
A 280 mW, 0.07 % THD+N Class-D Audio Amplifier  

Using a Frequency-Domain Quantizer 

by 

Junghan Lee 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved August 2011 by the 

Graduate Supervisory Committee:  

 

Bertan Bakkaloglu, Co-Chair 

Sayfe Kiaei, Co-Chair 

Sule Ozev 

Hongjiang Song 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2011  



  i 

ABSTRACT  

   

Pulse Density Modulation- (PDM-) based class-D amplifiers can reduce non-

linearity and tonal content due to carrier signal in Pulse Width Modulation - (PWM-) 

based amplifiers. However, their low-voltage analog implementations also require a 

linear- loop filter and a quantizer. A PDM-based class-D audio amplifier using a 

frequency-domain quantization is presented in this paper. The digital-intensive frequency 

domain approach achieves high linearity under low-supply regimes. An analog 

comparator and a single-bit quantizer are replaced with a Current-Controlled Oscillator- 

(ICO-) based frequency discriminator. By using the ICO as a phase integrator, a third-

order noise shaping is achieved using only two analog integrators. A single-loop, single-

bit class-D audio amplifier is presented with an H-bridge switching power stage, which is 

designed and fabricated on a 0.18 um CMOS process, with 6 layers of metal achieving a 

total harmonic distortion plus noise (THD+N) of 0.065% and a peak power efficiency of 

80% while driving a 4-ohms loudspeaker load. The amplifier can deliver the output 

power of 280 mW. 
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Figure 1-1: Typical class-D amplifier. 

1 INTRODUCTION 

1.1 Overview of Class-D Audio Amplifier 

High power efficiency and reduced thermal losses associated with class-D 

amplifiers offer many benefits in low-cost and low-power audio products, including 

extended battery life, reduced heat dissipation, and external component count. The power 

stages of class-D amplifiers most commonly use Pulse Width Modulation (PWM) control 

techniques, which offer simplicity and the lowest possible switching frequency, thus 

minimizing switching losses in the output stage [1]. 

Typical class-D amplifiers mainly consist of three stages, as shown in Figure 1-1: 

the pulse width modulation stage, the power amplification stage, and the output filter 

stage. In the pulse width modulation stage, audio input signal is compared with a carrier 

waveform, like sawtooth or triangular, in a comparator. As a result, audio input signal is 

converted into higher frequency switching pulses, with widths proportional to the input 

amplitude. The gate driver controls the switching transistors by using these pulses.  
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The power amplification stage of Class-D amplifiers operates like switches. 

Switching transistors are either fully turned on or fully turned off. When the transistor is 

off, the current through it is zero. When it is on, the voltage across it is small—ideally, 

zero. In each case, the power dissipation is very low. Therefore, Class-D amplifiers can 

achieve a higher efficiency compared to other types of amplifiers such as Class-A or 

Class-AB. Class-D amplifiers require less power from the power supply and can reduce 

the size of heat sinks for the amplifier. An amplified square wave signal from the 

switching transistors is demodulated by a low-pass filter that removes the high frequency 

elements. Therefore, an equivalent amplified analog signal is regenerated after passing 

through the low pass filter.  

The reproduced output voltage in the output filter stage can be mathematically 

derived by using the equation of the inductor voltage and current. The filtered output 

voltage and current can be considered constant during a switching period because the 

carrier switching frequency is much greater than the maximum input audio frequency [2].  

The instantaneous inductor current is  

   
1

L LI t V t dt
L

          (1.1) 

where VL(t) is the instantaneous voltage across the inductor. The inductor current at t0 

should be equal to the inductor current at t2, as shown in Figure 1-2, because the average 

inductor current is assumed constant during one switching period. Hence, equation (1.2) 

can be obtained. 

     
2

0
2 1

1
0

t

L L L
t

V t dt I t I t
L

          (1.2) 

The absolute values of the areas, AON and AOFF, should be equal to each other to satisfy 

equation (1.2). In other words, 
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Figure 1-2: Inductor current and voltage waveforms. 

ON OFFA A           (1.3) 

 ON DD O ONA V V t            (1.4) 

OFF O OFFA V t           (1.5) 

Substituting equation (1.4) and (1.5) into equation (1.3) will give 

 DD O ON O OFFV V t V t           (1.6) 

From equation (1.6),  

ON
O DD DD

ON OFF

t
V V V D

t t
   


      (1.7) 
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Figure 1-3: A closed-loop class-D amplifier. 

where D is the duty ratio of the output switching waveform. 

1.2 Total Harmonic Distortion and Noise in Closed-Loop Architecture 

Many class-D amplifiers with PWM based control have adopted both open-loop 

and closed-loop architectures. The open-loop architecture directly feeds a signal into the 

PWM generator, and may enable easier digital-input implementation. However, open-

loop architectures as shown in Figure 1.1 suffer from nonlinearities and noise due to dead 

time, amplitude-dependent output impedance modulation, linearity of the carrier 

waveform, and limited Power-Supply Rejection Ratio (PSRR) [3],[4].  

Closed-loop PWM-based class-D amplifiers, due to their negative feedback 

operations, can address many of the problems associated with open-loop, class-D 

amplifiers. Figure1-3 shows a typical closed-loop class-D amplifier, and Figure 1-4 

shows the linear model of its amplifier, where the gain of the PWM and output stage is 

assumed to be constant [5]. In Figure 1-4, the system transfer function (Vout / Vin) and 

noise transfer function (Vout / VN) are represented as 
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Figure 1-4: A linear model of a closed-loop class-D amplifier. 

  

1 int

int 10
1

N

out PWM FB

in PWM INV

V G G G R

V G G H R


  


       (1.8) 

int 10

1/ 2

1
in

out

N PWMV

V

V G G H





        (1.9) 

1 /( )FB IN FBG R R R         (1.10) 

1 /( )IN IN FBH R R R         (1.11) 

int
1 (1 )IN

A
G

sCR A


 
      (1.12) 

where A is a DC open-loop gain of the amplifier, and VN is the non-linearities due to 

harmonic distortion and power supply noise. From equation (1.9), VN can be reduced by 

optimizing the gain of the PWM stage, GPWM, the feedback factor, H1, and the gain of the 

integrator, Gint in the closed-loop architecture [5]. The gain of the PWM stage, GPWM, is 

obtained by calculating the ratio of the power supply voltage over the amplitude of the 
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Figure 1-5: Half-bridge configuration. 

carrier signal. The linearity of the carrier waveform is one of important practical 

parameters in PWM-based class-D amplifiers that directly affect the performance of 

THD. In [6], the effect of the carrier non-linearity related to THD is mathematically 

analyzed.   

The feedback schemes of PWM-based closed-loop amplifiers still present the 

problem of undesirable amounts of distortion and Electro-Magnetic Interference (EMI), 

which is harmonically related to the PWM carrier [4]. The EMI in a PWM-based 

amplifier is produced by the concentrated spectral energy in its switching frequency and 

harmonics. 

1.3 Output Stage of Class-D Amplifier  

The output architectures for class-D amplifiers can be categorized into two 

architectures; half-bridge and full-bridge topologies. There are advantages and 

disadvantages to each. A half-bridge architecture uses two transistors, while a full-bridge 

architecture uses four transistors as shown in Figures 1.5 and 1.6. Therefore, a half-bridge 

architecture is simpler and thus results in fewer components and less conduction and 

switching losses than that of a full-bridge architecture. On the other hand, a full-bridge 

architecture, which is often referred to as a bridge-tied load (BTL) or as H-bridge, even-
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Figure 1-6: Full-bridge configuration. 

order harmonic distortion can be eliminated because a full-bridge architecture has the 

differential output structure and generates a differential PWM signal across the load. A 

three-level PWM operation scheme can be also implemented for filterless applications in 

a full-bridge topology. Another advantage of a full-bridge is that it can achieve twice the 

output signal swing and thus deliver up to four times the power to the load than a half-

bridge topology operating from the same supply voltage. 

The power efficiency of the ideal class-D amplifier is 100%. In practice, 

however, there is a  limit to how much power efficiency can be achieved due to power 

losses in the output stage. The power efficiency of the output stage can be expressed as  

 100 %Load

Load Loss

P

P P
  


      (1.13) 

The main power dissipations in the output stage are conduction losses, switching 

losses, and capacitive losses. Conduction losses are due to the on-resistance of the 

switches. Switching losses are a result of the short-circuit path from the supply to ground 

when two switching transistors are simultaneously “on” during the transitions of input 
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Figure 1-7: Voltage across and current through the transistor during the transitions of 

input signal.  

signal as shown in Figure 1-7. Capacitive losses are a result of charging and discharging 

parasitic load capacitances. The total power loss can be represented as  

Losses cond sw capP P P P         (1.14) 

2

cond onP I R         (1.15) 

2

r f

sw DD peak PWM

t t
P V I f

 
    
 

     (1.16) 

2 2
outin PWM PWMC ddcap C V f C V fP                (1.17) 

where I is equal to the output current, Ron is the on-resistance of the switching transistors, 

fPWM is the switching frequency, Vc is the voltage to which parasitic capacitances are 

charged, and Cin and Cout represent the total parasitic capacitances. 

1.4 Voltage Domain Vs. Frequency Domain Signal Processing 

In typical low-power analog loop filter implementations, although the power 

supply voltage decreases, threshold voltages and saturation voltage (VDSAT) required by 

the transistor operation are not scaled down linearly. This causes the dynamic range of 
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Figure 1-8: Voltage-domain comparator-based quantizer. 

 

Figure 1-9: Frequency-domain quantizer. 

the analog signals to decrease and the nonlinearity generally increases because the 

transistor is working close to VDSAT. Hence, low supply voltage operation results in lower 

signal swing, which makes analog circuit design a lot more difficult in voltage domain 

signal processing.  However, as shown recently in several data converter applications 

[7],[8],[9], frequency domain signal processing maps the low-supply regime challenges 

to time domain, which resembles digital processing in its dynamic range requirements.  
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Figure 1-10: Example of parasitic capacitances of the latched comparator. 

The voltage-domain comparator-based quantizer and the frequency-domain 

quantizer are shown in Figure1-8 and 1-9, respectively. If we compare a traditional 

voltage-domain comparator-based quantizer with the oscillator-based frequency quantizer 

to achieve multiple quantization levels, the reference voltage is divided by the number of 

bits in the comparator-based quantizer.  Therefore, step size is reduced by increasing the 

number of bits in the voltage-domain signal processing. It can also generate metastability 

in low-voltage design.  Therefore, low offset pre-amplifier is required before comparator 

to avoid this problem. Low offset pre-amplifier often consumes a relatively large area and 

a large amount of power in order to achieve low offset voltages and high speed operation 

[8]. 

Kickback noise is also a problem in latched comparators because the 

instantaneous currents are coupled with inputs of comparator through parasitic gate-

source and gate-drain capacitance of transistors as shown in Figure. 1-10. The 

instantaneous large currents are created by the large voltage variation in regeneration 

nodes when the latch part of comparator regenerates the difference signals. This also 

causes harmonic distortion in class-D applications.   
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Figure 1-11: Examples of the frequency-domain ADCs with (a) the open-loop and (b) 

the closed-loop architecture. 

However, in frequency-domain quanitzer, voltage-controlled oscillator (VCO) 

generates the frequency, which is proportional to the average analog input signal. 

Frequency-domain quantizer doesn’t require the power consuming pre-amplifier and it is 

also a highly digital implementation. 

Therefore, frequency-domain signal processing offers a better resolution than that 

of voltage-domain methods in low-voltage designs. Table 1-1 shows a summary 

comparing the voltage domain and frequency domain quantizer. Figure1-11 shows 

examples of ADCs using the frequency-domain. In Figure 1-11a, registers and XOR 

gates perform the first-order difference of sampled/quantized VCO phases and thereby 

convert the VCO phase signal to a corresponding VCO frequency signal [10]. Therefore, 

frequency is the output variable of the quantizer and the mismatch in delay across the 
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Table 1-1 

The Comparison of the Voltage Domain and the Frequency Domain Quantizer 

 

Voltage Domain Quantizer Frequency Domain Quantizer 

Vref / N Variable delay of VCO stages 

- Metastability  

- Requiring low offset pre- 

   amplifier 

- Kickback of comparator 

- Increased area / power  

  consumption 

- Highly digital implementation 

- Compact & high speed    

operation without requiring       

 high-power consumption 

 

 

 

stages of VCO is effectively first-order noise shaped. However, the nonlinearity of the 

VCO’s voltage-to-frequency conversion gain (Kvco) severely limits the resolution of this 

open-loop architecture. In Figure 1-11b, the VCO phase is sampled and quantized by 

registers and the output of DAC is feedback. Therefore, linearity is improved but the 

closed-loop architecture lost the first order shaping of VCO’s delay mismatch [7].  

 

1.5 Motivation and Goals of Thesis 

The range of audio input frequencies is from about 20 Hz to 20 kHz. Therefore, 

audio amplifiers in this range should have good frequency response. The objective of 

audio amplifiers is to regenerate amplified audio input signals faithfully, efficiently, and 

with low distortion. Therefore, audio amplifier designs mainly require a low THD+N 

operation, high power efficiency, high power-supply rejection ratio, feedback of the 
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output signal to reduce or eliminate distortion and noise from the output power stage and 

low EMI. 

Low-supply voltage operation makes analog circuit design more difficult in 

voltage-domain signal processing. An effective way to overcome the difficulty of low-

voltage design is to process the signal in the frequency domain. Circuits operated in the 

frequency domain are basically digital. Therefore, frequency-domain signal processing 

offers advantages such as less consuming power and smaller chip size. 

   The aim of this research is to define a new class-D audio amplifier architecture 

and develop design techniques to satisfy the above requirements in low power supply. A 

PDM-based class-D audio amplifier using frequency-domain quantizer is proposed to 

satisfy these requirements. The fully differential topology is used to increase the noise- 

dependent dynamic range, which is also an important issue in low-voltage design. 
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Figure 1-12: Mixed current/voltage feedback configuration. 

1.6 State of Arts 

There are a variety of topologies to achieve the required performances in class-D 

audio amplifiers. Alternative approaches are using a mixed voltage/current feedback to 

reduce distortion [11] and using a linear amplifier and a switching amplifier in a master-

slave configuration [12]. The mixed voltage/current feedback configuration is shown in 

Figure1-12. The LC output filter is placed outside the feedback loop in the typical 

voltage-mode class-D amplifier because of the significant phase shift of the filter. 

Because of this, the feedback configuration of the typical voltage-mode class-D amplifier 

cannot reduce the distortion from  the low-pass LC output filter due to the behavior of the 

inductor’s magnetic core (hysteresis and saturation). However, in mixed voltage/current 

feedback configuration, the filter is placed in feedback path and this configuration can 

reduce filter non-linearities by one order of magnitude. The disadvantage of this 
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Figure 1-13: The linear-switch mode combination amplifier. 

configuration is that ensuring stability in various load and signal swing conditions is a 

critical requirement.  

 

Figure 1.13 shows the linear-switch mode combination amplifier. In linear-

switch mode combination amplifiers, the linear amplifier cancels the ripple associated 

with the switching amplifier. This topology is an intermediate solution between pure 

linear and pure class-D power amplifiers. Most of the output current is delivered by 

switched-mode amplifier and the linear amplifier only supplies the current to compensate 

for the ripple due to switching operation.  In this configuration, the linear amplifier 

should have a high gain and a wide bandwidth with low output impedance in order to 

achieve a high noise rejection. And the current-sensing block should have high accuracy 

with much faster response than the switching frequency.   
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Figure 1-14: PDM based class-D amplifier. 

Recently, Pulse Density Modulated (PDM) class-D amplifiers based on analog 

 modulators with high-pass noise-shaping characteristics have been introduced as an 

alternative scheme for controlling the switching power stage [13]-[16]. PDM based class-

D amplifiers, as shown in Figure 1.14, can eliminate harmonic distortion caused by the 

nonlinearity of the carrier and have the characteristic of shaped quantization noise, 

achieving a lower total harmonic distortion (THD) performance. PDM modulation also 

minimizes EMI because it spreads out the spectral energy of the output signal over a wide 

range of frequencies [13], [17]. A PDM-based class-D amplifier is closely related to this 

thesis. 

1.7 Thesis Organization 

The outline of the dissertation is as follows. Chapter 2 introduces the concept of 
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modulation scheme and typical  modulators. In chapter 3, system level implementation 

of the proposed class-D amplifier is provided. Chapter 4 describes circuit level 

implementation. Characterization results are presented in Chapter 5, and conclusions are 

provided in chapter 6. 
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Figure 2-1: Natural sampling and uniform sampling. 

2 MODULATION SCHEMES AND OVERVIEW OF  MODULATORS 

2.1 Pulse Width Modulation (PWM) 

 PWM compares the input signal to a triangular or saw -tooth waveform that runs 

at a fixed carrier frequency. It generates a stream of pulses at the carrier frequency, and 

the duty cycle of the PWM pulse is proportional to the amplitude of the input signal.  

Therefore, PWM has two important advantages. The first advantage is that it encodes a 

signal into a few discrete levels, with the information represented in pulse duty ratios. 

The second advantage is the ability to recover the signal from its discrete-level form with 

a passive filter [18]. Two main forms of PWM are the natural pulse width modulation 

(NPWM) and the uniform pulse width modulation (UPWM) as shown in Figure 2-1. 

NPWM is basically an analogue process. Thus, it implies a natural selection of the 

sampling points. UPWM defines the pulse widths from regular samples of the signal, and 

it is suitable for a digital system [19]. Figure 2-2 shows the spectrum of PWM when the 
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Figure 2-2: Spectrum of PWM. 

frequency of the input signal isv and the carrier frequency isc. Fourier series 

expressions are given by equation (2.1) for NPWM and equation (2.2) for UPWM, where 

M is a modulation depth, m is a carrier harmonic number, H is pulse height, n is a signal 

harmonic number, and Jn is a Bessel function of the first kind with integer order n. The 

Fourier series of a typical PWM signal consists of four components; the first component 

is the DC component and the second is the modulating signal. The third is the carrier and 

its associated harmonics. The last is the intermodulation products between the 

fundamental and harmonic components of the modulating signal and the carrier.   
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In the ideal PWM-based class-D amplifier, the first term (DC component) is 

eliminated by a bridge-tied-load differential drive configuration. The third term and the 
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Table 2-1 

Comparison of PWM and PDM 

 

 PWM PDM 

Pros 

- Low implementation complexity 

- Low switching frequency 

- High power efficiency 

-High pass noise shaping 

characteristic 

-EMI advantage 

Cons 

- EMI issue (the concentrated 

spectral energy  in the switching 

frequency and its harmonics) 

- Nonlinearity  caused by the 

carrier frequency 

-High switching frequency 

(trade-off high THD performance 

with the power efficiency) 

-Design complexity 

-Stability issue 

 

last term are effectively removed by the low pass filter. As a result, the second term (the 

modulation signal) is just used in class-D amplifier, and THD of PWM generated from 

the carrier is ideally zero. The spectral characteristics of the output signal depend on the 

type of carrier used for PWM generation. 

 However, it is very difficult to obtain the ideal triangular carrier without 

nonlinearity in low-voltage PWMs. The nonlinearity of the carrier introduces the 

harmonic distortion in the PWM-based class-D amplifier. 

2.2 Pulse Density Modulation (PDM) 

PDM is generally accomplished with a sigma-delta () modulator. Although a 

fast switching rate restricts the frequency range of the sigma delta modulator for class-D 

audio amplifiers, this modulation technique can avoid the nonlinear problem caused by 
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Figure 2-3: Basic structure and linear model of  modulator. 

the carrier and achieve a high THD performance. Also, PDM modulation minimizes EMI 

because it spreads out the spectral energy of the output signal over a wide range of 

frequencies [20]. Table 2-1 shows a comparison of PWM and PDM.  

2.3 Overview of  Modulators 

2.3.1 Over-Sampled Noise-Shaping  

 modulators have the characteristic of over-sampling input signal and  shaping 

of the quantization noise that is realized using a closed-loop feedback around a quantizer. 

Therefore, signal-to-noise ratio (SNR) can be improved compared to unshaped converters 

employing oversampling [21]. The input signal feeds to the quantizer through integrators, 

and the quantized output signal feeds back to obtain the error signal that is the difference 

between the input and the feedback signal. The error signal accumulates in integrator and 

finally corrects itself because the feedback architecture forces the average value of the 

quantized signal to track the average input signal. The basic structure and linear model of 
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Figure 2-4: Probability density function (pdf) of the quantization error. 

 modulator are shown in Figure 2.3. It consists of a loop-filter H(f) and a 2-bit 

quantizer. In a linear model of a quantizer, the output waveform is generated by 

multiplying the input signal with the quantization gain k and adding the quantization error 

e(n). The quantization error can be approximately a random number and represented by a 

white noise source. It uniformly distributes between -/2 and /2 and is independent of 

the input signal.  is the step size of the output waveform. Figure 2-4 shows the 

probability density function of the quantization error. The total quantization noise power, 

which is independent of the sampling frequency fs, can be calculated as 

2 2
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The output in Figure 2.3 can be represented as  

                                ( ) ( ) ( ) ( ) ( )Y z STF z X z NTF z E z                        (2.4) 



  23 

where X(z) and E(z) are the Z-domain representation of the input signal and quantization 

error. The signal and noise transfer functions can be respectively calculated as 

 
 

1 ( )

q

q

H z k
STF z

H z k



                                             (2.5) 

 
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1

1 q

NTF z
H z k




                                           (2.6) 

where kq is a quantizer gain. 

 If the loop filter transfer function H(z) is designed to have a large gain within the 

desired signal band and a small gain outside the band to suppress the noise, the signal and 

noise transfer functions can be calculated as  

  1STF z            (2.7) 

 
 
1

1
q

NTF z
H z k

        (2.8) 

Therefore, the signal can be passed directly to the  modulator, and the noise is greatly 

reduced inside the signal band. If the loop filter H(z) is designed by an integrator in a 

first-order low-pass  modulator, its transfer function is represented as  

 
1

11

z
H z

z







      (2.9) 

The signal and noise transfer function can be calculated as  

    1STF z z       (2.10) 

  11NTF z z       (2.11) 

The input signal is passed to  modulator with a delay of one clock cycle, and the 

quantization noise is passed through a first-order high-pass filter [21]. Therefore, the 
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quantization noise is shaped. The peak SNR of the first-order  modulator can be 

represented as  

6.02 3.41 30log( )SNR B OSR      (2.12) 

where B is the number of bits,  and OSR is the oversampling ratio (OSR). The peak SNR 

of an oversampled modulator results in a 0.5-bit increase when OSR is doubling. 

However, from equation (2.12), a 1.5-bit increase (or 9-dB increase) in SNR can be 

obtained when OSR is doubling. 

2.3.2 Performance Increase in  Modulators 

High-order noise shaping characteristics can be achieved by high-order loop 

filter, H(z). The transfer function of N
th
-order modulator is represented as  

     1( ) ( ) 1 ( )
N

NY z z X z z E z                         (2.13) 

   11
N

NTF z z        (2.14) 

NTF plots of the higher order are shown in Figure 2.5, where z is equal to e
 (j2f/fs)

 and N = 

1, 2, and 3. The increase of the order of the modulator reduces the in-band noise through 

higher-order filtering and significantly improves the dynamic range (DR). However, the 

high-frequency gain of the higher-order NTF increases rapidly as shown in Figure 2.5. 

The higher gain of the NTF amplifies the high-frequency quantization noise and the 

amplified high-frequency quantization noise overloads the quantizer input. It results in 

instability. Therefore, to ensure the stability, it requires the reduction of the loop-gain or 

the maximum input signal level. If poles are introduced into pure N
th
-order 

differentiators, NTF(z), by using Butterworth high-pass response, it can maximally flatten 

the high-frequency region of NTF(z) and improve the stability due to the reduction in the 

high-frequency gain of NTF. Equation (2.15) shows the modified NTF by adding D(z). 
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Figure 2-5: NTF (z) of N
th
-order  modulator. 

1(1 )
( )

( )

nz
NTF z

D z


       (2.15) 

The comparison between the pure 5
th
-order NTF and Butterworth NTF is shown in Figure 

2-6. The 30-dB high frequency gain of the pure 5
th
-order NTF is reduced by the 3-dB 

gain in the Butterworth NTF in Figure 2-6. Another advantage of the Butterworth high-

pass filter is that the poles are low Q instead of high-Q poles (poles very closed to the 

unit circle). Hence, it tends to be less susceptible to oscillations caused by input signal 

that are at the same frequency as the poles [22]. 

Increasing the OSR reduces the in-band noise power by 9 dB per octave as 

aforementioned. However, if the signal bandwidth of the input signal is a constant, the 

sampling frequency must be increased for higher OSR. It requires faster circuits and an 
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Figure 2-6: NTFs of a 5th-order pure differentiator and Butterworth high-pass filter. 

increasing power consumption. Therefore, the increase of the OSR has the limitation and 

is usually kept as low as possible. 

A multibit quantization can improve the performance of  modulators because 

the quantization error is reduced due to the decrease of the step size of the quantizer. A 

multibit quantization tends to assist the stability of higher order modulators. Its gain can 

be approximately represented as unity, and it reduces the requirement of loop gain 

scaling. However, the linearity of the feedback DAC can restrict the performance of 

modulators because its error directly feeds into the input of the modulator. For a one-bit 

quantizer, there is no problem regarding the linearity of a feedback DAC, since a two- 

level DAC is intrinsically linear [23]. 
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Figure 2-7: General single-loop  Architecture. 

2.3.3 Single-Loop, Single-Bit, Higher Order  Modulators 

 Single-loop architectures are introduced to review the fundamentals of  loop 

filter design in this section. All  feedback topologies consist of the STF and the NTF 

[22]. In general, single-loop  architectures can be also described as shown in Figure 2-

7. The loop filter L0(z) and L1(z) can be represented as functions of the loop parameters 

from the implemented architecture. Single-loop, single-bit  modulators are widely 

used due to their simplicity and insensitivity with regard to circuit imperfections [24].  

Three single-loop architectures are commonly exploited to implement the single-loop 

structure. The first single-loop structure is the chain of integrators with distributed 

feedback. The second is the chain of integrators with weighted feedforward summation. 

The last is the distributed feedback structure with local resonator feedback loops [22]. 

The chain of integrators with distributed feedback is shown Figure 2-8. The output Y(z) is 

fed back to each of the integrators through each gain stage a1-a4. Its loop filters are 

represented as  
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Figure 2-8: Chain of integrators with distributed feedback. 

       
 

1
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Therefore, NTF can be given by 

4

4 3 2

4 3 2 1

( 1)
( )

( 1) ( 1) ( 1) ( 1)

z
NTF z

z a z a z a z a




       
    (2.18) 

 

All zeros of NTF are at z =1. In other words, the zeros are all at DC in the frequency-

domain. The main advantage of this architecture is that it can achieve nearly flat 

passband response by using the Butterworth filter as in the above-mentioned equation 

2.15. The main disadvantage of this architecture is that the integrator outputs contain a 

significant amount of the input amplitude as well as the filtered quantization noise. It 

requires the large swing capabilities of integrators or a scaling down of coefficients. 
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Figure 2-9: Chain of integrators with weighted feedforward summation. 

Hence, the chip size and power consumption can be increased. The circuit noise 

contribution can be also increased because small-scaling coefficients are designed by a 

small-sampling capacitor in discrete-time (DT) SC integrators or large resistance in 

continuous-time (CT) integrators. The other disadvantage of this architecture is that the 

STF is dependent on the NTF. If the NTF is optimized, the STF is fixed because the loop 

filter for the signal and noise are identical. 

 The chain of integrators with weighted feedforward summation is shown in 

Figure 2-9. The loop filters of this architecture are represented as  

       
31 2 4

0 1 2 3 4
( ) ( )

1 1 1 1

aa a a
L z L z

z z z z
     

   
   (2.19) 

This architecture also shows that the STF is fixed if the loop filter is determined for 

optimum noise shaping. The main advantage of this architecture is that the outputs of 

integrators do not contain the significant amount of input signal and only operates on the 

quantization noise. 
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Figure 2-10: Chain of integrators with distributed feedback and local resonator 

feedbacks. 

 

Figure 2-11: The NTFs of distributed feedback architecture without / with local 

resonator feedback loops. 

Therefore, it does not require the small scaling of coefficients and the large output swing 
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Figure 2-12: Quantizer models. 

of integrators. The disadvantage of this architecture is that the STF contains peaking at 

high frequencies. Input signals at these frequencies can make modulators with this 

architecture overload. Thus, an additional pre-filter would be required in the input of the 

modulator to prevent input signals at these frequencies [22].   

The distributed feedback architecture with local resonator feedback loops is 

shown in Figure 2-10. Additional local resonators in the distributed feedback or 

feedforward summation architectures can spread the NTF zeros over the signal 

bandwidth from DC due to generating pairs of complex zeros. This method can suppress 

the in-band quantization noise more as shown in Figure 2-11. 

2.3.4 Stability of  Modulators 

The main drawback of higher-order  modulators is instability for higher input 
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signal amplitude if all zeros of their NTF (z) are at 1. If the modulator is instable, the 

amplitude of the internal signal of integrators is rapidly increased, and this results in 

oscillations at low frequency. Therefore, the loop gain is generally reduced by filter-

scaling to increase the stability. The stability of  modulators can be analyzed by using 

the variable quantizer gain model instead of the injected noise source model as shown in 

Figure 2.12. Using the injected noise source model, the noise shaping characteristic 

which is the benefit of  modulators can be obtained from the transfer function between 

the noise input and output. However, this model does not give any information related to 

the stability of the modulator [25]. The variable quantizer gain model is that the quantizer 

gain kq is variable and dependent on the input signal of the quantizer as given by equation 

(2.20). 

q

q

y
k

v
       (2.20) 

where y is the output signal and vq is the input to the quantizer. A modulator's transfer 

function with the variable quantizer gain model can be obtained and root locus techniques 

can be exploited to analyze the modulator stability. The use of the variable quantizer gain 

model generates a root locus where roots move along the locus as the quantizer gain 

changes. If roots are driven outside the unit circle, the modulator is unstable or has limit 

cycles. Figure 2-13 shows the root locus plot of a third-order modulator with distributed 

feedback. When a quantizer gain is less than kcrit = 0.54, the modulator is unstable 

because the input signal levels of quantizer are large, kq falls, and poles move outside the 

unit circle. 
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Figure 2-13: Root locus of a third-order modulator with distributed feedback. 

The above root locus method is a linear approach to analyzing the nonlinear 

system. Therefore, the stability analysis of  modulators should be confirmed by 

behavioral simulations as well as the variable quanitzer gain model [23]. 

2.3.4 DT Vs. CT Modulators 

 Most of the  modulators have been designed in DT circuits, like using the 

switched capacitor (SC) technique during the last decades. DT  modulators employing 

the SC technique can be designed with a high degree of linearity and can be easily 

simulated and implemented. However, its maximum clock rate is limited by the OTA 

bandwidth and slew rate [26]. The advantage of CT  modulators is that sampling 

operation is inside the loop, unlike DT  modulators, where a sample-and-hold 

(S/H) circuit is at the input of modulators, as shown in Figure 2.14. As a result, all non-
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idealities of the sampling process can be noise-shaped in CT  modulators, while the 

error from a S/H circuit adds to the input signal in the DT  modulators [26]. CT  

modulators also have an implicit antialiasing filtering due to the shift of the sampling 

operation. Hence, CT  modulators can relax the required performance of a front-end 

AAF or eliminate the necessity of a front-end AAF [23]. The comparison between DT 

and CT  modulators is shown in Table 2-2. 
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Table 2-2 

Comparison of DT and CT  Modulator 

 DT CT 

Pros 

- Low sensitivity to clock jitter 

- Low sensitivity to DAC 

waveform 

- Highly linear SC integrator 

- Capacitive loads only 

- Compatible with VLSI CMOS 

processes 

- Accurate pole-zero locations that 

are set by capacitor ratios 

- Easily simulated 

- Implicit anti-aliasing filter 

-  requirements 

- High-speed operation 

- Less glitch sensitive 

- Easy to breadboard 

- Less digital switching noise 

-  SNR is not limited by cap size 

Cons 

-   Large capacitors required for high 

SNR ( kT/C noise) 

-  Large spike currents and glitches 

drawn by capacitors  

-  Sampling operation at the outside 

of the  loop 

-  RC time variation  

-  Needs large capacitors, linear high-

value resistors, low-noise op amps 

-  Sensitivity to clock jitter, noise, 

and switching characteristics of 1-

bit feedback waveform 

-  Loop filter does not scale with 

sampling frequency 
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Figure 2-14: Block diagram of (a) DT and (b) CT modulators. 

 

2.3.5 DT-to-CT Conversion 

 A number of software tools and architectures are developed and presented in the 

design of DT  modulators. If the procedure of the design of the CT  modulators 

begins in the DT-domain, the required overall design time can be reduced. DT integrators 

can be converted into CT integrators if the DT-to-CT conversion is used to transfer the 

coefficients from DT modulators to CT modulators. The most common methods of DT-

to-CT conversion are the impulse-invariant transformation and the modified Z-transform. 

The overall loop transfer function of the CT modulator can be considered as the DT 

transfer function because the internal quantizer of the CT modulator is clocked and 

performs the sampling operation inside loop. Thus, the equivalent z-domain transfer 

function H(z) of the loop transfer function from the output of the quantizer to its input can 

be defined as Figure 2-15 at the sampling instants [28].  
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Figure 2-15: CT  open loop block diagram. 

Its relationship can be represented as  

   
11 ( ) ( ) ( )

sDAC t nTZ H z R s H s


 L     (2.21) 

In the time domain,  

    ( ) ( ) ( ) ( )
sDAC t nT DAC t nTsh n r t h t r h t d  



 



           (2.22) 

where rDAC(t) is the impulse response of the specific DAC such as return to-zero (RZ), 

non-return to-zero (NRZ), and half-delay return to-zero (HZ) DAC as shown in Figure 

2.16. This DT-to-CT transformation is called the impulse-invariant transformation. The 

specific rectangular DAC pulse with magnitude 1 can be defined as  

      
1, , 0 1

( )
0, .

DAC

t
r t

otherwise

       
 


    (2.23) 

Its Laplace transform of (2.23) is 

( )
s s

DAC

e e
R s

s

  
       (2.24)  

If RDAC (s) is NRZ DAC, (,) = (0, 1) in (2.23). 

 For second-order modulator (N = 2) with NRZ feedback DAC pulse, substituting 
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Figure 2-16: NRZ, RZ, and HZ DAC feedback impulse response. 

(2.14) in (2.6) results in the DT loop filter transformation as shown in equation (2.25) 

 

2

2

2 1
( )

( 1)

2 1

1 1

z
H z

z

z z






 
 

         (2.25) 

Applying the first row of Table 2-3 to the first term of (2.25) and the second row to the 

second term with (,) = (0, 1) results in the equivalent s-domain transfer function H(s): 

   
2 2

1 0.5 1 1.52
( ) ( )S S

S S S

sT sT
H s H s

sT sT sT

 
        (2.26) 

 Another DT-to-CT transformation is the modified Z-transformation [28], [30]. In 

this method, the discrete system behavior is not considered in a sampling instant but at all 

instants of time. Thus, the modified Z-transformation is useful in determining the 

equivalent CT loop filter with arbitrary feedback DAC waveforms [31]. It can be 

expressed as  



  39 

 

 ( ) ( ) ( )mi DAC

i

H z H s R s                   (2.27) 

The equivalent s-domain transfer function H(s) can be determined in the same way as 

shown during the impulse-invariant transform by using equation (2.27).  

The direct design method of a CT loop filter from the desired noise-transfer 

function is explained in the following statement. If the quantizer gain, k, is assumed to 

unity for the simplicity, the NTF(s) from the noise source to the modulator output is given 

as  

( ) 1
( )

( ) 1 ( )

A s
NTF s

B s H s
 


      (2.28) 

where H(s) is the CT loop filter. From (2.28), H(s) is derived as 

( ) ( )
( )

( )

B s A s
H s

A s


        (2.29) 

Next, the loop filter can be easily designed by using the MATLAB Signal Processing 

Toolbox command: 

[B, A] = butter (N, Wn, ‘high’, ‘s’)  

where N is the filter order, Wn is the stopband edge frequency, and ‘high’ and ‘s’ design a 

CT high-pass filter. It is important to consider a trade-off between the  modulator 

noise attenuation and stable amplitude range in the feedback filter design because 

increasing of the high frequency gain of NTF causes the maximal stable amplitude to 

reduce [32]. 
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Table 2-3 

s-domain Equivalences for z-domain Loop Filter Poles [23], [29] 

z-domain s-domain equivalents with Ts 

 
1

(𝑧−1)
 

 

𝜔0

𝑠
 ,          

𝜔0 =
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𝑇𝑠(𝛽 − 𝛼)
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1

𝑇𝑠  
2 (𝛽−𝛼)
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𝑇𝑠⬚(𝛽 − 𝛼)
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Figure 2-17: Active RC integrator with single pole amplifier. 

2.3.6 Nonidealities in CT  Modulators 

 In practice, there are certain nonidealities that decline the performance of  

modulators. These include a finite op amp gain, a finite gain-bandwidth product (GBW), 

slew rate, non-linearity amplifier gain, circuit noise, time-constant error of integrator, and 

integrator nonlinearity, etc [23] [29].   

Finite op amp gain 

 Figure 2-17 shows a typical schematic of an active RC-integrator. The dc gain of 

an integrator is ideally infinite. Thus, the integrator transfer function is given as  

1

1

1 1
1

( ) ( )

ideal
RCTF

sRC
s

A s A s RC

 
 
  

 

      (2.30) 

However, the op amp gain is limited by circuit constraint. The transfer function of the 

integrator with the finite dc gain, Adc, and for a frequency-independent is given as  
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     (2.31) 

 

The poles of the loop filter are the zeros of the NTF. Thus, all zeros of NTF are pushed 

away from dc. It causes to reduce the amount of attenuation of the quantization noise in 

the baseband and it is known as leaky integration. If the integrators have         , the 

SNR will be about 1dB worse than if the integrators had infinite dc gain [33] [34]. 

Finite gain bandwidth product 

 A GBW of the op amps introduces non-dominant poles into the integrator 

transfer function. The finite GBW in CT  modulators causes integrator gain errors. The 

unit-gain bandwidth of the op amps should be at least an order of magnitude higher than 

the sampling rate [23]. The GBW in cascaded DT implementations is required to a factor 

of at least five or ten times the sampling frequency due to their increased sensitivity to 

nonidealities [35]. However, the GBW in CT  modulators can be decided lower than 

the sampling frequency [36].  

Finite slew rate 

modulators are also affected by finite slew rate (SR) of the op amps. The 

finite SR causes distortion as well as an increase of the noise floor [37]. In DT 

implementations, signal transitions are very fast SC-pulse. Thus, the finite SR can induce 

incomplete setting and yield a gain error. In CT modulators, the specifications of the SR 

can be relaxed because the various signals are changing much more slowly depending on 

the feedback waveform [23] [38].  

Non-linearity of amplifier gain 



  43 

 If the gain of op amps depends on its input signal, harmonic distortion is shown 

in the output spectrum [39]. The dominant source of the distortion is the input pairs of the 

first op amps because the non-linear behaviors of later-stage are divided by the gains of 

the previous stages when referred to the input. If the op amp for the first integrator stage 

has low distortion, the third-harmonic distortion of the  modulator is given as 

2

3

4

1 1
3

16

in

in dac in

g V
HD

g R R R

   
      

   
  (2.32) 

with 

1

1 1 1
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g g
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 
   

 
                (2.33) 

where Rin is the input resistor, Rdac is the feedback DAC resistor, and g1 and g3 are the 

linear and third harmonic transfer coefficients, respectively [40]. However, if the op amp 

has the large distortion, the expressions for the linear and non-linear transfer coefficients 

can be shown as  

3

1 3 3 2
,

2 8 64

m mD D

GT GT D

g gI I
g g

V V I
                       

(2.34) 

where ID is the transistor bias current of op amps, VGT is the effective gate-source voltage, 

and gm is the transconductance of the input transistors. If equation (2.34) is substituted 

into equation (2.32), the third-harmonic distortion is modified as  

2

3 3 2
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64

in in

m in D dac

V R
HD

g R I R

 
  

 
      (2.35) 

Thus, the linearity can be improved if Rin is increased up to the allowable thermal noise 

limit or the input transconductance is increased [40]. 

Time-constant error (Integrator gain error) 
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The variation of RC time constant in CT  modulators can be more than 30% 

because process variations of the absolute component values are reported by 10-20%.  

The variation of the RC time constant can be modeled by an error RC and the integrator 

transfer function is defined as  

 
1

1RC

s

RC

f
TF

sRC s
  


      (2.36) 

with  

   
2 2

RC R C           (2.37) 

 

where fs is the sampling frequency. Considering this variation, the total in-band 

quantization noise power (IBN) of the single-loop, M-order modulator is given as  

 
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 


        (2.38) 

where  is quantizer step size, k1 is the feedback scaling  coefficient of the first 

integrator, an OSR is the oversampling ratio [41]. A time-constant variation of RC = 20% 

results in a 5-dB increased IBN. 

Circuit noise 

 The most critical error source is located at the input of the modulator because no 

noise shaping takes place at the input stage [41]. Thus, the overall noise power is 

governed by the input-referred noise of the first integrator if a  modulator is designed 

that the overall noise power is dominated by circuit noise. The dominant noise sources in 

the active RC integrator are shown in Figure 2-18. The total input-referred noise is given 

as  
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Figure 2-18: Schematic of a fully differential active RC-integrator with noise sources 
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     (2.40) 

where ZF is the feedback impedance. Each resistance (R and RDAC) generates thermal 

noise and the amplifier introduces the thermal noise and 1/f noise like equation (2.41) and 

(2.42). 

2 2

, ,4 , 4
DACn R n R DACv kTR v kTR        (2.41) 
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f e fe th
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gm C WL f
         (2.42) 

Where, ne,th and ne,f are the thermal and flicker noise excess factors and kf and af are the 

flicker noise parameters [23]. Table 2-4 shows the summary of impact of nonidealities of 

integrator. 
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Table 2-4 

Impact of Nonidealities of Integrator [23] 

Block Nonideality Impact 

Op amp 

Finite and nonlinear gain 

Increased noise floor, 

 Harmonic distortion 

Finite unity gain bandwidth 

Increased noise floor, 

Stability properties 

Finite slew rate 

Quantization noise increase, 

Harmonic distortion 

Op amp gain nonlinearity Harmonic distortion 

Thermal and 1/f noise Increased noise floor 

V-I Conv. 

(R) 

Nonlinearity Harmonic distortion 

Thermal noise Increased noise floor 

Integrator  

Gain 

Time constant mismatch 

Less aggressive noise 

shaping or stability issues 
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Figure 3-1: System level diagram of the proposed class-D audio amplifier. 

3 PROPOSED ARCHITECTURE 

3.1 Loop Filter Design 

The system level block diagram of the proposed closed-loop class-D amplifier is 

shown in Figure 3.1. Although class-D amplifiers operating in the open loop mode 

remove the need for an additional DAC, they typically have inferior PSRR and distortion 

[42]. Therefore, closed-loop analog input class-D amplifier architecture is adopted to 

improve distortion and supply rejection performance [4]. The nonlinearity of the ramp 

generator introduces harmonic distortion in typical PWM-based class-D amplifiers. On 

the other hand, higher oversampling rate, single bit PDM drivers work on a single-bit 
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comparison (quantization) at the loop filter output. The single-bit quantization achieves a 

high linearity, and the harmonic distortion caused by the nonlinearity of the carrier can be 

eliminated. On the other hand, the limiting factor for the proposed architecture is the 

oversampling rate of the modulator, and the order of loop filter (defined by the number of 

integrators in the loop). The proposed class-D amplifier consists of a second-order feed-

forward type loop filter, an ICO-based voltage-to-phase integrator, and a digital 

frequency discriminator that can obtain a 3rd order noise shaping. As an output topology, 

a full-bridge topology is adopted to cancel the even order harmonic distortion 

components and to drive low impedance speaker loads. The external low pass filter is 

used to reconstruct the input signal. If the loop filter order is increased in the proposed 

system, we can obtain better SNR and DR, while keeping the superior distortion 

characteristics of the approach. The proposed architecture is capable of supporting a 

higher SNR, as long as the power consumption limits can allow a higher order loop filter. 

As shown in previous  ADC designs, the choice of a frequency domain quantizer in 

place of voltage domain implementations enables lower power supply operation with 

higher order noise-shaping benefits [8]. In frequency domain quantizers, ICO generates a 

frequency that is proportional to the average analog input signal. It does not require the 

power- consuming pre-amplifier, and it is also highly digital implementation. Therefore, 

frequency-domain signal processing offers a better resolution than that of voltage-domain 

methods in low-voltage designs. In another ADC application, phase has been used as the 

quantizer output variable, which further improves linearity, by utilizing VCO as the loop 

integrator [9]. In both these approaches, a multi-bit quantizer is used to increase ADC 

SNR. However, multi-bit quantizers are not suitable for H-bridge driven class-D 

amplifier applications because only two switches and a single supply rail are preferred in 

the switching power stage. 
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Figure 3-2: Simulated THD results of the class-D amplifier in open and closed loop 

conditions. 

3.2 Reduction of Non-linearity of the ICO Gain Transfer Function 

The main disadvantage of an ICO-based quantizer is that its linearity is impacted 

by the ICO gain transfer function with respect to input voltage. The non-linearity of the 

ICO is specified as the ratio of the maximum frequency error to the ideal frequency of the 

ICO [7]. In the proposed approach, the ICO is inside the main loop of the proposed class-

D amplifier. Therefore its non-linearity is suppressed by the loop-gain of the feedback 

amplifier. Figure 3-2 shows the overall THD performance at different levels of the ICO 

non-linearity (KICO). KICO is the ICO gain. Figure 3-3 shows the output spectra of the 

stand-alone ICO-based quantizer, which is in open-loop condition and the proposed ICO-

based modulator in the case where the KICO has 5% non-linearity. The proposed system is 

in feedback operation with a second-order loop filter. As shown in Figure 3-3, harmonic 

distortion products are suppressed in the feedback system with the second-order loop 

filter; and a third-order noise-shaping characteristic is also achieved. 
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Figure 3-3: Behavioral simulation of ICO-based quantizer with the non-linearity of 

KICO in the open- and closed-loop conditions. 

 

Figure 3-4: Linear model of the proposed class-D amplifier with frequency domain 

quantizer. 

Figure 3-4 depicts the linear model of the modulator in the proposed class-D 

amplifier. VQ and VSW represent quantization noise and switching noise of the output 

power stage, respectively. The transfer function of the loop filter, LF(s) as shown in 

Figure 3-4 is 

            

  1 2 2

1 3

12 ( )
(1 )ssT ICO

K A K s K A
F eLF s

s

 
  

 
   

           (3.1)  

where F1 is the feedback coefficient, A1 and A2 are integrator coefficients,  K1 and K2 are 

feed-forward coefficients, and Ts is the sampling period. The Over-Sampling Ratio 

(OSR), defined by the ratio of the sampling frequency to the Nyquist rate is designed to 

be 100, which corresponds to a sampling frequency of 4MHz.  

After the OSR is selected for best signal-to-noise and distortion ratio (SNDR), 

the ICO center frequency (Fcenter) and current-to-frequency gain (KICO) needs to be 

optimized. The ICO frequency transfer functions according to the variation of KICO and 



  51 

Fcenter are shown in Figures 3-5a and 3-6a, respectively. The histogram of the ICO input 

voltage according to the variation of KICO and Fcenter are shown in Figures 3-5b and 3-6b, 

respectively. As shown in the histograms of the ICO input voltage in Figures 3-5b and 3-

6b, the variation of KICO and Fcenter can cause overloading or clipping at the quantizer 

input. 

When the value of KICO is increased due to increased loop gain as shown in 

Figure 3-5a, the voltage swing of the ICO input signal is reduced as shown in Figure 3-

5b. As an example, when KICO is 8 kHz/µA in Figure 3-5b, the input signal of ICO is over 

the limitation of the input signal range. As a result, the power spectrum density of odd 

harmonic distortion products is increased, as shown in Figure 3-7. However, with an 

increase in ICO gain, the effect of phase noise in the output frequency of ICO also  
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Figure 3-5: (a) ICO frequency transfer function according to the variation of KICO (b) 

Histograms of the ICO input signal according to the variation of KICO. 

 

Figure 3-6: (a) ICO frequency transfer function according to the variation of Fcenter of  

ICO (b) Histograms of the ICO input signal according to the variation of Fcenter of ICO. 
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Figure 3-7: Power spectrum with KICO = 8 kHz/µA. 

increases. Thus, KICO is designed to be 10 kHz/µA in the proposed class-D amplifier as an 

optimum point between phase noise and comparator input voltage spread, based on 

transient simulations and ICO input node voltage histograms.  

Figure 3-6b shows the ICO input histogram when Fcenter is swept from 0.8 MHz to 1.2 

MHz. At 0.8 MHz and 1.2 MHz of the Fcenter the input voltage range of the ICO shifts 

from the center, and its input voltage goes out of range of the ICO linear transfer 

function. As a result, even harmonic distortion products, as well as odd harmonic 

distortion products, are generated, as shown in Figures 3-8 and 3-9. Therefore, Fcenter of 

the ICO is designed to be 1.0 MHz. Figure 3-10 shows the power spectrum with the 

optimized KICO and Fcenter of ICO.  KICO = 10 kHz/µA and Fcenter = 1.0MHz is used in the 

propose class-D amplifier. 
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Figure 3-9: Power spectrum with Fcenter = 1.2 MHz. 

 

Figure 3-8: Power spectrum with Fcenter = 0.8 MHz. 

 



  55 

 

Figure 3-10: Power spectrum with KICO = 10 kHz/µA and Fcenter = 1.0 MHz. 

The STF(s) and the NTF(s) of the proposed system model can be expressed from 

equation (3-1) as    
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                     (3-2) 

 

As shown in equation (3-2), the STF(s) shows a low-pass characteristic; the quantization 

noise goes through a third-order noise shaping (NTF Q (s)), and the switching noise 

associated with the output stage goes through a second-order noise shaping (NTF SW (s)). 

The frequency response of STF and NTF of quantization and switching noise is reported 

in Figure 3-11.  
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Figure 3-11: STF and NTF responses for quantization and switching noise. 

3.3 Stability of Proposed Architecture 

A critical requirement of a higher order noise-shaped ADC and class-D amplifier 

is the stability of their feedback systems. In noise-shaped systems, the system’s stability 

is controlled by the poles of NTF. A variable quantizer gain method is used to analyze 

system stability [25]. Figure 3-12 shows the root locus of the proposed system for various 

quantizer gain levels. Another requirement is the robustness of this stability condition 

under coefficient variations across process, temperature, and voltage. Figure 3-13 shows 

the pole location for coefficient variations within ±20% of nominal values. The proposed 

system is stable since the poles of NTF are inside the unit circle across all quantizer gains 

and coefficients. 
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Figure 3-12: Root locus plot of NTFQ.  

 

 

Figure 3-13: Poles locations for process and temperature based coefficient 

variation. 
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3.4 PSRR of the Proposed Class–D Amplifier 

   Power Supply Rejection Ratio (PSRR) is an important parameter of the class-D 

amplifier, and it is defined by the ratio of the output ripple voltage to the power supply 

ripple voltage. Any ripple from the power supply input at various frequencies is 

transferred to the outputs of class-D amplifiers. With high PSRR, the ripple noise can be 

rejected and does not disturb the audio performance.  

    By using equation (3.1), the expression of PSRR of the proposed class-D amplifier 

can be derived as 

                           

 
 

1
20log 20log

1

out

ps ripple

V
PSRR s

V LF s

   
         

                     

(3-3) 

where the Vps ripple is the noise components introduced by the ripple noise in the power 

supply input. As shown in the equation (3-3), the loop gain affects PSRR – the higher the 

loop gain, the higher the PSRR [43][44]. 

3.5 Comparison between 1-bit and 1.5-bit digital frequency discriminator 

The ICO-based quantizer can be modified for three-level modulation to permit 

operation without an output LC filter. Figure 3-14 shows 1.5-bit digital frequency 

discriminator version of the quantizer for three-level modulation as the example.  Two D-

FFs and a XOR gate are added in parallel with a previous set of D-FFs and a XOR gate. 

Simulated PSDs for this topology is shown in Figure 3-15.  SNRs / SNDRs of the system 

with a 1-bit frequency to digital convert quantizer (FDC) versus 1.5-bit FDC quantizer 

are 78.8 [dB] / 78.6 [dB] and 80[dB] / 77.7 [dB], respectively. Although the extra level of 

quantization enhances the SNR by approximately 1.5dB, it is still not sufficient to get rid 

of the out of band noise. Also, adding an extra level (zero state) and associated three-

level operation breaks the fully differential operation principle and the zero state 
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Figure 3-14: 1.5-bit digital frequency discriminator version of the quantizer 

 

Figure 3-15: PSDs with a 1bit FDC quantizer versus with a 1.5 bits FDC quantizer 

contributes to the common mode noise generation. As shown in Figure 3-15, although in-

band noise reduces, harmonic distortion increases due to the zero state to +/-1 state 

transitions and mismatch between the two states. Therefore, a compensation technique 

should be employed to solve this problem in three-level modulation. In order to minimize 

the common mode noise and distortion, we chose single-bit quantization. 
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Figure 4-1: Simplified schematic of the proposed class-D amplifier. 

4 CIRCUIT IMPLEMENTATION 

4.1 Loop Filter 

The simplified schematic of the proposed class-D amplifier’s implementation is 

shown in Figure 4-1. The second-order loop filter consists of two analog active-RC 

integrators. Each integrator has the manually controlled binary-weighted tunable 

capacitor arrays to compensate the RC time constant variation by +/-20% as shown in 

Figure 4-2. A Voltage-to-Current (V-I) converter stage is used to drive a ring oscillator-

based ICO. The use of a V-I converter stage allows implementation of summing nodes 

for the feed forward paths, K1 and K2, as shown in Figure 3-4, without using additional 

power hungry op amps. The digital frequency discriminator is based on a logic XOR gate 

and a digital delay line. Use of an ICO-based quantizer eliminates an analog integrator. 

An additional benefit to this method is that due to high impedance loads provided by the  

ICO-based quantizer, an OTA rather than a two-stage op amp can be used for the second 
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Figure 4-2: Binary weighted tunable capacitor array. 

 
integrator, thus reducing overall power consumption. The topological differences 

between the conventional three integrators approach with respect to the proposed ICO-

based architecture is shown in Figure 4-3. In a typical loop-filter implementation, analog 

loop filter integrators definitely have both die area and power consumption impact. The 

power consumption of the proposed architecture is reduced by 30%, and the area is also 

reduced by 38% in comparison to the conventional architecture, which consists of three 

integrators, summing op amp, and quantizer.  

Output of the frequency discriminator is passed to a switching power stage with a 

Bridge-Tied-Load (BTL) differential drive configuration [45]. Two dead-time generators 

are employed to ensure that both nMOS and pMOS output devices are off during 

transition times, which would affect the amplifier’s efficiency and non-linearity [46]. 

Finally, an on-board discrete low-pass filter is used for signal reconstruction and to knock 

down high-frequency signal content due to noise shaping. 

4.2 First and Second OP AMP Design  
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Figure 4-3: The topological differences between the conventional three integrators 

approach with respect to the proposed ICO-based architecture 

The gain and linearity of the first integrator affects the performance of the overall 

class-D amplifier. Therefore, a high gain two-stage operational amplifier is used for the 

first active-RC integrator, as shown in Figure 4-4. The noise from the first integrator is 

the dominant circuit noise source and its equivalent noise source is shown in Figure 4-5. 

This is expressed as        
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            (4.1)     

 

where k is the Boltzmann constant and T is the absolute temperature. The equivalent 

noise of the first stage for an audio frequency range from 20 Hz to 20 kHz has been 

designed to be approximately equal to the in-band quantization noise as 58.3µV/√  .               
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Figure 4-4: First stage integrator op amp with hybrid cascode compensation. 

 

Figure 4-5: The equivalent noise source of the first integration. 
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Figure 4-6: Small-signal model of the first op amp. 

The first amplifier consists of a folded cascode stage followed by a common-

source amplifier that uses hybrid cascode compensation. The hybrid cascode 

compensation technique employs two capacitors, C1 and C2, between the output node 

and the two low-impedance nodes A and B of the first stage. This improves frequency 

response and settling behavior. Although when compared to the conventional cascode 

compensation, an extra zero and pole is generated, the first zero is cancelled with the 

second pole when the op amp is designed, such that gm2 = gm3 and C1=C2=0.5C [47]. The 

small signal model of the first amplifier is shown in Figure 4-6.  From Figure 4-6, the 

small signal equations can be defined as 

1 2 1( ) 0a
m in A a m a a out
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v
g v sC v g v sC v v
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where RA, RB, RC, RL and CA, CB, CC, CL are total resistances and capacitances seen at 

node A, B, C, and output, respectively.  

After making appropriate simplifications, the small-signal transfer function is obtained as 

follows; 
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Figure 4-7: Frequency response of the simulated op amp. 

If C1=C2=0.5C, the poles and zeros of the hybrid cascode compensation are defined as 
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Figure 4-8: The schematic of the second OTA. 

The frequency response of the amplifier is shown in Figure 4-7. The first 

amplifier has 67-dB open-loop DC gain and 20-MHz GBW with 32-pF load capacitance 

while consuming a 3.45 mA quiescent current.  

The second OTA is a conventional folded cascode amplifier. Its schematic is 

shown in Figure 4-8. It has 63-dB open-loop DC gain and 20-MHz GBW while 

consuming a 1.34 mA quiescent current. 

4.3 Voltage-To-Current Converter   

 The two integrator outputs shown in Figure 4-1 are summed by a V-I converter 

before driving the ICO. The detailed schematics of the V-I converter is shown in Figure 

4-9. The current I1 is proportional to the ratio of the difference between output voltages of 

the first analog integrator, V
+

o_int1-V
-
o_int1 and R1. The current I2 is also proportional to the 
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Figure 4-9: Schematic of V-I converter driving the current controlled oscillator. 

ratio of the difference between output voltages of the second integrator, V
+

o_int2-V
-
o_int2 

and R2. Current I1 and I2 are then mirrored by transistors MN5-MN8 to generate the 

summing current Isum. To enhance the linearity of the V-I converter, a gain boosted design 

is adopted by using auxiliary amplifiers A1 and A2. Their schematics are shown in Figure 

4-10. The output signal current of the V-I converter drives the ICO for frequency tuning. 

Eventually, the ICO output frequency, fICO, is given by the following relationship:     

     1 o_int1 o_int1 2 o_int2 o_int2ICO ICOK V V K V V Kf    
                         (4.21) 

Finally, the degeneration resistors, R1 and R2, set the value of the feed-forward 

coefficients, K1 and K2, in the linear model of Figure 3-4. The degeneration resistors, R1 

and R2, can be manually controlled to compensate the coefficient variation by +/-20% 

with 
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Figure 4-10: Schematics of auxiliary amplifiers A1 and A2. 

 

 

Figure 4-11: Binary weighted tunable resistor array for R1 and R2. 
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Figure 4-12: The simulated summing current of V-I converter. 

the binary-weighted tunable resistor arrays as shown in Figure 4-11. Figure4-12 shows 

the simulated summing current Isum of V-I converter according to the sinusoid input signal 

when sw = 010 and sw = 100 to set up the values of R1 and R2. 

4.4  Current Controlled Oscillator  

The ICO converts the analog input current signal into phase domain and 

generates the output frequency, which is proportional to the average analog input current 

signal. The schematic of ICO is shown in Figure 4-13. Each delay cell is based on a 

Maneatis load NMOS transistor consisting of one NMOS in triode region in parallel with 

a diode-connected NMOS and differential configuration, which offers robust operation 

against power-supply and substrate noise [48][49][50]. The frequency of the oscillator 

can be derived as 

    
1

osc
f

N
                                      (4.22)  

where N is the number of cells and τ is the delay imposed by each cell. The delay of each 
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Figure 4-13: Ring oscillator with Maneatis load cell and replica bias circuit. 

cell will be given by 

   ctrl
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out

I
V dt

C
                        (4.23) 
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                   (4.24) 

where Vosc is the oscillation amplitude, Cout  is the capacitance seen at each output node, 

and Ictrl is the control current. Substituting (4.24) into (4.22) will give 

ctrl

osc

osc out

I
f

NV C
         (4.25) 

The oscillator’s frequency can be controlled by adjusting control current when Cout, N, 

and Vosc are fixed in (4.25). However, the ICO has mismatches of each delay cell causing 

error in their propagation delay and generating a phase error in practice.  Fortunately, the 

phase error as a result of the mismatch of the ICO delay cells is suppressed by the gain of 
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Figure 4-14: Simulated frequency-current characteristics of ICO. 

the loop filter [9]. The ring oscillator in the proposed class-D amplifier consists of five 

delay cells that optimize the linearity of the frequency tuning characteristic.  Figure 4-14 

shows the simulated frequency-current characteristics according to changing the R1 and 

R2 values of V-I converter. The last stage of the ring oscillator consists of the amplifier 

with diode-connected loads to amplify the output signal of ICO as shown in Figure 4-15. 

4.5 Dead Time Generator  

It is important to make sure PMOS and NMOS are never on at the same time in 

order to prevent a large current between rails caused by the low on resistance of each 

transistor. This time duration is called a dead time. Dead time is a source of distortion and 

an important design parameter in class-D audio amplifiers. Both PMOS and NMOS in the 

output stage are turned off during a dead time to prevent the flow of cross-conduction 

current directly from the supply to the ground, which degrades amplifier efficiency. 

Therefore, it requires a trade-off between the distortion and the power efficiency. Figure 
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Figure 4-15: The schematic of  the amplifier in the last stage of the ring oscillator to 

amplify the output signal of the ICO. 

4-16 shows the dead time generator circuit of the proposed class-D amplifier. The 

nonoverlapping time of the dead time generator is programmed as 10 nsec by Ictrl. 

4.6 Single-Bit Digital Noise Shaped Quantizer (DNSQ) 

In the proposed design, the ICO drives a 1-bit digital frequency discriminator, 

which performs as a DNSQ. The schematic of the DNSQ is shown in Figure 4-17 [51]. 

Its power spectral density is shown in Figure 4-18. SNDR is about 57 dB when the input 

frequency is 2.1 kHz and the sampling frequency is 4 MHz. 

 The encoded phase information  (t) at the output of the ICO is given by 

                       ( ) 2 ( )

t

c ICOt f k x d   


                         (4.26) 

where fc is the carrier frequency and x(τ) is the input signal of the ICO [51]. Therefore, 

the ICO performs integration of the input signal through phase modulation as shown in 
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Figure 4-16: Schematic of dead-time generator. 

equation (4.26). In the circuit shown in Figure 4-17, a D-flip-flop samples the phase of 

the modulated signal, while the digital XOR gate compares the previous sample to the 

current one, thus performing a digital differentiation. The accumulated phase is quantized 

by detecting the FM signal zero-crossing positions during one sampling period. 

The sampling phase through D-flip-flops and the differentiation phase of the 

XOR gate are combined to achieve a first-order 1-bit modulator block. The output of 

quantizer is a digital signal containing both the integrated input signal and quantization 

noise. Both the integrated input signal and its quantization error are subsequently 

differentiated by a XOR operation. Therefore, the integrated input signal (phase) is 

converted into a corresponding frequency signal and its quantization noise is 

differentiated and the quantization noise will be first-order noise-shaped since the 

quantization error is not integrated. In other words, the useful signal goes through without 

a change, while the white quantization noise is differentiated and high-pass filtered. As 

discussed in [8], this extra high-pass noise response adds to the overall noise-shaping 
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Figure 4-17: A first-order, single-bit,  frequency to digital converter quantizer 

controlling the class-D stage. 

characteristics of the analog loop filter, without the need for an additional integrator. 

From [52], the reference clock phase noise generates a baseband component as well as a 

sideband frequency error.  

The impact of reference clock phase noise can be verified by deriving Spurious-

Free Dynamic Range (SFDR) of the output bitstream in the frequency discriminator. The 

worst case SFDR due to the reference clock phase noise is related to a strong baseband 

tonal content associated with the reference clock FM jitter and can be represented by  
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f f
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                       (4.27) 

where fref  is the reference frequency,  f1 is the modulating frequency,  f2 is FM jitter 

frequency, m1 is the modulation index of the input frequency, and m2 is the FM jitter 

frequency modulation index. 

Assuming a jitter-free sampling clock, the theoretical Signal-to-Quantization 

Noise Ratio (SQNR) of the D-flip-flop DNSQ is defined as 
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Figure 4-18: Power spectral density of a 1-bit digital frequency discriminator. 

where f  is the maximum frequency deviation from fc when the maximum input voltage 

is applied and fbw  is the bandwidth of the modulating signal at the ICO input. As shown 

in equation (4.28), SQNR can be increased by increasing clock frequency and the 

frequency deviation of the ICO. 

4.7 Output Stage and Filter Design 

The sizes of output devices in the power stage are large for small on-resistance 

and they result in large gate capacitance. Therefore, the need for the cascade buffer 

architecture is required to drive the output power stage. Figure 4-19 shows the cascade 

buffer architecture which consists of a chain of N inverters. The capacitance and time 

constant of each stage are  

   

1k

k i

k i

C C

 




          (4.30) 
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Figure 4-19: Cascade buffer architecture. 

Table 4-1 

The parameter of the minimum size inverter 

 

Wp 76 µm 

Wn 24 µm 

Ci 0.032 pF 

 

 

where Ci and i are capacitance and time constant of the minimum (unit) size inverter, 

respectively [53][54].  is the ratio of W/L of stage (k+1) to W/L of stage k : 

        
 
 

1k

k

W
L

W
L

           (4.31) 

The load capacitance at the output stage (CL) is  

N

L iC C          (4.32) 

The overall time constant is given as  

    
 

ln /
ln

o i L iC C


 


         (4.33) 

The output stage of the dead-time generator can drive 0.032pF of the load 

capacitance. Thus, the input capacitance of the minimum size inverter, Ci, is 0.032pF. CL 
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Figure 4-20: Half-circuit model for the low-pass filter. 

is 8pF, which is obtained from SPICE simulation. When  is equal to 4, the optimized 

stage, N, is 4 from equation (4.32). Table 4-1 shows the minimum size inverter.  

The external output filter in the class-D amplifier is used to attenuate the high 

frequency switching component while passing the audio signals. This goal can be 

achieved by the Butterworth low-pass filter that has the advantage of the very flat pass-

band response. Since a differential filter (called a balanced filter) consists of two identical 

filters in BTL structures, a half-circuit model for the low-pass filter design can be used. 

The half-circuit model is shown in Figure 4.20. 

The transfer function of a second-order Butterworth approximation is 

2

1
( )

2 1
H s

s s


 
       (4.34) 

From Figure 4-20, the transfer function is given as 
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Figure 4-21: The balanced filter with two identical half filters. 

 `q2w2qq1q  

 

                                       
 

2

1

( )
1 1( )

o HALF HALF

in

HALF HALF HALF HALF

V s L C
H s

V s
s s

R C L C

 

 

    (4.35) 

From comparing between equations (4.34) and (4.35), the half circuit values for CHALF 

and LHALF are obtained when 0= 1 rad/sec, like in the equations below. 

                                         

1[ / sec]
0

1

2

1

HALF

HALF

HALF

HALF rad

C
R

L
C

 





      (4.36) 

The equation (4.36) needs to be frequency scaled by dividing through by 0= 2fC. The 

equation (4.37) is finally derived:  

     

1

2 2

2

2

HALF

C HALF

HALF
HALF

C

C
f R

R
L

f









      (4.37) 
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Figure 4-22: The output filter for the proposed class-D amplifier. 

where fC is the cutoff frequency [55]. The balanced filter model is obtained from using 

two half circuit models as shown in Figure 4.21. Their relation are defined as 

2

1

2 2 2 2

2 2

2 2 2

L HALF

HALF
L

C HALF

L HALF
HALF

C C

R R

C
C

f R

R R
L L

f f



 



 


  


     (4.38) 

Since the -3dB cutoff frequency of the balanced filter should be the same as that of the 

half-circuit model, the -3dB cutoff frequency for the LC filter, based on the balanced 

filter, is given as  

1 1

2 2 2
C

HALF HALF L

f
L C LC 

         (4.39) 

Figure 4- 22 shows the low-pass filter used in the proposed class-D amplifier. C1 and C2 

provide a high-frequency short to ground as the high frequency bypass capacitors. These 

capacitors should be approximately 0.2CL [55]. 

From the equations above, the values of discrete components are obtained: L = 

22µH, CL = 1µF, and C1= C2 = 0.22 µF for RL =4 and fC = 24 kHz. It is important for the 
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Figure 4-23: The top level transient domain simulation results. 

. 
inductor to have a low ESR since it is in series with the speaker load and its DC current 

rating should be greater than or equal to the maximum current flowed through it.  

Figure 4.23 shows the top-level simulation results related to node voltages in the 

outputs of the first and the second integrators (1
st
_p, 1

st
_n, 2

nd
_p, and 2

nd
_n),  the power 

output stage (power_out_a and power_out_b), and the final signal (lpfout) after passing 

through the low-pass filter.  

 

4.8 Floor Plan and Layout Consideration 

The primary principle of the floor plan is to separate the digital and analog 

signals as far as possible in order to minimize the effect of the digital switching on the 

analog circuits.  The system performance can be affected by the layout. Thus, some 

analog layout techniques are employed to minimize degradation of the performance due 
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Figure 4-24: Layout of the differential input stage of the OP AMP. 

to the layout [56] [57] [58]. The common-centroid layout technique is mainly used and 

the dummy devices are added at the edges to improve transistor matching. The devices to 

be matched have the same shape, type, size, and number of contacts, and they consist of 

multiples of the unit-sized device. In other words, the fully differential circuits are drawn 

as symmetrically as possible. Figure 4-24 shows the layout of the differential input stage 

of the OP AMP. Figure 4-25 shows the example of the PMOS arrangement in the H-

bridge power stage.   

The separated power supplies of analog and digital circuits are used to reduce 

noise coupling and the orthogonal signal lines are also used to reduce the signal 

interference between two cross layers.  

Figure 4-26 shows the overall layout of the chip that is done on the basis of the 

guidelines above. The layout size is 1500µm x 1500µm = 2.25 mm
2
. 
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Figure 4-26: The top-level layout of the proposed class-D amplifier. 

 

Figure 4-25: The example of the arrangement of the H-bridge power output stage. 
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Figure 5-1: Test setup for evaluation of the prototype class-D amplifier. 

5 PERFORMANCE OF THE CLASS D AUDIO AMPLIFIER 

5.1 Test Setup 

Figure 5.1 shows the test setup to characterize the prototype class-D audio 

amplifier. The input signal is generated by the arbitrary waveform generator (Agilent 

N8241A AWG). Its output signal is applied to the single-ended to differential amplifier 

(THS4130). The clock signal is generated by the signal generator (Agilent 33250A). The 

audio transformer (Hammond 108H) is used to obtain a differential to single-ended 

output signal in the output of the class-D amplifier. The output of the class-D amplifier is 

analyzed by using an Agilent 35670A dynamic signal analyzer.  

 

 

 



  85 

 

Figure 5-2: Measured power spectrum with a 4  load and 100 mW output power. 

 

Figure 5-3: Measured THD+N versus Output power. 

5.2 Test Results 

The proposed class-D amplifier has been implemented in a 0.18 µm digital 

CMOS process. The IC has been mounted on a FR4 board and a discrete LC output filter 

is used to remove high-frequency noise components and for signal reconstruction.  

Figure 5-2 shows the output power spectrum when a signal with 1-kHz sine wave 

of 100-mW output power is applied and the output load is 4.  
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Figure 5-5: PSRR versus the ripple frequency. 

 

 

Figure 5-4: Measured THD+N versus frequency. 

 

Figure 5-3 shows THD+N performance against the output power. The lowest 

THD+N is 0.065 % with a 1-kHz sinusoidal signal. Figure 5-4 shows THD+N according 

to variation of the input frequency. The improvement of THD+N from around 8 kHz 

corresponds to the filtering effect of the signal-transfer function on third harmonic 

distortion. Figure 5-5 shows PSRR versus the ripple frequency when a ripple voltage of 
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Figure 5-6: The theoretical power efficiencies of the linear amplifier and the 

measured  power efficiency of the propose class-D amplifier with respect  to output 

power. 

 
100 mVpp is added to the power supply and the input is idle. PSRR is approximately 65 

dB at 217 Hz.  

Figure 5-6 shows power efficiency versus output power. The amplifier achieves 

80% peak power efficiency at an output power of 280 mW. The efficiency of the 

proposed class-D amplifier is better than that of a conventional linear amplifier when the 

output power is above 40 mW as shown in Figure 5-6. Transient, start-up and clipping 

characterizations of the proposed class-D amplifier are shown in Figures 5-7 and 5-8, 

respectively. Both resistive load on the scope and on an actual loudspeaker do not show 

an audible pop in Figure 5-7. As shown in Figure5-8, output signal recovers gracefully, 

with no folding or ringing. A comparison between the proposed class-D amplifier and 

other integrated-audio amplifiers is summarized in Table 5-1. Target application is for 

portable audio such as 4 / 8 speaker headphone drivers in handsets. The performance 

of the proposed system satisfies for this specific application. In [62], the performance is 

reported to be higher than 0.2% THD+N and 72% efficiency for 280mW, 71dB PSRR at 

217Hz. [63] achieves 0.3% THD+N at 200mW, 60dB PSR at 217Hz. The W/L of PMOS 
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Figure 5-8: Clipping recovery for the proposed class-D amplifier. 

 

 

 

 

Figure 5-7: Start-up transients for a 1kHz audio input. 

 

 
and NMOS output devices is 19600/0.34 and 7000/0.34, respectively, giving a total 

output resistance of 200m. The chip micrograph of the proposed class-D amplifier is 

shown in Figure 5-9. 

 

  



  89 

Table 5-1 

Performance Comparison 

Reference 

THD 

+N 

(%) 

Effici

ency 

(%) 

PSR

R  

[dB] 

Supply 

(V) 

Load  

(Ω) 

Quiescent 

Power 

Consumption 

(mW) 

Output 

power 

(mW) 

Area 

(mm2) 

Fs 

(MHz) 

Process 

Architect

ure 

[14]  

/2005 

0.0015 89b - 5 - 150 - 12.6 5.6 

0.35 µm 

CMOS 

7th  

[15]  

/2008 

0.02 87 - 3~5.5 4 39 - 6 

3.125/

4 

0.35 µm 

CMOS 

5th  

[16] 

 /2008 

0.022 77 - 3 32 7.7a - 1.6 3.2 

0.18 µm 

CMOS 

4th  

[59] 

 / 2008 

0.10 80 - 3.0~3.6 8 14.85 80 - 3 - 6th  

[42]  

/ 2010 

0.01 92 80 3.7/5 8 - - 4 0.35c 

0.14 µm 

CMOS 

PWM 

[60] 

 / 2004 

0.05d - 58 1.4 / 5.4 8 - 250 0.77 - 

0.09 µm 

CMOS 

PWM 

[61] 

 / 2005 

0.50 92 85 2.5 8 0.063 450 589.5 

>200k

Hz 

0.5 µm 

CMOS 

RWDM 

This Work 0.065 80 65 1.8/3.3 4 14.6 a 280 2.25 4 

0.18 µm 

CMOS 

2nd  

 w/ Freq. 

Quantizer 

           a = Modulator power consumption 

          b = The ratio of the peak value of the filtered signal to the amplitude of the pulse signal at the output of the power switches 

           c = PWM carrier frequency 

           d = THD 
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Figure 5-9: Chip micrograph. 
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6 CONCLUSIONS 

The dissertation presents a closed-loop PDM-based class-D audio amplifier with 

a single-bit, third-order noise-shaped modulator, using a high linearity frequency-domain 

quantizer.  

The nonlinearity of the carrier introduces the harmonic distortion in the PWM-

based class-D amplifier. On the other hand, use of higher oversampling-rate, single-bit, 

PDM drivers only makes a comparison with respect to a fixed digital reference. The 

single-bit comparison has the characteristic of shaped quantization noise, and the 

harmonic distortion caused by the nonlinearity of the carrier can be eliminated. PDM 

modulation minimizes EMI due to the spreading out of the spectral energy of the output 

signal  while the concentrated spectral energy in the switching frequency and its 

harmonics causes EMI in the PWM-based class-D amplifier. 

The modulator of the proposed class-D amplifier is designed in 1.8V. The supply 

voltage reduction results in lower signal swing and it makes analog circuit design 

difficult in voltage domain signal processing. However, frequency-domain signal 

processing offers a better solution than voltage domain signal processing in low voltage 

design. Thus, the proposed class-D amplifier is based on the frequency-domain signal 

processing by using an ICO-based frequency discriminator. The proposed approach is a 

first implementation of the frequency domain quantization in class-D amplifiers.  

The proposed class-D audio amplifier is based on a Continuous-Time (CT) 

modulator. An ICO is operated as a CT integrator and also used as part of a CT loop 

filter. In the proposed approach an analog comparator and a single-bit quantizer are 

replaced with an ICO-based frequency discriminator. By using the ICO as a phase 

integrator, third-order noise shaping is achieved using only two analog integrators. A 
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digital frequency discriminator is then used to realize a single-bit quantizer instead of an 

analog comparator. The use of a rail-to-rail oscillator also allows supply voltage 

reduction, thus enabling highly digital implementations without impacting quantizer 

accuracy. The proposed class-D amplifier achieves 0.065 % THD+N, 65-dB PSRR at 217 

Hz, and 80 % peak power efficiency driving a 4- load.  
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APPENDIX A 

VERILOG-A CODES  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

*********************************************************** 

SW_Controller_P_type 

************************************************************ 

`include "constants.vams" 

`include "disciplines.vams" 

// 3 level operation (1.5bit) 

module sw_controller_P(qin,clk,swp1,swn1); 

input qin, clk; 

output swp1, swn1; 

voltage qin, clk, swp1, swn1; 

parameter real vh = 3.3; 

parameter real vl = 0.0; 

parameter real Td = 0.0; 

parameter real Tt = 10p; 

parameter real vth = 1.6; 

parameter real vth1 = (vh+vl)/2; 

real temp1; 

real temp3; 

real prep; 

real memop; 

real memon; 

 

 analog begin 

 @(initial_step("static")) begin 

  V(swp1) == vh; 



 

  V(swn1) == vl; 

  memop == vh;   //PMOS - off 

  memon == vh;   //NMOS - on 

  end 

 @(cross(V(clk)-vth, 1)) begin 

   if ( V(qin) >=1.5) begin 

    temp1 = vl;    // PMOS1- on 

    temp3 = vl;    // NMOS1- off 

   end 

   else if (V(qin) >=0.7) begin 

    prep = memop;    // PMOS1- off / on 

    if (prep > vth1) begin 

     memop = vl; 

     memon = vl; 

    end 

    else begin 

     memop = vh; 

     memon = vh; 

    end 

 

    temp1 = memop; 

    temp3 = memon; 

   // temp1 = vh; 

   // temp3 = vh; 

   end 



 

  else if (V(qin) ==0.0) begin 

   temp1 = vh;    // PMOS1- off 

   temp3 = vh;    // NMOS1- on 

  end 

 end 

 V(swp1)<+ transition(temp1, Td, Tt); 

 V(swn1)<+ transition(temp3, Td, Tt); 

 end 

endmodule 

 

*********************************************************** 

SW_Controller_N_type 

************************************************************ 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module sw_controller_N(qin,clk,swp2,swn2); 

 

input qin, clk; 

output swp2, swn2; 

voltage qin, clk, swp2, swn2; 

 

parameter real vh = 3.3; 

parameter real vl = 0.0; 



 

parameter real Td = 0.0; 

parameter real Tt = 10p; 

parameter real vth = 1.6; 

parameter real vth1 = (vh+vl)/2; 

 

real temp1; 

real temp3; 

real prep; 

real memop; 

real memon; 

 

 analog begin 

 @(initial_step("static")) begin 

  V(swp2) == vh; 

  V(swn2) == vl; 

  memop == vh;   //PMOS - off 

  memon == vh;   //NMOS - on 

  end 

 

 @(cross(V(clk)-vth, 1)) begin 

 

   if ( V(qin) >=1.5) begin 

    temp1 = vh;    // PMOS2- off 

    temp3 = vh;    // NMOS2- on 

   end 



 

 

   else if (V(qin) >=0.7) begin 

    prep = memop;    // PMOS2- off / on 

    if (prep > vth1) begin 

     memop = vl; 

     memon = vl; 

    end 

    else begin 

      memop = vh; 

      memon = vh; 

    end 

 

    temp1 = memop; 

    temp3 = memon; 

   end 

 

  else if (V(qin) ==0.0) begin 

   temp1 = vl;    // PMOS2- on 

   temp3 = vl;    // NMOS2- off 

  end 

 end 

 

 V(swp2)<+ transition(temp1, Td, Tt); 

 V(swn2)<+ transition(temp3, Td, Tt); 

 end 



 

endmodule 

 

************************************************************ 

 For inverter in ring oscillator 

************************************************************ 

`include "constants.vams" 

`include "disciplines.vams" 

 

module inv_for_vco_1_8_frunning(in,out,vtune1, vtune2); 

 

output out; 

input in,vtune1, vtune2; 

voltage in,out,vtune1, vtune2; 

 

parameter real tt=1e-9; 

parameter real vh=1.0; 

parameter real vl=-1.0; 

parameter real in_val=-1.0; 

parameter real vth=0.0; 

parameter real kv=1000e3; 

parameter real finit=1000e3; 

 

parameter real num=3; 

real temp; 

real td; 



 

 

analog begin 

//@(cross(V(in)-vth,0)) 

if(V(in)>vth) 

    temp=vl; 

else 

    temp=vh; 

 

@(initial_step) begin 

    temp=in_val; 

        td = 0; 

end 

 td = 1/(2*num*(kv*(V(vtune1)-V(vtune2))+finit)); 

if(td <0) 

 td = 0; 

else 

 td = 1/(2*num*(kv*(V(vtune1)-V(vtune2))+finit)); 

V(out)<+transition(temp, td,tt); 

 

end 

endmodule 

  



 

APPENDIX B 

TEST CHIP APPLICATION, BOARD SCHEMATIC, AND PCB LAYOUT  

 

 

 

  



 

  



 

 

BOARD SCHEMATIC 

 

 

 

  



 

 

PCB LAYOUT 

 

 

 

 

 

 

 


