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ABSTRACT  

   

Overcrowding of Emergency Departments (EDs) put the safety of patients 

at risk. Decision makers implement Ambulance Diversion (AD) as a way to 

relieve congestion and ensure timely treatment delivery. However, ineffective 

design of AD policies reduces the accessibility to emergency care and adverse 

events may arise. The objective of this dissertation is to propose methods to 

design and analyze effective AD policies that consider performance measures that 

are related to patient safety. 

First, a simulation-based methodology is proposed to evaluate the mean 

performance and variability of single-factor AD policies in a single hospital 

environment considering the trade-off between average waiting time and 

percentage of time spent on diversion. Regression equations are proposed to 

obtain parameters of AD policies that yield desired performance level. The results 

suggest that policies based on the total number of patients waiting are more 

consistent and provide a high precision in predicting policy performance.  

Then, a Markov Decision Process model is proposed to obtain the optimal 

AD policy assuming that information to start treatment in a neighboring hospital 

is available. The model is designed to minimize the average tardiness per patient 

in the long run. Tardiness is defined as the time that patients have to wait beyond 

a safety time threshold to start receiving treatment. Theoretical and computational 

analyses show that there exists an optimal policy that is of threshold type, and 

diversion can be a good alternative to decrease tardiness when ambulance patients 

cause excessive congestion in the ED. Furthermore, implementation of AD 
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policies in a simulation model that accounts for several relaxations of the 

assumptions suggests that the model provides consistent policies under multiple 

scenarios. 

Finally, a genetic algorithm is combined with simulation to design 

effective policies for multiple hospitals simultaneously. The model has the 

objective of minimizing the time that patients spend in non-value added activities, 

including transportation, waiting and boarding in the ED. Moreover, the AD 

policies are combined with simple ambulance destination policies to create 

ambulance flow control mechanisms. Results show that effective ambulance 

management can significantly reduce the time that patients have to wait to receive 

appropriate level of care. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

National expenditures in healthcare in the United States reached 16.2 % of 

Gross Domestic Product in 2008, and it is projected to be 19.3% by 2019 

according to the Centers for Medicare and Medicaid Services of the United States 

Department of Health and Human Services (2010). Despite increasing 

expenditures and advances in medical service and technology, several areas of the 

healthcare delivery system face major issues regarding the effectiveness, quality 

and safety of service (National Academy of Engineering and Institute of Medicine 

2005). One of the areas with problematic performance is the Emergency 

Department (ED).  

EDs are the most common place where unforeseen illness or injury are 

diagnosed and treated (American College of Emergency Physician 2007). The 

performance of EDs in the United States has long been discussed due mainly to 

the overcrowding and the resultant consequences, such as long waiting times, 

long periods on ambulance diversion, long boarding time periods, high rate of 

patients leaving without treatment and adverse events occurring on patients 

requiring emergency assistance (Fatovich and Hirsch 2003). A report from the 

United States General Accounting Office (2003) highlights congestion of EDs in 

the United States and relates the congestion to three main indicators: ambulance 

diversion (AD), patients leaving without treatment (LWOT) and high number of 

patients boarding. Regarding the first indicator, the definition found in the 
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document implies that hospitals request that ambulances bypass their facilities, 

transporting the patients whose original destination was that ED to another 

emergency facility. 

AD statistics shown in the report suggests that nearly 70% of the EDs that 

took part in the study went on diversion status at some point during fiscal year 

2001 and about 10% were on diversion at least 20% of the time (United States 

General Accounting Office 2003). The regions with longer AD periods 

correspond to highly populate metropolitan statistical areas (MSA). These 

conclusions are very similar to the analysis shown by Burt et al. (2006) where 

they suggest that there was an ambulance diverted every minute in the United 

States in 2003. The Centers for Disease Control and Prevention through their 

Advance Data from Vital and Health Statistics (now called National Health 

Statistics Report) reveals that in 2003-04 the mean annual hours on diversion was 

242.7 per hospital. However, the mean annual hours on diversion among the EDs 

that reported any period of AD was 403.9; which is the equivalent of 16 entire 

days on AD status (Centers for Disease Control and Prevention 2006b). This same 

report indicates that 2.7% of the surveyed hospitals were on AD more than 20% 

of operating time and also suggests that large-size hospitals (large number of beds 

and high occupancy rate) tend to spend more hours on AD. 

Some common factors that influence the decision to go on AD are the lack 

of inpatients beds, the high numbers of ED patients waiting, the complexity of ED 

cases and the high number of boarding patients (Centers for Disease Control and 

Prevention 2006b; Asplin 2003). This decision is usually made by nursing staff, a 
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hospital administrator or a medical director (Centers for Disease Control and 

Prevention 2006b) and it varies across different providers and even among 

different hospitals of the same stakeholder. Despite the impact of the AD decision 

in the public health context, there is a lack of quantitative assessment showing 

that decisions are made with effectiveness, quality and safety of service all. 

Therefore, it is necessary to analyze the pros and cons of diversion in order to take 

advantage of the benefits and reduce the risk caused by overcrowded EDs. 

1.2 Literature Review 

1.2.1 Analysis of AD from the medical perspective 

  The medical literature has a great number of publications discussing the 

causes of AD and its impact not only on the performance of the ED, but also on 

the health condition of diverted patients. A comprehensive review of AD and its 

effects show that AD is tightly related to ED crowding and its contributing 

factors, such as increased patient complexity and acuity, increased patient 

volume, inpatient bed unavailability, delays in the use of supporting equipment 

and even patient language and cultural barriers (Pham et al. 2006). This same 

review relates AD with other secondary causes, which includes the lack of 

specialty services, facilities and patient preferences. On the other hand, among the 

consequences of AD, Green (2008) indicates that for each additional hour of 

ambulance diversion, there is an increased mortality of about 3% of patients 

suffering from acute myocardial infarction. In general, a great proportion of the 

medical literature criticizes the use of AD as a solution to ED congestion because 
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of the risks incurred by longer transportation (American College of Emergency 

Physician 2008).  

  It is reasonable to think that diverting ambulances from EDs might not be 

a safe decision for the diverted patient, but under certain conditions, longer 

transportation time could be compensated by a shorter waiting time inside the 

facility of another ED. In this case, the patient might be seen by a doctor sooner in 

the new hospital than by being accepted into a saturated ED. Nevertheless, policy 

makers in some regions have passed laws that prohibit the use of AD. There is 

evidence that these “no ambulance diversion” policies adopted in some areas 

across the United States have put strain on the operations of crowded EDs. For 

instance, hospitals in Massachusetts have seen a rise in the waiting times of ED 

patients and a greater number of patients boarding in inappropriate areas after this 

type of policy was implemented in that state (Massachusetts Nurses Association 

2009).  

Therefore, AD deserves a discussion about its potential benefits and under 

what conditions they can be met. Interestingly, some researchers have already 

highlighted the importance of AD and concluded that AD deserves to be studied 

in a deeper manner in order to be taken into account by policy makers. 

Specifically, they suggest linking AD with clinical outcomes, patient and provider 

satisfaction, quality-of-life measures, economic measures and quality 

management initiatives (Asplin 2003; Williams 2006).  

Currently, empirical studies analyzing AD on specific healthcare providers 

exists and the results and impact vary depending on their characteristics. For 
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instance, a 1999 study on a major hospital in Toronto, Canada revealed that AD 

increased with the number of patients boarding, the treatment time and the 

boarding time; however, authors did not find a relation between AD and staffing 

levels (Schull et al. 2003). Another study was conducted on an ED Level I trauma 

center that is part of a 400-bed acute care hospital; the findings include a 

reduction of 66% on hours of complete AD after an expansion of 67 beds in the 

ICU unit, implying the importance of inpatient bed availability in diversion 

performance (McConnell et al. 2005). This is particularly important given that 

ambulance patients are about three times more likely to need admission to the 

hospital than other types of ED patients (Burt et al. 2006). 

Other studies have been made to reduce AD in systems comprising 

multiple hospitals. Vilke et al. (2004a) show a project for minimizing AD hours in 

a system comprised by five hospitals located in San Diego County. The AD 

guidelines for these hospitals were redesigned and healthcare providers were 

asked to avoid the use of ambulance bypass. Previous the application of the 

project, the total number of hours on diversion in the system per week was 112.2 

hours. During the application phase, the hospitals were asked to avoid diversion; 

as a result, the total number of hours on diversion in the system decreased to 0.3 

hours/week. An extended project in this area during a longer period reinforced the 

results, i.e. there as a significant decrease in the average monthly hours on 

diversion (Vilke et al. 2004b). A similar study was applied and a new AD 

protocol was introduced in a county of 600,000 people and 10 hospitals in 

Wisconsin. This protocol limited the hours on AD to only 1 out of every 8 
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operational hours. As a result, monthly AD hours decreased by 251 hours 

(Asamoah et al. 2008). These studies strongly suggest that AD can be reduced if 

the guidelines to go on AD are designed so that there is an incentive to first take 

other types of actions to reduce ED saturation. The literature does not provide 

precise information about how these healthcare organizations achieved those 

levels; however, it can be inferred that significant changes in the system were 

applied. Thus, providers are required to search for solutions or changes that 

relieve congestion by limiting the number of hours to spend on diversion or being 

stricter in the guidelines to implement it. 

Another reason that could explain the substantial reduction in the multi-

hospital systems is the reciprocating effect of AD among EDs in the same 

geographic region. It has been observed that if one hospital goes on diversion, the 

traffic to neighboring facilities increases, often causing other hospitals to go on 

diversion as well. Therefore, enforcing minimizing diversion episodes in one ED 

is expected to reduce the AD periods in the surrounding EDs (Vilke et al. 2004a). 

In general, the medical community recommends avoiding diversion by 

using other mechanisms to relieve congestion; however, AD is still a practice 

used by a lot of emergency care providers. Therefore, it is important to analyze 

the settings where AD can achieve the best benefits possible; but having in mind 

that it is not a long-term solution and that changes in the health characteristics in 

the population demand more collaboration among providers (Lagoe and 

Jastremski 1990). 
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1.2.2 Analysis of AD from systems engineering perspective 

EDs have been often subject of research in the last decade, especially 

because of the problems described earlier; therefore, the number of publications 

that models the ED system and looks at its performance is very extensive. Most of 

this literature relies on the analysis of waiting time, LWOT, and capacity or 

staffing planning; furthermore, the methods usually applied include queuing 

theory and simulation. However, AD still is a relative unexplored area. Reasons 

for this may include the complexity of the problem, the local characteristics of the 

system and the priority given to other types of problems and solutions. The 

analytical work done on AD includes the application of logistic regression to 

compare a designed work score based on the number of patients waiting and 

boarding to predict ambulance diversion (Epstein and Tian 2006). Kolker (2008) 

applies discrete-event simulation to analyze the relationship between AD and 

patients waiting for treatment in the ED with the length of stay, where it was 

found that reducing the length of stay (LOS) could significantly reduce AD 

percentage. 

  Queuing theory has been applied to model AD when diversion policies are 

based on the number of patients boarding (Allon et al. 20011). This research 

models the hospital as a 2 station process (ED and an inpatient unit) to develop 

two approximations (heavy traffic and fluid) that will explain the important 

structural characteristics of the hospital related to diversion performance. The 

observations made in this research include a method to identify the bottleneck in 
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the system, which can be the ED or the inpatient unit depending on the structural 

properties. 

On the other hand, the issues and complexity of modeling the ED and the 

diversion policy using analytical methods, such as birth-death process and the 

potential of game theory, have been highlighted. These methods have been used 

to suggest the need of a regulator agent to incentivize and penalize to the 

hospitals, allowing the cooperation strategies among different emergency care 

providers (Hagtvedt et al. 2009). 

In addition, Deo and Gurvich (2011) propose a queuing network approach 

to analyze the average waiting time for two hospitals in an emergency system. 

The authors found that a centralized design of diversion policies is Pareto 

improving compared to not diverting at all. 

In summary, the existing literature that provides quantitative assessment to 

AD suggests that this action could bring benefits to the system and improve 

overall performance. However, the structure of optimal AD policies has not been 

deeply explored. Furthermore, methodologies for the appropriate design of AD 

policies and analysis of the effects of AD on ED performance are scarce and do 

not consider many unique characteristics of emergency care delivery systems. 

This dissertation proposes methods based on simulation and optimization 

to design and evaluate the effectiveness of AD policies. Moreover, the models 

proposed capture important complexities and relations in emergency care systems 

and the performance metrics are directly related to patient safety and satisfaction. 
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1.3 Description of the Chapters and Contributions 

 Several methodologies for the design and analysis of AD policies are 

presented in the following chapters. Chapter 2 presents a methodology based on 

simulation for the analysis of mean performance and variability of AD policies. 

This methodology includes graphical and quantitative methods to analyze policies 

with periodic and continuous review of the state of the system. The policies are 

compared in terms of patient average waiting time and percentage of time spent 

on diversion. The analysis of mean performance is analyzed through bi-criteria 

plots and Integrated Preference Functional (IPF) measures, which assess the 

identification of the policies with best performance. The analysis of variability 

includes simultaneous confidence ellipses and computation of coefficient of 

determination to observe the consistency of different policies. This chapter 

contributes to existing literature in proposing a structure of single-threshold AD 

policies and analyzing the tradeoff between service and accessibility to 

emergency care. In addition, the chapter proposes an equation based on regression 

to determine the appropriate threshold on one state variable to go on diversion. 

 Chapter 3 introduces a Markov Decision Process model to optimize the 

long run average expected tardiness per patient using AD. Opposed to the 

manufacturing setting, the expected tardiness is defined as the time that patients 

wait beyond a recommended safety time threshold. The model includes important 

characteristics in patient mix, service times and the knowledge of the time to be 

seen in another hospital. Theorems and analysis of the structural properties of 

optimal policies are also presented. In addition, the chapter presents a simulation 
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model with relaxed assumptions and compares different AD heuristics. The 

results show that AD can decrease significantly the average time to start 

treatment, which may be translated to higher safety. The methods presented in this 

chapter are one of the first studies that compute and analyzes the structural 

properties of optimal AD policies. Therefore, this chapter contributes to the 

existing literature by proposing a model that determines the optimal policy of a 

hospital and that is robust enough to handle the main characteristics in EDs. 

 Chapter 4 proposes the combination of simulation and genetic algorithm to 

design the AD policies of multiple hospitals simultaneously. These methods 

overcome the scalability issue of the methods presented in the previous chapter. 

The chromosome of the genetic algorithm represents the parameters of the AD 

policies for each hospital in an emergency care delivery system. Two types of 

policies are explored: single-factor and multiple-factor AD policies. In addition, 

the AD policies are combined with ambulance destination policies that determine 

which hospital a patient should be transported to. The combination of diversion 

and destination policies acts like an ambulance flow control mechanism that 

allocates patient to appropriate ED. The objective is to minimize the time that 

patient spend in activities that delay receiving the appropriate level of care. These 

activities include transportation, waiting in the ED and boarding in the ED. This 

chapter contributes to existing literature by proposing methods that allows the 

simultaneous design of effective AD policies for multiple hospitals. Moreover, the 

performance metric referred as average-patient non-value added time and the 
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structure of the chromosomes for the genetic algorithm represent a different 

approach to traditional methods and metrics used in the evaluation of AD policies. 

 Finally, Chapter 5 presents the overall conclusions and the most 

significant findings are remarked. Additionally, future research opportunities are 

identified. 
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CHAPTER 2 

BI-CRITERIA ANALYSIS OF SINGLE-FACTOR 

AMBULANCE DIVERSION POLICIES 

2.1 Introduction 

 As stated in the previous chapter, AD has been highlighted as a 

concerning issues in emergency care in the United States and in other countries 

around the world. Several papers and articles identify the main causes that 

contribute to trigger the diversion status. Some of these causes include the lack of 

inpatient beds, the high numbers of ED patients, the complexity of ED cases and 

the number of boarding patients (Asplin 2003; Centers for Disease Control and 

Prevention 2006b). The decision of going on AD is usually made by nursing staff, 

a hospital administrator or the medical director of a hospital (Centers for Disease 

Control and Prevention 2006b) and it varies across different providers and even 

among different hospitals of the same stakeholder. An interesting question 

becomes how to quantitatively assess the effectiveness, quality and safety of the 

decisions. This chapter uses a methodology based on simulation and analyzes the 

performance of different diversion decision policies in bicriteria space. The 

criteria chosen represent two of the main performance indicators of EDs: the 

percentage of time the ED is on diversion and the patient average waiting time. 

These criteria imply a trade-off between the timeliness of the service and 

accessibility to emergency care. The rest of the chapter is structured as follows: 

Section 2.2 provides aspects found in the literature regarding AD, Section 2.3 

presents the proposed study, starting by defining the problem and scope and 



  13 

introducing the framework utilized to analyze AD policies, Section 2.4 describes 

the simulation model developed, the definition of the diversion policies and the 

experiments designed, Section 2.5 presents the results, Section 2.6 discusses the 

implications of AD and the potential application of the methodology and finally 

Section 2.7 provides conclusions and future research directions. 

2.2 Literature Review 

 EDs have often been the subject of research in the last decade, especially 

because of the problems described earlier; therefore, the number of publications 

that model the ED system and look at its performance is quite extensive. Most of 

that literature has focused on patient waiting times, the number of patients leaving 

without treatment (LWOT), and capacity or staff planning. Some common 

methods applied include queuing analysis, systems dynamics and discrete-event 

simulation. For instance, queuing networks are used along with simulation to 

balance bed allocation in a large-size hospital (Cochran and Bharti 2006). In 

addition, queuing analysis is applied to redesign the service of EDs and to predict 

LWOT percentage based on traffic intensity (Roche and Cochran 2007; Cochran 

and Roche 2009; Broyles and Cochran 2007), as well to study the impact of a 4-

hour discharge rule in EDs (Mayhew and Smith 2008) and to define required 

staffing levels (Green et al. 2006). Other types of mathematical models, such as 

integer programming have been used to analyze staffing problems in the ED 

(Carter and Lapierre 2001). On the other hand, simulation is widely used due to 

its flexibility to handle the complex dynamics of EDs. For example, discrete-

event simulation is combined with data mining tools to analyze patient flows 
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given the variety in process requirements of the patients and to identify 

bottlenecks in the system (Ceglowski et al. 2007). Simulation is also employed as 

a tool to forecast overcrowding situations in the ED (Hoot et al. 2008), to evaluate 

modifications in the ED operations to avoid congestion given the prediction of 

arrivals (Meng and Spedding 2008), and to plan the implementation of changes in 

patient flow and buffer utilization to reduce waiting times (Wilhelm et al. 2008; 

Medeiros et al. 2008).  

 Nonetheless, quantitative assessment of AD has not been well studied. 

This is probably due to the complexity, subjectivity and localness of these 

decisions. However, there have been some initial attempts to address this issue. In 

(Kolker 2008), the length of stay of patients in AD is studied using simulation. It 

is concluded that the duration of the treatment of ED patients has a significant 

effect on the probability of going on AD. In (Ramirez et al. 2009a), distributed 

simulation is proposed to analyze the implementation of AD strategies in a 

regional healthcare delivery network. Simulation and design of experiments are 

integrated to analyze the performance of a large-size hospital, where it is found 

that the number of patients boarding and the ED configuration have a significant 

impact on the time spent on diversion (Ramirez et al. 2009b). Hagtvedt et al. 

(2009) highlights the complexity of modeling the ED and the diversion policy 

using birth-death processes and the potential of game theory to define an external 

agent that enables regulation of AD strategies between providers. 

 The medical literature includes publications discussing the impact of AD 

not only on the performance of the ED, but also on the health condition of the 
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patients and the capability of the emergency system to respond to emergencies. A 

review of AD and its effects shows that AD is tightly related to ED crowding and 

its contributing factors, such as increased patient complexity and acuity, increased 

patient volume, inpatient bed unavailability, delays in the use of supporting 

equipment and even patient language and cultural barriers (Pham et al. 2006). 

This same review relates AD with other secondary causes, which include the lack 

of specialty services, facilities and patient preferences.  

 Studies analyzing AD for specific healthcare providers show that results 

and impact vary depending on their characteristics. For instance, a study of a 

major hospital in Toronto, Canada during 1999 reveals that AD increased with the 

number of patients boarding, the treatment time and the boarding time; however, 

the association between AD and the staffing levels was not identified (Schull et al. 

2003). The findings from another study conducted in an ED Level I trauma center 

that is part of a 400-bed acute care hospital include a reduction of 66% in the 

hours on diversion after an expansion of 67 beds in the ICU unit, implying the 

importance of inpatient bed availability in the diversion performance (McConnell 

et al. 2005). This is particularly important given that ambulance patients are about 

three times more likely to need admission to the hospital than patients arriving by 

other modes (Burt et al. 2006). 

 In summary, the importance of AD has been well positioned in the 

literature. However, there is a lack of guidelines for making AD decisions. 

Though it is known that decision makers consider factors such as patients waiting, 

boarding and inpatient bed unavailability, the efficacy of the AD decisions  is not 



  16 

known, i.e., the impact of the decisions on the quality of service. This chapter 

proposes a methodology using discrete-event simulation to design AD policies 

based on the important factors and studies ED performance using a bicriteria 

approach. The criteria chosen are two of the main indicators seen in EDs 

evaluations: patient average waiting time, which is related to quality and safety of 

service; and percentage of time spent on diversion, which is related to 

accessibility.  

 The average waiting time in the EDs of the United States was 55.8 

minutes in 2006 (Centers for Disease Control and Prevention 2008). This statistic 

changes drastically depending on the region. For instance, one of the states that 

have suffered problems recently with the waiting time in EDs is Arizona, which is 

ranked 48 in the average time spent in the ED with 355 minutes (Press Ganey 

Report 2009). The percentage of time on diversion is the most common parameter 

to measure diversion performance. In the GAO report, the two most populous 

counties in Arizona were classified in the worst category regarding AD, having 

more than 25% of their hospitals on diversion more than 10% of the time (United 

States General Accounting Office 2003). Hence, both performance measures 

chosen for analysis are representative of common problems found in EDs across 

the United States, including the state of Arizona. Furthermore, waiting time is 

directly related to satisfaction of patients (Press Ganey Report 2009), which is an 

important consideration for the analysis of diversion policies (Asplin 2003). 
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2.3 Proposed Study 

 In this chapter, a framework involving three phases is proposed: (1) model 

development and design of experiments, whose objective is to construct the model 

and define the AD policies that will be studied, (2) the experimentation phase, 

which consists of executing the simulation model that collects information about 

the performance of the ED in the two criteria of interest and (3) analysis of 

results, which is divided in two parts: analysis of the mean performance and 

analysis of the variability. Figure 2.1 depicts the framework of the analysis and 

Sections 2.4 and 2.5 show the process in detail used in each phase. 

2.3.1 Model development and design of experiments 

 This chapter constructs a model of a fictitious hospital that includes an ED 

and an Inpatient Unit that captures the dynamics and complexity of the emergency 

care system across the United States. The product of this part is a model whose 

data is a realistic example that allows the virtual implementation of AD policies. 

 The AD policies of interest in this chapter are those that look at a single 

factor to decide whether or not to go on diversion. Hence, the parameters of the 

policies included in this study are related to a threshold that triggers the diversion 

status and a threshold or time-window that enables the re-evaluation of the system 

and/or removal of the AD status. The factors considered in this chapter are 

commonly mentioned in the literature as causes to go on diversion in practice 

(Centers for Disease Control and Prevention 2006b; Pham et al. 2006). They are: 

the total number of patients waiting in the ED, the total number of patients 

boarding and the number of beds available in the Inpatient Unit.  Once the AD 
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policies to be analyzed are defined, the next step is to design the experimentation 

process.   

 

 

Figure 2.1. Framework proposed to analyze AD policies in bicriteria setting. 
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2.3.2 Experimentation 

 This phase consists of adapting the simulation model to the AD policy and 

the instances of the policies defined. The simulation model collects statistics 

regarding the average waiting time of the patients in the ED and the percentage of 

time spent on diversion. 

2.3.3 Analysis of Results 

 This phase consists of the analysis of the results obtained from the 

execution of the simulation model under the treatments defined for each policy. 

The purpose is to compare and find the main differences across the policies and 

identify the policies that may offer more benefits or that are better aligned with 

the objectives of the provider. Therefore, the policies are evaluated in two aspects: 

the mean performance and the variability. 

Analysis of Mean Performance 

 This part utilizes Pareto Analysis of the solutions obtained by each policy 

to compare the mean performance. The methods proposed include the 

construction of bicriteria graphs that enable visualization of the mean 

performance for each policy considered. In addition, it suggests the computation 

of a metric that allows the numeric comparison of solution sets. The process of 

the analysis of mean performance is given by the following steps: 

1. Obtain the mean performance for the two criteria for every treatment in each 

policy. This implies obtaining the average for both criteria over all the 

replications. 
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2. Plot the mean performance for each treatment in bi-criteria space. This plot 

shows the behavior of the system under different policies. 

3. Compare policies by plotting the set of non-dominated solutions per policy 

and computing the value of the Integrated Preference Functional (IPF). The 

IPF is a quantitative measure for comparison of the quality of the policies in 

terms of the distance of the non-dominated solutions from the ideal point and 

the impact of those solutions on the set of Pareto solutions of the policy 

(Carlyle et al. 2003; Bozkurt et al. 2010). 

 The application of these steps facilitates to observe the differences in the 

mean performance of the different policies in graphical and numerical ways. 

However, decision makers are also likely to be interested in analyzing the 

consistency of a policy in the long term. The second part of the analysis proposes 

methods to analyze the variability of the results of different policies. 

Analysis of Variability 

 Similar to the analysis of the mean performance, the analysis of variability 

proposed allows graphical and numerical comparison of the variability obtained 

by the replications of the simulation model. The process of the analysis of 

variability is given by the following steps: 

1. Plot simultaneous confidence ellipses for each policy, considering the results 

of all the replications. The shape and density of the ellipses show the 

consistency of the performance for each policy. 

2. Apply regression analysis for each policy to determine the parameters of the 

policy that are significant for each criterion. The significant parameters should 
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be consistent with the observations made in the plot of the simultaneous 

confidence ellipses. 

3. Define clusters that contain the results for all the replications depending on 

the significant parameters.  

3. Obtain the coefficient of determination (R
2
) (Montgomery 2005) for the 

clusters of every policy considering two types of centroids: the mean of the 

results of the cluster and the predicted response obtained from the regression 

equation. This process allows one to determine the consistency, but also to 

evaluate the prediction capability of the regression equation. 

 These steps enable the decision maker to observe graphically and 

numerically the consistency in the long-term of different policies. In addition, it 

also evaluates the accuracy of regression equations to predict the performance of a 

given policy. The application of the methodology is explained in more detail in 

Section 2.5.  

2.4 Model Development and Implementation 

 The analysis of the impact of AD policies on waiting time requires 

building a robust model that considers the complexity of the system. This research 

proposes discrete-event simulation to perform this analysis given its flexibility to 

introduce arrival patterns, differences in acuity and length of stay and other 

factors contributing to the complex dynamics of EDs (Banks et al. 2010). 
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2.4.1 Simulation model 

 A model of a fictitious hospital, that contains the main elements of 

complexity, relations and flow of an ED, was created using discrete-event 

simulation. The simulation model was built in Arena version 12 (Kelton et al. 

2007). Information regarding national averages and literature of healthcare 

providers from Arizona was used for the inputs (Cochran and Bharti 2006; Roche 

and Cochran 2007; Cochran and Roche 2009).  

 This hospital comprises an ED with 20 beds, and an Inpatient Unit with 78 

beds. There are two arrival streams to the ED, which depend on the arrival mode. 

One stream belongs to ambulance arrivals and another to walk-ins. Before the 

ambulance patient enters the ED, the diversion status is observed. If AD is on, 

then the ambulance will be diverted, which is modeled by destroying the entity; 

otherwise, the patient enters the ED. The patients arriving by any mode are 

classified in one of five acuity levels (1-5), Level 1 being the most acute patients 

and Level 5 the least ill. If all the ED beds are occupied upon the arrival of a new 

patient, he/she will wait in a queue for being placed in a bed. The service 

discipline considered is based on priority given the acuity level. Therefore, 

patients of Level 1 receive the highest priority to be placed in a bed while patients 

of Level 5 have the lowest priority. If there is more than one patient of the same 

level, first come - first served is considered to assign beds. After concluding 

treatment time that depends on the acuity level, the patients can be admitted to the 

Inpatient Unit or be discharged.  
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 The Inpatient Unit receives patients from direct admission arrivals and 

transfers from the ED. The treatment time depends on the source of the patient 

(external vs. ED). If an ED patient requires admission to the Inpatient Unit, but 

there is not any available bed, the patient will wait in the ED bed until a bed of the 

Inpatient Unit is released; this is defined as the boarding situation. After receiving 

treatment in the Inpatient Unit, the patients are discharged. Figure 2.2 depicts the 

logic of this model. 

2.4.2 Data 

 Input data for this fictitious hospital was taken from national averages and 

from literature that models EDs. Since the arrivals to the ED represent an 

important factor for congestion, it is important to capture the dynamic nature of 

the arrivals usually seen in EDs. Several sources have highlighted the arrival 

pattern to EDs across the United States (Centers for Disease Control and 

Prevention 2008; Cochran and Roche 2009; Green 2006; Miller et al. 2009). 

 Therefore, the mean arrival rate to the ED being modeled depends on the 

time of the day and on the arrival mode. In this chapter, it is assumed that arrivals 

behave according to Poisson processes whose rates are based on a pattern seen in 

a real ED in Arizona (Cochran and Roche 2009).  
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 Figure 2.2. Logic of the model. 

 

 Figure 2.3 shows the mean arrival rate to the ED. It can be implied from 

this figure that average arrival rate to the ED is 6.4 patients/hour and that 

ambulance arrivals represent 15% of all the ED arrivals, which is consistent with 

national average of 15.4% (Centers for Disease Control and Prevention 2008). 

The use of Poisson process to represent the arrivals to EDs is a reasonable 

assumption given its properties, according to a discussion provided by Green 

(2006). 
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 Figure 2.3. Mean arrival rate to the ED. 

 Upon arrival, patients are classified according to their acuity level based 

on percentages shown in Table 2.1. This data is also based on information 

published by an analysis of a local provider (Cochran and Roche 2009). 

 

Table 2.1. Percentages of acuity mix. 

Arrival Mode 

Acuity Level Ambulance Walk-Ins Overall 

1 15 2 3.95 

2 42 16 19.90 

3 30 40 38.50 

4 10 30 27.00 

5 3 12 10.65 

Overall 15 85 

 

 Treatment time in the ED beds depends on the acuity level and it is 

assumed that it has an exponential distribution with mean shown in Table 2.2. 

These times are based on the same paper used to obtain arrival pattern (Cochran 

and Roche 2009). In addition, the average treatment time is similar to data found 

in other literature (Centers for Disease Control and Prevention 2006a). 
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Table 2.2. Mean treatment times in the ED. 

Acuity Level Mean Treatment Time (min) 

1 261 

2 261 

3 162 

4 90 

5 30 

 

 After receiving treatment in the ED, patients can be admitted to the 

hospital or be discharged. Probability of admission to the Inpatient Unit for an ED 

patient is assumed to be 15%, which is in the range of admissions commonly seen 

in literature (Centers for Disease Control and Prevention 2006a; Center for 

Disease Control and Prevention 2008). Patients requiring admission to the 

Inpatient Unit are transferred only if there is an available inpatient bed; otherwise 

they keep occupying the ED bed until transfer is made, thus the patient is 

boarding until a bed in the Inpatient Unit is released. 

 Information regarding the Inpatient Unit considers data from another 

paper of a provider in Arizona (Cochran and Bharti 2006), which models a whole 

hospital with thirteen units. The Inpatient Unit receives admissions from the ED 

but also direct admissions, whose time between arrivals are exponentially 

distributed with a mean of 10 hours. Treatment time in the Inpatient Unit also has 

an exponential distribution with a mean that depends on the source of the patient 

as shown in Table 2.3. Patients are discharged after receiving treatment in the 

Inpatient Unit. 
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Table 2.3. Mean treatment times in the Inpatient Unit. 

Patient Source Mean Treatment Time (hrs) 

ED 80 

Direct Admission 70 

 

 Patients leaving without treatment are a feature difficult to model. Papers 

that have studied LWOT found that it is difficult to determine the time that the 

patient leaves because ED administration is not informed of this decision; 

furthermore, methods to predict LWOT percentage are quite complex (Broyles 

and Cochran 2007). Nevertheless, it is important to include LWOT since those 

patients contribute to congestion while they are in the ED. This chapter uses the 

approach used in (Miller et al. 2009) where patients leave if they have not been 

placed on a bed after 24 hours upon their arrivals. Patients with acuity Level 5 are 

most likely to be affected under this scheme because they have the lowest priority 

to receive a bed if there are other patients in the system. Actually, the standards 

regarding patient classification recommend that a patient Level 5 should be 

treated between 2 and 24 hours after arrival (Centers for Disease Control and 

Prevention 2008), so this approach can be used also to measure the compliance 

with this guideline. 

2.4.3 Design of Ambulance Diversion Policies 

 The Advance Data from Vital and Health Statistics report from September 

2007 highlights the main reasons for going on diversion during 2003-04; the first 

place was the lack of inpatient beds and the second place was the (high) number 

of ED patients (Centers for Disease Control and Prevention 2006b). On the other 

hand, causes which have less importance include the complexity of the ED cases, 
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shortage of hospital and ED staffing and equipment failure. Other sources agree 

that these factors are the main contributors of AD, however, the number of 

patients boarding is also highlighted in some studies (Asplin 2003; Ramirez et al. 

2009b; Pham et al. 2006). Based on this information, diversion policies are 

considered based on one of these single factors. For this purpose, the following 

variables are defined: 

x: total number of patients waiting for a bed in the ED, x = 0, 1, 2, 3, . . . 

y: total number of patients boarding in the ED, y = 0, 1, 2, 3, . . ., BED. 

z: number of beds available in the Inpatient Unit, z = 0, 1, 2, 3, . . ., BIP. 

where, 

BED: number of beds in the ED. In this case BED = 20. 

BIP: number of beds in the Inpatient Unit. In this case BIP = 78. 

 The AD policies considered have the form: (Don, Doff), where Don is the 

threshold to set the diversion status on and Doff is the criterion to reevaluate or 

remove the AD status. The basic forms of the six policies studied in this chapter 

are presented in the following list: 

a) Form of policies P1, P3 and P5: (U., t). 

 Here, U. is a threshold on a state variable of interest to go on diversion. 

The state variable is x for P1, y for P3 and z for P5. Hence, diversion status is set 

on if at some point x > Ux for P1, y > Uy for P3 or z > Uz for P5. Once the ED has 

gone on diversion, the state of the system will be evaluated every t time units, 

until the decision to go off diversion is made. Diversion status will be removed 

when the state variable is smaller than the U. threshold. 
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b) Form of policies P2 and P4: (U., L.) 

 Similar to the previously defined policies, U. is the upper threshold on the 

state variable of interest to go on diversion (x for P2 and y for P4). On the other 

hand, L. is the lower threshold on state variable of interest to remove the diversion 

status. Hence, diversion is set on in a similar way to P1, P3 and P5; and it is 

removed as soon as the state variable is smaller than the L. threshold.  

c) Form of the policy P6: (Lz, Uz). 

 Since policy P6 is based on the number of available beds in the Inpatient 

Unit, the lower and upper thresholds defined for policies P2 and P4 are inverted 

for policy P6. Thus, diversion is set on as soon as z < Lz and will be removed 

when z > Uz. 

 It can be seen that P1, P3 and P5 imply a periodic review of the state of 

the system after the decision of going on diversion is made. On the other hand, 

P2, P4 and P6 imply a continuous review to remove the diversion state. In 

addition, these policies require that U. > L. Complete diversion is considered in 

this chapter. Thus, all ambulances that were supposed to arrive to the hospital will 

be diverted if the ED has the AD status on, regardless of the acuity level of the 

patient being transported.  

2.4.4 Experimentation Design 

 The model described in Section 2.4.1 is used to run experiments based on 

different levels of the Don and Doff parameters of the six policies defined in 

Section 2.4.2. For every policy, (Don, Doff) levels are set, based on the scale of 

the model while trying to cover a large range of possible values of the parameters. 
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Then, the simulation model is adapted to set and remove the AD status depending 

on the policy. The chosen levels of the policy parameters are shown in Table 2.4. 

Table 2.4. Levels of the policy parameters used in experimentation. 

Policy Don Doff 

P1 10, 20, 30, 40, 50, 60, 70 patients 15, 30, 45, 60 minutes 

P2 10, 20, 30, 40, 50, 60, 70 patients 0, 10, 20, 30, 40, 50, 60 patients 

P3 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 patients 15, 30, 45, 60 minutes 

P4 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 patients 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 patients 

P5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 beds 15, 30, 45, 60 minutes 

P6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 beds 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 beds 

 

 The levels include very conservative policies and policies that are not so 

conservative. For instance, Don levels for P1 and P2 include scenarios where the 

ED will go on diversion if there are only ten patients waiting and others where 

there are at least seventy. P3 and P4 consider scenarios which trigger the AD 

status as soon as one patient is boarding or wait to see up to ten patients. 

Similarly, P5 and P6 comprise scenarios of going on AD if there are nine beds 

available in the Inpatient Unit or going on AD only when there is not any 

inpatient bed available. The experimentation is based on a factorial design where 

each permissible combination of Don and Doff levels is used as a treatment 

(Montgomery 2005).  

 Forty replications are run for each treatment using antithetic random 

numbers (Law 2007), which produces 20 observations per treatment. Each 

replication collects information for ten thousand processed ED patients and it 

includes a warm up period of three weeks.  
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2.5 Analysis of Results 

 This phase analyzes the performance of the ED under the different 

policies. Of special interest is the study of the effect of the three factors on the 

responses by constructing bi-criteria graphs, which show the percentage of time 

spent on diversion on the horizontal axis and the average waiting time of the 

patients admitted to the ED on the vertical axis. In order to evaluate the trade offs 

of AD, the average waiting time in the ED is obtained if AD is not implemented is 

1.8 + 0.1 hours (95% confidence interval). 

2.5.1 Mean Performance of Policies 

 This section shows the mean performance of the six policies in two ways. 

First, a brief analysis of the performance across the six policies is made by 

locating the solutions of each policy in a bi-criteria space. Then, pair-wise 

comparisons are made to study the performance of policies with a common factor 

in the Don parameter. Thus, policy P1 is compared to P2, P3 is compared to P4, 

and P5 is compared to P6. The analysis of every policy pair includes a plot that 

allows the visualization of the policy performance and a metric that is used to 

compare numerically the quality of solutions sets. This metric is called Integrated 

Preference Functional (IPF). 

 The IPF measure was first proposed by Carlyle et al. (2003) and extended 

in 2010 (Bozkurt et al. 2010). IPF provides a robust quantitative measure of the 

quality of a solution set. In addition, IPF takes into account several characteristics 

of the set in a single value, such as coverage, uniformity and cardinality. 



  32 

Therefore, AD policy makers are able to observe the form of the best policies for 

their facilities through IPF comparison of policies. 

 The computation of the IPF(P.) value for policy P. used in this chapter 

utilizes a weighted Tchebycheff function of its set of non-dominated solutions. 

IPF for each policy is calculated as follows: 

 

           (2.1) 

where, 

I: Set of non-dominated solution of policy P. 

f1
i
 : Value of criterion Z1 (percentage of time on diversion) for solution i 

f2
i
 : Value of criterion Z2 (average waiting time) for solution i 

 : Weight given to criterion Z1 

h() : Density function of the weight 

 IPF formulations exist for convex combination of criteria (Carlyle et al. 

2003) and also for Tchebycheff function (Bozkurt et al. 2010). The second option 

has been chosen given that it enables including unsupported points in the 

comparison of nondominated solutions. Thus, IPF computation of a policy 

includes all the Pareto solutions, not only those that define the efficient frontier. 

 The density function of the weights can be seen as the probability of the 

preference of the policy maker for the weight of each criterion (i.e. uniform, 

triangular, etc.) (Carlyle et al. 2003). This chapter assumes a uniform density 

function for the weights, i.e. decision maker cares equally about the weights 

across the range of  values. However, IPF can be adapted to the preference of 
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the decision maker. Properties of IPF values state that a set that dominates another 

set will have a smaller IPF value than the dominated set. In addition, adding 

nondominated solutions to a set will never increase the IPF value (Carlyle et al. 

2003). These properties imply that the smaller the IPF value is among different 

policies, the better that policy is. Readers are referred to (Bozkurt et al. 2010) for 

a full description of the steps to compute IPF. 

 One issue regarding the computation of IPF is its sensitivity to large 

differences in scale. This is due to the potential nullification of one criterion by 

another. The results of this chapter show a significant difference between the 

scales of the two criteria chosen to study. Hence, the computation of IPF was 

actually applied to scaled data obtained by the application of Equation (2.2). 

 

(2.2) 

 

where, 

(f1
i
, f2

i
): Non-scaled criteria values of non-dominated solution i. 

(g1
i
, g2

i
): Scaled criteria values of non-dominated solution i. 

miniI(fj
i
) [maxiI(fj

i
)]: minimum [maximum] f.

i
 among all f.

i
`s in competitive sets 

of Pareto optimal solutions used to scale the data. 
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2.5.1.1 Overall comparison 

 The mean performance considering all treatments across the six policies is 

shown in Figure 2.4. It can be seen that policies considering the different factors 

are located along a band whose characteristics resembles a disjointed convex line. 

This band exhibits solutions of the six policies, but the factor that is used in the 

policy determines the location range in the band. For instance, policies P1, P2, P3 

and P4 have solutions in the first half of the band; their average waiting time vary 

from 1.75 hours to about 0.75 hours, while the percentage of time spent on 

diversion varies between 1% and 25%. On the other hand, policies P5 and P6 are 

located in the second half of the band, producing average waiting time that can 

vary between 0.5 and 0.75 hours, but also causing a large proportion of time spent 

on diversion that can go from 25% up to nearly 60%. 

 

Figure 2.4. Union of solutions of all policies. 
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 The convexity and change in the slope of the band suggest that reduction 

of average waiting time is more significant for small percentages of time on 

diversion. Therefore, the first half of the efficient band implies that using P1, P2, 

P3 or P4 can achieve a reduction of about 2 minutes in the average waiting time 

per every percent point increased in the time spent on diversion; on the other hand  

using P5 or P6, the reduction is only about half a minute. 

 Therefore, it is important to see the difference of the results that each 

policy can achieve. For instance, policies P1 to P4 produce results that are in the 

range that decision makers are most likely interested in, because they typically do 

not compromise accessibility as much as policies P5 and P6. In addition, the 

reduction of waiting time is more significant as stated previously; however, it is 

necessary to do a deeper analysis to look at the differences among these four 

policies, which is done in the following sections. 

 The global comparison of policies enables one to explain why some 

healthcare providers fail to reduce their time spent on diversion or what could 

happen if an AD policy is designed such that one of the three main factors studied 

in this chapter have a larger weight to decide when to go on diversion. For 

instance, the Advance Data from Vital and Health Statistics report from 

September 2006 mentioned that near 12% of hospitals located in metropolitan 

areas spent between 5 and 19% of time on diversion status and about 2.7% spent 

more than 20% of their time on diversion. Furthermore, the most frequent reason 

to go on diversion was the lack of inpatient beds (Centers for Disease Control and 

Prevention 2006b). 
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2.5.1.2 Policies based on number of patients waiting in the ED 

 The first two policies defined trigger the diversion status based on the total 

number of patients waiting in the ED. Figure 2.5 (top) shows the mean 

performance of these policies across all the treatments designed with the 

appropriate thresholds. The figure shows the results grouped by the Don level. 

Note that the number of treatments per group in P2 varies because of the 

condition that Don > Doff. Hence, according to the values defined in Table 2.5, if 

Ux = 10 then there is only one option for Lx, which is Lx = 0. 

 Interesting observations can be made from this figure. First, it is evident in 

P1 that the results are clusters for the same level of the Don parameter. This effect 

implies that the percentage of time spent on diversion and the reduction of the 

waiting time depends primarily on the threshold chosen to trigger the diversion 

state, at least in the range of reasonable values of Doff like those set in the 

experimentation.  

 Comparing the performance of periodic review of the state once AD has 

been set (P1) versus continuous review (P2), a similar performance on the average 

waiting time can be seen, especially in the lower range of the time on diversion. 

However, the percentage of time spent on diversion is greater in P2 policies than 

their counterpart in P1 and the variation of the performance for the policies with 

the same Don level is smaller in P1. 

 Note that the most conservative policy instance in these graphs is when Ux 

= 10, where a percentage of time on diversion between 20% and 25% is observed. 

However, in reality the most conservative policy would be to set the diversion 
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status when one patient is seen waiting or as soon as all the ED beds are occupied. 

In that case, it is expected that the percentage of time on diversion will reach a 

larger fraction. 

 The IPF value was obtained to numerically analyze the different policies. 

The first process to obtain the IPF value was to scale the data because the method 

is sensitive to large differences in the scale of the criteria. Since policies P1 to P4 

have results that are very similar to each other, these results were used to scale 

and compare the IPF among them. 

 Figure 2.5 (bottom) shows the nondominated solutions for both policies 

and their respective IPF values. It can be observed graphically and numerically 

that the set of solutions produced by P1 has better characteristics than solutions of 

policy P2. The set P1 is never intersected by the set P2 in the range of the first, 

which implies that P1 can be used to obtain a desired level of average waiting 

time with a lower percentage of time spent on diversion than using P2.  

Consequently IPF(P1) < IPF(P2), which reinforces the superiority of P1 over P2. 
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Figure 2.5. Mean performance of P1 and P2 (top) and nondominated solutions and 

IPF value per policy (bottom). 

 

2.5.1.3 Policies based on number of patients boarding in the ED 

 The mean performance of policies P3 and P4 are shown in Figure 2.6 

(top). The clustering of results depending on the Don parameter is observed again 

in P3. However, results in P4 have greater variation causing the clusters to 

overlap.  

 Note that the most conservative policy of these types is observed when 

diversion state is triggered as soon as one patient is seen boarding. This implies 

that the maximum percentage of time on diversion that P3 and P4 can achieve is 

about 26% and a minimum average waiting time of 0.87 hours. On the other hand, 
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the maximum Uy threshold considered is 10, obtaining average waiting time of 

1.68 hours and 3% of the percentage of time on diversion.  

 Figure 2.6 (bottom)  shows the nondominated solutions and the IPF values 

for policies P3 and P4 after scaling the solutions considering policies P1 to P4. It 

can be seen that both policy sets intersect each other, making difficult to observe 

what type of review configuration produces better results. However, the smaller 

IPF value of P4 suggests that this policy produces results with better 

characteristics than P3; furthermore, IPF also suggests that solutions belonging to 

P4 have the best characteristics of the first four policies. This is because the 

solutions produced by P4 have larger cardinality and coverage than the other 

policies.  

 

Figure 2.6. Mean performance of P3 and P4 (top) and nondominated solutions and 

IPF value per policy (bottom). 
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2.5.1.4 Policies based on number of beds available in the Inpatient Unit 

 The last set of policies to analyze are P5 and P6, whose mean performance 

are shown in Figure 2.7 (top). Clustering according the Don parameter can be 

observed again, especially in the case of periodic review (P5). These policies are 

more conservative since they are based on the number of beds available in the 

Inpatient Unit. For the instances being analyzed, the most conservative policy 

triggers the diversion status when there are nine beds available in the Inpatient 

Unit. On the other hand, the least conservative policy is obtained when diversion 

is set if all the beds are occupied. For the ED modeled, these policies achieve a 

minimum of percentage of time of diversion of almost 30%. These policies can 

reduce the average waiting time to less than 45 minutes, but the accessibility is 

much compromised.  

 IPF values for these policies were obtained scaling the data for the six 

policies so the metric could capture the increased proportion of the time spent on 

diversion. IPF shows that set of solutions belonging to P5 have better 

characteristics than solutions of P6. Both sets intersect each other, but P5 has a 

greater coverage. 

 The IPF metric suggests that policies P1 to P4 are very competitive as 

shown in Table 2.5, having better characteristics than policies P5 and P6. 

Therefore, decision makers should be careful when implementing AD policies 

primarily based on the inpatient available capacity. Furthermore, IPF also allows 

observing that policies based on boarding patients might produce solutions with 

higher quality than policies based on number of patients waiting; however, the 
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variability of the results should be also considered when designing an AD policy. 

The next section studies the difference in variability across the policies. 

 

Figure 2.7. Mean performance of P5 and P6 (top) and nondominated solutions and 

IPF value per policy (bottom). 

 

Table 2.5. Summary of IPF values for AD policies. 

Policy IPF 

P1 0.1634 

P2 0.1662 

P3 0.1519 

P4 0.1503 

P5 0.2348 

P6 0.2445 

 

2.5.2 Variability of the Policies 

 Mean performance across the six policies show clustering patterns 

depending mainly on the Don level. This clustering is more evident in periodic 
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review. However, the graphs presented above showing the mean performance do 

not provide information regarding variability. 

 Similarly to the analysis of mean performance, the assessment of 

variability across policies use methods that allow a graphical observation of the 

variability by constructing simultaneous confidence ellipses (CE), as well as a 

quantitative measure by computing the R
2
 of clusters of policy instances. 

 The simultaneous confidence ellipses are constructed taking advantage of 

the potential correlation between criteria. The plots of simultaneous confidence 

ellipses for a given instance of a policy yields ellipses that contains data points 

from all the replications executed for that particular case. The larger the 

correlation between criteria is, the better defined the ellipse is; thus, the data from 

replications is concentrated in an ellipse with smaller area, whose large axes has a 

positive slope. On the other hand, a small correlation yields an ellipse similar to a 

circle with a slope for the large axes close to zero. Overlapping ellipses for two or 

more instances imply that there is not a significant difference in the performance 

among the instances. 

 The quantitative assessment of variability for a policy relies on the 

formation of clusters and application of K-means concepts to analyze the spread 

of solutions from all the replications included in the cluster. Each cluster is a 

group of solutions of the form: (percentage of time on diversion, average waiting 

time). 

 The clusters defined for a policy depends on the number of significant 

parameters in the policy. Thus, the policies proposed in this chapter comprise two 
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parameters: Don and Doff. For some policies, Don is the only significant 

parameter to explain the variability in the two criteria, while for other policies 

both parameters are significant. Regression analysis comprising all the 

replications for all the instances of a policy is used to find the significant 

parameters of the policy. Then, the clusters for the policy are defined.  

 Each cluster contains the results for all the replications run with common 

level of the significant parameter. Thus, for a policy whose Don parameter is the 

only significant factor, the number of clusters formed is the number of levels for 

that parameter used in the experimentation. The computation of the R
2
 per policy 

requires the computation of the total sum of squares (SSTotal) and the sum of 

squared error (SSError) for each cluster of the policy, which are obtained using 

Equations (2.3), (2.4) and (2.5) respectively. 

          (2.3) 

 

          (2.4) 

 

        (2.5) 

where,  

dist(a, b): Euclidean distance between a and b 

s: response of the form (percentage of time on diversion, average waiting time) 

Si: the ith cluster 

K: number of clusters 

ci: centroid of ith cluster 
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: centroid obtained from the grand average of the responses of all the clusters 

(all treatments, all replications). Thus, 

 

           (2.6) 

 

where, 

P.: type of policy being analyzed P. {P1, P2, P3, P4, P5, P6} 

DIVj: jth response “percentage of time on diversion” of policy P. 

WTj: jth response “average waiting time” of policy P. 

(P.): total number of responses of policy P. (number of  treatments x number of 

replications per treatment) 

 This chapter considers two types of centroids (ci), one is given by the 

mean response of the cluster (Equation (2.7)) and another is given by the 

predicted response obtained from the simultaneous application of regression 

equations per criteria (Equation (2.8)). It is expected that choosing the mean as a 

centroid for every cluster will produce higher R
2
 values than using regression 

equations, because choosing the mean as the centroid minimizes the SSError (Tan 

et al. 2006). Nevertheless, if both R
2
 values are very similar, it is convenient to 

use the regression equations to predict the performance of new instances or find 

the policy parameters that could yield performance in a desired range. Hence, the 

centroids used are given by: 

           (2.7) 
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         (2.8) 

where, 

DIV(P., i): response regarding percentage of time on diversion from regression 

equation depending on policy type and policy parameters of cluster i. 

WT(P., i): response regarding average waiting time from regression equation 

depending on policy type and policy parameters of cluster i. 

2.5.2.1 Simultaneous confidence ellipses 

 The precision of individual confidence intervals is measured by computing 

the relative precision (half width of a 95% confidence interval / average) for all 

the treatments used for the six policies. The findings show that the performance 

measure was consistent across replications. Average relative precision of the 

average waiting time across the six policies is 7.10%, 6.41%, 5.8%, 5.49%, 6.4% 

and 6.43% for policies P1 to P6, respectively. On the other hand, the average 

relative precision of the percentage of time spent on diversion is 10.85%, 12.04%, 

12.15%, 12.88%, 4.57% and 5.09% for policies P1 to P6, respectively. Therefore, 

looking at the precision of individual confidence intervals, the performance across 

policies behaves consistently, especially for P5 and P6 that provide better 

precision on the time spent on diversion, mainly due to the scale of their solutions. 

However, differences across the policies are observed by looking at 95% 

simultaneous confidence ellipses in Figure 2.8. For instance, there exist 

significant differences in variability depending on the factor considered in the 

policy. P1 exhibits very well defined ellipses that allow one to discriminate 

between instances with different Don level. It is also evident for P1 that 

    iPWTiPDIVci .,,.,
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confidence ellipses of the policies with the same Don level overlap, regardless of 

the Doff level, confirming that the amount of time to re-evaluate the diversion 

status does not have a significant effect on the responses. P2 is similar to P1, but 

the ellipses have a wider area and more ellipses overlap as the percentage of time 

on diversion goes to zero. 

 

Figure 2.8. 95% simultaneous confidence ellipses for P1 and P2 (top); P3 and P4 

(middle); and P5 and P6 (bottom). 
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 Policies P3 and P4 exhibit ellipses that are larger than those in P1 and P2, 

causing more confidence ellipses to overlap. However, it is still possible to 

observe the clustering of the ellipses with a common Don value in policy P3. 

Policies P5 and P6 have a larger amount of ellipses overlapping, making difficult 

the discrimination among treatments. Nevertheless, there are two aspects to 

highlight; first, some of the ellipses for the last set of policies are smaller due to 

the small values in the average waiting time. Second, the change in the slope of 

the large axis of the ellipses is evident depending on the factor that the policy is 

based on. Thus, for policies depending on the number of patients waiting in the 

ED the slope and definition of the ellipses allow one to infer that there is a high 

correlation between the average waiting time and percentage of time on diversion. 

On the other hand, policies P5 and P6 exhibit ellipses whose large axis is almost 

parallel to the horizontal axis, meaning that the correlation between the two 

performance measures is very small; hence, results of these policies look random. 

2.5.2.2 Clustering and computation of R
2
 

 The behavior seen in the simultaneous confidence ellipses are useful to 

interpret the analysis of regression applied to both responses, whose results are 

shown in Table 2.6. The table shows the regression equation for each response, 

which in all cases is significant. In addition, the R
2
, the R

2
 prediction and the 

significance level of policy parameters are shown.  

 The analysis of regression confirms that the Doff parameter is not 

significant in policies P1 and P3, but it is for P2, P4, P5 and P6, considering a 

significance level of 0.05 for both responses. The influence of the parameters 
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included in the regression equation on the variability of the response is given by 

R
2
 and the capability to predict future responses is given by R

2
 prediction. It can 

be seen that the R
2
 for the average waiting is moderate, which means that the 

parameters of the AD policies have a moderate effect on the variability observed 

in the average waiting time. Thus, there could be other controllable factors that 

affect this variable. On the other hand, the parameters of the AD policies have 

greater impact on explaining the variability of the percentage of time spent on 

diversion; therefore, the R
2
 is larger for this variable. From these results, it can be 

concluded that regression equations considering the significant policy parameters 

are able to make better predictions for the percentage of time spent on diversion 

than for the average waiting time. Furthermore, the policies that can better explain 

the variability on the individual responses are the policies with periodic review 

than their counterparts with continuous review (P1, P3 and P5 over P2, P4 and 

P6).  

Table 2.6. Regression analysis applied to each metric independently. 
Average Waiting Time 

Policy Regression Equation R2 R2 (pred) p-value Don p-value 

Doff 
P1 0.922 + 0.013 Don 0.479 0.475 < 0.0001 0.7434 

P2 0.950 + 0.010 Don + 0.0028 Doff 0.392 0.385 < 0.0001 0.0002 

P3 0.734 + 0.095 Don 0.657 0.656 < 0.0001 0.1180 

P4 0.775 + 0.052 Don + 0.0500 Doff 0.561 0.558 < 0.0001 < 0.0001 

P5 0.790 – 0.031 Don – 0.0005 Doff 0.436 0.432 < 0.0001 0.0261 

P6 0.833 – 0.0198 Don – 0.015 Doff 0.319 0.315 < 0.0001 < 0.0001 

 
Percentage of Time on Diversion 

Policy Regression Equation R2 R2 (pred) p-value Don p-value 

Doff 

P1 22.37 - 0.319 Don 0.828 0.827 < 0.0001 0.3983 

P2 22.68 – 0.242 Don – 0.070 Doff 0.725 0.722 < 0.0001 < 0.0001 

P3 28.67 – 2.570 Don 0.742 0.741 < 0.0001 0.3791 

P4 27.03 – 1.570 Don – 0.950 Doff 0.636 0.634 < 0.0001 < 0.0001 
P5 26.31 + 3.180 Don + 0.026 Doff 0.782 0.781 < 0.0001 0.0090 

P6 26.36 + 1.630 Don + 1.180 Doff 0.572 0.570 < 0.0001 < 0.0001 
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 Nevertheless, the existing correlation of the responses suggests that a joint 

analysis should be used instead of looking at the individual performance. For this 

purpose, the clustering analysis previously proposed is applied and the R
2
 for the 

two types of centroids are obtained. Table 2.7 shows the results of this analysis. 

There are two important aspects to highlight: the R
2
 of the joint analysis is, at 

least, as good as the R
2
 obtained from the individual analysis of the percentage of 

time on diversion, which means that variability of the pair average waiting time 

and percentage of time on diversion is better explained by the AD policies when 

these variables are analyzed together. In addition, it can be seen that the centroids 

obtained by the regression equations produce R
2
 very close to those obtained by 

the mean. 

Table 2.7. R
2
 of joint analysis using K-means clustering. 

Centroid: Mean Centroid: 

Regression 

Equations 

Policy Number 
of 

Clusters 

Total 
Number of 

Observations 

SSTotal SSError R2 SSError R2 

P1 7 560 27740.33 3304.14 0.881 4778.46 0.828 

P2 28 560 18779.82 4607.47 0.755 5171.13 0.725 

P3 10 800 59010.41 14797.36 0.749 15203.04 0.742 

P4 55 1100 51177.21 17732.29 0.654 18635.20 0.636 

P5 40 800 85521.43 17432.26 0.796 18579.34 0.783 

P6 55 1100 69250.74 28179.30 0.593 29628.96 0.572 

 

 Despite the mean taken as centroid is more accurate than regression 

equation, the latter can be used to define policies that have a specific objective in 

terms of waiting time and/or percentage of time on diversion. Since regression 

equations of P1 and P3 have only one parameter (Don), it is possible to obtain the 

value of the Don parameter that can produce the desired value of waiting time, 
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and then use the Don value obtained to estimate the expected percentage of time 

on diversion. For example, if the decision maker is interested in P1 to reduce the 

patient average waiting time to 1.3 hours, then Don parameter should be set to 30. 

This application of the regression equations as a search algorithm can reduce the 

number of simulation runs to obtain a policy that satisfies the desired objectives 

of the decision maker. 

 In addition, the changes of the R
2
 across the policies as shown in Table 2.7 

suggest that the variability and the accuracy of a prediction depend on the 

configuration of the review of the system. Hence, the policies with a periodic 

review produce results whose performance is more consistent than those produced 

by its counterpart with continuous review. For example, the R
2
 of P1 is greater 

than the R
2
 of P2. The value of P3 is greater than the value of P4 and the value of 

P5 is greater than the value of P6. 

 Combining the analysis of the mean performance and the variability across 

different policies can help in the design of robust policies that might be able to 

achieve consistent performance level in a desired range. Therefore, besides 

analyzing the trade-off between the time spent on diversion and the reduction of 

the waiting time, the decision maker should leverage the quality of the mean 

performance produced by the policy and its variability. For example, policy P5 

shows good consistency given that its R
2
 is the second highest across all the 

policies, but its IPF value and the range of solutions produced imply that the mean 

performance seriously affects the accessibility to the system.  
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 For the case of an ED with similar characteristics to those analyzed in this 

chapter, the design of an effective policy in terms of accuracy and precision 

would consider the number of patients waiting in the ED or the number of patients 

boarding with a periodic review.  

2.6 Discussion 

 The increasing trend of time spent on diversion in regional healthcare 

delivery networks has caused some local governments to prohibit the use of this 

practice. The Center for Disease Control found that about 7.5% of hospitals 

surveyed for the Staffing, Capacity and Ambulance Diversion report of 2003-04 

have prohibited using AD because of state or local regulations (Centers for 

Disease Control and Prevention 2006b). 

 However, the recent “no ambulance diversion” policies adopted in 

some areas across the United States have put a strain on the operations of crowded 

EDs. For instance, hospitals in Massachusetts have seen a rise on the waiting 

times of ED patients and a greater number of patients boarding in inappropriate 

areas after this type of policy was implemented in that state (Massachusetts 

Nurses Association 2009). On the other hand, this type of law can be interpreted 

as an incentive for healthcare providers to look for other solutions by investing in 

research, engineering analyses or resources to relieve congestion from their EDs.  

 For instance, adding more beds to the system modeled in this chapter 

would reduce the average waiting time without going on diversion. Nevertheless, 

adopting AD policies could still reduce further the average waiting time. It is 

understandable that diverting patients from EDs might not be a safe decision for 
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the diverted patient, but the time to receive treatment might be smaller if the new 

ED destination is less saturated than the original destination. 

 Therefore, the call of different authors to discuss and analyze AD policies 

motivates this research. Even though the hospital being modeled is fictitious, its 

characteristics resemble the behavior and patterns seen in many EDs across the 

United States. Moreover, the methodology proposed in this chapter to analyze 

different AD policies by the mean performance and variability could be applied to 

other systems with similar characteristics. 

 The AD policies designed by providers usually include the observation of 

different state variables of the system, but the literature highlights that the 

decision of going on diversion usually is dominated by one factor. The three main 

factors found in literature as contributors for decision episodes are analyzed in 

this chapter. The results obtained from the analysis exhibit significant differences 

among the factors. 

 For instance, policies based on the lack of inpatient beds are more 

conservative and produce results whose range of time spent on diversion is much 

higher than the other policies. This can explain why some hospitals have a larger 

fraction of time on diversion status since the lack of inpatient beds is one of the 

most common causes to decide diverting ambulances. 

 Consequently, the design of AD policies should include the modeling of 

the system and the analysis of mean performance and variability of the results to 

allow the implementation of robust policies. This chapter proposes a methodology 

that enables decision makers to perform this task considering the tradeoff between 
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the time spent on diversion and the average waiting time of accepted patients in 

the ED. 

 The study of the mean performance is given by Pareto analysis using bi-

criteria graphs that enable the comparison of different AD policies. In addition, 

the analysis includes using a quantitative metric that evaluates the policies in 

terms of the cardinality and coverage of their nondominated solutions. On the 

other hand, the analysis of variability includes the construction of simultaneous 

confidence ellipses and the creation of clusters that depend on the significant 

parameters of the policies in a regression equation. The clusters of every policy 

are evaluated through the R
2
. Two types of centroids are compared for each 

cluster: the mean performance for both criteria of the results belonging to the 

cluster and the predicted performance obtained by a regression equation. Since the 

mean performance always minimizes the sum of squared error in a cluster, it can 

be used to compare the consistency of results across the policies and the 

effectiveness of using regression equations to predict the performance of new 

policy. 

 The findings in the experiments presented in this chapter suggest that 

policies based on number of patients waiting and number of patients boarding 

offer a good balance between the mean performance and the variability of their 

results. Furthermore, the use of periodic review produces more consistent 

performance. However, decision makers could use this methodology to evaluate 

their own broad possibilities of alternatives in order to assure the quality of their 

service in terms of the accessibility and timeliness of emergency care. 
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 It is important to discuss the limitations of this study. It has been 

highlighted that the main object of study in this research is a fictitious hospital, 

but data used to build the model supports the representativeness of the model. On 

the other hand, the proposed methodology is applied to the analysis of a single-

hospital; however, the nature of the problem implies that other hospitals might be 

affected. Nevertheless, the objective of this chapter is to present a methodology 

that can be applicable in the analysis of this important problem. Furthermore, AD 

diversion policies are designed and executed by authorized individuals of the 

hospital, complying with guidelines that government or private agencies may 

define. Besides, the effect of AD of one hospital over another hospital can be 

captured in the sample arrival rate that is used to build the simulation model. 

Therefore, the methodology proposed in this chapter intends to be presented as a 

set of tools that policy makers in each hospital can follow to define and compare 

their own policies.  

 In addition, there are other aspects that should be addressed about AD, 

such as the finance of ambulance patients and hospitals. Hospitals could see an 

opportunity cost for diverting patients; however, accepting patients in an 

overcrowding facility could make the hospital incurring in costs because of 

adverse events. On the other hand, hospitals may decide to go on diversion in 

order to save beds for elective admissions (i.e. scheduled surgeries). Nevertheless, 

the American College of Emergency Physicians (ACEP) discourages the use of 

financial reasons to divert patients. Thus, ACEP states that AD criteria must be 

based only on capacities or services of the hospital. 
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 Another important aspect to discuss is the characteristic of the regional 

healthcare delivery network where AD is applied. As found in national reports, 

AD is a problem existing in metropolitan areas. Therefore, distances traveled by 

diverted ambulances are not as large as if the problem existed in rural areas. In 

fact, hospitals located in nonmetropolitan areas rarely go on diversion and their 

waiting times are much smaller than hospitals in metropolitan areas (Centers for 

Disease Control and Prevention 2006b).  

2.7 Conclusions 

 AD has been adopted by several EDs across the United States as a way to 

reduce congestion. However, it has not been deeply discussed to what extent this 

objective is obtained by diverting patients. This research analyzes the impact on 

the average waiting time of the ED patients and on the time spent on diversion of 

policies that considers the main indicators in practice to go on diversion. 

 Through this research, it has been shown that the two performance 

measures are in conflict with each other; therefore it is responsibility of the 

decision makers to analyze the potential impacts of the policies that they design 

and choose the best option to balance diversion and waiting time according to the 

interests of each individual institution. 

 The procedure followed in this chapter to analyze AD policies can be 

adopted by real EDs to study the impact of diversion policies using 

experimentation based on simulation models. The results show significant 

differences in performance behavior of AD policies depending on the factor that 

they are based on. However, performance is not only policy dependent, but also 
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model or hospital dependent, because particular characteristics in arrival rate, 

admission probability, length of stay or acuity of patients can have a significant 

impact in the pace that AD reduces congestion.  

 In addition, results from the model analyzed show that policies based on 

inpatient occupancy level, which are very common in practice, have a higher 

percentage of time spent on diversion compared with other policies and also 

might not be very consistent. On the other hand, policies based on number of 

patients waiting in the ED or number of patients boarding using periodic review 

performs better than the others in terms of quality and consistency of results. 

 It is important to mention that results of this chapter show the potential 

improvement from AD using a local approach, specifically the average waiting 

time of accepted patients. However, the analysis of the overall improvement in the 

healthcare delivery system through AD must include nearby hospitals. Therefore, 

this project will extend to optimize the AD policy for a single hospital assuming 

that there is information available about a neighboring hospital. In addition, 

optimization of AD policies for multiple hospitals can be explored. 
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CHAPTER 3 

OPTIMAL AMBULANCE DIVERSION CONTROL POLICIES 

3.1 Introduction 

Media and papers have been highlighting the overcrowding problem in 

emergency departments (EDs) in the United States (US) during recent years 

(Associated Press 2006). One of the major negative impacts of congestion in EDs 

is the long time that patients have to wait before starting to receive treatment, 

resulting in seriously adverse events, including death (KVAL 2010; CNN U.S. 

2008). The risk of such adverse events increases when the condition of the patient 

is severe and when waiting times extend beyond a recommended safety time 

threshold (RSTT), which is set by the Center for Disease Control and Prevention 

(CDC) based on patient severity (which is assessed by various indicators of the 

health condition of the patient such as vital signs and stability), and the amount of 

resources required. United States General Accounting Office (2009) has drawn 

attention to the high fraction of patients that have to wait beyond RSTT. For 

example, in 2006, 73.9% of all patients that should have received “immediate” 

attention (no waiting at all) according to their severity index had to wait for some 

time in the EDs. In addition, 50.4% of patients with an RSTT of 14 minutes had 

to wait longer than that threshold before they started receiving treatment. 

In order to reduce congestion and avoid potential implications of long wait 

times, EDs sometimes divert ambulances to other hospitals by requesting 

emergency medical services to bypass their facilities. This strategy is commonly 

implemented in US hospitals. According to United States General Accounting 
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Office, in 2003, 25% or more of the hospitals in several US metropolitan areas 

were on diversion more than 10% of the time. For 2006, 27.3% of hospitals 

reported going on diversion, and the average number of hours on diversion during 

that year were 473 hours (United States General Accounting Office 2009). 

Although, EDs often divert ambulances to tackle overcrowding, this 

approach can have negative consequences when AD policies are not properly 

designed. For instance, Yankovic et al. (2010) indicate that AD might increase 

mortality among patients transported by an ambulance. Consequently, AD 

decisions should consider various factors such as the current congestion at the 

ED, severity of the patients, and the status of neighboring hospitals. For example, 

if a neighboring hospital is relatively near and currently less crowded, then it is 

more likely that an arriving patient in an ambulance can start receiving 

appropriate treatment earlier if he/she is diverted from an overcrowded facility. 

On the other hand, while ambulances can be diverted, EDs do not have control 

over walk-in arrivals, which, by law, have to be accepted and treated. Therefore, 

while on diversion, EDs still accept walk-in patients; these patients also contribute 

to congestion. 

In this chapter, an optimal ambulance diversion control policy is 

developed. The optimal policy is defined to minimize the average time a patient 

waits longer than his/her RSTT. The following research questions are addressed 

in this chapter: (i) Can optimal AD policies significantly increase the safety of 

patient by minimizing the time that patients wait beyond their RSTT?; (ii) What is 

the structure of optimal AD policies?; (iii) What are the impacts of patient traffic 
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and severity mix on optimal AD decisions?; (iv) What is the value of information 

about the time to start treatment in the neighboring hospital(s) on optimal AD 

decisions and performance of the optimal policy?; and (v) How do policies 

applied in practice perform compared to optimal AD policies? 

Empirical studies on the effectiveness of AD policies and the design of 

policies that minimize AD are available in the medical literature. In general, 

medical community is opposed to AD. They consider it an inefficient and risky 

decision. Therefore, they suggest avoiding or minimizing the use of AD. Instead, 

they propose to analyze the causes of overcrowding and take other actions to 

relieve congestion. Approaches to avoid AD include the redesign of AD 

guidelines to restrict the number of hours spent on diversion by hospitals serving 

a specific geographic region. The implementation of these guidelines has resulted 

in significant decreases in the number of hours on AD in the regions of study; this 

includes San Diego and Sacramento, California (Vilke et al. 2004b; Asamoah et 

al. 2008; Patel et al. 2006). Unfortunately, these studies do not discuss the effect 

of avoiding AD on other performance measures, such as the average waiting time. 

Other empirical studies propose actions to reduce congestion from EDs 

and consequently reduce diversion. These actions include redesigning patient flow 

and improving capacity allocation in EDs (Cochran and Roche 2009; Allon et al. 

2011). In addition, blocked admissions to inpatient units have been analyzed to 

reduce its effect on the patient flow in the ED (McConnell et al. 2005). Other 

studies predict crowding conditions in EDs to make appropriate changes in 

advance (Hoot et al. 2008; Chockalingam et al. 2010). 
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While reducing AD can increase access to emergency facilities, there is 

evidence that suggest that laws prohibiting AD (i.e., No AD) can put significant 

stress on the operations of EDs (Massachusetts Nurses Association 2009). The 

consequences of such laws include increases in the average patient waiting time 

and the number of patients boarding (i.e., patients waiting for an open bed in an 

inpatient unit). 

On the other hand, analytical studies of AD suggest that appropriate 

policies could improve the performance of an emergency care system. For 

example, Deo and Gurvich (2011) modeled the decisions of two EDs using game 

theoretic approaches with the objective of minimizing the average patient waiting 

time for each hospital in a system with two EDs. The authors found that a 

centralized design of diversion policies is Pareto-improving compared to a 

decentralized strategy that leads to a defensive equilibrium. The authors also 

proposed a threshold-type AD policy, but they did not explore the optimality of 

this type of control policy. Using similar approaches, Hagtvedt et al. (2009) 

analyze AD and pointed out the need of a central agent that coordinates AD. 

Ramirez et al. (2011) presented a simulation model of an emergency care delivery 

system to analyze the effectiveness of diversion and destination policies. They 

evaluated the use of an effective combination of diversion-destination policies as 

an ambulance flow control mechanism in order to reduce the average time spent 

in activities with inappropriate level of care, which includes transportation to ED, 

waiting and boarding in the ED. 
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Even though admission control methods are commonly used in various 

manufacturing and service systems, the AD literature has not considered the use 

of such methods in the control of ambulance arrivals to date. Early studies on 

admission control typically focus on the control of a single customer class using 

M/M/1 queuing models (see Stidham (1985) for a survey). More recently, studies 

consider control of several demand classes requiring different levels of service. 

Ha (1997) discusses an inventory control problem of N demand classes that incur 

different lost sales costs when customers are not admitted into the system. Similar 

to the proposed setting, Carr and Duenyas (2000) discuss two demand classes, 

where one of the classes is always accepted into the system (similar to the walk-

ins in the model presented in this chapter), and the company has an option to 

reject the arrivals from the other class (similar to the ambulance arrivals). Gupta 

and Wang (2007) consider one contracted demand class whose orders are always 

accepted and one transactional demand class whose orders can be rejected. 

Similarly, Feng and Pang (2010) consider a long-term contract market whose 

orders are always accepted, and the spot market whose orders may be subject to 

rejection. In the recent work of Chen et al. (2011), the authors discuss the 

admission control problem of the orders coming from an online retailer. All of 

above discussed studies control demand using accept/reject decisions, similar to 

accept/divert decisions. In addition, there is a rich literature on the control of 

admission using pricing and due date decisions. The readers are referred to the 

surveys of Elmaghraby and Keskinocak (2003) and Keskinocak and Tayur (2004) 
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for implementation of pricing and due date management for admission control, 

respectively. 

In particular, this chapter contributes to existing literature in AD by 

proposing a mathematical model based on Markov Decision Processes (MDP) 

formulation to obtain the optimal AD control policies for a hospital. The objective 

is to minimize the long-run average expected tardiness per patient, where 

tardiness is defined as the length of time that a patient waits beyond his/her 

RSTT, before starting to receive treatment. Assuming Poisson arrivals, 

exponential treatment times and two severity levels, the structure of optimal 

policies is analyzed using both theoretical and computational analysis. Using 

theoretical analysis, this chapter shows that the optimal diversion policy can be 

characterized by a threshold curve, under the special condition that all ambulance 

patients are critical. Using computational analysis, the structure of the optimal AD 

policies is further studied by observing the impact of (i) patient arrival rates, (ii) 

the severity mix of patient population, and (iii) the “amount” of available 

information on the time to start treatment at the neighboring hospital(s). Next, a 

simulation study is presented, where various modeling assumptions are relaxed to 

represent more realistic scenarios, and compare the optimal policies with that of 

other simpler policies used in practice such as not diverting at all and diverting 

only when there are no available beds. Computational analysis verifies the 

superior performance of the optimal policies obtained using the proposed MDP 

model. In addition, a simple policy that diverts ambulances when there are no 

available beds for critical patients is shown to yield satisfactory results. Finally, 
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the possible drawbacks of the proposed approach in practice are discussed, and 

conclude that these drawbacks can be resolved by allocating sufficient capacity to 

EDs. 

This chapter has to main contributions to the healthcare literature. First, to 

the best of our knowledge, this is the first study discussing optimal control of AD 

using an MDP formulation. Second, it considers a novel objective that minimizes 

the time that patients wait beyond a RSTT before starting to receive treatment. 

Although the AD literature includes various studies that discuss minimization of 

time spent in ED, this objective does not take into account the severity of more 

critical patients, whose treatment delays may result in death. Since RSTT depends 

on the severity level of patients, the objective considers the safety of the patient as 

a performance measure for AD policies, which is a significant measure to 

evaluate the effectiveness of AD policies according to (Asplin 2003). In addition, 

since the objective function is in time units, it does not require any cost 

parameterizations that have been commonly needed in previous literature. 

The remaining sections of the chapter are organized as follows. Section 

3.2 introduces the model. Section 3.4 analyzes the impact of the level of 

information on the time to start treatment in a neighboring hospital(s). Section 3.5 

presents a simulation model to compare the policy prescribed by the MDP with 

policies used in real-life settings. Section 3.6 analyzes the issues related to the 

practical implementation of the AD policies prescribed by the MDP. Finally, 

Section 3.7 presents some conclusions and future extensions. 
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3.2 Model Formulation 

The model considers an ED with two arrival streams, each following a 

Poisson process, which has been discussed as a reasonable approach to model 

arrivals to EDs (Green 2006): (i) ambulance arrivals with rate A
 and (ii) walk-ins 

with rate W
. Arriving patients can have one of two types of severity levels: level 

1 represents the critical patients, and level 2 are less emergent cases. The ED has 

two treatment areas dedicated to each severity level: A1 (critical care), which 

treats patients of level 1 severity, and A2 (fast-track), which treats patients of 

level 2 severity. Although most Emergency Severity Indices (ESI) consider three 

to five severity levels, the majority of patients can be grouped under two major 

categories in terms of the required treatment resources and priority. One group 

includes patients with an immediate and emergent need for emergency care, and 

another group includes patients with urgent and semi/non urgent needs. 

Furthermore, many hospitals in metropolitan areas have treatment spaces 

dedicated to patients with moderate or low severity level, similar to the area A2 

considered in this model (Cochran and Roche 2009). 

It is assumed that ambulance patients are level 1 with probability p
A

1, and 

level 2 with probability 1-pA
1. In general, it is safe to assume that p

A
1 is relatively 

high (i.e., p
A

1>0.7). Similarly, walk-in patients are level 1 with probability p
W

1, 

and level 2 with probability 1- pW
1. The tuple (p

A
1, p

W
1) is refer to as the severity 

mix. Upon admission to the ED, patients are first identified as level 1 or level 2, 

and they are served in the order of arrival at the corresponding area (A1 or A2). If 

all the beds in the appropriate area are occupied, then an arriving patient waits in a 
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queue corresponding to his/her treatment area. The number of beds is given by c1 

for A1 and c2 for A2. Once a patient accesses a bed in the corresponding area, the 

patient remains the bed for some amount of time referred to as “treatment time”. 

The treatment time considered in this chapter may include activities such as 

bedside assessment provided by nurses and doctors, delivery of medications, and 

the discharge process. It is assumed that the treatment time of a level i patient is a 

random variable distributed exponentially with rate i for i{1, 2}. While the 

exponential distribution may not be a very good fit to represent the total treatment 

time, it is commonly used in the literature due to its analytical tractability (see for 

example Deo and Gurvich (2011)). In Section 3.5, this assumption is relaxed and 

a simulation model is developed using more realistic distributions. Other 

resources found in EDs such as doctor, nurses and medical equipment are not 

included in the model since they have low impact on the diversion decisions 

according to CDC (2006a). 

The state of the system can be represented by the tuple (n1(t), n2(t)), where 

n1(t) and n2(t) represent the number of patients in the system with level 1 and 

level 2 severity at time t, respectively. The parameter t is dropped from the 

notation and the state space is denoted as S = {(n1, n2) : n1 > 0; n2 > 0}. The flow 

of patients is depicted in Figure 3.1. 
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Figure 3.1. System representation. 

 

To ensure the existence of a solution for the MDP model, it is assumed 

that total arrival rate is less than the total treatment rate in each treatment area 

(Bertsekas 2001), that is , 

 

p
A

1
A
 + p

W
1

W
 < c11, and (1-p

A
1)

A
 + (1-p

W
1)

W
 < c22   (3.1) 

 

In the computational analysis presented in Sections 3.3 and 3.4, the total 

number of patients in the system is limited such that it eliminates the need for a 

stability condition as given in Equation (3.1). Therefore, this condition is relaxed 

in the computational analysis. 

The objective of this chapter is to find a state-dependent ambulance 

diversion policy that minimizes the long-run average expected tardiness per 

patient (denoted as ETP henceforth) over an infinite horizon. Different from the 

traditional settings, tardiness is referred as the non-negative difference between 

the total waiting time of the patient in the ED and the RSTT of the patient 
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(denoted as di for severity level i{1, 2}). It is assumed that d1 < d2; therefore, the 

difference in the RSTT provides a “natural” weight that severely penalizes the 

objective as the waiting time of critical patients increases. Let Ti(ni), i{1, 2} 

denote the expected tardiness of an arriving patient with level i given that there 

are ni level i patients in the system upon his/her arrival. Then,  

 

(3.2) 

where fi,ni(.) denotes the probability density function (pdf) of the waiting time in 

the queue of a level i patient that observes ni level i patients in the system upon 

his/her arrival. Since treatment times are exponential with rate cii, fi,ni(.) is the 

pdf of the Gamma distribution with parameters ni-ci+1 and cii, when ni > ci. If    

ni < ci, then Ti(ni) = 0. Ti(ni) for ni > ci is evaluated using Laplace transforms in 

Theorem 1 of Hafizoglu et al. (2011). The closed-form expression for Ti(ni) is 

provided in Equation (3.3). 

 

(3.3) 

 

 

When an ambulance is diverted, the patient is sent to a neighboring 

hospital for treatment. The time to start treatment by a diverted patient in the 

neighboring hospital is a random variable, X. In particular, X includes the 

additional transportation time to travel to a further away facility and the waiting 
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time inside the ED. The expected tardiness of a diverted patient with level i is 

denoted as T
D

i for i{1, 2}, and evaluated as in Equation (3.4). 

 

(3.4) 

 

where f(x) is the pdf of X. 

The context of the model assumes that the ambulance crew communicates 

with the ED to learn if the patient can be taken to the hospital or not. Then, the 

decision maker in the ED chooses to divert or accept the ambulance depending on 

the current state of the system. This assumption does not contradict the diversion 

guidelines formulated by the American College of Emergency Physicians stating 

that diversion criteria must be based only on hospital capacity and not on financial 

decisions (American College of Emergency Physicians 1999). In addition, it is 

assumed that the severity of the patient is not known at the time the diversion 

decision is made.  

The continuous-time MDP model is converted to an equivalent discrete 

time model using uniformization with rate A
+W

+c11+c22. Let, * denote 

the optimal average expected tardiness per patient and h*(n1, n2) denote the 

optimal relative effect of starting in state (n1, n2). The Bellman equation is given 

as 
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(3.5) 

 

 

 

 

 

 

 

where, 

 

 

 

for i{1,2}. 

 

The first two terms on the right hand side of Equation (3.5) refer to the 

walk-in patients with severity level 1 and level 2, respectively. The third and 

fourth terms represent the departure events, which decrease the number of patients 

in A1 or A2 by one, depending on the severity level of the departing patient. The 

first part inside the minimum statement represents the average tardiness if an 

arriving ambulance patient is diverted, whereas the second part represents the 

average tardiness if the ambulance patient is accepted to the hospital. The last 

term corresponds to a selfloop due to uniformization. 
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The objective function can be changed easily to minimizing the weighted 

average expected tardiness per patient in the long run by adding weights to the 

tardiness expressions. These weights may depend on the severity level with the 

weight given to the tardiness of level 1 patients being greater than the weight 

given to the tardiness of level 2 patients. 

3.3 Properties of Optimal Diversion Policies 

In this section, some properties of an optimal solution to the Bellman 

equation given in (3.5) are derived. Theorem 1 shows that the optimal diversion 

policy is characterized by a monotonic threshold curve under a special case where 

all ambulance patients are critical. This result also justifies the common use of 

threshold-type policies used previously in the AD literature (Deo and Gurvich 

2011; Hagtvedt et al. 2009). 

THEOREM 1. If p
A

1 =1, there exists a threshold curve (n1), where it is optimal to 

divert incoming ambulances when n2 > (n1), and accept them when n2 < (n1). 

Furthermore, (n1) is non-increasing in n1. 

PROOF. The proof is in Appendix A.  

In Figure 3.2, Theorem 1 is illustrated, where (n1) is shown by the 

representative non-increasing curve. It is optimal to divert an ambulance if           

n2 > (n1), that is, if the state is located above the curve. In words, the state space 

above the curve denotes the cases where ETP added from accepting ambulance 

patients (i.e., second term within minimization in Equation (3.5)) is greater than 

the ETP added from diverting them (i.e. first term within minimization in 

Equation (3.5)). In the remainder, (n1) denotes the threshold curve. The 



  71 

threshold curve provides a simple and useful mechanism that optimally 

determines ambulance diversion decisions. Using a relative value iteration 

algorithm, one can solve 3.5, and determine the threshold curve.  

 

Figure 3.2. Illustration of Theorem 1. 

In the proof of Theorem 1, it is required that h*(n1,n2) to be supermodular 

and the term T1(n1)+h*(n1+1,n2)-h*(n1,n2) to be nondecreasing in n1. While these 

properties can be shown to hold for the special case of p
A

1=1, the extensive 

complexity of Equation (3.5) does not allow to derive the desired properties when 

p
A

1 < 1. However, the computational study indicates that Theorem 1 holds in all 

the practical cases that are discussed in detail below. 

Next, the behavior of optimal policy is explored using computational 

analysis. In all of the experiments, the values of c1, c2, 1, 2, d1 and d2 are fixed 

as indicated Table 3.1, and the values of the other parameters vary to test the 

system behavior under various scenarios.  
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Table 3.1. Factor levels used in the computational analysis. 

Fixed Factors Variable Factors 

c1  = 15 beds Traffic{Low, Medium, High} 

c2  = 5 beds p
A

1  {0.8, 0.9} 

1 = 0.25 pat/hr p
W

1  {0.3, 0.5} 

2 = 1 pat/hr E[X]  {0.25,0.75,1.25,1.5,1.75 and 2 hrs} 

d1  = 0.25 hours  

d2  = 1.5 hours  

 

The number of beds in the modeled ED is 15 for critical care and 5 for 

fast-track care. These numbers are close to the average number of beds in 

treatment spaces in real-life ED (an average of 14.6 beds in standard treatment 

spaces and 5 beds for other treatment spaces) (Centers for Disease Control and 

Prevention 2006b). The treatment rates were set to 0.25 and 1 patients per hour 

for critical and fast-track care, respectively. The first value is close to the average 

treatment time for immediate and emergent patients, given in several sources 

(Centers for Disease Control and Prevention 2006a; Cochran and Roche 2009; 

Hoot et al. 2008). The fast-track treatment rate is close to the value observed in 

Cochran and Roche (2009) for semiurgent and nonurgent patients. The RSTT set 

for level 1 is fixed to 0.25 hours, which corresponds to the second most emergent 

level in the ESI; this category is usually referred as "less than 15 minutes". The 

RSTT for level 2, on the other hand, is set to 1.5 hour, which corresponds to an 

average of the third and fourth ESI indices, usually referred as urgent ("1 hour") 

and semi-urgent ("2 hours") (Centers for Disease Control and Prevention 2006b).  

The Utilization Due to Walk-in Arrivals (UDWA) is considered to 

quantify the low, medium and high levels of traffic, because walk-in arrivals 
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cannot be controlled using AD and they represent about 85% of the total arrivals. 

Hence, let  

 

UDWA1 = p
W

1
W

/c11, and UDWA2 = (1-p
W

1)
W

/c22   (3.6) 

 

where UDWA1 and UDWA2 denote the Utilization Due to Walk-in Arrivals in A1 

and A2, respectively. Let max{UDWA1, UDWA2}= 60%, 75% and 90% model 

the low, medium and high levels of traffic, respectively. The area with the highest 

utilization is referred to as the “congested area” in the remainder. For example, if 

traffic level is medium and p
W

1=0.3, then W
=5.36, which gives UDWA1=43% 

and UDWA2=75%, indicating that the congested area is A2. On the other hand, if 

traffic level is medium and p
W

1=0.5, then W
=5.63, UDWA1=75% and 

UDWA2=56.25%, which implies that the congested area is A1. Furthermore, for 

any combination of traffic intensity and severity mix, the value of p
W

1 determines 

the congested area in the ED. Hence, if p
W

1=0.3, then the congested area is A2; 

whereas if p
W

1=0.5, then the congested area is A1. 

The proportion of the arrival rates of ambulances was fixed to be 15% of 

all the arrival rates. This value is very close to the national average of the 

percentage of ambulance arrivals to EDs in the United States, which is 15.5% 

(Centers for Disease Control and Prevention 2010). In addition, in all the analysis 

in this section, X is chosen to be deterministic. The impact of randomness of X is 

analyzed in Section 3.4. 
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An upper limit on the total number of patients in the system is considered 

in the implementation of the relative value iteration algorithm. Such an upper 

limit also allows relaxing the stability condition given in Equation (3.1). This 

upper limit is large enough to approximate the infinite capacity assumed in 

Section 3.2 while ensuring a reasonable execution time of the relative value 

iteration algorithm. 

Figure 3.3 presents the threshold curves for four different values of       

(p
A

1, p
W

1) under medium traffic and a deterministic value of X = 0.75 hours. 

 

Figure 3.3. Illustration of thresholds for p
A

1{0.8, 0.9} and p
W

1{0.3, 0.5}, under 

medium traffic and deterministic time to start treatment in other 

hospital (X) of 0.75 hours. 

 

As shown in Figure 3.3, the congested area determines the shape of the 

threshold curve. It is expected that most ambulance patients will be critical 

patients; therefore if the congested area is A2, then the optimal policy initiates 

diversion only when all of the beds in A1 are occupied for low values of n2. 
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However, if the congested area is A1, then the optimal policy initiates diversion 

much earlier in order to save beds in the congested area for future demand 

(possibly walk-ins). Hence, AD is an effective mechanism to alleviate congestion 

from A1, but it is not as effective when congested area is A2. The next sections 

present statistics that show significant reductions on average tardiness per patient 

when the congested area is the critical care. From a practical point of view, saving 

beds for future demand might not be acceptable by healthcare administrators, 

especially in the case of critical beds in the ED. Nevertheless, in the case of an 

emergency situation that affects a large proportion of the population (e.g. 

earthquake or terrorist attack), an ED located in the affected zone might divert 

ambulances to other hospitals and save resources for the walk-in arrivals of 

injured people. 

In addition, the effect of the difference in threshold values and treatment 

rates can be seen in Figure 3.3. Any optimal policy plotted in this figure allows a 

queue in area A2 before diverting ambulances; that is, the thresholds observed in 

n2 are greater than 5, which is the value set for c2. The size of the queue allowed 

in A2 before diverting ambulances is smaller if that area is the congested one. On 

the other hand, queuing is not allowed in the critical care area A1; that is, the 

thresholds observed in n1 are smaller than or equal to 15, which is the value set 

for c1. 

Next, the impact of traffic on the threshold curve is presented. Figures 

3.4(left) and 3.4(right) demonstrate how threshold curves change with traffic 

intensity when X = 0.75 hours and congested areas are A1 and A2, respectively. 
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In general, the higher the utilization in the congested area is, the lower the 

threshold to initiate diversion is. However, changes in the threshold are more 

evident if the congested area is A1. That is, if the congested area is A1, AD 

policies might initiate diversion even when there are plenty of beds available in 

A1. Since patients arriving by ambulance are more likely to be critical patients, 

the optimal policy changes significantly in n1 in order to manage the traffic. For 

example, when the congested area is A1 and there is high traffic intensity (90% 

UDWA), the optimal policy diverts all the time. For medium traffic, the optimal 

policy accepts some patients, but it saves almost half of the critical beds for future 

demand. For low traffic, the optimal policy practically waits to observe full 

occupancy in A1 before diverting ambulances. On the other hand, if the congested 

area is A2, the threshold in n1 is also around the value of c1 for low values of n2, 

and the threshold in n2 allows patients waiting in A2. 

 

Figure 3.4. Illustration of thresholds for changing traffic levels when congested 

area is A1, p
A

1=0.9, and X=0.75 hours (left); and congested area is 

A2, p
A

1=0.9, and X=0.75 hours (right). 
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Finally, the impact of the magnitude of X on the thresholds is discussed. 

Noting that, T
D

1 and T
D

2 are functions of X, Theorem 2 shows that the increase in 

T
D

1 and T
D

2 pushes the threshold curve in the upward direction, under the special 

case of p
A

1=1. 

THEOREM 2. If p
A

1 =1, the threshold curve, (n1) is non-decreasing in T
D

1 and 

T
D

2. 

PROOF. The proof is in Appendix A. . 

Computational analysis results that are shown for p
A

1<1 are in line with 

Theorem 2. Figures 3.5(left) and 3.5(right) show the threshold curves for different 

values of X. The result is due to the fact that T
D

1 and T
D

2 increase in deterministic 

X, which implies that (n1) is non-decreasing in X as well. 

 

Figure 3.5. Illustration of thresholds for changing levels of the time to start 

treatment in the other hospital (X) for medium traffic intensity when 

congested area is A1, p
A

1=0.9 (left); and congested area is A2, 

p
A

1=0.9 (right). 

 

For a deterministic value of X = 0.25 hrs, the optimal policy diverts all the 

time, regardless which area is the congested one. This is due to the fact that 

d2<d1=0.25, and hence, the policy diverts all the ambulance patients with a 
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guarantee of zero tardiness. However, as the time to be seen in another hospital 

increases, the optimal policy increases the threshold that initiates diversion. If the 

congested area is A1, the optimal policy might save beds in A1 for future demand 

when X has a moderate value. But as X increases beyond d2, the optimal policy 

approaches initiating diversion under full occupancy in A1. If the congested area 

is A2 as shown in Figure 3.5(right), the threshold in n1 increases in X, and might 

even allow a small queue, depending on the traffic intensity. 

Diversion can be an effective tool for managing traffic in an ED and 

improving safety by minimizing tardiness. The optimal policy depends on several 

factors. However, optimal thresholds are more sensitive to these factors if the 

congested area is the critical care area because it is expected that most ambulance 

patients need to be treated in this area. Furthermore, diversion is initiated sooner 

if there is high traffic, to save beds for future walk-in demand, which cannot be 

diverted. Nevertheless, if the time to start treatment in a neighboring hospital 

increases significantly, or if the traffic intensity is low, or if the walk-in arrivals 

causes A2 to be the congested area, then the optimal threshold on n1 practically 

waits to see full occupancy in A1 before diverting ambulances. In addition, if 

congested area is A2, the optimal threshold allows queuing in A2, because 

patients in that area have a relatively large RSTT and the treatment times are 

generally much shorter than those in A1. 

3.4 Impact of Information of the Status of Neighboring Hospitals 

The model presented in Section 3.2 assumes that the hospital under study 

has some information about the time to start treatment in a neighboring hospital if 
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patients are diverted. This time is related to multiple state variables of the 

neighboring hospital, such as crowding conditions, staffing, availability of lab and 

equipment, and even traffic conditions. The level of information of these variables 

determines the estimation of the random variable X proposed in the model. 

In this section, the impact of information on the time to start treatment in a 

neighboring hospital is analyzed. In particular, various cases are considered where 

the decision maker has different levels of information on the random variable, X. 

Hence, in addition to the deterministic (D) X analyzed in Section 3.3, uniform (U) 

and triangular (T) distributed X are considered, as shown in Table 3.2. For each 

combination of distribution and expected value, there is one instance that has 

larger variability than the other. These cases are referred as small (S) and large 

(L) variability cases. 

Table 3.2 Properties of X used in the computational analysis. 
Type Distr. Parameters 

(mins) 

Expected 

Value 

(mins) 

Range 

(mins) 

Standard 

Deviation 

(mins) 

CV Varia- 

bility 

   15 15        

Deterministic   45 45        

   75 75        

 U (10, 20) 15 10 2.8868 0.1925 S 

 U (5, 25) 15 20 5.7735 0.3849 L 

 U (30, 60) 45 30 8.6603 0.1925 S 

 U (15, 75) 45 60 17.3205 0.3849 L 

 U (50, 100) 75 50 14.4338 0.1925 S 

Probabilistic U (25, 125) 75 100 28.8675 0.3849 L 

 T (10,15,20) 15 10 2.0412 0.1361 S 

 T (5,15,25) 15 20 4.0825 0.2722 L 

 T (30,45,60) 45 30 6.1237 0.1361 S 

 T (15,45,75) 45 60 12.2474 0.2722 L 

 T (50,75,100) 75 50 10.2062 0.1361 S 

 T (25,75,125) 75 100 20.4124 0.2722 L 
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The tardiness for uniform and triangular distributions is obtained as 

follows. Let X be a uniform random variable with parameters a and b, i.e.,        

f(x) = 
ab 

1
. Then, 

          -di   if di ≤ a 

       if a < di ≤ b 

     (3.7) 

0   if b < di. 

 

Let X be a triangular random variable with parameters a and b and c, 

where c = 
2

ba 
 . Then,  

    

      

       

      (3.8) 

         

 

Figure 3.6 depicts the threshold curves under medium traffic for the tuple 

(Distribution, E[X], Variability), where Distribution  {D, U, T}, E[X]{0.25, 

0.75, 1.25 hrs} and Variability  {S, L}. 

T
D

i = 

T
D

i = 

2

ab 
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 if c < di ≤ b 

0 if b < di 



  81 

 

Figure 3.6 Illustration of impact of information on thresholds when congested 

area is A1, and traffic is medium (left); and when congested area is 

A2, and traffic is medium (right). 

 

One clearly observes that the distribution and variability of X typically 

have a relatively small impact on threshold curves, since threshold curves with the 

same E[X] generally overlap each other for most of the threshold curve. In 

particular, for E[X] = 0.75 hours, the same threshold curves are obtained 

regardless of the distribution and the variability of X. In addition, under some 

cases, an upward shift in the threshold curve can be observed when the variability 

increases; this is particularly observed when E[X] = 0.25 hours and congested area 

in A2. These results can be attributed to the relation of X with the expected 

tardiness values T
D

1 and T
D

2. Recalling Equation (3.4), a change in the 

distribution and variability of X may change the value of T
D

1 and T
D

2, resulting in 

a shift of threshold curves under the view of Theorem 2, and computational 

analysis results depicted in Figure 3.5. In other words, any change in X that causes 

T
D

1 and T
D

2 to increase (decrease) may shift the threshold curve in an upward 
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(downward) direction. Theorem 3 provides a crucial result discussing the impact 

of distribution of X on the threshold curves. 

THEOREM 3. Let  ̅ and X be two random variables where  ̅ >st X (i.e.,  ̅is 

stochastically larger than X). Furthermore, let  ̅(n1), (n1) be the threshold 

curves obtained by solving the problems with X =  ̅ and X = X, respectively. If 

p
A

1 = 1 then  ̅(n1) > (n1). 

PROOF. Let 

   dxxfdxT

id

Xi

D

i 


     and        dxxfdxT

id

Xi

D

i 


   (3.7) 

Let the function gi(x) be 

     x – di for x > di, 

  gi(x) =              (3.8) 

     0 for x < di 

Hence, 

          




id

D

iXiXii TdxxfdxdxxfxgXgE
0

, i  {1, 2} (3.9) 

Similarly, one can also obtain E[gi(X)]=
D

iT , i  {1, 2}. From Proposition 9.1.2 of 

Ross (2004), it is known that  ̅ >st X and non-decreasing gi(.) functions, one has 

     XgEXgE ii  , i  {1, 2}, which gives 
D

i

D

i TT  , i  {1, 2}; therefore    

 ̅(n1) > (n1).  
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 Since Theorem 3 follows the result of Theorem 2, it is proven for p1
A
=1. 

Although, the computational analysis allows analyzing the impact of several X 

distributions on threshold curves. Theorem 3 provides a more general finding. 

Given two random variables  ̅ and X, with  aF
X

 <  aFX  for all a, where F(.) 

denotes the corresponding cumulative distribution functions, one can obtain 

higher threshold levels for  ̅. This result also explains the higher threshold levels 

obtained for instances with higher E[X] values. Similar to Theorems 1 and 2, 

Theorem 3 is proven for special case p1
A
=1, however, its results are also observed 

in more general cases. 

Table 3.3 presents the changes of T
D

1 and T
D

2 with respect to the 

distribution of X. 

 

Table 3.3. Values of T
D

1 and T
D

2 (mins) 
E[X] = 0.25 hrs 

Det Tria Unif 

 - S L S L 

T
D

1 0 0.83 1.67 1.25 2.5 

T
D

2 0 0 0 0 0 

E[X] = 0.75 hrs 

Det Tria Unif 

 - S L S L 

T
D

1 30 30 30 30 30 

T
D

2 0 0 0 0 0 

E[X] = 1.25 hrs 

Det Tria Unif 

 - S L S L 

T
D

1 60 60 60 60 60 
T

D
2 0 4.17 8.33 6.25 12.5 

 

As observed in Table 3.3, T
D

1 = 30 and T
D

2 = 0 for all cases under E[X] = 

0.75 hours, which explains the same threshold curves obtained when E[X] = 0.75 

hours. Furthermore, one can observe that the changes in the threshold curves for 
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E[X] = 0.25 hours and E[X] = 1.25 hours are due to the changes in T
D

1 and T
D

2, 

respectively. 

Table 3.4 presents the ETP values. This table confirms that the impact of 

the variability on X is very small compared to the impact of E[X], traffic intensity 

and RSTT of the congested area. Note that the ETP when E[X] = 0.75 hours is 

always the same. This is due to the constant values obtained for T
D

1 and T
D

2 for 

each distribution. Therefore, the ETP increases if E[X] and/or the traffic increase. 

In addition, if the congested area is A1, then the ETP is significantly larger than 

the case when the congested area is A2. This is due to the small RSTT of critical 

patients and the low treatment rate in A1. 

In spite of the fact that the results presented in Figure 3.6 are only for 

medium traffic, similar results can be observed for other values of traffic 

intensity. Changing the traffic intensity shifts the threshold as in Figure 3.4, but 

the variability on the distribution still has a small impact. These findings suggest 

that in cases where the distribution of X is not known, hospital administrators may 

estimate E[X] and confidently determine diversion decisions based on this 

expected value.  

On the other hand, a bad estimation of X may result in policies that 

significantly increase the tardiness per patient. Therefore, the level of cooperation 

among hospitals to share information about their status is important to derive AD 

policies that work effectively. This implies having information and 

communication systems that monitor the state of the hospitals frequently and 
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translates this information to statistics required by other hospitals to decide 

diverting patients. 

Table 3.4. Expected tardiness per patient in minutes for different levels of traffic 

and different distributions of X 
 E[X] = 0.25 hrs 

 Det Tria Unif 

Traffic Cong. Area - S L S L 

Low A1 0.58 0.69 0.80 0.75 0.91 

 A2 0.21 0.26 0.27 0.27 0.28 

Med A1 4.77 4.89 5.00 4.94 5.11 

 A2 2.03 2.14 2.23 2.19 2.30 

High A1 37.78 37.89 38.00 37.94 38.11 

 A2 25.79 25.91 26.02 25.96 26.13 

 E[X] = 0.75 hrs 

 Det Tria Unif 

Traffic Cong. Area - S L S L 

Low A1 2.65 2.65 2.65 2.65 2.65 

 A2 0.36 0.36 0.36 0.36 0.36 

Med A1 8.74 8.74 8.74 8.74 8.74 
 A2 3.07 3.07 3.07 3.07 3.07 

High A1 41.83 41.83 41.83 41.83 41.83 
 A2 29.34 29.34 29.34 29.34 29.34 

 E[X] = 1.25 hrs 

 Det Tria Unif 

Traffic Cong. Area - S L S L 

Low A1 3.62 3.62 3.62 3.62 3.63 

 A2 0.38 0.38 0.38 0.38 0.38 
Med A1 11.98 11.98 12.01 11.99 12.04 

 A2 3.36 3.36 3.36 3.36 3.37 

High A1 45.88 45.88 45.92 45.89 45.97 

 A2 31.98 31.98 32.00 31.98 32.03 

 

The model presented in Section 3.2 assumes stationary arrival rates and 

exponential treatment times. However, there is evidence that arrivals to EDs 

follow a non-stationary pattern. Furthermore, non-exponential distributions may 

provide a better model for the treatment times in EDs. In addition, it is very likely 

that congestion in neighboring hospitals is positively correlated; therefore, the 

value of E[X] might also change throughout the day. In the next section, the 
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impact of these more realistic assumptions is considered using a simulation 

model. Simulation is used to evaluate the performance of the policy suggested by 

the MDP and compare it to other simple policies. 

3.5 Simulation of Ambulance Diversion Policies 

The MDP proposed in this chapter assumes stationary arrival rates and 

exponential treatment times. However, there is evidence that these assumptions do 

not represent the real-life settings. In this section, these assumptions are relaxed 

and patterns commonly observed in EDs across the United States are explored 

using a discrete-event simulation model. Furthermore, the AD policy prescribed 

by the MDP is compared with the following simple AD heuristics: 

1. Full Beds in A1 (FB A1): Since most of the ambulance arrivals are critical 

patients, this policy diverts when all the beds in area A1 are occupied (i.e.,    

when n1 > c1). 

2. Full Beds in A1 or in A2 (FB A1/A2). This policy diverts an arriving 

ambulance when there is at least one area with all the beds occupied (i.e., 

when n1 > c1 or n2 > c2). 

3. Full Beds (FB): This policy diverts an arriving ambulance only when all of the 

beds in the ED (both A1 and A2) are occupied (i.e., when n1 > c1 and n2 > c2). 

4. Myopic policy (Myopic): This policy diverts an arriving ambulance only if the 

expected tardiness for the current ambulance patient at the neighboring 

hospital is smaller than the expected tardiness if he/she is accepted. Thus, 

under the myopic policy, the ambulance is diverted only when          

p
A

1T
D

1+(1-p
A

1)T
D

2 < p
A

1T(n1)+(1-p
A

1) T(n2). Note that this heuristic evaluates 
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T(n1) and T(n2) under the assumption that treatment times are exponentially 

distributed. 

5. No AD policy (No AD): This policy does not divert patients at any time. 

 Several sources have identified a pattern in the ED arrivals across the US 

(Centers for Disease Control and Prevention 2008; Green 2006; Cochran and 

Roche 2009). This pattern observes low traffic between 1am and 8am 

approximately. Then, the arrivals increase between 8am and 10am, and remain at 

a high level between 10am and 11pm. Then, a decline of the arrivals is observed 

between 11pm and 1am. In order to consider this pattern in the simulation model, 

the arrival rate pattern used by Cochran and Roche (2009) is adopted. The authors 

present an hourly multiplicative index that indicates the traffic intensity compared 

to the average arrival rate. Figure 3.7 is taken from Cochran and Roche (2009), 

and it shows the change in the arrival multiplicative index throughout the day. 

 

Figure 3.7. Arrival multiplicative indices, adopted from Cochran and Roche 

(2009). 
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 In order to mimic the arrival pattern of Cochran and Roche (2009), the 

arrival rates are set as follows. First, W
 is found such that max{UDWA1, 

UDWA2}=90%, and this value is set as the walk-in arrival rate for the highest 

peak hour, which is from 7pm to 8pm with the multiplicative index of 1.45. For 

example, for the setting (p
A

1, p
W

1) = (0.9, 0.5), the value obtained is W
 = 6.75, 

which gives the arrival rate used for 7pm to 8pm in the simulation model. Next, 

the walk-in arrival rates are scaled using the multiplicative indices to obtain the 

arrival rates for every hour during the day. For example, for the setting 

(p
A

1,p
W

1)=(0.9, 0.5), the arrival rate between 1am and 2am, which has a 

multiplicative index of 0.6, is chosen as (0.6/1.45)6.75 = 2.793. Then, the hourly 

ambulance arrival rates are calculated such that they represent 15% of the total 

arrivals to the ED (Centers for Disease Control and Prevention 2010). 

Consequently, the arrival rate pattern depicted in Figure 3.8 is obtained. 

Two different patient mixes (p
A

1, p
W

1) are used: (0.9, 0.5) and (0.9, 0.3), which 

make A1 and A2 the congested areas, respectively. 

 

Figure 3.8. Arrival rates to the ED by walk-in patients and ambulances when 

congested area is A1, p
A

1 = 0.9, p
W

1 = 0.5 (left); and congested area is 

A2, p
A

1 = 0.9, p
W

1 = 0.3 (right). 
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As shown in Figure 3.8, three levels of traffic intensity are defined: low, 

medium and high. The arrival pattern observed in most EDs across the US and the 

large percentage of hospitals that go on diversion simultaneously (United States 

General Accounting Office 2003) suggest that traffic in neighboring hospitals is 

positively correlated. Therefore, it is very likely that if an ED experiences high 

traffic, a neighboring hospital also is experiencing high traffic, increasing the 

waiting time of the diverted patients. Hence, this section assumes that parameters 

for the distribution of X change depending on the traffic intensity of the ED under 

study. The random variable, X is assumed to have a triangular distribution with 

coefficient of variation of 0.2722 and three settings for the parameters of X are 

tested as shown in Table 3.5. 

Table 3.5. Setting of X used in simulation. 

Parameters of Triangular Distribution (mins) 

Traffic in main ED Setting 1 Setting 2 Setting 3 

Low (5, 15, 25) (5, 15, 25) (10, 30, 50) 

Medium (10, 30, 50) (15, 45, 75) (25, 75, 125) 

High (15, 45, 75) (25, 75, 125) (40, 120, 200) 

 

The treatment times in areas A1 and A2 are assumed to be lognormally 

distributed, which is one of the distributions identified in Hoot et al. (2008) to 

represent treatment times in healthcare. The expected treatment times used in the 

simulation model remain 240 minutes and 60 minutes for patients treated in areas 

A1 and A2, respectively. The standard deviation was adjusted to match the 

coefficient of variation of treatment times found in Cochran and Roche (2009). 

Therefore, the standard deviation of treatment in A1 was set to 173.88 minutes, 

yielding a coefficient of variation of 0.72; and the standard deviation of treatment 



  90 

in A2 was set to 6.12 minutes, yielding a coefficient of variation of 0.102. The 

probability density functions of the treatment times are shown in Figure 3.9. 

 

Figure 3.9. Probability density function of treatment time in A1 (left); and in A2 

(right). 

 

In addition to the heuristics listed previously in this section, the simulation 

model was used to test the policy prescribed by the MDP. In preliminary analysis, 

four different MDP strategies were tested considering stationary arrival rates of: 

(i) the average of high traffic hours; (ii) the average of medium traffic hours; (iii) 

the average of low traffic hours; and (iv) the overall daily average, while the 

parameters for X are the averages of the parameters throughout the day for each 

setting. The preliminary experiments show that the MDP solved with the overall 

daily average rate outperforms all others. Hence, the stationary arrival rate for the 

MDP model is chosen as the daily average in order to derive the optimal AD 

threshold. For each simulation setting, the MDP is solved first, and then the 

obtained AD control policy is implemented in the simulation model to obtain an 

estimate for its performance. 
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Each policy with all possible combinations of severity mix and setting for 

X was modeled in simulation models developed using Arena (Kelton et al. 2007). 

Pilot runs were used to determine a warm-up period of two months, replication 

length of one year and 30 replications in order to capture the performance of the 

system in steady state and estimate the average tardiness per patient using 95% 

confidence intervals with an average relative precision of 3.69%. In addition, 

common random numbers were used to reduce noise when comparing alternative 

AD policies (Banks et al. 2010). Figure 3.10 presents the confidence intervals for 

settings 1 and 3 of X, given in Table 3.5. The results for setting 2 are not shown in 

this figure because they fall somewhere between the results from settings 1 and 3. 

Even though the simulation model includes several relaxations that 

invalidate the optimality of the policy suggested by the MDP, the policy 

prescribed performs consistently well in all scenarios compared with other 

heuristics. The FB A1 is a policy that also works consistently well in all the 

scenarios and, for some of them, there is not a significant difference in the 

performance compared with the AD control policy prescribed by the MDP. This 

heuristic works well because it takes advantage of the fact that most ambulance 

patients are critical; and hence, the policy tries to avoid queuing in the critical 

care area. 
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Figure 3.10. 95% Confidence intervals on the average tardiness per patient for 

Setting 1, Congested Area: A1 (top left); Setting 1, Congested Area: 

A2 (top right); Setting 3, Congested Area: A1 (bottom left); Setting 

3, Congested Area: A2 (bottom right). 

 

On the other hand, the policy that diverts when at least one area has all of 

the beds occupied (i.e., FB A1/A2) performs reasonably well if the congested area 

is A1, but it has the worst performance among heuristics if the congested area is 

A2. This is due to the fact that if the congested area is A1, then this policy avoids 

having several critical patients waiting for a bed; however, if congested area is 

A2, then the policy is very likely to start diverting when all the beds in this area 

are occupied, therefore it does not take advantage of the relatively high treatment 

rate of A2. The full occupancy policy (FB) does not perform as well as other 
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heuristics, especially if congested area is A1. In this case, the policy might delay 

diversion until beds in the non-congested area (A2) are fully occupied; therefore, 

some critical patients have to wait in the ED. The performance of the Myopic 

policy in comparison to other policies is better if congested area is A2 than if it is 

in A1. This may be due to the assumption of exponential treatment times used to 

compute the expected tardiness using Equation (3.3) before deciding if a patient is 

diverted or accepted. 

Most of these heuristics work significantly better than No AD. Not 

diverting patients can produce a high average tardiness per patient, especially if 

congested area is A1, where the critical patients are treated. For this case, some of 

the AD policies, including the suggested by the MDP, can reduce the average 

tardiness by more than 10 minutes, which could make a significant difference in 

terms of mortality rate in critical patients. Therefore, these results suggest that 

intelligent design of AD policies can reduce the time to deliver appropriate 

treatment to patients, even if the time to start treatment in a neighboring hospital 

is relatively large. 

Table 3.6 presents the relative performance of the heuristics, taking the 

policy prescribed by the MDP as a basis. The relative performance confirms that 

the MDP policy is significantly better than the other heuristic, except for FB A1 

in some scenarios. 
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Table 3.6 Relative performance of heuristics compared with MDP (%). 
Setting/Congested Area 

 Setting 1 Setting 2 Setting 3 

Heuristic A1 A2 A1 A2 A1 A2 

FB A1 20.85 -4.17 5.59 3.30 -0.03 21.56 

FB A1/A2 14.49 178.92 5.09 333.18 4.58 554.6 
FB 216.25 11.84 135.85 8.46 82.31 14.43 

Myopic 57.64 7.71 42.37 4.41 62.97 5.03 

No AD 339.87 47.20 220.42 23.04 138.7 6.25 

 

In order to determine which policy is the best for each scenario, MDP and 

FB A1 are compared using hypothesis testing on the difference of their means 

using 95% confidence level. There is significant evidence that the policy 

prescribed by the MDP is better than FB A1 for setting 1 and congested area A1, 

setting 2 and congested area A1, and setting 3 and congested area A2 scenarios. 

For setting 1 and congested area A2, setting 2 and congested area A2, and setting 

3 and congested area A1 scenarios, there is not a significant difference on the 

performance of these two policies. Even though the FB A1 policy might be easier 

to implement, the threshold suggest by the MDP still works significantly better 

than FB A1 in several scenarios. Furthermore, the difference could be 

significantly high, like in the case of setting 1 and congested area A1 where 

suboptimality of FB A1 is more than 20%. 

An important aspect to highlight from Table 3.6 is the large difference of 

the relative performance when comparing the columns that defines the congested 

area for the same setting. For example, the heuristic FB A1/A2 performs only 

14.49% worse than the threshold prescribed by the MDP under setting 1 and 

congested area A1; but the same heuristic performs 178.92% worse than the MDP 

under same setting and congested area A2. Therefore, the knowledge of the 
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severity mix that defines the congested area is a key parameter that determines the 

effectiveness of an AD policy. 

The results show that effective design of AD policies can decrease the 

average tardiness per patient significantly, even if the neighboring hospital is far 

away or crowded like in the case of setting 3. However, inappropriate heuristics 

can lead to a worse performance than not diverting at all, like in the case of policy 

FB A1/A2 and settings with congested area A2. In addition, the simulation model 

confirms that ambulance diversion is more likely to have a significant impact if 

the congested area is A1.  

The MDP proposed in this chapter prescribes AD thresholds that perform 

consistently well despite the relaxation of important assumptions. However, the 

AD policy prescribed by the MDP may lead to a situation where the ED goes on 

and off diversion very often. Furthermore, the proposed Bellman's equation does 

not consider the percentage of time spent on diversion, which is an important 

performance measure for the EDs. The next section discusses insights about these 

aspects and presents a simple heuristic to avoid changing diversion status too 

frequently. 

3.6 Insights on Implementation of AD Policies Prescribed by the MDP 

Typically, real-life AD is implemented such that the ED maintains the 

diversion status for a predetermined period in which ambulances are diverted to 

other hospitals. In contrast, the optimal AD control policies prescribed by the 

MDP model comprise a single threshold that determine accepting or diverting 

individual ambulance arrivals. Hence, there may be some downsides of this 
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approach if implemented in practice: (i) EDs could go on and off diversion very 

often, increasing the cost of communicating with Emergency Medical Services; 

(ii) an ambulance could be rejected and another could be accepted within a short 

time frame, which may seem to be unethical to practitioners; (iii) the AD policy 

produced by the MDP formulation requires continuous monitoring of the state of 

the system. 

In order to overcome these issues, a new heuristic is presented, MDP, 

that requires the diversion status to last for at least a predetermined duration of . 

This policy implements the threshold prescribed by the MDP to determine when 

to initiate the diversion status. Once the ED goes on diversion by exceeding the 

threshold, the ED maintains the diversion status for the next  time units. After  

time units, the state of the system is evaluated. If the state of the system is above 

the threshold curve according to the prescribed MDP policy, then the diversion 

status is maintained for another  time units. Otherwise, the ED removes the 

diversion status. 

The remainder of the section analyzes these policies for the case where the 

congested area is A1 because AD is more effective in this scenario. In addition, 

setting 2 of Table 3.5 was chosen for analysis because it implies moderate values 

for the parameters of X; however, similar observations are made for other settings. 

Figure 3.11 shows the average tardiness per patient and the average number of 

diversion episodes per day for the MDP policy and the MDP policies, with     

 {30, 60, 90, 120} (in minutes). 
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In general, the average tardiness per patient resulting from the 

MDPpolicies is greater than that of the policies prescribed by the MDP. 

However, the differences are quite small and often insignificant. MDP policies 

are not only more suitable to be implemented in practice; but also, they reduce the 

average number of diversion episodes per day significantly, as observed in Figure 

3.11(right), and hence, they may avoid ethical problems related to admission 

control in emergency care. 

 

Figure 3.11. Performance of the MDP prescribed policy and MDPpolicies in 

terms of tardiness (left); and number of diversion episodes (right). 
 

Decision makers in practice have the objective of providing timely care to 

patients requiring emergency care, as well as minimizing the duration of the 

diversion episodes and the fraction of time spent on diversion. The diversion 

episode length refers to the duration of the diversion status every time that the ED 

goes on diversion. Since the formulation presented in this chapter does not 

penalize being in the diversion status, the policies prescribed by the MDP may 

result in long diversion durations (particularly when treatment times at the other 

hospital are short).  
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In Figure 3.12, the average fraction of time spent on diversion and the 

average diversion episode length for the MDP and MDP policies are presented, 

using again setting 2 for the distribution of X and congested area in A1. 

 

Figure 3.12. Performance of the MDP and MDPpolicies in terms of average 

fraction of time on diversion (left); and average diversion episode 

length (right) for c1=15 beds. 

 

An increase of  results in more undesirable outcomes in terms of both 

metrics is observed. Furthermore, the fraction of time on diversion of the MDP 

policy is significantly higher than the values observed in real settings (less than 

20% according to United States General Accounting Office (2003)). Therefore, 

the proposed MDP policy improves the performance of EDs in terms of ETP, 

however, it increases the fraction of time on diversion and the average diversion 

episode lengths, which may be undesirable for EDs. 

In order to find long-term solutions that improve performance in both 

metrics, the decision makers must address the root cause of the problem, which 

may be the insufficient capacity to provide emergency care. Figure 3.13 presents a 

sensitivity analysis varying the number of beds in A1 and observing the impact on 
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the optimal average tardiness per patient and the fraction of time on diversion 

(under the optimal control policy) for setting 2. 

 

Figure 3.13. Fraction of time on diversion vs. average tardiness per patient for 

different number of beds in A1 and considering the MDP prescribed 

policy. 

 

Capacity has a significant impact on the performance of the ED. Adding 

beds to A1 reduces the optimal average tardiness per patient, which approaches to 

zero as the number of beds becomes sufficient to serve the demand. In addition, 

adding beds reduces significantly the fraction of time on diversion under the 

optimal control policy. The MDP model may prescribe being always on diversion 

when the walk-in demand exceeds the capacity during the peak time. For 

example, during the peak period, the average arrival rate to A1 from walk-ins 

only varies between 2.56 and 3.375 patients per hour; while the average treatment 

rate, when there are only 10 beds in A1, is 2.5 patients per hour. On the other 
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hand, diversion is used less as the capacity becomes sufficient to serve all the 

arrivals. 

Thus, under setting 2 and assuming c1=10 beds, the best average tardiness 

per patient that the ED under study can obtain is 106 minutes, but this implies 

being almost always on diversion, and accepting only walk-ins. On the other 

hand, the ED can achieve an average tardiness per patient of 25 minutes, with two 

more beds in A1, but again, would be on diversion for a very a large fraction of 

time. In order to reduce both metrics simultaneously, the ED needs to invest 

further in critical care beds. For example, assuming 18 beds in A1, the ED could 

achieve an average tardiness per patient of only 2.45 minutes while being on 

diversion only 11% of the time. Hence, strategic planning of EDs must consider 

the capacity of the EDs to estimate the size and amount of resources required to 

reach a desired or acceptable level of tardiness and fraction of time on diversion. 

3.7 Conclusions 

This chapter presents an MDP model to determine the AD policy that 

minimizes the long-run average tardiness per patient for a single ED. Tardiness is 

defined as the amount of time that the patients wait beyond the recommended 

safety time threshold. The model considers two treatment areas, differentiated by 

patient severity, and assumes availability of (some) information on the time to 

start treatment in a neighboring hospital if an ambulance patient is diverted. 

The structural properties of the model indicate the existence of a threshold 

curve “above" which one should divert ambulances. This threshold curve is 

sensitive to traffic intensity, severity mix and expected time to start treatment at 
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the neighboring hospital. Based on analytical results and computational 

experiments shown in this chapter, it is observed that the threshold curve is non-

increasing in traffic intensity and non-decreasing in the expected tardiness 

experienced if patients are diverted to a neighboring hospital. Moreover, the 

optimal AD policy is more sensitive to changes in parameters, and can result in a 

larger reduction on the average expected tardiness if the critical care area has 

higher utilization than the fast-track area (A2), considering that most ambulance 

patients need immediate and emergent care. On the other hand, the variability 

regarding the time to start treatment in a neighboring hospital has a relatively 

small impact on the definition of the threshold and on the optimal value. 

Depending on the traffic intensity and congested area, the optimal AD 

thresholds could allow queuing before diverting an ambulance patient, or it could 

save the beds for future demand. These variations on the optimal policy are found 

in particular for the case where A1 is the congested area. If the ED has high walk-

in traffic and a significant proportion of them are critical patients, then the optimal 

AD policy initiates diversion earlier, saving beds in the critical area for future 

walk-in demand. Even though these types of actions might not be well received 

by the medical community, the policy could be adapted and implemented under 

specific conditions in order to increase the accessibility to emergency care for 

patients that go to an ED on their own. 

Even though the MDP includes assumptions that might not be realistic in 

real-life settings, the optimal AD policy works consistently well under the 

incorporation of time-dependent arrival patterns and non-exponential treatment 
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time distributions. Furthermore, the policy prescribed by the MDP works 

significantly better than several policies applied in practice, including not 

diverting at all. Hence, effective AD policies can contribute to increasing patient 

safety by minimizing the time that they wait beyond their safety time threshold. 

The AD policy prescribed by the MDP may have downsides for 

implementation. For example, the AD threshold curve may cause going on and off 

diversion relatively often. This chapter addresses this concern by proposing a 

heuristic that re-evaluates the diversion status at given time intervals, after going 

on diversion. The average tardiness per patient produced by this heuristic is 

slightly greater than the MDP prescribed policy, but it reduces significantly the 

number of diversion episodes per day. 

On the other hand, the proposed formulation does not take into account 

some performance metrics of EDs such as the fraction of time on diversion and 

the average diversion episode length. Hence, the proposed MDP policy may 

prescribe policies that may result in relatively long diversion episodes, and 

relatively frequent diversions. A sensitivity analysis made on the number of beds 

in A1 shows that capacity should be addressed in a strategic manner in order to 

have significant improvements in both timeliness (measured by, e.g., average 

tardiness per patient) and in accessibility to emergency care (measured by, e.g., 

fraction of time on diversion). 

The implementation of the policy prescribed by the MDP requires first the 

knowledge of the input parameters, which include the number of beds and 

treatment times. In addition, the computation requires knowledge about the 
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expected value of the time to start treatment in a neighboring hospital. Decision 

makers might be able to make an educated guess; however, collaboration among 

hospitals is encouraged to have better results systemwide. Information systems 

that can provide accurate information about the state of the hospital in real time 

would be a great support to assure that the AD policy is followed as 

recommended by the model.  

In summary, this chapter demonstrates that an optimal design of AD 

policies can be an effective strategy to reduce the delays in receiving emergency 

care, which can potentially lead to significant reductions in mortality and 

morbidity. Decision makers, including hospital administrators and public health 

officers can design better policies by considering the proposed model. The next 

chapter extends this research for designing the optimal AD policies for multiple 

hospitals. Since MDP suffers from scalability issues, genetic algorithms combined 

with simulation is explored. 
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CHAPTER 4 

CENTRALIZED DESIGN OF AMBULANCE DIVERSION 

POLICIES FOR MULTIPLE HOSPITALS 

4.1 Introduction 

Several reports, papers and articles highlight issues faced by emergency 

care delivery system in the United States. These issues include long periods 

waiting in emergency departments (EDs), high number of patients boarding, 

excess of transportation time by diverted ambulances, etc (American College of 

Emergency Physicians 2008; Asplin 2003). The most concerning consequences of 

these problems are adverse events that can increase the morbidity and mortality in 

patients (Green 2008; Pham et al. 2006). 

Patient allocation in an emergency care delivery system can be an 

alternative to reduce congestion from EDs and avoid periods of inappropriate 

level of care. However, healthcare organizations do not have the mechanisms to 

control where patients go, except for those transported by ambulance. Thus, walk-

in patients decide which ED to visit if they require emergency treatment, but 

ambulances can take patients to the most appropriate facility according to their 

health state and the state of the surrounding EDs. This chapter proposes the 

centralized design of ambulance diversion policies as part of an ambulance flow 

control mechanism that includes also ambulance destination policies. The 

combination of these two types of policies is referred as a patient allocation 

strategy in an emergency care delivery system (ECDS). The objective of the 

proposed ambulance flow control is to minimize the average time that patients 
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spend in activities that do not provide appropriate treatment through different 

stages of care. These activities, which are called non-value added activities in this 

chapter, include transportation, waiting in the ED and boarding in the ED waiting 

for a bed in an inpatient unit. Even though ambulance flow control acts only to a 

small proportion of all the patients visiting EDs (about 15% of all the arrivals to 

EDs are ambulances according to the Centers for Disease Control and Prevention 

(2010), an effective allocation can smooth the patient flow in the entire system 

because ambulance patients produce significant disruptions due to their 

characteristics, such as high priority level, long treatment times and high 

admission probability. 

The remaining parts of this chapter are organized as follows. Section 4.2 

presents findings in related literature. Section 4.3 describes the discrete-event 

simulation model built for an emergency care delivery system. Section 4.4 

presents the methodology proposed for a centralized design of AD policies using 

GA. Section 4.5 describes the experimentation framework and shows the results 

of two case studies. The limitations of this research are discussed in Section 4.6 

and finally conclusions and future extensions are presented in Section 4.7. 

4.2 Literature Review 

Ambulance Diversion is a way to relieve congestion from overcrowded 

EDs. However, diverting ambulance is also a problem because of the increase 

transportation. One of the first reports highlighting AD as an issue for healthcare 

delivery systems is the report submitted by the General Accounting Office to the 

US Senate in 2003 (United States General Accounting Office 2003). This report 
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observed a high incidence of diversion in statistical metropolitan areas. The main 

conditions identified as contributors to diversion include the inability to transfer 

patient from the ED to critical care beds, to telemetry beds or to other inpatient 

beds (Centers for Disease Control and Prevention 2006b). In addition, other 

studies identify the high number of patients waiting in the ED and high number of 

patients boarding as factors to trigger the diversion status (American College of 

Emergency Physicians 2008; Pham 2006). 

The American College of Emergency Physicians recommends avoiding 

AD because of the potential consequences of longer transportation over the health 

condition of the patient (American College of Emergency Physicians 1999; 

American College of Emergency Physicians 2008). Hence, efforts to reduce 

diversion are available in literature as empirical studies. Furthermore, some of 

these studies suggest the hypothesis that periods on AD increase because of a 

reciprocating effect. Thus, if one facility goes on diversion, the surrounding EDs 

experience an overflow of incoming patients, which forces to these facilities 

going on diversion as well. 

Vilke et al. (2004a) designed a plan to observe the reciprocating effect of 

AD in San Diego County. Two neighboring emergency departments were 

exposed to an experiment that restricted one of them of going on diversion. The 

team observed a significant reduction on the time spent on diversion on both 

hospitals. However, after experimentation and withdrawal of the constraint, the 

diversion episodes returned to their usual level. The authors of this study conclude 

that reciprocating effect is an important factor to observe as a contributor to AD.  
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Then, Vilke et al. (2004b) expanded the scope of the project to a two-year 

study that included 21 EDs and also the participation of the San Diego County 

Medical Society, paramedic agencies, the San Diego County Division of 

Emergency Medical Services and the local health care association. The group re-

designed the AD guidelines of the hospitals restricting the diversion status. Under 

the new guidelines, the results showed a significant reduction in the mean hours 

spent on diversion per month in the whole region. The mean numbers of hours on 

diversion per month for the pre-trial, trial and post-trial periods were 4007, 1079 

and 1774, respectively. The trial period refers to the period when the intervention 

started and post-trial refers to a control period. The authors conclude that a more 

restrictive AD guideline to go on diversion can reduce significantly the amount of 

time spent on diversion and increase the access to the facility requested. 

A similar study is presented by Asamoah et al. (2008). This chapter 

presents a study about the implementation of a new AD protocol in a county of 

600 000 people and 10 hospitals. The new protocol restricted the time spent on 

diversion to only one hour out of every eight. The mean number of hours on 

diversion in the system per month was 305, 275 and 54 for the pre-trial, interim 

and post-trial periods, respectively. Authors also found a small, but significant 

increase in the time that it takes for EMS personnel to become available for 

service after arrival with a patient to an ED (from 21.1 to 22.8 minutes). The 

authors conclude that a strict protocol that regulates the duration of AD can 

improve the accessibility to emergency care.  
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Patel et al. (2006) presents a diversion protocol for Sacramento, CA. This 

protocol establishes that facilities may go on AD only if ED cannot care for 

additional patients and it restricts the number of consecutive hours on diversion to 

three. The results of the analysis of this protocol carried out during 3-years with 

the participation of 17 hospitals include a reduction of the number of AD hours on 

diversion of the system by 1428 hours per month, which represents a decrease of 

75%. 

It is evident that these papers shows successful designs of AD policies to 

reduce diversion hours in multi-hospital systems, but they lack to in-depth 

quantitative study to assess the impact of this strategy on patients including the 

patient average waiting times within each facility or the number of patients 

boarding.  

On the other hand, there are papers that analyze AD from an analytical 

perspective. One paper presented by Hagtvedt et al. (2009) proposes a game 

theoretical approach to analyze the behavior of hospitals regarding AD. The 

authors introduce a payoff function that includes the difference between the ideal 

and real loads in a hospital, plus a penalty for being on diversion. This payoff 

function was used to formulate the Prisoner’s Dilemma to a system with two 

hospitals, where the decisions are going on diversion, or not going on diversion. 

The authors conclude that there is an incentive to go on AD if inflow is 

sufficiently higher than the ideal load, which could make cooperation difficult in a 

multi-hospital context; hence, in order to force cooperation among a multiple 
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hospitals, the system should include an external agent that regulates the AD 

strategies. 

Deo and Gurvich (2011) present a queuing network formulation to analyze 

the effect of AD on the average waiting time within each ED. The authors found 

that AD could take advantage of the resource pooling effect in the system and a 

centralized definition of AD policies can be Pareto improving compared to not 

diverting at all. Since the optimal threshold is difficult to characterize, the authors 

introduce the number of beds as an AD threshold that can yield effective results. 

The existing literature showing empirical studies does not show the 

potential benefits that could be gained with an effective design of diversion and 

destination policies. Moreover, these studies search for minimizing or avoiding 

diversion. However, there is evidence that not diverting patients from 

overcrowded hospitals can be risky for the health status of the patients. On the 

other hand, there is evidence from queuing formulations that suggest that 

diversion can reduce the average waiting time in the system. However, the 

assumptions made by queuing theory do not allow exploring the impact of other 

performance measures, such as transportation time, boarding time, etc. 

This chapter proposes the effective design of ambulance diversion policies 

combined with destination policies to allocate ambulances to EDs in an ECDS. 

The methods proposed include using simulation and genetic algorithm to design 

the diversion policies for all the hospitals in the ECDS. Unlike models in the 

existing literature, the proposed model considers aspects that determine the 

effectiveness of the policies, such as: non-stationary arrival rates, severity levels 
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of patients and priorities, different treatment times and admission probability to 

hospitals and transportation time. In addition, the diversion policies explored in 

this chapter includes multiple state variables. Furthermore, the model includes 

destination policies that could also have an impact in the performance of the 

ECDS.  

4.3 Emergency Care Delivery System Model 

The model of the emergency care delivery system (ECDS) of this chapter 

is a discrete-event simulation model that comprises multiple hospitals which serve 

a geographical region. Each hospital includes an ED and an Inpatient Unit (IP). 

The simulation of the ECDS is executed through three main modules: the 

emergency patient generator, the ambulance destination decision and the hospital 

simulation module. 

First, the emergency patient generator module creates patients with the 

need of ambulance transportation to one of the EDs. Thus, this module schedules 

the appearance of new patients and assigns a random location in the geographic 

zone. Next, an ambulance destination decision module determines the destination 

of the patient. This module observes the candidate destination hospitals based on 

their diversion status and the appropriate hospital is selected depending on a pre-

defined destination policy. Then, the arrival of the ambulance patient to the 

selected ED is scheduled. 

On the other hand, the hospital simulation module keeps each hospital 

operating according to their events. Besides the ambulance arrivals, each hospital 

receives walk-ins and direct admissions independently from the other hospitals. 
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The EDs might start a diversion period if the conditions prescribed in a diversion 

policy are satisfied. If a hospital goes on diversion, then it is removed from the 

candidate list of potential destination for other ambulance patients until the 

diversion status is back off. The general overview of the model is shown in Figure 

4.1.  

 

Figure 4.1. Overview of the simulation model. 

There are two important assumptions regarding the acceptance of patients 

while a hospital is on diversion. First, if the ambulance destination decision 

module determines that a patient is taken to a specific hospital and that hospital 

goes on diversion before the patients arrives, then the patient is still received at 

that hospital. This assumption avoids redirecting an ambulance to another ED 

while it is on the road to the destination hospital. The second assumption avoids 

that all the hospitals in the ECDS go on diversion at the same time. Thus, if the 

last hospital off diversion in the ECDS observes that the condition to start a 

diversion period is reached, then all the hospitals in the ECDS go off diversion. 

This assumption avoids that a patients has to be taken to another region, which is 

an undesired aspect in real settings (Arizona Emergency Medical Systems 2000). 
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A generic model was built for each hospital, which comprises an ED and 

one inpatient unit whose main resources are the beds where patients receive 

treatment. Similar models can be found in Cochran and Bharti (2006), Kolker 

(2008) and Hoot et al. (2008). The main sources of information for the input data 

are Cochran and Bharti (2006), Cochran and Roche (2009) which present relevant 

data of hospitals located in Maricopa County, AZ. Additional information was 

obtained from the National Health Statistics Reports of the Centers for Disease 

Control and Prevention. 

The patient flow inside each hospital is depicted in Figure 4.2. Patients 

arrive to the ED walking in or by ambulance; upon arrival to the ED, the patient is 

classified in one out of five severity levels, whose probability depends on the 

arrival mode. The five-level severity system has become the standard in many 

countries (Agency for Healthcare Research and Quality 2005) and some statistics 

are usually published in the Centers for Disease Control and Prevention reports. 

Patients with severity level 1 are the sickest patients and receive the highest 

priority, while patients with severity level 5 have the lowest priority. All the 

patients that go to the ED receive treatment in one bed. The mean treatment time 

depends on the severity level (Cochran and Roche 2009; Centers for Disease 

Control and Prevention 2006a). If all the beds are occupied, then the patients have 

to wait in a queue. As a bed becomes free, another patient starts receiving 

treatment. Patients are assigned to a bed considering first the priority and then 

first come – first served is the tie-breaker. If a patient waits too long for a bed, 

then the patient leaves the facility without receiving treatment (LWOT). After 
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ending treatment in the ED, the patients require admission to the inpatient unit 

with a probability that depends on the severity level. If all the beds in the IP are 

busy when admission from the ED is required, then the patient have to board in 

the ED bed until a bed in the IP unit opens. Beside admissions from the ED, the 

IP unit also considers direct admission. The patients are discharged after ending 

treatment in the IP unit or after ending treatment in the ED without admission. 

 

Figure 4.2. Patient flow inside each hospital. 

The hospitals in the model include patterns observed in the real setting, 

such as hourly pattern of arrivals to ED, treatment times that depend on severity 

level and operational issues as congestion, boarding and patients leaving without 

treatment. The performance of the model of the generic ED is similar to the data 

presented in papers and reports. For example, Table 4.1 presents 95% confidence 

intervals on the main metrics of the proposed simulation model without diversion 

and compares them with available information of other EDs.  
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Table 4.1. Performance of generic ED compared with other EDs used as 

references. 

Metric Simulation Output 

95% CI 

Validation 

Average waiting time 

 

67.51 + 8.46 minutes 55.8 minutes
a,
 

56 minutes
b
 

Percentage of patients 

that left without 

treatment 

0.92 + 0.45 2% 
a
 

Average ambulance 

transportation time 

6.84 + 0.08 minutes 8 minutes
c
 

a
Centers for Disease Control and Prevention (2008) 

b
General Accounting Office (2009) 

c
Petzall et a. (2011) 

 

There is very little information about national data regarding average 

boarding time because data is not collected or it is not available from the patient 

records (United States General Accounting Office 2009). The 95% confidence 

interval of the average boarding time for the generic ED simulated is 51.52 + 9.3 

minutes. According to the United States General Accounting Office (2003), the 

percentage of hospitals whose average boarding time is less than 2 hours is about 

10%. Appendix B presents more details about input data. 

4.4 Centralized Design of AD Policies 

The centralized design of AD policies is a key factor for achieving the 

potential benefits of ambulance flow control. As highlighted in the literature 

review, an independent design of AD policies can have undesirable consequences, 

including long periods on simultaneous diversion in the system that can 

significantly increase the transportation time (Deo and Gurvich 2011; Vilke et al. 

2004a). 
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This research proposes combining simulation and genetic algorithm (GA) 

to design the AD policies for all the hospitals in the ECDS and to find Pareto 

improving policies. In order to design effective AD policies from a centralized 

perspective, the chromosome structure of the GA comprises the diversion policies 

of all the hospitals in the system, as depicted in Figure 4.3. These AD policies, 

along with the destination policies, are evaluated using discrete-event simulation. 

 

Figure 4.3. Centralized design of AD policies using GA. 

The evaluation of the effectiveness of a strategy that implements a specific 

set of AD policies combined with a destination policy is through the vector that 

comprises the average patient non-value added time for each hospital: (   ̅̅ ̅̅ ̅̅
 , 

   ̅̅ ̅̅ ̅̅
 ,…,    ̅̅ ̅̅ ̅̅

 ), where n is the number of hospitals in the ECDS. For each 

hospital, the average patient non-value added time is: 

   ̅̅ ̅̅ ̅̅
    

  ̅  ∑     
 
    ̅      

    ̅    (4.1) 

where, 

   ̅̅ ̅̅ ̅̅
 :  average patient non-value added time in hospital Hi. 

  
 : fraction of ambulance arrivals to hospital Hi. 
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 ̅ : average transportation time of ambulance patients received at hospital Hi. This 

includes patients whose final destination is Hi, and patients diverted from Hj to Hi, 

for all i ≠ j. 

    : weight given to the average waiting time of patients with severity level k in 

hospital Hi. 

 ̅   : average waiting time of patients with severity level k in hospital Hi. 

  
   : Fraction of ED patients admitted to hospital Hi. 

 ̅ : Average boarding time in hospital Hi. 

The first term in the right side of Equation (4.1) takes into account only 

the ambulance patients. The second term is a weighted average of the waiting 

time of all the patients that went through the ED, except for those that left without 

treatment. The weights are defined by the decision maker and the purpose is to 

give more importance to the waiting of the most urgent patients than the least 

urgent. The third term of the computation considers information of admitted 

patients by including the boarding time. 

Multi-objective genetic algorithm is presented to define the AD policies 

that produce Pareto improvements on the ECDS. This methodology allows the 

generation of new set of policies through recombination and mutation of 

chromosomes. Then, the set of AD policies of the ECDS is evaluated with the 

discrete-event simulation model described in Section 4.3. The fitness of the policy 

considers the tuple of average-patient non-value added times and selects the best 

fitted chromosomes to survive to the next generation. The NSGA-II algorithm, 
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proposed by Deb et al. (2002), is implemented in this research and its process is 

summarized in Appendix B.  

The tuple of average-patient non-value added time and the calculation of 

each element are aligned with the objectives of this chapter. First, these 

calculations take into account the activities that patients spend in inappropriate 

treatment at different stages of emergency care, which are: transportation, waiting 

and boarding. Second, another objective of the chapter is to use strategies based 

on ambulance diversion and destination policies as ambulance flow control 

strategies to minimize the disruption of ambulance patients on the entire 

emergency system. This objective is achieved by including the data of all the 

patients in the ECDS in the calculations of the performance vector. Thus, 

Equation (4.1) includes information for ambulance and walk-in patients. Since 

ambulance patients are very likely to receive high priority, to have long treatment 

times and to be transferred to IP, the Pareto improvement of the performance 

vector implies finding the appropriate AD and destination policies that helps 

smoothing the patient flow in the ECDS. Hence, this allocation of ambulance 

patients reduces significant delays for all the patients. 

4.4.1 Definition of ambulance diversion and destination policies 

There are two methods of interest in this research than to control the flow 

of emergency patients: ambulance diversion and ambulance destination policies. 

The ambulance diversion policy defines the conditions in a hospital that start a 

period of full ambulance diversion. In addition, it considers the criteria to remove 

and revaluate the diversion status. Typically, ambulance diversion policies are 
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based on observing crowding indicators that alert about potential congestion in 

the facility and a risky situation for new patients (Arizona Emergency Medical 

Systems 2000). 

On the other hand, the ambulance destination policy defines the hospital 

where a patient is taken. The selection is based on the open hospitals (hospitals 

off diversion) and current status, such as distance, crowding variables, etc. 

Usually, the emergency medical system (EMS) team makes this decision, but 

sometimes the patient is able to decide. The first part of the experimentation 

process takes into account three strategies of diversion policies and two 

destinations policies, which are described below. 

Ambulance Diversion Policies: 

 No Ambulance Diversion (No AD). This strategy does not allow hospitals 

going on ambulance diversion at any time. 

 Optimized Single-Factor Ambulance Diversion Policy (SF AD). This strategy 

implements an ambulance diversion policy for each hospital that is based only 

on one factor.  

 Optimized Multiple-Factor Ambulance Diversion Policy (MF AD). This 

strategy implements a diversion policy for each hospital that looks at several 

state variables to decide going on or off diversion.  

Ambulance Destination Policies 

 Take the patient to the nearest open hospital (NH).  

 Take the patient to the least crowded hospital, which is the ED with the 

minimum number of patients waiting (LCH). 
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The first diversion policy analyzes the performance of the system if AD is 

prohibited. Some governments have banned ambulance diversion as a method to 

reduce congestion. However, this type of restriction might worsen the 

performance in EDs if other actions are not sufficient to relieve congestion 

(Massachusetts Nurses Association 2009). 

The second type of diversion policy presents a policy based on a single 

factor or state variable to decide whether to go or not on diversion. Several reports 

and papers identify three main causes for going on diversion in practice: high 

number of patients waiting in the ED, high number of patients boarding in the ED 

and lack of beds in IP (American College of Emergency Physicians 2008; Centers 

for Disease Control and Prevention 2006b; McConnell 2005; Pham 2006). 

Therefore, the SF AD policy includes an upper threshold on one of these variables 

to decide if diversion status is set on, a lower threshold to remove the diversion 

status and a review frequency of the state of the system. 

The third type of diversion policy includes several thresholds for each of 

the main state variables mentioned above. In addition, it includes thresholds for 

the number of patients waiting disaggregated per severity level. Thus, the MF AD 

policy triggers the diversion status when the state of the ED exceeds a specific 

number of thresholds. 

Most analytical studies of ambulance diversion use single-factor in their 

analysis. For instance, Ramirez et al. (2010) propose six AD policies based on the 

three main causes for going on diversion. Deo and Gurvich (2011) analyze AD 

policies based only on the number of patients waiting in the ED; in addition, they 
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studied a diversion policy that sets the diversion status when all the beds in the 

ED are occupied. Allon et al. (2009) analyze AD policies based on a minimum 

and maximum of the number of patients boarding. 

On the other hand, MF AD policies are common in real settings. For 

example, Hoot et al. (2008) presents a simulation study of an academic medical 

center that initiates AD if any of the following criteria is satisfied: 1) all critical 

care beds in the ED are occupied, patients are in hallway spaces and there are 10 

or more patients waiting; 2) an acuity level exists that places additional patients at 

risk; or 3) all monitored beds within the ED are full. 

Regarding the destination policies, guidelines of EMS suggest that patient 

should be taken to the nearest appropriate hospital (American College of 

Emergency Physicians 2006). Thus, ambulance crew and staff should make the 

decision based on distance and crowding levels. However, the decision might be 

suboptimal because of limited or unreliable information, bounded rationality or it 

can be based on a myopic perspective that does not weight the effect on the 

patients already in the system.  

4.5 Chromosome Structure for AD Policies in a GA 

This chapter presents multi-objective genetic algorithm combined with 

simulation a method to design and evaluate AD policies along with destination 

policies; therefore the structure of the chromosomes must be defined according to 

the types of policies described in Section 4.4.1. GA is applied only to the SF and 

MF policies to find the appropriate thresholds to go on and off diversion.  
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4.5.1 Chromosome for SF AD policies 

The single-factor ambulance diversion policy for a specific hospital Hi is 

based on three main state variables: 

NQi: Number of patients waiting in the ED of hospital Hi. 

NBi: Number of patients boarding in the ED of hospital Hi. 

NIPBi: Number of beds available in the IP unit of hospital Hi. 

The total number of genes in a chromosome for this type of policy is 10n, 

where n is the number of hospitals in the ECDS. Hence, the diversion policy for 

each hospital is represented by ten genes, which have the following structure: 

Table 4.2. Chromosome partition that represents an SF AD policy in one hospital. 

Gene 1 2 3 4 5 6 7 8 9 10 

Variable Pi UNQi LNQi tNQi UNBi LNBi tNBi LNIPBi UNIPBi tNIPBi 

 

The first gene describes the type of factor to consider in the policy of 

hospital Hi. Thus, Pi = 1 implies that AD policy of hospital Hi is based only on 

number of patients waiting in the ED (NQi); Pi = 2 indicates that AD is based on 

the number of patients boarding (NBi); and Pi = 3 means that AD is based on the 

number of beds available in the IP unit (NIPBi). Therefore, the execution of an SF 

AD policy requires values for three parameters. If the policy is type 1, then the 

parameters are in the genes 2, 3 and 4. If it is type 2, then the genes of interest are 

5, 6 and 7. If the type is 3, then the related genes are 8, 9 and 10.  

The first of the three parameters that define a SF AD policy (gene 2, 5 or 

8) is a threshold that triggers the diversion status. Thus, if policy is type 1, then 

the hospital Hi sets the diversion status when NQi > UNQi. If it is type 2, then Hi 
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goes on diversion when NBi > UNBi. If it is type 3, then diversion is set when NIPBi 

< LNIPBi. After going on diversion, the state of the system is reviewed every t 

time units, represented by genes 4, 7 and 10 for policies type 1, 2 and 3, 

respectively. 

The diversion status can be removed only at a review point and this 

decision depends on the current value of the state variable observed in the policy. 

Thus, if policy is 1, then the diversion status is removed if NQi < LNQi. If policy is 

type 2, then diversion is removed if NBi < LNBi. If the policy is type 3, then 

diversion is removed if NIPBi > UNIPBi. Note that for all the policies the threshold 

U is greater than the threshold L. Policy type 3 has the U and L interchanged 

because of the meaning of the state variable (number of available beds in the IP). 

The three state variables analyzed in the SF policies are listed as the most 

common causes of going on diversion in practice. In addition, a study on single-

factor AD policies presented by Ramirez et al. (2010) show that periodic review 

of the system after going on diversion produce smaller variability in the 

performance than continuous review. Therefore, the policies that include a 

periodic review are more consistent and allow a more precise prediction of the 

performance under a given policy. 

An example of an SF AD policy is one that states: “go on diversion if 

there are at least 15 patients waiting in the ED, reevaluate the status every hour 

after going on diversion and remove the diversion status if there are 5 or less 

patients waiting”. This policy is encoded as shown in Table 4.3. 
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Table 4.3. Chromosome example for an SF AD policy. 

Gene 1 2 3 4 5 6 7 8 9 10 

Variable 1 15 5 60 Null Null Null Null Null Null 

 

In this example, genes 5 to 10 can take any value and the simulation code 

does not take them into account because the first gene specifies the type of policy. 

4.5.2 Chromosome for MF AD policies  

The MF AD policy considers more than one state variable to trigger the 

diversion status. Besides the variables used in SF policies, the MF includes the 

number of patients waiting in the ED of hospital Hi per severity level (NQ1i, 

NQ2i, NQ3i, NQ4i and NQ5i). The total number of genes for MF policies is also 

10n. Hence, for each hospital, the structure of the chromosome is: 

Table 4.4. Chromosome partition that represents an MF AD policy in one 

hospital. 

Gene 1 2 3 4 5 6 7 8 9 10 

Variable UNQi  UNQ1i UNQ2i UNQ3i UNQ4i UNQ5i UNBi LNIPBi k t 

 

This type of policy comprises multiple thresholds presented in genes 1 to 

8. Gene 9 is a variable k that represents the number of thresholds that must be 

reached in order to decide going on diversion. Thus, if k = 1, then the hospital will 

go on diversion when any threshold is reached, if k = 8, then hospital sets the 

diversion status only when all the thresholds are reached. On the other hand, it is 

possible that a threshold takes a null value, which means that that factor is not 

considered in the policy. After going on diversion, the status is reevaluated every 

t time units. At a review point, the diversion status is removed if the number of 

state variable above the thresholds (or below in case of NIPBi) is less than k. 
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An example of an MF AD policy that states: “Hospital goes on diversion if at 

least two of the following conditions are satisfied: 

1. The number of patients waiting in the ED is at least 20; 

2. the number of patients with severity level 1 waiting in the ED is at least 2; and 

3. the number of patients boarding is at least 3, 

after going on diversion, the system will be reevaluated every 30 minutes”, can be 

expressed as shown in Table 4.5. 

Table 4.5. Chromosome example for an MF AD policy. 
Gene 1 2 3 4 5 6 7 8 9 10 

Variable 20 2 Null Null Null Null 3 Null 2 30 

 

The details about the recombination and mutations strategies for SF and 

MF AD policies are presented in Appendix B. 

4.6 Experimentation 

The experimentation process for the centralized design of AD policies 

consists of two case studies; one of them comprises an ECDS with two hospitals 

and another with three hospitals. 

4.6.1 Case study 1: ECDS with two hospitals 

The first case to analyze is an ECDS with two hospitals located in a 100 

squared-miles area, assuming the region is a square with corners in (0,0), (10,0), 

(0,10) and (10,10). Three location settings are defined for this part, one symmetric 

and two random locations. In the case of the symmetric location, the hospitals H1 

and H2 are found at coordinates (2.5, 7.5) and (7.5, 2.5), respectively. The first 

random location places the hospitals at coordinates (5.96, 8.99) and (3.82, 1), 
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respectively. And the second random location places hospitals at (0.75, 6.23) and 

(5.81 and 6.89), respectively. These locations are depicted in Figure 4.4. 

 

Figure 4.4. Location of hospitals for case study 1. 

The simulation models of the hospitals follow the same structure and input 

parameters described in Section 4.3 and Appendix B. However, two relative sizes 

are tested: 1:1 and 1:1.2. Thus, 1:1 implies that the arrival rates for both hospitals 

are the same, while 1:1.2 implies that arrival rate to H2 is 20% larger than the 

arrival rates to H1. These two scenarios are used to expose the system to hospitals 

with similar characteristics and a system where one of the hospitals is more 

congested than the other. The scenarios and strategies used in the experimentation 

of this case study are summarized in Table 4.6. 
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Table 4.6. Scenarios and strategies used in the experimentation process. 

Scenarios Strategies 

Location (H1, H2) Relative Size 

(H1:H2) 

Diversion 

Policies 

Destination 

Policies 

Symmetric: (2.5, 7.5) & 

(7.5, 2.5) 

1:1 No AD NH 

Random1: (5.96, 8.99) 

& (3.82, 1) 

1:1.2 Optimized SF 

AD 

LCH 

Random2: (0.75, 6.23) 

& (5.81, 6.89) 

 Optimized MF 

AD 

 

 

The strategies combine diversion and destination policies to each potential 

scenario. Figure 4.5 shows the average-patient non-value added time (NVT) for 

each hospital in 2-dimension graphs. Each scenario is shown in a separate graph. 

For each scenario, all the strategies are presented.  

The strategies that consider No AD are presented as a single point. In 

addition, a selection of non-dominated strategies obtained after the last generation 

of the GA for SF and MF diversion policies are presented in the results. 

These results suggest that No AD combined with NH has an undesirable 

effect on the performance of the ECDS. One disadvantage of this strategy is that it 

unbalances the workload of emergency patients between the EDs if one hospital is 

more congested than the other, or if one hospital is located in a central area and 

another near the perimeter. If both hospitals are similar and location allows 

receiving a similar fraction of emergency patients, then a balanced performance is 

achieved, but there are other strategies that outperform this one. 

The No AD - LCH strategy seems to have an acceptable performance 

compared with all the other strategies. In fact, this strategy balances the 

performance between the hospitals in the system, regardless their characteristics 
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or location. However, in all the scenarios there exists a strategy based on AD that 

dominates it. 

Figure 4.5. Results of GA and simulation for a 2-hospital ECDS. 

There are important observations regarding the effect of AD policies. 

First, in the case of similar hospitals, the set of SF policies combined with LCH 

has a frontier better located than all the other strategies. Consequently, the overall 

set of nondominated strategies contains all the policies of this type. Furthermore, 

the Pareto fronts of the AD strategies combined with the LCH dominate most of 
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the strategies that combine AD with NH. In the case of a difference in the relative 

size, the lines that join the nondominated solutions for each strategy overlap each 

other. In general, strategies that allow AD have better performance than not 

allowing AD. Moreover, simple diversion policies like SF are at least as good as a 

more complex MF policy.  

Table 4.7 shows the results for the strategies that do not use AD and 

strategies that allow diversion and have a balanced performance between 

hospitals. The No AD – NH strategy produces poor results if compared with other 

strategies. The No AD – LCH strategy produces results that balance the 

performance measure between both hospitals. However, in five out of the six 

scenarios, there is a diversion-based strategy that dominates this one. 

Table 4.7. Comparison of No AD strategies vs. AD strategies. 
No AD Strategies AD Strategies 

Average patient 

NVT (mins) No 

AD - NH 

Average patient 

NVT (mins) No 

AD - LCH 

 Average patient 

NVT (mins) 

Percentage of time 

on diversion 

Scenario H1 H2 H1 H2 Strategy H1 H2 H1 H2 

Symmetric 
1:1 

48.7 49.3 40.5 39.9 SF-
LCHa 

36.8 36.4 9.4 10.1 

Symmetric 
1:1.2 

47.2 205.8 121.6 116.8 SF-NH 111.5 115.0 3.4 30.6 

Random1 
1:1 

49.4 48.2 39.6 40.7 SF-
LCHa 

38.3 39.0 9.4 5.0 

Random1 
1:1.2 

56.9 187.3 118.6 116.4 SF-NH 111.9 111.1 12.2 37.5 

Random2 
1:1 

21.3 106.2 38.8 38.8 SF-
LCH 

36.7 36.8 9.0 9.9 

Random2 
1:1.2 

23.5 301.3 114.4 112.9 SF-
LCH 

115.5 107.7 1.1 22.9 

a
 Dominates No AD strategies 

The diversion policies shown in the table are Pareto strategies and they 

balance performance measure between hospitals. In most of the scenarios, the 

diversion policy is accompanied by LCH destination. In order to balance the 

average-patient non-value added time across the hospitals, the percentage of time 
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spent on diversion can be significantly different between hospitals, especially if 

the hospitals have different relative size. For instance, in Scenario 1 (Symmetric 

1:1), the percentages of time on diversion differ for only 0.7%; while in scenario 2 

(Symmetric 1:1.2) the difference is 27.2%. 

4.6.2 Case study 2: ECDS with three hospitals 

The second case study consists of analyzing the performance of AD 

policies in a system with three hospitals. Two configurations of random locations 

are presented; one of them assumes that the ECDS is in a 10x10 squared-miles 

area (Random1), while another assumes that the area is 20x20 squared-miles 

(Random2). Figure 4.6 shows the location of each hospital for both 

configurations. Besides, two settings for the relative size of the hospitals are 

tested, one assumes the same relative size (1:1:1) and another assumes different 

sizes for all the hospitals, one of them has 10% more arrivals than the generic and 

another 20% more arrivals than the generic (1:1.1:1.2). 

Figure 4.6. Location of the hospitals for case study 2. 
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Three strategies of diversion policies are used in the second case study. No 

AD policies, centralized SF policies and a simple policy (Simple AD). The first 

two of them are described in Section 4.4.1. The centralized MF policies are 

discarded in this part because they are more complex than SF policies and they do 

not guarantee to be significantly better than SF. The Simple AD policy consists of 

setting the diversion status when all the beds in the ED are occupied. This is a 

policy proposed by Deo and Gurvich (2011). In that paper, the authors propose 

this policy as a Pareto improving AD policy over the No AD policy, considering 

the waiting time in the ED as the performance metric of the system. Even though 

this chapter has significant differences in the structure of the model and in the 

evaluation of the performance, it is of the interest of this research to benchmark 

the proposed centralized SF policy to the Simple AD. 

The destination policies used in this part include again NH, LCH and a 

new policy that adds up the expected transportation time to a hospital plus the 

current waiting time in the hospital (SUM). Thus, a new ambulance patient will 

be taken to hospital Hi such that: 

 







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
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k

ikikiii WwTEH   (4.2) 

where, 

i: indices of open hospitals (hospitals off diversion). 

E(Ti): expected transportation time. Thus, E(Ti) = xM(l, Hi)   where  is the 

average transportation time per mile and M(l, Hi) is the Manhattan distance 

between emergency location l and hospital Hi. 
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


5

1

,,

k

ikik Ww : weighted average waiting time of the current number of patients 

waiting in the ED of hospital Hi. 

Table 4.8. Scenarios and strategies used in the second experimentation process. 

Scenarios Strategies 

Location (H1, H2, H3) Relative Size 

(H1: H2: H3) 

Diversion 

Policies 

Destination 

Policies 

Random 1: (1.7, 9.2), 

(4.8, 3.8) & (8.5, 7.3) 

1:1:1 No AD NH 

Random 2: (19.2, 6.4), 

(6, 10.5) & (12.3, 18.9) 

1:1.1:1.2 Simple AD LCH 

  Optimized SF 

AD 

SUM 

 

The results for case study 2 are shown in Table 4.9, which includes the 

average-patient non-value added time per hospital for each strategy. Besides, it 

shows the sum of the non-value added time in the system, the standard deviation 

and the percentage of time spent on diversion in each hospital. 

The results show that the proposed centralized design of SF AD policies 

significantly reduce the total average-patient non-value added time in the system 

compared with No AD. Furthermore, the Simple AD strategies outperform No 

AD; however; the centralized design of the SF AD achieves the best results. In 

every scenario, there is at least an AD strategy that dominates the No AD 

counterpart. In addition, SF AD strategies tend to balance the performance among 

hospitals, reducing the standard deviation of average-patient non-value added 

times across facilities. 
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Table 4.9. Results of diversion and destination strategies for an ECDS with three 

hospitals. 
Average patient NVT 

(minutes) 

Scenario Destination 

Policy 

Diversion 

Policy 

H1 H2 H3 Sum 

NVT 

Std. Dev. 

NVT 

  No AD 21.28 155.63 45.29 222.21 71.65 

 NH Simple AD 25.55 86.00 44.03 155.59 30.98 

  Optimized SF AD 67.26 52.54 27.58 147.38 20.06 

  Optimized SF ADa 20.47 101.09 36.96 158.52 42.59 

  No AD 54.86 41.47 36.74 133.08 9.40 

Random1 LCH Simple AD 37.12 43.32 40.73 121.17 3.12 

1:1:1  Optimized SF AD 36.48 42.78 37.67 116.93 3.35 

  Optimized SF ADa 53.56 36.56 29.76 119.88 12.26 

  No AD 37.80 49.34 42.95 130.09 5.78 

 SUM Simple ADa 36.48 46.91 41.49 124.89 5.21 

  Optimized SF AD 25.48 51.08 43.66 120.22 13.17 

  Optimized SF ADa 33.94 46.95 41.22 122.11 6.52 

  No AD 25.24 273.94 160.93 460.11 124.52 

 NH Simple AD 46.87 197.28 144.58 388.73 76.32 

  Optimized SF AD 71.34 155.17 148.48 374.99 46.59 

  No AD 132.93 123.55 119.53 376.01 6.88 

  Simple AD 125.77 126.18 123.65 375.61 1.36 

Random1 LCH Optimized SF ADc 117.39 106.46 111.13 334.98 5.48 

1:1.1:1.2  No AD 116.22 128.92 130.33 375.48 7.77 

  Simple AD 116.68 126.45 131.27 374.40 7.43 

  Optimized SF AD 140.70 54.49 147.88 343.08 51.97 

 SUM Optimized SF ADc 115.92 125.81 114.70 356.43 6.10 

  No AD 34.12 144.28 26.26 204.66 65.99 

 NH Simple AD 38.97 81.91 32.92 153.79 26.71 

  Optimized SF AD 43.66 75.64 33.92 153.21 21.82 

  Optimized SF ADa 26.37 104.73 25.56 156.66 45.48 

  No AD 58.40 43.88 37.62 139.90 10.66 

Random2 LCH Simple AD 42.06 46.15 41.27 129.48 2.62 

1:1:1  Optimized SF ADb 34.34 36.89 40.07 111.30 2.87 

  No AD 41.81 54.77 40.90 137.48 7.76 

 SUM Simple ADa 38.71 49.65 38.45 126.81 6.40 

  Optimized SF ADc 37.44 44.09 34.25 115.79 5.02 

  Optimized SF ADa 35.46 46.94 39.80 122.20 5.80 

  No AD 50.57 317.08 131.81 499.47 136.60 

 NH Simple AD 83.50 238.65 137.97 460.12 78.71 

  Optimized SF ADb 83.18 226.75 123.35 433.28 74.07 

  Optimized SF AD 155.39 189.56 103.21 448.17 43.49 

  No AD 168.27 156.33 150.16 474.76 9.21 

Random2 LCH Simple ADa 159.98 153.01 149.22 462.20 5.46 

1:1.1:1.2  Optimized SF AD 76.71 61.11 290.24 428.05 128.02 

  Optimized SF ADa 151.06 131.86 149.27 432.19 10.61 

  Optimized SF ADc 153.12 144.20 141.33 438.66 6.15 

 SUM No AD 147.78 159.68 159.01 466.47 6.68 

  Simple AD 152.43 163.26 162.50 478.19 6.04 

  Optimized SF ADc 138.33 146.70 149.34 434.37 5.75 
a
 Dominates No AD strategy 

b
 Dominates Simple AD strategy 

c
 Dominates No AD and Simple AD strategies 
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Regarding the destination policies, LCH and SUM policies clearly 

outperform the NH policy and they also produce balanced performance across 

hospitals. On the other hand, the difference in performance between LCH and 

SUM seem to be insignificant; there is not a clear domination of one policy over 

the other. The cause of the similar performance might be because in the SUM 

policy, the component related to current waiting time, which is highly correlated 

with LCH, is a determinant factor to decide where to take a patient. Table 4.10 

shows the percentage of improvement on the total average-patient non-value 

added time in the system when SF AD and LCH are used. 

Table 4.10. Percentage of improvement on the total average-patient non-value 

added time of optimized SF AD policies and LCH over other 

policies. 
Improvement of SF AD (%) 

compared with: 

Improvement of LCH (%) 

compared with: 

Scenario Destination 

Policy 

No 

AD 

Simple  

AD 

Diversion 

Policy 

NH SUM 

 NH 33.68 5.28 No AD 40.11 2.24 

Random1 LCH 12.13 3.50 Simple AD 22.12 -3.07 

1:1:1 SUM 7.59 3.74 SF AD 20.66 -2.81 

 NH 18.50 3.53 No AD 18.28 0.14 

Random1 LCH 10.91 10.82 Simple AD 13.83 0.32 

1:1.1:1.2 SUM 8.63 8.37 SF AD 12.12 -2.42 

 NH 25.14 0.38 No AD 31.64 1.73 

Random2 LCH 20.44 14.0 Simple AD 15.81 2.06 

1:1:1 SUM 15.78 8.69 SF AD 27.36 -4.03 

 NH 13.25 5.83 No AD 4.95 1.75 

Random2 LCH 9.84 7.39 Simple AD -0.45 -3.46 

1:1.1:1.2 SUM 6.88 9.16 SF AD 1.21 -1.48 

 

The improvement percentage of using SF AD policies reduces when the 

destination policy considered is based on current crowding conditions; however, 

the reduced proportion of inappropriate level of treatment is still significant. 
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The results of both case studies strongly suggest that a centralized design 

of AD policies can smooth the patient flow by reducing the delays in activities 

with inappropriate level of care through different stages. Furthermore, the 

destination policy is a significant factor in the performance of the ECDS. Even 

though AD can be seen as a negative aspect in emergency care, this chapter 

showed that a centralized design of these policies is an effective patient allocation 

mechanism that can help avoiding congestion upstream (waiting) and downstream 

(boarding) in the ECDS. In addition, these results support the observations seen in 

systems where AD is prohibited, whose hospitals face straining in the operations 

that raises the waiting time and the number of patients boarding. 

4.7 Limitations 

The conclusions drawn in this chapter have certain limitations that must be 

highlighted. First, the periods on AD considered in this research are full period. 

However, some hospitals might divert only patients with specific severity level 

(e.g., trauma centers must receive all level 1patients).Nevertheless, the number of 

patients with the highest level of trauma is small (Centers for Disease Control and 

Prevention 2008); therefore, the advantages of AD observed in this chapter might 

still hold. 

On the other hand, the results of this chapter show that a destination policy 

based on LCH has better results than NH; however, this might be true only in 

urban areas. The decision regarding the number of hospitals located in 100 

squared-miles or 400 squared-miles was based on information obtain from Google 

Maps in an area of similar proportions in Maricopa County in AZ. But, these 



  135 

results might not hold if the analysis is applied to rural areas. Nevertheless, the 

significant increase in transportation time in rural areas may jeopardize the health 

of the patients; therefore, AD is often not recommended in those regions. 

The case studies prepared in this chapter include models of fictitious 

hospitals. The data available from real hospitals that might allow building a model 

for this research is insufficient. Moreover, different jurisdictions own the data 

needed to build a model like the proposed. Hence, the ECDS analyzed in this 

chapter was designed with hospitals whose characteristics are realistic. Appendix 

B describes the source of the input data. Furthermore, the models show statistics 

(i.e. average waiting time and LWOT percentage) that are validated through 

information published in different sources across the United States. Although the 

experimentation process is in an inexistent system, the methodology proposed for 

a centralized design of AD policies is independent of this scenario. 

Nonetheless, the potential limitation on the applicability of this 

methodology is the level of cooperation among hospitals. Thus, the effectiveness 

of the centralized design of AD policies consists of having accurate and sufficient 

information to properly apply the diversion and destination policies. Therefore, 

cooperation mechanisms must be assured and empirical studies presented in the 

literature show that organizations are willing to cooperate in order to improve the 

healthcare system. 

An important element of the hypothesis of this chapter is that smart 

diversion policies can provide benefits for the entire healthcare system. Articles 

and papers from medical sources tend to contradict this idea. However, this 
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chapter and other references show that not going on diversion might worsen the 

congestion in EDs (Massachusetts Nurses Association 2009). Furthermore, it is 

thought that diverting patients have negative implications on the economic aspect 

of the hospital that is on diversion because of the opportunity cost. Nevertheless, 

AD can reduce the adverse events caused by saturated systems, which may imply 

cost savings in the long term. 

4.8 Conclusions 

This chapter presented a centralized design of AD policies using GA and 

simulation to evaluate the performance. The AD policies are combined with 

destination policies in an ambulance flow control framework that allows the 

allocation of ambulance patient in an ECDS. The findings suggest that the 

centralized design of diversion policies and effective destination rules can reduce 

the time that patients spend in inappropriate level of care, including the patients 

that walk-in into an ED. This implies smoothing the patient flow using the 

appropriate diversion-destination strategy. 

Two types of diversion policies were explored in this chapter: single-

factor (SF) and multiple-factors (MF) policies. Even though SF is simpler than 

MF, the results show that they are at least as good as MF. In addition, the 

centralized design of any of these policies outperform other policies seen in real 

settings, such as No AD and setting the AD status when all the ED beds are 

occupied. 

On the other hand, the least-crowded-hospital (LCH) destination policy 

outperforms the nearest-hospital (NH). Furthermore, a policy based on the sum of 
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expected transportation time and current average waiting time performs better 

than NH and similar to LCH. However, this might hold only on urban settings, 

like the one assumed in this research. 

These results show the potential of reducing inappropriate level of care 

and avoiding adverse events by designing smart policies related to ambulance 

flow. Nevertheless, there are important challenges related to cooperation that must 

be overcome to obtain benefits from AD in real ECDS. 

Future extensions of this research include the optimization of destination 

policies and combine them with the optimized diversion policies explored in this 

chapter. Approximate dynamic programming could be explored to optimize 

destination policies. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 Overcrowding of EDs in several places around the work has required 

proposing solutions and making decisions to ensure that patients receive 

appropriate level of treatment timely. Diverting ambulances from overcrowded 

EDs started as a solution to potential periods of congestion, but the use of 

ineffective AD policies has caused concern on society and medical community. In 

fact, emergency physicians recommend avoiding diversion because of the 

potential harmful effect of longer transportation. 

 Nevertheless, overcrowding in EDs is still present in many regions and the 

safety of patients is at risk due to long waiting times and adverse events that occur 

in congested facilities. This dissertation presents modeling techniques to design 

and analyze AD policies, considering different measures related to safety, such as 

average waiting time, average tardiness and average patient non-value added time. 

The hypothesis underlying the dissertation is that an effective design of AD 

policies can improve the safety conditions of the patients in periods of high 

congestion. Chapters 2, 3 and 4 of this dissertation contain valuable information 

to assess decision makers in the design of their AD policies. 

 Chapter 2 presents a methodology to analyze the effectiveness of single-

threshold AD policies in terms of mean performance and variability. The analysis 

was performed using bicriteria approach, which includes the average patient 

waiting time in the ED and the percentage of time spent on diversion. Given that 

patients arriving by ambulance have higher severity level, they tend to receive 
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priority to be treated and they spent longer time in treatment. Therefore, AD 

allows relieving congestion in the ED; however, the accessibility to emergency 

care may be compromised. The single-threshold AD policies evaluated in this 

chapter are based on one of the three main contributors to diversion in practice: 

number of patients waiting in the ED, number of patients boarding and inpatient 

occupancy level. In addition, the policies allow a periodic or continuous review of 

the system to go off diversion. The methodologies and analysis based on 

simulation include graphical and quantitative methods to evaluate mean 

performance and variability.  

The results for Chapter 2 show that diverting ambulances from EDs can 

reduce significantly the average waiting time; however, the policies based on 

patients waiting and patients boarding reduce the average waiting time in a larger 

rate than the policies based on inpatient occupancy level. In addition, the policies 

that have a periodic review are more consistent; therefore, they allow a more 

accurate prediction of the performance of the ED for a given policy. Regression 

equations are proposed to derive the parameters of single-threshold AD policies 

that yields the desired results. These results contribute to the discussion of AD 

policies by proposing a simple methodology that allows the design and analysis of 

single-threshold policies and discusses the implications of using different state 

variables. 

The structure of optimal AD control policies is explored in Chapter 3. A 

Markov Decision Process model is proposed with the objective of minimizing the 

average expected tardiness per patient. The measure of tardiness proposed in this 
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chapter differs from the manufacturing setting in that it represents the time that 

patients have to wait beyond a safety time threshold to start emergency treatment. 

Therefore, a measure correlated with safety is included. In addition, the model 

assumes that the distribution for the diverted patients to start treatment in a 

neighboring hospital is known. This aspect was not included in the previous 

chapter. The analysis of the MDP consists of theoretical and computational 

studies that suggest the following: the optimal AD policy has a threshold type, 

which is non-increasing in the number of patients in the ED and also in the time to 

start treatment in another hospital. The model indicates that diversion can help to 

manage the traffic with more effectiveness if the area where critical patients are 

treated is more congested than an area with a fast-track assessment.   

Even though the MDP model includes several relaxations that are not 

realistic, a simulation study that includes time-dependent patterns observed in real 

settings confirm that a policy prescribed by the MDP performs significantly better 

than most heuristics used in practice. This chapter contributes to literature on 

being the first paper that explores the structural properties of optimal AD policies 

using MDP and it proposes a performance measure that is aligned with the 

objective of emergency care systems. 

Since MDP model suffer from scalability issues, Chapter 4 proposes a 

genetic algorithm combined with simulation to design effective AD policies for 

multiple hospitals simultaneously. The simulation model includes different 

modules that allow the simulation of multiple hospitals and the generation of 

emergency events in a geographical region. The proposed model has the objective 
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of finding AD policies that yields Pareto improving solutions that minimizes the 

average patient non-value added time for each hospital. The average patient non-

value added time comprises transportation, waiting and boarding time for patients 

requiring emergency care. Two types of chromosome structure are tested; one 

considers a single state variable to go on and off diversion; and the other uses 

information about several state variables. In addition, the AD policies are 

combined with simple ambulance destination policies to determine where an 

ambulance patient should be taken to. 

The results shown in Chapter 4 suggest that policies that are based on a 

single-factor are simpler to implement and they could have similar or even better 

performance than multiple-factor AD policies. In addition, effective AD policies 

are Pareto improving and can reduce significantly the total average patient non-

value added time in an emergency care delivery system. In addition, the 

destination policy has a significant effect on the performance of the system. Smart 

destination policies that balance the distance and crowding factors can boost the 

effectiveness of the AD policies. This chapter contributes to literature by 

proposing a genetic algorithm model that allows a centralized design of AD 

policies and it presents the combination of ambulance destination and diversion 

policies as an ambulance flow control mechanism that assesses the ambulance 

patient allocation in an emergency care delivery system. 

Aware of the concerns of the medical community for the risks implied in 

diverting patients from EDs, this research demonstrates that an effective design of 

AD policies can improve performance measures related to patient safety. 
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Nevertheless, finding solutions to the root problems related to congestion and 

alternatives that have effect on the long term are encouraged. 

Even though the models presented in this dissertation includes the most 

important aspects in complexity, relations and resources found in EDs; there are 

many more elements that decision makers would like to explore. Some of these 

models are flexible enough to include alternative elements to the analysis. 

Future research in this topic includes exploring the optimal design of 

ambulance destination and diversion policies simultaneously. For this purpose, 

methods such as Approximate Dynamic Programming can be suitable to analyze 

the problem. 
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Proof of Theorem 1 

A similar framework to Theorem 1 of Carr and Duenyas (2000) is 

followed. They characterize the production decisions in their paper using a 

monotonous threshold curve. Hence, most of the analysis and notations follow the 

proof of their Theorem 1. In the remainder of this proof the symbols ↑ and ↓ 

denote non-decreasing and non-increasing respectively. 

First, two functions that allow notational simplicity are defined. 

ΩOFF h
*
(n1,n2) = T1(n1)+ h

*
(n1 + 1,n2),  (A.1) 

ΩON h
*
(n1,n2) = T

D
1 + h

*
(n1,n2).    (A.2) 

Note that 


A

ΩOFF h
*
(n1,n2) and 



A

ΩON h
*
(n1,n2) denote the additional 

ETP added when p
A

1 = 1 and the ambulance is accepted (i.e. diversion is off) or 

the ambulance is diverted (i.e. diversion is on), respectively. In other words, at 

state (n1,n2), it is optimal to divert an ambulance if ΩOFF h
*
(n1,n2) > ΩON h

*
(n1,n2), 

and accept the ambulance otherwise. For the existence of the threshold, ∆(n1), the 

inequality ΩOFF h
*
(n1,n2) > ΩON h

*
(n1,n2) must hold for all (n1,n2)  S such that    

n2 > ∆(n1). Note that, if ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) is ↑ in n2 for (n1,n2)  S, as 

depicted in Figure A.1 (left), this condition is trivially satisfied. Hence, let C1(h
*
) 

be a sufficient condition for the existence of the threshold. 

C1(h
*
) : ΩOFF h

*
(n1,n2) - ΩON h

*
(n1,n2) ↑ in n2, for (n1,n2)  S.   (A.3) 

Furthermore, if ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) ↑ in n1 for (n1,n2)  S, then 

∆(n’) ≤ ∆(n2) for all n’ > n2, which gives the monotonocity of the threshold (see 

Figure A.1(right)). Let C2(h
*
) be this sufficient condition and depict the change 
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of ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) when n1 is increased by one if C1(h

*
) and C2(h

*
) 

hold. 

C2(h
*
) : ΩOFF h

*
(n1,n2) - ΩON h

*
(n1,n2) ↑ in n1, for (n1,n2)  S.   (A.4) 

 

 

Figure A.1. Sample illustration of the changes in ΩOFF h
*
(n1,n2) and ΩON h

*
(n1,n2) 

with respect to changes in n2 under conditions C1(h
*
) and C2(h

*
). 

Since ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) is ↑ in n2, the threshold can be 

achieved (left). Furthermore, since ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) is ↑ 

in n1 the increase in n1 decreases gap in between ΩOFF h
*
(n1,n2) and 

ΩON h
*
(n1,n2), which results in a lower threshold value at n1 +1 (right). 

 

Simpler sufficient conditions are obtained for C1(h
*
) and C2(h

*
). From the 

definitions of ΩOFF h(n1,n2) and ΩON h(n1,n2), one has:  

ΩOFF h(n1,n2) - ΩON h(n1,n2)  =  T1(n1) - T
D

1 + h
*
(n1 + 1, n2) – h

*
(n1,n2). 

Next, C3(h
*
), supermodularity of h

*
, and C4(h

*
) are defined. They ensure 

that C1(h
*
) and C2(h

*
) hold. 

C3(h
*
) :  h

*
(n1,n2 + 1) - h

*
(n1,n2) ↑ in n1, for (n1,n2)  S.   (A.4) 

C4(h
*
) :  T1(n1) + h

*
(n1 + 1, n2) - h

*
(n1,n2) ↑ in n1, for (n1,n2)  S.  (A.5) 

Note that C3(h
*
) implies h

*
(n1 + 1, n2) - h

*
(n1,n2) ↑ in n2. Consequently, it 

is sufficient to show that C3(h
*
), and C4(h

*
) hold to complete the proof. The 
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desired conditions are proved using induction, and additional notation is defined 

similar to Carr and Duenyas (2000) that enables notational simplicity. 

D1t(n1,n2) = t(n1,n2 + 1) - t(n1,n2),    (A.6) 

D2t(n1,n2) = T1(n1) + t(n1 + 1 ,n2) - t(n1,n2).   (A.7) 

DEFINITION 1. V is the set of functions on S such that if t  V, then (i) D1t(n1,n2) 

is ↑ in n1, and (ii) D2t(n1,n2) is ↑ in n1 for (n1,n2)  S. 

Note that, if h
*
  V then C3(h

*
) and C4(h

*
) hold, which completes this 

proof. In Lemma 1, it is shown that given a function t  V, one can have    

Kit(n1,n2)  V , i  1, 2, 3, 4, 5, where Kit(n1,n2)  V , i  1, 2, 3, 4, 5 are 

defined in Equations (A.8)-(A10). 

K1t(n1,n2) = T1(n1) + t(n1 + 1,n2), K2t(n1,n2) = T2(n2) + t(n1,n2 + 1) (A.8) 

K3t(n1,n2) = t(n1 ,n2),  K4t(n1,n2) = min T
D

1 + t(n1,n2 ), T1(n1) + t(n1 + 1, n2)}(A.9) 

K5t(n1,n2) = 


 1
WW p

 K1t(n1,n2) + 
 


 11 WW p
 K2t(n1,n2)    (A.10) 

        + 


11
~c

K3t(n1 – 1,n2) + 


22
~c

 K3t(n1,n2 - 1) 

                    + 


A

 K4t(n1,n2) + 








 




 2211
~~

1
ccAW

 K3t(n1,n2), 

 

LEMMA 1. If t  V then Kit  V for i = 1, 2, 3, 4, 5. 

Proof of Lemma 1. In this proof, D1Kit(n1,n2) is ↑ in n1 for i  1, 2, 3, 4, 5 is 

shown. The proofs for D2Kit(n1,n2) is ↑ in n1 are omitted, but they can be obtained 

similarly. 
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Noting that t  V , C1(t), C2(t), C3(t) and C4(t) hold, then 

D1K1t(n1,n2) = t(n1 + 1, n2 + 1) - t(n1 + 1, n2),    (A.11) 

D1K2t(n1,n2) = T2(n2 + 1) - T2(n2) + t(n1, n2 + 2) - t(n1, n2 + 1),  (A.12) 

D1K3t(n1,n2) = t(n1,n2 + 1) - t(n1,n2).      (A.13) 

D1K1t(n1,n2), D1K2t(n1,n2) and D1K3t(n1,n2) are ↑ in n1 from C3(t). 

Rewriting D1K4t(n1,n2) in terms of ΩOFF t and ΩON t, Equation (A.14) is obtained. 

D1K4t(n1,n2) = minΩOFF t(n1,n2 + 1), ΩON t(n1,n2 + 1)}              

- minΩOFF t(n1,n2), ΩON t(n1,n2).    (A.14) 

Next, it is shown that D1K4t(n1 + 1, n2) - D1K4t(n1,n2) ≥ 0, which is 

sufficient to show that D1K4t(n1,n2) is ↑ in n1. For notational simplicity let I(x) be 

the indicator function, where I(x) = 1 if x ≥ 0 and I(x) = 0 otherwise. Furthermore, 

let 

I(ΩOFF t(n1,n2 + 1) - ΩON t(n1,n2 + 1)) I(ΩOFF t(n1+1, n2+1) - ΩON t(n1+1, n2+1)) 

     I(ΩOFF t(n1,n2) - ΩON t(n1,n2))        I(ΩOFF t(n1+1, n2) - ΩON t(n1+1, n2)) 

(A.15) 

For example, Ө = 
10

11
 indicates that ΩOFF t(n1,n2) < ΩON t(n1,n2), ΩOFF 

t(n1+1, n2) ≥ ΩONt(n1+1, n2), ΩOFF t(n1,n2+1) ≥ ΩON t(n1,n2+1) and ΩOFF t(n1+1, 

n2+1) ≥ ΩON t(n1+1, n2+1). 

From C1(t) and C2(t), ΩOFF t(n1,n2) - ΩON t(n1,n2) is ↑ in n1 and n2. 

Consequently, there are six possible outcomes for Ө given as 









00

11
,

10

10
,

10

11
,

00

10
,

00

00
,

11

11
, which are analyzed separately. 

Ө = 
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Case I. Ө = 
11

11
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) = ΩON t(n1 + 1, n2 + 1) – ΩON t(n1 + 1, n2) 

                                                  - ΩON t(n1,n2 + 1) + ΩON t(n1,n2)   

         = [T
D

1 + t(n1 + 1, n2 + 1)] - [T
D

1 + t(n1 + 1, n2)]  

        - [T
D

1 + t(n1, n2 + 1)] + [T
D

1 + t(n1,n2)] 

      = t(n1 + 1, n2 +1) - t(n1 + 1, n2)  

         - (t(n1, n2 +1) - t(n1,n2)).           (A.16) 

Note that, from C3(t) right hand side of Equation (A.16) is nonnegative. 

Hence, D1K4t(n1 + 1, n2) - D1K4t(n1,n2) ≥0 is satisfied. 

Case II. Ө = 
00

00
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) = ΩOFF t(n1 + 1, n2 + 1) - ΩOFF t(n1 + 1, n2)  

       - ΩOFF t(n1,n2 + 1) + ΩOFF t(n1,n2) 

     = t(n1 + 2, n2 + 1) - t(n1 + 2, n2) 

       - (t(n1 + 1, n2 + 1) -  t(n1 + 1, n2)).      (A.17) 

Similarly from C3(t) right hand side of Equation (A.17) is nonnegative, 

and the desired condition is satisfied. 

Case III. Ө = 
00

10
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) = ΩONt(n1 + 1, n2 +1) - ΩOFF t(n1 + 1, n2) 

       - ΩOFF t(n1, n2 +1) + ΩOFF t(n1,n2) 

    = [T
D

1 + t(n1 + 1, n2)] - [T1(n1 +1) + t(n1 + 2, n2)] 



  156 

    = ΩON t(n1 + 1, n2) - ΩOFF t(n1 +1 , n2).       (A.18) 

which is nonnegative under Case III. 

Case IV. Ө = 
10

11
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) =  ΩON t(n1 + 1, n2 +1) - ΩON t(n1 + 1, n2) 

        - ΩON t(n1, n2 +1) + ΩOFF t(n1,n2) 

    = [T1(n1) + t(n1 + 1, n2 +1)] - [T
D

1 + t(n1, n2 +1)] 

    = ΩOFF t(n1, n2 +1) - ΩON t(n1, n2 +1).   (A.19) 

which is nonnegative. 

Case V. Ө = 
10

10
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) = ΩON t(n1 + 1, n2 +1) - ΩON t(n1 + 1, n2)  

     - ΩOFF t(n1, n2 +1) + ΩOFF t(n1,n2) 

    = 0.        (A.20) 

Hence, D1K4t(n1 + 1, n2) - D1K4t(n1,n2) ≥ 0. 

Case VI. Ө = 
00

11
: 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) = ΩON t(n1 + 1, n2 +1) - ΩOFF t(n1 + 1, n2)  

       - ΩON t(n1, n2 + 1) + ΩOFF t(n1,n2) 

  = T1(n1) + t(n1 + 1, n2 + 1) + t(n1 + 1, n2)  

               - (T1(n1 +1) + t(n1 + 2, n2) + t(n1, n2 +1)). (A.21) 
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From ΩOFF t(n1 + 1, n2) ≤ ΩON t(n1 +  1,  n2), one can have                    

T1(n1 +1) + t(n1 + 2, n2) ≤ T
D

1 + t(n1 + 1, n2). Hence, using right hand side of 

Equation (A.21), the following inequality is obtained 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) ≥ T1(n1) + t(n1 + 1, n2 +1) + t(n1 + 1, n2)  

      - (T
D

1 + t(n1 + 1, n2) + t(n1, n2 + 1)) 

= T1(n1) + t(n1 + 1, n2 + 1) - (T
D

1 + t(n1, n2 + 1)) 

    = ΩOFF t(n1, n2 + 1) - ΩON t(n1,  n2 +1) (A.22)   

Note that right hand side of the Equation (A.22) is nonnegative. Hence the 

desired condition is satisfied. 

In summary, all possible cases are considered, completing the proof for 

D1K4t(n1 + 1, n2) - D1K4t(n1,n2) ≥ 0. Since, K5t(n1,n2) is the linear combination of 

Kit(n1,n2) for i   {1, 2, 3, 4},  K5t(n1,n2) is ↑ in n1 as well.  

 

Now consider a value iteration algorithm that solves Equation (3.5) 

recursively by 

hk+1(n1,n2) = K5hk(n1,n2),    (A.23) 

where h0(n1,n2) = 0 for (n1,n2)  S. Since h0(n1,n2) = 0 for (n1,n2)  S, 

trivially      h0  V is obtained, which indicates that h1  V from Lemma 1 and 

Equation (A.23). Now assume for some k, hk  V. From Lemma 1 and Equation 

(A.23) again, one can obtain that hk+1  V. From Inequality (3.1) the model is 

unichain, therefore limk hk(n1,n2) = h
*
(n1,n2) (Bertsekas 2001), and hence, h

*
  

V , as well. As a result, C3(h
*
) and C4(h

*
) hold, which completes the proof.  
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Proof of Theorem 2 

In this proof, it is only shown that (n1) is non-decreasing in T
D

1 and omit 

the proof for T
D

2, which follows similar lines. 

Two different problems are considered that are solved by T
D

1 = 1
DT  and 

T
D

1 = 1
DT , where 1

DT ≤ 1
DT . The optimal relative effect of starting in state 

(n1,n2) is denoted as 
*h (n1,n2) and 

*h (n1,n2) in first and second problems, 

respectively. Following the proof of Theorem 1, for monotonocity of T
D

1 in ∆(n1), 

ΩOFF h
*
(n1,n2) - ΩON h

*
(n1,n2) is needed to be non-increasing in T

D
1 . Hence,     

C5(
*h ,

*h ) provides a sufficient condition for this proof. 

C5(
*h ,

*h ) : ΩOFF 
*h (n1,n2) - ΩON 

*h (n1,n2) ≤ ΩOFF 
*h (n1,n2) - ΩON 

*h (n1,n2),  

for (n1,n2)  S,       (A.24) 

where ΩOFF 
*h (n1,n2) and ΩOFF 

*h (n1,n2) can be obtained from Equation (A.1), 

and ΩON 
*h  (n1,n2) and ΩON 

*h (n1,n2) are given as in Equation (A.25). 

ΩON 
*h (n1,n2) = 1

DT  + 
*h (n1,n2),  ΩON 

*h (n1,n2) = 1
DT  + 

*h (n1,n2).  (A.25) 

Next, C6(
*h ,

*h ) is defined and it is a sufficient condition for C5(
*h ,

*h ) 

from Equations (A.1) and (A.2). 

C6(
*h ,

*h ) : 
*h (n1 + 1, n2) - 

*h (n1,n2) - 1
DT  ≤ 

*h (n1 + 1, n2) - 
*h (n1,n2) - 1

DT ,  

for (n1,n2)  S.        (A.26) 

Similar to the proof of Theorem 1, induction is used to show that          

C6(
*h ,

*h ) holds. For notational simplicity, D3t(n1,n2) and the set V’ are defined. 
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D3t(n1,n2) = t(n1 + 1, n2) - t(n1,n2) - T
D

1   (A.27) 

DEFINITION 2. V’  is the set of functions on S such that if ( t , t )  V’, then         

D3 t (n1,n2) ≤ D3 t (n1,n2) for (n1,n2)  S. 

Similar to the definitions of ΩON 
*h (n1,n2) and ΩON 

*h (n1,n2), in the 

remainder of this proof, 1
DT  and 1

DT  are used within the definitions of D3 t , D3 t , 

D3Ki t , D3Ki t , for i  1, 2, 3, 4, 5. Lemma 2 shows that the desired conditions 

are preserved under the operation Ki, i  1, 2, 3, 4, 5. 

LEMMA 2. If ( t , t )  V’ then (Ki t , Ki t )  V’ for i  1, 2, 3, 4, 5. 

Proof of Lemma 2. In this proof, the inequality D3Ki t (n1,n2) ≤ D3Ki t (n1,n2) is 

shown for i  1, 2, 3, 4, 5. One observes that, from ( t , t )  V’, C5( t , t ) and    

C6( t , t ) hold. Furthermore, from Theorem 1, C1( t ), C2( t ), C1( t ) and C2( t ) hold. 

Plugging in Ki, i = 1, 2, 3 into Equation (A.27), the following equations are 

obtained. 

D3K1t(n1,n2) = T1(n1 +1) + t(n1 + 2, n2) - T1(n1) - t(n1 + 1,n2) - T
D

1,   (A.28) 

D3K2t(n1,n2) = t(n1 + 1, n2 + 1) - t(n1, n2 + 1) - T
D

1,     (A.29) 

D3K3t(n1,n2) = t(n1 + 1, n2) - t(n1, n2) - T
D

1,      (A.30) 

Using D3Kit(n1,n2) for i = 1, 2, 3 and C6( t , t ), it is trivial to show that    

D3Ki t (n1,n2) ≤ D3Ki t (n1,n2) for i = 1, 2, 3. To show that D3K4 t (n1,n2) ≤ D3K4 t

(n1,n2), a case by case analysis is implemented and Ө’ is defined as follows. 
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  I(ΩOFF t (n1,n2) - ΩON t (n1,n2))     I(ΩOFF t (n1 + 1, n2) - ΩON t (n1 + 1, n2)) 

  I(ΩOFF t (n1,n2) - ΩON t (n1,n2))     I(ΩOFF t (n1 + 1, n2) - ΩON t (n1 + 1, n2))    (A.31) 

Given C5( t , t ), C1( t ) and C1( t ), there are six possible values for Ө’ given 

as 








00

10
,

10

10
,

00

00
,

10

11
,

00

11
,

11

11
. 

Case I. Ө’ = 
11

11
. Using Equations (A.9) and (A.27): 

D3K4t(n1,n2) = [T
D

1 + t(n1 + 1, n2)] – [T
D

1 + t(n1, n2)] - T
D

1 

= t(n1 + 1, n2)] - t(n1, n2) - T
D

1.      (A.31) 

Using C6( t , t ), one clearly obtains 

D3K4 t (n1,n2) = t (n1 + 1, n2) - t (n1,n2) - 1
DT  

  ≤ t (n1 + 1, n2) - t (n1,n2) -  1
DT   

= D3K4 t (n1,n2).       (A.32) 

Case II. Ө’ = 
00

11
: 

D3K4 t (n1,n2) = [T1(n1 +1) + t (n1 + 2, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1
DT   (A.33) 

D3K4 t (n1,n2) = t (n1 + 1, n2) - t (n1,n2) - 1
DT  .    (A.34) 

Since, ΩOFF t (n1 + 1, n2) ≤ ΩON t (n1 + 1, n2), one obtains the following 

inequality. 

D3K4 t (n1,n2) ≤ [ 1
DT  + t (n1 + 1, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1

DT   

 = -T1(n1).             (A.35) 

Ө’ = 
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Similarly, using the inequality, -ΩOFF t (n1,n2) ≤ -ΩON t (n1,n2), the 

Inequality (A.36)  can be written 

D3K4 t (n1,n2) ≥ t (n1 + 1, n2) - T1(n1) - t (n1 + 1,n2) = - T1(n1).   (A.36) 

Combining Inequalities (A.35) and (A.36), the following inequality is obtained:  

D3K4 t (n1,n2) ≤  D3K4 t (n1,n2). 

Case III. Ө’ = 
10

11
. In this case, D3K4 t (n1,n2) is given as defined in Equation  

(A.34). D3K4 t (n1,n2) is given in Equation (A.37) 

D3K4 t (n1,n2) = [ 1
DT  + t (n1 + 1, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1

DT     

   = - T1(n1).                  (A.37) 

Using the inequality ΩOFF t (n1,n2) ≥ ΩON t (n1,n2), one clearly obtains  

D3K4 t (n1,n2) ≤ D3K4 t (n1,n2). 

Case IV. Ө’ = 
00

00
: 

D3K4 t (n1,n2) = [T1(n1 + 1) + t (n1 + 2, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1
DT . (A.38) 

D3K4 t (n1,n2) = [T1(n1 + 1) + t (n1 + 2, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1
DT . (A.39) 

and the desired condition can be simply achieved using C6( t , t ). 

Case V. Ө’ = 
10

10
: 

D3K4 t (n1,n2) = [ 1
DT  + t (n1 + 1, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1

DT . (A.40) 

D3K4 t (n1,n2) = [ 1
DT  + t (n1 + 1, n2)] - [T1(n1) + t (n1 + 1, n2)] - 1

DT . (A.41) 
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Rearranging the terms, the following equality is obtained: D3K4 t (n1,n2) = 

D3K4 t (n1,n2), which is sufficient for D3K4 t (n1,n2) ≤ D3K4 t (n1,n2). 

Case VI. Ө’ = 
00

10
. In this case, D3K4 t (n1,n2) and D3K4 t (n1,n2) are given in 

Equations (A.38) and (A.41), respectively. The desired condition can be shown 

using the inequality ΩOFF t (n1 + 1, n2) ≤ ΩON t (n1 + 1, n2). 

Since, D3K5 t (n1,n2) and D3K5 t (n1,n2) are linear combinations of           

D3K4 t (n1,n2) and D3K4 t  (n1,n2), i   1, 2, 3, 4, it is trivial to show that            

D3K5 t (n1,n2) ≤ D3K5 t (n1,n2). 

The remainder of the proof follows from the induction argument discussed 

at the end of proof of Theorem 1.  
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APPENDIX B 

INPUT DATA FOR THE EMERGENCY CARE DELIVERY SYSTEM MODEL 

AND PARAMETERS FOR GA 
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Input Data for Simulation model 

The generic hospital described in Chapter 4 was built using C++ with 

information published in different sources. Arrival rates are derived from Cochran 

and Roche (2009), which shows a non-stationary arrival process to a single ED. 

Arrival pattern shown in Figure 2.3 was also used to model the arrivals in the 

model of Chapter 4. As stated in all the chapters, the arrival rate shown in that 

Figure has also been observed in other papers and official reports across the 

United States.  

The walk-ins are scheduled independently for each hospital in the 

simulation model according to the time of the day and scenario. Thus, a scenario 

considering a different relative size among hospitals multiplies the arrival rate 

shown in Figure 2.3 by the indicated factor: 10% or 20%.  

On the other hand, the rate of ambulance arrivals described in Figure 2.3 is 

used to model the frequency of new emergency patients in the simulation. Thus, 

the emergency patient generator module creates patients according to the 

ambulance rate and assigns a random location in the ECDS. Uniform distribution 

is assumed to define the location of the new emergency patient in the two-

dimensional space. Upon the location assignment, the simulation schedules the 

arrival of the patient to the appropriate hospital based on the destination and 

diversion policies. Green (2006) proposes a set of arguments to assume Poisson 

process for the arrivals to healthcare systems. Hence, this chapter assumes 

Poisson process for all its arrivals. 
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In order to schedule ambulance arrivals to an appropriate hospital, the 

transportation time is estimated by xM(l, Hi), where M(l, Hi) is the Manhattan 

distance between the emergency location and the selected hospital, and  is the 

transportation time per mile. In order to take into account the uncertainty of the 

transportation time, this chapter assumes a distribution for , such that                    

 ~ Normal(1.25, 0.5). This implies that the average transportation time is 1.25 

minutes per mile, which is similar to the data presented by Google Maps as 

transportation time per mile in Maricopa County, AZ.  

The severity level assigned to each patient depends on the arrival mode. 

The percentages of each severity level are the same than those shown in Table 

2.1. The overall percentages are similar to information presented in Cochran and 

Roche (2009) and close to the national average (Centers for Disease Control and 

Prevention 2010). 

The treatment times in the ED depend on the severity level of the patients 

and they were derived from Cochran and Roche (2009). The mean treatment time 

per severity level is shown in Table B1. This chapter assumes that the treatment 

time follows an Erlang distribution with shape parameter of 3. This assumption 

produces a distribution with coefficient of variation of to   √ , which is similar 

to the value observed by Cochran and Roche (2009) for the coefficient of 

variation of treatment in an ED. In addition, the probability density function of the 

Erlang distribution is similar to other distributions used to characterize the 

treatment times in EDs (Hoot et al. 2008). 

 



  166 

Table B.1. Mean Treatment Times in the ED. 

Severity Level Mean Treatment Time (min) 

1 273 

2 273 

3 140 

4 106 

5 30 

 

After ending treatment in the ED, the patients can be admitted to the IP 

unit with a probability that depends on the severity level. These probabilities are 

presented in Table B.2. The overall admission percentage is 15% which is in the 

range the average seen in metropolitan areas in the United States (Centers for 

Disease Control and Prevention 2010). 

Table B.2. Admission probabilities to IP unit. 

Severity Level Admission Percentage 

1 70 

2 34 

3 10 

4 5 

5 3 

Overall 15 

 

Direct admissions to IP occur according to a Poisson process with a mean 

of one admission per hour, which is similar to the total external arrival rates of the 

hospital analyzed in Cochran and Bharti (2006). The treatment time in the IP is 

also assumed to be an Erlang distribution with shape parameter equal to 3 and a 

mean of four days, which is similar to the data found by Cochran and Bharti 

(2006) and close to mean length of stay in IP units according to the Centers for 

Disease Control and Prevention (2010). 
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In order to model the LWOT patients, this chapter incorporates an 

approach presented by (Miller et al. 2009). The LWOT routine consists of 

removing patients from the queue if they have not been placed in a bed within 24 

hours. This chapter assumes that LWOT patients go home or visit a non-

emergency physician; therefore, they are not scheduled to arrive to another 

hospital in the model. 

The hospitals in the model have 20 beds in the ED and 200 IP beds. The 

number of beds considered for the ED is similar to the median in the United 

States (Centers for Disease Control and Prevention 2006b) and the size of the IP 

unit is suitable of a medium-size hospital.  

The simulation length for the research is fixed to six months after a warm-

up period of one month and ten replications per strategy are considered. These 

parameters were defined after a set of pilot runs to obtain precise estimation of the 

performance measure of interest. In addition, Common Random Numbers (Banks 

et al. 2010) are used to expose the different strategies to the similar conditions and 

reduce the noise among them. 

Parameters for the Genetic Algorithm 

The GA used in this dissertation is a nondominated sorting genetic 

algorithm (NSGA-II) proposed by Deb et al. (2002), which uses front ranking and 

a crowding distance operator for the survivor selection of chromosome from 

generation to generation. The main elements and processes of the GA are 

described below. 
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Population: The initial population comprises policies randomly generated and a 

selection of good policies derived from a pilot run. The number of policies 

(chromosomes) kept from generation to generation is 20.  

Parent Selection: Binary selection tournament is used to select two parent 

chromosomes from the population pool to generate a new chromosome 

(offspring). The selection of the parent chromosome is based on the front number 

and crowding distance is used as a tiebreaker. 

Front: The front number of a specific policy P is related to the number of policies 

which dominate P (domination count). The nondominated policies of a set of 

policies have front number equal to one. Then, policies in front one are removed 

from the total set and the process repeats. The new set of nondominated policies is 

assigned to front two. The process repeats until a front number is assigned to all 

the policies.  

Crowding distance: The crowding distance is related to the diversity of the 

policies. The crowding distance of a specific policy P is an estimation of the 

perimeter of the cuboid formed by the nearest policy neighbors of P. The policies 

with larger crowding distance are more likely to be included in the parent 

selection since diversity encourages exploring areas with low density of policies. 

 Recombination: The recombination strategy depends if the chromosome belongs 

to an SF policy or to an MF. 

 Crossover for SF AD policy in an ECDS with two hospitals: Once that parents 

are selected (chromosomes X & Y), the offspring (chromosome Z) is obtained 
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by forming policy of hospital H1 from chromosome X and policy of hospital 

H2 from chromosome Z. This process is depicted in Figure B.1. 

 

Figure B.1. Crossover for SF AD policy in an ECDS with 2 hospitals. 

 Crossover for MF AD policy in an ECDS with two hospitals: Once that 

parents are selected (chromosomes X & Y), the offspring (chromosome Z) is 

obtained by uniform crossover. Thus, each gene in chromosome Z is defined 

by the value of the same gene in Chromosome X with probability p or the 

value is taken from Chromosome Y with probability 1-p. The value of p 

selected in this research is 0.5. This type of crossover is depicted in Figure 

B.2. 

 

Figure B.2. Crossover for MF AD policy in an ECDS with 2 hospitals. 

 Crossover for SF AD policy in an ECDS with three hospitals: Once that 

parents are selected (chromosomes X & Y), the offspring (chromosome Z) is 

obtained by forming policy of hospital H1 from chromosome X with 

probability p or from chromosome Y with probability 1-p. The value of p 

selected in this research is 0.5. Policies for hospitals H2 and H3 in 

chromosome Z are defined in the same way. Figure B.3 depicts the process of 
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this crossover and shows some potential configurations of policies in 

chromosome Z. 

 

Figure B.3. Crossover for SF AD policy in an ECDS with 3 hospitals and 

potential outcomes. 

 

These recombination strategies allow obtaining feasible chromosomes that 

can be used in the evaluation of the policies via simulation. 

Mutation: The mutation procedure is a search mechanism that modifies the value 

of a gene in the policy of a hospital. The change in the gene is done with a 

probability p (p = 0.7 in this research). The new value of a gene g is given by: 

gnew = gcurrent + zg     (B.1) 

where z ~ Normal(0, 1). Thus, the new value of the gene is a neighbor value. The 

range of search is defined by the value of g, which depends on the nature of the 

variable represented by the gene. Hence, for an MF AD policy, it is expected to 

have NQ1 < NQ5.  

Offspring generator: The pool of chromosomes, including the initial population in 

the generation and the offspring, comprises 40 policies. 
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Simulation: The fitness of a chromosome is given by the tuple of average-patient 

non-value added time in each hospital. The vector is obtained via simulation using 

the framework described in Section 4.2.  

Survivor selection: The new population for the next generation in the genetic 

algorithm is determined by the front and crowding distance. The chromosomes 

with small number value and large crowding distance have higher priority to 

survive to the next generation. 

Finally, the simulation-optimization algorithm stops after 30 generations 

and the best chromosomes that survived in the last generation are kept for the 

analysis.  

 

 

 

 

 

 

 

 


