experimental times

series, I develop a time series technique for modeling and predicting chaos

computing from a given time series of a chaotic system. After building a

theoretical framework for chaos computing I proceed to architecture of these

chaos-computing blocks to build a sophisticated computing system out of them. I

describe how one can arrange and organize these chaos-based blocks to build a

computer. I propose a brand new computer architecture using chaos computing,

which shifts the limits of conventional computers by introducing flexible

instruction set. Our new chaos based computer has a flexible instruction set,

meaning that the user can load its desired instruction set to the computer to

reconfigure the computer to be an implementation for the desired instruction set.

Apart from direct application of chaos theory in generic computation, the

application of chaos theory to speech processing is explained and a novel

application for chaos theory in speech coding and synthesizing is introduced.

More specifically it is demonstrated how a chaotic system can model the natural

 ii

turbulent flow of the air in the human speech production system and how chaotic

orbits can be used to excite a vocal tract model.

Also as another approach to build computing system based on nonlinear

system, the idea of Logical Stochastic Resonance is studied and adapted to an

autoregulatory gene network in the bacteriophage λ.

 iii

This thesis is dedicated to Seville.

 iv

ACKNOWLEDGMENTS

Foremost, I would like to express my deepest gratitude to my advisor, Dr.

William Ditto, for his continuous support, motivation and inspiration that made

everything that I have achieved toward my PhD degree possible.

Besides my advisor, I would like to thank the rest of my thesis committee,

Dr. Stephen Helms Tillery, Dr. Ying-Cheng Lai, and Dr. Liang Huang, for their

encouragement and insightful comments.

I would like to express my deep gratitude to Kathleen Russell, former

associate director of school of biological and health systems engineering, for her

kind support and motivation. It was my pleasure to work with her and to know

her.

My sincere thanks also go to Dr. Mark Spano and Dr. Anna Dari for the

productive collaboration during my PhD and their friendship.

I would like to thank David Stanely, who as a good friend, was always

willing to help. It would be a lonely lab without him.

Many thanks also go to my good friend, Younes Anari, for his friendship.

He was the one that I could count on.

Last but not least, I would like to thank my parents and two sisters,

Mehrnaz and Sarvenaz, for their unflagging love and support throughout my life.

 v

TABLE OF CONTENTS

 Page

LIST OF TABLES .. viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ... 1

1.1. Computers and Computation ... 1

1.2. History of Computers ... 1

1.3 Need for a New, Dynamic-based Programmable Computer 14

1.4. Need For a New Logic ... 15

1.5. Organization of the Thesis ... 16

2 CHAOS THEORY, THE MAIN CONCEPTS 19

2.1. Dynamical System ... 20

2.2. Emergence from Nonlinear System ... 22

2.3. Sensitivity to Initial Conditions ... 23

2.4. Determinism and Unpredictability, Are They Collectable in One

System? .. 24

2.5. Nonlinearity, Good or Evil? Motivation of the Thesis 25

2.6. Three Main Characteristics of Chaos 29

2.7. Manipulating Chaos ... 31

2.8. Summary and Discussion .. 35

3 CHAOS COMPUTING, THE MAIN IDEA ... 36

4 DYNAMICS AND COMPUTATION .. 40

5 ROBUSTNESS AGAINST NOISE ... 47

 vi

CHAPTER Page

6 EXAMPLES FOR DETERMINING THE TYPE OF COMPUTATION

FROM DYNAMICS ... 50

6.1. Logistic Map ... 50

6.2. Gaussian Map .. 54

7 DERIVING INSTRUCTION SET FROM A TIME SERIES 61

7.1. Extracting a Generating Partition from the Time Series 61

7.2. Extracting UPOs from Time Series ... 63

7.3. Extracting the Neighborhoods of the UPOs 64

7.4. Extracting the Eigenvalues and Estimating Robustness 65

7.5. Forecasting Chaotic Orbits to Compute the Minimum Distance

from Partition Boundaries .. 66

7.6. Putting It All Together .. 68

8 EXAMPLE FOR DERIVING THE INSTRUCTION SET FROM A TIME

SERIES ... 70

9 COMPUTER ARCHITECTURE FOR CHAOS COMPUTING 75

9.1. Need for a New Architecture for Chaos-based Computers 75

9.2. From One Chaogate to a Lattice of Chaogates 76

9.3. Hardware Simulation .. 91

9.4. Proposed Chaos-based Computing System Versus FPGA 93

10 CHAOS EXCITED LINEAR PREDICTOR CODING FOR SPEECH

CODING AND PRODUCTION ... 95

10.1. CELP .. 99

10.2 Chaotic Excited Linear Predictor .. 102

 vii

CHAPTER Page

11 LOGICAL STOCHSTIC RESONANCE AND SYNTHETIC BILOGY

 ... 111

11.1 Logical Stochastic Resonance .. 111

11.2 Creating Logical Stochastic Resonance in an Engineered

Gene Network ... 114

12 DISCUSSIONS ... 124

REFERENCES ... 129

 viii

LIST OF TABLES

Table Page

I. Instruction set of the logistic map for different iteration numbers 58

II. Truth table of a typical two input, one output function 58

III. Instruction set of the gaussian map for different iteration numbers . 59

IV. Instruction set of the logistic map for different iteration numbers

obtained from a time series .. 74

V. Biochemical reactions of the presented network are summarized. X,

X2, and D denote the repressor, the repressor dimer, and the DNA

promoter site, respectively; Di denotes dimer binding to the ORi site,

and in order, each fast reaction is characterized by a rate constant:

K1, K2, K3 = σ1K2, and K4 = σ2K2. σ1 and σ2 represent the binding

strengths relative to the dimer OR1 strength. Slow reactions are the

transcription, dilution and the degradation (with rates kt, ky = kx/20

and kx): P denotes the concentration of RNA polymerase, n is the

number of repressor proteins per mRNA transcript. The dimer

occupation of OR2 enhances the transcription rate of a factor β >1

and it appears only in the second slow biochemical reaction 117

 ix

LIST OF FIGURES

Figure Page

1.1 Ishango Bone, the oldest discovered stick tally; it dates back to

more than 20,000 years ago.. ... 2

1.2 Left: Plain tokens, Mesopotamia, Iraq, 4000 B.C. The cone,

spheres and disk represented various grain measures; the

tetrahedron stood for a unit of labor. Right: Naturalistic tokens

representing animals, a vessel and a fruit, Iran, 3300 B.C 3

1.3 A Korean-style abacus, dating back to early 1900 AD 4

1.4 The metal counting rod of the western Han Dynasty 5

1.5 Left: The Antikythera mechanism discovered from a shipwreck.

Right: A reconstructed schematic view of the Mechanism to

illustrate the position of major inscriptions and dials 7

1.6 Left: Difference engine built by Babbage. Right: A trial version of

the analytical engine built by Babbage ... 9

1.7 Thomas de Colmar's Arithmometer, 1890 AD 10

1.8 Left: An integrator block of differential analyzer, MIT. Right:

Vannevar Bush standing near to his analog computer 11

2.1 Two orbits starting from nearby initial conditions diverge from each

other and behave very differently. This sensitivity to initial

conditions is a signature of a chaotic system 24

2.2 Bifurcation diagram of the Logistic map is depicted. At different

values of the parameter, the system behavior qualitatively as well

as quantitatively changes .. 28

 x

Figure Page

3.1 Schematic of chaotic computing model. Inputs are mapped to an

initial condition of the chaotic system working as a computing

engine, and the final state of the chaotic system is decoded to

output ... 37

3.2 Chua circuit-based logic block .. 39

4.1 The figure at the left (right) shows how UPOs of length two (three)

and the neighborhoods around them can be used to determine the

functionality of the chaotic system when it undergoes one (two)

iteration(s). Consider the left graph and recall that I have chosen

𝑋! = 0 if 𝑓 ! 𝑥! < 𝑥! and 𝑋! = 1 if 𝑥! < 𝑓 ! (𝑥!). Any set of initial

conditionsx in the area denoted “00” will return to that area,

generating the symbolic itinerary 00. An initial condition in the

region denoted “01” will start below xc but the next iteration will take

it above xc, thus generating the symbolic itinerary 01. Similarly for

the other regions. Note that some UPO neighborhoods are not

used to implement the function of interest here 43

6.1 Statistical measures, mean and variance, of the error in estimating

robustness of different instructions against noise are reported. The

error is the difference between the estimated SNR and the

experimental SNR for each instruction. The mean of these errors at

each iteration is reported in the left panel, and the variance of the

error at each iteration is presented in right panel. The solid lines

denote cases where, for (p-1) iterations of the map, period p UPOs

 xi

Figure Page

are used for modeling. Dashed lines denote the means and

variances when period-7 UPOs are used for predicting the SNR.

Dotted lines show the means and variances of the difference r,

where linearization is performed along each orbit 53

9.1 Schematic view of a Chaogate is illustrated. There are three types

of inputs, the data, the instruction, and the clocks, and one output,

representing the output of computation .. 76

9.2 Three clocks required for operation of a Chaogate 77

9.3 Chaogate controlled by a micro-programmed controller. This

architecture reduces the size of operation code (or equivalently

required pin number for programming) from 8 to 4 80

9.4 Architecture for single-column lattice of Chaogates. This computing

system can perform bit-wise operations like AND, XOR, or NOR on

4-bit operands. To implement such functions, micro-programmed

controller needs to contain the corresponding control bits and the

user needs to use appropriate operation code to address the rows

containing control bits for desired function 82

9.5 Multiplexers are used to select inputs to a Chaogate from outputs of

previous layer .. 84

9.6 A distributed micro-programmed controller programs a lattice of

Chaogates. There is one micro-programmed controller for each

column of Chagates . Also a register is placed between any micro-

programmed controlled and its consequent micro-programmed

controlled at the next column of Chaogates for flow of instructions.

 xii

Figure Page

The instruction and the data flow along the lattice at the same time

 ... 86

10.1 A simple block diagram of the human speech production system.. 96

10.2 DSP block diagram for the speech production system shown in

Fig. 10.1 .. 97

10.3 Schematic of the CELP algorithm ... 102

10.4 Three sentences, S1, S2, and S3, spoken by two different

speakers, are used for evaluating the performance. White, grey,

and black bars represent the power of the perceptually-weighted

error signal when a Gaussian code book, the Logistic map, and a

coupled map lattice are used for excitation, respectively 105

10.5 Power of perceptually weighted error signal of ChELP algorithm

versus different values of Lyapunov exponent. As the Lyapunov

exponent increases, the algorithmic error reduces 106

10.6 (a) The error of CML versus lattice size when the function in

Eq. (31) is used for initializing the CML. (b) The error of CML

versus lattice size when a pseudorandom number generator is

used for initializing the CML .. 109

11.1 The two asymmetric potential function configurations. In the left

panel the “zero”output value is expected, while in the right panel

the “one” output values is expected .. 113

11.2 Potential functions for different data inputs for the AND gate (left

panels) and the OR gate (right panels), using the modified LSR

paradigm (see text) (the two upper panels), and the “conventional”

 xiii

Figure Page

LSR paradigm [4] (the two lower panels). The red curve represents

the (0,0) case, the blue curve represents the (0,1)/(1,0) cases, and

the black curve is for (1,1) case. Values in the accessible

parameter range, related to the most robust configuration (see

text), have been chosen .. 119

11.3 Performance of logic gates OR and AND using the “conventional”

LSR paradigm (left), and the modified paradigm (see text) (right). α

and γ values as in the text ... 122

11.4 Performance of logic gates AND (left) and OR (right) vs. noise

intensity Dn, and α. γ values as in the text 122

 1

CHAPTER 1

INTRODUCTION

1.1. Computers and Computation

A computer is a physical device to carry out computation; in other words

one can consider a computer as an implementation of a computation. Notice that

in this chapter by saying computer I am not addressing modern, general-purpose

digital computers; instead I define any physical device that can implement some

computation as a computer, including modern digital computers as well.

To be an implementation of a computation, some sort of congruency

between the behavior and nature of the physical computer and the type of

computation is required.

The history of computers goes back to the stone age. The next section

summarizes the history of computers and their evolution over the course of time.

This study of the evolution of computers will clarify the needs and requirements

for a new computing system and a new logic, which will be introduced in this

thesis.

1.2. History of Computers

1.2.1. Devices for Counting

Man’s fingers were probably the first computer used by humankind! This

simple computer was used as a counting device through simple one-to-one

correspondence [1].

The first reported computer hardware built by humankind seems to be the

tally stick. Again, this computer was used as a device for counting (through one-

to-one correspondence) as well as storing the numbers. The most ancient

 2

discovered tally stick is the Ishango Bone, which is on exhibition at the Royal

Belgian Institute of Natural Sciences. It is believed to be more than 20,000 years

old [2].

Fig. 1.1. Ishango Bone, the oldest discovered stick tally; it dates back to

more than 20,000 years ago. Picture is from the Royal Belgian Institute of Natural

Sciences [3].

Tokens are other ancient computing devices that date back to 8000-3000

BC. These clay artifacts have geometric forms such as cones, spheres, disks,

cylinders, or others that take naturalistic shapes such as miniature animal heads,

vessels, tools, and furniture [4].

Tokens were counters used to keep track of goods with each token form

standing for one specific unit of a commodity. The number of units of

merchandise was shown in one-to-one correspondence. It is known that, in the

fourth millennium BC, the tokens were an accounting device used by the

Mesopotamian temple administration to record entries or expenditures of goods

offered by worshippers during monthly religious festivals [4]. Pictures of

discovered tokens are illustrated in Fig. 1.2.

 3

The ancient computing devices introduced in this section were mainly

used for counting and representing the numbers and the main idea was very

simple and primitive: one-to-one correspondence between each unit of goods

and one finger/notch/token. Counting and representing the numbers were useful

to keep track of livestock, grain, etc., but it wasn’t enough. The ancients needed

some computation and mathematics like addition, subtraction, or multiplication

and a computing system that help them to do such computation. In the following

chapter the next generation of computing devices is introduced, where the device

stores numbers and helps the user to do primitive operation on the stored

numbers.

Fig. 1.2. Left: Plain tokens, Mesopotamia, Iraq, 4000 B.C. The cone,

spheres and disk represented various grain measures; the tetrahedron stood for

a unit of labor. [Credit: Denise Schmandt-Besserat, The University of Texas at

Austin [4]]. Right: Naturalistic tokens representing animals, a vessel and a fruit,

Iran, 3300 B.C. Credit: Musée du Louvre, Département des Antiquités Orientales,

Paris.

 4

1.2.2. Devices for Pseudo-computing

The next generation of computing devices wasn’t just for representing the

numbers; instead they helped the user to do computation on the stored numbers

as well. At this stage, the computation wasn’t fully automated inside the

computing device. The device helps the user keep track of numbers as they do

the computation, hence the name pseudo-computing device. The abacus and

counting rods are examples of this generation of computing devices.

The abacus is a calculating tool used for performing arithmetic.

Sumerians built the first abacus about 2700 BC [5]. This simple, but efficient

computing system became popular in all ancient civilizations, including Rome,

Persia, Greece, China, etc., and it has lasted even until now when it is still used

as a simple calculator.

Fig. 1.3. A Korean-style abacus, dating back to early 1900 AD, Credit: Gwen and

Gordon Bell [6]

 5

Counting rods were used in ancient China, Japan, and Korea to perform

mathematical and algebraic calculations. The most ancient specimens of

counting rods were discovered from Chinese tombs dating from the second to

first centuries BC [7]. Counting rods are placed either horizontally or vertically to

represent any number and any fraction. The method for using counting rods for

mathematical calculation was called rod calculation and by using it the ancient

mathematicians were able to solve problems as hard as systems of linear

equations or roots of numbers [7].

Such computing devices were a great help for computation. However, the

user himself needs to know the method for computation and these devices were

used as a tool to perform the computation. The turning point in the history of

computing devices was introduced by mechanical computers designed for

astronomical computation, where the computer physically models the dynamics

of the system and as a result the computing system automatically solves the

problem.

Fig. 1.4. The metal counting rod of the western Han Dynasty [8].

 6

1.2.3 Mechanical Computers for Astronomical Computation

The introduction of mechanical computers for calculating astronomical

positions was an important historical turning point for computing systems,

because the computer was able to automatically carry out the requested

computation with no help from the user. A non-expert user could easily enter the

input data, e.g., the calendar date and local time, and the computer automatically

gives the astronomical positions of the sun, moon, or other planets or vice versa.

Ancient scientists were the first to learn that a device that models a

specific computation can be used as a computer for carrying out that type of

computation. This is indeed the main and basic idea behind any other computer

system that has since been built. Mechanical computers for astronomical

computation are the first series of computing devices built based on this idea.

Such computers were composed a series of mechanical gears whose movement

models the celestial and planetary system. As a result such a device can

automatically calculate the astronomical positions of planets or stars given the

local time and date.

The most ancient specimen of a mechanical analog computer used for

astronomical computation was discovered from a shipwreck named Antikythera

in 1901 and it was called the Antikythera mechanism [9]. Studies revealed that

this computing machine dates back to 100-150 BC and that it calculated and

displayed celestial information, particularly cycles such as the phases of the

moon and a lunisolar calendar [9].

 7

Fig. 1.5. Left: The Antikythera mechanism discovered from a shipwreck. Credit:

National Archaeological Museum, Athens, Greece [10]. Right: A reconstructed

schematic view of the Mechanism to illustrate the position of major inscriptions

and dials [9].

The Astrolabe [11], the Planisphere [12], and the Equatorium [13] are

other mechanical and analog computers used for astronomical calculation that

were invented and used during ancient days and middle ages.

These computers were built for calculating celestial information and

lunisolar calendars because (1) for ancient societies timing agricultural activity

and fixing religious festivals had great importance, (2) eclipses and planetary

motions were often interpreted as omens, while the calm regularity of the

astronomical cycles must have been philosophically attractive in an uncertain

and violent world [9].

There have been a few other important and interesting achievements in

computing systems during Middle Ages and renaissance, famous examples are

Pascal's calculator Da Vinci’s clock, however we don’t see a new generation of

computers until industrial revolution. Industrial revolution introduced new

problems and computations to humankind which required advanced types of

 8

computers. Mechanical calculators and early models of mechanical

programmable computers are the devices designed and built based on these

new needs.

1.2.4. Mechanical Calculators and Mechanical Programmable Computers

The industrial revolution put a new and limitless set of problems to solve

in front of humankind, which in turn required more sophisticated forms of

computer. This new quest for sophisticated computers started from the 18th

century, when different scientists started to build new calculators and

programmable computers. The common characteristics of these new series of

computers were that (1) they were mainly mechanical and (2) the designers were

trying to make these computing systems general purpose and programmable.

Babbage’s difference engine and analytical engine were probably the

most famous computer systems of this era. The difference engine was designed

to compute values of polynomial functions. Also Babbage recruited the idea of

punched card programming introduced by Joseph-Marie Jacquard in 1801 and

tried to build a programmable, general-purpose mechanical computer, named the

analytical engine. However his efforts to build it failed because of lack of enough

funding. Recent studies have proved that his designs and architectures for the

difference engine were correct and working versions of his design have been

built successfully [14].

 9

Fig. 1.6 Left: Difference engine built by Babbage. Right: A trial version of

the analytical engine built by Babbage. Both pictures are from science museum,

London, UK [15].

At this era, a few technologically and commercially successful calculator

machines were built and introduced too. The arithmometer patented by Thomas

de Colmar and manufactured from 1851 to 1915 is a good example [16]. This

computing device was a mechanical calculator that could add and subtract

directly and could perform long multiplications and divisions effectively by using a

movable accumulator for the result.

The quest for building a programmable general-purpose computer mainly

failed because of the lack of the necessary technology or funding until the mid

20th century. Meanwhile analog computers continued progressing and they

extended their scope from solving algebraic problems and equations to

differential equations.

 10

Fig. 1.7. Thomas de Colmar's Arithmometer, 1890 AD. Credit: science

museum, London, UK [15]

1.2.4. Modern Analog Computers for Differential Equations

In late 19th and early 20th centuries, advances in engineering and

technology introduced new problems to solve. Based on Newtonian mechanics,

differential equations govern the motion of an object, the trajectory of a bullet, the

growth rate of the economy, etc. This need for computers capable of solving

differential equations initiated dozen of different projects and resulted in the

invention of new analog computers for solving differential equations during the

early 20th century.

The trajectory of a missile and the dynamics of a simple spring-dashpot

mechanical system can be governed by the same differential equation. This

similarity between the dynamics was the main idea behind analog computers:

build a simple mechanical or electrical system that is governed by the differential

equation of interest. The time evolution of the system is the solution of the

differential equation for the other.

 11

Fig. 1.8. Left: An integrator block of differential analyzer, MIT. Right: Vannevar

Bush standing near to his analog computer. Pictures are from MIT’s online

museum [17].

The differential analyzer of MIT is a famous example of this generation of

computers built in MIT by Vannevar Bush and his students during 1928–1931

[18]. This analog computer was composed of 6 mechanical integrators that had

been introduced by William Thomson (Lord Kelvin) as well as thousands of other

gears and rods [19].

These analog computers were a huge step forward. However they suffer

from critical weaknesses. The most important problem was that their computation

was restricted to solving differential equations. These analog computers were

able to solve any problem or equation that was buildable on the mechanical

hardware. If the problem was outside the dynamical behavior of the hardware,

the computer fails to solve the problem. The other problem was the

programmability of these computers. Not only were these computers

programmable to just a narrow set of problems, but also this programming

required mechanical reconfiguration of the connections and setup. Claude

Shannon, the famous American engineer and mathematician, operated and

reconfigured the differential analyzer of MIT early in his career. During his work

 12

with this machine, he discovered that switching circuits, used in the controller

part of the differential analyzer, can be modeled and simplified using a then

relatively unknown branch of mathematics named Boolean algebra. This

discovery opened the doors to the invention of digital programmable computers.

1.2.5 Digital Computers

1.2.5.1 Digital Logic

George Boole, a British mathematician, was interested in formulating a

calculus of reasoning, and in 1847 he published a pamphlet titled “Mathematical

Analysis of Logic” [20]. In this article he developed and introduced novel ideas on

logical reasoning and argued that logic should be considered as a separate

branch of mathematics, rather than being considered a part of philosophy. Boole

argued that there are mathematical laws to express the operation of reasoning in

the human mind [20]. Boole’s work on what is now called Boolean algebra

remained relatively unknown for many years as it seemed to have little practical

use to society. However, Claude Shannon in his master's thesis, A Symbolic

Analysis of Relay and Switching Circuits, proved that Boolean algebra could be

used to simplify the arrangement of the electromechanical relays then used in

telephone routing switches and, much more importantly, he proved that it should

be possible to use arrangements of relays to solve Boolean algebra problems

[21]. This concept, of utilizing the properties of electrical switches to do logic, is

the basic concept that underlies all digital computers.

Boolean algebra (Boolean logic) was a new, abstract way to express

reasoning and computation, and, via the introduction of switching circuits as an

implementation of Boolean logic, a new generation of computers was developed.

 13

However, this new computer still wasn’t programmable. It was Von Neumann and

his architecture for a stored program computer that described how to build a

general-purpose programmable computer.

1.2.5.2 Von Neumann Architecture

The earliest computing machines had fixed programs that were designed

(hardwired) to do a specific task. For example, the Antikythera mechanism was

only able to calculate planetary positions. The limitation of a fixed (hardwired)

program computer is that it is designed and programmed to do a specific task. If

it is required to change the program, then it is usually necessary to re-wire and

re-design the machine, which was a complex manual process and which involved

engineering designs and physical changes (if re-wiring and re-designing was

possible at all).

Von Neumann architecture explains how one can build a general

purpose, programmable computer. It says that a general-purpose computer must

store data and a program (or sequence of instructions from and instruction set) in

a storage structure and then call and execute these instructions one by one in a

CPU [20].

The main idea behind Von Neumann architecture is to define a set of

basic instructions that can encode any problem (an instruction set) and then

implement these fundamental instructions within the hardware. Then for any

problem one can write a program, which consists of instructions from this

instruction set, and then feed this program along with the corresponding data

inputs to the computer. The computer reads this program and executes it line by

line. Execution of an instruction is nothing more than sending the appropriate

 14

data to the hardware implementing each specific instruction. Almost all modern

computers have been designed and built based on this idea.

In the next chapter, conventional computers and their drawbacks are

described.

1.3 Need for a New, Dynamic-based Programmable Computer

The main problems of modern digital computers are that (1) although the

technology used for implementation can be extremely fast, the computation can

remain relatively slow. The reason is that, in modern digital computers, instead of

direct calculation of the problem a programmed version of the problem in terms

of that computer’s instruction set of the computer is executed. Such programs

are executed instruction by instruction, with each instruction initiated by a master

clock. Each instruction takes one or more cycles (unless parallelism is available

and feasible). (2) The second problem is that, although the computer is

“programmable”, ironically the hardware is not programmable. As said before, for

each instruction in the fundamental set of instructions, there is one physically

separate hardware implementation, and, at the arrival of each instruction to be

run, the corresponding hardware implementation of that instruction is used while

the remainder of the hardware is idle. As a result, inside the hardware for a

programmable digital computer, there are dozen of implementations for

instructions, but at each cycle, just one of them is used. These unused

implementations of instructions are just wasting power and chip area.

In this thesis a new programmable computer will be introduced, which

reconfigures itself to be the exact implementation for each instruction

encountered in the program. This new computer system will utilize all of its

 15

hardware, with minimal redundant, unused hardware. Such a computer extends

the meaning of programmability to new levels, where the intrinsic dynamics of the

system is programmable. The enabling technology for such a brand new

computer is based on a novel idea for building logic circuits called chaos

computing [22,23,24,25,26,27,37,28,29,57,58,59,60,61,70].

Chaos computing is a new approach to implementing a logic circuit.

Similar to ancient mechanical computers, or 19th century analog computers, the

intrinsic dynamics of a chaos computing engine models a function. Furthermore,

since a chaotic system exhibits different behaviors and patterns, it can implement

different types of functions [37,24,25,26,27,28,29].

In this thesis, after introducing and studying the chaos-computing model,

a new computer architecture designed for these logic blocks (which replace the

hardwired instruction set of digital computers) will be introduced. This

architecture will use these chaos-based logic blocks to obtain a truly

reconfigurable computer, in which the hardware of the computer is truly

reprogrammable. Such a computer will utilize all of its resources, so there will be

no waste of power or IC area. Furthermore, since the hardware itself is deeply

reconfigurable, the programmability of the computer will not be restricted to just

an instruction set, and the user will be able to program the computer to be an

almost exact implementation of his application.

1.4. Need for a New Logic

The operations of modern digital computers are restricted to a basic set of

instructions. The problem is that in some applications it is really hard, if not

impossible, to describe the problem and solution in terms of the basic

 16

instructions. Famous examples are pattern recognition, artificial intelligence,

perception, etc.

In this thesis, even beyond introducing a new chaos-based

implementation for the logic and computation, a new form of computation

employing chaotic dynamics will be introduced for applications like speech

modeling and artificial intelligence.

The main idea is that I will show that a chaotic system can and should be

used for modeling speech. Since a chaotic system can better physically model

the process of speech production (speech production involves turbulence, a form

of chaos), it can provide a superior implementation for modeling speech.

1.5. Organization of the Thesis

The main concepts of chaos theory are introduced and explained in

chapter 2. The focus of this chapter is on the main ideas and concepts of chaos

theory that will be used in next chapters of this thesis. In this chapter the

importance of chaos and nonlinearity will be discussed in detail and it will be

explained why chaotic dynamics can be very beneficial in computation.

In chapter 3 a short review of chaos computing is presented. I will show

how one can build different digital functions using a chaotic system.

In chapter 4 a new theoretical analysis for chaos computing is presented.

Until now no direct technique has been introduced to determine the possible

functions that a given chaotic system can implement or the control inputs that

select these instructions. Rather the evolution of any chaotic computing model

under different inputs is observed and monitored to determine its instruction set.

In this chapter the computational capabilities and properties of a chaos-based

 17

computer are connected to the dynamical properties of the underlying chaotic

system. Specifically I demonstrate that the instructions that a chaotic system can

implement can be directly determined from the periodic orbit structure and the

dynamics of the system. Furthermore, in Chapter 5 I use the unstable periodic

orbit (UPO) theory and the UPO model to estimate the robustness of a chaotic

system in doing computation.

Examples for application of UPO in chaos computing and determining

and estimating the functionality and robustness of chaotic system in computation

are presented in Chapter 6.

Furthermore, since UPOs are experimentally extractable from a time

series, one can determine the computational functionality of a chaotic system

and its robustness based on a time series with no need to know exact dynamical

equations of the system. In chapter 7 I explain how from a time series one can

reconstruct a UPO based model for chaos computing and how this model can be

used in determining and estimating the functionality and robustness of the

underlying chaotic system in computation. An example of this extraction of

functionality and robustness from a time series is presented in chapter 8. UPOs

and their eigenvalues are extracted to reconstruct the UPO model and to

estimate the functionality and robustness of underlying chaotic system in doing

computation.

In chapter 9 a brand new architecture for chaos computing is proposed.

This architecture explains how one can arrange chaos-based logic blocks beside

each other to obtain a computing system. The computing system I build will have

 18

a flexible instruction set, meaning that the user has the option to choose the

desired suitable instruction set for his application.

In chapter 10 I describe how chaotic systems can be used in coding and

synthesizing human speech. In this chapter the focus is on a famous speech

coding and modeling technique, named CELP, and I demonstrate how random

number generators and random series can be replaced with chaotic systems and

chaotic time series to obtain better performance. Chaotic excitation of the filter

which models the vocal tract is more biological oriented and it results in better

performance.

In chapter 11 a new nonlinear dynamical systems-based approach for

computation, named logical stochastic resonance, is introduced and it is adapted

on a regulatory gene network, named lambda phage λ. This genetic regulatory

based logic block is able to build AND and OR gates.

At the end Chapter 12 presents the conclusions I can draw from this work

and it explains the future directions following the thesis.

 19

CHAPTER 2

CHAOS THEORY, THE MAIN CONCEPTS

Even large dedicated books for chaos theory fail to cover all aspects of

this new and broad branch of modern science, so there is no way I can introduce

and explain all aspects of chaos theory in this short chapter. Instead I will

introduce the main concepts and ideas of chaos and nonlinear dynamical

systems theory that I will use in my work in next chapters. Furthermore, I keep

the mathematics and definitions as simple as possible in favor of meaning,

implication and application of each concept. The main reason is the aim of this

thesis is to apply chaos theory in information processing. The main idea is to

bridge the concepts between chaos theory and information processing systems,

and find counterparts for each concept of information processing in chaos theory.

The counterparts in chaos theory will be a realization of the information-

processing concepts. For such pairing of concepts, having a deep conceptual

understanding of chaos theory is more important than the mathematical details

and equations. Therefore the main focus of this chapter, which covers the

background of chaos theory, will be on the main ideas and concepts. I start from

the definition of a nonlinear system, and will explain why and how it differs from

linear systems, and what the implications of nonlinearity are.

Readers who are seeking more mathematical details of the chaos theory

and dynamical systems theory are encouraged to refer these text books [30,31].

 20

2.1. Dynamical System

A Dynamical system is a system described by a set of equations that

gives the time evolution of the state of the system from an initial state. These

equations present the continuous-time evolution of the system:

 𝐱 = 𝐅(𝐱) (1)

where x is a state vector of the system, or the equations can be discrete,

presenting the discrete-time evolution of the system:

 𝐱𝐧!𝟏 = 𝐅(𝐱𝐧) (2)

where xk represents the state of the system at time step k. The sequence of

states trace an orbit in state vector space of the system.

Maxwell’s equations for plasma, the Navier-Stokes equations for a fluid,

and Newton’s equations for a motion of a particle are examples of dynamical

systems.

A dynamical equation can be linear or nonlinear. In either case, the

chosen variables which comprise the system’s state vector must span the state

space. That is, they must completely describe the current state of the system. A

corollary is that they consequently also fully describe all future states of the

system.

2.1.1. Linear Dynamical System

A linear dynamical system is a system whose dynamical equations are

linear; that is, the dynamical variables describing the properties of the system,

 21

e.g. position, velocity, acceleration, current, voltage, etc., appear in the equation

in a linear form.

A linear system can be broken down into parts, each part can be solved

separately, and finally these solutions are recombined to get the answer to the

linear system. This reduction allows a huge simplification of the complex

systems. Laplace transforms, Fourier transforms, and the superposition

argument are examples of the application of such simplifications in a linear

system, where the system is described and solved in terms of a basis set of

simple solutions.

The good thing about a linear dynamical system is that one can solve it

and obtain a closed-form equation for its time evolution. Having such a closed-

form solution for the linear dynamical system implies that knowing the initial

condition of the system results in full knowledge about its entire future evolution.

One basically needs to put the initial condition in the closed form solution of the

system and it will give him the exact state of the system at any time of future.

Notice in nature there is no perfect linear system. Any system that

appears to be linear in some range of parameters will eventually behave

nonlinearly if we change or increase the parameter values. A linear dynamical

system usually models the behavior of a real life system in some specific range

of parameters. However, because of its ease of use and closed form solutions,

scientists prefer to approximate and model real life systems with a linear model

at some range of parameters.

 22

2.1.2. Nonlinear Dynamical Systems

A nonlinear dynamical system is a system whose dynamical equations

are nonlinear; that is, some of the dynamical variables describing the properties

of the system, e.g. position, velocity, acceleration, current, voltage, etc., appear

in the equation in a nonlinear form.

Most nonlinear systems are impossible to solve analytically. In a

nonlinear system, the solution of the system is not simply the combination of the

solution of the subsystems. There is an extra solution which arises from

nonlinear interactions too. Also superposition doesn’t hold true for a nonlinear

system. A solution of a nonlinear system to a combination of inputs is not the

combination of the solutions of the system to the individual inputs. The bottom

line is there is no generic, global method for solving a nonlinear dynamical

system and obtaining a closed form solution.

This nonlinearity has different implications: (1) the system solution and

output can be different and more than the sum of the solutions of its subsystems.

Some brand new and novel features and behaviors may emerge from a nonlinear

system without having any root in subsystems of the system. (2) At some range

of parameters the solution of the nonlinear system can be very sensitive to initial

conditions, which makes the long-term future prediction of the system impossible,

even though the dynamical equation and initial condition of the system is known

and in hand. These two important concepts are discussed in next two sections.

2.2. Emergence from Nonlinear System

A nonlinear system is more than a combination of subsystems. It may

show some behaviors or features that cannot be tracked down to a specific

 23

subsystem. Such newborn features and behaviors arising from nonlinearity and

complexity are called emergent behaviors.

Most of interesting features, orders, behaviors, and even concepts in

nature seem to be emergences from the nonlinearity of nature [32,33,34].

Famous examples of such emergent orders or concepts are the temperature of a

gas, intelligence, or even the life itself [32,33,34]. Many of the concepts that have

troubled the scientist in understanding nature are usually emergences from

complexity and nonlinearity. The old approach of science, reductionism, which

says reduce the system to subsystems and study the individual subsystems to

understand the overall system fails in understanding an emergence. The reason

is obvious. An emergent behavior arises from nonlinear and complex

interactions, and it usually has no clear track in the individual behavior of

subsystems. But when these subsystems are put together and nonlinearity

comes into the equation, the emergent behavior emerges from nonlinear

interactions that are hard to understand and solve.

A famous emergent behavior from a nonlinear system is the phenomenon

of chaos. Chaos is a random-like behavior from a fully deterministic system. I will

return back to this concept below.

2.3. Sensitivity to Initial Conditions

At some parameter values of a nonlinear system, a small change of initial

condition results in a dramatic change of orbit path. Such divergence of nearby

orbits in a nonlinear system is a signature of a phenomenon called chaos. In a

chaotic system the behavior of the system is aperiodic and it’s “apparently”

random. The keyword apparently is here to emphasize the fact that the system is

 24

not random; it is fully deterministic. But the behavior of the system is random-

seeming and unpredictable in the long term.

As an example, in Fig. 2.1 a very simple and 1-D map like the Logistic

map, xn+1=4xn(1-x), is iterated from two different, but nearby initial conditions. The

orbits starting from these slightly different initial conditions behave completely

differently after a few initial iterations.

2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

x(
n)

Fig. 2.1. Two orbits starting from nearby initial conditions diverge from each other

and behave very differently. This sensitivity to initial conditions is a signature of a

chaotic system.

2.4. Determinism and Unpredictability, Are They Collectable in One

System?

A chaotic system is a deterministic system, meaning that knowing the

dynamical equation and initial state of the system the future evolution of the

system should be known [35]. But a chaotic system looks to be unpredictable.

The question is how can these two paradoxical concepts be gathered together?

 25

Sensitivity to initial conditions is the answer. If someone knows the exact initial

condition, and can integrate the dynamical equations precisely without any error,

he will be able to know the exact time evolution of the system and the orbits will

be predictable. But in real life, we can not in principal know the exact value of the

initial condition of a system or, for that matter, its exact equations, and even if we

do, the next problems will be (1) round-off errors, arising from the fact that we

can not store a real number in a memory element with finite precision, (2)

truncation and discretization error in numerical integration of the nonlinear

system. On the other hand in real life and as an experiment, by setting the initial

state of a chaotic system to some initial value and running the system for some

time, we are not going to see the same time evolution. The imprecisions in

setting the initial conditions and the background noise are enough to diverge the

orbits and as a result again the system behavior will look unpredictable and

random-like.

To sum up, I can say that the future of a chaotic system is indeterminate

even though it is a deterministic system.

2.5. Nonlinearity, Good or Evil? Motivation of the Thesis

The lack of analytical methods and generic closed form solutions for

nonlinear systems has made them hard to cope with. For a science or

engineering undergraduate student, a nonlinear differential equation can be the

hardest, most unpleasant and unappealing problem to solve. The majority of the

science and engineering community have been engaged in studying nonlinear

systems and problems and millions and even billions of dollars each year is

dedicated for funding such research. Based on these facts one may conclude

 26

that we would have a better life if the world were linear. But the truth is that

nonlinearity plays a vital role in nature and furthermore without nonlinearity there

would be no life! The implications, importance, and applications of nonlinearity

and chaos are discussed in the following.

2.5.1. Chaos and Information

A chaotic system provides us with both determinism and unpredictability

at the same time. Based on Shannon’s information theory point of view,

unpredictability is information [36]. So I can say that unpredictable orbits of a

chaotic system convey and represent information. To clarify the concept let’s

compare a chaotic system with a periodic system. In a periodic system periodic

evolution of the system represents no information since it’s just repeating itself

and the observer learns nothing new by watching different repetitions of a cycle.

But a chaotic evolution is aperiodic and unpredictable, so there is information

(unpredictability) embedded in it. The question that arises here is where this

information is coming from? In other words, a chaotic orbit is aperiodic and will

not repeat itself, so it represents an infinite amount of information. Where is the

source of this infinite amount of information? The answer is connected to the

sensitivity to initial conditions in the chaotic system. We need infinite precision in

setting the initial condition of a system so that we precisely determine the infinite

evolution of the system.

The determinism in a chaotic system allows us to encode information in a

chaotic system though initial condition setting. But the need for infinite precision

in setting the initial conditions seems to be problematic. However the problem

can be easily solved by restricting the evolution time of the orbits. A finite

 27

precision in setting the initial conditions suffices to encode the information

required to represent the unpredictability in this limited evolution of the system. I

used this idea to build chaos-based computing system [22,23,37,61,70] as I will

review it in chapter 3.

2.5.2 Chaotic System as a Rich Library of Different Patterns and Behaviors

Unlike	
 linear	
 systems,	
 in	
 a	
 nonlinear	
 system	
 with	
 a	
 change	
 of	

parameters	
 the	
 system	
 may	
 undergo	
 qualitative	
 as	
 well	
 as	
 quantitative	

changes	
 in	
 its	
 behavior.	
 As	
 an	
 example,	
 consider	
 the	
 bifurcation	
 diagram	
 of	

the	
 logistic	
 map,	
 𝑥!!! = 𝜆𝑥!(1− 𝑥!),	
 where	
 𝜆	
 is	
 the	
 bifurcation	
 parameter	
 as	

depicted	
 in	
 Fig.	
 2.2.	
 A	
 bifurcation	
 diagram	
 represents	
 the	
 steady	
 state	

solutions	
 of	
 a	
 chaotic	
 system	
 versus	
 a	
 given	
 parameter,	
 called	
 the	
 bifurcation	

parameter.	
 Bifurcation theory itself is the mathematical study of the qualitative

change of a dynamical system when parameters change [30]. As is illustrated in

Fig. 2.2, by change of one parameter the system exhibits completely different

behaviors. At some parameter values the system is periodic, and at some others

it’s chaotic (periodic with periodicity of infinity). Furthermore, at parameter values

where there is chaos, the system is composed of an infinite number of unstable

periodic orbits [64,35].

 28

Fig. 2.2. Bifurcation diagram of the Logistic map is depicted. At different

values of the parameter, the system behavior qualitatively as well as

quantitatively changes.

A linear system lacks such a broad range of patterns and behaviors.

Changing a parameter of a linear system results in change of amplitude and/or

frequency of the system solution. It is nonlinearity and chaos that provide us with

a library of different patterns and behaviors, and furthermore, since the dynamics

is deterministic, these patterns or behaviors are distinct and can be selectively

stabilized, as will be discussed in section 2.7. Thus the main idea of the following

chapter is:

Utilizing a chaotic system as a library of different patterns

and behaviors, in which we can select each pattern or behavior

based on our needs.

2.5.3. Chaos and Emergence

It seems that most of the interesting things we see in this world are

nothing more than emergences from complex and nonlinear systems. Examples

 29

are like intelligence, temperature, or life itself. Without nonlinearity there will be

none of these entities.

2.6. Three Main Characteristics of Chaos

There is no main mathematical definition for chaos. Instead there are

three main characteristic behaviors that are associated with a chaotic system

[38]. They are (1) sensitivity to initial condition, (2) density of unstable periodic

orbits in a chaotic attractor, (3) Topological transitivity.

2.6.1 Sensitivity to Initial Condition

Sensitivity to initial conditions was discussed as the main signature of

chaos earlier in section 2.3. In a chaotic system nearby orbits diverge

exponentially. The Lyapunov exponent is a famous quantitative test to detect

whether a system is chaotic in terms of average divergence of nearby orbits, and,

if the system is found to be chaotic, how strongly chaotic it is, again in terms of

average divergence rate. Consider simple 1-D map. Let x0 be the initial condition,

and 𝑥! + 𝛿! be another nearby initial condition, where 𝛿! is extremely small. Let

𝛿! be the separation after n iterations (assuming that the dynamical system is

discrete). If 𝛿! ≈ 𝛿! 𝑒!", then 𝜆 is called the Lyapunov exponent. A positive 𝜆

indicates chaos, the exponential divergence of initial conditions. Notice some

references call this definition a local Lyapunov exponent.

By knowing the exact dynamical equations of the system, one can easily

compute the Lyapunov exponent. Assume the system is discrete, and xn+1=f(xn).

After taking logarithms from the definition of Lyapunov exponent and noting that

𝛿! = 𝑓! 𝑥! + 𝛿! − 𝑓! 𝑥! , I obtain

 30

𝜆 ≈ !
!
𝑙𝑛 !!

!!
= !

!
𝑙𝑛 !! !!!!! !!! !!

!!
= !

!
𝑙𝑛 𝑓! !(𝑥!) (3)

and based on our assumption, 𝛿! → 0. By expanding the nth order derivative

based on the chain rule I have

𝜆 ≈ !
!
𝑙𝑛 𝑓!!!!

!!! 𝑥! = !
!
𝑙𝑛 𝑓!!!!

!!! 𝑥! = !
!

𝑙𝑛!!!
!!! 𝑓!(𝑥)! (4)

Similar calculations can be carried out to compute the Lyapunov

exponent for a continuous system too [39]. Also the Lyapunov exponent can be

computed from experimental time series as well [40].

2.6.2. Density of Unstable Periodic Orbits

A chaotic attractor is composed of an infinite number unstable periodic

orbits (UPOs) and these UPOs approach every point in the attractor arbitrarily

closely [64,30,31]. UPOs play a very critical role in a chaotic system because

they are the skeleton of the chaotic attractor [64]. Furthermore, periodic orbit

theory [64,65] says that a collection of short UPOs is enough to model a chaotic

attractor and to estimate invariant measures of the system [64,65]. In chapters 4

and 5 I will use a similar UPO-based model to describe a chaotic system and to

explain and estimate the computational functionality of the system.

The other interesting property of UPOs, which makes them even more

fascinating, is that a UPO is experimentally extractable from the time series [64].

In chapter 7 I will show how this extractability of UPOs from a time series enables

us to model the underlying chaotic system and estimate its functionality and

robustness in doing computation solely from the time series.

 31

2.6.3 Topological Transitivity

Topological transitivity (topological mixing) in a chaotic system means

that under chaotic evolution of the dynamical system a mapping of points

residing in one region of the phase space will, after a sufficient number of

mappings, visit any other given region of the space. This concept is closely

related to, but not identical with, ergodicity.

2.7. Manipulating Chaos

Unpredictability and random-like behavior in chaotic evolution of a system

can arise from a deterministic system. As a result determinism enables us to

reliability manipulate the observed chaotic evolution. Here I list a few of these

important techniques, where the underlying determinism is utilized to select,

control, or synchronize the chaotic evolution.

2.7.1. Initial Condition Selection

Chaotic systems are sensitive to their initial conditions, and because of

our inability to precisely set the initial condition of the chaotic system, I will not be

able to accurately select a certain desired orbit through setting the initial

conditions. A minor error and deviation will exponentially magnify via the chaotic

evolution of the system and at some point, the system behavior will be

completely different from the desired orbit. However, by selecting initial condition

with finite precision and a small error, the short-term evolution of the system will

be the same as the desired one. This technique simply allows us to program

short term evolution of a chaotic system by simply setting the initial condition of

the system to an appropriate value.

 32

In this technique, the evolution time is restricted, so with finite precision in

initial condition setting I can program the system orbit. However the system is still

chaotic, so we have a broad range of behaviors to select in this way. I have used

this simple technique for building chaos-based computing systems [37,61,70].

2.7.2. Chaos Control

I introduced a chaotic attractor as a library of different patterns. Since the

system is deterministic, I can modify or control the dynamics to stabilize the

desired patterns. As an example, as discussed before, a chaotic system is

composed of an infinite number of UPOs. We can explain the chaotic dynamics

and evolution using these UPOs. Starting from an initial condition, the chaotic

orbit stays in a neighborhood of the nearby UPO, but after a short time because

of the fact that UPOs are dense, the orbit will be nearer to another UPO, so it will

diverge from the first UPO and will follow the new UPO. However, again, after a

short time there will another newer and nearer UPO and the orbit will follow it,

and this processes continues. The overall motion is like the chaotic orbit is

wandering between these dense and infinite numbered UPOs. The main idea in

chaos control is to stabilize a UPO so that the orbit remains near to it.

In 1990 two separate groups of researchers, a theory group at the

University of Maryland in College Park, and an experimental research group the

Naval Surface Warfare Center, theoretically and experimentally showed how the

chaotic, unpredictable motion of a system can be tamed and stabilized around

one of the pre-existing UPOs using time dependent, tiny perturbations to a

system parameter [41, 42]. The discrete-time technique is called OGY, after the

 33

name of three authors, Ott, Grebogi and Yorke, of the theoretical paper and it

was followed by numerous extensions and treatments.

Two years later Pyragas introduced a new time-delayed feedback

controller for continuous chaos control [43]. Similar to OGY, this method for

chaos control stabilizes one of many existing UPOs of the chaotic attractor, but

here it works in a continuous fashion. Again, this paper initiated a series of

extensions, all named time-delayed feedback control of chaos.

Another class of chaos control techniques is open loop control methods

[44]. As the name suggests, there is no feedback from the current state of the

chaotic system; instead the controller excites the chaotic system with some

stimulation function which is usually periodic or quasiperiodic [44]. In such control

techniques the chaotic system is not stabilized to a desired pattern; instead the

chaos is suppressed and system behavior is stabilized to some pattern or orbit

that did not necessarily arise from the existing UPO structure of the system [44].

These aforementioned approaches to chaos control are the three

historically earliest and most actively developing directions of research. However

there are other directions to chaos control as well. Another approach to chaos

control is to use conventional classic control theory techniques in controlling

chaos. For example, in [45] a linear control technique is introduced to control

chaos, or in [46,47,48] more elaborate nonlinear techniques are used for chaos

control. Note that it has been shown that the OGY method also fits into this

category since it is equivalent to using pole-placement theory to control the

system [49].

 34

A threshold controller is another simple, but effective technique for

controlling chaos [50]. In this technique whenever the state of the system

exceeds some threshold the state is reset to the threshold value. Using this

technique one can stabilize the chaotic system to different periodic orbits.

However these periodic orbits don’t belong to the main attractor of the

uncontrolled system; instead they are created because of the coupling of system

and controller [50].

Also for chaos control modern approaches of control have been

introduced too. The examples are neural networks [51,52] or fuzzy modeling and

control [53] are applied too.

2.7.3. Chaos Synchronization

In 1990 Pecora and Carroll showed that two chaotic systems could be

synchronized [54]. It was a very interesting finding because in two chaotic

systems, in which (1) parameters will differ from each other no matter how

precise the process of manufacturing and (2) no matter how exact the initial

conditions of the two systems are set to the same value, there will be still some

error, orbits of the systems naturally tend to diverge from each other because of

chaos. Pecora and Carroll demonstrated that by designing a common link

between two chaotic systems so that the Lyapunov exponents of the subsystems

are negative, one can synchronize the two chaotic systems.

Furthermore, it is demonstrated that two different chaotic systems can be

synchronized as well [55,56], and it is called generalized synchronization of

chaos.

 35

2.8. Summary and Discussion

Nonlinearity is introduced as the main source and cause of important

features and phenomena in the nature, including life and intelligence. At some

parameter values of a nonlinear system chaos can happen, which shows itself as

extreme sensitivity of orbits to initial conditions. Such sensitivity to initial condition

causes the orbits to seem unpredictable and random.

A chaotic attractor is composed of an infinite number of UPOs, where

these UPOs are dense. UPOs can be utilized for modeling an attractor and play

a critical role in chaos theory.

A chaotic system was introduced as a library of different patterns and

behaviors, and since chaos arises from a deterministic system these patterns are

selectable.

Three main methods were introduced for manipulating a chaotic system

to select a desired pattern: (1) initial condition choice, where we set the initial

condition of a system to program the system to behave based on our desire for a

short-term evolution, (2) chaos control, where a controller is recruited to stabilize

a pattern, (3) chaos synchronization, where the behaviors of two chaotic systems

are synchronized, so that one precisely follows the other’s chaotic evolution.

Having such a rich library of patterns, named chaos, in one hand, and

being able to program it on the other hand, makes a chaotic system a suitable

candidate for implementing information processing tasks.	

 36

CHAPTER 3

CHAOS COMPUTING, THE MAIN IDEA

The main idea of chaos computing is to harness the library of

orbits/patterns inherent in chaotic systems to select out logic operations and to

utilize the sensitivity to initial conditions of such systems to perform rapid

switching (morphing) between all of these logic functions [70]. These features

are sufficient to perform reconfigurable logic operations using the chaotic system.

Data and control inputs to a chaotic system (either continuous or discrete)

may be encoded as either the initial conditions of the chaotic system or the

parameters of the system. Here I focus on the former technique. After applying

the inputs, the system is allowed to evolve for a predefined time, after which time

this “final state” of the chaotic system is decoded as the computation’s output.

To be more precise, consider the m digital data inputs,

€

XData
1 ,XData

2 ,...,XData
m

, to a

computing engine and the n digital control inputs,

€

XControl
1 ,XControl

2 ,...,XControl
n

.

Computation with this system consists of three steps:

Step 1: Each set of data and control inputs is mapped to a point on the

unstable manifold of the chaotic system. This point will be used as the

initial condition for the chaotic system. Let T map (encode) the m data

and n control inputs onto the space of the initial conditions. If L is a

binary set {0,1}, then

€

L(n+m)represents the domain of T, which consists of

all the possible combinations of digital data and control inputs. Let

€

β be

the unstable manifold of the chaotic system,

€

Rs the general state space of

the chaotic system, and Y the output of the encoding map on the unstable

 37

manifold. In this case the general form of the encoding map, T, is as

follows:

€

T : L(n+m) →β, β ⊂ Rs, L = {0,1}
Y = T(XData

1 ,XData
2 ,...,XData

m ,XControl
1 ,XControl

2 ,...,XControl
n)

 (5)

Step 2: Starting from the initial conditions produced by the encoding map,

the chaotic system evolves for a fixed time (or for a fixed iteration

number, if the chaotic system is discrete).

Step 3: After the evolution time, the system stops working and its state at

the end of the evolution time is sampled and decoded to the outputs using

a decoding map.

Fig. 3.1. Schematic of chaotic computing model. Inputs are mapped to an

initial condition of the chaotic system working as a computing engine, and

the final state of the chaotic system is decoded to output.

A schematic of this computing model is shown in Fig. 3.1. The encoding map

maps different sets of the inputs to different points on unstable manifold of the

chaotic system and these points are used as initial conditions for the chaotic

system. Since the system is on the unstable manifold, the orbits of the chaotic

 38

system are very sensitive to the inputs and the orbits dramatically change with

just a one-bit change in the control input. Thus control inputs can select a

chaotic logic function. To evaluate which digital function is selected with a

particular control input, one notes the association of this control input with the

logic function and then enumerates all possible combinations of data inputs to

construct the truth table of the function.

By changing the control input and repeating this procedure (of

constructing the truth table of the digital function), one may observe a second

digital function different (with high probability) from the first one. This is the

meaning of the reconfigurability of chaos computing. By using all possible

control inputs and finding the type of function that the chaotic system

implements, I obtain the full instruction set of the chaotic system [70].

So far different implementations for chaos-based computing have been

introduced [57,58,59,60,61,62]. These implementations were mainly for proof of

concept, showing that the idea of chaos based computing is practically possible

and realizable. As an example, in Fig. 2.2 a picture of a circuit that I designed

and built in [61] to implement chaos computing model is depicted. This realization

of chaos computing, which is called a chaos based logic block, is able to

reconfigure to construct any two input, one output digital functions. In this chaos-

based logic block there is a chaotic Chua circuit which works as computing

engine.

 39

Fig. 3.2. Chua circuit-based logic block.

In what follows I address the important remaining questions: Why do we

observe a specific form of logic function from a chaotic dynamic system? What

are all the possible logic functions that we can obtain from any given chaotic

system? How can we connect computation to the dynamics of chaos

computing? In the next part these questions are addressed by connecting the

chaos computing model to the dynamics of the chaotic system.

 40

CHAPTER 4

DYNAMICS AND COMPUTATION

Let x be the dynamic state of a chaotic system and let the chaotic

discrete evolution of the system be governed by the dynamical equation:

€

xp+1 = f (xp) (6)

The aim is to compute directly the spectrum of functions that a given

chaotic system can implement and the robustness of these functions against

noise from the dynamical Eq. (6).

The description of a low-dimensional chaotic system in terms of unstable

periodic orbits, which is known as periodic orbit theory, is a powerful tool for the

analysis of chaotic systems [64,65,66,63]. Periodic orbit theory is an efficient

approach to study a chaotic dynamical system in terms of the fundamental orbits

of its attractor [64]. Here I explain, model, and study chaos computing in terms of

these basic periodic orbits.

Periodic orbits were introduced into the theory of dynamical systems by

Poincare, and they have played a primary role in the mathematical work on

dynamical systems ever since [64,65,66]. Periodic orbits provide a detailed,

invariant characterization for deterministic low dimensional dynamical systems

[64,65,66]. As a result, explaining chaos computing in terms of these periodic

orbits has profound theoretical consequences.

A chaotic system is composed of an infinite number of unstable periodic

orbits (UPOs) [67]. It is known that a collection of short-period UPOs is enough

to obtain a very precise approximation of a sufficiently low dimensional chaotic

 41

system [64,65,66]. Here I approximate the chaotic system with an appropriate

collection of short period orbits to estimate the computational functionality and

robustness of the chaotic system. As was mentioned in chapter 3, during step 2

of computation, the chaotic system undergoes a specific number of iterations,

which I denote as p. I claim that, in one dimensional unimodal chaotic maps

where the critical point xc is mapped to unity and f(0)=f(1)=0, for the p iterations

that the chaotic system undergoes, approximating the chaotic system by all of its

UPOs of length p+1 is enough to determine the function set of the chaotic system

and to approximate the robustness of these functions against noise. This method

works for any other chaotic system where all symbolic sequences are admissible

and therefore the topological entropy is ln(2). But in other chaotic systems we

might need to use slightly higher length UPOs to model the system. This case

will be studied in the Gaussian map example.

In a unimodal map, where the height of the map is unity and where

f(0)=f(1)=0, there are 2p different unstable periodic points of order p, including

repetition of periodic points of lower order [68]. For example, there are 24

unstable periodic points of period 4, which includes two unstable fixed points and

two unstable periodic points (one unstable periodic orbit) of period 2. Thus in a

unimodal map of height unity, there are exactly 24 possible symbolic sequences

of length 4, and for each symbolic sequence there is a neighborhood of initial

conditions where all the initial conditions have the same four-symbol iterates.

Therefore there is a one-to-one relationship between UPOs and the

neighborhood of similarly-behaved initial conditions. The same argument is

correct for any other chaotic system that has no forbidden symbolic sequence or,

 42

equivalently, whose topological entropy is ln(2) [68]. Fig. 4.1(a) shows how all

periodic orbits of length two produce a polygonal approximation of the unimodal

map. The unimodal map has two period-1 unstable fixed points, which are at the

intersection of the map and the identity line, and two period-2 unstable fixed

points. Two repetitions of the period-1 unstable fixed points are considered as

periodic orbits of length two as well.

Because the behavior of the dynamical system in the neighborhood of

each of these points may be approximated linearly, the unstable fixed point and

nearby points lying on a straight line are a good approximation of the dynamics

near that unstable fixed point. If we have sufficient numbers of these linear

approximations, we can approximate the map in its entirety. Therefore each

fixed point neighborhood is one of the four faces of the polygonal (piecewise)

approximation for the map, as illustrated by red (period-1) and green (period-2)

tangent lines in Fig. 4.1(a).

As explained above, each face of the approximation is composed of an

unstable fixed point or periodic point, plus all close-by points. These points are

those whose Jacobian is qualitatively similar. Notice that projecting each face of

the polygonal approximation on the x-axis results in a neighborhood around each

periodic point, where all the initial conditions within this neighborhood

symbolically (in the symbolic dynamics sense) behave the same as the periodic

orbit. In unimodal maps the critical point, 𝑥!, can be used for partitioning of state

space and assigning symbolic itineraries to initial conditions. As an example, the

symbolic itinerary for 𝑥 = 𝑥! is 𝑋!𝑋!𝑋!…𝑋!, where each succeeding digit in the

itinerary denotes the next iteration of the map. I (arbitrarily) choose 𝑋! = 0 if

 43

𝑓 ! 𝑥! < 𝑥! and 𝑋! = 1 if 𝑥! < 𝑓 ! (𝑥!). Therefore, each periodic point locally

explains the symbolic behavior of the initial conditions around itself during a

specific number of iterations of the map. More specifically, UPOs of length p+1

represent the symbolic behavior of nearby orbits during the first p iterations of the

chaotic map. Furthermore, the measure of the robustness against noise of each

periodic orbit in terms of eigenvalues is a good approximation for the robustness

of orbits around it until the pth iteration of the chaotic map.

 a b

Fig. 4.1. The figure at the left (right) shows how UPOs of length two (three) and

the neighborhoods around them can be used to determine the functionality of the

system when it undergoes one (two) iteration(s). Consider the left graph and

recall that I have chosen 𝑋! = 0 if 𝑓 ! 𝑥! < 𝑥! and 𝑋! = 1 if 𝑥! < 𝑓 ! (𝑥!).

Any set of initial conditions in the area denoted “00” will return to that area,

generating the symbolic itinerary 00. An initial condition in the region denoted

“01” will start below xc but the next iteration will take it above xc, thus generating

the symbolic itinerary 01. Similarly for the other regions. Note that some UPO

neighborhoods are not used to implement the function of interest here.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

f(x
)

x(0,1,C0)(0,0,C0)
Xc

00

01
11

10

(1,1,C0)(1,0,C0)
0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

x

f(x
)

(0,0,C0) (0,1,C0)
Xc

000

011

010 110

111

100

101001

(1,0,C0) (1,1,C0)

 44

In Figure 4.1(a) on the x axis, the neighborhoods of initial conditions that

symbolically behave the same as the UPOs are denoted in the same colors. As

an example, the first neighborhood on the x axis, which is illustrated by red color,

contains the initial conditions that symbolically behave the same as the UPO at 0

and all of which produce the symbolic itinerary 00 when they evolve under the

chaotic map, i.e., for any initial condition in this neighborhood x0, x0<xc and

f(x0)<xc.. In Fig. 4.1(b) a different polygonal approximation for the chaotic map

using period three UPOs is illustrated. This approximation is composed of two

unstable fixed points and two new UPOs of period three, resulting in an eight-

faced polygonal approximation. Two faces of the polygonal approximation are

delineated by the two unstable fixed points of the chaotic system, and the

remaining six faces are related to two unstable periodic orbits of period three,

each unstable fixed point of the periodic orbit centering a face. In these two

approximations, the boundaries between neighborhoods on the x-axis are the

preimages of the critical point, xc.

As described above, chaos computation encodes the data as well as the

control inputs to form the initial conditions, next evolving the chaotic system from

these initial conditions for some number of iterations, and lastly decoding the final

state to obtain the output of the computation. The technique for obtaining the

instruction set of a chaotic system for use in computation is as follows: when the

chaotic system is iterated p times, approximate the chaotic system by its UPOs

of length p+1. Determine in which UPO neighborhood the encoding map places

each initial condition and the characteristic itinerary (e.g., (0,1) in Fig. 4.1(a)) for

that neighborhood. The last symbol of this itinerary represents the output of the

 45

computation for those specific data and control inputs. By applying this

technique for all combinations of data and control inputs, instruction set of the

chaotic system can be directly obtained.

Consider as an example a one-humped map, as shown in Fig. 4.1(a).

This might be the logistic map or any other similar map. Now let us consider that

this chaotic system undergoes one iteration and that, as explained above, I will

be using period-2 UPOs. If I denote the selected control inputs from Eq. 5,

, collectively as C0, all four possible initial conditions

produced by the encoding map are illustrated on the x-axis. Here, the aim is to

implement a two-input function; therefore we have four different combinations of

initial conditions. In this example, the encoding map encodes the data inputs

(0,0) to the point (0,0,C0), (0,1) to (0,1,C0) , (1,0) to (1,0,C0), and (1,1) to (1,1,C0).

The initial condition (0,0,C0) falls in the first neighborhood on x-axis, which

produces 0 after one iteration. Therefore the output of the computation for the

(0,0) input is 0. The second and third initial conditions, (0,1,C0) and (1,0,C0), fall

in the second neighborhood, which is represented by the periodic orbit 01, and

so the output of the computation for these two inputs is 1. The last initial

condition, (1,1,C0), settles in the third neighborhood, which corresponds to the 11

periodic orbit. Therefore the output of the computation will be 1. As a result

control inputs C0 thus constructs an OR gate. This procedure can be repeated

for other control inputs to obtain the instruction set of any given chaotic system.

The instruction set of the chaotic system for other iteration numbers can

be obtained in a similar way. As a further example, I show this for iteration

number two in Fig. 4.1(b). From the figure it is clear that the set of control inputs

€

XControl
1 ,XControl

2 ,...,XControl
n

 46

C0 constructs a function that produces the output 1 when the inputs are (0,0) and

(0,1), but produces the output 0 when inputs are (1,0), and (1,1).

Here functionality of a chaotic system in doing computation is determined

based on UPOs and their neighborhoods. In next chapter I demonstrate how

UPOs and UPO model can be used to estimate the robustness of these

computational functionalities.

 47

CHAPTER 5

ROBUSTNESS AGAINST NOISE

UPOs can also help us in approximating the robustness against noise of

the chaotic system while doing computation. The robustness of each UPO

against noise can be measured by evaluating its Jacobian matrix. In our 1-D

case, the measure of the robustness of each UPO is simply the product of the

slopes of all the tangent lines at each UPO. For example, for the dynamical

system xn+1=f(xn), the robustness against noise for a UPO of length p+1,

𝑥!!"# , 𝑥!!"# ,… , 𝑥!!"# , 𝑥!!!!"# = 𝑥!!"# is 𝜆!×𝜆!×…×𝜆! where, 𝜆! = 𝑓!(𝑥!!"#)

[70].

This robustness measure for each UPO can be used as an approximation

for the robustness of orbits that start in the neighborhood of the UPO. To

construct a specific function, the chaotic system maps the initial conditions

produced by the encoding map to the final states. Therefore to evaluate the

robustness of each function in doing computation, the robustness for each orbit

needs to be obtained, and the overall robustness of the function is the

robustness measure of the least robust orbit, i.e. the worst case.

We assume the noise to the system is additive, where

D is the intensity of the noise and is the white noise. We also assume the

noise is approximately Gaussian white noise with zero mean and unit variance,

. Earlier we claimed that, when the chaotic system iterates times,

approximating the chaotic system by its UPOs of length is sufficient to

determine the robustness against noise of the functions implemented by the

chaotic system. To demonstrate this, let the chaotic system f iterates p times

€

xn+1 = f (xn) +Dε(t)

€

ε(t)

€

ε(t) = N(0,1)

€

p

€

p +1

 48

from a given initial condition, x0, producing the noisy orbit:

 (7)

By use of the polygonal approximation by UPOs of length , the orbit

can be approximated by:

 (8)

where and is an iterate of the UPO into whose

neighborhood places the iterate of the initial condition, x0.

Since is a normal Gaussian random variable, , the

deviation of the final state in the noisy case from the original final state will be a

Gaussian random process:

(9)

Let y be the minimum distance of the noiseless final state, , from

the boundaries of the neighborhood in which it resides. If the deviation

introduced by the noise exceeds this value, the orbit will enter another

neighborhood, and it may result in an incorrect (undesired) output symbol.

Therefore the output symbol is robust to noise only if the noise cannot move the

final state out of the neighborhood where it settles. If is a Gaussian random

variable, , the probabilities that is greater than , , and are

€

x0 +ε(0), f (x0 +ε(0)) +ε(1), f (f (x0 +ε(0)) +ε(1)) +ε(2),...
..., f (...(f (f (x0 +ε(0)) +ε(1)) +ε(2)) + ...) +ε(p)

€

p +1

€

x0 +ε(0), f (x0) +Dλ1ε(0) +ε(1), f 2(x0) +Dλ1λ2ε(0) +Dλ2ε(1) +ε(2),...
..., f p (x0) +Dλ1λ2...λpε(0) +Dλ2 ...λpε(1) + ...+ε(p)

€

λi = f ' (xi
UPO)

€

xi
UPO

€

f (i)(x0)

€

ε(t)

€

ε(t) = N(0,1)

€

Dλ1λ2 ...λpε (0) +Dλ2...λpε (1) + ...+ε(p) = N(0,D2λ1
2λ2
2λ3

2 ...λn
2 +D2λ2

2λ3
2 ...λn

2 + ...+D2λn
2 +D2)

€

f (p)(x0)

€

z

€

z = N(0,σ)

€

z

€

σ

€

2σ

€

3σ

 49

84.2%, 97.8%, and 99.9% respectively. We observe that the probability of

is just 0.1%. This fact suggests that if , where is the standard deviation

of , then the outcome will be robust against this noise 99.9% of the time. Since

 is the minimum distance of final state, , from the boundary of the

neighborhood, it can be easily computed. Therefore the noise intensity should be

limited by:

 (10)

Therefore the symbol of the final state is robust against noise when the

signal to noise ratio (SNR) is greater than , where is the root

mean square of over all x. Notice that because of the ergodicity of the

chaotic map, , does not depend on the selection of the initial condition.

Here we derived a measure of the robustness of an orbit against noise.

To compute a robustness measure for a function, we apply the procedure to all

orbits produced by the encoding map and set the lowest allowed SNR (highest

D), as determined over all the orbits.

€

3σ < z

€

3σ < y

€

σ

€

ε

€

y

€

f (p)(x0)

€

D < Dmax ≡
y

3 × λ1
2λ2
2λ3

2 ...λn
2 + λ2

2λ3
2 ...λn

2 + ...+ λn
2 +1

€

20 log
Arms

Dmax

€

Arms

€

f (x)

€

f

€

Arms

 50

CHAPTER 6

EXAMPLES FOR DETERMINING THE TYPE OF COMPUTATION FROM

DYNAMICS

6.1. Logistic Map

As an example, consider the functionality of the logistic map for doing

computation and approximate the robustness of the resulting functions against

noise. In this example we assume that an additive noise perturbs the dynamics

as follows:

 (11)

A simple digital-to-analog converter with 10 binary digital inputs will be

used as the encoding map. Two inputs are allocated for data, which enables us

to construct two input functions, and the eight remaining inputs are used as

controls to reconfigure the chaotic system by morphing between different

functions. As the first step of the 3-step computing algorithm, the two binary data

inputs and 8 binary control inputs are each encoded to either 0 or 1, yielding a

combined initial value in [0, 1), as follows:

 (12)

where I1, I2 are the two binary data inputs, and C1, C2, …,C8 are the eight control

inputs.

At the second step of the algorithm, we allow the logistic map to undergo

different numbers of iterations in order to determine the instruction set for each of

those different numbers of iterations.

€

xn+1 = 4xn (1− xn) +Dε(t)

€

x0 = (0. I1I2C1C2 ...C8)base2

 51

As the last stage of the computing model, the final state of the system is

decoded to obtain the output of the computation as follows:

 (13)

where x has obviously been converted to base 10. We have computed period 2,

3, 4, 5, 6 and 7 UPOs for the logistic map. Then we have found the

aforementioned neighborhoods around these UPOs and have computed the

robustness of these UPOs against noise. Then for each iteration, e.g., p-1, we

approximate and model the chaotic logistic map with period p UPOs. By use of

this model we directly compute the instruction set of the chaotic logistic map

when it undergoes p iterations. The results are listed in Table I for different

values of p, 1 ≤ 𝑝 ≤ 6.

In Table I each instruction set consists of 4-tuples, the first element being

the type of function that the logistic map constructs. The format that we use for

identifying each of these functions is as follows: Table II presents the truth table

of a sample function. We denote this function by a function number defined as

. Based on this definition, a chaotic system

would present a 2-input AND gate (with outputs 1000) as function number 8 and

a 2-input OR gate (with outputs 1110) as function number 14.

The second element of the 4-tuple is the control inputs that construct this

sample function. There are 8 binary digital control inputs to the system, so the

control inputs are numbered from 0 to 255. To evaluate the accuracy of our

method in obtaining the functionality obtainable from a chaotic map, we have

€

output =
0 if x ≤ 0.5
1 if x > 0.5

$
%

€

23 ×O3 + 22 ×O2 + 21 ×O1 + 20 ×O0

 52

applied the computed control inputs to the logistic map and in practice we have

observed computationally that they construct the same functions that were

predicted based on the periodic orbit approximation.

The third element of each 4-tuple is the computed SNR using the UPO

approximation. To examine the precision of these SNRs, we experimentally

compute the SNR (called SNRe) for all functions and report it as the forth element

of each 4-tuple. To compute these experimental SNRs, we statistically compute

the probabilities that the desired functions are constructed, when the noise

intensity is changed. For this example, we choose the noise intensity such that a

given threshold value for noise intensity results in 99.9% success in constructing

the desired function. We then use this same noise intensity to compute SNRp,

based on the formula 20 𝑙𝑜𝑔 !!"#
!!!!"#!!"#

 . In order to facilitate understanding of the

last two elements of the 4-tuples, the estimated SNR and the experimental

SNRs, we compute the statistical mean and variance of the differences between

these two SNRs, defined as 𝑟 = 𝑆𝑁𝑅! − 𝑆𝑁𝑅! , for different iteration numbers, p-

1. As explained above, 𝑆𝑁𝑅! is the predicted SNR based on UPOs of order p

and 𝑆𝑁𝑅! is the experimental SNR. The results are plotted as solid lines in Fig.

6.1. The overall trend is that with increasing iteration number, the mean and

variance of the error signal grow. The predicted SNRs are not very accurate,

since we approximate a large portion of the map, f, or the iterated map, f(p-1), with

a straight line. To obtain more accurate SNR predictions, we need more precise

modeling and approximation. In this example we have computed all the UPOs

up to period-7, so an alternative, more precise (and no additional cost)

 53

approximation would use these already-computed period-7 UPOs for a better

calculation of the SNRs for lower iteration numbers as well.

Fig. 6.1. Statistical measures, mean and variance, of the error in estimating

robustness of different instructions against noise are reported. The error is the

difference between the estimated SNR and the experimental SNR for each

instruction. The mean of these errors at each iteration is reported in the left

panel, and the variance of the error at each iteration is presented in right panel.

The solid lines denote cases where, for (p-1) iterations of the map, period p

UPOs are used for modeling. Dashed lines denote the means and variances

when period-7 UPOs are used for predicting the SNR. Dotted lines show the

means and variances of the difference r, where linearization is performed along

each orbit.

The mean and variance of the error, 𝑟 = 𝑆𝑁𝑅! − 𝑆𝑁𝑅!, where 𝑆𝑁𝑅! is the

predicted SNR based on UPOs of order 7, is computed for different iteration

numbers. The results are presented in Fig. 6.1 by dot-dashed lines. We observe

that when the iteration number is less than 6, these predicted SNRs are

considerably more precise than the previous predicted SNRs, because of more

1 2 3 4 5 60

1

2

3

4

5

6

7

Iteration

M
ea
n

1 2 3 4 5 60

10

20

30

40

50

60

Iteration

Va
ria
nc
e

 54

accurate modeling and approximation. Based on Fig. 6.1, we observe that

modeling the chaotic orbits by their nearby UPOs results in a very good

approximation of the symbolic behavior of the orbits during limited iteration of the

chaotic map. This observation follows the main claim of periodic orbit theory: a

collection of short-period UPOs is enough to obtain a very precise approximation

of a sufficiently low dimensional chaotic system [64].

Finally, to examine the accuracy of the approximated SNRs by use of

UPOs, we approximate SNRs directly based on the slopes of the orbits, starting

from the chosen initial conditions. Thus, instead of finding a nearby UPO and

using its robustness measure, we compute directly the slope of the main orbit at

various points on the orbit and we use these slopes directly in the formula

𝐷!"# =
!

!× !!!!!!!!!…!!!!!!!!!!…!!!!⋯.!!!!!!
, where 𝜆! = 𝑓 ! !(𝑥!) and 𝑥! is the

initial condition produced by the encoding map. The mean and variance of the

error is plotted in Fig. 6.1 by dashed lines. We see that using UPOs of order 7 for

predicting SNRs is as precise as using direct slopes, when the iteration number

is less than 6.

6.2. Gaussian Map

As a second example, we determine the functionality of the Gaussian

map for doing computation and estimate the robustness of the resulting functions

against noise. The Gaussian map is studied in detail in [69]. Again, in this

example we assume that an additive noise perturbs the dynamics as follows:

 (14)
xn+1 = e

−bxn + c+Dε(t)

 55

The phenomenon of chaos is observed in this map at some parameter

values [69]. In this work I set b = 6.5 and c = -0.54 in order to make the

Gaussian map chaotic. The chaotic attractor of the Gaussian map lies in [-0.28,

0.5]. Similar to the logistic map example, a simple digital-to-analog converter

with 10 binary digital inputs, two inputs for data and eight inputs for control, will

be used as the encoding map. As the first step of the 3-step computing method,

the combination of two binary data inputs and 8 binary control inputs are, with an

initial value in [-0.28, 0.5), as follows:

 (15)

where I1,I2 are the two binary data inputs, and C1,C2,…,C8 are the eight control

inputs. Notice that the coefficient value, -0.28, and the additive value, 0.78, are

inserted to insure that the initial condition is situated inside the attractor.

At the second step of the algorithm, we let Gaussian map undergo

different numbers of iterations in order to determine the instruction set at each

iteration number.

As the third and last stage of the computing model, the final state of the

Gaussian map is decoded to obtain the output:

 (16)

There is an important difference between the logistic map and the

Gaussian map examples. When the bifurcation value of the logistic map is 4, for

any symbolic sequence X0, X1,…,Xp there is a unique UPO of length p+1 that has

x0 = -0.28+0.78× (0. I1I2C1C2...C8)base2

output =
0 if x ≤ 0
1 if x > 0
"
#
$

 56

the same symbolic itinerary. This one-to-one relationship between any possible

symbolic sequence and a unique UPO describes any other one-humped map,

where the attractor is between [0, b] and the critical point xc is mapped to b [68].

Therefore the collection of all UPOs of length p+1 can model the behavior of the

chaotic map over the next p iterations. But the Gaussian map does not have this

property and there are some neighborhoods of initial conditions with admissible

symbolic itineraries of length p for which there is no UPO of length p+1 with the

same symbolic itinerary. But we know that, since the UPOs are dense over the

chaotic attractor, there is therefore at least one UPO that comes inside the

neighborhood and which can model this portion of the attractor during the next p

iterations. Therefore we can easily overcome the problem by using higher order

UPOs, such as p+2 or p+3, to model the next p iterations of the map. All we need

to do is to compute the pre-images of the critical map to find the neighborhood of

initial conditions that symbolically behave the same during limited iterations of the

map. Then we compute the UPOs until we can find at least one UPO in any

neighborhood. This collection of UPOs can be used to model the chaotic map

over a limited number of iterations. In the Gaussian map example, we observe

that UPOs of length eight are enough to model the attractor during any iteration

up to six iterations. By use of this model we directly compute the instruction set of

the chaotic logistic map when it undergoes p iterations. The results are listed in

Table III for different values of p, . The format of data in Table III is the

same as the format in Table I. We observe that, in a noise-free simulation, this

technique determines the instruction set of the chaotic system precisely. Also

simulation results illustrate that after modeling the Gaussian map by period-8

€

1≤ p ≤ 6

 57

UPOs, the robustness of the instructions against noise are predicted with very

high precision.

 58

Table I: Instruction set of the logistic map for different iteration numbers.

P

Instruction Set

1 {(6,129,39.39dB,39.9dB), (7,255,26.74dB,26.11dB), (14,0,26.67dB,26.31dB)}

2 {(5,255,32.95dB,34.2dB), (9,123,30.73dB,31.8dB), (10,0,35.48dB,33.7dB),
 (11,52,42.72dB,48.79dB), (13,207,44.89dB,46.3998dB)}

3 {(2,89,50.46dB,57.09dB), (3,53,38.59dB,38.79dB), (4,165,52.28dB,52.59dB),
(5,255,45.29dB,46.89dB), (6133,36.32dB,42.2dB), (10,0,47.52dB,45.79dB),
(11,20,46.80dB,47.79dB), (12,211,37.62dB,42dB), (13,233,45.92dB,51.89dB)}

4 {(1,228,50.83dB,50.39dB), (3,200,52.73dB,58.89dB), (5,93,40.41dB,45.19dB),
(6,126,44.13dB,46.79dB), (7,114,49.45dB,59.49dB), (8,24,49.45dB,59.89dB),
(9,20,48.56dB,59.89dB), (10,17,40.40dB,42.59dB), (11,8,47.01dB,51.29dB),
(12,59,50.89dB,62.2dB), (13,62,49.98dB,61.89dB),
(14,144,53.41dB,54.89dB)}

5 {(1,177,54.97dB,59.69dB), (2,98,50.07dB,57.39dB), (3,106,47.72dB,51.89dB),
(4,43,50.83dB,53.09dB), (5,170,57.96dB,63.39dB), (6,35,54.85dB,60.99dB),
(7,29,62.30dB,67.79dB), (8,80,54.69dB,57.79dB), (10,85,59.64dB,64.49dB),
(11,195,47.40dB,48.69dB), (12,146,48.20dB,47.79dB),(13,58,47.30dB,48.19dB),
 (14,228,63.97dB,70.39dB), (15,128,55.34dB,58.19dB)}

6 {(0,110,60.66dB,62.69dB), (1,106,58.20dB,58.99dB), (2,232,61.11dB,62.59dB),
(3,140,58.56dB,69.69dB), (4,66,59.67dB,71.59dB), (5,68,55.76dB,62.19dB),
(6,35,66.87dB,69.19dB), (7,173,55.50dB,57.89dB), (8,56,56.42dB,63.49dB),
(9,53,53.76dB,61.29dB), (10,92,57.01dB,63.09dB), (11,46,55.98dB,60.39dB),
(12,118,60.55dB,65.19dB), (13,210,59.97dB,60.49dB),(14,123,55.1dB,64.69dB),
(15,126,54.21dB,62.39dB) }

Table II: Truth table of a typical two input, one output function.

Data
inputs

Output

00 O0	

01 O1	

10 O2	

11 O3	

 59

Table III: Instruction set of the gaussian map for different iteration numbers.
P

Instruction Set

1 {(7,133,18.90dB,19.7dB), (15,0,45.79dB,45.89dB)}

2 {(9,0,23.62dB,25.50dB), (12,192,33.15dB,34.20dB), (13,118,28.42dB,28.80dB)}

3 {(6,0,26.47dB,26.40dB), (7,88,36.24dB,37.2dB), (11,246,25.50dB,25.80dB),
(15,147,36.4dB,36.5dB)}

4 {(6,191,34.45dB,35.5dB), (7,246,40.37dB,40.89dB), (10,118,55.71dB,56.69dB),
(11,88,29.73dB,33.60dB), (14,138,35.51dB,36.4dB), (15,0,51.85dB,51.79dB)}

5 {(4,89,37.62dB,39.89dB), (5,106,36.81dB,38.6dB), (9,187,41.931B,42.29dB),
 (12,47,35.42dB,43.19dB), (13,30,40.96dB,40.39dB), (15,0,36.88dB,37.3dB)}

6 {(2,6,45.40dB,44.99dB), (3,22,45.96dB,48.69dB), (7,45,38.81dB,49.39dB),
(8,244,44.09dB,47.19dB), (9,255,62.52dB,62.39dB), (10,223,41.67dB,51.49dB),
(14,213,47.67dB,48.79dB), (15,79,39.77dB,36.1dB)}

In this chapter I have demonstrated how chaotic computation could be

explained, modeled, and predicted in terms of the dynamics of the underlying

chaotic systems. Unstable periodic orbits of the chaotic system were used first to

model it and then to approximate it. These periodic orbits and the polygonal

approximations based on them can be used for obtaining the computational

functionality (the instruction set) of the system. In this way I have elucidated the

deep connection between the structure of the system dynamics and the system’s

ability to perform computation. This connection intimately depends on the

periodic orbit structure of the system.

Low-period periodic orbits are experimentally extractable from time

series. This contributes practical importance to our ability to explain chaos

computing in terms of basic periodic orbits; e.g., it enables us to predict and

determine the instruction set that a chaotic system can implement and the

stability of those instructions against noise just by having access to a time series

 60

from the chaotic system. The next chapter focuses on this subject and I

demonstrate given a time series from an unknown chaotic system how I can

determine and estimate the functionality of the system in doing computation.

 61

CHAPTER 7

DERIVING INSTRUCTION SET FROM A TIME SERIES

In this chapter I assume I am given only a time series from a chaotic

system, e.g., zn, n = 1,2,3,... No further information about the underlying chaotic

dynamics is provided. The aim is to obtain the functions that can be constructed

from the chaotic dynamics and to understand the robustness of these functions

against noise.

To do this, (A) recover a generating partition from the time series to be

able to define its symbolic itineraries. (B) For a chaotic system which is iterated

p times, find a suitable collection of UPOs as described in chapter 5 (C) Find the

neighborhood of each UPO. Each UPO will then represent its neighborhood in

an approximation of the chaotic system. (D) Find the eigenvalues of the UPOs.

(E) Design local predictors for the time series to predict how close the orbits get

to the neighborhood boundaries. This is required for estimating robustness. By

extracting all of this dynamic information from the time series, I can obtain the

library of functions for the underlying chaotic system as well as their robustness,

using techniques introduced in chapter 4 and [70] as detailed below [71,72].

7.1. Extracting a Generating Partition from the Time Series

To estimate a generating partition from the time series, different methods

and approaches have been introduced. [73,74] Here I introduce a novel

technique using the topological entropy to locate the generating partition. The

topological entropy is a basic measure of how much flexibility there is in the

dynamics, how many different kinds of patterns it can produce, and how much

the past of the process constrains its future behavior.

 62

To begin, partition the state space of the attractor and label each partition

with an unique symbol. The passage of the system through its state space then

generates strings of symbols. The topological entropy is defined as following:

 (17)

where N is the size of a given string using a particular partitioning A of the

attractor, WN(A) is the collection of all possible N-strings which appear in the

attractor, and the vertical bars indicate the size of this collection.

By applying a generating partition, a partitioning scheme which

maximizes the topological entropy, to create symbolic itineraries for the orbits, we

preserve the unpredictability of the chaotic dynamics. I use this definition to find

the generating partition from the time series. Changing partitions to find the

maximal topological entropy rate is an optimization problem:

 (18)

where A* is the generating partition.

In the example provided in chapter 8, I use a hill-climbing algorithm to

maximize the topological entropy. However this technique is not durable for

higher order systems or for systems with more complicated (e.g., higher-

dimensional and/or fractal) boundaries. In these cases more sophisticated

techniques are required. [73,74]

€

h(A) = lim
N→∞

logWN (A)
N

h(A*) =max
over A

(lim
N→∞

logWN (A)
N

)

 63

After constructing a generating partition, we can assign symbolic itineraries to

orbits and, based on that symbolization, we can define the logic and the logical

outputs.

7.2. Extracting UPOs from Time Series

A chaotic system is composed of unstable periodic orbits, and it is known

that a collection of short period UPOs is enough to obtain a very precise

approximation of the chaotic system [64,65,66]. In [70] it is demonstrated that,

by approximating the chaotic system with an appropriate collection of short-

period unstable periodic orbits, the functionality and robustness of the chaotic

system in computation can be obtained. Ref. [70] assumes that the dynamic

equations are given, so UPOs can be computed analytically or numerically. In

this work I assume that I do not have access to the underlying dynamics;

however the importance of using UPOs is that they can be easily extracted from

a time series. Here to extract UPOs from a time series, I follow the classic

technique introduced by Cvitanovic in [63]. To find unstable periodic orbits of

length p, I monitor the time series zn and evaluate if 𝑧! − 𝑧!!! < 𝜀 , where 𝜀 is

some small number defining the neighborhood of the UPO. Here I use the

Euclidian norm to measure the distance between 𝑧! and 𝑧!!!. If the inequality

holds for a specific n, say n0, then the series 𝑧!! , 𝑧!!!!, 𝑧!!!!,… , 𝑧!!!!!! will be

recorded as a UPO. Internally, the algorithm uses a parameter , which is the

minimum distance for two observed UPOs to be recorded as distinct; otherwise

they will be recorded as a single UPO.

σ

 64

7.3. Extracting the Neighborhoods of the UPOs

In chapter 4 polygonal approximation is used for modeling a chaotic

system, where each face of the approximation was identified and approximated

by a UPO. Each face of the approximation is composed of an unstable fixed

point or unstable periodic point plus all close-by points with qualitatively similar

Jacobians; i.e., whether the Jacobian flips or does not flip along the unstable

eigendirection. The projection of each face of the polygonal approximation onto

the x-axis results in a neighborhood around each periodic point. In that

neighborhood all the initial conditions symbolically behave the same as the

periodic orbit for some minimum number of iterations. In section and [70], since

the dynamical equations were in hand, these neighborhoods could be computed

analytically or numerically from the equations. But here I need to derive them

from the time series. To find the set of initial conditions that symbolically

behaves the same as a UPO with a symbolic itinerary c0,c1,c2,…,cp-1, I trace the

itineraries of candidate initial conditions (which we can select from any point in

our time series) and, if any possess the same itinerary as the UPO, I add them to

our set. The closure of this set is one face of the polygonal approximation as

modeled by the UPO.

After extracting all the faces of the polygonal approximation for the

underlying chaotic system, I examine the approximation to ensure that it covers

the entire attractor. As mentioned before, it may in some situations be necessary

to use higher period UPOs to achieve this coverage.

At this point we can obtain the functionality of the system for doing

computation. The technique I use here is the same is introduced in chapter 4 and

 65

[70]. To summarize, the technique for obtaining the computational functionality of

a chaotic system is as follows: when the chaotic system iterates p times,

approximate the chaotic system by its UPOs of length p+1 and determine the

neighborhood of each UPO by tracing initial conditions to determine their

symbolic behavior. The last symbol of the itinerary determined by the

corresponding UPO is the computational output for those specific data and

control inputs. By applying this technique for all combinations of data and control

inputs, the computational functionality of chaotic system can be directly obtained.

7.4. Extracting the Eigenvalues and Estimating Robustness

To estimate the robustness against noise of the computational

functionality of the system, we need the eigenvalues of the UPOs at each point of

the periodic orbit and also the minimum distance of the final state of the orbit

(which represents the output of the computation) from the partition boundaries,

as described in chapter 4.

To compute the eigenvalues, I obtain a tangent linear map in the vicinity

of each UPO by a least squares fit. The eigenvalues of this tangent map

approximate the eigenvalues of the chaotic map. More specifically, to compute

the eigenvalues at a UPO si, find all samples in the time series so that

 (19)

where the Euclidian norm is used for measuring the distance between states.

The matrix H representing the linear map is obtained by least mean square fitting

such that

€

si − z j ≤ r

 66

 (20)

The eigenvalues of H are the desired eigenvalues at the point si.

For simplicity the dimension of the underlying chaotic system and the

embedding dimension are both unity. Thus the slope of the tangent line at the

point si, denoted by , replaces the matrix H. This is the same value that we

need for Eq. 10.

7.5. Forecasting Chaotic Orbits to Compute the Minimum Distance from

Partition Boundaries

To forecast a chaotic orbit starting from a given initial condition, different

techniques have been introduced. [75]

To design chaotic systems from a given time series, I use local constant

predictors. The main idea of local methods is to predict subsequent samples of a

time series solely by use of nearby samples in a training time series. Nearby

samples are defined as the samples that fall into some neighborhood of the state

that we wish to forecast. I use the Euclidian norm as a metric to measure the

distance between states in order to detect whether the training sample falls into

the neighborhood or not. The size of the neighborhood is a predictor algorithm

parameter that is adjusted during each simulation.

In local constant models the prediction is accomplished by averaging or

integrating the behavior of the nearby trajectories. In the averaging method one

notes the subsequent iterates of points in the neighborhood and averages them

to obtain the predicted sample. In the integrating method instead of averaging

the iterates, one measures the differences between the neighborhood points and

H × si − zj ≈ si+1 − zj+1

€

λ

 67

their iterates at the next time step. Then I average the differences and add this

value to the state in question to obtain the predicted value. Here I use the

integrating method, since it is accurate for extrapolation as well as interpolation

of the training data for forecasting [76].

There are two methods for predicting p steps ahead, direct prediction and

iterated prediction. In the direct method a model is built to directly predict the

state p steps in the future for the given time series. On the other hand, iterated

prediction jumps one-step ahead p times. Iterated prediction is usually used

because of its superior short-term accuracy. However, one should use this

method with caution since medium- to long-term forecasts can be worse because

of accumulated error in the input vector [76]. The choice is critically dependent

upon the numerical details of the iteration algorithm.

In this case I implement the forecasting method as follows:

1- Use the time series 𝑧! , 𝑛 = 0, 1, 2,… , 10! as the training data set.

2- For predicting p steps ahead, find all the nearby training samples that fall

inside a neighborhood around the current state. Use the Euclidian norm to

determine whether the training samples are inside a neighborhood of size or

not.

3- Measure the differences between the current value of the nearby training

samples and their values p time steps ahead. Then average the differences and

add this value to the current state to predict the value p steps ahead.

ε

 68

7.6. Putting It All Together

Chapters 7.1-7.5 extract all the information that we need in order to

design a chaos-based computing system and to estimate both its functionality

and its robustness against noise from a time series. In this section I examine all

this extracted information in order to discover the computational properties of the

underlying chaotic dynamics as well as its computational robustness. I

summarize the process as follows:

1- Extract the generating partition (7.1).

2- Extract all UPOs of length p+1 (or, if needed, slightly higher length) for

modeling the p iteration of the map (7.2).

3- Find the neighborhood around each UPO where the UPO approximates all

points in this neighborhood (7.3).

4- Encode the data and control inputs via an encoding map to develop an initial

condition for the underlying chaotic system. For each produced initial condition,

determine in which UPO neighborhood it falls. We know the effect of iterating

this UPO p times; therefore the chosen initial condition’s final symbol is also

known without iteration. For any control input, repeat this procedure with

different combinations of data inputs to estimate the type of function that the

underlying chaotic system will construct with a given control system. To compute

the complete instruction set of the underlying chaotic system, repeat the

procedure for different control inputs.

 69

5- Find the slope (eigenvalue) of the tangent map at each point of the UPO (7.4).

The result 𝜆 is used in Eq. 10 for estimating robustness against noise.

6- For any initial condition produced by the encoding map, forecast the final state

of the underlying chaotic system after p iterations (7.5). Compute the minimum

distance of this final state from the partition boundary. This gives us y, which is

used in Eq. 10.

7- For any initial condition, estimate the robustness of the orbit against noise as

was discussed in chapter 5. To compute a robustness measure for a specific

function, apply the procedure for all orbits of the function, starting from different

initial conditions produced by the encoding map and choose the highest required

SNR, as obtained from individual orbits.

 70

CHAPTER 8

EXAMPLE FOR DERIVING THE INSTRUCTION SET FROM A TIME SERIES

As an example, here I assume I am given a time series of length 105

generated from evolution of the logistic map (after transients have died out).

However, for the purposes of this exercise, I use no prior knowledge about the

underlying dynamics and all the required information will be extracted solely from

the time series.

To derive the instruction set of the chaotic system and the robustness of

these functions against noise, I follow the 5 stage algorithm introduced in chapter

7. I repeat the algorithm for different iteration numbers p = 1, 2, ..., 6.

1- To extract the generating partition from the given time series, I start from a

random partition and compute the topological entropy obtained by the use of this

initial partition. Then I apply a hill-climbing optimization algorithm to maximize the

topological entropy by change of the initial partition. The optimization technique

converges to the partition boundary xb=0.495605, which is very near to the real

generating partition of the logistic map which is xb=0.5. Notice that, since the

generating partition is not a function of iteration number of the chaotic system,

there is no need to repeat this step again and again for different repetitions of the

chaotic system.

2- Using the technique introduced in chapter 7.2, I extract all the UPOs of length

p+1. I choose the neighborhood and distance parameters (defined in chapter

7.2) as and .

3- Applying the technique explained in chapter 7.3, I obtain the neighborhoods

around each UPO of length p+1 such that the UPO approximates the behavior of €

ε = 0.00003

€

σ = 0.000031

 71

all the points in its neighborhood during evolution. Examine the total

approximation and, if necessary, increase the length to p+2 or higher and return

to step 2. In the example shown in Table III, although it was not necessary to

achieve the desired function set, I used UPOs of length 7 to obtain the highest

possible robustness.

4- Knowing that the time series does not include any transient (non-stationary)

behavior, by monitoring the time series I observe that the chaotic attractor is

between x=0 and x=1. Therefore the encoding map should encode the data and

control inputs to a point in this interval. The encoding map I use here is where I1,

I2 are two binary data inputs, and C1, C2, ...,C8 are eight control inputs. Determine

in which UPO neighborhood the encoding map places each initial condition and

the characteristic If chaotic map iterates for p times, the (p+1)th symbol of the

symbolic itinerary of UPO is the output of computation for this specific set of data

and control inputs. By applying this technique for all combinations of data and

control inputs, instruction set of the chaotic system can be directly obtained.

5- Using the technique introduced in chapter 7.4 I compute eigenvalues for all

UPOs extracted from the time series.

6- For any initial condition produced by the encoding map, I forecast the state of

the chaotic system starting at this initial condition and iterated p times. Then I

compute the minimum distance y from the partition boundary. This distance is

used to compute the robustness of the orbit as in chapter 7.5.

 72

7- To compute a robustness measure for a specific function, I apply the

procedure introduced in chapter 4 to all orbits of the function, starting from

different initial conditions produced by the encoding map and choosing the

highest required SNR obtained from individual orbits. A chaotic system can

construct different functions by applying different control inputs.

The obtained instruction set is presented in Table IV for different values of

p. In the table each instruction set consists of 4-tuples, the first element being the

type of function that the logistic map constructs. The format that I use for

identifying each of these functions is the same as I used for Table I. The first

element represents function number based on Table II. The second element of

the 4-tuple is the control inputs that construct this sample function. There are 8

binary digital control inputs to the system, so the control inputs are numbered

from 0 to 255. To evaluate the accuracy of our method in obtaining the

functionality obtainable from a chaotic map, I have applied the computed control

inputs to the logistic map. They construct the same functions that were predicted

based on the periodic orbit approximation. The third element of each 4-tuple is

the estimated SNR using the UPO approximation. To examine the precision of

these SNRs, I experimentally compute the SNR for all functions, as reported as

the forth element in each 4-tuple. To compute these experimental SNRs, I

change the noise intensity and statistically compute the probability that the

desired function is constructed. I choose the noise intensity that results in 99.9%

success in constructing the desired function and use it to compute the SNR. I

observe that the estimated robustness of the functions against noise in terms of

SNR is very near to the experimental results.

 73

Here I explain how one can design a chaos computing system from a

given chaotic time series without having access to the underlying dynamical

equations. Two key things that enable us to do this are: 1- chaos computing is

directly connected to the dynamics of chaotic systems in terms of the short-

period UPOs of the system; 2- These short-period UPOs and their robustness

against noise are easily extractable from the time series. After extracting these

UPOs and modeling the chaotic system with a combination of these UPOs, one

can extract the instruction set of the underlying chaotic system and the

robustness of these instructions against noise.

 74

Table IV. Instruction set of the logistic map for different iteration numbers

obtained from a time series.

P Instruction Set

1 {(6,128,39.22dB,40.39dB), (7,255,24.30dB,25.8dB), (14,1,24.20dB,26.1dB)}

2 {(5,255,35.64dB,34.4dB), (9,128,30.73dB,31.6dB), (10,1,30.35dB,34.2dB),
(11,48,46.01dB,46.09dB), (13,207,46.05dB,45.99dB)}

3 {(2,91,51.14dB,53.29dB), (3,54,37.85dB,38.79dB), (4,164,52.10dB,52.69dB),
(5,255,48.17dB,46.79dB), (6,128,38.84dB,40.69dB), (10,1,36.71dB,46.79dB),
(11,18,46.5107dB,47.39dB), (12,203,38.55dB,39.19dB), (13,23,45.9dB,48.69dB)}

4 {(1,228,50.23dB,50.49dB), (3,199,56.76dB,56.99dB), (5,88,40.70dB,42.69dB),
(6,127,44.91dB,46.19dB), (7,112,54.68dB,54.49dB), (8,27,49.88dB,51.99dB),
(9,19,55.87dB,55.99dB), (10,168,41.18dB,42.89dB), (11,7,50.02dB,52.59dB),
(12,57,56.66dB,56.89dB), (13,25,47.74dB,54.29dB), (14,14,54.6dB,54.79dB)}

5 {(1,176,56.85dB,58.29dB), (2,213,51.04dB,52.69dB), (3,109,48.08dB,47.99dB),
(4,160,51.36dB,52.79dB), (5,170,62.62dB,62.49dB), (6,34,58.72dB,59.89dB),
(7,29,66.32dB,67.19dB), (8,80,56.47dB,58.19dB), (10,86,60.70dB,62.79dB),
(11,195,43.62dB,48.79dB), (12,147,47.86dB,47.89dB), (13,60,43.2dB,48.29dB),
(14,227,65.79dB,67.59dB), (15,128,56.99dB,58.19dB),}

6 {(0,110,60.66dB,63.09dB), (1,106,58.20dB,59.19dB), (2,232,61.11dB,62.59dB),
(3,140,58.56dB,69.89dB), (4,66,59.67dB,72.29dB), (5,68,55.76dB,62.39dB),
(6,35,66.87dB,69.59dB), (7,173,55.50dB,57.19dB), (8,56,58.70dB,63.69dB),
(9,52,56.37dB,57.89dB), (10,187,59.1dB,59.69dB), (11,46,55.98dB,60.39dB),
(12,118,60.55dB,65.69dB), (13,210,59.97dB,60.29dB), (14,123,55.09dB,64.9dB),
(15,126,54.21dB,62.49dB)}

 75

CHAPTER 9

COMPUTER ARCHITECTURE FOR CHAOS COMPUTING

9.1. Need for a New Architecture for Chaos-based Computers

The Chaogate (chaos-based logic blocks) presented in chapter 3 can be

used to construct all the basic logic gates, e.g., two-input AND gates, OR gates,

etc. But in the real world much more sophisticated forms of computation are

desired and demanded. The science called Computer Architecture and Design

collects such basic blocks and connects and organizes them to obtain a

computing machine that is capable of executing programs and performing

sophisticated computations. Since chaos computing contributes many novel

features and methods for computation (e.g., dynamic reconfiguration)

conventional computer architectures and designs are not applicable to a chaos-

based computer, although some of their methods and approaches can be

modified and adapted to use in designing chaos-based computers. Therefore a

new generation of computer architecture and design is required for chaos-based

computers in order to manipulate the novel morphing capability of single chaotic

logic gates and to transform them into a morphable chaos-based computer.

In this chapter I develop methods and techniques for designing chaos-

based system out of Chaogate, then, I design a chaos-based computing system

that can morph to build different instruction sets and even processors. Finally I

develop a simulator to simulate the designed chaos-based computing system.

 76

9.2. From One Chaogate to a Lattice of Chaogates

9.2.1. One Chaogate

Fig. 9.1 Schematic view of a Chaogate is illustrated. There are three

types of inputs, the data, the instruction, and the clocks, and one output,

representing the output of computation.

A diagram for a single abstract Chaogate is depicted in Fig. 9.1. By

abstract I refer to the fact that at this stage of design I don’t take into account the

details inside the block, instead I consider the Chaogate as a black box, and the

only things that matter is the instruction set of the single Chaogate (the

correspondence between control inputs and the type of function the Chaogate

builds) and the timing of the Chaogate. The timing describes (1) the time

intervals, when I need to feed the inputs to the Chaogate, (2) the evolution time

of the Chaogate, and (3) the time interval, when the outputs are ready to be read

at the output of the Chaogate. This abstraction is an important concept in

computer architecture to keep different stages of design separate from each

other and to hide the unnecessary details of each stage. At each stage of

design, the abstract model contains just the necessary information that is needed

and required at that stage. In chapters 4 and 5 I have studied the functionality

 77

and robustness of the Chaogate in detail and I have derived the instruction set

and the timing of the Chaogate. These are the only information that we need to

know about a Chaogate to be able to arrange a series of them in a lattice,

organize them, and build a computer out of them.

There are three types of inputs to the Chaogate: Data, control, and

Clocks. There is one output line that carries the output of the computation. As

described in chapter 3, the Chaogate needs three clocks because of the internal

three-stage computing procedure of Chaogate, the initial condition setting, the

evolution, and the output production stage. Each clock trigs each stage of the

computing. The frequencies and the duty cycles of these clocks depend on the

type of technology used for implementing Chaogate the and the implementation

details of the Chaogate. This information should be handed from Chaogate circuit

design to the chaos-computer architecture stage. Here this mentioned

information is available and I continue based on it.

Fig. 9.2. Three clocks required for operation of a Chaogate

 78

These three clocks are illustrated in Fig. 9.2. The Data and Instruction

inputs should be ready and kept fixed when the first clock, Initializing clock, is on

(the binary symbol of clock is 1). The second clock initiates the chaotic evolution

of the Chaogate, and the third clock trigs the output production mechanism of the

Chaogate.

User feeds the Chaogate with the data input and appropriate 8-bit control

inputs to instruct the Chaogate to do the desired operation on the data. Notice

the need for 8-bit control input comes from the random-process analysis of the

Chaogate and the fact that to have a universal 2-bit computing engine, one

needs to have 8-control bits [37]. However, one may reduce the number of

control bits to less than 8 to obtain a reduced set of functions. But in either case,

usually the required number of control bits to instruct a Chaogate exceeds the

number of required bits to address and count the available functions inside a

Chaogate. As an example, in introduced Chaogate in chapter 3, 8 control bits

were used to instruct the Chaogate to build 16 different digital functions. But we

know that 4 bits are enough to address 16 different digital functions. As

discussed in chapter 3, this need to extra number of bits returns back to the fact

that different control inputs may result in the same digital function and that is why

the number of different control inputs exceeds the number of available functions

in a Chaogate. The bottom-line is, here, these 8 control bits are carrying less

than 8 bits of information, and this excessive use of wires and inputs is not

desirable in computer architecture. For example, the Chaogate will need 8

control pins for programming, or when the user is writing a program to run it on a

 79

Chaogate, he will need to write the long 8-bit operation code to instruct the

Chaogate.

The solution I present is using a simple micro-programmed control unit to

hold the 8-bit control bits. This control unit is composed of an addressable

memory, called control memory. This control memory can be considered as a 2-

D array, where rows are the 8-bit controls for programming the Chaogate. The

number of rows equals to the number of available functions in the Chaogate or

the number of functions a user needs to have. For example, here, the Chaogate

is able to build all 16 2-bit digital functions; therefore, the number of rows will be

16. Furthermore, I store the control bits for function number 0 in row number 0 of

the array, control bits of function number 1 in row number 1, and the same for all

other functions up to function number 15, which is stored in row number 15.

Notice the function naming is the same as the one introduced in Table II of

chapter 6. The 4-bit address lines of this memory element is used by the user to

address one row of the memory, and the 8-bit output of the memory is connected

to the Chaogate control inputs. Now the user can program the Chaogate using

just 4-bits of information. The schematic of the Chaogate and the micro-

programmed control unit is depicted in Fig. 9.3. Now for programming the

Chaogate just 4 bits, named operation code, is required.

This architecture enables us to implement all combinational digital

functions that accept two bits of information and produces one bit output. These

functions are like OR, NANAD, NOR functions, working on single bit operands.

 80

Fig. 9.3. Chaogate controlled by a micro-programmed controller. This

architecture reduces the size of operation code (or equivalently required pin

number for programming) from 8 to 4.

9.2.2. A Series of Chaogates Arranged in One Column

So far the operand size was one bit. The Chaogate accepts two one-bit

operands and carries out computation like AND, NOR, or XOR on them. To build

a computing system capable of performing bit-wise operations like AND or XOR

on longer operands a column of Chaogates is needed. I propose the architecture

illustrated in Fig. 9.4 for this purpose. Assume the goal is to perform simple bit-

wise operations on 4-bit operands. Similar to single bit operands, bit-wise

operations on operands longer than one bit is performed on pair of corresponding

bits. Therefore for 4-bit operands, 4 Chaogates is needed, where the first

Chaogate performs the operation on the first pair of corresponding bits, second

Chaogate performs the operation on the second pair of bits, and so on and so

forth.

 81

The next question is about programming this column of Chaogates to

perform desired operation. I propose an extended version of micro-programmed

controller depicted and explained in Fig. 9.3 to program this column of

Chaogates. Now each row of this extended micro-programmed controller

contains the control bits for all Chaogates. For example, here, since there are

four Chaogates in the column and each Chaogate needs 8 control bits for

programming; each row of the controller contains 32 bits of control bits. The first

eight bits control the first Chaogate, the next 8 bits the second Chaogate and so

on and so forth. Similar to single-Chaogate architecture, an operation code

addresses and selects one specific row to program the column of the Chaogates.

The number of rows of the micro-programmed controller depends on the number

of functions (operations) in the instruction set of the single-column lattice of

Chaogates. For example, to have 8 different functions, there should be 8 different

rows of control bits in the controller and the operation code needs to be 3-bit, to

be able to address each row of the controller. The proposed architecture is

illustrated in Fig. 9.4. Notice that to reduce the complexity of the picture and to

prevent unnecessary complications, the 8-bit wires from micro-programmed

controller to each Chaogate is replaced with a thick line.

 82

Fig. 9.4. Proposed architecture for single-column lattice of Chaogates. This

computing system can perform bit-wise operations like AND, XOR, or NOR on 4-

bit operands. To implement such functions, micro-programmed controller needs

to contain the corresponding control bits and the user needs to use appropriate

operation code to address the rows containing control bits for desired function.

9.2.3. A Lattice of Chaogates Arranged in Rows and Columns

The single-column architecture introduced in Fig. 9.4 can perform any

function that is realizable in one layer of logic gates. AND, OR, XOR operating on

multi-bit operands are examples of such functions. However, for implementing

other functions, like addition or subtraction we need higher number of layers of

Chaogates. To expand the architecture from single layer (single column) to multi

 83

layer (multi column), two main things need to be addressed: (1) Flow of data from

one layer to the next layers (connectivity) (2) controlling and programming such a

multi-layer architecture.

To answer these questions I propose a pipelined architecture, in which

data and control inputs flow from one side of the lattice to the other side of the

lattice, layer by layer, and the rate of flow is one layer at each instruction cycle.

Notice that one instruction cycle is the summation of initial condition setting clock

cycle, evolution clock cycle, and the output production clock cycle, as is shown in

Fig. 9.2. This architecture has important advantages like locality of connections,

ease of control, and parallelism of computations through deep pipelining. These

advantages will be explained in detail.

In our proposed pipelined architecture data inputs of each layer are

selected outputs of Chaogates in the previous layer of architecture. The

exception here is the first layer of lattice, in which the data inputs are the data

operands. Fig. 9.5 shows how an input to a Chaogate is selected from outputs of

Chaogates in previous layer using multiplexers. Here to select an input to the

Chaogate from 4 outputs of the previous Chaogates, a 4 to 1 multiplexer is used.

The selection is controlled using two select bits. Here I assume there are 4

Chaogates in the previous layer, however it can be any arbitrary number, e.g. z.

In this case we need a multiplexer of size z to 1, and the number of select bits

should be the smallest integer not less than log2(z). Notice that for each data

input to a Chaogate one multiplexer is needed. I am assuming the Chaogate is 2-

input, as a result two multiplexers for each Chaogate is needed. In Fig 9.5 To

simplify the picture in Fig. 9.5 and for better clarification, just one Chaogate in

 84

layer number two is depicted and the other Chaogates of the layer are omitted.

The other Chaogates will have the same multiplexing system to select out

outputs of previous layer as their inputs.

One of the main advantages of this pipelined architecture is the locality of

the connections. The inputs to each layer are the outputs of previous layer and

the outputs of each layer are connected just to the next layer. Such locality of

connections reduces the complexity of the design and removes the need for long

wire running across the IC chip. Long wires are not desirable in VLSI because

they reduce the system speed, and introduce inductive effects.

Fig. 9.5. Multiplexers are used to select inputs to a Chaogate from outputs of

previous layer.

 85

Notice that in conventional pipelined design we need a register between

any two layers of gates to insure that the output of fist layers are stored and

preserved until the next layer reads them. In our proposed architecture, there is

no need for these intermediate registers for data because the output of the

Chaogate has been internally stored inside the Chaogate itself. As an example,

in our Chua circuit based implementation [61], there is a sample and hold

capacitor in output production circuit. This circuit holds the final state of the

chaotic circuit and the output will remain fixed and stable until the next cycle. This

embedded register inside a Chaogate is enough to keep the output of a

Chaogate stable so that the next layer can use it in initial condition setting phase

of next cycle.

In our proposed architecture, the instructions (operation codes)

themselves flow in the pipeline along with the data. This pipelined architecture for

flow of instruction is illustrated in Fig. 9.6. Here I introduce a distributed micro-

programmed controller. Each layer of Chaogates has its own micro-programmed

controller. Notice that in the second stage the micro-programmed controller is

connected to the selector lines of the input multiplexers as well as the

Chaogates. Each row of controller contains the control bits for programming the

Chaogates of that stage plus selector bits for multiplexors for selecting the

desired inputs to the Chaogates. For simplifying the picture, the data lines are

omitted in Fig. 9.6. Also the 8 wires between the controller and the Chaogate is

reduced to one single line, and also the selector wires between controller and the

multiplexer is reduced to one single line too. Notice that to pipeline the instruction

along the lattice a register is placed in between each micro-programmed

 86

controller. This register allows the flow of the instruction stage by stage along

with the flow of the data. It takes one instruction cycle for data to shift from one

column of Chaogates to the right column. The instruction needs to be shifted to

the right at the same rate.

Fig. 9.6. A distributed micro-programmed controller programs the lattice of

Chaogates. There is one micro-programmed controller for each column of

Chagates . Also a register is placed between any micro-programmed controlled

and its consequent micro-programmed controlled at the next column of

Chaogates for flow of the instructions. The instruction and the data flow along the

lattice at the same time.

 87

One may come up with an architecture that reconfigures the whole lattice

of Chaogates to implement one single instruction at a time. Our proposed

pipelined architecture is more efficient than these architectures because of its

parallelism and higher throughput of instructions. When the first instruction

(operation code) and the data is fed to the first layer, the instruction addresses

one row of the controller of first column, and the content of that row reconfigures

the Chaogates of the first column to build the first layer of the logic circuit for

implementing the instruction. At the second cycle of instruction, the second set

of data and instruction is fed to the first layer, and as a result the first layer of

Chaogates is reconfigured to be the first layer of circuit implementation for the

second instruction. Meanwhile, the first instruction is shifted to the second stage

of Chaogates, reconfiguring them to be the second layer of the logic circuit

implementation of the first instruction. Also the controller selects the appropriate

outputs of the first stage to be used as the inputs to the second stage of

Chaogates during initializing stage of second instruction cycle. Notice these

outputs are stored inside the Chaogate using sample and hold circuits and

buffers described earlier. The content of these sample and hold circuits will

remain fixed until the output production phase of the second instruction cycle.

This process happens all along the lattice. As a result, a Chaogate lattice of size

𝑚×𝑛, will hold and implement n different instructions at the same time, one

instruction at a column of the lattice. Such pipelining enables us to reach the

execution rate of one instruction at each instruction cycle. If I had allocated the

whole lattice for implementing one instruction at a time, the rate of execution

 88

would be one instruction at n instruction cycle, where n is the number of columns

(layers) of the lattice.

A very important feature of proposed architecture is that the distributed

micro-programmed architecture can be loaded with desired bits, since it’s nothing

more than a SRAM element. This enables us to change the instruction set of the

computer.

In a conventional computer controlled by a micro-programmed controller,

read only memory (ROM) is used to implement the controller. The reason is the

computing system has a fixed instruction set, which is already loaded to the

controller. But in our proposed architecture for chaos computing, the lattice of

Chaogates can implement any digital circuit that fits (in the sense of size) in it.

The number of these possible circuits is so high that I am not able to load the

instruction set for all of them in the controller. Even if I could, the size of micro-

programmed controller and the size of operation code necessary for addressing

such a huge micro-programmed controller would be so large that it makes the

system inefficient. To have some idea about the approximate number of possible

logic circuits that our proposed architecture can build, let’s assume the size of

lattice is 𝑚×𝑛, and each Chaogate accepts two inputs and produces one output.

Each One Chaogate is able to build 16 different two-input, one-output functions.

Also a Chaogate that is placed in second or latter columns of the lattice can be

wired and connected to Chaogates of previous column in 𝑚! different ways. As a

result, the lattice is able to build (16)(mn)(m2)(m(n-1)) different logic circuits. Notice

that a group of these logic circuits may implement the same function, so the total

number of different implemented functions is less than this number, however, this

 89

approximation still suggests that the computational capacity of our proposed

architecture is really high. As an example, if I assume m=n=4, the lattice of this

size, can build 5.1923e+33 different logic circuits! Definitely I cannot micro-

program all of these logic circuits and instructions in a controller. Instead what I

do is for each class of applications I select a manageable subset of these circuits

and functions, named instruction set, whose are suitable for that specific

application, and load it to the micro-programmed controller. In other words I can

have different instructions sets, each tailored and suitable for different

applications and needs and all of them loadable and implementable on the same

hardware. For example, I can have one instruction set suitable for intense

floating point computations, the other for digital signal processing, and another

for a graphic processing, etc.

Being able to load and change the instruction set of the processor has

very profound advantages over conventional computers. Instruction set

architecture of a computer is an important step in computer design, which

involves deciding a set of instructions that optimizes the performance of the

computer in processing. This optimization is usually measured and defined

against benchmark programs. As a result, for any class of programs, a different

instruction set suits well. In conventional computers, instruction set of a computer

is fixed, the reason is the hardware and the implementation of instructions are

hardwired and fixed. But this hardware is used to run different classes of

applications. Some users use their computer for graphics applications, another

user for signal processing, and someone else for statistical calculations. Our

proposed architecture can address and solve the problem. Our chaos-based

 90

computer can come with a library of different instruction sets. Each user, based

on his needs, can load suitable instruction set to its chaos-based computer to get

the maximum performance out of the hardware.

Furthermore, a user can design its own custom instruction set and load it

to the chaos-based processor to exactly implement its own application. This idea

of loading different instruction sets is really similar to the idea of software and

software engineering. Software comes as a package; the user installs the

software on the computer and runs it. Similarly, here the user installs (loads) the

instruction set on the computer and runs the custom made computer.

Furthermore, our approach may open the doors for creation of hardware level

software. For example, software can be implemented in hardware level through

loading appropriate bits to the micro-programmed controller. The result will be a

programmed hardware that dedicatedly runs the software in hardware layer and

as a result the application will be faster and reliable than the case it runs as a

software running on a generic processor.

Furthermore, our proposed architecture can implement and emulate

different types of processors, DSPs, and microcontrollers and work like them. For

example, one can load the instruction set of an specific microcontroller to the

chaos based computer, and the chaos based compute will morph to be the exact

microcontroller and the user can run the programs developed for the

microcontroller.

Notice that here I have introduced two different types of programming. (1)

Loading an specific instruction set to the micro-programmed controller, (2)

running an instruction from the loaded instruction set. After loading an instruction

 91

set to micro-programmed controller, the computer starts to read the program and

run it. The program is composed of a series of instructions that are already

loaded to controller. Any encountered instruction in the program, instructs the

controller to dynamically program the lattice of Chaogates to be an exact

implementation of the instruction. This is the instruction-level programming. The

other type of programming is to load different instruction sets to the programmer.

To load an instruction set, the computer needs halt processing for loading a new

instruction set to the micro-programmed controller, and afterward it restarts

processing based on the new loaded instruction set.

Notice that in this thesis I am not deriving and presenting a sophisticated

library of different instruction sets, instead I introduce new computer architecture

for Chaogates that has flexible instruction set and different instruction sets can

be loaded to it. Deriving a library of different instruction sets for the introduced

hardware is a huge project by itself, however hardware description languages

like VHDL or Verilog may ease the process and can automatically generate

different logic circuit implementations for each instruction of desired.

9.3. Hardware Simulation

To test the proposed architecture a software for simulating the hardware

is developed to demonstrate the performance of the computing system. This

software simulates the proposed architecture wire by wire in details and it models

the flow of signals.

This hardware simulator is a critical step in chaos computing, first it

demonstrates how and how well the single chaos based logic blocks can be

 92

combined to build a processor, and second it bridges the software simulations to

the physical hardware fabrications.

In this project C++ language is used to develop the simulator. Object

oriented features of the C++ enables us to represent the architecture in terms of

its basic blocks like wires, chaos based logic blocks, pins, registers, etc. A C++

class is defined for any type of component used in the architecture. For any

instance of the defined component type (class), which is used in the architecture,

an object will be declared. There are two main inputs to the software: (1) the

instruction set, which is a binary stream and is loaded to the distributed micro-

programmed controller. (2) The program, which is a sequence of instructions to

be executed. These instructions belong to the instruction set that is already

loaded to the micro-programmed controller.

The initial idea was to design and simulate a simple 4-bit processor.

During designing the architecture, I exceeded the initial specification (designing a

simple 4-bit processor), and instead I proposed a computing system that can

execute any instruction set, or any processor, that fits in the lattice. The main

criteria for fitting is if the digital circuit implementations of instructions in an

instruction set fit in the lattice of Chaogates, the system can execute that

instruction set, or simply if it fits, it runs!

I develop a hardware simulator for simulating a 𝑚×𝑛 lattice of Chaogates

controlled by a distributed micro-programmed controller. m and n are arbitrary

and are set as the parameters of the simulator. In simulation, I load an instruction

set to this chaos-based computing system. Then I feed the program to the chaos-

based computer for execution. This program is consists of the instructions from

 93

the loaded instruction set. The instructions reconfigure the lattice column by

column while they flow through the lattice.

9.4. Proposed Chaos-based Computing System Versus FPGA

The idea of reconfigurable computing is not new. The first reconfigurable

computing device was a PROM, which dates back to 1970 [77]. PROMs were

originally intended to use as computer memory, however engineers started to

use them for building simple digital functions. PROMs were composed of a lattice

of AND gates and OR gates, with fuses in between. By burning different fuses

one can implement a digital circuit. Programmable logic arrays (PLAs) were the

first reconfigurable devices that were originally invented and commercialized for

reconfigurable hardware [77].

Field programmable gate array (FPGA) is the state of the art technology

in conventional reconfigurable computing [77]. It’s composed of a lattice of logic

blocks with programmable connection system running between blocks. These

logic blocks and the connections are programmable and the FPGA can

implement any logic design that fits inside. The programming is mainly performed

using SRAM control bits for connections and look up tables for building logic

blocks. These look up tables are again a type of SRAM memory. To program an

FPGA it needs to be connected to a computer for loading the configuration bits to

the FPGA. By loading these configuration bits the FPGA is programmed and is

ready to use. However, to reprogram the FPGA again, if the technology allows,

the FPGA needs to be stopped from execution of program, and then again it

should be connected to a computer for loading the new configuration bits. In

 94

other words, the FPGA hardware and the implemented functions inside are

frozen after loading the programming bits.

The main advantage of our proposed reconfigurable computing system

over conventional reconfigurable systems is that our system can reconfigure and

reprogram itself at any instruction cycle. In other words, any encountered

instruction reprograms the hardware to be the exact implementation of that

instruction. The hardware, the lattice of Chaogates, is continually reconfigured to

be the exact optimal implementation for the encountered instruction.

FPGAs are usually efficient only if a fixed computation needs to be

carried out on a long stream of data [77]. In such cases the FPGA is reconfigured

to be an implementation of this fixed computation. This computation is

programmed and frozen in the FPGA and there will be no way to change or

reconfigure it afterward. But in our proposed computing system, we can observe

speed up in the computation, no matter the computation is fixed or continuously

varying. Since the hardware is reconfigurable by encountering any new

instruction, the hardware can dynamically change itself to build and implement

the new type of computation.

 95

CHAPTER 10

CHAOS EXCITED LINEAR PREDICTOR CODING FOR SPEECH CODING

AND PRODUCTION

Chaos is a random-seeming behavior generated by deterministic systems

[78]. In addition to numerous physical systems, chaotic activity has been reported

in many physiological systems [79,80,81] and pathological systems [82,83]. Also

different engineering applications have been introduced for chaotic systems, e.g.,

chaos-based computation [70,84] and chaos-based communication [85,86].

Chaos has also been widely observed in nature [78]. It is thought [78] that

such chaos enables a natural system to have a wider and more flexible range of

behaviors than might be the case for a linear system. A case in point is the avian

vocal system. In reference [87] it is demonstrated that, in addition to central

neural control, the intrinsic nonlinearly oscillatory dynamics of the avian vocal

organ expands the range and complexity of possible sounds. The syrinx of a bird

can produce a sequence of oscillatory states that are spectrally and temporally

complex in response to the slow variation of respiratory or syringeal parameters.

In similar research, the significance of nonlinear phenomena in mammalian vocal

production for generating highly complex vocalizations without requiring

equivalently complex neural control mechanisms is argued [88]. Also chaotic

vibrations are observed in vocal folds [89,90,91,92,93,94,95] and experimental

studies of excised larynges [96,97,98] and nonlinear dynamical analysis of

human voice [99,100] have demonstrated the existence of chaos in the human

voice production system.

 96

The speech waveform is an acoustic sound pressure wave that originates

from voluntary movements of anatomical structures, which make up the human

speech production system [101]. A basic simplified acoustic block diagram of

human speech production is shown in Fig. 10.1.

Fig. 10.1. A simple block diagram of the human speech production system.

The entire combination of all these speech production cavities is referred

to as the vocal tract and comprises the main acoustic filter. The vocal tract

provides resonance to human speech by changing its shape and dimension. The

vocal tract filter is excited by the organs below it, the vocal cords, lungs, etc., and

is loaded at its main output by a radiation impedance at the lips. The resonant

structure of the vocal tract selects different resonant frequencies from the input

excitation thereby producing different sounds [101]. There are two elementary

types of excitations, voiced and unvoiced. Voiced sounds are produced by

forcing air through the glottis or an opening between the vocal folds. The tension

of the vocal cords is adjusted so that they vibrate in oscillatory fashion. The

periodic interruption of the subglottal airflow results in quasi-periodic puffs of air

that excite the vocal tract [101]. Unvoiced excitations, producing unvoiced

sounds, are generated by forming a constriction at some point along the vocal

tract and forcing air through the constriction to produce turbulence [101].

 97

A trivial but not very effective method to transmit voice over a

communications network is to record the waveform of the voice and then to

transport the waveform. But this method generates too much communication

load on the network and requires a very high bandwidth, making it infeasible in

many applications. An alternative method is to extract a model for generating the

waveform and to transport the model once to the receiver, letting the receiver

synthesize the original waveform from the model and a reduced set of

transmitted data. Acoustic models are suitable for understanding the operation

of the speech production system; however to code and to synthesize speech,

DSP models are required. A common DSP model for the basic acoustic level

block diagram of Fig. 10.1 is illustrated in Fig. 10.2.

Fig. 10.2. DSP block diagram for the speech production system shown in
Fig. 10.1 [101].

In this block diagram, the vocal tract is replaced with a linear filter, H(z),

and the acoustic excitations are replaced by a train of periodic excitations for the

voiced sounds and a random noise sequence for unvoiced sounds

[101,102,103,104]. Linear predictive coding (LPC), which is the basis for many

speech coding techniques, can be used to extract an estimation for the filter H(z).

LPC is a very simple but effective method for coding voice and it assumes that

 98

each sample of a voice can be predicted with a linear combination of its past

samples. The linear coefficients are the parameters of the filter. These few

coefficients can be sent to receiver as an estimation for the filter. The remaining

question is how to excite the filter. For unvoiced sounds the excitation is a

random-like signal. However for voiced sounds, although they are periodic, there

are slight cycle-to-cycle variations in the periodicity of the excitations as well as in

their amplitude. Sending the excitation waveform to the receiver is not an option

because the excitation waveform takes just as many bits as the original speech

waveform, so that this would not provide any compression. Various attempts

have been made to encode the excitation waveform in an efficient way. The

most successful methods use a codebook, or table of typical excitation

waveforms, which is set up by the system designers. In operation, the sender

applies all possible excitations to the filter in the unvoiced sound case, or

usesthese excitations to perturb the periodic excitation in the voiced sound case,

and then compares the synthesized waveform with the original waveform and

chooses the excitation waveform that results in the best approximation of the

original signal. This principal for determining the optimal excitation signal is

called Analysis by Synthesis (AbS), signifying that the encoding (analysis) is

performed by perceptually optimizing the decoded (synthesis) signal in a closed

loop. Since the receiver has the same codebook, the sender sends the index of

the optimal excitation waveform to the receiver and the receiver excites the filter

by use of this excitation signal to synthesize the speech signal.

This stored codebook introduces a bottleneck in improving the CELP

algorithm, since a codebook cannot be arbitrarily large because it will occupy too

 99

much memory. It also slows down the CELP algorithm because it requires a

memory fetch to read the long excitation sequences from memory [101,102].

10.1 CELP

For our purposes, a wide-sense stationary frame of speech, s(n), will be

taken as one whose mean and autocorrelation do not change over time. It can

ideally be characterized by a pole-zero system transfer function of the form [101]:

Θ(z) =Θ0

1+ b(i)z−i
i=1

L∑
a(i)z−i (21)

However, for analytical reasons, the transfer function,

€

Θ(z), is approximated by

an all pole transfer function [101]:

Θ
^
(z) =Θ0

1

1− a
^
(i)z−i

i=1

M

∑
 (22)

The estimates

€

a
^
(i) are the coefficients of the linear prediction (LP) model and

constitute a parametric representation of the filter. In the time domain we have:

€

s(n) = a(i)
i=1

I

∑ s(n − i) +Θ0e
' (z)

 (23)

Thus the name linear prediction comes from the fact that s(n) can be predicted

using a linear combination of its past values driven by a phase-altered version,

e’(n), of the excitation signal, e(n) [101]. To obtain optimal values of the

parameters

€

a
^
(i), the root mean square criterion is used. In this method I

minimize the expected value of the squared error [101,102]:

 100

min E{e

^ 2

(n)}, e
^
(n) = s(n)− s

^
(n) = s(n)− a

^
(i)s(n − i)

i=1

M

∑ (24)

and it results in the normal equation:

€

a
^
(i)rs(η − i) = rs(η)

i=1

M

∑
 (25)

where rs is the temporal autocorrelation of s(n). Different techniques have been

introduced for solving normal equations; here the well-known Levinson recursion

is used to solve the equation and to obtain the coefficients of the filter [101].

After computing the LP filter and reverse filtering the speech waveform, the

signal e’(n) is obtained. Notice that this signal is not just the excitation signal; it is

more like a residue signal, the difference between the LP coefficient-weighted

sum of past values of the signal and the original signal,

Θ0e
' (z) = s(n)− a(i)s(n − i)

i=1

I

∑ . The main part of this residue is the excitation;

however the model error is included too.

An estimation of the pitch period can be obtained by computing the

autocorrelation of this residue signal. If the peak value of the computed

autocorrelation is less than some threshold, I conclude that the speech signal is

unvoiced, else the index value of the peak represents the pitch period of the

periodic excitation. This estimation of the pitch period will be improved by

exhaustive search around this initial estimation.

A schematic of this CELP algorithm is presented in Fig. 10.3. First

LP analysis is used to compute the LP synthesis filter. To shape the coding

noise, a perceptual weighting filter is used to adjust the error between the

 101

synthesized speech and the original speech to emphasize differences of

physiological relevance:

 𝑤 𝑧 = ! !

! !
!

 𝐴 !
!
= 1 − 𝑎!

!
!

!!
−⋯− 𝑎!

!
!

!!
 (26)

and 𝑎!
 are the LP coefficients.

To synthesize the excitations, a pitch synthesis filter, Θ!is used:

 Θ! =
!

!!!"!!
 (27)

and the time-domain output of this filter, which is the excitation to the LP filter, is:

 𝑒 𝑛 = Θ!𝜌! 𝑛 + 𝑏𝑒(𝑛 − 𝑝) (28)

Here Θ! is the gain, k is the index of excitation waveform in the codebook, ρ!(n)

is the kth sample of the excitation waveform k in the codebook, b is a parameter

controlling how strongly past excitations influence the current value, 0<b<1.4,

and p is the pitch period. These parameters need to be selected so that the

energy of the perceptually weighted error between the speech and synthetic

speech is minimized. The optimal value of p is obtained by exhaustive search

around the initial estimation of pitch period and b is obtained based on p. Θ! and

k are chosen by exhaustive search of the Gaussian codebook to minimize the

energy of the error.

 102

Fig. 10.3. Schematic of the CELP algorithm.

10.2 Chaotic Excited Linear Predictor

The selection of a suitable random excitation is one of the key factors in

the performance of the CELP algorithm. In the CELP algorithm described above,

a codebook that is a collection of Gaussian random waveforms is used to provide

the method with a suitable suite of random sequences to minimize the error

signal. The CELP algorithm is commonly used in mobile systems where memory

is a restriction. Thus the codebook cannot be arbitrarily large. This limits the

number of random waveforms that can be stored in the codebook. The other

problem with codebooks relates to the fetching and reading times from a device’s

memory. Reading from memory is always slow in comparison to processing.

Since the CELP method reads all the random waveforms from the codebook and

 103

applies them to the filter one by one to find the optimal one, the codebook access

bandwidth and latency produce a bottleneck in the speed of the algorithm.

Here I demonstrate a chaos-excited linear predictor or ChELP algorithm

in which I substitute the random-seeming chaotic orbits generated from a simple

chaotic map for the random waveforms stored in a codebook [105]. The

presence of nonlinearity and chaotic behavior in human speech production

system has often been reported and studied [89,90,91,92,93,94,95,96,97,98,

99,100], however chaotic dynamics has not been widely exploited in speech

coding and artificial speech production systems. A chaotic map can be as simple

as the logistic map, which requires just two multiplications and one subtraction to

produce each waveform sample:

 xn+1 = rxn (1− xn) (29)

Notice that there is no need to store the random-seeming iterations of the

map in a codebook; instead the processor can generate them while it is coding

the speech. Additionally the generation of the orbit requires so little computation

that, practically speaking, it will be faster than reading the orbit from the memory.

Different random-seeming waveforms can be generated from a chaotic

map just by changing the initial conditions. Therefore the initial conditions can be

used as indices for the excitation waveform. In the sender, when the ChELP

algorithm finds a suitable waveform, it would send the initial condition along the

other ChELP parameters to the receiver. The receiver would then use the initial

condition to reproduce the same time series. Note that in speech processing the

speech is encoded and synthesized frame by frame, and thus the excitations are

 104

short waveforms as well. Therefore the chaotic orbit will not be long enough so

that noise, in this case the difference in rounding errors from the sending

processor to the receiving processor, dramatically changes the orbit.

Since in chaos-excited linear predictor coding the chaotic orbits are not

stored and memory is not an issue any more, chaos-excited linear predictor

coding can exploit and search a higher number of chaotic orbits to find better

random-like excitations, in the sense of less error.

In the human speech production system there is no random number

generator; instead the vocal tract bends to produce turbulence, which is a

random-seeming excitation. This is very similar to the approach I take in the

chaos-excited linear predictor, and therefore I can claim that the approach I

introduce here is more biologically oriented than the original CELP.

To test the idea, replace the codebook in Fig. 10.3 with a simple logistic map.

The index to identify and to generate the random-like excitations is the initial

condition of the logistic map. (Here I have repeatedly used the terms random-

seeming or random-like to denote the output of a chaotic map. In reality this

output is highly deterministic. Nevertheless it shares many qualities in common

with random numbers; so much so that many random number generators are in

fact based upon chaotic generating functions. In what follows I will simply use

the word random, but always with the caveat explained here.) In the logistic map

there is a tuning parameter, r. By setting r = 4, I get the maximum amount of

randomness from the map. The simulation results are shown in Fig. 10.4. Three

phrases, “chaos computing”, “applied chaos lab”, “nonlinear speech processing”,

denoted by S1, S2, and S3, and spoken by two different speakers, are the

 105

benchmark. I choose the power of the error signal, which is weighted by the

perceptual filter introduced in Eq. (26), as the measure for evaluating the

performance. White bars represent the power of the error signal when sentences

are coded and synthesized by use of a codebook containing 512 Gaussian

random waveforms, and grey bars represents the power of error signal when 512

orbits of the Logistic map are used for coding. The power of the error signal is in

the same range as that of the Gaussian codebook. As we see, a very simple and

primitive chaotic map can perform almost as well as the state of the art codebook

of Gaussian random waveforms.

0

2

4

6

8

10

12

14

16

18

20

Er
ro

r S
ig

na
l P

ow
er

S1S1 S2 S2S3 S3
Second SpeakerFirst Speaker

Fig. 10.4. Three sentences, S1, S2, and S3, spoken by two different speakers,

are used for evaluating the performance. White, grey, and black bars represent

the power of the perceptually-weighted error signal when a Gaussian code book,

the Logistic map, and a coupled map lattice are used for excitation, respectively.

 106

To investigate the interrelationship between the amount of chaotic

behavior in a map and the performance of ChELP, in Fig. 10.5 I plot the power of

perceptually weighted error signal of the ChELP algorithm in synthesizing the

speech signal versus the Lyapunov exponent of the map. The Lyapunov

exponent quantifies the degree of chaos in the system. To obtain this plot I

change the bifurcation parameter of the logistic map, and for each bifurcation

value, I compute the Lyapunov exponent and the error of the ChELP in modeling

speech. This error is plotted versus the Lyapunov exponent. Notice that at some

values of the Lyapunov exponent I have more than one data point. The reason is

multiple bifurcation parameters can result in the same Lyapunov exponent and

as a result I have more than one error for such values of the Lyapunov exponent.

The overall trend is that as the Lyapunov exponent increases, the error of ChELP

in synthesizing speech reduces. This result motivates us to investigate more

highly chaotic maps; to do this I examine a coupled map lattice (CML) to

produce the excitations.

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8

70

80

90

100

110

120

130

Lyapunov Exponent

Er
ro

r S
ig

na
l P

ow
er

Fig. 10.5. Power of perceptually weighted error signal of ChELP algorithm versus

different values of Lyapunov exponent. As the Lyapunov exponent increases, the

algorithmic error reduces.

 107

A CML is an array of normal chaotic maps coupled together [106]. Here

by increase of lattice size the dimensionality of the chaotic orbits of individual

nodes increases [106]. The dynamics of the CML I study in this research is:

 un+1(i, j) = (1−ε) f (un (i, j))+
1
4
ε f (un (i

', j '))
nn i' , j '
∑ (30)

where (i’, j’) are nearest neighbors of (i, j). The function f(x) is the chaotic map,

and in this research it is simply the logistic map introduced in Eq. (24). is

coupling strength between nodes, here I simply set it to be 0.4. I use torus

topology for the CML, therefore boundary conditions will not be an issue here.

The orbits of any node can be used as the excitations. However the sender and

receiver should use the same node for generating the excitations.

For generating high dimensional excitations I use CMLs of different sizes.

A CML of size 8x 8 improves the performance of ChELP and makes it as efficient

as Gaussian noise excited linear predictor. The power of error of 8 x 8 CML-

excited ChELP is depicted in Fig. 10.4 by black bars. Since each node is a

simple iterated map, simulating a lattice of 64 of such iterated maps is not

computationally intensive.

As described earlier, the initial condition of the chaotic system needs to

be sent to the receiver as an index to produce the correct excitation. The

problem with a CML is that, for an L× L CML-based ChELP, I need L× L

individual initial conditions for all the different nodes in the lattice. This larger

number of initial conditions adds an overhead to the bandwidth of the

communication system and reduces the compression ratio of the algorithm. The

 108

solution I use here is take a single number as a seed index and to use a function

to generate different initial conditions of the nodes in CML from that seed index.

Both sender and receiver share the same function and thus by sending the single

seed index the receiver will be able to initialize the CML in the exact way that the

sender did and therefore the CML will provide the same excitation for the

algorithm. An ideal function for this purpose can be a pseudorandom number

generator, where the seed index is fed to the function as the initial seed. The

first random numbers produced by the generator can be used as the initial

conditions for the nodes of the lattice. Unfortunately good pseudorandom

number generators are not fast and require too many CPU clock cycles for

practical use and thus will reduce the performance of the CML ChELP in terms of

speed. However our studies show that even a very simple and basic generator

function is enough to produce different initial conditions for the nodes from a

single seed index. The function I use in this research to compute the initial

condition of node (i, j) in a CML of size from given seed index value, k: is

 x0 (i, j,k) =
i× j × k

L× L× kmax
 (31)

where k=1,2,…,kmax and i, j=1,2,…,L. By use of this function I can initialize

different nodes to numbers between 0 and 1. This function is very efficient for

small CMLs, but when the size increases, correlations between different nodes of

the CML appear. Worse, excitations initiated by nearby index values are also

highly correlated, which means that subsequent excitations of the lattice will not

be independent. As a result the CML fails to provide the algorithm with a diverse

 109

set of excitations, and therefore the performance reduces. Fig. 10.6(a) shows the

mean squared error versus L. Increasing L increases the error. Based on our

further investigations it turned out that by use of a small sized CML that is

initialized by use of function in Eq. (31) I can get almost the same amount of

performance when a large sized CML initialized by use of a pseudorandom

number generator is used. The mean squared error of CML CELP algorithm

versus lattice size L, when the lattice is initialized by use of a pseudorandom

number generator is illustrated in Fig. 10.6(b). Based on these performances, I

conclude that a small CML initialized by use of function in Eq. (31) is the optimal

choice for producing the excitation. It is small, therefore it requires fewer CPU

clock for simulating the lattice, and by use of a very simple function for initializing

it provides the algorithm with highly diverse excitations, which results in a very

low error in coding.

0 5 10 15 20 25 30

3

3.5

4

4.5x 10−4

Lattice size L

Er
ro

r

0 5 10 15 20 25 30

3

3.5

4x 10−4

Lattice Size L

Er
ro

r

 a b

Figure 10.6. (a) The error of CML versus lattice size when the function in

Eq. (31) is used for initializing the CML. (b) The error of CML versus lattice size

when a pseudorandom number generator is used for initializing the CML.

Here chaotic excited linear predictor method for speech coding and

synthesizing was introduced. In this method instead of stored random waveforms

 110

a chaotic map was used to generate random-seeming waveforms upon demand.

I started from a simple chaotic map and the initial condition of the map is used as

an index to produce different waveforms and the same index is sent to the

receiver to generate and use the same waveform. To compare the performance,

I synthesize a sample speech signal once by use of a codebook filled with

Gaussians random numbers, and then I code and synthesize the same waveform

by use of the chaotic orbits of the simple chaotic map. We observed that the

performance of the new method is almost as good as the conventional CELP.

For further improvement of the method I used a CML for producing excitations.

The CML is initialized by use of a single index and a simple function, and the

index is sent to the receiver to produce the same excitation. The root mean

square error of this CML based CELP is the same and even slightly less than

that of the original CELP method. The main advantages of chaotic excitation

linear predictor are: 1- Since the waveforms are generated online there is no

memory limitations and a more number of waveforms can be used to find better

excitations resulting in better performance. 2- The waveforms are not read from

a memory, and they are generated by a just a few basic machine instructions,

therefore the new method can be faster than the previous method. 3- The new

method is more biological oriented. 4- CMLs are known to model the turbulence

and we already know the turbulence in our speech production system produces

the random like excitations. Therefore the current work introduces the possibility

of direct estimation of random like excitations in speech waveform by use of a

CML.

 111

CHAPTER 11

LOGICAL STOCHSTIC RESONANCE AND SYNTHETIC BILOGY

11.1 Logical Stochastic Resonance

Logiscal Stochastic Resonance (LSR) is a new dynamics-based direction

in computation [107,108,109,110,111]. In the field of electrical engineering, with

the present tendency to scale down each element in the circuit toward the

nanometer region, noise has become an element that cannot be eliminated or

neglected. Noise is relevant to both circuit characterization and functionality. For

instance, noise immunity in an electrical circuit has become the recurring

objective of significant research efforts in this field. Similarly, in biology, when

working in nano-scale dimensions and with a small number of elements, small

fluctuations may greatlly affect the system behavior. In traditional circuits, noise

can cause logic gates to fail and not behave according to truth tables. The

common approach is to find a solution that reduces the noise intensity in order to

obtain as stable and predictable a performance as possible.

Consequently, it is counterintuitive that noise would enhance the stability

and predictability of a circuit. Instead of conceiving noise as a disturbance, a

possible approach to noise is to exploit it. In order to undergo LSR, a

nonlinearity—such as a bistable potential function—and a noisy signal have to be

present.

The typical logic gate-the core of a digital circuit-is a system that converts

two inputs into a single output that corresponds to a particular logic function. An

AND gate, for example, will output a “one” only if both inputs are “one”; on the

other hand, an OR gate will output a “zero” only when both inputs are “zero”. The

 112

necessary bistability is related to the two possible output values that the logic

gate can have: “zero” or “one”.

To explain the main idea of LSR, let’s imagine our logic gate as a bistable

potential function. Because the potential function is bistable, its shape will have

two steady states (we can define them as the left and right wells) and an

unstable state (obviously between the two steady states). The difference

between the potential function value at the unstable state and the potential

function value at one of the two steady states is called a barrier. If the potential

energy function is symmetric, the calculated barrier with respect to the left state

is equal to the calculated barrier with respect to the right state. On the contrary,

if the potential function is asymmetric, the two barriers will have different values.

Moreover, if the noise intensity is comparable to the barrier value, the system will

have the correct amount of energy to randomly overcome the barrier and to

change its well. For the logic gate functionality, an asymmetric configuration is

preferable. In accordance with the truth table, a deeper barrier characterizes the

desired output value.

Now consider a noise intensity that allows the system to switch from the

“wrong” stable state to the “correct” stable state (the one with a deeper barrier).

The same noise intensity will not be sufficient to let the system to switch back in

a reasonable time (because the “correct” well will have a deeper barrier, higher

than the noise intensity value). Finally, the measured output state will be the one

according to the truth table.

 113

Fig. 11.1: The two asymmetric potential function configurations. In the left panel

the “zero”output value is expected, while in the right panel the “one” output

values is expected.

What has been explained since now is the behavior generated by the

interplay between bistability and noise. LSR exploits this phenomenon in order to

create a morphable logic gate, robust to noise. With the Logical Stochastic

Resonance we are in the presence of a single system that can switch between

two logic gates. To better understand LSR, consider a general SDE:

x = F(x,a,b,...)+Dnξ (t) (32)

where x is the measured output, while F is related to the potential function

represented in Fig. 11.1, and Dnx(t) is the term that represents the presence of

noise. In particular, F depends on several parameters (for example a and b in Eq.

(32)). To implement the LSR paradigm, the input signal is encoded by adjusting a

parameter of the nonlinear function (for example adjusting a). As explained

previously, in this work I am encoding the sum of our two logical inputs, this

 114

means that I will need only one parameter (as suppose it will be a), instead of

two parameters as in the traditional case. At the same time, a tuning control

parameter is needed to switch between the two logic gate functionalities; in our

particular case, to switch between the AND gate to the OR gate (for example, b

is the parameter).

Changing and tuning the parameters a and b means to adjust the

potential function asymmetry (see Fig. 11.1) in a way that the system is able to

exploit noise in order to jump from the “wrong” well to the “correct” well. With

performance I define the ratio of the success in realizing the desired gate over

the number of attempts. This ratio is the probability of realizing the desired gate.

Eq. (32) is a general form that describes the LSR paradigm. According to

the particular implementation of the LSR, the function F in Eq. (32) will assume

different forms, moreover all the variables and parameters will have different

meanings.

Here I want to apply the LSR paradigm to a single gene network, where

the noise is always present and the computing paradigm must be robust to the

high level of noise.

11.2 Creating Logical Stochastic Resonance in an Engineered Gene

Network

The LSR paradigm is adapted to a synthetic gene network derived from

the bacteriophage λ [112,113,114,115]. Consider, first, a deterministic model

describing the temporal evolution of the concentration of protein in a single-gene

network from bacteriophage λ. Bacteria and their temperate phages, like

Escherichia coli (E. coli) and λ, exist in symbiotic relationships. After the virus λ

 115

infects the bacteria, its evolution proceeds down one of two pathways: lytic

(wherein the λ replicates its DNA autonomously, assembles virions and lyses the

host) and lysogenic (wherein the phage DNA is incorporated into the host

genome) [113,114]. Hence, the bacteriophage λ GRN displays bistability in the

choice of one of the two pathways with the characteristics of its stable attractors

adjustable by changing the system parameters. Such binary decision-making has

also been demonstrated by a gene network with positive feedback loop [115].

Following this, LSR uses the data inputs to adjust the (relative) depths of the two

(stable) wells of the potential energy function so that the well representing the

desired output (as defined by the truth tables [109]) of the computation becomes

deeper than the other well. In the bacteriophage λ GRN the two main (adjustable)

parameters to implement LSR are α (related to the basal rate of production of the

repressor CI), and γ (proportional to the degradation rate of CI) [115]. Hence, the

logic inputs sets ((0,0), (0,1)/(1,0), and (1,1)) are encoded via α, and control

inputs representing the type of computation (AND or OR gates), are encoded

through γ. This leads us to a reconfigurable GRN-based logic device whose

workings are underpinned by the interplay between its (intrinsic) nonlinearity and

the noise [115,116]. The output of the computation can be decoded from the final

state of the dynamical system; this is 0 or 1 depending on the potential well that

the system settles into. Precise definitions of α and γ are provided later in this

work. Our system is a DNA plasmid consisting of a promoter region PRM that

regulates the cI gene. This promoter consists of three tandem operational sites,

OR1, OR2 (activated transcription) and OR3 (repressed transcription). These

genetic elements provide a positive feedback loop. Bistability is reached in the

 116

system only when a correct mutual relation between the production and the

degradation of protein is realized. Operatively, the logic gate inputs can be

adjusted in several ways, e.g. via the bacteriophage response to UV light [117],

while the gate reconfiguration can be obtained by varying the degradation term

through its response to temperature changes [118,119].

The biochemical reactions that control λ phage are very well

characterized [10,16]. They are, naturally, divided into fast and slow categories

(table V). Then, defining the concentrations of network components as dynamical

variables, x = [X], x2 = [X2], d0 = [D], d1 = [D1], d2 = [D2D1], and d3 = [D3D2D1], it is

possible to write the evolution of the concentration repressor CI for the monomer

and dimer forms:

x = −2k1x
2 + 2k−1x2 + nkt p0 (d1 + βd2)− kxx + εd0

x2 = k1x
2 − k−1x2 − kyx2

 (33)

where the concentration of RNA polymerase, p0, is assumed to remain constant

over time, ℰ is the basal production rate of the repressor CI, and Ki =ki/k−i are

equilibrium rate constants (i=1, . . . , 4). To accurately model the evolution of the

chemical species x, I can sum x and x2 to consider the total number of

biomolecules. The system can be reduced by exploiting the fact that the

dimerization reactions occur on a time scale that is much faster than the other

reactions [115,116].

 117

Table V: Biochemical reactions of the presented network are summarized. X, X2,

and D denote the repressor, the repressor dimer, and the DNA promoter site,

respectively; Di denotes dimer binding to the ORi site, and in order, each fast

reaction is characterized by a rate constant: K1, K2, K3 = σ1K2, and K4 = σ2K2. σ1

and σ2 represent the binding strengths relative to the dimer OR1 strength. Slow

reactions are the transcription, dilution and the degradation (with rates kt, ky =

kx/20 and kx): P denotes the concentration of RNA polymerase, n is the number

of repressor proteins per mRNA transcript. The dimer occupation of OR2

enhances the transcription rate of a factor β >1 and it appears only in the second

slow biochemical reaction.

Fast Reactions Slow Reactions

X+X⇔X2 D1+P → D1+P+nX

D+X2⇔D1 D2D1+P → D2D1+P+nX

D1+X2⇔D2D1 X → f

D2D1+X2⇔ D3D2D1 X2 → f

After considerable calculations I obtain, in terms of the dimensionless

variables x
~
= x K1K2 , t

~
= trK2

4
 and 𝑟 = ℰ𝑑! (I have suppressed the overbar on

x):

x = (α −1)x2 +σ1(αβ −1)x4 −σ1σ 2x

6

(τ + x)(1+ x2 +σ1x
4 +σ1σ 2x

6)
+
1−γ x −γ yx

2

τ + x
+ Dnξ(t)

 (34)

 118

where I set α = nkt p0dT
r

, γ = kx
(K1K2 r)

, γ y =
2ky
(rK2)

, τ =
K1K2

4K1
and I have

added a noise term representing, phenomenologically, the fluctuations affecting

the system. In addition, I set (and retain throughout this work) the degree of

transcriptional activation as β = 11, the equilibrium constant for cI dimerization as

K1 =0.05 (nM)-1, the equilibrium constant for cI –OR reaction as K2 =0.33 (nM)−1,

the binding affinity for cI dimer to OR2 relative to OR1 as σ1 =2, and the binding

affinity for cI dimer to OR3 relative to OR1 as σ2 =0.08 to maintain the connection to

biologically accessible parameter ranges [114,119]. Here, I focus on the

(additive) external noise that can stem from random variations in the (external)

control parameters. ξ(t) is zero-mean Gaussian noise (<ξ(t)> = 0), and I assume

that random fluctuations have correlation time scale smaller than any other

reaction time scale in the system, so that the noise can be taken to be delta

correlated, i.e., <ξ(t)ξ(t’)> = δ(t−t’), with Dn being the measure of the noise

intensity. Equation (33) is the core of the computing model.

The potential function of the (deterministic, i.e. ξ(t) =0) system in Eq. (33),

U(x) (fig. 11.2), is obtained analytically by integrating the right-hand side of (29)

with α and γ the two accessible parameters (taken in the regime of bistability).

The plotted curves of U(x) represent the most robust configuration in the limited

range of parameters, α and γ, germane to the biological system in the bistable

configuration. Several simulations have been made to exhaustively search (in the

parameter space) the most robust configuration of parameters that yields the

best logic gate performances. For the “conventional” LSR paradigm [109,120], I

obtained (numerically) α=7.8, 9.1, and 10.4 (respectively, for (0, 0), (0, 1)/(1, 0),

 119

and (1, 1)), and γ =41.9 yields the AND gate and γ =36.5 the OR gate as the

control input for programming the gate.

Fig. 11.2. Potential functions for different data inputs for the AND gate

(left panels) and the OR gate (right panels), using the modified LSR paradigm

(see text) (the two upper panels), and the “conventional” LSR paradigm [4] (the

two lower panels). The red curve represents the (0,0) case, the blue curve

represents the (0,1)/(1,0) cases, and the black curve is for (1,1) case. Values in

the accessible parameter range, related to the most robust configuration (see

text), have been chosen.

With these α and γ values, the stochastic differential Eq. (33) is solved via

the Euler-Maruyama method on the dimensionless interval [0, 7000]. In

simulations, it is observed that 7000 is longer than the mean escape time

required to switch from the “wrong” to the “correct” (depending on the desired

logic outcome) well; this time length also ensures the expected logical output for

 120

a large number of trials. However, the fundamental observation is that the

desired logical output occurs consistently and robustly only in an optimal range of

noise values, in line with the tenets of stochastic resonance [121,122]. In the

absence of a noise floor, this model does not work correctly; orbits may be

trapped in the wrong well. Increasing the noise intensity beyond its optimal range

leads to random switching between wells and the output no longer conforms to

the truth tables. To quantify this behavior with respect to noise in this (designed)

logic gate I measured its performance as defined as the ratio of success in

realizing the desired gate over the total number of attempts; this ratio is the

probability of realizing the desired gate and is shown (for OR and AND gates) in

Fig. 11.3. I note that the probabilities in the left panel of Fig. 11.3 do not take the

value unity, in contrast to the results presented in [109]. This can be traced back

to the structure of the potential function for this GRN model, which is bistable

only in a restricted regime of parameter values [115]; hence this model does not

yield enough dynamic range to realize a failure-free implementation of the LSR

paradigm. Moreover, in our performance definition, for each noise value I have

checked the agreement between the simulated logical outputs for all the three

data inputs ((0, 0), (0, 1)/(1, 0), and (1, 1)) and the respective truth table values of

the gate under study. If one of the outputs does not realize the desired gate, I

mark that as a failure. If, for example, we consider one of the panels in Fig. 11.2

for each noise value the least robust potential configuration (among the three

plotted) will have the highest influence on the performance quality of this

considered gate. This procedure is repeated 500 times. Different combinations of

parameters have been tried, but unsuccessfully, because of the restricted

 121

dynamic range implicit in the model and the biological properties that are

endemic to bacteriophage λ. This has lead us to propose a new version of the

LSR principle, via a manipulation of the “conventional” LSR principle [109], to

achieve a bacteriophage λ configuration that is still biologically correct.

As detailed above, the LSR paradigm works in the range of α and γ

parameters that induce bistability, and for all the distinct logic input sets (0,0),

(0,1), (1,0) and (1,1). To “adjust” the bacteriophage λ to conform to the LSR

paradigm implies limiting the parameter interval to a narrow region. In the

enhanced LSR paradigm, the idea is to encode inputs as parameters of the GRN

model so that the undesired well (almost) disappears and to take advantage of

stochastic resonance for the cases where the unwanted well cannot be removed

from the potential function, U(x). The second case usually happens when the

inputs are (0,1)/(1,0). With this proposed model, we are still working in a

parameter interval that is biologically meaningful, without restricting our study to

the bistable region [115]. In other terms, it can happen that the (0,0) or (1,1)

cases can be realized when U(x) is monostable as shown in Fig. 11.2 (red curve

of the upper left panel). By “controlling” the second parameter, γ, we can deepen

either well selectively; hence with the appropriate amount of noise, trajectories

will switch to the deeper well and remain there. This updated model for

computing is, underpinned by the (numerically obtained) data inputs α=6.3, 9.8,

and 13.1. I note now that γ = 50 yields the AND gate and γ = 36 the OR gate. All

numbers for the α definition and the γ values have been obtained through several

simulations (as mentioned above). The potential functions for AND and OR gates

for different data inputs are presented in Fig. 11.2 (lower panels) with the

 122

probability of realizing these gates, using the modified paradigm, shown in Fig.

11.3 (right panel). I note that the two gates are robust to noise in the same range

of noise and amenable to the design of a morphable logic gate; in addition we

observe a range of noise intensities for which P(logic) = 1. The enhanced LSR

paradigm yields greater robustness to external fluctuations.

Fig. 11.3. Performance of logic gates OR and AND using the “conventional” LSR

paradigm [109] (left), and the modified paradigm (see text) (right). α and γ values

as in the text.

Fig. 11.4. Performance of logic gates AND (left) and OR (right) vs. noise intensity

Dn, and α. γ values as in the text.

 123

Finally I note that, to obtain the best performance in the logic gates, two

possible solutions can be assessed: the change of noise intensity [123,124] or

the variation of the parameter values, thereby adjusting the system dynamics to

an optimal configuration, so that P(logic)∼1 as desired; for a nonlinear system

this is tantamount (as already noted earlier) to changing the transfer

characteristic, thereby “tuning” the noise. In Fig. 11.4, the gate performance is

plotted vs. noise intensities and α values (while γ =50 for the AND gate and γ =36

for the OR gate). For a fixed value of noise (for example the one mandated by

nature) it is possible to select the “best” α value. It is interesting to note that (for

our particular choice of model parameters) if noise intensity values are in the

[0.7, 1] regime, there is a reasonably large range of α values for which P(logic)

∼1, as desired.

 124

CHAPTER 12

DISCUSSIONS

In this research I introduced a different direction for computation and

demonstrated how the library of patterns and behaviors of a chaotic system can

be used in computation. Different digital functions can be built based on a chaotic

system.

Here I introduced a new analytical analysis for chaos computing using

periodic orbits and UPO theory. A direct connection (in terms of UPOs) between

computational functionality of a chaotic system and the dynamics of the chaotic

system was introduced. Based on the connection one can obtain the functionality

and robustness of a chaotic system in doing computation from the dynamical

equations of the system.

Furthermore, I showed how one can obtain and estimate the functionality

and robustness of a chaotic system in doing computation just by using a time

series without knowing the exact dynamical equation of the system. The main

idea is reconstruct an UPO-based approximation for the chaotic system and use

it for estimating the functionality and robustness. The simulation results showed

that based on an UPO-based approximation one can easily obtain the

functionality of the underlying chaotic system and estimate the robustness of

these functions.

After studying single Chaogates, I proposed a new computer architecture

to put the Chaogate together to build a sophisticated computing system out of

them. The new computer has a flexible instruction set, in which the user can load

his desired optimal one to the computer. Such flexibility enables the computer to

 125

meet the requirements of the application. For example, for statistical

computation, an instruction set suitable for statistical calculation can be loaded to

maximize the performance. For digital signal processing a suitable instruction set

for DSP can be loaded. Furthermore, a user can have his own customized

instruction set.

A software for simulating the hardware was developed to test the

architecture and to demonstrate the capability of the hardware in running

different instruction sets. C++ language was used to develop the simulator.

Object oriented features of the C++ enables us to represent the architecture in

terms of its basic blocks like wires, chaos based logic blocks, pins, registers, etc.

A C++ class was defined for any type of component used in the architecture. For

any instance of the defined component type (class) which is used in the

architecture, an object was declared. The inputs to the hardware simulator were

(1) Instruction set (2) program in terms of binary instructions.

This hardware simulator is a critical step in chaos computing, first it

demonstrated how and how well the single chaos based logic blocks can be

combined to build a processor, and second it bridges the software simulations to

the physical hardware fabrications.

Apart from digital computation, it is explained how a chaotic system can

be used in speech coding and synthesizing and it is demonstrated that such a

chaos-based coder can be efficient than conventional methods like CELP. In our

chaos based excited linear predictor coding method, chaotic systems were used

for exciting a filter that models the vocal tract. The main advantages of chaos

excited linear predictor are: 1- Since the waveforms are generated online there is

 126

no memory limitations and a more number of waveforms can be used to find

better excitations resulting in better performance. 2- The waveforms are not read

from a memory, and they are generated by a just a few basic machine

instructions, therefore the new method can be faster than the previous method.

3- The new method is more biological oriented. 4- CMLs are known to model the

turbulence and we already know the turbulence in our speech production system

produces the random like excitations. Therefore the current work introduces the

possibility of direct estimation of random like excitations in speech waveform by

use of a CML.

As another approach for digital computation, I implemented and

enhanced LSR in a GRN, specifically, the bacteriophage λ. The resultant

computing device is able to work as an AND or OR gate interchangeably in the

presence of noise. LSR on a GRN, that has the capability of being reconfigured,

could be combined, in the near future, with other logic modules (done by different

sets of input/output signals) to increase the computational power and

functionality of an engineered GRN.

The research and the results of this thesis open new doors to us and new

threads of research have already started following it. The main topics of future

research areas are listed below.

Fabricating chaos-based processor is one of the main aims to reach after

graduation. As a part of Ph.D. project, a hardware simulator software was

presented for a chaos based computer. This hardware simulator is very

beneficial in physical fabrication of the processor, because it defines and

simulates the processor in terms of a group of basic blocks that have been

 127

already fabricated. So far different circuit implementations have been introduced

for the chaos-based logic block [57,58,59,60,61] and a proof of concept VLSI

implementation is presented [125]. However it might be required to introduce a

new VLSI fabrication for the chaos based logic block, which is more compatible

with the introduced computer architecture. There are hardware description

languages like VHDL or Verilog, which can synthesize the architecture by use of

provided library of layouts for the basic blocks, used in the architecture. The

hardware simulator software I developed is very similar to a VHDL program that

describes the architecture in terms of its blocks. Therefore having such a

software in hand will make developing the VHDL program easy in this stage of

the work. The output of the hardware description language will be a layout for

fabricating a chaos based processor chip.

Another filed of research following this thesis is extending the UPO and

time series analysis introduced in chapters 4-8 to higher dimensional chaotic

maps and chaotic flows.

In chapters 4-6 it is demonstrated how the functionality and the

robustness of a one-dimensional chaotic map in computation can be obtained

from its UPOs. The techniques can be extended to be higher dimensional system

and flows too. As to future work, the focus will be on improving, adapting, and

changing the introduced techniques to derive the instruction set of a given higher

dimensional chaotic map or chaotic flow from its dynamic equations and to

estimate the robustness of these systems in performing computation.

Also in chapters 7 and 8 it was presented how one can obtain and

estimate the instruction set and the robustness of the instruction set of a given 1-

 128

D map from a given time series. With some modifications these techniques can

be applied to higher dimensional chaotic maps and flows as well. In the future

these techniques will be improved to be applicable to higher dimensional chaotic

maps and flows as well.

Designing a new LSR based computer is another future project. Herethe

idea of logical stochastic resonance is explained and it was adapted to a GRN

model. The constructed logic block was able to build simple functions like AND or

OR. To perform sophisticated computations a group of these blocks are required

to work together. In chapter 9 the idea of designing a new architecture for a

chaos-based computer was introduced. The exact same architecture will not be

applicable to the LSR paradigm, because chaos computing and LSR have

different instruction sets and timings. However a similar architecture can be

developed for the LSR computing paradigm.

 129

REFERENCES

1 G. Ifrah, The Universal History of Numbers: From Prehistory to the Invention of

the Computer, (John Wiley & Sons Inc, New York, 2000).

2 A. S. Brooks, and C. C. Smith, The African Archaeological Review 5, 65 (1987).

3 Royal Belgian Institute of Natural Sciences, WWW document,
(http://www.naturalsciences.be)

4 D. Schmandt-Besserat, Documenta Praehistorica 26, 21 (1999).

5 G. Ifrah, The Universal History of Computing: From the Abacus to the Quantum
Computer, (John Wiley & Sons, New York, 2001)

6 Computer history museum, Mountain View, California, WWW document,
(http://www.computerhistory.org/revolution/artifact/37/131)

7 R. Bud and D. J. Warner, Instruments of science: an historical encyclopedia,
(Garland, New York, 1998)

8 Cultural China, WWW document, (http://kaleidoscope.cultural-
china.com/en/137K6K6434.html)

9 T. Freeth, Tony; Y. Bitsakis, X. Moussas, etc., Nature 444, 587 (2006).

10 National Archaeological Museum, Athens, WWW document,
(http://odysseus.culture.gr/h/4/eh430.jsp?obj_id=5582)

11 The astrolabes, WWW document, (http://astrolabes.org/)

12 T. Oxley, The Celestial Planispheres Or Astronomical Charts, (Kessinger
Publishing, Whitefish, 2010)

13 J. Evans, History and practice of ancient astronomy, (Oxford University Press,
Oxford, 1998)

14 The Babbage engine, WWW document,
(http://www.computerhistory.org/babbage/modernsequel/)

15 The science museum, London, WWW document,
(http://www.sciencemuseum.org.uk/)

16 G. C. Chase, IEEE Annals of the History of Computing 2, 204 (1980).

 130

17 MIT online museum, WWW document, (http://webmuseum.mit.edu)

18 V. Bush, F. D. Gage and H. R. Stewart, Journal of the Franklin Institute 203, 63
(1927).

19 D. R. Hartree, nature 146, 319 (1940).

20 G. O’Regan, A Brief History of Computing, (Springer-Verlog, London, 2008).

21 C. E. Shannon, Transactions of the American Institute of Electrical Engineers
57, 713 (1938).

22 S. Sinha and W. L. Ditto, Phys. Rev. Lett. 81, 2156 (1998).

23 S. Sinha and W. L. Ditto, Phys. Rev. E 60, 363 (1999).

24 A. Miliotis, K. Murali, S. Sinha, W. L. Ditto and M. L. Spano, Chaos, Solitons &
Fractals 30, 809 (2009) .

25 K. Murali, A. Miliotis, W. L. Ditto and S. Sinha, Phys. Lett. A 373, 1346 (2009).

26 W. L. Ditto, A. Miliotis, K. Murali, S. Sinha and M. L. Spano, Chaos 20, 037107
(2010).

27 J. P. Crutchfield, W. L. Ditto and S. Sinha, Chaos 20, 037101 (2010).

28 H. R. Pourshaghaghi, R. Ahmadi, M.R. Jahed-Motlagh, B. Kia Int. J. of
Bifurcation and Chaos 20, 715 (2010).

29 K. Murali, S. Sinha, and W. L. Ditto, Pramana Journal of Physics 64, 433
(2005).

30 J. Guckenheimer, and P. Holmes, Nonlinear Oscillations, Dynamical Systems,
and Bifurcation of Vector Fields, (Springer-Verlag, New York, 1993).

31 S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,
(Springer-Verlag, New York, 2003).

32 P. A. Corning, complexity 7, 18 (2002).

33 P. Weiss, The living system: Determinism stratified. In: Beyond reductionism:
New perspectives in the life sciences; A. Koestler, J. R. Smythies, Eds. (The
Macmillan Co, New York, 1969).

 131

34 J. Goldstein, Emergence as a Construct: History and Issues. Emergence 11,

49 (1999).

35 R. C. Hilborn, Chaos and nonlinear dynamics, second edition, (Oxford
university press, New York, 2000).

36 C.E. Shannon, , Bell System Technical Journal 27, 379 (1948).

37 M.R. Jahed-Motlagh, B. Kia, W.L. Ditto, S. Sinha, Int. J. Bifur. Chaos 17, 1955
(2007).

38 R. L. Devaney, An introduction to chaotic dynamical systems, (Westview
press, Boulder, 2003).

39 E. Ott, Chaos in dynamical systems, (Cambridge university press, New York,
1993).

40 H. D. I. Abarbanel, Analysis of observed chaotic data, (Springer-Verlag, New
York, 1996).

41 E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).

42 W. L. Ditto, S. N. Rauseo and M. L. Spano, Phys. Rev. Lett. 65, 3211 (1990).

43 K. Pyragas, Continuous Control of Chaos by Self-controlling Feedback, Phys.
Lett. A 170, 421 (1992).

44 B. R. Andrievskii and A. L. Fradkov, Automation and Remote Control 64, 673
(2003).

45 E. A. Jackson, and I. Grosu, Physica D 85, 1 (1995)., vol. 85,

46 J. Alvarez-Gallegos, J. Dynam. Control 4, 277 (1994).

47 A. Babloyantz, A. P. Krishchenko, and A. Nosov, Comput. Math. Appl. 34, 355
(1997).

48 L. Q. Chen, and Y. Z. Liu, Nonlin. Dynam. 20, 309 (1999).

49 C. Grebogi and Y. C. Lai, IEEE Trans. on circuits and systems-I 44, 971
(1997).

50 S. Sinha and D. Biwas, Phys. Rev. Lett. 71, 2010 (1993).

 132

51 D. C. Dracopoulos and A. J. Jones, Neural Comput. Appl. 6, 102 (1997).

52 D. P. A. Greenwood, R. A. and Carrasco, IEE Proc. Commun. 147, 285 (2000).

53 K. Tanaka, T. Ikeda, H. O. Wang, IEEE Trans. Circ. Syst. I 45, 1021 (1998).

54 L. Pecora and T. Carroll, Phys. Rev. Lett. 64, 821 (1990)

55 N. F. Rulkov, M. M. Sushchik, and L. S. Tsimring, Phys. Rev. E 51, 980 (1995).

56 H. D. I. Abarbanel1, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528
(1996).

57 K. Murali, S. Sinha, W. L. Ditto, IJBC (Letters) 13, 2669, (2003).

58 K. Murali, S. Sinha, W. L. Ditto, Phys. Rev. E 68, 016205, (2003).

59 K. Murali, S. Sinha ,W.L. Ditto, Pramana-J. Phys. 64, 433 (2005).

60 M. R. Jahed-Motlagh, and B. Kia, IEEE Asia Pacific Conference on Circuits
and Systems, 1826 (2007).

61 H. R. Pourshaghaghi, B. Kia, W. L. Ditto, M. R. Jahed-Motlagh, Chaos,
Solitons and Fractals 41, 233 (2008).

62 H. R. Pourshaghaghi, R. Ahmadi, M. R. Jahed Motlagh, B. Kia, IJBC 20, 715
(2010).

63 D. Auerbach, P. Cvitanovic, J.-P. Eckamnn, G. H. Gunaratne and I. Procaccia,
Phys. Rev. Lett. 58, 2387 (1987).

64 P. Cvitanovic, Phys. Rev. Lett. 61, 2729 (1988).

65 P. Cvitanovic, Physica D 51, 138 (1991).

66 R. Artuso, E. Aurell, P. Cvitanovic, Nonlinearity 3, 325 (1990).

67 R. Badii, E. Brun, M. Finardi, L. Flepp, R. Holzner, J. Parisi, C. Reyl, and J.
Simonet, Rev. Mod. Phys. 66, 1389 (1994).

68 R. Gilmore, The Topology of Chaos: Alice in Stretch and Squeeze Land, (John
Wiley & Sons Inc., New York, 2002).

69 V. Patidar, Electronic Journal of Theoretical Physics 3, 29 (2006).

 133

70 B. Kia, M. L. Spano and W. L. Ditto, Phys. Rev. E 84, 036207 (2011).

71 “Chaotic computer design using time series”, B. Kia, M. Spano, W. L. Ditto,
submitted to Physical Review E.

72 “Unstable periodic orbits and the effect of noise in chaos computing”, B. Kia,
W. L. Ditto, M. Spano, Submitted to Chaos (invited paper to special focus
issue).

73 F. Christiansen and A. Politi, Phys. Rev. E 51 3811 (1995).

74 Y. Hirata, K. Judd, D. Kilminster, Phys. Rev. E 70, 016215 (2004).

75 M. Casdagli, Physica D 35, 335 (1989).

76 J. McNames, in Proceedings of International Workshop on Advanced Black-
Box Techniques for Nonlinear Modeling (Leuven, Belgium, July 8-10, 1998).

77 C. Maxfield, The design warrior’s guide to FPGAs: Devices, tools and flows,
(Elsevier, Amsterdam, 2004).

78 W. L. Ditto, and T. Munakata, Communications of the ACM 38, 96 (1995).

79 R. T. Sataloff and M. Hawkshaw, Chaos in Medicine: Source Readings,
(Singular Publishing Group, San Diego, 2001).

80 J. N. Weiss, A. Garfinkel, M. L. Spano and W. L. Ditto, J. Clin. Invest. 93, 1355
(1994).

81 M. Varela, R. Ruiz-Esteban, M. J. M. De Juan, Perspectives in Biology and
Medicine 53, 584 (2010).

82 A. Garfinkel, J. N. Weiss, W. L. Ditto and M. L. Spano, Trends in
Cardiovascular Medicine 5, 76 (1995).

83 A. Garfinkel, M. L. Spano, W. L. Ditto and J. Weiss, Science 257, 1230 (1992).

84 J. P. Crutchfield, W. L. Ditto and S. Sinha, Chaos 20, 037101 (2010).

85 E. Bollt, IJBC 13, 269 (2003).

86 E. Bollt and Y.C. Lai, Phys. Rev. E 58, 1724(1998).

87 M. S. Fee, B. Shraiman, B. Pesaran and P. P. Mitra, Nature 395, 67 (1998).

 134

88 T. Fitch, H. Herzel, J. Neubauer, and M. Hauser, Anim. Behav. 63, 407

(2002).

89 J. Awrejcewicz, J Sound Vibrations 136, 151 (1990).

90 H. Herzel, Appl Mech Rev. 46, 399 (1993).

91 D. A. Berry, H. Herzel, I. R. Titze and K. Krischer, J Acoust Soc Am. 95,
3595(1994).

92 H. Herzel, D. Berry, I. Titze and I. Steinecke, Chaos 5, 30 (1995).

93 P. Mergell, H. Herzel, I. R. Titze, J Acoust Soc Am. 108, 2996 (2000).

94 Jiang JJ, Zhang Y, Stern J. J Acoust Soc Am. 110, 2120 (2001).

95 Y. Zhang, J. J. Jiang, Acoust Soc Am. 115, 1266 (2004).

96 D. A. Berry, H. Herzel, I. R. Titze and B. H. Story, J Voice 10, 129 (1996).

97 J. G. Svec, K. S. Harm and D. G. Miller, J Acoust Soc Am 106, 1523 (1999).

98 J. J. Jiang, Y. Zhang Y and C. N. Ford, J Acoust Soc Am 114, 1 (2003).

99 R. J. Bake, J Voice 4, 185, (1990).

100 A. Kumar and S. K. Mullick, J Acoust Soc Am. 100, 615 (1996).

101 J. R. Deller, J. H.L Hansen, and J. G. Proakis, Discrete- Time Processing of
Speech Signals, (IEEE Press, New York, 1993).

102 W. Kleijn, D. J. Krasinki, and R. H. Ketchum, IEEE Trans. on acoustic,
speech. and signal processing 38, 1330 (1990).

103 I. McLoughlin, R. Chance, Electronic Letters 33, 743 (1997).

104 L. M. Dasilva, A. Alcaim, IEEE Signal Processing Letters 2, 44 (1995).

105 B. Kia, W. L. Ditto, M. Spano, Chaos for Speech Coding and Production, C.M.
Travieso-Gonzalez and J.B. Alonso-Hernandez (Eds.), LNAI 7015, 270
(Springer, Heidelberg, 2011)

106 T. Bohr, O. B. Christensen, Phys. Rev. Let. 63, 2161 (1989).

 135

107 A. R. Bulsara, A. Dari, W. L. Ditto, K. Murali, and S. Sinha, Chem. Phys. 375,

424 (2010).

108 A. Dari, B. Kia, A. R. Bulsara, and W. L. Ditto, Europhys. Lett. 93, 18001
(2011).

109 K. Murali, S. Sinha, W. L. Ditto, and A. R. Bulsara, Phys. Rev. Lett. 102,
104101 (2009).

110 A. Dari, B. Kia, X. Wang, A. Bulsara, W. L. Ditto, Phys. Rev. E 83, 041909
(2011).

111 “Logical stochastic resonance with correlated internal and external noises in a
synthetic biological logic block”, A Dari, B. Kia, A. Bulsara, W. L. Ditto,
Submitted to Chaos (invited paper to special focus issue).

112 H. H. McAdams and L. Shapiro, Science 269, 650 (1995).

113 A. D. Johnson, A. R. Poteete, G. Lauer, R. T. Sauer, G. K. Ackers and M.
Ptashne, Nature 294, 217 (1981).

114 M. Ptashne, A Genetic Switch: Phage λ and Higher Organisms, 2nd edition
(Cell Press & Blackwell Scientific, Cambridge, Mass.) 1992.

115 J. Hasty, J. Pradines, M. Dolnik M. and J. J. Collins, Proc. Natl. Acad. Sci.
U.S.A. 97, 2075 (2000).

116 J. Hasty, F. Isaacs, M. Dolnik, D. McMillen and J. J. Collins, Chaos 11, 207
(2001).

117 V. K. Kumar, O. Lockerbie, S. D. Keil, P. Ruane, M. Platz and C. Martin,
Photochem. Photobiol 80, 15 (2004).

118 S. Atsum and J. W. Little, Proc. Natl. Acad. Sci. U.S.A. 103, 19045 (2006).

119 F. J. Isaacs, J. Hasty, C. R. Cantor and J. J. Collins, Proc. Natl. Acad. Sci.
U.S.A. 100, 7714 (2003).

120 D. Guerro, A. R. Bulsara, W. L. Ditto, S. Sinha, K. Murali and P. Mohanty,
Nano. Lett. 10, 1168 (2010).

121 K. Wiesenfeld and F. Moss, Nature (London) 373, 33 (1995).

 136

122 A. R. Bulsara and L. Gammaitoni, Phys.Today 49, 39 (1996).

123 T. Lu, M. Ferry, R. Weiss and J. J. Hasty, Phys. Biol. 5, 036006 (2008).

124 K. F. Murfy, R. M. Adams, X. Wang, G. Bal´azsi and J. J. Collins, Nucl. Acids
Res. 38, 2712 (2010).

125 W. L. Ditto, A. Miliotis, K. Murali, S. Sinha, Review of Nonlinear dynamics and
Complexity 3, 1 (2010).

