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ABSTRACT 
   

Historically, uranium has received intense study of its chemical and 

isotopic properties for use in the nuclear industry, but has been largely ignored by 

geoscientists despite properties that make it an intriguing target for geochemists 

and cosmochemists alike.  Uranium was long thought to have an invariant 

238U/235U ratio in natural samples, making it uninteresting for isotopic work.  

However, recent advances in mass spectrometry have made it possible to detect 

slight differences in the 238U/235U ratio, creating many exciting new opportunities 

for U isotopic research. 

Using uranium ore samples from diverse depositional settings from around 

the world, it is shown that the low-temperature redox transition of uranium (U6+ to 

U4+) causes measurable fractionation of the 238U/235U ratio.  Moreover, it is shown 

experimentally that a coordination change of U can also cause measurable 

fractionation in the 238U/235U ratio.  This improved understanding of the 

fractionation mechanisms of U allows for the use of the 238U/235U ratio as a 

paleoredox proxy.  The 238U/235U ratios of carbonates deposited spanning the end-

Permian extinction horizon provide evidence of pronounced and persistent 

widespread ocean anoxia at, or immediately preceding, the extinction boundary. 

Variable 238U/235U ratios correlated with proxies for initial Cm/U in the 

Solar System’s earliest objects demonstrates the existence of 247Cm in the early 

Solar System.  Proof of variable 238U/235U ratios in meteoritic material forces a 

substantive change in the previously established procedures of Pb-Pb dating, 

which assumed an invariant 238U/235U ratio.  This advancement improves the 
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accuracy of not only the Pb-Pb chronometer that directly utilizes the 238U/235U 

ratio, but also for short-lived radiometric dating techniques that indirectly use the 

238U/235U ratio to calculate ages of Solar System material. 
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Chapter 1 

INTRODUCTION TO THE URANIUM ISOTOPE SYSTEM 

1.1 BRIEF HISTORY OF THE STUDY OF THE URANIUM SYSTEM 

1.1.1 The Basics (and Potential) of the Uranium Isotope System 

Since the 1930s, uranium (U) has received a great deal of attention from 

government officials and scientists worldwide, largely due to the fissile properties 

of the 235U nucleus.  While this attention to U has had a great deal of geopolitical 

consequences far beyond the scope of this thesis, it has also produced a vast 

knowledge about the chemical behavior of U.  This knowledge is of great use for 

the scientific endeavors that are at the crux of this thesis. 

While a large portion of the study of U has been dedicated to energy 

production, either in the form of nuclear reactors on nuclear weapons, U has many 

properties that make it an intriguing target for geoscientists and cosmochemists 

alike.  The two primordial U isotopes, 238U (t1/2 ≈ 4.5 Ga) and 235U (t1/2 ≈ 703 

Ma), have very long, non-overlapping decay chains, making them very powerful 

tools for geochronology.  The α-decay of 238U indirectly produces 234U, a short-

lived isotope (t1/2 ≈ 245,000 a).  In addition to these natural isotopes, 233U (t1/2 ≈ 

160,000 a) and 236U (t1/2 ≈ 23.4 Ma) can be produced in substantial quantities by 

specific nuclear reactions, creating excellent geochemical tracers.  Furthermore, U 

is a redox sensitive metal, suggesting its isotopes can be used to trace 

geochemical reactions over time, allowing for a more complete understanding of 

geologic history. 
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1.1.2 Early Peaceful Studies of Uranium Isotopes 

It was realized early on that the long-lived decay systems of 238U→ 206Pb 

and 235U→ 207Pb would be of great importance for chronology (Boltwood 1907), 

and were later used to determine the age of meteorites and Earth (Patterson 1956).  

These chronometers can be used separately, in the case of U-Pb dating, or 

combined in Pb-Pb dating.  In Pb-Pb dating, the ratio of the Pb daughter products 

(206Pb* and 207Pb*) from the decay of 238U and 235U, respectively are measured to 

calculate an age for the material.  This equation is shown below, where “λ” is the 

decay constant of the parent isotope and “t” is time: 

 

Since no variation in natural U isotopes had ever been measured, this equation 

assumed the value of the 238U/235U ratio to be equal to 137.88. 

Additional work on U isotopes showed that excesses of 234U, an 

intermediate daughter of 238U decay, existed in aqueous phases.  This 

disequilibrium reflects the increased mobility of 234U relative to other U isotopes, 

caused by preferential leaching of 234U from damaged crystal sites from the α-

decay of 238U (Kigoshi 1971).  Discovery of 234U/238U disequilibrium provided a 

short-term chronometer and tracer of U mobility. 

During the late 1970s, huge 238U/235U variations were reported in various 

meteoritic materials and used as proof of extant 247Cm (an isotope produced in 

supernovae that decays to 235U) (Arden 1977; Tatsumoto and Shimamura 1980).  

Continued work on the 238U/235U ratio in the same and similar samples showed 
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the claims of large 238U/235U variations in meteoritic material to be false (Chen 

and Wasserburg 1980; Shimamura and Lugmair 1981; Lugmair and Galer 1992; 

Stirling et al. 2005).  While the early claims of 247Cm were discredited, the 

existence of “live” 247Cm in the early Solar System was still predicted based on 

data for other short-lived radioisotopes such as 129I and 244Pu that are thought to 

be produced in similar stellar environments as 247Cm. 

 

1.1.3 The Nuclear Volume Effect 

By the end of the 1980s, it had been firmly established by measurements 

of various meteorite samples and countless U ores provided by the U mining 

industry that the modern 238U/235U ratio was an invariant value (=137.88) in our 

Solar System (Shields 1960; Chen and Wasserburg 1980; Chen and Wasserburg 

1981).  Uranium was thought to be too heavy to undergo significant mass-

dependent isotope fractionation.  However, theoretical work by Fujii (1989), 

Bigeleisen (1996), and Schauble (2006, 2007) suggested that fractionation of U 

isotopes should occur during chemical reactions involving redox change.  The 

mechanism of fractionation postulated by these theorists was not the more 

familiar mass-dependent fractionation, but volume-dependent fractionation.  For 

very heavy elements like U, the nuclei are of sufficient size to influence the 

distribution of electrons around the nucleus (Bigeleisen 1996).  Thus, the differing 

volumes of the nuclei rather than strictly their masses alter the zero point energy 

of the isotopes, causing preferential bonding and isotope fractionation.  This type 

of fractionation is therefore referred to as the “nuclear volume effect.”   
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It was shown in Schauble (2007) that volume-dependent fractionation and 

mass-dependent fractionation in Tl and Hg are both predicted to enrich heavy 

isotopes in the oxidized species.  Oxidation of Hg(0) or Tl(I) involves loss of 6s 

electrons, reducing the electron density at each nucleus.  However, U differs from 

Hg and Tl in a critical way: the oxidation of U(IV) to U(VI) involves 5f electrons, 

and their removal actually increases the electronic charge density at the nucleus, 

leading to a preference of light U isotopes in the oxidized species (Schauble, 

unpublished).  Consequently, the effects of mass-dependent and volume-

dependent fractionation on the 238U/235U ratio are in opposite directions, leaving 

the dominant volume-dependent fractionation as the observable effect. 

The effect of temperature (T) in mass-dependent fractionation has been 

well documented, with the magnitude of fractionation scaling as 1/T2.  The 

magnitude of volume-dependent fractionation is also a function of T, but instead 

scales as 1/T (Schauble 2007).  Therefore, while U behaves differently from other 

very heavy elements in the direction of volume-dependent fractionation, the 

importance of temperature on the reactions remains the same.   

A thorough discussion of the nuclear volume effect and its increased 

importance for very heavy nuclei is provided by Bigeleisen (1996) and Schauble 

(2007). 

 

1.1.4 The discovery of 238U/235U variability on Earth 

The development and maturation of multi-collector mass spectrometers 

gave scientists the ability to measure multiple ion beams simultaneously, greatly 
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improving the precision of isotopic ratio measurements.  Using multi-collection 

capability, Stirling et al. (2007) and Weyer et al. (2008) were the first to show 

natural variability in the terrestrial 238U/235U ratio.  The samples measured in both 

studies strongly suggested that low-temperature redox transitions were the major 

cause of 238U/235U fractionation.  Interestingly, the reduced species, UIV was 

isotopically heavier than the oxidized species, UVI, as displayed in Figure 1.  This 

pattern was opposite to that of lighter elements such as Fe or S, providing 

evidence that the predicted volume dependency, and not mass dependency, was 

the likely driving force behind the observed 238U/235U fractionation.  Also shown 

in Stirling et al. (2007) and Weyer et al. (2008) was a measurable offset between 

U in seawater and U contained in ferromanganese crusts, both oxidized forms of 

U in which redox fractionation was not the cause of U isotope fractionation. 
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Fig. 1.1. Box model showing U isotope compositions and ranges of various 

terrestrial U reservoirs.  The dotted arrows show the possible causes of U isotope 

fractionation.  Data and figure redrawn from Weyer et al. (2008).  

 

1.2 OPPORTUNITIES CREATED BY VARIABLE 238U/235U RATIOS 

The exciting affirmation of variability in the 238U/235U ratio and the 

improved precision at which the ratio can be measured created many 

opportunities for new work on the U isotope system.  The goal of this thesis is to 

address some important areas in which high precision 238U/235U ratio 

measurements could be useful to understand scientific questions, both in 

terrestrial and extraterrestrial systems. 

First, this thesis explores and addresses possible fractionation mechanisms 

that cause 238U/235U variability in Earth systems, using both natural and 

experimental samples.  Separate studies investigate possible redox driven 

fractionation and the hypothesized fractionation due to a coordination change of 

U.  Additionally, this thesis examines the use of the 238U/235U ratio as a redox 

proxy to study the history of oxygen in the Earth’s oceans over geologic time. 

This thesis utilizes variable 238U/235U ratios in the Solar System’s earliest 

objects to determine the existence of 247Cm and quantify the initial 247Cm/235U 

ratio of the Solar System.  The proof of variable 238U/235U ratios in meteoritic 

material shown in this thesis forces a substantive change in the previously 

established procedures of Pb-Pb dating, which previously assumed an invariant 

238U/235U ratio.  This advancement will improve the accuracy of not only the Pb-
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Pb chronometer that directly utilizes the 238U/235U ratio, but also for short-lived 

radiometric dating techniques that indirectly use the 238U/235U ratio to calculate 

ages of Solar System material. 
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Chapter 2 

NATURAL VARIATIONS IN URANIUM ISOTOPE RATIOS OF URANIUM 

ORE CONCENTRATES: UNDERSTANDING THE FRACTIONATION 

MECHANISM 

2.1 INTRODUCTION 

The uranium isotope system is unusual in that it contains two long-lived 

natural isotopes in 238U (t1/2 ≈ 4.5 Ga) and 235U (t1/2 ≈ 700 Ma), as well as 234U, a 

short-lived isotope (t1/2 ≈ 245,000 a) that is part of the 238U decay chain.  This 

isotope system has been well studied not only because of the fissile properties of 

235U, but also because of its wide applications in the age dating of natural 

materials.  The decay systems of 238U→ 206Pb and 235U→ 207Pb provide both long 

and short-range chronometers when utilizing intermediate decay products, such as 

234U.   

Until very recently it was assumed that the current 238U/235U ratio was a 

constant value (=137.88) in our Solar System because uranium was thought to be 

too heavy to undergo significant isotope fractionation.  Theoretical work by Fujii 

(1989), Bigeleisen (1996), and Schauble (2006, 2007) suggested, however, that 

fractionation in uranium isotopes should be present and measurable with modern 

analytical techniques.  Recent work has in fact shown variability in the terrestrial 

238U/235U ratio over a range of ~1.3‰ (Stirling et al. 2007; Weyer et al. 2008).  

This study utilizes modern multi-collector ICP-MS technology to analyze 40 

uranium ore concentrate samples from U ore mines across the world to search not 
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only for differences in the 238U/235U and 235U/234U ratios, but to identify the 

specific mechanisms that cause the 238U/235U fractionation.  

Although significant variations in the 238U/235U ratio are a recent 

discovery, much larger variations in the 234U/235U ratio in the terrestrial variations 

have long been observed.  The ocean, for example, contains elevated abundances 

of 234U.  Specifically, the increased mobility of 234U relative to other U isotopes 

reflects production from 238U by α-decay and subsequent emplacement in crystal 

sites damaged by α-recoil.  Aqueous weathering of materials containing U results 

in preferential leaching of 234U from these α-damaged crystal sites (Kigoshi 

1971).   

If preferential leaching is also the primary mechanism for 238U/235U 

fractionation, the magnitude of changes in 238U/235U should be positively 

correlated with those in 235U/234U.  On the other hand, 238U/235U variations have 

been attributed to oxidation and reduction (redox) processes (Schauble 2006; 

Stirling et al. 2007; Weyer et al. 2008; Bopp et al. 2009).  In this scenario, the 

ability of individual U nuclei to attract electrons varies slightly due to the 

different number of neutrons in the nucleus of 238U and 235U.  This has been 

termed the “nuclear volume effect”. 

If reduction of UVI to UIV is a major cause of isotope fractionation in the 

uranium system, then uranium ores deposited in variable oxidation conditions 

should show resolvable differences in uranium isotope abundances.  By 

examining the relationship between all three naturally occurring uranium isotopes 

in samples deposited by: 1) low-temperature redox processes, 2) high-temperature 
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redox processes and 3) non-redox processes, it should be possible to determine 

the relative importance of preferential leaching and redox changes at high and 

low-temperatures in fractionation of the 238U/235U ratio. 

 

2.2 BACKGROUND 

2.2.1 Previous 238U/235U ore deposit work 

Early work by Cowan and Adler (1976) on the 238U/235U ratio in uranium 

ore samples concluded that there was a bimodal distribution of uranium ores with 

a statistically significant, ~+0.3‰ difference between sandstone-type and 

magmatic deposits.  Their study also concluded that there were insufficient data to 

attribute the variations either to fractionation of uranium isotopes between 

magmatic and sandstone deposits, or 235U depletion caused by Precambrian 

nuclear reactions.  This work was performed using UF6 gas mass spectrometers, 

achieving a reported precision of ~0.4‰ on the 238U/235U ratio.  However, the UF6 

was sometimes stored in containers that previously contained depleted uranium 

(i.e., 238U/235U>>137), creating a potential source of contamination and making 

the results of the study somewhat ambiguous.  A more recent study by Bopp et al. 

(2009) examined uranium ore from six uranium mines, sampling two low-

temperature deposits and four high-temperature deposits.  This study concluded 

that 238U/235U fractionation takes place during the low-temperature redox 

transition, citing higher 238U/235U ratios from low-temperature deposits.  This 

study involves a significantly more diverse sample suite in order to determine the 
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cause of the 238U/235U ratio variations in ore deposits by testing all likely modes of 

isotope fractionation. 

 

2.2.2 Sample Types 

Uranium ore concentrate (UOC; née, yellowcake) is a fungible commodity 

traded worldwide and is the final product of uranium mining and milling 

operations.  Uranium deposits occur worldwide in a variety of geologic settings 

and can be divided into 3 major depositional settings based on the temperature 

and the redox environment of deposition.  The major settings, coupled with 

examples of typical uranium deposit types, are described briefly below. 

1) Low-Temperature, Redox Sensitive – consist primarily of sandstone or 

“roll-front” deposits, but also included in this category are black shale 

uranium deposits.  Uranium mineralization occurs below the water table 

where low-temperature, oxidized fluids (carrying soluble UVI) interact 

with a reducing agent, usually carbonaceous material, sulfides, or 

hydrocarbons, and precipitate uranium as insoluble UIV (IAEA-TEC-

DOC-328, 1985).  Major examples include the sandstone deposits of the 

Syr-Darya basin in Kazakhstan, the Arlit district of Niger, and the gulf 

coast deposits of Texas, USA. 

2) High-Temperature, Redox Sensitive – includes some of the largest and 

richest uranium deposits in the world.  Like sandstone and black shale 

deposits, this category includes uranium deposited because of the 

reduction of UVI to UIV, but at higher temperatures associated with igneous 
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and metamorphic processes.  Uranium deposits in this category include 

unconformity deposits, vein-type deposits, intrusive deposits, 

metamorphic core complex deposits and collapse breccia-pipe deposits.  

Major examples include the massive Olympic Dam breccia complex and 

unconformity-style Ranger deposits of Australia, as well as Namibia’s 

intrusive-style Rössing deposit. 

3) Non-Redox Sensitive – this setting exclusively contains quartz-pebble 

conglomerate deposits.  These are ancient deposits formed from fluvial 

oligomictic detritus (including pyrite and uraninite) prior to the emergence 

of an oxygenated atmosphere on Earth, and therefore not deposited by a 

redox related mechanism (IAEA-TEC-DOC-427, 1987).  The Stanleigh, 

Stanrock and Denison deposits of Canada are all examples of quartz-

pebble conglomerate deposits. 

 

By examining the uranium isotope composition of samples from these 

deposits, the goal is to constrain the potential roles preferential leaching, 

oxidation, and temperature play in fractionating the isotopes of uranium in the 

terrestrial environment.  If fractionation patterns reflect preferential leaching of 

isotopes, variations in 238U/235U and 235U/234U will be positively correlated and 

not dependent on the oxidation environment.  If, in contrast, the pattern of U-

isotope shifts reflects oxidation/reduction, as suggested by Weyer et al. (2008), U-

isotope fractionation will be pronounced in the redox-related deposits and absent 

from the non-redox deposits.  The role that temperature may play in U isotopic 
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fractionation is evaluated by analyzing U-ores that formed at both low and high 

temperatures. 

 

2.3 METHODS 

2.3.1 Sample Preparation 

Samples were obtained as UOC; an aliquot of ~100 mg was removed and 

placed into a 50 ml centrifuge tube.  The sample was dissolved using 20 ml of 4M 

HNO3.  From the solution, an aliquot of 250 μl was removed and brought to 4 ml 

in a 3M HNO3 + 0.05M HF acid mixture.  This solution was passed through a 

column containing Eichrom® UTEVA resin, following a revised procedure 

outlined in Weyer et al. (2008) to separate uranium from the matrix.  Due to the 

extremely high uranium concentrations associated with these samples, a 236U/233U 

double spike was added to sample aliquots only after uranium concentrations 

were determined using a Thermo XSII quadrupole Inductively Coupled Plasma 

Mass Spectrometer and samples were appropriately diluted for isotope ratio 

measurements.  It has been shown that no measurable U isotope fractionation 

occurs during the column elution for the procedure used, so timing of spike 

addition does not affect measured ratios (Weyer et al. 2008).   

 

2.3.2 Isotope Ratio Measurements  

High precision uranium isotope ratio measurements were collected on a 

ThermoFinnigan Neptune MC-ICP-MS instrument at Arizona State University 

(ASU).  Samples dissolved in 2% HNO3 were introduced by an Apex-Q sample 
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introduction system.  238U/235U measurements were performed at concentrations 

of ~120 ppb U to obtain ~35 volt signal (3.5 x10-10 amperes) on 238U.  A second, 

more concentrated aliquot was used for the 235U/234U measurement to obtain ~25 

V signal on 235U.  A 236U/233U double-spike was used to correct for instrumental 

mass bias during the measurements.  In order to minimize analytical error 

associated with the addition of 234U, 235U, and 238U from the spike, samples were 

spiked to achieve 236U and 233U signals of ~2.5 times the lowest natural isotope 

for each run.  This spiking technique maximizes the counting statistics on the 

spike masses while minimizing the tailing contributions at mass 235.  The spike 

was calibrated at ASU and has an isotopic composition of 236U/233U = 1.00525, 

238U/233U = 0.000958, 235U/233U = 0.000108. 

Uranium isotopic data are reported as an average of multiple runs (2 or 

more), differing by an average value (238U/235U) of less than 0.007, or 0.05‰.  

Each measurement session included multiple (10 or more) runs of CRM 129-A, a 

certified uranium standard (New Brunswick Laboratory 2003) obtained as a 

uranium oxide and was put through the same chemistry as all samples.  

Uncertainties are based on the errors calculated on the replicate runs for the 

CRM129-A standard (238U/235U±0.018; 235U/234U±0.42), and are reported at the 

bottom of Table 2.1 for both ratios measured.  The standard error of each 

individual run (30 cycles, 8.4 second integration per cycle) was, in all cases, less 

than 0.009 for the 238U/235U ratio, and less than 0.01 for the 235U/234U ratio.  The 

238U/235U value determined on CRM129-A was 137.631±0.018 (2SD) is just 

inside the analytical uncertainty of the certified value (137.71±0.07).  In order to 
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test the spike calibration and assess the accuracy of the newly reported value, 

aliquots of CRM129-A, IRMM-184 and several selected samples were run using 

the 236U-233U double spike on the Thermo Triton TI at LLNL.  The values 

determined at LLNL using the Triton were all within analytical uncertainty of 

those determined at ASU using the Neptune.  The 15 runs of CRM129-A on the 

Triton averaged 137.619±0.018, compared with 32 runs with an average of 

137.631±0.018 on the Neptune.  Furthermore, the 238U/235U ratio determined on 

IRMM-184 was 137.696±0.011 (n=10), closely matching the certified value 

137.697±0.042 (IRMM Certificate 2005).  All standard data are displayed in 

Figure 2.1. 

 

 

Fig. 2.1. A) Comparison of the data obtained at ASU on a ThermoFinnigan 

Neptune with data obtained from the same CRM129-A standard solution on a 

Thermo Triton at LLNL.  The average values obtained for 238U/235U on CRM129-

A are 137.631±0.018 and 137.619±0.018, respectively.  The large symbols 

represent the average and 2SD error for that population.  While the values 
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obtained at ASU and LLNL agree within error of one another, they fall at the very 

low end of the certified value of CRM129-A, 137.715±0.074.  The combined 2SD 

error reported from ASU and LLNL is substantially smaller than the uncertainty 

on CRM129-A. 

 

B) Validation of the U-double spike procedure was performed using IRMM-184 

on the Triton at LLNL, obtaining a value of 137.696±0.011.  The certified value 

of IRMM-184 is 137.697±0.042, which is shown with the solid vertical line with 

associated 2SD error on the certified value in dashed lines. 

 

2.4 RESULTS 

Uranium isotopic compositions were determined on 40 UOC samples 

from known locations and depositional settings around the world.  Table 2.1 

shows the 238U/235U and 235U/234U ratios of the samples measured in this study.  

The data are shown graphically in Figures 2.2 and 2.3.   

 
Table 2.1. Uranium isotope ratios of this study are presented here.  The far left 

column indicates the type of geochemical environment in which the deposit was 

formed (Category), and the second column from the left indicates the geologic 

classification of the deposit (Deposit type).  At the bottom of the chart, the 

average error (2SD) is reported, based on the multiple runs of the CRM129-A 

standard for both 238U/235U (n=40) and 235U/234U (n=15). 
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Fig. 2.2. The 40 samples of this study are shown by depositional style and 

238U/235U values.  The solid lines represent the average group values and 2SD 

standard error is shown for each depositional style in dashed lines.  The reported 

value and external reproducibility of the CRM129a standard is shown as the grey 

box at the bottom of Figure 2. 
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Fig. 2.3. The 40 samples of this study shown by depositional style and 235U/234U 

values.  Error bars (2SD) are contained within the symbols.  The anomalous Straz 

Pod Ralskem (Czech Rep.) data point is off scale and noted at the bottom of the 

figure. 

 

The range of 238U/235U observed in the samples is between 137.792 and 

137.961, whereas the range of 235U/234U is 83.63 to 164.17.  These variations are 

well beyond the uncertainty associated with the 238U/235U and 235U/234U 

measurements determined by multiple analyses of standards.  From Figure 2.2 it 

is apparent that the 238U/235U values of samples from the high-temperature redox 

mines and the non-redox mines are indistinguishable from one another.  Samples 

from the low-temperature redox mines are, however, more enriched in 238U 

(Figure 2.2) and demonstrate significantly greater variability in the 238U/235U 

ratio.  Samples from the low temperature environments average 137.887±0.072 

(2SD), whereas all other samples average 137.833±0.034 (2SD), a difference of 

0.39 ± 0.08‰ (2SD).  The 235U/234U ratios of the high-temperature and non-redox 

samples show very little variation in 235U/234U and have values approximately 

consistent with secular equilibrium (235U/234U ≈ 132).  In marked contrast, the 

low-temperature redox samples show significant scatter, manifest by both 

enrichments and depletions in 234U (Figure 2.3). 

One UOC sample, from the Straz Pod Ralskem mine in the Czech 

Republic, is extremely enriched in 234U with a 235U/234U ratio of only ~84.  A U-

ore sample from the same location was reported by Richter et al. (1999) to have 
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similarly high amounts of 234U with a reported 235U/234U ratio of ~87.  Richter et 

al. (1999) suggested that the anomalous 235U/234U value was likely caused by 

anthropogenic contamination with Pu, especially 238Pu which decays to 234U (t1/2 

≈ 87.7 a).  Anthropogenic contamination is supported by the observation that the 

ore from Straz Pod Ralskem also contains unusually high levels of 236U, 236U/235U 

~3.5x10-6.  This isotope of U is most commonly produced by neutron capture on 

235U in nuclear reactors.  If this interpretation is correct, the fact that very similar, 

low 235U/234U values are also observed in UOC from Straz Pod Ralskem implies 

that Pu contamination must be widespread in this area.  If the elevated level of 

236U is also ascribed to anthropogenic Pu contamination, the 238Pu/240Pu can be 

estimated to be ~13. 

 

2.5 DISCUSSION 

2.5.1 Production of UOC 

 The production of UOC from uranium ore involves concentrating uranium 

from the relatively low levels (0.01 to 10 wt. %) found in ore at a specific mine to 

the >65 weight percent uranium in UOC sold on the commercial market.  This 

study measures UOC and not uranium ore directly and assumes no significant 

isotope fractionation of 238U from 235U during the production of UOC. 

Conventional uranium concentration is carried out by crushing and 

leaching ore, using either acidic or alkaline solutions.  Recent work has shown 

that progressive leaching and incomplete dissolution of uranium ore does not 

cause measurable 238U/235U fractionation (Stirling et al. 2007; Bopp et al. 2009).  
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Because 90-95% of the uranium from ore is concentrated into UOC (Fernandez 

1996), even if minor isotope fractionation occurs during conversion from ore to 

UOC, this effect would be negligible compared to the variations reported here 

based on the high uranium yield during the milling process.  Moreover, the study 

of uranium isotopes in six uranium ores by Richter et al. (1999) contained two 

mines in common with this study of UOCs: the aforementioned Straz Pod 

Ralskem of the Czech Republic, and the Rössing mine of Namibia.  The 238U/235U 

ratios from both ores and the respective UOCs from these mines agree within 

error, confirming that milling and concentration processes do not fractionate 238U 

from 235U at the combined level of precision of the two studies (<0.5‰).  The 

235U/234U ratios obtained from the Rössing mine also match within error, implying 

that this ratio is unfractionated during milling and concentration.  Note, however, 

that the 235U/234U ratios from Straz Pod Ralskem do not agree within the stated 

errors.  It is believed this difference is most plausibly attributed to sample 

heterogeneity. 

 

2.5.2 Preferential leaching of isotopes 

It has been known for decades that there is an increased amount of 234U in 

groundwater and the oceans due to radioactive decay of 238U to 234U (via 234Th 

and 234Pa) and the subsequent alpha-recoil damage to the crystalline lattice of 

uranium-containing minerals that enables isotope-selective leaching to occur 

(Kigoshi 1971).  Thus, percent-level 235U/234U variability in waters or weathered 

samples provides a clear indication of aqueous alteration.  A positive correlation 
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between 235U/234U and 238U/235U ratios in a sample suite would, therefore, be 

indicative of fractionation of 238U from 235U by aqueous alteration.  In a prior 

study, Stirling et al. (2007) reported such a correlation for a variety of low-

temperature, late-Quaternary age samples.  Alternatively, the lack of correlation 

would suggest processes other than aqueous alteration are primarily responsible 

for fractionation of 238U/235U.  There is no evidence of a correlation between the 

measured 238U/235U and 235U/234U ratios in data of this study (Figure 2.4).  This 

lack of correlation indicates that preferential leaching of 234U and fractionation of 

238U/235U in uranium ore bodies are not linked, and at least two distinct processes 

control the variations in 238U/235U and 235U/234U ratios. 

 

 

Fig. 2.4. 235U/234U and 238U/235U ratios for the 40 samples of this studied.  All 

samples plotted together produce a correlation coefficient of 0.114; low-

temperature redox samples plotted separately produce a correlation coefficient of 
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0.151.  This lack of correlation suggests that 238U, 235U and 234U are fractionated 

from one another by more than one mechanism. 

The 235U/234U ratios of the high-temperature and non-redox deposits 

appear to lie close to the secular equilibrium value, whereas the 235U/234U ratios of 

the low-temperature deposits show significant scatter.  This difference is likely 

related to the nature of the deposits themselves as open or closed systems.  Low-

temperature deposits primarily consist of sandstone or “roll front” deposits that 

form below the water table.  The relatively high porosity of the host sandstone 

allows for greater open system behavior than does the more compacted lithology 

of the host rocks of high-temperature and non-redox deposits.  Whenever large 

amounts of modern groundwater interact with a deposit, the deposit is expected to 

contain either 1) excesses of 234U, if deposition is still occurring, or 2) depletions 

in 234U if deposition has stopped. 

 

2.5.3 Isotope fractionation via redox changes and the nuclear volume effect 

Uranium commonly occurs in two oxidation states in terrestrial 

environments: UIV and UVI.  The oxidized form of uranium, UVI, is highly soluble 

under normal groundwater conditions and exists predominantly as UVIO2
+2 and 

UVIO2OH+ or, when in the presence of carbonate, as a negatively charged 

carbonate complex (i.e., UVIO2(CO3)3
-4; Abdelouas et al. 1998).  When reduced to 

UIV, uranium becomes an essentially insoluble uranium oxide (generally, UIVO2).  

Thus, the reduction of UVI to UIV is a key step in the formation of many U-rich 

ore deposits.  Although both high-temperature and low-temperature deposition of 
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U occurs, only the low-temperature samples exhibit significant fractionation in 

238U/235U.  This difference suggests that temperature plays a significant role in the 

fractionation of U under redox conditions.  It further suggests that the low-

temperature redox transition (UVIO2
+2 → UIVO2) between the UVI and UIV valence 

states of uranium provides the primary mechanism in which 238U/235U 

fractionates.   

It has been shown in thermodynamic calculations that the amount of 

238U/235U nuclear-volume fractionation scales as a function of temperature (Abe et 

al. 2008).  Equilibrium nuclear-volume isotopic fractionation factors should scale 

as 1/T, rather than 1/T2 (Schauble 2007), and given the precision of this study, it 

is possible some of the scatter in the low-temperature deposits can be explained 

by variable temperatures of deposition.  A thorough investigation of the 

temperature effects on the 238U/235U value of U ore requires a variety of individual 

uranium bearing minerals deposited at known temperatures. 

The fractionation of 238U/235U results in the heavy isotope being 

preferentially concentrated into the reduced phase.  Whereas this observation is 

consistent with work by Weyer et al. (2008) and Bopp et al. (2009), the 

fractionation direction is opposite that of the lighter elements in which the light 

isotope is concentrated in the reduced phase.  Unlike lighter elements, in which 

isotopic fractionation occurs as a consequence of mass dependent differences in 

vibrational energies, the isotopes of uranium and other very heavy elements 

appear to be fractionated by a different process.  Bigeleisen (1996) theorized that 

differences in the nuclear size and shape of individual uranium isotopes should 
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lead to slightly different bonding environments for each isotope, based on the 

nuclear charge distribution and structure of the nuclear shell.  The magnitude of 

this effect correlates with the nuclear volume of each isotope rather than strictly 

with mass, and is therefore referred to as the “nuclear volume effect” (or, 

alternatively, the “nuclear field shift”).  As with mass dependent fractionation, the 

magnitude of the isotope shift decreases with increasing temperature.  A thorough 

discussion of the nuclear volume effect is provided by Bigeleisen (1996) and 

Schauble (2007). 

The consistently higher 238U/235U in the UOC of low-temperature deposits 

is evidence of low-temperature U isotope fractionation.  However, in order for 

this low-temperature fractionation to be expressed, it is required that a large 

portion of the uranium passing through the system escaped and was not deposited 

in the primary ore body, as fully quantitative capture would cause no isotope 

fractionation to be expressed.  It is possible that some of the scatter in the data 

from low-temperature ore deposit could be caused by variable amounts of U 

capture, where a higher percentage of capture reduces the effect of the 

fractionation, resulting in a lower 238U/235U value.  Given ideal conditions in an 

undisturbed ore body, it would be theoretically possible to trace a distillation 

trend towards low 238U/235U as the 238U is preferentially removed from solution 

through the reduction of UVI to UIV. 

Fractionation of U by the nuclear volume effect is supported by two 

important observations in this study.  First, for heavy elements like uranium, the 

magnitude of fractionation from this effect is expected to be large and potentially 
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larger than for lighter elements.  This makes U an ideal element in which to 

observe this effect.  Second, this nuclear volume driven effect is unusual 

compared to traditional mass dependent isotope fractionation because it 

concentrates the heavier isotope in the reduced species during redox reactions.  In 

lighter elements, like Mo, the light isotopes are in general preferentially 

partitioned into the reduced species, a function of the difference of the stiffness of 

the bonds.  In the isotopes of extremely heavy elements, like U, the difference 

between the stiffness of the bonds is dominated by the volume of the isotope, not 

by the mass of the isotope.  Thus, the direction and magnitude of U isotope 

fractionation that is observed is consistent with what is predicted on a theoretical 

basis for the nuclear volume effect (Schauble 2006), that there is a positive 

correlation between valence and the concentration of heavy isotopes of U. 

 

2.5.4 Nuclear forensic applications of uranium isotope variations 

 Developing improved methods to identify or verify the sources of nuclear 

materials at the front end of the nuclear fuel cycle (e.g., yellowcake, uranium ore) 

is of great interest to the nuclear forensic community.  Whereas isotopic systems 

such as Sr or Pb may help identify characteristics of the regional geology at the 

origin of the sample, the measurement of uranium isotopes has the potential to 

provide isotopic “fingerprints” of individual uranium mines (Richter et al. 1999).  

This stems from the fact that the three relatively abundant, long-lived isotopes of 

uranium exhibit decoupled variations of the respective isotope ratios, providing 

insight into distinct geologic and/or geochemical processes.  By measuring the 
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238U/235U ratio, the type of the U-ore deposit (low-temperature redox deposit vs. 

high-temperature redox deposit/non-redox) can be determined.  Measurement of 

the 235U/234U ratio with per mil precision in suites of samples containing percent-

level variations has the potential to limit the possible source mines only to those 

that have very similar modern water/rock interactions, compared to the sample of 

interest, regardless of the depositional environment.  The use of this signature is 

greatly aided by the fact that U is a major constituent of both UOC and U ores and 

is, therefore, easily separated and analyzed in these materials, and is difficult to 

contaminate.  Thus multiple measurements at high signal intensities for both the 

238U/235U and 235U/234U are possible and allow both isotope ratios to be 

determined with the highest possible precision.  Although it is unlikely that any 

single isotope system will provide sufficient information to uniquely locate the 

source location of an interdicted UOC sample of unknown origin among the 

hundreds of currently and historically active uranium mines, the application of 

multiple isotopic systems will dramatically restrict the number of possible sources 

and prove invaluable in this endeavor. 

 

2.5.5 Conclusions 

The new U isotope data reported here support the suggestion that low-

temperature redox changes are the major cause of fractionation between 238U and 

235U.  The direction and magnitude of the fractionation consistently follow the 

predictions of the nuclear volume effect associated with very heavy elements, and 

are opposite to the fractionation patterns of more well-studied, lighter elements 
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(e.g., N, S, Fe).  Variations in 234U content are most plausibly explained by fluid 

mediated transport and are not correlated with 238U/235U fractionation, suggesting 

that preferential leaching from aqueous alteration does not play a major role in 

238U/235U variability. 
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Chapter 3 

URANIUM ISOTOPE FRACTIONATION DURING ADSORPTION TO MN-

OXYHYDROXIDES 

3.1 INTRODUCTION 

With modern multi-collector ICP mass spectrometers, it is possible to 

resolve small isotopic variations for elements like U that were previously not 

known to undergo natural fractionation.  It has been shown recently that 

variations of ~1.3‰ (δ238/235U, defined below) exist among natural Earth 

materials (Stirling et al. 2007; Weyer et al. 2008; Bopp et al. 2009).  Much of this 

variation appears to be driven by isotope fractionation induced by redox changes 

(i.e., reduction of U6+ to U4+) (Weyer et al. 2008; Bopp et al. 2009; Bopp et al. 

2010; Brennecka et al. 2010; Montoya-Pino et al. 2010).  However, significant 

isotopic variation was also reported between seawater and marine ferromanganese 

sediments.  Uranium is likely hexavalent in seawater and at the surface of 

ferromanganese minerals (Weyer et al. 2008).  Therefore the origin of this U 

isotope variation is not redox-driven fractionation.     

It is well established that isotope fractionation between metals in seawater 

and ferromanganese sediments can occur during adsorption to mineral surfaces, 

driven by differences in metal coordination.  Most notably, laboratory studies of 

the molybdenum isotope system have shown that significant isotope fractionation 

occurs during Mo adsorption onto Mn-oxyhydroxides (Barling et al. 2004; 

Wasylenki et al. 2008).  The magnitude of this effect matches that seen in natural 

systems (Barling et al. 2001; Seibert et al. 2003).  This fractionation results from a 
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difference in the coordination environment of Mo between dissolved Mo and 

adsorbed Mo (Wasylenki et al. in review).  Because adsorption to Mn-

oxyhydroxides drives Mo isotopic fractionation, it is hypothesized that the 

fractionation of U isotopes observed by Weyer et al. (2008) between seawater and 

ferromanganese crusts could also be due to coordination change during 

adsorption.  Like Mo, U occurs predominantly as anionic species in seawater, and 

thus will not readily adsorb as a weakly bound, outer-sphere complex, but must 

sorb as an inner-sphere complex.  Inner-sphere adsorption often involves 

coordination change and is thus likely to cause isotope fractionation.  If 

coordination change during adsorption is found to cause U isotope fractionation in 

this system, then it is possible that adsorption of U to many other materials will do 

likewise.  Thus adsorption reactions in oxidizing zones of aquifers may cause a 

pattern of U isotope variation that could be useful for tracking the extent to which 

adsorption immobilizes this element in aquifers.  This hypothesis is tested in 

batch adsorption experiments with synthetically produced birnessite (Mn 

oxyhydroxide) and U-bearing solutions. 

In order to compare the coordination environment of U adsorbed to 

birnessite with that of dissolved U, one of the experimental samples was analyzed 

with extended X-ray absorption fine structure spectroscopy (EXAFS).  EXAFS 

analysis provides information about the short-range coordination environment of 

the element of interest (U in this case), including the identity, number, and 

distance to neighboring atoms.  In this study, comparison of the coordination 
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environments of dissolved U and U adsorbed on birnessite sheds light on the 

molecular mechanism driving U isotope fractionation. 

 

3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Experimental Setup 

Batch adsorption experiments were conducted from solutions with two 

different U concentrations and over a range of experimental durations. These 

experiments were modeled after Mo isotope fractionation experiments (Barling et 

al. 2004; Wasylenki et al. 2008).  Birnessite particles were synthesized by 

reducing KMnO4 with HCl (Stroes-Gascoyne et al. 1987).  As in previous studies, 

the birnessite, once filtered and washed, was kept in suspension, in this case in 

distilled, 18.2 MΩ-cm water.  The U solution was prepared by diluting an ICP 

standard solution.  The birnessite suspension and U stock solution were sparged 

for a few hours with a gas mixture of N2 and 382 ppm CO2 to facilitate 

equilibration with atmospheric CO2 and to stabilize the weakly buffered solution.  

The pH of both solutions was adjusted to ~5 with HCl. To ensure enough U was 

present as both adsorbed U and dissolved U, a range of U/birnessite ratios was 

tested. The birnessite was mixed with solutions containing either 30 μM or 140 

μM U (7.1 ppm or 33.3 ppm), which had an initial isotope composition of 

238U/235U =137.794±0.015 (δ238/235U ≡0.00±0.011).  Each 50 ml centrifuge tube of 

U solution with birnessite was agitated on a shaker table for periods of 0.17, 2, 10, 

24 or 48 hours, after which the suspensions were filtered (0.2 μm) to halt the 

isotope exchange between dissolved and adsorbed U.  The particles with adsorbed 
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U and solutions with remaining dissolved U were then processed separately; the U 

in each was extracted and purified by ion exchange chromatography, using 

Eichrom UTEVA resin and the elution procedure outlined in Weyer et al. (2008).  

Concentrations and isotope compositions of U were determined in both the 

dissolved and adsorbed U fractions. 

 

3.2.2 Concentration Determinations 

After separation of U from the sample matrix was completed, the U 

concentration of each sample was measured by quadrupole ICP-MS (Thermo X 

series).  Typical uncertainties on these concentration measurements are <5% 

relative.  Subsequently, a 236U:233U double spike was added to the sample, to 

correct for instrumental mass bias during measurement of the 238U/235U isotope 

ratio.  In order to optimize spike/sample ratios, the samples were spiked after the 

concentrations of the samples were known rather than before purification. It has 

been shown that no measurable U isotope fractionation occurs during purification 

with the Eichrom UTEVA procedure (Weyer et al. 2008). 

 

3.2.3 Isotope Ratio Measurements  

Uranium isotope ratios were measured using a 236U:233U double-spike 

MC-ICP-MS procedure outlined in Weyer et al. (2008) to correct for instrumental 

mass bias.  The double spike used (ASU in-house, Brennecka et al. 2010b) 

consists of a ~1:1 ratio of 236U and 233U and was calibrated against the accepted 

value for SRM950a (Richter et al. 2010).  Extremely minor contributions of 235U 
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and 238U were subtracted during data reduction (236U/233U = 1.00496; 238U/233U = 

0.0009582; 235U/233U = 0.0001084).  Samples in this study were spiked to achieve 

236U and 233U signals of ~2.5 times the least abundant natural isotope of interest, 

235U.  It has been shown that varying the amount of spike isotopes added within a 

range of ~2 to ~10 times has no measurable effect on the measured 238U/235U 

values of the samples (Weyer et al. 2008).  Uranium isotope measurements were 

performed by MC-ICP-MS (on Thermo Scientific Neptune), using instruments at 

Arizona State University (ASU) and the University of Frankfurt.  Samples were 

introduced with an Aridus desolvating nebulizer at the University of Frankfurt 

and with an Apex-Q sample introduction system at ASU.  Uranium isotopes were 

measured simultaneously using Faraday collectors equipped with 1011 Ω resistors.  

Samples were dissolved in 0.32 M HNO3 and measured at a concentration of 

~120 ppb U (~0.5 μM) to obtain greater than 150 mV (1.5×109 milliamp) signals 

on 235U. Data consistency was monitored by analyzing previously characterized U 

isotope standards every 3 to 4 samples during U isotope analyses at both 

laboratories (Weyer et al. 2008; Brennecka et al. 2010a; Brennecka et al. 2010b).  

All measurements at ASU and University of Frankfurt were identical with the 

analytical uncertainties (see Table 3.1).  Results are expressed in δ notation, with 

R defined as the ratio measured: 

δ238/235U = [Rmeas/Rstd - 1] ×1000‰ 

Δ238/235U = δ238/235U (dissolved) – δ238/235U (adsorbed) 

The standard was defined as the isotopic composition of the experimental stock 

solution. 
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3.2.4 EXAFS Measurements 

  In EXAFS analysis, monochromatic X-rays penetrate the sample and eject 

inner-shell electrons from the element of interest, causing outer-shell electrons to 

fill the vacancies and emit photoelectrons.  The incoming X-ray energy is varied 

systematically from just below to just above the energy needed to eject electrons 

from a chosen shell, in this case the LIII edge of U.  The absorption of X-rays by 

the sample depends upon how the photoelectrons scatter during interactions with 

neighboring atoms and is measured as a function of incident X-ray energy.  The 

resulting absorption spectrum is then converted by Fourier transform to a radial 

distribution function.  This function is then compared to the spectra of reference 

compounds and to the calculated spectra of various coordination models in order 

to constrain the coordination chemistry of the target element.  Useful tutorials can 

be found by visiting http://xafs.org/tutorials. 

  A sample of U adsorbed on birnessite was prepared with the same 

methods described above for adsorption experiments, but with larger quantites of 

U stock solution and birnessite to produce enough material for EXAFS analysis. 

The U stock solution contained 50 µM U (11.9 ppm), and the solution and 

birnessite were separated by centrifugation so that the product was a moist paste. 

Allowing the sample to dry was avoided to prevent birnessite from recrystallizing 

into other Mn oxyhydroxides.  Within three days, the birnessite with adsorbed U 

was loaded as a wet paste into a 1 mm thick polycarbonate sample holder and 

sealed with polycarbonate windows and Kapton tape.  Analysis was performed on 
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Beamline 4-1 at the Stanford Synchrotron Radiation Laboratory, using a Lytle 

detector and a silicon (220) double crystal monochromator.  The U LIII edge was 

calibrated at 17166 eV by measuring the edge of Y foil.  Ta slits were set at 2 mm 

x 20 mm, and a Sr filter was used to reject elastic scattering. Six scans were 

collected for incident energies of 17025 to 17851 eV (up to k = 13 Å-1).  Using 

SIXPACK software (Webb et al. 2005), the scans were averaged, the background 

subtracted, fit the spline, and the resulting spectrum was fit using phase and 

amplitude files from FEFF8.40 (Ankudinov et al. 1998).  

 

3.3 RESULTS 

3.3.1 Concentration Results 

The approach to steady state (both concentration and isotopic) appears to 

occur rapidly, in ≤ 2 hours for experiments at both initial U concentrations.  

Approximately 80% of the total U was adsorbed to the birnessite in the 30 μM 

experiment, while approximately 40% was adsorbed to the birnessite in the 140 

μM experiment (Figure 3.1).  In all cases, the sum of the measured U in solution 

and measured U adsorbed represented >95% of the U added to the experiment. 
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Fig. 3.1. Fraction of U adsorbed in two experiments as a function of time. The U 

concentration in the stock solution was 30 μM for one set of experiments (open 

diamond symbols) and 140 μM for the second (black square symbols). 

 

3.3.2 Isotopic Results 

  Uranium isotope compositions were similar in all experiments; U 

adsorbed to the birnessite is isotopically lighter by 0.22±0.09‰ (δ238/235U, 2SD of 

all δ-values) compared to U in the filtrate (Table 3.1, Figure 3.2).  Isotopic mass 

balance is satisfied within the uncertainties for all experiments. 
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Fig. 3.2. Magnitude and direction of isotope fractionation between birnessite and 

30 μM and 140 μM experimental stock solutions.  Big delta (Δ) denotes the 

difference between the small delta (δ) values of the dissolved and adsorbed 

uranium (formulas shown above).  Uncertainties are shown as the 2SD of the 

population of all Δ-values for all experiments.  For figure clarity, plotted data are 

only that collected at ASU. 

 

Table 3.1. Uranium isotopic data from the two experiments. 
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3.3.3 EXAFS results 

  The spectra for two aqueous species (with fits) and the U-on-birnessite 

sample are shown in Figures 3.3 and 3.4.  Figure 3.3 shows the EXAFS spectrum 

after the atomic absorption background is subtracted, the energies are converted to 

units of Å-1 (k-space), and the spectrum is weighted by k3 to enhance the small 

variations at high values of k. Figure 3.4 shows the same data after a Fourier 

transform is applied to generate a radial distribution function, as Fourier transform 

magnitude vs distance to scattering neighbor atoms (R+∆R), where R+∆R has not 

been corrected for phase shift.  Below these spectra are plotted the arithmetic 

differences between each aqueous species spectrum and the spectrum of the 

adsorbed U on birnessite.  The significance of these difference spectra is 

discussed below.  The raw absorption spectrum for the adsorption sample shows 

the U LIII absorption edge at 17170 eV. 
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Fig. 3.3. EXAFS spectra for aqueous U species and an experimental sample of U 

adsorbed on birnessite, shown as k3-weighted EXAFS vs k.  The differences 

between each aqueous species and the U-on-birnessite sample are also shown. 

Solid lines are data; dashed lines are best fits, as tabulated in Table 3.2. 
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Fig. 3.4. EXAFS spectra for aqueous U species and an experimental sample of U 

adsorbed on birnessite, shown in Fourier transform space, without correction of 

distances for the phase shift.  The unfit amplitude above R+∆R = 2.8 Å in the 

uranyl triscarbonato complex is due to several multiple scattering paths (Bargar et 

al. 2000), which was not modeled here, since the objective was to examine 
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oxygen atoms within 3 Å of U absorbers.  Differences between the Fourier 

transform of the adsorbed U spectrum and the two aqueous species are also 

shown.  Solid lines are data; dashed lines are best fits. 

 

Table 3.2. EXAFS fitting results 

 

3.4 DISCUSSION 
 
3.4.1 Fractionation mechanisms of isotopes of heavy elements 

  In general, equilibrium isotope effects occur when an element partitions 

between two or more possible species or sites that have different vibrational bond 

energies.  The isotopes will partition among the possible sites such that the 

vibrational bond energy of the entire system is minimized (Urey 1947).  Often the 

species or sites available differ in the redox state of the element of interest or in 

the identity and configuration of the neighboring atoms, and the masses of the 

isotopes affect the bond vibrational energies and thus govern equilibrium 

partitioning.  However, for the heaviest elements, fractionations are not primarily 

driven by mass-dependent differences in bond vibrational frequencies.  For very 

heavy elements, the nuclei are of sufficient size to influence the distribution of 
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electrons (Bigeleisen 1996).  The result is that the distributions of electrons in 

bonds formed by heavy and light isotopes vary slightly due to the difference in 

number of neutrons.  The magnitude of this effect correlates with the nuclear 

volume of the isotope rather than strictly with mass, and is therefore referred to as 

the “nuclear volume effect.”  A thorough discussion of the nuclear volume effect 

and its increased importance for very heavy nuclei is provided by Bigeleisen 

(1996) and Schauble (2007). 

 

3.4.2 An equilibrium isotope effect matching that observed in nature 

  Results from this experimental study show that adsorption of U to 

birnessite causes fractionation of ~0.2‰ in δ238U (lighter isotope preferentially 

adsorbed).  The fractionation is constant with time within error, implying an 

equilibrium isotope effect.  If this fractionation were due to a kinetic isotope 

effect, in which a slightly faster rate of reaction for the light isotope leads to an 

isotopically light product, then the magnitude of fractionation observed would 

depend on the duration of the experiment.  The sense and magnitude of the 

fractionation observed in these experiments is the same as that reported between 

seawater and ferromanganese sediments by Weyer et al. (2008).  Because the pH 

of these experiments and therefore the most abundant species of dissolved U 

differ from the marine environment, it is possible that the two fractionations 

match by coincidence.  But it may also be that the two effects are driven by a 

common mechanism, as discussed below. 
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3.4.3 Coordination of U adsorbed to birnessite differs from that in aqueous U 

species 

  In these experiments, U is introduced as U(VI). The experiment takes 

place in oxidizing conditions in the presence of birnessite, a strong oxidant on its 

own.  Thus it is expected that all U remained in the oxidized, hexavalent state in 

this system.  Reduction to U(IV) would have been evident as a shift of the 

absorption edge in the spectra to lower energy values.  The U(VI) reference 

compound edge was at 17167 eV and the sample’s adsorption edge was at 17170 

eV, which is consistent with 100% U(VI) in the adsorption sample (Bertsch et al. 

1994).  Since there is no evidence of a redox change, the 238U/235U fractionation 

reported here is most likely the result of a difference in the coordination 

environment of U between the most abundant dissolved species and the dominant 

adsorbed species.  

  In seawater, U occurs predominantly as the hexavalent uranyl 

triscarbonato complex, (UO2(CO3)3
-4), but UO2(CO3)2

-2 is also abundant (Ku et al. 

1977; Waite et al. 1994; Swarzinski et al. 1999; McManus et al. 2006; refs 

therein).  At lower pH values, such as in this adsorption experiment and some 

groundwaters (pH ~5), other species become more important, including 

UO2(CO3)2
2-, (UO2)2CO3(OH)3

-, UO2(OH)+, and especially UO2
2+.   All of these 

species involve multiply-bonded axial oxygens atoms at distances of 1.75-1.80 Å 

and varying numbers of equatorial oxygens.  Only UO2(CO3)3
-4 and UO2

2+ can be 

easily isolated in solution by manipulating pH; hence EXAFS spectra were 

collected for these two species, as shown in Figures 3.3 and 3.4.  The overall 
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resemblance between the spectra for the two dissolved species and this spectrum 

of U adsorbed to birnessite is obvious.  Therefore, subtle differences in the 

arrangement of coordinating atoms that might explain the observed isotope effect.  

To expose such differences, the spectra of UO2(CO3)3
-4 and UO2

2+ is 

arithmetically subtracted from this adsorbed sample spectrum. The differences are 

shown at the bottom of Figures 3.3 and 3.4.  There is no normalization or change 

in scale applied, and yet the amplitudes of the difference spectra exceed one half 

of the amplitudes of the spectra themselves in some places.  Therefore these 

differences cannot be attributed to analytical uncertainties or noise.  These 

experiments were conducted at pH ~5, so the most relevant comparison is 

between UO2
2+ and the adsorbed sample.  The presence of significant differences 

in both the EXAFS and Fourier transform plots confirms that coordination of U in 

the sample of this study is indeed distinct from that in UO2
2+, supporting the 

hypothesis that a difference in coordination geometry between dissolved and 

adsorbed U drives the observed isotope effect in these experiments.  

  It is very possible that the specific coordination change that occurs when 

UO2
++ adsorbs to birnessite differs from the specific coordination change when 

UO2(CO3)3
-4 adsorbs to birnessite.  However, the dissolved species both in the 

experiments and in seawater have symmetrical arrangements of equatorial 

oxygens.  Waite et al. (1994), Bargar et al. (2000), and Catalano and Brown 

(2005) reported a loss of symmetry of equatorial oxygens surrounding U 

compared to aqueous U when adsorbed to ferrihydrite, hematite, and 

montmorillonite, respectively.  To explore whether similar splitting of equatorial 
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oxygens into two groups, or subshells, with slightly different U-O distances 

occurs in the adsorbed complex of U on birnessite, it is attempted to fit the 

adsorbed EXAFS spectrum first with a single, symmetric shell of equatorial 

oxygens and then with two subshells.  Although the fit with two subshells of 

equatorial oxygens is slightly better in terms of goodness-of-fit (the R factor, as 

defined by Hamilton 1965), the uncertainties in the U-O distances, coordination 

numbers, and Debye-Waller factors (a fit variable associated with scattering 

attenuation due to thermal motion of the atoms) were larger.  In addition, the two 

equatorial shell distances (2.36 and 2.49 Å), while in good agreement with the 

distances reported in Waite et al. (1994), Bargar et al. (2000), and Catalano and 

Brown (2005), are too close together to be properly resolved with the current data 

set. Given the density of this data set (collected from k = 3 to 13), the minimum 

distance between shells that is resolveable in these fits is given by the Nyquist 

criterion: minimum resolvable distance = ∆r = π/(2∆k) = 0.16 Å.  While a 

disordered set of equatorial oxygens is certainly possible in the adsorbed complex, 

it cannot be concluded here that it is a better model for the adsorbed complex than 

a symmetric shell of equatorial oxygens, and it is not included it in the figures.  

Future studies of U adsorbed on birnessite should aim for larger EXAFS data sets 

such that these two models may be properly distinguished.  In addition, the 

hypothesis that splitting of the equatorial oxygens around U can drive equilibrium 

isotope fractionation between dissolved and adsorbed U can be tested 

experimentally for U adsorbed to ferrihydrite, hematite, and montmorillonite, 

since split shells have been previously demonstrated for those substrates.  If a 
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similar change in coordination environment for U occurs, one would expect 

similar U isotope behavior, i.e., adsorption of isotopically light U, with a 

magnitude of fractionation near 0.2‰. 

 

3.4.4 A common mechanism of adsorption and fractionation? 

These experiments demonstrate that isotopic fractionation occurs between 

dissolved UO2
2+ and adsorbed U on birnessite from slightly acidic solution.  It 

was also shown that there is a subtle U coordination difference between the 

dissolved and adsorbed species, which likely governs the observed isotope effect.  

There was no direct comparison between the predominant aqueous U species in 

seawater (likely UO2(CO3)3
4- or Ca2UO2(CO3)3) and the adsorbed complex on 

natural ferromanganese oxides, which is as yet unidentified.  The agreement in 

direction and magnitude of fractionation in these experiments and between 

seawater and ferromanganese sediments, however, suggests that the mechanism 

causing isotope fractionation (i.e., a shift in bond distances and in the distribution 

function of bond distances for nearest neighbor oxygens) in both the experimental 

system and the marine system may be the same.  

 

3.4.5 Applications of 238U/235U variability 

As demonstrated in Bopp et al. (2010), U migration from contaminated 

aquifers can be tracked using the 238U/235U ratio in groundwaters.  Their approach 

utilizes the ~1‰ difference (δ238/235U) caused by the reduction of U(VI) to U(IV).  

This work indicates that U isotopes also fractionate during adsorption, the other 
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major process that immobilizes U.  It may be possible in future work to track the 

effects of adsorption reactions on migration of U in groundwater in oxidizing 

aquifers, especially if U turns out to fractionate with similar magnitude during 

adsorption to other abundant substrates, such as Fe oxyhydroxides.  In this case, a 

progressive depletion in 235U would be measurable in U contaminated 

groundwater interacting with manganese and iron oxyhydroxides.  Future 

adsorption experiments are needed to determine U isotope fractionation during 

adsorption for a variety of groundwater conditions and on a variety of different 

minerals for this application to be realized. 

The development of 238U/235U in marine sediments as a paleoredox proxy 

would represent a major advance, complementing existing paleoredox proxies.  If 

there is a consistent equilibrium U isotope offset between seawater and natural, 

hydrogenetic ferromanganese sediments, then ancient sediments could be used to 

establish the 238U/235U of ancient seawater.  Because reduction and removal of U 

from anoxic waters is associated with a large fractionation (1‰, heavier isotope 

preferentially removed), the U isotope composition of ancient seawater can be 

expected to reflect the extent to which U was removed by reduction over time 

(Montoya-Pino et al. 2010).   
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Chapter 4 

RAPID EXPANSION OF OCEANIC ANOXIA IMMEDIATELY BEFORE THE 

END-PERMIAN MASS EXTINCTION 

4.1 INTRODUCTION 

The end-Permian extinction represents the largest mass extinction in Earth 

history, with the demise of an estimated 90% of all marine species (Stanley 2007).  

While it has been extensively studied, the exact nature and cause of the end-

Permian extinction remains the subject of intense scientific debate.  Proposed kill 

mechanisms have included a nearby supernova, bolide impacts, periods of 

extreme volcanism (e.g., Siberian traps), extensive glaciation, and widespread 

ocean anoxia (Erwin et al. 2002).  Evidence for shallow ocean anoxia in 

conjunction with the end-Permian mass extinction is widespread (Bond and 

Wignall 2005; Grice et al. 2005; Cao et al. 2009), but the intensity and timing of 

oceanic redox changes remain uncertain (Algeo et al. 2010a; Isozaki 1997; Algeo 

et al. 2011; Ehrenberg et al. 2008).  Recent hypotheses invoke thet release of 

hydrogen sulfide gas (H2S) as a kill mechanism (Kump et al. 2005, Meyer et al. 

2008; Riccardi et al. 2007).  Such models call upon strong expansion of oceanic 

anoxia below the oxygenated surface layer to allow buildup of H2S, followed by 

an upward excursion of the chemocline that releases the poisonous gas into the 

atmosphere (Riccardi et al. 2007).  In this study, the 238U/235U and Th/U ratios in a 

carbonate section spanning the end-Permian extinction horizon (EH) is examined 

to test this hypothesis.  Samples for this study were collected from the Dawen 

section of the Yangtze Block in southern China (Fig. 4.1), which was has been 
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correlated with the global stratotype section and point (GSSP) of the Permian–

Triassic boundary at Meishan (Chen et al. 2009). 

 

 

Fig. 4.1. Location of South China at ~252 Ma, the time of the end-Permian 

extinction (Fig. 4.1A, modified base map from R. Blakey 

(http://jan.ucc.nau.edu/~rcb7/260moll.jpg)) and present-day location of the 

Dawen section (Fig. 4.1B, modified from Chen et al., 2009).  The location of the 

Meishan GSSP is shown for reference. Lithostratigraphy of the Dawen section is 

shown in Fig. 4.1C; see Chen et al. (2009) for its correlation to the Meishan 

GSSP. 

4.2 BACKGROUND 

Due to the geochemical properties of uranium (U), the ratio of 238U/235U 

can be used as a tool to investigate the history of ocean oxygenation.  The long 
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residence time (~500 kyr) of U in the oceans leads to a homogeneous U 

concentration in seawater (Klinkhammer and Palmer 1991; Ku et al. 1977), as 

well as to a homogenous U isotopic composition (Delanghe et al. 2002; Stirling et 

al. 2007; Weyer et al. 2008).  The low-temperature redox transition (U6+ to U4+) 

of U is the primary cause of 238U/235U fractionation on Earth, with the reduced 

species preferentially enriched in 238U (Stirling et al. 2007; Weyer et al. 2008; 

Bopp et al. 2009; Brennecka et al. 2010). During times of oceanic anoxia, the flux 

of reduced U to anoxic facies (such as black shales) increases, preferentially 

removing 238U from seawater.  The loss of isotopically heavy U drives seawater to 

lighter isotopic compositions (Montoya-Pino et al. 2010). Changes in the U 

isotope ratios of organic-rich sediments have been used to study oceanic redox 

conditions during the Cretaceous (Montoya-Pino et al. 2010).  Here, this isotope 

system is applied to Late Permian and Early Triassic carbonate rocks. Existing 

evidence indicates that carbonates record the 238U/235U ratio of the seawater in 

which they were deposited (Stirling et al. 2007; Weyer et al. 2008), suggesting 

that ancient carbonates that retain a primary signal of U isotopes may be used to 

estimate relative changes in ocean oxygenation. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Uranium Isotopic Ratio Change Over the Extinction Horizon 

In the Dawen section, the average U isotopic composition of samples 

deposited prior to the EH (δ238U = -0.37‰) is very close to that of modern 

seawater (δ238U = -0.41±0.03‰,(Weyer et al. 2008)). This observation suggests 
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that the fraction of U removed to reducing sinks during the late Permian was 

similar to that of the modern ocean.  The Dawen section exhibits an abrupt and 

significant change in δ238U at the EH (Fig. 4.2 and Table 4.1) to values averaging 

-0.65‰. The δ238U ratios of pre- and post-EH samples are significantly different 

(p<0.0001; two-tailed student’s t-test with a significance level of α=0.01).  A few 

isotopically light samples are present below the EH (-118 and -97 cm), which may 

provide evidence of brief episodes of transient intensification of oceanic anoxia 

preceding the end-Permian mass extinction.  This inference is supported by 

evidence from additional geochemical proxies in other studies (Algeo et al. 

2010a) (see further in Section 4.4 discussion). 
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Fig. 4.2. Geochemical profiles for the Dawen section.  The vertical dashed lines 

represent average values of δ238U and Th/U for pre-EH and post-EH samples.  

The 238U/235U ratios are reported using standard δ-notation, where δ238U = 

[Ratiomeas/Ratiostd (SRM950a) - 1] ×1000. Average 2SD uncertainty of δ238U values is 

shown on the top data point only for clarity.  δ13C, and age data from Chen et al. 

(2009). 

Table 4.1. Data table showing sample number, represented by distance from the 

EH in cm, δ238U (in ‰) with associated uncertainty (2SD) and number of runs 

(N), Th/U, U/Al, and %Dolomite in samples of this study.  The δ13C values from 

Chen et al. (2009) are included for reference.  “N”, the number of runs, refers to 

the times the sample was run for U isotopes.  Multiple samples were run as 

replicates for quality control from powder, and these replicates are included in 

“N” as the same sample. 
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4.3.2 Quantifying Increased Anoxic Deposition 

The shift toward lighter U isotopic compositions after the extinction event 

is consistent with an increase in the deposition of isotopically heavy U in anoxic 
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facies.  The isotopic composition of U in seawater is ultimately controlled by the 

relative sizes and isotopic signatures of the major sources and sinks of U to the 

ocean.  A simple box model of the oceanic U budget for the modern and end-

Permian oceans is shown in Figure 4.3. Invoking mass balance, the approximate 

increase in anoxic sedimentation in the end-Permian ocean is calculated as:  

δ238Uinput = ((1-ƒanoxic) × δ238Uother) + (ƒanoxic × δ238Uanoxic)  Eq. 1 

Here, ƒanoxic represents the fraction of U deposited in anoxic facies and δ238U 

represents the δ238U values of the anoxic and “other” (i.e., non-anoxic) sinks.  

Following Montoya-Pino et al. (2010), it is assumed: (1) isotopically constant U 

input from rivers (the largest source of U to the ocean (Dunk et al. 2002)) over 

geologic time with a value of -0.3‰; (2) a constant isotope fractionation between 

seawater and anoxic/euxinic environments of +0.5‰; and (3) a constant (+0.1‰) 

isotope fractionation between seawater and the sum of other sinks, including 

ferromanganese oxide, hydrothermal, and suboxic sediments.  Suboxic sediments 

are defined by their low oxygen concentrations in the bottom water (e.g., 0.2–2 ml 

O2 in 1 l H2O (Tyson and Pearson 1991)).  Based on the assumptions above, 

238Uinput = -0.3 ‰, δ238Uother = -0.55‰ (i.e., -0.65+0.1 ‰), and δ238Uanoxic = -

0.15‰ (i.e., -0.65+0.5 ‰).  These values yield an estimated six-fold increase in 

the flux of U to anoxic facies in conjunction with the EH.  
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Fig. 4.3. Box models showing the modern ocean (left) and the hypothesized end-

Permian anoxic ocean on the right.  Estimates of the percentage of U flux for each 

sink are shown above the arrows. All data is displayed using standard δ-notation, 

as defined above.  Modern δ238U values are taken from Weyer et al. (2008).  The 

values from the PTB ocean (right) are based on calculations using the average 

δ238U of carbonates after the EH in the sample set (see equation 1) and assuming a 

constant isotope fractionation between seawater and anoxic sediments. 

 

4.3.3 Th/U Ratios of the Dawen Carbonates  

Th/U ratios serve as an additional and independent line of evidence for 

oceanic redox changes in conjunction with the end-Permian extinction.  Previous 

workers have used Th/U ratios in reduced sediments as a proxy for ocean redox 

chemistry (Wignall andTwitchett 1996).  As Th has only one redox state (Th4+), 

its concentration in sediments is unaffected by redox chemistry.  On the other 
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hand, U is a redox-sensitive metal and is readily removed from seawater as 

insoluble U4+ under reducing conditions (Anderson et al. 1989; McManus et al. 

2006; Morford et al. 1999), thus concentrating U relative to Th in anoxic facies.  

An increase in anoxic sedimentation reduces the concentration of U in seawater as 

more U is sequestered in organic-rich sediments.  Because carbonates reflect the 

U concentration of the seawater in which they are deposited (Gvirtzman et al. 

1973; Shen and Dunbar 1995), an increase in anoxic sedimentation results in an 

increase in the Th/U ratio of carbonate sediments.  At Dawen, average Th/U ratios 

increase from 0.06 below the EH to 0.42 above the EH (Fig. 4.2).  This increase 

reflects a decrease in the U content of seawater, possibly by a factor of ~7× if Th 

concentrations remained constant.  A change in seawater U concentrations of this 

magnitude is consistent with the 6-fold expansion of oceanic anoxic inferred from 

δ238U data, and is also consistent with the sharp decrease in U concentrations 

across the Permian-Triassic boundary (PTB) previously reported from a carbonate 

section in Oman (Ehrenberg et al. 2008). 

The results are unlikely to have been affected by diagenesis.  For example, 

neither δ238U nor Th/U shows a correlation with degree of dolomitization or with 

terrigenous input; see section 4.4.2 for further discussion. 

 

4.3.4 Implications for Late-Permian Ocean Models  

The timing indicated by these data for the onset of ocean anoxia is 

difficult to reconcile with previous hypotheses of extended anoxia prior to the 

extinction event (Bond and Wignall 2005; Wignall and Twitchett 1996; Cao et al. 
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2009; Isozaki 1997).  The abrupt increase in Th/U ratios and decrease in δ238U 

that begins at or just below the EH indicate that the Late Permian ocean was not 

in a sustained anoxic state until immediately prior to the extinction event.  This 

global redox signal is consistent with proxies recording local redox conditions 

(Wignall et al. 2010; Algeo et al. 2010b).  In contrast, the steady and prolonged 

decline of carbonate δ13C seen in many stratigraphic sections prior to the EH has 

been used to argue for an extended period of ocean stagnation and whole-ocean 

anoxia (Erwin et al. 2002).  If so, δ238U and Th/U in carbonates should track δ13C. 

This behavior is not observed (Fig. 4.2).  

The existence of an unconformable surface in the Dawen section at the 

level of the EH (Fig. 4.2) makes exact assessment of the timing of global redox 

changes unattainable.  If the missing section is equivalent to beds 25 and 26 at 

Meishan, it would represent a hiatus of about 50,000-75,000 years (Chen et al. 

2009).  However, it is noted that the δ13C curve for Dawen (see figure 5 in (Chen 

et al. 2009)) shows an almost unbroken shift toward more negative values across 

the contact, suggesting that the hiatus was of limited duration.  The persistence of 

low δ238U and high Th/U ratios through the 10 meters of section above the EH 

that were analyzed in this study (Fig. 2) indicate that intensified anoxia persisted 

in the global ocean for a minimum of ~40,000-50,000 years following the end-

Permian extinction (Chen et al. 2009; Mundil et al. 2010; Guo et al. 2008). 

While these data do not support the extended period of whole-ocean 

anoxia prior to the EH inferred from δ13C records, they do not invalidate the idea 

that the end-Permian mass extinction was caused by oceanic oxygen depletion 
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and a subsequent buildup and release of H2S from the oceans, as inferred on the 

basis of geochemical, isotopic and biomarker studies (Bond and Wignall 2005; 

Grice et al. 2005; Wignall and Twitchett 1996; Cao et al. 2009; Isozaki 1997).  

Commonly, models of this process invoke an extended period of sluggish ocean 

circulation, producing deep ocean anoxia and accumulation of H2S.  This 

interpretation was previously challenged by numerical models of the ocean-

climate system suggesting that the deep ocean was most likely well ventilated 

throughout the Late Permian-Early Triassic interval (Winguth and Maier-Reimer 

2005).  It is proposed that the geochemical data and numerical models can be 

reconciled by hypothesizing expanded and more intense oxygen minimum zones 

at mid-depths in the late-Permian ocean (Algeo et al. 2010b; Algeo et al. 2011). 

Suboxic deep-ocean conditions during the Late Permian prior to the EH (Algeo et 

al. 2011, Algeo et al. 2010b) would have decreased the U concentration of the 

ocean, lowering the residence time of U in seawater and setting the stage for the 

rapid shift in Th/U at the EH observed at Dawen (Fig. 4.2).  Suboxic deep-ocean 

conditions would not have markedly altered the U isotope budget of the global 

ocean, as suboxic sedimentation does not fractionate U isotopes with the same 

magnitude as anoxic sedimentation (Weyer et al. 2008;Montoya-Pino et al. 2010).  

Uranium isotopes would have shifted measurably only with an increase in anoxic 

sedimentation.  However, transient disturbances to Late Permian oceans (e.g., 

warming or an increase in continentally derived nutrients (Algeo et al. 2011)) may 

have resulted in brief episodes of expansion of oxygen minimum zones before the 

end-Permian extinction, as reflected in light δ238U ratios below the EH (-118 and -
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97 cm).  Expanded oxygen minimum zones could have accumulated significant 

H2S in the photic zone (Algeo et al. 2011), resulting in release of toxic gasses into 

shallow-marine environments and the atmosphere (Meyer et al. 2008), similar to 

the degassing of H2S in modern oxygen minimum zones in Namibia (Brüchert et 

al. 2009). 

A model of ocean chemistry with widespread regions of relatively warm 

and poorly oxygenated deep water and localized intermittent sulfide maxima at 

mid-water depths (i.e., within the oxygen-minimum zone) satisfies not only δ13C 

evidence previously used to argue for sustained oceanic anoxia prior to the EH, 

but also explains the observed geochemical and biogeochemical signatures 

associated with anoxia/euxinia at the close of the Permian.  Development of mid-

depth sulfide maxima poised on the edge of expansion into the surface water layer 

could account for the presence of biomarkers indicative of photic-zone euxinia in 

shallow-marine sections prior to the EH (Grice et al. 2005; Cao et al. 2009) 

without requiring anoxia of the deep ocean, which would alter the U isotope 

budget of seawater.  Evidence from the U system indicates widespread oceanic 

anoxia only became pronounced and persistent at, or just preceding the EH.  Thus, 

this study supports the possibility of H2S as a killing mechanism, but calls for 

buildup of H2S in the oxygen minimum zone rather than prolonged accumulation 

in the deep ocean. 

 

4.4 METHODS AND FURTHER DISCUSSION  

4.4.1 Sample Preparation and Measurement  
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Carbonate samples were obtained as powdered samples and dissolved 

using dilute (~1M) hydrochloric acid, leaving any non-carbonate species present 

(e.g., organics, pyrite, siliciclastics, etc…) intact and non-participatory in the 

subsequent chemistry.  The dissolved material was dried and brought up in 3M 

HNO3.  Approximately 10% of the material was used for trace element analyses, 

with data obtained using a Thermo X-series quadrupole ICP-MS at the W. M. 

Keck Laboratory for Environmental Biogeochemistry at ASU.  The remaining 

90% of the dissolved carbonate material was passed through a column containing 

Eichrom® UTEVA resin, following the procedure outlined in Weyer et al. (2008) 

to separate uranium from the matrix.  Uranium isotope measurements were 

performed on a ThermoFinnigan Neptune MC-ICP-MS instrument at Arizona 

State University (ASU, W. M. Keck Laboratory for Environmental 

Biogeochemistry), utilizing a 236U:233U double-spike MC-ICP-MS procedure 

described in Weyer et al. (2008).  The isotopic composition of the double spike 

used is 236U/233U = 1.00494, 238U/233U = 0.000958, 235U/233U = 0.000108.  

Samples were spiked to achieve 236U and 233U signals of ~2.5 times the voltage on 

the least abundant measured isotope, 235U.  This spiking technique maximizes the 

counting statistics on the spike masses, while minimizing the tailing contributions 

at mass 235.  All measured isotopes of U were collected by a Faraday cup 

collector array, utilizing 1011 ohm resistors for all masses.  Samples dissolved in 

2% HNO3 were introduced with an Apex-Q sample introduction system.  

Optimum precision was obtained running samples at ~100 ppb U.  The U isotope 

standards SRM950a and CRM129a were measured bracketing samples as checks 
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for run reproducibility and consistency.  External reproducibility based on 

multiple runs of the SRM950a and CRM129a standards over the course of this 

study is shown in Fig. 4.4.  The U isotopic compositions of the samples are 

reported as relative to the U isotope standard SRM950a. 

 

 

Fig. 4.4. The long-term external reproducibilities of the SRM950a and CRM129a 

standards for analyses performed during this study, relative to SRM950a.  The 

solid vertical line represents the average of all analyses for the given sample.  The 

average δ238U values are represented for SRM950a and CRM129a are 0.00±0.11 

and -1.79±0.13, respectively with both uncertainties calculated as 2×standard 

deviation (2SD). 
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4.4.2 Discussion on Secondary Alteration of Carbonates 

Due to the reactivity of carbonates, diagenetic alteration of samples is a 

potential concern. Fluctuations of the δ238U value in samples immediately below 

the extinction horizon (EH) at Dawen may indicate pre-extinction instability in 

the redox state of the ocean preceding the end-Permian extinction (Algeo et al. 

2010a); however because these fluctuations are not seen in Th/U in the same 

samples, they could be the result of secondary processes such as addition of 

isotopically heavy U. Given the current understanding of the U isotope system 

there is no secondary process that generates isotopically lighter δ238U values in 

carbonates, although secondary redox precipitation of U would produce heavy 

δ238U in diagenetically altered samples (Weyer et al. 2008; Bopp et al. 2009; 

Brennecka et al. 2010). 

Although it is difficult to rule out diagenesis in samples of this type, 

several considerations support the interpretation that variation in both δ238U and 

Th/U at Dawen is mainly of primary  origin. First, the major changes in both 

Th/U and δ238U occur at, or immediately preceding, the EH.  Data from δ238U and 

Th/U are independent of one another, and both fit previously proposed models for 

isotopic and elemental response to ocean anoxia from other basins (Ehrenberg et 

al. 2008). The fact that the Dawen section displays a similar trend of U chemistry 

across the Permian-Triassic boundary as in Oman (Ehrenberg et al. 2008) argues 

for a global cause, rather than local diagenetic processes.  Secondly, the current 

understanding of U chemistry in marine sediments argues against the local effects 

of diagenesis. The possibilities of altering the δ238U and Th/U of the samples are 
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primarily limited to 1) secondary precipitation of U and 2) removal of U from the 

system. In the first case, precipitation of U containing calcium carbonate cement 

as a secondary process is generally an early diagenetic process (Gvirtzman et al. 

1973) and would thus reflect seawater values as well.  Precipitation of uranium 

carbonate containing cements during late stage burial diagenesis could shift the 

isotopic values of the carbonate sediments; however, the conclusions that are 

being drawn would still be valid, even when assuming that the entire section has 

undergone some late burial cement precipitation, as the temporal trends should 

not change in a relative sense.  In the second case, if U was being leached from 

the Dawen samples, only the Th/U ratio would be affected with δ238U remaining 

unchanged.  Unlike 234U, which is concentrated in the aqueous phase by 

preferential leaching of alpha-recoil damage sites from the decay of 238U7, 

leaching of U has been shown not to measurably alter the 238U/235U ratio (Bopp et 

al. 2009; Brennecka et al. 2010; Stirling et al. 2007).  Furthermore, it has been 

suggested that because U is incorporated into the calcium carbonate as a uranyl 

complex as part of a dilute solid solution, remobilization of U would require bulk 

dissolution (Reeder et al. 2000; Swart and Hubbard 1982).  This should have no 

effect on the isotopic composition of the residual carbonate material as no 

leaching has taken place. 

The carbonate δ13C curve for Dawen shows good correspondence to δ13C 

curves at other PTB sections, so it is unlikely that bulk carbonate δ13C has been 

modified to any significant degree by diagenesis.  Further, the carbonate sediment 

at Dawen appears to have stabilized early in the burial environment, as reflected 
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in relatively heavy δ18O values, which average -4.6±1.7‰ (n = 75).  The absence 

of negative δ18O outliers is also an indication of little, if any, late-stage 

diagenesis.  These considerations are consistent with the idea that the carbonate 

δ13C curve is a record of primary marine δ13C values, adding confidence that U 

isotopes and Th/U signals are primary in origin. 

The concentration of Al was obtained on the samples as an indicator of 

terrigenous input and is shown as U/Al. Virtually no correlations exist between 

δ238U or Th/U when plotted against U/Al in these samples (Fig. 4.5), it is highly 

unlikely that the large changes in δ238U and Th/U across the EH were caused by 

terrigenous input of U.  Similarly, the δ238U and Th/U are not controlled by 

lithology, as no correlation exists between δ238U and the degree of dolomitization 

of the sample, and only a weak correlation exists between Th/U and percent 

dolomite (R2 = 0.24). 
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Fig 4.5. Crossplots of U/Al, U/Zr, and %Dolomite vs. Th/U and/or δ238U.  Open 

squares (□) represent samples below the EH, closed diamonds (♦) represent 

samples above the EH. 
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Chapter 5 

238U/235U VARIATIONS IN METEORITES: EXTANT 247CM AND 

IMPLICATIONS FOR PB-PB DATING1

5.1 INTRODUCTION 

 

Meteorites can provide a wealth of information about the formation and 

evolution of the Solar System.  In chondrite meteorites, calcium-aluminum-rich 

inclusions (CAIs) represent the first solids to condense from the cooling 

protoplanetary disk during the birth of the Solar System (Grey et al. 1973); 

therefore, the ages of CAIs are generally considered to date its origin (Amelin et 

al. 2002; Bouvier et al. 2007; Jacobsen et al. 2008).  High precision Pb-Pb dating 

studies, which rely on a known ratio of parent U isotopes, assume that the 

238U/235U ratio is invariant in meteoritic material (=137.88) (Chen and 

Wasserburg 1980).  Uranium isotope variations in meteorites may be produced by 

many mechanisms, including the decay of extant 247Cm to 235U, nucleosynthetic 

anomalies in U isotopes, or fractionation of U isotopes during chemical reactions, 

as recently observed on Earth (Stirling et al. 2007; Weyer et al. 2008).  While any 

or all of these mechanisms may play some role in 238U/235U variability in early 

Solar System materials, the existence and effect of 247Cm on the 238U/235U ratio 

can be studied using geochemical proxies for Cm. 

                                                 
1 This chapter and the values reported in it are given as published in Brennecka et 
al. (2010) in the journal Science.  Subsequent work has shown the 238U/235U value 
of the SRM950a standard is not =137.88, as assumed in this work and discussed 
in section 5.5.  All reported values of samples in this study would be subject to 
recalculation based on the newly determined value of SRM950a. 
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247Cm is only created in certain types of supernovae during r-process 

nucleosynthesis.  It decays to 235U with a half-life of 15.6 Ma (Arden 1977; 

Tatsumoto and Shimamura 1980; Lugmair and Galer 1992; Stirling et al. 2005; 

Chen and Wasserburg 1981; Nittler and Dauphas 2006).  If 247Cm was present 

during the formation of the Solar System, it would be detected by variations of 

238U/235U in ancient meteoritic materials in which the original Solar System Cm/U 

ratio may have been significantly fractionated by processes associated with their 

formation.  The CAIs in chondritic meteorites are likely to be such materials, due 

to the fact that many of them experienced elemental fractionation during 

condensation/evaporation processes involved in their formation and since Cm is 

more refractory than U (Boynton 1978). 

 

5.2 BACKGROUND 

Quantification of the abundance of extant 247Cm has the potential to 

provide new constraints on the origin of short-lived radionuclides in the early 

Solar System.  If the 247Cm in the early Solar System was predominantly inherited 

from galactic chemical evolution (Nittler and Dauphas 2006), then it should be 

possible to determine the time interval of free decay (Δ) between the last r-

process nucleosynthetic event and the formation of the Solar System (Chen and 

Wasserburg 1980; Wasserburg et al. 1996; Wasserburg et al. 2006; Stirling et al. 

2005).  Supposed claims of large variations in the 238U/235U ratio caused by the 

decay of 247Cm (Arden 1977; Tatsumoto and Shimamura 1980) were refuted in 

subsequent studies (Chen and Wasserburg 1980; Shimamura and Lugmair 1981; 
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Lugmair and Galer 1992; Stirling et al. 2005).  Here, high-precision 238U/235U 

ratios obtained from 13 CAIs of the Allende meteorite are presented to quantify 

the amount of 247Cm present in the early Solar System and to determine the extent 

of potential offsets in the calculated Pb-Pb ages of early Solar System materials. 

 

5.3 RESULTS 

The 238U/235U ratios of the two bulk meteorites (Allende and Murchison) 

are 137.818±0.012 and 137.862±0.042, respectively (Fig. 5.1). The 13 CAIs show 

a large range of U isotope compositions, with 238U/235U ratios varying from 

137.409±0.039 to 137.885±0.009.  All but two CAIs differ outside uncertainties 

from the standard value and five CAIs have significantly lower 238U/235U values 

than that of bulk Allende. 
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Fig. 5.1. 238U/235U isotope values for the samples of this study.  The box 

represents the measured value and analytical precision of replicate analyses of 20-

100 ppb solutions of the SRM950a standard.  Error bars are calculated as 2 × the 

standard deviation (2SD) of multiple runs of each sample, when possible.  In 

samples with extremely limited uranium, for which fewer than 3 runs were 

possible, the reported errors are conservatively represented by the long term 

reproducibilities (2SD) based upon multiple runs of SRM950a measured over the 

course of this study at the same concentration as the sample.   

 

If 247Cm decay is the primary mechanism for 238U/235U variability, then 

materials with high initial Cm/U would contain a higher relative amount of 235U 

than those with lower initial Cm/U.  However, as Cm has no long-lived stable 

isotope, the initial Cm/U ratio of a sample cannot be directly determined.  

Because Th and Nd have similar geochemical behavior to Cm, Th/U and Nd/U 

ratios can serve as proxies for the initial Cm/U ratio in the sample (Tatsumoto and 

Shimamura 1980; Stirling et al. 2005).  This sample set spans a large range of 

Th/U and Nd/U, and both these ratios correlate with the U isotopic composition 

(Fig. 5.2). 
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Fig. 5.2. 232Th/238U and 144Nd/238U ratios plotted versus 235U/238U ratios, the 

reciprocal values of the measured 238U/235U ratios.  The grey dashed lines 

represent the 2SD errors on the best-fit line (solid black).  Errors on the Y-axis 

data are ±2SD; X-axis error bars are ±5% of the determined value of the 

elemental ratio. 
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5.4 DISCUSSION 

5.4.1 Elemental fractionation in CAIs 

Due to the higher volatility of uranium, thermodynamic calculations 

suggest that substantial fractionation of Cm (and other geochemically similar 

elements such as Th and Nd) from U is possible in the early solar nebula (Blake 

and Shramm 1973).  Large variations in the Th/U and Nd/U ratios seen in this 

CAI data set (Table 5.1) support this claim.  A special group of CAIs, called 

“Group II” CAIs, are distinguished by a unique abundance pattern of the rare 

earth elements (REEs); they are highly depleted in the most refractory (i.e., heavy 

REE except Tm and Yb) and the most volatile (i.e., Eu and Yb) REEs, yet the 

moderately refractory light REE (including Nd) are only present in chondritic 

relative abundances (MacPherson 2003).  This REE pattern characteristic of 

Group II CAIs suggests a complex condensation history involving fractional 

condensation (Boynton 1975; Davis and Grossman 1979).  The four CAIs of this 

study that have the highest Nd/U and Th/U ratios (as well as the lowest 238U/235U 

ratios) are all classified as Group II CAIs by their REE patterns (Fig. 5.3).  Due to 

the lower condensation temperature of U relative to Nd and Th (Mason and 

Taylor 1982), the fractional condensation history that resulted in the characteristic 

Group II REE pattern in these objects is likely to have produced the relatively 

high Nd/U and Th/U ratios. 
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Fig. 5.3. REE patterns of four Group II CAIs analyzed in this study, normalized to 

CI chondrites.  All other CAI samples studied here (except 3531-D, for which the 

REE abundances were not measured) display flat REE patterns indicating 

chondritic relative abundances of these elements (light-grey lines).   

 

Table 5.1. The uranium isotope and elemental ratio data obtained in this study, as 

well as the calculated adjustment in the Pb-Pb age required given the measured 

238U/235U ratio relative to that obtained if a value of 137.88 is assumed.  The U 

isotope composition of meteoritic materials presented here is relative to the 

SRM950a standard, for which the 238U/235U value of 137.88 was assumed.  Errors 

on the U isotope ratios are calculated as 2× the standard deviation (2SD) of 

multiple runs of each sample, when possible; for N<3, the errors are taken to be 

the long-term reproducibility (2SD) based on analyses of similar concentrations of 

the SRM950a standard conducted over the course of this study. 



  73 

 
 
# Number of U isotope measurement runs (30 cycles of 8.4 second integrations) 
made on the sample 
†Age difference between Pb-Pb ages (calculated using Isoplot/EX3.00 (Ludwig 
2003)) determined based on the measured 238U/235U ratio and the assumed 
238U/235U value of 137.88 
* Data are from (Rochell and Jochum 1993) 

 

The correlation of both Th/U and Nd/U with U isotope ratios in the CAIs 

indicates that the 238U/235U variations do not arise from nucleosynthetic anomalies 

or U isotope fractionation – neither of which easily give rise to such a trend – and 

instead provides evidence for the presence of extant 247Cm in the early Solar 

System.  Under this interpretation, deviations from the best-fit lines in Fig. 5.2 

could be caused by heterogeneity of 238U/235U in the solar nebula, Th and Nd 

acting as imperfect proxies for Cm, or 238U/235U fractionation following Allende 

CAI formation, possibly from variable redox during secondary alteration 

processes (Weyer et al. 2008). 

In contrast to these findings, a recent study did not detect deviations in the 

238U/235U ratio among a variety of bulk meteorite samples, including Allende and 

Murchison (Stirling et al. 2005).  Given the reported precision of the study’s U 
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isotope analysis, the 144Nd/238U ratios should have been sufficient to reveal 

detectable variations in 238U/235U from 247Cm decay.  Although the 238U/235U 

value of bulk Murchison samples agree within error with the observed values of 

this study, those for bulk Allende differ well outside of reported errors.  The 

reason for this disagreement is unclear at this time. 

 

5.4.2 Determining the interval of free decay 

The initial 247Cm/235U ratio in the early Solar System can be estimated by 

using the slopes of the best-fit lines in Fig. 5.2 (Stirling et al. 2005).  Using Th 

and Nd as proxies for Cm, it can be estimated that the initial Solar System 

247Cm/235U ratio was 2.4±0.6×10-4 and 1.1±0.2×10-4, respectively.  The difference 

between the estimates may be due to slight differences in the geochemical 

behavior of Th and Nd or possibly due to uncertainties in the assumed Solar 

System Nd/U or Th/U ratios.  Nevertheless, these values are, on average, higher 

than the upper limit derived previously using analyses of the U isotope 

compositions of bulk chondritic meteorites (Stirling et al. 2005).  The estimates of 

this study are, however, in agreement with the upper limit of ~4×10-3 determined 

previously based on analyses of CAIs (Chen and Wasserburg 1981).  If 247Cm is 

inherited from galactic chemical evolution, the range of initial Solar System 

247Cm/235U ratios estimated here translates to a Δ ~110 to 140 Ma.  This value is 

similar to, but more precise than, previous estimates of Δ based on the inferred 

initial Solar System abundances of other r-process-only radionuclides such as 

244Pu and 129I, but does not match the significantly shorter estimate of Δ (~30 Ma) 



  75 

derived from the initial abundance of 182Hf (Wasserburg et al. 2006).  However, 

because 182Hf was overabundant in the early Solar System compared to its 

expected abundance from galactic chemical evolution, it may have been injected 

into the presolar molecular cloud or the solar nebula by a nearby supernova event 

[e.g., (Nittler and Dauphas 2006)]. 

 

5.4.3 Implications for Pb-Pb dating 

The findings of this study also have implications for precise dating of 

early events in the history of the Solar System.  The Pb-Pb age equation (Eqn. 1) 

has been used for decades to calculate the absolute ages of both meteoritic and 

terrestrial materials (Patterson 1956).  This equation assumes that 238U/235U is 

invariant at any given time, and that the present-day value is 137.88. 

 

Therefore, any deviation from this assumption would cause miscalculation in the 

determined Pb-Pb age of a sample.  A difference of up to 3.5‰ implies that a 

correction of up to -5 Ma would be required if the Pb-Pb ages of these CAIs were 

obtained using the previously assumed 238U/235U value (Fig. 5.4). 
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Fig. 5.4. Age adjustment required for samples found not to have a 238U/235U value 

of 137.88, as assumed in the Pb-Pb age equation.  The shaded region represents 

the range of U isotope compositions reported in this study, and the star symbols 

represent the specific 238U/235U ratios measured in these samples. 

 

Because 238U/235U variations in Solar System materials are not restricted to 

CAIs, this requirement may extend to high precision Pb-Pb dating of other 

materials as well.  It is possible, however, that the 238U/235U values of bulk 

chondrites are controlled to a significant degree by CAIs, which may be 

heterogeneously distributed at the scale at which these analyses were made. 

The Pb-Pb dating technique is the only absolute dating technique able to 

resolve age differences of < 1 Ma in materials formed in the early Solar System.  

While the full range of 238U/235U ratios reported here would result in an 

overestimation of the ages of these CAIs by up to 5 Ma, the largest excesses 

(>3.5‰) in 235U occur in the Group II CAIs that appear to have experienced the 
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largest Cm/U fractionation.  For non-Group II CAIs, the age overestimation is ≤1 

Ma.  The apparent discrepancies between absolute Pb-Pb ages and relative (e.g., 

26Al-26Mg, 53Mn-53Cr, 182Hf-182W) ages (Amelin et al. 2002; Jacobsen et al. 2008; 

Lugmair and Shukolyukov 1998; Burkhardt et al. 2008) may therefore place 

limits on the uncertainty of the age of the Solar System. 

 

5.5 METHODS 

Several CAIs, including both fine- and coarse-grained inclusions, were 

separated from different sections of the CV3 Allende meteorite.  Samples were 

crushed and dissolved using a high pressure acid digestion system (made by 

PicoTrace) at the University of Frankfurt utilizing HNO3, HF, and HClO4 acids.  

Approximately 5% of each sample reserved for trace element measurements (i.e., 

REE patterns, Th/U and Nd/U ratios).  Uranium from the remaining sample 

solutions was separated from the matrix for measurement of the 238U/235U ratio, 

following a procedure outlined in (Weyer et al. 2008).  Whole rock samples of 

Allende and Murchison (CM2) were processed using the same methods.  To 

ensure that the chemical separation procedure for U is not producing in any 

analytical artifacts on the 238U/235U ratio measurements, the matrices (with U 

removed) of CAI 171 and of ~0.42 g Murchison WR were mixed with SRM950a 

and both passed through chemistry again; the results of U isotopic ratio 

measurements following these “matrix-addition” tests are shown in Table 5.2. 
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Table 5.2. The uranium isotope standard data for various instrument parameters, 

comparing the data obtained at ASU and UF.  Also shown are the results of tests 

(chemistry procedure checks) that were run to check that no fractionation in U 

isotopes resulted from the chemical separation procedures, as well as the 

laboratory location (ASU and/or UF) where each sample was analyzed. 

 

 

Measurement of the 238U/235U ratio was performed using ThermoFinnigan 

Neptune multicollector inductively coupled plasma mass spectrometer (MC-

ICPMS) instruments at Arizona State University (ASU, in the Isotope 
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Cosmochemistry and Geochronology Laboratory) and the University of Frankfurt 

(UF, at the Institut für Geowissenschaften), utilizing a 236U:233U double spike to 

correct for instrumental mass bias.  Two separate 236U:233U double spikes were 

used during this study, and both double spikes were used at both labs to check for 

consistency.  They are referred to henceforth as the UF double spike and the ASU 

double spike, referring to the lab at which they were calibrated.  The isotopic 

composition of the UF double spike is 236U/233U = 0.65920, 238U/233U = 0.00249, 

235U/233U = 0.000824 (Weyer et al. 2008).  The isotopic composition of the ASU 

double spike is 236U/233U = 1.00525, 238U/233U = 0.000958, 235U/233U = 0.000108.  

Multiple samples and standards were measured on both instruments 

independently to ensure the quality and reproducibility of the data.  Table 5.2 and 

Figures 5.5a and 5.5b show the long-term reproducibility of the SRM950a 

standard at both ASU and the University of Frankfurt over the course of this 

study.  Table 5.2 also indicates of the laboratory (ASU or UF) where each sample 

measurement was made. 

Trace element data (REEs, Th/U, Nd/U) was obtained using a both a 

Thermo X-series quadrupole ICP-MS at the W. M. Keck Laboratory for 

Environmental Biogeochemistry at ASU, and a Thermo Element2 ICP-MS at UF.  

No trace element data was collected on CAI 3531-D. 

The U isotopic compositions of the samples are reported as 238U/235U 

ratios calculated relative to the U isotope standard SRM950a, with an assumed 

238U/235U=137.88 (Shields 1960; Chen and Wasserburg 1980; Chen and 

Wasserburg 1981).  With this method precise determinations of the differences in 
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the 238U/235U compositions of individual samples relative to the standard can be 

obtained, with errors (given the typically small amounts of U in the samples) 

ranging from ±0.05 to ±0.2‰ (2SD).  External reproducibility (based on multiple 

runs of the SRM950a standard over the course of this study) is shown in Fig. 5.5 

for different concentration ranges of SRM950a measured at both ASU and UF.  

Calculations of initial 247Cm assume a value of 0.138 for the 247Cm/238U 

production ratio (Nittler and Dauphas 2006). 

 

 

 

Fig. 5.5. The long-term external reproducibilities of different concentration ranges 

of SRM950a standard for analyses performed at ASU and UF.  The solid vertical 

line represents the average of all analyses for the given concentration range, and 

the dashed lines represent the long-term reproducibility (2SD).  The average 
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238U/235U values represented for SRM950a are 137.882±0.026 and 137.882±0.039 

for data shown in Fig. 5.5a and 5.5b, respectively. 
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Chapter 6 

ADJUSTMENTS TO THE AGES OF ANGRITE TIME ANCHORS: THE 

IMPORTANCE OF 238U/235U FOR THE SHORT-LIVED CHRONOMETERS  

 

6.1 INTRODUCTION 

The time from the formation of the first solids in the Solar System to 

differentiation of planetary bodies is less than 10 million years (Ma) (Nyquist et 

al. 2009; references therein).  As such, extremely precise and accurate 

geochronology is required to unravel this early sequence of events.  A very 

limited number of radiometric chronometers can provide the sub-Ma precision 

necessary to resolve early Solar System events.  These include short-lived 

chronometers such as 26Al-26Mg (t1/2 ~0.72 Ma), 53Mn-53Cr (t1/2 ~3.7 Ma), and 

182Hf-182W (t1/2 ~9 Ma), as well as the long-lived lead-lead (Pb-Pb) chronometer.  

Previous studies have revealed inconsistencies between ages determined for the 

same meteoritic object by different high-resolution chronometers (e.g., Nyquist et 

al. 2009; Wadhwa et al. 2009).  These discrepancies may be caused by a variety 

of reasons, including heterogeneous distribution of the short-lived radionuclides 

and resetting of different isotopic systems to different degrees by secondary 

processes.  The assumption of an invariant 238U/235U ratio in Solar System 

materials could also be responsible for some of these discrepancies since it may 

result in erroneous Pb-Pb ages of the time anchors. 

The Pb-Pb system is the only absolute dating technique able to resolve 

sub-Ma time differences. Because 238U and 235U decay to 206Pb and 207Pb, 
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respectively, a known 238U/235U is required for age calculation, as shown in 

equation 1.  This equation also shows the previously assumed value for 238U/235U 

(=137.88). 

 

 

6.2 BACKGROUND 

6.2.1 Time Anchors 

Recent work has shown that the assumption of an invariant 238U/235U ratio 

in Solar System materials is no longer valid (Brennecka et al. 2010a; Brennecka et 

al. 2010d; Amelin et al. 2010; Amelin et al. 2011) and the uranium isotopic 

compositions must be measured to obtain accurate Pb-Pb dates.  Also, the high-

resolution relative ages of early Solar System events based on extinct 

chronometers (such as 26Al-26Mg) must be “anchored” by precise and accurate 

absolute ages from Pb-Pb dating.  Therefore, determination of the uranium 

isotope compositions of meteoritic objects that serve as age anchors is particularly 

important since this has implications for the accuracy of the absolute model ages 

obtained using short-lived chronometers. 

 

6.2.2 Angrites as Time Anchors 

The accuracy of the absolute model ages obtained using short-lived 

chronometers is ultimately dependent on the choice of an appropriate meteoritic 

material to serve as an age anchor.  An ideal age anchor 1) contains measureable 
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quantities of the daughter products of multiple short-lived radioisotope systems 

(e.g. 26Al-26Mg, 53Mn-53Cr, and 182Hf-182W) 2) cooled rapidly while those systems 

were still “live”, and 3) has remained undisturbed by secondary alteration since 

the initial closure of these isotopic systems.  

Angrites are a small group of basaltic achondrites distinguished by ancient 

crystallization ages and unique geochemical and mineralogical characteristics 

(Mittlefehldt et al., 1998).  Several of these achondritic meteorites have been used 

in previous studies as age anchors for the short-lived chronometers (Burkhardt et 

al. 2008; Kleine et al. 2009; Goodrich et al. 2010).  Currently known angrites 

define two distinct subgroups: the plutonic (course-grained) and quenched (fine-

grained) angrites.  Geochemical evidence suggests both subgroups originated 

from the same angrite parent body (Floss et al. 2003), but the crystallization of the 

quenched angrites predates that of the plutonic angrites by ~7 My (Amelin et al. 

2008).  

The quenched angrites in particular can serve as suitable age anchors for 

multiple short-lived chronometers for a variety of reasons.  First, these angrites 

are basaltic samples, meaning they originated from crystallization of a melt, and 

were therefore isotopically homogenized at the time of their original formation.  

Secondly, they formed early enough in the history of the Solar System that they 

are likely to contain measureable excesses of the daughter products of several 

short-lived radionuclides.  Additionally, they crystallized and cooled rapidly at the 

time of their formation, so the isotope systems associated with both extinct and 

long-lived chronometers closed at effectively the same time in these samples.  



  85 

Among the quenched angrites, the D’Orbigny meteorite represents an especially 

attractive age anchor because it is relatively unmetamorphosed and has 

consequently remained unaltered by secondary processing (Mittlefehldt et al. 

2002).  In several recent studies, the short-lived 26Al-26Mg, 53Mn-53Cr, and 182Hf-

182W systems have been anchored to the Pb-Pb age of the D’Orbigny angrite (e.g., 

Wadhwa et al. 2009; Burkhardt et al. 2008; Kleine et al. 2009), and thus, the 

model ages calculated based on these extinct chronometers inherently depend on 

the precision and accuracy of the Pb-Pb date of the D’Orbigny anchor.  The 

previously reported highly precise absolute Pb-Pb age of 4564.42±0.12 Ma for the 

D’Orbigny angrite (Amelin et al. 2008) is based on an internal isochron from 

pyroxene separates and whole rock fractions, but assumes a 238U/235U ratio of 

137.88.  This work reports precise measurements of the 238U/235U ratio in several 

angrite samples, including D’Orbigny, and discusses the implications for 

obtaining precise and accurate ages for early Solar System events.  

 

6.3 RESULTS 

Uranium isotope ratios in a pyroxene separate and two whole-rock 

fractions of D’Orbigny, a phosphate separate from Angra dos Reis (ADOR), 

whole-rock fractions of NWA 4590, NWA 4801 and NWA 6291, as well as an 

acid leach and remaining residue from a second whole-rock fraction of NWA 

6291 were obtained during this study.  All uncertainties reported here are 2 × 

standard deviation (2SD).  A 238U/235U ratio of 137.778±0.034 is reported for the 

D’Orbigny pyroxene separate, 137.790±0.025 for a whole rock sample of 
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D’Orbigny (Bulk D’Orbigny-1), and 137.791±0.026 for another whole rock 

sample of D’Orbigny (Bulk D’Orbigny-2).  Whole-rock fractions of NWA 4590, 

NWA 4801 and NWA 6291 yielded 238U/235U ratios of 137.772±0.026, 

137.778±0.026, and 137.769±0.026, respectively.  The 0.5M HNO3 acid leach of 

a second whole-rock sample of NWA 6291 (Leach) yielded a 238U/235U of 

137.800±0.026, with the remaining residue having a 238U/235U of 137.759±0.026.  

Finally, the ADOR phosphate separate has a 238U/235U ratio of 137.806±0.039.  

The data are summarized in Figure 6.1 and Table 6.1. 

 

 

 

Fig. 6.1. The 238U/235U ratio of the samples of this study (upper axis) and the 

associated age correction (lower axis) based on the measured U isotope ratio 
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compared to the previously assumed value (235U/238U = 137.88).  Uncertainties 

represent total 2SD uncertainties propagated from the uncertainties on the U 

isotope ratio measurements and the spike composition.  The average value of bulk 

angrites is shown with a vertical line, with associated 2SD uncertainty in grey.  

This value represents the best estimate for the modern 238U/235U ratio of the 

angrite parent body. 

 

Table 6.1. The U isotopic compositions of angrite samples measured in this study.  

The age adjustment is calculated based on the measured U isotope composition in 

comparison to the previous assumption of a 238U/235U ratio =137.88. 

 

 

 

6.4 DISCUSSION AND IMPLICATIONS 

6.4.1 Age change of angrites 
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Samples of this study include a mix of quenched, plutonic, and angrite 

mineral separates and these materials have 238U/235U values that are 

indistinguishable from one other within the reported uncertainties.  This 

uniformity suggests that 238U/235U variation did not exist on the angrite parent 

body (APB) or between angrite mineral phases at the current level of precision.  

Given this isotopic uniformity, an average of the 238U/235U ratios of the bulk 

angrites measured in this study (=137.780±0.021) provides the best estimate for 

the 238U/235U ratio of the APB, and thus, of any meteorite originating from this 

parent body.  Using this average value as the 238U/235U composition for the 

angrites and propagating uncertainties from both this U isotopic composition and 

the previously reported Pb-Pb dates, the corrected Pb-Pb age for each sample is 

calculated and shown in Figure 6.2 and Table 6.2.  Any sample that has been 

dated using a short-lived chronometer that utilizes any of these angrites as a time 

anchor requires an age adjustment of the same magnitude as that anchor. 
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Fig. 6.2. Comparison of the Pb-Pb ages recalculated using the average 238U/235U 

ratio obtained from all angrite samples analyzed in of this study with the 

previously reported Pb-Pb ages.  Recalculated age uncertainties include total 2SD 

uncertainties propagated from the uncertainties on the U isotope ratio 

measurements and the spike composition. 
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Table 6.2. Recalculated Pb-Pb ages of the angrites, with propagated 2SD 

uncertainty.

 

 

6.4.2 Uranium isotopes on the angrite parent body 

Recent analytical advances leading to significantly greater precision along 

with renewed interest have led to several investigations of the U isotopic 

compositions of meteoritic materials in recent years.  While refractory calcium-

aluminum-rich inclusions (CAIs) in the carbonaceous chondrite Allende have 

been shown to have large variability in 238U/235U ratios (Brennecka et al. 2010d; 

Amelin et al. 2010), the measured 238U/235U ratios of bulk samples of several 

types of chondrites and achondrites are all within analytical uncertainty of one 

another, and have an average 238U/235U ratio ≈137.78 (Brennecka et al. 2010a; 

Brennecka et al. 2010d; Amelin et al. 2010; Amelin et al. 2011; Bouvier et al. 

2011a; Bouvier et al. 2011b; Kaltenbach et al. 2011).  There are many other 

meteorite types that have not yet been measured, but the current data suggest that 
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while the 238U/235U ratio of Solar System materials is resolvably distinct the 

previously assumed value of 137.88, the extent of U isotopic variation among 

bulk meteorites is likely to be relatively small (i.e., smaller than the current level 

of precision of the U isotope measurements of ±1-2 ε units). 

 

6.4.3 Chronometer concordance 

Obtaining the same age within uncertainties for multiple high-resolution 

chronometers on an object in which one might expect similar closure 

temperatures for these chronometers is a critical step in unraveling the sequence 

of events in the early Solar System.  If concordant ages are not obtained, and if 

there is not clear petrographic or geochemical evidence indicating that 

significantly different closure times may be expected for different chronometers, 

the confidence in time constraints obtained from such chronometers is 

diminished.  Measurement of 238U/235U ratio as part of the Pb-Pb dating procedure 

of samples, particularly those that can serve as time anchors, clearly has a 

significant implication for the accuracy of the reported dates.  Moreover, this has 

a similarly major effect on the model ages obtained using other high-resolution 

chronometers based on extinct radionuclides that are anchored to these Pb-Pb 

dates, and could therefore impact the concordance of these various chronometers.  

An example of this is illustrated in Fig. 6.3, that shows the corrected Pb-Pb ages 

for several angrites and the unique achondrite NWA 2976 for which U isotope 

compositions have been measured (Bouvier et al. 2011b; this study), and 

compares these with high-resolution model ages calculated based on three extinct 
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chronometers (Al-Mg, Mn-Cr and Hf-W; data for these chronometers are from 

references shown in Fig. 6.3) using D’Orbigny as the time anchor.  As can be seen 

in Fig. 6.3, there is now good agreement between the ages for these various 

objects using the Pb-Pb absolute chronometer and the three extinct chronometers; 

this would not have been the case for previously published Pb-Pb ages of the 

various angrites (determined using 238U/235U = 137.88; refs. Amelin et al. 2008; 

Amelin and Irving 2007) that were ~1 Ma older than shown here. 

 

 

 

Fig. 6.3. Corrected Pb-Pb ages of the angrites (shown in Table 2, and calculated 

using the average 235U/238U ratio based on all angrite samples analyzed here) and 

the unique achondrite NWA 2976 (calculated using its measured 235U/238U ratio; 
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ref. Bouvier et al. 2011b) compared with model ages based on short-lived 

chronometers anchored to the corrected Pb-Pb age for D’Orbigny of 

4563.37±0.25 Ma. 

 

Finally, using the corrected age of D’Orbigny (4563.37±0.25 Ma), the 

“canonical” Solar System initial 26Al/27Al ratio (Lee et al. 1977; Jacobsen et al. 

2008) and the 26Al/27Al at the time of crystallization of D’Orbigny (Spivak-

Birndorf et al. 2009), the age of the Solar System is calculated to be 4568.2±0.4 

Ma.  This age is in good agreement with the Pb-Pb and Al-Mg internal isochron 

ages reported by Bouvier and Wadhwa (2010) for CAI 2364-B1 from NWA 2364.  

While the Pb-Pb age of CAI 2364-B1 does not include U isotope measurement, 

the 238U/235U is estimated for it using its measured Th/U ratio and the correlation 

of the Th/U ratio with the U isotope composition in Allende CAIs (Brennecka et 

al. 2010d).  In comparison, high precision Pb-Pb internal isochron ages reported 

previously for other CAIs from Allende and Efremovka, and assuming a 238U/235U 

ratio of 137.88, are younger by ~1 Ma (Jacobsen et al. 2008; Amelin et al. 2002; 

Amelin et al. 2009).  A more recent determination of the internal isochron Pb-Pb 

age for another Allende CAI, however, does include measurement of its U isotope 

composition, and also has a somewhat younger age (4567.18±0.50 Ma; Amelin et 

al. 2010) compared to that of the NWA 2364 CAI.  While it is unclear at this time 

why this age discrepancy exists, it is possible that Pb-Pb systematics in Allende 

and Efremovka CAIs have been disturbed by secondary processes (e.g., Scott et 

al. 1992), thereby yielding systematically younger ages. 
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For obtaining the precise and accurate chronology of the early Solar 

System and understanding the time sequence of events during its first few 

millions of years, it is essential that the 238U/235U ratio be measured (and not 

assumed to be 137.88) when determining absolute Pb-Pb dates for meteoritic 

materials.  This has been shown to be particularly important for refractory 

inclusions from the primitive chondrites in which large variations in the 238U/235U 

ratio (of up to ~3-4 per mil) have been reported (e.g., Brennecka et al. 2010d).  

This investigation demonstrates that while the 238U/235U ratio of the APB and 

meteorites originating from it is indeed also distinct from the previously assumed 

value of 137.88, it is uniform (at the current level of precision).  Although the U 

isotope compositions of several other meteorite types remain to be measured, this 

study as well as some other recent investigations of the U isotope compositions of 

bulk sample of various undifferentiated and differentiated meteorites suggest that 

238U/235U ratio in the early Solar System was homogenous on the scale of bulk 

samples. 

  

6.5 MATERIALS AND METHODS 

Multiple fragments of the D’Orbigny meteorite were obtained, two from 

the Center for Meteorite Studies (CMS) at Arizona State University (ASU) and 

one from R. Carlson (Carnegie Institution of Washington). Whole-rock samples 

of NWA 4590, NWA 4801, and NWA 6291 were obtained from the CMS.  

Interior fragments of all meteorites were obtained for analyses to avoid fusion 

crust and to minimize any terrestrial contamination.  All chemical processing was 
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performed under clean laboratory conditions in the Isotope Cosmochemistry and 

Geochronology Laboratory (ICGL) at ASU.  One whole rock sample of 

D’Orbigny (1.1612 g) was gently crushed with agate mortar and pestle, sieved, 

and 174 mg of clean pyroxenes were separated by hand-picking.  This pyroxene 

separate was then agitated in an ultrasonic bath for 5 minutes in 0.05M HCl. 

Other whole rock samples of D’Orbigny (0.5969 g and 0.7281 g), NWA 4801 

(0.6112 g), NWA 4590 (0.7375 g), and NWA 6291 (0.6454 g) were crushed and 

washed following the same procedure. The samples were completely dissolved in 

Savillex® beakers using a mix of concentrated HNO3, HF, and HCl.  An 

additional piece of NWA 6291 (0.3400 g) was acid leached, with material 

dissolved in 0.5M HNO3 (ultrasonicated) designated as “Leach”.  The residue 

remaining from this leaching was completely dissolved using a mix of 

concentrated HNO3, HF, and HCl, and was designated as “Residue”.  Hand-

picked phosphates (5.4 mg) from ADOR were provided by G. J. Wasserburg 

(Caltech) and were dissolved directly in 3M HNO3.  Approximately 5% of each 

dissolved sample used in this study was reserved for trace element measurements.  

Uranium was separated from the remaining sample solutions for measurement of 

the 238U/235U ratio, following previously published procedures (Brennecka et al. 

2010d; Weyer et al. 2008).  Sample weights, total U contents and U 

concentrations are shown in Table 6.3. 

 

Table 6.3. The weight, calculated total ng U and U concentration of each sample 

analyzed in this study. 
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Uranium isotope measurements were performed on a ThermoFinnigan 

Neptune multicollector inductively coupled plasma mass spectrometer (MC-

ICPMS) in the ICGL.  All samples were measured using a 236U:233U double-spike 

to correct for instrumental mass bias.  The ADOR phosphate separate, the 

D’Orbigny pyroxene separate and one of D’Orbigny whole rock samples were 

spiked with an in-house ASU double spike.  The ASU double spike consists of a 

~1:1 ratio of 236U and 233U with the minor contributions of 235U and 238U 

subtracted during data reduction (236U/233U = 1.00496; 238U/233U = 0.000958; 

235U/233U = 0.000108).  The second D’Orbigny whole rock sample, the whole 

rock samples of NWA 4590, NWA 4801, NWA 6291 as well as the leach and 

residue from NWA 6291 were spiked with the gravimetrically prepared IRMM-

3636 double spike (Richter et al. 2008). 

The long-term reproducibility of the U isotopic measurements was 

assessed by repeat measurements of the SRM950a standard over the course of this 

study (Fig. 6.4).  The measured 238U/235U ratios of all samples are relative to the 
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absolute value of the 238U/235U ratio of SRM950a (137.837±0.015), as reported in 

(Richter et al. 2010).   

 

 

Fig. 6.4. The long-term external reproducibility of the SRM950a standard run at 

the same concentrations as the samples of this study.  The dashed lines represent 

the long-term reproducibilities (2SD) at the specified concentration ranges.  These 

are based only on the U isotope ratio measurement uncertainties and do not 

include the uncertainty associated with the composition of the double spike used. 
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All U isotope ratio measurement uncertainties (“Measurement 

Uncertainty” in Table 1) reported in this study are calculated as 2 × standard 

deviation (2SD) of multiple runs of the sample or same number of runs of the 

concentration-matched SRM 950a standard (analyzed during the same analytical 

session as the sample), whichever was larger.  For samples with very limited 

uranium where only one run was possible, this uncertainty is calculated as 2SD of 

five or more runs of the SRM950a standard analyzed at the same concentration as 

that sample.  Uncertainty on the value of the ASU in-house spike was determined 

by in-house calibration using the SRM950a standard, resulting in an inherent 

uncertainty of ±0.020 (2SD) on the 238U/235U ratio (“Spike Uncertainty” in Table 

6.1).  Thus, the total uncertainty on the U isotope composition of a sample 

measured using this in-house spike (“Total Uncertainty” in Table 6.1) includes the 

U isotope ratio measurement uncertainty for that sample as well as the propagated 

uncertainty on the in-house spike composition (which includes the error in the U 

isotope composition of SRM 950a).  Similarly, the total uncertainty on the U 

isotope composition of a sample spiked with the gravimetrically prepared IRMM-

3636 double spike (“Total Uncertainty” in Table 6.1) includes the U isotope 

measurement uncertainty for that sample as well as the propagated uncertainty on 

the absolute value of IRMM-3636 (Richter et al. 2008). 
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A.1 INTRODUCTION  

The elemental and isotopic composition of our Solar System is the result 

of a mixture of countless nucleosynthetic reactions from past generations of 

stellar environments.  Isotopes of elements heavier than boron are created by three 

principal modes of production: the p-, s-, and r-processes.  The p-process creates 

isotopes through photodisintegration reactions in supernova, forming proton-rich 

nuclei (Woosley and Howard, 1978).  The s-process occurs from slow neutron 

addition in asymptotic giant branch (AGB) stars (Gallino et al. 1997), marching 

up the “valley of stability” using neutron addition to create, and occasional β-

decay to stabilize, new isotopes.  Rapid neutron addition (or the r-process) occurs 

in the extremely high neutron densities found in supernova (Qian et al. 1998).  

The r-process creates extraordinarily neutron-rich, radioactive isotopes which β-

decay to stability, resulting in neutron-rich stable isotopes.  A combination of 

these processes is responsible for the stable isotopes abundances present in all 

Solar System materials. 

Variations in the non-radiogenic isotope compositions of meteoritic 

samples (including bulk samples, leachates and residues of chondritic meteorites, 

as well as refractory inclusions in chondrites) have often been interpreted as 

nucleosynthetic signatures resulting from distinct inputs of materials produced as 

a result of p-, s-, and r-processes (Harper et al., 1992; Hidaka et al., 2003; Ranen 

and Jacobsen, 2006; Andreasen and Sharma, 2006; Carlson et al., 2007; 

Andreasen and Sharma, 2007; Bermingham et al., 2010; Carlson et al., 2010; 
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Triquier et al., 2009; Gannoun et al. 2011). These isotopic compositions have 

been used to argue for heterogeneity and the degree of mixing in the early solar 

nebula, as well as the nature of potential carriers of the isotope anomalies. 

Bulk chondrites contain a variety of materials, including assorted presolar 

materials which numerous studies have shown to have extreme isotopic 

compositions (see Lodders and Amari, 2005 for an extensive review).  Moreover, 

because presolar materials are exceptionally small and difficult to identify and 

separate, the elemental and isotopic compositions of most types of presolar grains 

are entirely unknown with regard to the heavy elements.  While an immense 

amount of information has and can be gained from the study of bulk chondrites, 

their complex composition can complicate any interpretation.  Calcium-

aluminum-rich inclusions (CAIs), which are found in chondrite meteorites, are an 

important carrier of isotopic information about the early Solar System.  Unlike 

bulk chondrites, CAIs are not mixes of various Solar System components, but are 

high temperature condensates representing the first solids to form in the cooling 

protoplanetary disk during the birth of the Solar System (Gray et al. 1973).  These 

refractory objects should contain primary information about the nucleosynthetic 

composition of the very early Solar System.  Additionally, to assess mixing in the 

early Solar System, measurement of multiple CAIs should provide knowledge 

about the amount of heterogeneity found in the CAI forming region of the 

protoplanetary disk. 

Barium (Ba), neodymium (Nd) and samarium (Sm) each have multiple 

stable isotopes.  The isotopes of each of these elements have variable inputs from 
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p-, s-, and r-process nucleosynthesis, making these elements ideal for an 

integrated study of nucleosynthetic signatures in meteoritic material.  The 

pathways of creation for each isotope of Ba, Nd, and Sm are shown in Table A.1.   

 

Table A.1. Nucleosynthetic pathways of isotope creation for Ba, Nd, and Sm.  

Values are taken from Arlandini et al. (1999), Wisshak et al. (1998) and Travaglio 

et al. (1999). 

 

 

Previous work on refractory inclusions and various bulk carbonaceous 

chondrites (and their leachates) has shown excesses in the isotopes of Ba that 

include significant r-process contributions (135Ba and 137Ba) (Harper et al., 1992; 

Hidaka et al., 2003; Ranen and Jacobsen, 2006; Carlson et al., 2007; Andreasen 

and Sharma, 2007; Bermingham et al., 2010; Carlson et al., 2010).  Other studies 

have shown p-process depletions in Sm and Nd isotopic signatures of bulk 

carbonaceous chondrites (Andreasen and Sharma, 2006; Carlson et al., 2007; 

Andreasen and Sharma, 2007; Carlson et al., 2010).  Large isotopic anomalies 
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have been reported for Ba, Nd, and Sm in EK1-4-1 and C1, CAIs with 

fractionation and unidentified nuclear isotope anomalies, or “FUN” CAIs 

(McCulloch and Wasserburg 1978a; 1978b), but no work has been published Nd 

and Sm isotope compositions of non-FUN CAIs.  This study presents the Ba, Nd, 

and Sm isotope compositions of eleven Allende CAIs (non-FUN) for which 

uranium isotope compositions were previously reported (Brennecka et al., 2010). 

 

A.2 MATERIALS AND METHODS  

Aliquots from previously dissolved calcium-aluminum-rich inclusions 

(CAIs) of the Allende meteorite (from which U was separated, as described in 

(Brennecka et al., 2010)) were processed for Ba, Nd, and Sm isotope 

measurements.  This sample set includes three group II CAIs (CAI 166, 167, 

175), as discussed in Brennecka et al. (2010).  Barium was separated from the 

CAI matrix and interfering elements using AG50W-X8 cation exchange resin, 

following the procedure outlined in Carlson et al. (2007).  Nd and Sm were 

separated from the CAI matrix in a light rare earth element cut in the same 

column procedure.  Complete separation of Nd and Sm from one another (as well 

as separation from other isobaric interferences) was accomplished using multiple 

passes through methalactic acid column chemistry. 

A separate, unprocessed aliquot of each CAI was spiked with a mixed 

150Nd-149Sm spike to obtain very precise Sm/Nd ratios with isotope dilution.  The 

isotope dilution samples were put through the same cation exchange chemistry 

described above.  The light rare earth element cut was then put through LN spec 
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resin to separate the measured isotopes of Nd from Sm.  The Nd and Sm cuts 

from the LN spec chemistry were measured separately at Lawrence Livermore 

National Laboratory (LLNL) using modified versions of discussed procedures for 

Nd and Sm isotope measurement.  This isotope dilution procedure reduces 

uncertainty on the 147Sm/144Nd to approximately 0.1%. 

The Ba, Nd and Sm isotopic compositions of the samples and standards 

were measured on a Thermo-Finnigan Triton thermal ionization mass 

spectrometer (TIMS) at LLNL.  Internal normalization was used for correction of 

instrumental mass bias for all three isotope systems.  All samples were run 

interspersed with standards, with the external reproducibility of the standards 

recorded as the lowest possible reported uncertainty.  Isobaric interferences for 

Ba, Nd, Sm were monitored and corrected for during runs of all samples and 

standards. 

 

A.2.1 Barium Isotopic Measurement 

When sample size allowed, runs consisted of 300 ratios with 16 second 

integrations. Barium was analyzed on zone refined double Re filaments and 

loaded directly on the evaporation filament for measurement.  All voltages were 

measured during a single static run utilizing 1011 ohm resistors to measure 134Ba, 

135Ba, 136Ba, 137Ba, 138Ba, and 140Ce.  To increase the signal, 1012 ohm resistors 

were used to measure 130Ba, 132Ba, and 139La.  Data are normalized to 136Ba and 

fractionation corrected to 134Ba/136Ba = 0.3078 using the exponential law.  This 
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normalization was chosen because 134Ba and 136Ba are s-process only isotopes, 

effectively normalizing out the s-process component. 

 

A.2.2 Neodymium Isotopic Measurement 

Neodymium was analyzed on double Re filaments as Nd+ using a two 

mass step procedure that calculates 142Nd/144Nd dynamically, utilizing 1012 ohm 

resistors to measure the voltages of the possible interfering isotopes 140Ce, 141Pr, 

147Sm, and 149Sm.  Both steps of the dynamic run used 8 second integration times 

for 540 ratios, when sample size allowed.  Data are normalized to 144Nd and 

fractionation corrected to 146Nd/144Nd = 0.7219 using the exponential law. 

 

A.2.3 Samarium Isotopic Measurement 

Samarium was measured on double Re filaments, where normal runs 

consisted of 300 ratios at 8 second integrations.  All isotopes of Sm were 

measured during a single static run, utilizing 1012 ohm resistors to monitor 146Nd 

and 155Gd for potential interference corrections.  Isotopes of Sm are normalized to 

150Sm and fractionation corrected to 148Sm/150Sm = 1.523370.  This normalization 

was chosen because 148Sm and 150Sm are s-process only isotopes, effectively 

normalizing out the s-process component, analogous to Ba.  Because 149Sm has an 

extremely large neutron capture cross section which could potentially create 

artificial excesses in the normalizing isotope 150Sm, a second normalization was 

performed, normalizing to 152Sm with a fractionation correction of 147Sm/152Sm = 
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0.56081.  Both normalizations use the exponential law for fractionation 

correction. 

 

A.3 RESULTS  

The data indicate that the non-radiogenic isotopes of Ba, Nd and Sm of 

Allende CAIs are not statistically different, and are treated as such in the 

following sections.  Measurements from all samples and standards are given in 

Tables A.2 through A.4. 

 

A.3.1 Barium Isotopes 

Relative to a terrestrial ICP standard, CAIs of Allende show an average 

excess of 0.55±0.10 ε in 135Ba/136Ba and an average excess of 0.18±0.09 ε in 

137Ba/136Ba, representing apparent r-process excesses in Ba.  These averages 

include ten of the eleven CAIs, excluding CAI 167, for which very poor stability 

during the analyses may have compromised the accuracy of the data for this 

sample.  The 138Ba/136Ba values of samples of this study are highly variable due to 

differences in the La/Ba ratios and the decay of 138La, discussed in detail in 

section A.4.1.  The excess 138Ba produced by radiogenic ingrowth from 138La has 

been subtracted in Figure A.1.  No resolvable deviations exist from the terrestrial 

standard in 130Ba/136Ba or in 132Ba/136Ba, although the low isotopic abundances of 

130Ba and 132Ba greatly increase the size of the analytical uncertainty.  The 

average isotopic compositions are shown, along with the percent of 
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nucleosynthetic creation of each isotope in Figure A.1.  All values are shown in 

Table A.2. 

 

 

Figure A.1.  The average Ba isotopic composition Allende CAIs is shown with 

the solid black line.  Uncertainties are shown as 2SD as the reproducibility of the 

Ba ICP standard.  The values and uncertainties of 130Ba and 132Ba are divided by 

10 to fit on the same scale.  The percent of one nucleosynthetic process for 

creation of that isotope is included under each isotope number (e.g., 74% of 135Ba 

is created by the r-process).  The calculated ingrowth of 138Ba from the decay of 

138La is subtracted as shown in this figure based on measured La/Ba ratios, 

reported in Table A.2 and discussed in section A.4.1. 

  

A.3.2 Neodymium Isotopes 

The Nd isotopic data for the Allende CAIs are shown relative to the JNdi 

terrestrial standard (Figure A.2).  Data for 142Nd and 143Nd contain significant 
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radiogenic components from the decay of 146Sm and 147Sm, respectively, and are 

not shown in Figure A.2.  All CAIs display apparent deficits in the predominately 

r-process isotopes, with the average values: 145Nd/144Nd = -0.23±0.09 ε, 

148Nd/144Nd = -0.29±0.12 ε, 150Nd/144Nd = -0.64±0.17 ε.  All data is shown in 

Table A.3. 

 

Figure A.2.  The average Nd isotopic composition Allende CAIs is shown with 

the solid black line.  Uncertainties are shown as 2SD as the reproducibility of the 

JNdi standard.  142Nd and 143Nd are not shown because of the large amount of 

radiogenic input from 146Sm and 147Sm, respectively.  The percent of one 

nucleosynthetic process for creation of that isotope is included under each isotope 

number. 

 

A.3.3 Samarium Isotopes 

The Sm isotopic data are shown relative to the AMES terrestrial std. 

(Figure A.3).  The p-process only isotope 144Sm shows an apparent deficit 
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(144Sm/150Sm = -1.97±0.49 ε), along with the predominantly r-process isotopes 

that also show apparent deficits: 147Sm/150Sm = -0.35±0.17 ε, 149Sm/150Sm = -

1.10±0.11 ε, 152Sm/150Sm = -1.57±0.28 ε, 154Sm/150Sm = -2.22±0.44 ε.  All data is 

shown in Table A.4. 

 

 

 

Figure A.3.  The average Sm isotopic composition Allende CAIs is shown with 

the solid black line.  Uncertainties are shown as 2SD as the reproducibility of the 

AMES Sm standard.  The percent of one nucleosynthetic process for creation of 

that isotope is included under each isotope number.   
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A.4 DISCUSSION  

A.4.1 Evidence of 138La decay to 138Ba 

Lanthanum-138 comprises less than 0.1% of all La, and has a half-life of 

~105 Ga. Decay of 138La is branched between 138Ce (33.6%) and 138Ba (66.4%). 

The long half-life of 138La requires a significant range of La/Ba ratios in various 

samples to detect ingrowth of 138Ba from 138La. Group-II CAIs have experienced 

a complex thermal history, resulting in a large elemental fractionation of Ba from 

La. In this sample set, which includes three group II CAIs, the La/Ba ratio ranges 

from as low as ~0.08 (in non-group-II CAIs) up to ~1.6 (in group-II CAIs).  

Based on the half-life of 138La and this range of La/Ba ratios, a ~0.3ε difference in 

138Ba should be present in between group II and non-group II CAIs.  These data 

are shown in Fig. A.1 for one group II and one non-group II and isotopic and 

elemental ratio data for all samples is shown in Table A.1.  The group II samples 

(CAI 166, CAI 167, and CAI 175) all have excesses in 138Ba of ~0.3ε in when 

compared to the non-group II samples.  These data provide the first evidence for 

the decay of 138La in refractory inclusions and indicate the possibility of further 

development of a 138La-138Ba chronometer for early Solar System materials. 
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Figure A.4. Evidence of 138Ba ingrowth from the decay of 138La.  The decay of 

138La to 138Ba causes a measurable change the isotopic composition at 138Ba and is 

measurable due to the extreme differences in the La/Ba ratios of samples of this 

study.  For figure clarity, the analytical uncertainties are removed and the Ba 

isotopic patterns of only one non-group II (CAI 165, solid black line) and one 

group II CAI (CAI 166, dashed grey line) are shown. 

 

A.4.2 Comparison to previous isotopic data 

The data show clear excesses in those Ba isotopes that have a significant 

r-process component (135Ba and 137Ba).  These apparent r-process excesses are 

consistent with previous work on refractory inclusions (Harper et al., 1992; 

Bermingham et al., 2010), but slightly higher than reported values for bulk 

chondrites (Hidaka et al., 2003; Ranen and Jacobsen, 2006; Carlson et al., 2007; 

Andreasen and Sharma, 2007).  Similarly, the reported negative anomalies in the 

p-process isotope 144Sm of this study are significantly larger than those previously 



  129 

reported for bulk chondrites (Andreasen and Sharma, 2006).  These data indicate 

that the Ba, Nd and Sm nucleosynthetic anomalies in CAIs could be largely, if not 

entirely, responsible for the previously reported anomalies in bulk carbonaceous 

chondrites. 

 

A.4.3 Evidence of extant 135Cs? 

Cesium-135 is a short-lived radionuclide that decays to 135Ba with a half-

life of ~2.3Ma.  Previous workers have suggested that the anomalies in 135Ba 

could be caused by the decay of the 135Cs in the early Solar System (Harper et al., 

1992; Hidaka et al. 2001; Bermingham et al. 2010).  Due to differences in 

volatility of Cs and Ba, the Cs/Ba ratio of CAIs is lower than bulk chondrites 

(Hidaka et al. 2001).  As the 135Ba anomalies found in Allende CAIs are generally 

larger than those reported for bulk Allende, the cause of 135Ba anomalies cannot 

be from the decay of the short-lived 135Cs to 135Ba.  Additionally, while the Cs/Ba 

ratios of the samples of this study were not measured, the variety of CAIs 

sampled (i.e., group II v. non-group II) would produce large differences in the 

Cs/Ba ratio of these CAIs.  However, the 135Ba anomaly in CAIs is consistent, 

suggesting that the decay of 135Cs is not the cause of the excess 135Ba. 

 

A.4.4 Origin of isotopic anomalies in CAIs? 

At least two isotopically distinct reservoirs were present in the early Solar 

System: the reservoir from which CAIs formed, and the reservoir that provided 

material for all other bulk meteorites and Earth.  These data clearly show that 
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apparent r-process excesses in Ba isotopes are preserved along with apparent p- 

and r-process deficits in Nd and Sm isotopes in the exact same samples.  Thus, an 

explanation is required for how relative r-process excesses in one isotope system 

(Ba) are recorded along with relative r-process deficits in other isotope systems 

(Nd and Sm) in CAIs.  Central to this explanation must be the mechanism of how 

the nucleosynthetic signatures preserved in CAIs relate to the average “bulk Solar 

System”.  The following sections will address the plausibility of a few potential 

scenarios that can be called upon to explain the existence of such data. 

 

A.4.4.1 Mixing of FUN or presolar components 

Previous studies have reported the Ba, Nd, and Sm isotopic compositions 

of the FUN CAIs, EK1-4-1 and C1 (McCulloch and Wasserburg 1978a; 1978b).  

These values are not only vastly different from bulk meteorites, but they are also 

vastly different from one other, suggesting that FUN CAIs are not formed from a 

homogeneous reservoir.  The sample EK1-4-1 shows large apparent r-process 

excesses in Ba, Nd and Sm, where sample C1 is isotopically normal except for 

very small deficits in 135Ba and excesses in 144Sm.  Other previous studies have 

reported the Ba, Nd, and Sm isotopic composition of silicon carbide (SiC) 

presolar grains (Hoppe and Ott, 1997), which show huge apparent p- and r-

process deficits, indicative of an AGB signature.  Interestingly, when the data is 

displayed for both SiC and the FUN inclusion EK1-4-1, the isotopic signatures 

are mirror images of one another, however at much different scales. This is shown 

for Ba, Nd, and Sm in Figure A.5. 
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Figure A.5. Ba, Nd, and Sm isotopic signatures of SiC grains and the FUN 

inclusion EK1-4-1.  SiC data is renormalized from Hoppe and Ott (1997), and 

EK1-4-1 data is renormalized from McCulloch and Wasserburg (1978a; 1978b). 

Note the vastly different scales at which the values for the materials are plotted. 

  

In principle, incorporation of a mix of the isotopic signatures of EK1-4-1, 

SiC and bulk Solar System material could produce the isotopic signatures seen in 

Allende CAIs. However, producing apparent r-process excesses in Ba and 
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apparent r-process deficits in Nd and Sm would require the concentrations of Ba 

from Nd and Sm in SiC grains to be vastly different.  While the trace element 

abundances and Ba, Nd, and Sm isotopic signatures are unknown for presolar 

grains other than SiC, work by Amari et al. (1995) indicates that the abundance of 

Ba and REEs are approximately the same in SiC grains.  In addition, this study 

includes fine grained, coarse grained, group-II and non-group-II CAIs, requiring 

that the amount of presolar, FUN and bulk Solar System components mixed into 

each of these groups must be in the same proportions for all types of CAIs 

measured.  Moreover, since FUN CAIs have vastly different isotopic signatures, a 

mixing scenario resulting in isotopically homogeneous CAIs becomes even less 

plausible. 

 

A.4.4.2 Incomplete digestion of sample materials 

 If the isotopic composition of extremely refractory phases, such as SiC 

grains, were markedly different from that of the rest of the sample, incomplete 

digestion of any sample could potentially affect the reported isotopic values. The 

particular issue of undissolved presolar grains was addressed for the Ba isotopic 

composition of bulk meteorites by Andreason and Sharma (2007).  They 

concluded that, if ~14 ppm of SiC was left undissolved in a meteorite, it could 

produce the observed Ba isotopic signature, within error, of that seen in Allende 

and Murchison.  However, two major problems exist with this explanation: first, 

the SiC abundance in Allende is less than 10 ppb (Huss & Lewis 1995), about 3 

orders of magnitude lower than the SiC abundance in Murchison (Tizard et al. 
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2005). If undissolved SiC was the primary cause for Ba isotopic anomalies in 

Allende and Murchison, the two meteorites should have vastly different Ba 

isotopic compositions due to their differences in SiC concentrations.  However, 

the Ba isotope compositions of bulk Allende and bulk Murchison are the same 

(Andreason and Sharma, 2007).  Secondly, if undissolved SiC grains were 

causing the isotopic anomalies in bulk Allende and Murchison, a similar r-process 

signature should be present in Nd and Sm, which it is not (Andreason and 

Sharma, 2006). 

Similar to bulk chrondrites, incomplete digestion of CAIs causing isotopic 

anomalies would require that an extremely refractory phase similar to presolar 

grains with a vastly different isotopic composition from the rest of the CAI was 

present at the same ratios in group-II, non-group II, coarse- and fine-grained 

samples, and left undissolved at exactly the same proportion in all types of CAIs 

of this study.  First, no such materials are known to exist in CAIs.  Secondly, that 

unknown refractory material would have to carry different ratios of Ba and REEs 

with distinct nucleosynthetic inputs.  Thirdly, the same unknown refractory 

material would have had to be present in the same proportion and left undissolved 

in the same proportion in all other CAI and bulk chondrite studies to provide the 

same isotopic patterns seen in this study.  These multiple lines of evidence make 

incomplete digestion of CAIs a very unlikely cause of the isotopic anomalies 

present in Allende CAIs. 

 

A.4.4.3 Neutron capture and the improper normalization of isotopes 
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The interaction of thermal neutrons with Solar System material has the 

potential to measurably change the isotopic composition of that material.  The 

likelihood of this occurrence is higher in the case of Sm, for which the thermal 

neutron capture cross-section for 149Sm is extraordinarily large (~41,500 barns) 

and consequently has been shown in numerous studies to produce deficits in 

149Sm (and corresponding excesses in 150Sm) based on various neutron fluxes 

(Hidaka et al., 2000, references therein).  If measurable anomalies were present in 

149Sm and 150Sm from neutron capture in CAIs, internal normalization using the s-

process only isotopes 148Sm and 150Sm would be problematic.  Therefore, a 

second internal normalization unaffected by neutron capture using 147Sm and 

152Sm is shown below in Figure A.6. 

 

Figure A.6. Sm isotope data shown using two separate normalizations.  One 

normalizations using 148Sm:150Sm is shown on the left.  The same data normalized 

to 147Sm:152Sm is shown on the right. 

 

Regardless of how the data is normalized, deviations from the terrestrial 

standard are clear and cannot be explained simply by neutron capture processes.  

Additionally, using this data, it is possible to determine if neutron capture has had 
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a significant effect on these CAIs. For every 149Sm that captures a neutron, a 

150Sm is created.  Therefore, if neutron capture processes caused depletions in 

149Sm and excesses in 150Sm in Allende CAIs, these anomalies should be 

correlated, as plotted in Figure A.7. 

 

Figure A.7. Predicted neutron capture correlation for 149Sm and 150Sm. CAIs of 

this study are shown as hollow diamonds, with the predicted neutron capture line 

shown with a dotted line. 

 

Allende CAIs fall well off the predicted 1:1 neutron capture line and fail 

to form a defined line.  This strongly suggests the 148Sm:150Sm normalization is 

appropriate for this study and the isotopic anomalies in CAIs are not created by 

neutron capture processes.  The neutron capture cross section of 149Sm is 

approximately 100 times larger than any other isotope in this study, therefore 

neutron capture effects cannot explain the anomalies seen in other isotope 

systems. 
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A.4.4.4 Nuclear field shift fractionation 

Traditionally, isotope geochemists usually explain isotopic deviations of 

samples from standards in one of three ways: 1) radioactive decay 2) mass-

dependent fractionation, or 3) nucleosynthetic anomalies.  However, mass-

independent isotope fractionation has provided explanations to some very 

intriguing data sets (e.g., photochemical dissociation of carbon monoxide in the 

solar nebula explaining oxygen isotope variations) and may play a larger role than 

previously recognized in other data sets.  This work explores the possibility that 

isotopic anomalies of multiple elements in Allende CAIs may be caused by mass-

independent isotope fractionation induced by the nuclear field shift. Isotope 

fractionation by the nuclear field shift is caused by preferential behavior of 

isotopes in chemical reactions because of differences in the size, shape and charge 

between nuclei (Bigeleisen 1996).  A number of experiments involving multiple 

isotopes systems have confirmed the existence of mass-independent fractionation 

as predicted by the nuclear field shift effect (Moynier et al. 2009b, references 

therein), and these fractionation patterns can be predicted based on differences in 

the mean-squared nuclear charge radii between isotopes.  The interaction of CAIs 

with the nebular gas during the early stages of condensation is one possible 

location in which nuclear field shift fractionation could have taken place in these 

samples (Moynier et al. 2009a), and the predicted isotope patterns for Ba, Nd, Sm, 

Mo, Ni, and Te in Allende CAIs can be calculated. 

Mass-independent isotope effects are calculated in ε units (parts per 

10,000) using the following equation (for full derivation see Fujii et al. 2006). 
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εmi = �δ〈r2〉m1,mi – 
m2(mi - m1)
mi(m2 - m1)  × δ〈r2〉m1,m2 �  × a 

In this equation, m1 and m2 stand for the atomic masses of the nuclides chosen for 

internal normalization, and mi represents the atomic mass of a nuclide indexed 

with the variable “i”.  Differences in mean-squared nuclear charge radii, δ〈r2〉, of 

each isotope pair are taken from Aufmuth et al. (1987).  These data, along with 

the measured ε values of the samples are combined into the equation above, 

leaving the parameter “a” to be determined by regression. The variable “a” is an 

adjustable parameter depending on temperature T as 1/T and represents the 

overall extent of mass-independent fractionation (Fujii et al. 2006).  Data from 

this study (Figures A.8 through A.10) and literature data from other Allende CAIs 

(Figures A.11 through A.13) are shown along the isotope fractionation patterns 

predicted by the nuclear field shift effect at an optimized value of “a” for each 

element.  Uncertainties for the calculated data are given as the ranges obtained by 

using the nuclear charge radii literature values of Heilig and Steudel (1974); 

Aufmuth (1984); and Angeli (2004). 
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Figure A.8. Barium nuclear field shift effects.  The average Ba isotopic data from 

Allende CAIs is shown with the solid black line.  The calculated nuclear field 

shift effect is shown using a dotted red line.  The best-fit to the data for Ba is 

found using a = -15. 

 

Figure A.9. Neodymium nuclear field shift effects. The average Nd isotopic data 

from Allende CAIs is shown with the solid black line.  The calculated nuclear 

field shift effect is shown using a dotted red line.  The best-fit to the data for Nd is 

found using a = -5. 
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Figure A.10. Samarium nuclear field shift effects. The average Sm isotopic data 

from Allende CAIs is shown with the solid black line.  The calculated nuclear 

field shift effect is shown using a dotted red line.  The best-fit to the data for Sm 

is found using a = -13. 

 

Figure A.11. Molybdenum nuclear field shift effects.  The average Mo isotopic 

data from Allende CAIs is shown with the solid black line, as reported in 

Burkhardt et al. (2011).  The calculated nuclear field shift effect is shown using a 

dotted red line. The best-fit to the data for Mo is found using a = -24. 
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Figure A.12. Nickel nuclear field shift effects.  The average Ni isotopic data from 

Allende CAIs is shown with the solid black line, as reported in Quitte et al. 

(2007).  The calculated nuclear field shift effect is shown using a dotted red line.  

The best-fit to the data for Ni is found using a = 36. 

 

Figure A.13. Tellurium nuclear field shift effects.  The average Te isotopic data 

from Allende CAIs is shown with the solid black line, as reported in Fehr et al. 

(2009).  The calculated nuclear field shift effect is shown using a dotted red line.  

The best-fit to the data for Te is found using a = -160. 

 

The isotopic anomaly patterns for many elements in Allende CAIs can 

roughly be explained by fractionation resulting from nuclear field effects; 

however mismatches in a few isotopes cause problems with this interpretation 

being the sole cause for the isotopic anomalies.  For instance, the 135Ba and 137Ba 

peaks in the measured data are fairly well reproduced by the predicted data by 

optimizing a, however nuclear field shift effects would result in a large negative 

anomaly in 138Ba not present in the measured data.  Similarly, large differences 
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exist between the measured and predicted patterns in 145Nd, as well as 149Sm and 

154Sm, regardless of the internal normalization of Sm.  Other isotope systems have 

mixed results when comparing measured and predicted patterns.  The measured 

Mo isotope pattern (Burkhardt et al. 2011) is tantalizingly similar to the predicted 

pattern, with the exception of 100Mo, which is in disagreement by approximately 

3.0ε.  The measured patterns of Ni (Quitte et al. 2007) and Te (Fehr et al. 2009) 

are reproduced within error for all reported isotopes. 

 

A.4.4.5 Supernovae input following CAI formation 

One potential scenario to explain apparent r-process excesses in Ba and 

apparent p-, and r-process deficits in Nd and Sm is injection of a small amount of 

H-event (a subgroup of Type-II supernovae) supernovae material (Qian et al., 

1998) between the time of CAI formation and condensation of the less refractory 

phases found in chondritic meteorites.  H-event material is depleted in the r-

process isotopes A≤140 (e.g., Ba) and enriched in r-process isotopes 140≤A≤200 

(e.g., Nd, Sm) (Nittler and Dauphas, 2006), therefore the addition of a small 

amount of this material to the solar protoplanetary disk from this type of 

supernova could theoretically explain the isotopic differences between CAIs and 

bulk Solar System material.  This scenario continues to be investigated using 

supernova production models with regard to p-, s-, and r-isotope ratio variation. 

 

A.5 CONCLUSION  
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Within analytical uncertainties, the non-radiogenic Ba, Nd and Sm isotope 

compositions of Allende CAIs analyzed in this study are identical, implying that 

these CAIs formed in a region with a homogeneous isotopic composition.  

However, this homogeneous isotopic composition of Allende CAIs is clearly 

distinct from the isotopic composition of bulk meteorites.  This implies that CAIs 

and the rest of the bulk Solar System formed from two distinct reservoirs. At this 

time, it is unclear if these reservoirs are separated by 1) space (i.e., different 

regions of the disk), 2) time (i.e., change in the isotopic composition of the disk) 

or 2) a combination of both space and time. 
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Co-authors on the previously published articles “Natural variations in uranium 

isotope ratios of uranium ore concentrates: Understanding the fractionation 

mechanism”, “Uranium isotope fractionation during adsorption to Mn-

oxyhydroxides”, “Rapid expansion of oceanic anoxia immediately before the end-

Permian mass extinction”, “238U/235U variations in meteorites: Extant 247Cm and 

implications for Pb-Pb dating”, and “Adjustments to the ages of the angrite time 

anchors and the effect on short-lived chronometers” have granted their permission 

for use of the articles in this dissertation.  This list of co-authors includes: T. 

Algeo, A. Anbar, J. Bargar, L. Borg, A. Herrmann, I. Hutcheon, P. Janney, M. 

Sharp, M. Wadhwa, L. Wasylenki, S. Weyer, and J. Zipfel.



 

 


	3.1 INTRODUCTION
	3.2.4 EXAFS Measurements
	In EXAFS analysis, monochromatic X-rays penetrate the sample and eject inner-shell electrons from the element of interest, causing outer-shell electrons to fill the vacancies and emit photoelectrons.  The incoming X-ray energy is varied systematical...
	A sample of U adsorbed on birnessite was prepared with the same methods described above for adsorption experiments, but with larger quantites of U stock solution and birnessite to produce enough material for EXAFS analysis. The U stock solution cont...
	3.3 RESULTS
	/
	Fig. 3.1. Fraction of U adsorbed in two experiments as a function of time. The U concentration in the stock solution was 30 μM for one set of experiments (open diamond symbols) and 140 μM for the second (black square symbols).
	3.3.2 Isotopic Results
	Uranium isotope compositions were similar in all experiments; U adsorbed to the birnessite is isotopically lighter by 0.22±0.09‰ (δ238/235U, 2SD of all δ-values) compared to U in the filtrate (Table 3.1, Figure 3.2).  Isotopic mass balance is satisf...
	/
	Fig. 3.2. Magnitude and direction of isotope fractionation between birnessite and 30 μM and 140 μM experimental stock solutions.  Big delta (Δ) denotes the difference between the small delta (δ) values of the dissolved and adsorbed uranium (formulas s...
	Table 3.1. Uranium isotopic data from the two experiments.
	/
	3.3.3 EXAFS results
	The spectra for two aqueous species (with fits) and the U-on-birnessite sample are shown in Figures 3.3 and 3.4.  Figure 3.3 shows the EXAFS spectrum after the atomic absorption background is subtracted, the energies are converted to units of Å-1 (k...
	Table 3.2. EXAFS fitting results
	3.4.1 Fractionation mechanisms of isotopes of heavy elements
	In general, equilibrium isotope effects occur when an element partitions between two or more possible species or sites that have different vibrational bond energies.  The isotopes will partition among the possible sites such that the vibrational bon...
	3.4.2 An equilibrium isotope effect matching that observed in nature
	Results from this experimental study show that adsorption of U to birnessite causes fractionation of ~0.2‰ in δ238U (lighter isotope preferentially adsorbed).  The fractionation is constant with time within error, implying an equilibrium isotope eff...
	3.4.3 Coordination of U adsorbed to birnessite differs from that in aqueous U species
	In these experiments, U is introduced as U(VI). The experiment takes place in oxidizing conditions in the presence of birnessite, a strong oxidant on its own.  Thus it is expected that all U remained in the oxidized, hexavalent state in this system....
	In seawater, U occurs predominantly as the hexavalent uranyl triscarbonato complex, (UO2(CO3)3-4), but UO2(CO3)2-2 is also abundant (Ku et al. 1977; Waite et al. 1994; Swarzinski et al. 1999; McManus et al. 2006; refs therein).  At lower pH values, ...
	It is very possible that the specific coordination change that occurs when UO2++ adsorbs to birnessite differs from the specific coordination change when UO2(CO3)3-4 adsorbs to birnessite.  However, the dissolved species both in the experiments and ...

