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ABSTRACT  
   

This study investigated the link between the cognitive clusters from the 

Woodcock-Johnson III Tests of Cognitive Ability (WJ III COG) and Broad Math, 

Math Calculation Skills, and Math Reasoning clusters of the Woodcock-Johnson 

III Tests of Achievement (WJ III ACH) using data collected over seven years by a 

large elementary school district in the Southwest. The students in this study were 

all diagnosed with math learning disabilities. Multiple regression analyses were 

used to predict performance on the Broad Math, Math Calculation Skills, and 

Math Reasoning clusters from the WJ III ACH. Fluid Reasoning (Gf), 

Comprehension-Knowledge (Gc), Short-Term Memory (Gsm), and Long-term 

Retrieval (Glr) demonstrated strong relations with Broad Math and moderate 

relations with Math Calculation Skills. Auditory Processing (Ga) and Processing 

Speed (Gs) demonstrated moderate relations with Broad Math and Math 

Calculation Skills. Visual-Spatial Thinking (Gv) and Processing Speed (Gs) 

demonstrated moderate to strong relations with the mathematics clusters. The 

results indicate that the specific cognitive abilities of students with math learning 

disabilities may differ from their peers. 
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Chapter 1 

INTRODUCTION 

Overview 

 Educators and researchers, as well as parents and administrators have 

debated the diagnosis of learning disabilities since the passage of the Education 

for the Handicapped Act (EHA P.L. 92-142) in 1975, [later amended and re-titled 

the Individuals with Disabilities Education Improvement Act (IDEIA) in 2004 

(P.L. 108-446)]. Much of the controversy lies in disagreement about the definition 

of the terms “intelligence” and “learning disabilities.” The dispute about 

intelligence revolves around two central questions: 1) What is intelligence, and 2) 

Do the currently available assessment measures test it correctly? Theorists differ 

in their perception of intelligence as a general, overarching quality, “g” (or 

general factor) or one made up of multiple talents (Wasserman & Tulsky, 2005). 

They have also had difficulty translating these theories into empirically validated 

testing techniques. 

 In 1999, after completing factor analysis studies, Kevin McGrew, together 

with Richard Woodcock, John Horn, and John Carroll, integrated over fifty years 

of theory and research into the Cattell-Horn-Carroll theory (CHC), a hierarchical 

model of intelligence that separates intelligence into fluid and crystallized 

reasoning. The CHC model contains three “strata.” Stratum III describes the 

overall ability, referred to as “g”. Stratum II includes the broad abilities. 

According to Carroll (1993, as quoted in Flanagan, Ortiz, & Alfonso, 2007), these 
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represent “basic constitutional and long standing characteristics of individuals that 

can govern or influence a great variety of behaviors in a given domain.” (p. 271). 

Stratum I contains narrow abilities, which Carroll says, “represent greater 

specializations of abilities, often in quite specific ways that reflect the effects of 

experience and learning or the adoption of particular strategies of performance.” 

(1993, as cited in Flanagan, Ortiz, & Alfonso, 2007, p. 271). The next chapter 

describes the broad and narrow abilities in greater detail.  

Some of the disagreement about the definition of learning disabilities is 

reflected in the broad wording of the federal statute that prescribes its use in the 

school system. The Individuals With Disabilities Education Act (IDEA, 2004), 

defines a learning disability as:  

A disorder in one or more of the basic psychological processes involved in 

understanding or using language, spoken or written, that may manifest 

itself in an imperfect ability to listen, think, speak, read, write, spell, or do 

mathematical calculations. 

Because the language in IDEA does not specify how to determine this disorder, or 

the exact nature of its manifestations, it has not been implemented uniformly in 

school districts (Sattler, 2001).  

Use of the CHC theory to identify learning disabilities has yielded 

promising results. Some researchers consider it the best-validated means of 

testing intelligence (Esters & Ittenbach, 1999). Unfortunately, even supporters of 

the CHC model have not used uniform testing batteries, and the composite scores 
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reached by different batteries have not been found to be interchangeable (Floyd, 

Bergeron, McCormack, Anderson, & Hargrove-Owens, 2005). 

 One means of measurement has received significant support as a method 

for identifying learning disabilities. The Woodcock-Johnson Psycho-Educational 

Battery-III, Tests of Cognitive Ability (WJ III COG; Woodcock, McGrew, & 

Mather, 2001), which was developed in accordance with the CHC theoretical 

model has been substantially researched, and has shown considerable success in 

measuring current levels of cognitive and academic performance in students 

(Fiorello & Primerano, 2005; Flanagan & Harrison, 2005).  

The most widely used means of identifying learning disabilities has 

involved the “discrepancy model”. The basis for this technique is the belief that a 

learning disability involves a difference between a person’s ability and her 

academic performance. According to this model, someone with a learning 

disability in a specific area should score significantly lower on a measure of 

academic achievement (performance) than on one of intelligence (ability). 

Unfortunately, the application of this technique has not been uniformly applied.  

While many achievement tests, such as the Woodcock-Johnson Test of 

Academics III (Woodcock, McGrew, & Mather, 2001) and the Wechsler 

Individual Achievement Test, Second Edition (WIAT-II; Wechsler, 2001), have 

research supporting their validity, the scores they generate have not always been 

used as the developers of the tests intended. Some of the criticism of the 

discrepancy model for identifying learning disabilities has centered on the use of 
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subtests, rather than composite scores, to identify specific learning disabilities, 

such as math disability. These subtests have shown less reliability and more 

variance than composite scores (Watkins, 2003). However, according to McGrew 

(1997), as cited in Fiorello and Primerano (2005): 

Most of the anti-specific ability research in school psychology has been 

conducted with measures that are based on an outdated conceptualization 

of intelligence (viz. Wechsler batteries), and have used research methods 

that have placed primary emphasis on prediction with little attention to 

explanation and theoretical understanding of the relations between 

general and specific cognitive abilities and school achievement (p. 191; 

italics in original). 

While some research has supported the use of overall intelligence, or “g” 

as the best predictor of school performance, according to Flanagan and McGrew 

(1997), these results often stem from the choice of particular statistical analyses 

that attempt to “partition variance into that accounted for by a general factor score 

or scores versus that accounted for separately by the variance in subtest scores” 

(p.191). Flanagan and McGrew (1997) assert that this technique does not 

adequately measure the importance of the effects of the different variables, and 

cite several articles in support of their premise. Additionally, they state that 

studies attempting to show how abilities predict performance are less meaningful 

than those that explain how those abilities affect performance (Flanagan & 

McGrew, 1997).  
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The use of testing techniques that have empirical validation has come to 

the forefront in the field of education, especially as the No Child Left Behind Act 

(2001) has increased pressure on educators to identify students with learning 

difficulties and to intervene before they begin to fail. According to Mazzoco 

(2005), many researchers have studied proper identification and intervention 

strategies for students with reading disabilities (RD). Neurologists have even 

identified specific areas of the brain that function differently in students with 

reading disabilities than typically functioning students (Mazzoco, 2005). This 

research has substantiated early intervention as important in mediating the 

neurobiological differences inherent in children with reading disabilities. 

However, research into other learning disabilities, such as math disabilities has 

lagged behind. While techniques have been developed for screening children with 

math disabilities (MD), no consensus has been reached about the nature of what is 

being measured (Mazzoco, 2005). 

Statement of the Problem 

Because of the paucity of research into math learning disabilities, the 

specific cognitive abilities that affect math achievement are less well established 

than those that affect reading achievement. According to Flanagan and McGrew 

(1997), the best way to establish empirically validated interventions, is to better 

explain which cognitive abilities affect math performance. By understanding the 

cognitive deficits that underlie disabilities, psychologists can design interventions 

that compensate for or ameliorate these deficits. 
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Purpose of the Study 

 This study attempts to replicate studies conducted by McGrew and Hessler 

(1995), using the WJ-R, and those by Floyd, Evans, and McGrew (2003) using 

the WJ III. The purpose of this study is to determine whether the areas of 

cognitive ability that predict math achievement in the general population also 

predict math achievement in a clinical sample of children with math learning 

disabilities. Unlike previous studies that looked at the standardization sample 

from the WJ-R and WJ III, the subjects in this study represent a clinical sample of 

students who have all been diagnosed with math learning disabilities. This 

information can aid in the design of interventions that target students’ intra-

individual strengths and weaknesses.  

This study aims to answer the following questions: 

1. Does the CHC factor Gf, as measured by the WJ III cognitive subtests 

Concept Formation and Analysis-Synthesis demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement 

math cluster in a clinical population of students with math learning 

disabilities? 

Hypothesis 1: Gf will demonstrate a significant relation with total 

math skills, since previous research has shown that this ability is 

very important for math achievement at all ages. 

2. Does the CHC factor Gc, as measured by the WJ III cognitive subtests 

Verbal Comprehension and General Information demonstrate a significant 
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relation with math achievement, as measured by the WJ III achievement 

math cluster in a clinical population of students with math learning 

disabilities? 

Hypothesis 2: Gc will demonstrate a significant relation with total 

math skills, since previous research has shown that this ability is 

important for math achievement at all ages. 

3. Does the CHC factor Gsm, as measured by the WJ III cognitive subtests 

Memory for Words and Numbers Reversed demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement 

math cluster in a clinical population of students with math learning 

disabilities? 

Hypothesis 3: Gsm will demonstrate a significant relation with 

total math skills, as previous research has shown that this ability is 

important for math achievement. 

4. Does the CHC factor Gv, as measured by the WJ III cognitive subtests 

Spatial Relations and Picture Recognition demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement 

math cluster in a clinical population of students with math learning 

disabilities? 

Hypothesis 4: Gv will not demonstrate a significant relation with 

total math skills, as previous research has shown that this ability is 
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important mainly for higher-level math skills, and this is an 

elementary school population. 

5. Does the CHC factor Ga, as measured by the WJ III cognitive subtests 

Sound Blending and Auditory Attention demonstrate a significant relation 

with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Hypothesis 5: Ga will not demonstrate a significant relation with 

total math skills, as previous research has not demonstrated a 

consistent relationship. 

6. Does the CHC factor Glr, as measured by the WJ III cognitive subtests 

Visual Auditory Attention and Retrieval Fluency demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement 

math cluster in a clinical population of students with math learning 

disabilities? 

Hypothesis 6: Glr will not demonstrate a significant relation with 

total math skills, as previous research has not demonstrated a 

consistent relationship. 

7. Does the CHC factor Gs, as measured by the WJ III cognitive subtests 

Visual Matching and Decision Speed demonstrate a significant relation 

with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 
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Hypothesis 7: Gs will demonstrate a significant relation with total math skills, as 

previous research has shown that this skill is especially important for math at the 

elementary school level. 
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Chapter 2 

LITERATURE REVIEW 

Importance of Diagnosing Math Learning Disabilities 

 In recent years, an upsurge of research has taken place in the diagnosis of 

reading learning disabilities. Researchers such as Torgeson (1998), Lyon (2002), 

and Shaywitz (2001, all as cited in Wolfe & Nevills, 2004) have provided new 

understanding into the structure of the underlying processing deficits associated 

with reading learning disabilities. However, research into the etiology, course, and 

diagnosis of math learning disabilities has not kept pace.  

 Mazzoco lists various disciplines that have studied math learning 

disabilities, including cognitive psychology, child development, education, 

clinical neuropsychology, and behavioral neurogenetics (2005). She defines the 

main issues of interest as the sources, course, and individual differences in those 

individuals with math learning disabilities. Mazzoco states that one of the greatest 

difficulties is differentiating normal variation from those with abnormalities. 

While she reports that research has empirically validated techniques for later 

diagnosis of math learning disabilities, earlier diagnosis is more difficult. 

Mazzoco reports that her studies have demonstrated that low scores on some 

assessments conducted on kindergarteners can be predictive of later math 

difficulties, but researchers have not yet determined what broad skills underlie the 

specific items that these tests measure. These measures have also not been 

validated on preschoolers, first or second graders (Mazzoco, 2005). Adding to the 
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confusion, is that, according to Mazzoco, “no core deficit has been identified for 

MD” (2003, p. 219). Unlike reading learning disabilities, researchers have not yet 

identified the specific aspects of math learning disabilities, or its neurobiological 

basis. 

Prevalence 

Math learning disabilities have been shown to have a lower prevalence 

rate than reading learning disabilities. Researchers estimate the rate of reading 

learning disabilities at 10-15% of the overall population (Lyon, Fletcher, Fuchs, & 

Chhabra, 2006). The rate of math learning disabilities has been estimated to fall 

somewhere between 5-8% of the overall population (Geary, 2004; Lyon, Fletcher, 

& Barnes, 2005; Mazzoco, 2005). It has also shown considerable heritability. 

Oliver, Harlaar, Hayiou, Kovas, Walker, and Petrill (2004) studied 2,178 same-

sex twin pairs in the United Kingdom. They reported a heritability estimate for 

low math ability of .65. However, these figures are difficult to validate, because 

like other learning disabilities defined by the IDEA, no universal definition for 

math learning disabilities exists. 

Definitions of Math Learning Disabilities 

 When diagnosing math learning disabilities, not every practitioner uses the 

same definition. According to Mazzoco (2005), this presents difficulties, because 

“amidst the consensus and controversy that exist among researchers and 

practitioners, confusion naturally arises when many individuals address a 

phenomenon that is not yet fully understood” (p. 318) According to Mazzoco 
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(2005), researchers have studied math learning disabilities using different 

terminology including mathematics difficulties, mathematics disabilities, 

dyscalculia, and poor math achievement; however, no clear definitions of these 

have been offered, which makes comparisons between these studies difficult. 

While research may purport to measure the same construct, enough differences 

exist between studies to suggest that there are differences in their operational 

definitions, as well as their terminology (Landerl, Bevan, & Butterworth, 2004). 

Researchers who employ a discrepancy-based definition often differ in the 

amount of discrepancy used between cognitive ability and achievement, as well as 

the standardized tests used to measure these differences. The skills needed to 

succeed on various tests may vary based on the choice of the test, and may not be 

limited to math knowledge alone (Landerl et al., 2004). Thus, no consensus has 

yet been reached on a widely accepted research definition of math learning 

disabilities (Mazzoco, 2005). 

Early Definitions of Math Learning Disabilities 

  Prior to the passage of PL 94-142 in 1975, children were often identified 

as needing help with math when they were low achievers, regardless of their 

intellectual ability. PL 94 142 and its later iterations (i.e., Individuals With 

Disabilities Education Act, 1997; & IDEIA, 2004, as cited in Sattler, 2001) 

identified thirteen qualifying areas for Special Education services, including 

Specific Learning Disabilities. IDEA defined a Specific Learning Disability as “a 

disorder in one or more of the basic psychological processes involved in using 
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language, spoken or written, that may manifest itself in an imperfect ability to 

listen, think, speak, read, write, spell, or do mathematical calculations” (IDEA, 

1997). Children could qualify for special education if they showed a significant 

discrepancy between ability and achievement in math calculation or math 

reasoning. Unfortunately, the definition of “significant discrepancy” varies from 

state to state, and often from school district to school district. Additionally, while 

most psychologists agree that math learning disabilities involves disabilities in 

underlying processes, they have not yet reached a consensus about the nature of 

these processes.  

 Criticism of the discrepancy model has come not only from educators 

concerned with the lack of help for low achieving children who did not show 

discrepancies, but also from researchers studying LD. According to Mazzoco 

(2005), “in the RD and general LD literature, there exists little, if any empirical 

support for the effectiveness of a discrepancy-based model; moreover, there is 

strong evidence of the inappropriateness and ineffectiveness of such IQ-

achievement discrepancy definitions” (p.222). 

Contemporary Definitions 

 With the update of IDEA in 2004 came significant changes in mandated 

evaluation techniques. Local districts can opt to qualify children based on a lack 

of improvement after the use of empirically based intervention as well as the 

traditional ability-achievement discrepancy. However, the lack of a discrepancy 

requirement does not necessarily eliminate the use of standardized assessments. 



 

  22 

Gregg, Coleman, and Knight (2003) report several eligibility techniques used to 

assess possible learning disabilities. These include the discrepancy model 

(previously described), a cutoff model in which children qualify because of low 

performance, and Response to Intervention (RTI). Gregg et al. describe the cut-off 

model as one that uses the norm-referenced scores provided by the Woodcock 

Johnson III, including percentile scores, relative proficiency scores, and standard 

scores that can inform professionals about the relative achievement level of a 

student (2003). The latter technique, widely known as Response to Intervention 

(RTI) entails identifying disabilities purely on behavior, without regard to 

intellectual ability. Children whose academic skills lag behind their peers undergo 

several tiers of interventions (Fletcher-Janzen & Reynolds, 2008). The first tier 

involves school-wide screening, similar to the annual curriculum based measures 

currently used in districts nationwide. Those that do poorly undergo classroom 

based (i.e., second tier) interventions. The children who still do not respond are 

identified as learning disabled and placed in special education to undergo 

specialized (i.e., third tier) interventions. Expanding on the three techniques listed 

above is the clinical model, which incorporates information from a variety of 

sources, including RTI and intelligence and achievement tests. The WJ III fits into 

this model as well (Wodrich & Schmitt, 2006).  

Cognitive Profiles of Math Learning Disabilities 

 Unlike children with reading disabilities who have been shown to 

demonstrate difficulties with specific processing skills such as phonological 
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processing and rapid autonomic naming (McGrew & Wendling, in press), 

children with math disabilities show significant heterogeneity in their cognitive 

profiles (Mazzoco, 2005). They may have deficits in short-term memory, 

difficulties with acquiring the automatic procedures necessary to solve 

mathematic problems quickly, and visiospatial difficulties (2005). For instance, 

Bull and Scerif (2001) found that scores on tasks that measure executive 

functioning were predictive of math learning disabilities. Areas that correlated the 

most with math learning disabilities included, difficulty switching cognitive 

strategies, poor working memory span, and difficulty inhibiting irrelevant 

information. 

 

 

Definition of the Cattell-Horn-Carroll Theory 

 Raymond B. Cattell developed a theory of intelligence based on factor 

analysis in 1941 in response to the work of Charles Spearman, published 

originally in 1904 (Wasserman & Tulsky, 2005). While Spearman asserted that a 

broad factor - “g”- underlies intelligence, Cattell believed it to have two main 

factors, crystallized intelligence (Gc), defined as access to acquired knowledge, 

and the ability to store new knowledge, and fluid intelligences (Gf), the ability to 

adapt to novel situations through reasoning (Wasserman & Tulsky, 2005).  

  In the sixties, Cattell and his student, John L. Horn broadened the number 

of abilities to five, adding visualization, retrieval capacity, and cognitive speed (as 
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cited in McGrew, 2005). By 1981, Horn reported that evidence supported the 

existence of nine factors: fluid intelligence (Gf), crystallized intelligence (Gc), 

short-term acquisition and retrieval (Gsm), visual intelligence (Gv), auditory 

intelligence (Ga), long-term storage and retrieval (Glr), cognitive processing 

speed (Gs), quantitative knowledge (Gq), and reading and writing skills (Grw) 

(cited in McGrew, 2005). 

 In 1993, John B. Carroll proposed a model of intelligence that was 

hierarchical and had three levels or strata. He based this on a meta-analysis of 461 

test-based datasets (Wasserman & Tulsky, 2005). He believed that intelligence 

contained an overarching general ability, akin to Spearman’s “g” , but had eight or 

more broad-ability factors and up to 65 narrow abilities.   

 After McGrew conducted extensive factor analyses that validated areas of 

both Cattell-Horn’s Gf-Gc model and Carroll’s three-stratum model, the theories 

were combined into the Cattell-Horn-Carroll (CHC) theory of cognitive abilities 

(McGrew &Woodcock, 2001). The broad CHC abilities which were essentially 

the same as Horn’s were redefined and included Comprehension-Knowledge 

(Gc), Long-Term retrieval (Glr), Visual-Spatial Thinking (Gv), Auditory 

Processing (Ga), Fluid Reasoning (Gf), Processing Speed (Gs), Short-Term 

Memory (Gsm), Reading-Writing (Grw), and Mathematics (Gq) (McGrew 

&Woodcock, 2001). Table 1 lists the CHC broad abilities and gives a brief 

description of each.  

Cross Battery Approach 
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Prior to the publication of the WJ III in 2001, no single battery measured 

all broad areas of the CHC model of intelligence. As research supporting this 

model grew, so did the popularity of a different kind of assessment of intellectual 

ability. Rather than using single measures of intelligence, psychologists began 

selecting subtests from different measures that purported to represent different 

CHC clusters. Woodcock first suggested this type of approach in a 1990 article in 

which he described a theory-driven “battery-free” approach to assessment of fluid 

and crystallized ability (Gf-Gc; McGrew, 2005). Woodcock conducted 

confirmatory analyses of the major intelligence batteries of the day, including the 

Woodcock Johnson Psycho-Educational Battery (Woodcock & Johnson, 1977), 

Woodcock Johnson Psycho-Educational Battery –Revised (Woodcock & Johnson, 

1989), Wechsler Scales (Wechsler, 1981), the Kaufman Assessment Battery for 

Children (Kaufman & Kaufman, 1983), and the Stanford-Binet Intelligence 

Scales, Fourth Edition (Thorndike, Hagen, & Sattler, 1986). He then described 

how individual subtests of these batteries corresponded to the Cattell-Horn Gf-Gc 

model (McGrew, 2005). Flanagan, Genshaft, and Harrison then expanded upon 

this technique in their 1997 book, Contemporary Intellectual Assessment: 

Theories, Tests, and Issues. Flanagan and Harrison (2005) have since published 

the second edition. In 1998, McGrew and Flanagan published specific guidelines 

to the CHC cross battery approach. They reported which subtests of major 

intelligence batteries corresponded to individual CHC clusters as affirmed by 

extensive factor analyses (Alfonso, Flanagan, & Radwan, 2005).   
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The Cross Battery approach consists of three pillars: the CHC theory 

itself, CHC broad clusters, and CHC narrow clusters. According to Alfonso, 

Flanagan, and Radwan (2005) this approach is “a systematic means of 

supplementing single intelligence batteries to ensure that the abilities considered 

most important vis-à-vis the referral are well represented in the assessment” 

(Alfonso, Flanagan, & Radwan, 2005, p. 198). Alfonso, Flanagan, and Radwan 

reported which subtests of major intelligence batteries corresponded to individual 

CHC clusters as affirmed by extensive factor analyses (2005).  

The suggestion that the cross battery approach be supplemental implies 

that individual subtests be used after interpretation of single comprehensive 

intelligence tests. However, rather than supplement tests with additional subtests, 

many practitioners simply chose individual subtests from different intelligence 

batteries without regard to the standardization process that guides interpretations. 

Intelligence tests are normed with specific samples and are intended to be 

reported as a single test. In addition, subtests from different assessments that 

purport to measure identical CHC broad abilities are not interchangeable. Floyd, 

Bergeron, McCormack, Anderson, and Hargrove-Owens (2005) found that 

combining CHC scores from different assessments significantly lowered the 

reliability of the results. Thus, there was a movement to ensure that all (or most) 

of the major factors be included in one battery.  

Woodcock-Johnson III 
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 In 2001, Richard Woodcock, Kevin McGrew, and Nancy Mather 

published the Woodcock-Johnson III, a norm-referenced, individually 

administered assessment of intelligence and academic achievement. They based 

their revised test on the CHC theory of intelligence. The WJ III COG consists of 

two batteries, the Standard Battery (tests 1-10), and Extended Battery (tests 11-

20). The subtests can be grouped together into a broad measure of intellectual 

ability, seven CHC factors, as well as three cognitive categories, and seven 

clinical clusters. Each CHC factor consists of subtests that claim to measure a 

narrow CHC ability, such as working memory and perceptual speed. The WJ III 

COG also organizes the CHC model into the WJ III Cognitive Performance 

Model. This posits the cognitive performance results from four main influences: 

Stores of Acquired Knowledge (Gc, Gq, Grw), Thinking Ability (Glr, Gv, Ga, 

Gf,) Cognitive Efficiency (Gsm, Gs), and Facilitator-Inhibitors (Internal, 

External). Table 2 lists the WJ III subtests that comprise the CHC factors. 

The Achievement Tests are divided into the Standard Battery (i.e., tests 1-

12) and Extended Battery (i.e., tests 13-22). These subtests combine into six 

clusters: Reading, Oral Language, Mathematics, Written Language, Academic 

Knowledge, and Supplemental Clusters. Each of the clusters, except Academic 

Knowledge consists of two to six subtests, depending on the cluster and the 

examiner’s choice. Academic Knowledge consists of only one subtest in the 

Extended Battery. 
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The Mathematics Achievement subtests consist of Calculation, Math 

Fluency, and Applied Problems in the Standard Battery with the addition of 

Quantitative Concepts in the Extended Battery (Mather, Wendling, & Woodcock, 

2001). The three standard math subtests comprise the cluster of Broad Math. 

Calculation and Math Fluency comprise the cluster Math Calculations Skills, and 

Applied Problems and Quantitative Concepts comprise the cluster Math 

Reasoning (Mather, Wendling, & Woodcock, 2001).  

The WJ-R had been devised according to the CHC model, and purported 

to measure seven of the broad cognitive abilities described within the model. 

McGrew (1995), together with various researchers (e.g., Evans, et al.; 2002, Floyd 

& Evans; 2003, Hessler, 1995), used the standardization data from the WJ-R for a 

number of studies that attempted to determine which cognitive clusters best 

predict performance in different academic areas. They analyzed the relationship 

between the cognitive clusters and reading achievement (1993), written language 

(McGrew & Knopik, 1993), and mathematics achievement (McGrew & Hessler, 

1995). They found that the clusters measuring crystallized intelligence (Gc), 

auditory processing (Ga), long-term retrieval (Glr), and processing speed were 

most predictive of reading achievement, while Gc, Ga, and Gs were the best 

predictors of writing achievement (McGrew & Knopik, 1993). 

 McGrew and Hessler (1995) investigated the correlation between the WJ-

R cognitive cluster and mathematics achievement. They looked at the seven CHC 

cognitive clusters of the WJ-R (Long-Term Retrieval, Short-Term Memory, 
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Visual Processing, Auditory Processing, Processing Speed, Comprehension 

Knowledge, and Fluid Reasoning) and two mathematics clusters, Basic 

Mathematics (which consists of Calculation and Quantitative Concepts), and 

Math Reasoning (which comprises Applied Problems) in 5,386 participants (aged 

2-95 yrs) from the standardization sample. Their analysis yielded significant 

correlations across both math criteria and across all age groups. In their study, 

most multiple regression coefficients were in the .70-.80 range. The Processing 

Speed, Comprehension-Knowledge, and Fluid Reasoning cluster showed the most 

consistent relationships with math achievement across all age groups, especially 

with Basic Math. They also found a relationship between Long-Term Retrieval 

and Basic Math, as well as between Short-Term Memory and Basic Math. 

However, they found little relationship between either Auditory Processing or 

Visual Processing and Basic Math. They also found similar relationships between 

the cognitive clusters and Math Reasoning, with Processing Speed, 

Comprehension-Knowledge, and Fluid Reasoning showing the strongest 

relationship, and Short-Term Memory and Visual Processing also showing a 

relationship, primarily at earlier ages. Multiple regression analysis with the WJ-R 

cognitive clusters as predictors and the achievement measures as criteria at 21 

different age groups revealed significant relationships among cognitive clusters 

and achievement (McGrew & Hessler, 1995, p. 21). McGrew and Hessler 

concluded that the combined clusters accounted for 50%-70% of math 

achievement variance across the life span. Table 3 outlines those broad and 
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narrow abilities that Flanagan, Ortiz, and Alfonso report have consistently shown 

to affect math performance (2007). 

Osmon, Smerz, Braun, and Plambeck (2006) evaluated 138 college age 

students for math learning disabilities using the WJ-R Cognitive and several 

measures of executive function. The students had been referred for testing based 

on suspicion of a math learning disability. Osmon et al. (2006) hypothesized that 

math learning disability can be predicted by deficits in spatial ability and 

executive functioning. In addition to the WJ-R, they used the Benton Judgment of 

Line Orientation (JLO) (Benton, Hamsher, Varney, & Spreen, 1983), and the 

Category Test (CT) (Reitan, & Wolfson, 1993), two neuropsychological measures 

of spatial ability and executive function. They measured math ability using the 

Calculation and Applied Problems subtests of the WJ-R Achievement Test, and 

then conducted a MANOVA, then one-way ANOVAs (Math impaired vs. Math 

unimpaired), and found significant main effects for Long Term Retrieval, 

Auditory Processing, Visual-Spatial Thinking, Comprehension-Knowledge, and 

Fluid Reasoning, as well as for the two tests of spatial ability and executive 

functioning. This contradicts McGrew and Hesslers’ findings that Visual 

Processing accounts for math disabilities only at the primary grades. The different 

results may be due to the additional visual tests that Osmon et al. used, but they 

may also be due to the age of the sample and the different statistical analyses 

used. Osmon et al. (2006) conducted cluster analysis of their results, and 

concluded that those with math learning disabilities can be split into three separate 
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groups: those with spatial deficits only, those with executive functioning deficits 

only, and those with deficits in both spatial ability and executive functioning.  

 Floyd, Evans, and McGrew (2003) used the standardization sample to 

examine the relationship between the WJ III COG and mathematics achievement. 

Floyd, Evans, and McGrew used the cognitive clusters of the WJ III 

(Comprehension-Knowledge, Long-Term Retrieval, Visual Spatial Thinking, 

Auditory Processing, Fluid Reasoning, Processing Speed, and Short Term 

Memory) and achievement measures of Math Reasoning with 4,498 participants 

and Math Calculation with 3,064 participants for ages 6-19 in a national sample. 

Using multiple regression analysis, they found that all of the cognitive clusters 

from the WJ III COG that measured CHC broad and narrow abilities were 

significantly related to math achievement across age groups (2003). For 

elementary school children, Comprehension-Knowledge (Gc) showed the 

strongest relation with both Math Reasoning and Math Calculation Skills (2003). 

Fluid Reasoning (Gf) also showed moderate relations with Math Calculation and 

Math Reasoning. The correlations with Math Reasoning increased with the age of 

the students. Short term Memory (Gsm) also showed moderate relations with 

Math Reasoning and Math Calculation for elementary school children, as did 

Processing Speed (Gs). Long-Term Retrieval (Glr) showed moderate relations 

with Math Reasoning and Calculation up to age eight, and Auditory Processing 

(Ga) showed moderate relations with Math Calculation only to age six (2003). 
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Visual-Spatial Thinking (Gv) showed no significant relations with Math 

Calculation skills and Math Reasoning (2003).  

 Flanagan, Ortiz, and Alfonso (2007) reviewed the research and reported 

that the strongest and most consistent associations were between Gf, Gc, and Gs 

and Math Achievement. Specifically, they found that within the broad area of Gf, 

the inductive and general sequential reasoning abilities show the strongest relation 

with math achievement. The Concept Formation subtest of the WJ III COG 

measures inductive reasoning, while the Analysis Synthesis subtest measures 

general sequential reasoning (Flanagan, Ortiz, & Alfonso, 2007). Within the 

broad area of Gc, the narrow abilities of language development and lexical 

knowledge (as measured by Verbal Comprehension on WJ III COG), and 

listening abilities (not measured on WJ III COG) have a strong relationship with 

math learning disabilities. In Gs, Perceptual Speed (measured by Visual Matching 

on WJ III COG) is especially important in the elementary school grades. They 

also found a moderate relationship between the memory span and the working 

memory areas of Gsm measured by Numbers Reversed on WJ III COG 

(Flanagan, et al. 2007).   

While the previous studies investigated the link between the CHC clusters 

and math achievement, the 2003 study did not investigate the relation between the 

clusters and Broad Math. In addition, neither study looked at correlations between 

individual subtests. Unlike previous studies that looked at representative samples, 

the population of the current study is a clinical sample. All of the participants 
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have been diagnosed with a learning disability in math reasoning, math 

calculations, or both.  
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Chapter 3 

METHOD 

 Participants 

 The sample for this study came from a larger database, consisting of 

archival data collected from the special education files of a large Southwestern 

school district with a student population of more than 25,300 students across 32 

schools. The district includes students in kindergarten through eighth grade. The 

files were from the years 2001-2007. The reported grade of the sample ranged 

from K.8 (eighth month of kindergarten) to 8.1 (first month of eighth grade). 

Table 4 outlines the sample breakdown by grade.  

The larger database from which this sample was drawn is a clinical sample 

of students who were evaluated for special education by certified school 

psychologists in the district using the WJ III COG/ACH. Graduate students 

gathered the data, with permission, from the special education files of the district 

and created a list of 4000 students all of whom had received either a WJ III COG 

or ACH and a clinical diagnosis. The students within the database were assigned 

random numbers to avoid possible identification. The database also included 

demographic and background information for each student. 

The ethnicity of this sample was 42.6% White, 33.6% Hispanic, 10.9% 

Black, 4.7% Native American, 0.8% Asian/Pacific Islander, 1.6% Other, 3.1% 

Multiethnic, and 1.6% not reported. The gender breakdown of the sample was 
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55.8% Male and 44.2% Female. The mean grade of the sample was 4.4 with a 

standard deviation of 1.9. 

To be included in the present study, the individuals needed to have 

received at least the standard WJ III COG battery, which includes the first seven 

subtests (Verbal Comprehension, Visual-Auditory Learning, Spatial Relations, 

Sound Blending, Concept Formation, Visual Matching, and Numbers Reversed) 

and at least one of the three subtests from the WJ III ACH battery that measures 

mathematical ability (Calculation, Math Fluency, and Applied Problems). 

Additionally, subjects needed to receive a diagnosis of Specific Learning 

Disability in either Math Calculation or Math Reasoning. Of the original 

population, 146 were determined to fit the parameters of this study. Of those, 17 

were eliminated because the scores in their IQ profiles were more than two 

standard deviations below the mean, which falls below the criteria for average 

intelligence set by the American Psychiatric Association’s Diagnostic and 

Statistical Manual of Mental Disorders, fourth edition text revision(DSM-IV-TR, 

2000). Because the definition of learning disabilities rules out cognitive 

impairment, subjects with scores this low may not qualify as having learning 

disabilities. This left 129 participants.  

Procedure 

Because this study used archival data with no threat to the anonymity of 

the subjects, Arizona State University’s IRB approved it and the district granted 

permission to investigate the files. The Woodcock-Munoz foundation, an 
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organization that funds research using the Woodcock-Johnson test batteries, 

provided funding for the data collection. In return, they received the data to 

include in their own national clinical database. The researcher, along with several 

other graduate students, perused all of the special education files in the district 

office and selected those students who had received a full standard WJ III 

cognitive battery, which includes the first seven subtests (Verbal Comprehension, 

Visual-Auditory Learning, Spatial Relations, Sound Blending, Concept 

Formation, Visual Matching, and Numbers Reversed) or a full standard 

achievement WJ III battery, which includes three subtests of each academic area 

(math, reading and writing). The data from these students were entered into SPSS.  

Materials 

The Woodcock-Johnson III Test of Cognitive Abilities (WJ III COG) is an 

individually administered intelligence test designed for the assessment of children 

and adults from age two to ninety. Index and IQ scores have a mean of 100 and a 

standard deviation of 15, and scores between 90 and 110 are considered average. 

This study used the standard and extended battery.  

 The Woodcock-Johnson III Tests of Achievement (WJ III ACH) is an 

individually administered test of academic performance designed for the 

assessment of children and adults from age 2 to 95, and grades K.0 through 18.0. 

The WJ III ACH was co-normed with the WJ III COG, allowing for increased 

reliability in comparing scores. The WJ III ACH has 22 subtests that measure five 

areas of academic achievement: reading, math, written language, knowledge, and 
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oral language (Mather et al., 2001). The standard battery is comprised of seven 

subtests, and the extended battery has 14. Additional subtests can provide 

supplemental scores. This study uses the math battery. 

Data Analysis Plan 

Descriptive statistics were calculated including means and standard 

deviations. Frequencies were reported for ethnicity, gender, and area of disability.  

Multiple regression analysis was used to study the relationships between 

the predictor variables and the criterion variables of Broad Math (subtests 

Calculation, Math Fluency and Applied Problems), Math Calculation Skills 

(Calculation and Math Fluency), and Math Reasoning (Applied Problems and 

Quantitative Concepts) clusters of the WJ III Achievement from Cognitive 

Performance model as well as the broad CHC Clusters (Comprehension-

Knowledge, Long-Term Retrieval, Visual Spatial Thinking, Auditory Processing, 

Fluid Reasoning, Processing Speed, and Short Term Memory). Differences 

between the results in the clinical population and those of the nonclinical 

population were determined. 

Research Questions 

Question 1. Does the CHC factor Gf, as measured by the WJ III cognitive 

subtests Concept Formation and Analysis-Synthesis show a strong relation with 

math achievement, as measured by the WJ III achievement math cluster in a 

clinical population of students with math learning disabilities? 
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Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Gf measure (comprised of the subtests 

Concept Formation and Analysis-Synthesis), and the criterion variables, the WJ 

III achievement clusters of Broad Math (comprised of Calculation, Math Fluency 

and Applied Problems), Math Calculation Skills (Calculation and Math Fluency), 

and Mathematics Reasoning (Applied Problems and Quantitative Concepts). 

Question 2. Does the CHC factor Gc, as measured by the WJ III cognitive 

subtests Verbal Comprehension and General Information show a positive relation 

with math achievement, as measured by the WJ III achievement math cluster in a 

clinical population of students with math learning disabilities?  

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Gc measure (and the criterion 

variables, the WJ III achievement clusters of Broad Math (comprised of 

Calculation, Math Fluency and Applied Problems), Math Calculation Skills 

(Calculation and Math Fluency), and Mathematics Reasoning (Applied Problems 

and Quantitative Concepts). 

Question 3. Does the CHC factor Gsm, as measured by the WJ III 

cognitive subtests Memory for Words and Numbers Reversed show a positive 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Gsm measure (comprised of the 
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subtests Numbers Reversed and Auditory Working Memory), and the criterion 

variables, the WJ III achievement clusters of Broad Math, Math Calculation Skills 

and Mathematics Reasoning. 

Question 4. Does the CHC factor Gv, as measured by the WJ III cognitive 

subtests Spatial Relations and Picture Recognition demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Gv measure, and the criterion 

variables, the WJ III achievement clusters of Broad Math, Math Calculation 

Skills, and Mathematics Reasoning. 

Question 5. Does the CHC factor Ga, as measured by the WJ III cognitive 

subtests Sound Blending and Auditory Attention demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Ga measure, and the criterion 

variables, the WJ III achievement clusters of Broad Math (comprised of 

Calculation, Math Fluency and Applied Problems), Math Calculation Skills 

(Calculation and Math Fluency), and Mathematics Reasoning (Applied Problems 

and Quantitative Concepts). 
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Question 6. Does the CHC factor Glr, as measured by the WJ III cognitive 

subtests Visual Auditory Attention and Retrieval Fluency demonstrate a 

significant relation with math achievement, as measured by the WJ III 

achievement math cluster in a clinical population of students with math learning 

disabilities? 

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Glr measure, and the criterion 

variables, the WJ III achievement clusters of Broad Math (comprised of 

Calculation, Math Fluency and Applied Problems), Math Calculation Skills 

(Calculation and Math Fluency), and Mathematics Reasoning (Applied Problems 

and Quantitative Concepts). 

Question 7. Does the CHC factor Gs, as measured by the WJ III cognitive 

subtests Visual Matching and Decision Speed demonstrate a significant relation 

with math achievement, as measured by the WJ III achievement math cluster in a 

clinical population of students with math learning disabilities? 

Multiple regression analysis was used to scrutinize the relation between 

the predictor variable, the WJ III cognitive Gs measure, and the criterion 

variables, the WJ III achievement clusters of Broad Math (comprised of 

Calculation, Math Fluency and Applied Problems), Math Calculation Skills 

(Calculation and Math Fluency), and Mathematics Reasoning (Applied Problems 

and Quantitative Concepts). 
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Chapter 4 

RESULTS 

This section includes the statistical findings of the study. Each research 

question is addressed. Table 5 shows the sample sizes and descriptive statistics for 

clusters included in the regression models. Tables 6-12 show the results of the 

analyses. Following McGrew’s (1993) guidelines, coefficients of .10 to .29 are 

defined as moderate relations, and coefficients of .30 and above are strong 

relations. Relations are only defined as significant when p< .05. 

Research Questions and Analyses 

Question 1. Does the CHC factor Gf, as measured by the WJ III cognitive 

subtests Concept Formation and Analysis-Synthesis demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Results and Analyses for Question 1. Multiple regression analyses were 

conducted to evaluate how well Gf predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. There 

was a strong relation between Gf and Broad Math. Gf also showed a strong 

relation with Math Reasoning and a moderate relation with Math Calculation. 

Table 6 summarizes these findings. 

Question 2. Does the CHC factor Gc, as measured by the WJ III cognitive 

subtests Verbal Comprehension and General Information show a positive relation 
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with math achievement, as measured by the WJ III achievement math cluster in a 

clinical population of students with math learning disabilities?  

Results and Analyses for Question 2. Multiple regression analyses were 

conducted to evaluate how well Gc predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Gc 

demonstrated the strongest relation with Broad Math, and a moderate relation 

with Math Calculation. However, Gc did not demonstrate a significant relation 

with Math Reasoning or with Math Calculation. Table 7 summarizes these 

findings. 

Question 3. Does the CHC factor Gsm, as measured by the WJ III 

cognitive subtests Memory for Words and Numbers Reversed show a positive 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Results and Analyses for Question 3. Multiple regression analyses were 

conducted to evaluate how well Gsm predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Gsm 

showed a moderate relation with Broad Math and Math Calculation. It 

demonstrated the strongest relation with Math Reasoning. Table 8 summarizes 

these findings. 

Question 4. Does the CHC factor Gv, as measured by the WJ III cognitive 

subtests Spatial Relations and Picture Recognition demonstrate a significant 
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relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Results and Analyses for Question 4. Multiple regression analyses were 

conducted to evaluate how well Gv predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Gv 

showed a moderate relation with Broad Math and Math Calculation and a strong 

relation with Math Reasoning. Table 9 summarizes these findings. 

Question 5. Does the CHC factor Ga, as measured by the WJ III cognitive 

subtests Sound Blending and Auditory Attention demonstrate a significant 

relation with math achievement, as measured by the WJ III achievement math 

cluster in a clinical population of students with math learning disabilities? 

Results and Analyses for Question 5. Multiple regression analyses were 

conducted to evaluate how well Ga predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Ga 

showed a moderate relation with Broad Math and Math Calculation, but did not 

demonstrate a significant relation with Math Reasoning. Table 10 summarizes 

these findings. 

Question 6. Does the CHC factor Glr, as measured by the WJ III cognitive 

subtests Visual-Auditory Learning and Retrieval Fluency demonstrate a 

significant relation with math achievement, as measured by the WJ III 

achievement math cluster in a clinical population of students with math learning 

disabilities? 
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Results and Analyses for Question 6. Multiple regression analyses were 

conducted to evaluate how well Glr predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Glr 

showed a moderate relation with Broad Math and Math Calculation, but did not 

demonstrate a significant relation with Math Reasoning. Table 11 summarizes 

these findings. 

Question 7. Does the CHC factor Gs, as measured by the WJ III cognitive 

subtests Visual Matching and Decision Speed demonstrate a significant relation 

with math achievement, as measured by the WJ III achievement math cluster in a 

clinical population of students with math learning disabilities? 

Results and Analyses for Question 7. Multiple regression analyses were 

conducted to evaluate how well Gs predicted math achievement as measured by 

the WJ III clusters of Broad Math, Math Calculation, and Math Reasoning. Gs 

demonstrated a moderate relation with Broad Math. Gs also showed a moderate 

relationship with Math Calculation. However, it did not demonstrate a significant 

relation with Math Reasoning. Table 12 summarizes these findings. 
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Chapter 5 

DISCUSSION 

The results of this study replicated several studies from research involving CHC 

factors and the Woodcock-Johnson III Tests of Cognitive and Academic Ability. 

However, unlike previous studies, this study involved a clinical sample in which 

all of the subjects had been diagnosed with math learning disabilities. This may 

provide insight into some ways in which children with math learning disabilities 

differ from their peers. 

Gf and Mathematics 

As expected, Gf, which measures reasoning and problem solving ability, 

demonstrated a consistently moderate to strong relation with mathematics 

achievement. Previous research has established a consistent relationship between 

Gf and math achievement (Flanagan, Ortiz, & Alfonso, 2007). Floyd, Evans, and 

McGrew report, “Gf appears to represent some of the prominent constructs in 

studies of mathematics skill development, such as problem-solving schemata, 

strategy use, and strategic change” (2003). 

Gc and Mathematics 

 Previous research has demonstrated a consistent relationship between Gc 

and mathematics achievement. According to Schrank, Flanagan, Woodcock, and 

Mascolo (2002), meta-analyses have shown that the Gc narrow abilities of 

“Language Development (LD), Lexical Knowledge (VL), and Listening Ability 

(LS) are important at all ages. These abilities become increasingly more important 
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with age” (pp. 132). According to Floyd, Evans, and McGrew, “general cultural 

knowledge and knowledge of mathematics concepts, facts and the procedures to 

conduct arithmetic stem largely from the acquisition and modification of 

declarative and procedural knowledge structures” (2003, p. 163). Gc measures 

crystallized intelligence, or the knowledge acquired through experience and 

education. Because it depends so strongly on exposure to academics, Floyd, 

Evans, and McGrew report that it may also be considered a form of academic 

achievement. Thus, the strong relationship between Gc and Broad Math 

demonstrated in the current study is not surprising, nor is the moderate relation 

between Gc and Math Calculation. What is surprising, however, is that Gc 

demonstrated no significant relationship with Math Reasoning. This may be due 

to the young age of the sample. Floyd, Evans, and McGrew (2003) found that the 

relation between Gc and Math Reasoning steadily increased with age.  

Gsm and Mathematics 

Previous research has established the role that short-term memory plays in 

the acquisition of math skills (Flanagan, Ortiz, & Alfonso, 2007). Floyd, Evans, 

and McGrew (2003) found that working memory had a particularly strong 

relationship with math calculation and reasoning. In this study, Gsm showed a 

consistent moderate to strong relationship with all areas of math achievement.  

Gv and Math Achievement 

 Previous research has shown a link between Visual Spatial Thinking (Gv) 

and higher-level math, such as geometry and calculus (Flanagan, Ortiz, & 
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Alfonso, 2007). However, it has not shown any consistent link with the 

acquisition of early math skills. In their meta-analysis, McGrew and Wendling (in 

press) commented on the lack of consistent findings regarding Gv and math 

learning disabilities. According to McGrew, many studies have noted that aspects 

of visual-spatial ability are a core deficit in those math learning disabilities, and 

yet the overall Gv ability has not shown a consistent significant relationship with 

math abilities. In this study, however, Gv showed a moderate to strong relation 

with all areas of math achievement.  

Ga and Mathematics 

 Previous research has not demonstrated a consistent link between 

Auditory Processing (Ga) and math achievement (Flanagan, Ortiz, & Alfonso, 

2007). However, Floyd, Evans, and McGrew (2003) found significant relations 

between Ga and Math Calculations in early childhood: however, these effects 

dissipated with age. Because the sample for this study contained only elementary 

school students, this may explain the moderate relation between Ga and Math 

Calculation, as well as Broad Math. The non-significant relationship between Ga 

and Math Reasoning is consistent with previous findings. 

Glr and Math achievement 

 Glr showed a strong relation with Broad Math, and a moderate relation 

with Math Calculation, but no significant relation with Math Reasoning. Research 

has not consistently shown a link between Glr and math achievement. However, 

Floyd, Evans, and McGrew (2003), found that long-term retrieval was important 
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to early development of math calculation skills. They concluded, “Rote recall of 

mathematical facts from declarative memory (and not more complex cognitive 

operations representing procedural memory) is required to complete simple math 

problems (p.165). This may explain the lack of connection between Glr and Math 

Reasoning, as Math Reasoning measures higher-level abilities. Thus, for this 

sample declarative memory affected lower level math achievement, but not 

higher-level mathematics achievement. 

Gs and Mathematics 

 Previous research has established a connection between Gs and the 

acquisition of primary math skills (Floyd, Evans, & McGrew, 2003). Gs showed a 

moderate relationship with Broad Math and Math Calculation, but did not 

demonstrate a significant relation with Math Reasoning. Previous research has 

established the relationship between speed of processing and math skills 

(Flanagan, Ortiz, & Alfonso, 2007). Both Broad Math and Math Calculation 

contain a measure of math fluency, which measures the student’s ability to 

quickly complete simple arithmetic problems. Math Reasoning however contains 

no timed tests, so the lack of connection between it and Gs aligns with previous 

research. 

Major Implications 

 Research into reading learning disabilities has uncovered differences in 

the cognitive processes of those with reading disabilities (Wolfe & Nevills, 2004). 

The results of this study point to the possibility that those with math learning 
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disabilities also process information differently than their peers. Previous 

research, mostly involving the standardization sample for iterations of the 

Woodcock-Johnson (WJ-R, WJ III) has not consistently shown a significant 

relationship between Auditory Processing (Ga) and math achievement, and 

Visual-Spatial Intelligence (Gv) has only demonstrated consistent relations with 

higher level math (Flanagan, Ortiz & Alfonso, 2007). However, in this study, they 

both demonstrated moderate to strong relationships with Broad Math and Math 

Calculation, and Gv showed a strong relationship with Math Reasoning. This may 

point to processing deficits in Gv and Ga in those with math learning disabilities. 

If so, these students may have greater difficulty than their peers processing the 

information presented in standard lectures, as well as the visual cues often given 

to aid students who have difficulties processing information auditorily. 

Difficulties with auditory and visual processing may also inhibit their ability to 

conquer tasks basic to mathematic skills, such as learning numbers and being able 

to identify patterns (Flanagan, Ortiz, & Alfonso, 2007). Brain scans of those with 

reading learning disabilities have demonstrated that they continue to process text 

as novice readers, rather than developing efficient cognitive strategies (Wolfe & 

Nevills, 2004). Perhaps those with math learning disabilities also fail to develop 

the efficient strategies used by their peers. Further research using brain scans may 

reveal more information in this area.  

This study also showed no significant relationship between Crystallized 

Intelligence and Math Reasoning, while previous research has shown that this 
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ability generally becomes more important with age. This too may point to 

differences in the way students with math learning disabilities process 

information. If the students with math learning disabilities have not been able to 

learn mathematical skills to automaticity, they may not be referring to their fund 

of knowledge to complete mathematical tasks. Instead, they react to each task as a 

novice would, which decreases their efficiency and speed (Flanagan, Ortiz, & 

Alfonso, 2007). 

 

Implications for Future Research 

 Because of the small sample size of this study, generalization to the 

population of children with math learning disabilities is limited in scope. Future 

research into children with math learning disabilities with a larger sample size can 

allow for broader analyses and generalization of findings. Research that attempts 

to replicate these findings may confirm the differences found here. Research into 

age differences may be helpful in understanding these findings and future 

researchers may investigate whether these differences continue as the students 

age. Research centering on those in high school and beyond may be helpful. 

Future studies with larger sample sizes should also look at gender differences. 

Investigations into the underlying neurological processes, such as those done by 

Shaywitz and Shaywitz on children with reading learning disabilities (Shaywitz, 

2003) may also yield more information on differences between those with math 

disabilities and those without. 
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Implications for Practice 

Research has supported the efficacy of evidence-based interventions to 

mediate or bypass specific cognitive deficits (Wodrich & Schmitt, 2006). For 

instance, children with deficits in processing speed may benefit from additional 

time to complete academic tasks and children who have difficulty with 

memorization may require number strips to remind them of basic calculation facts 

(McCarney & Wunderlich, 2006). If children with math learning disabilities 

display commonalities in their cognitive profiles, teachers could better devise 

strategies to aid them based on their processing strengths and weaknesses.  

 

Limitations 

Several limitations of this study should be considered. The biggest 

limitation is the size of the sample. Because the study was based on archival data 

and was limited to data found in one district, the sample size was smaller than 

ideal. The size of the sample limited the number of analyses possible. For 

instance, since Floyd, Evans, and McGrew (2003) used the standardization 

sample, they had 4,498 subjects and were able to analyze their sample by age 

group and gender; however, the size of this sample would have rendered that 

analysis meaningless. The small size of the sample also prevented any meaningful 

analysis of differences by gender or ethnicity. In addition, because this sample 

consisted only of elementary school children, conclusions could not be reached 

about the influence of cognition on older children. This study used only one 
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measure of CHC factors (WJ III COG) and math achievement (WJ III ACH), so 

generalization to other measures of CHC factors should be made with caution. 

Summary 

While many of the findings of this study confirm previous findings, some 

vary from the established research base. These may relate to the age of the 

sample. However, they may also indicate ways in which children with math 

learning disabilities differ from their peers. Several areas of cognition that showed 

moderate relations with Broad Math and Math Calculation in this study have 

previously only shown to affect math skills in the first few years of school. Brain 

scans of children with reading learning disabilities have indicated that their brains 

continue to process information as novice readers (Wolfe and Neville, 2004). 

Perhaps students with math learning disabilities have similar cognitive deficits. 

Future research should explore this possibility. 
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Table 1 

CHC Factors  

CHC factor Description 
Fluid Intelligence (Gf) Ability to process novel tasks. 
Crystallized Intelligence 
(Gc) 

Acquired knowledge, and ability to apply this 
knowledge 

Short-Term Memory(Gsm) Ability to hold information in awareness and 
quickly 
use it 

Visual Processing (Gv) Ability to perceive process and analyze visual  
patterns and stimuli 

Auditory Processing (Ga) Ability to perceive, process, and analyze auditory 
patterns and stimuli 

Long-Term Storage and 
Retrieval (Glr) 

Ability to store and easily retrieve new or 
previously learned items from long-term memory 

Processing Speed (Gs) Ability to quickly perform cognitive tasks 
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Table 2 

WJ III Subtests That Comprise CHC Clusters 

CHC factor WJ III subtests  
Gf Concept Formation, Analysis Synthesis 
Gc Verbal Comprehension, General 

Information 
Gv Spatial Relations, Picture Recognition 
Gsm Memory for Words, Numbers Reversed 
Glr Visual-Auditory Learning, Retrieval 

Fluency 
Ga Sound Blending, Auditory Attention 
Gs Visual Matching, Decision Speed 
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Table 3 

CHC Broad and Narrow Abilities That Affect Math  

CHC factor Description Narrow abilities shown to influence math 
performance 

Gf Fluid reasoning Inductive (I) and General Sequential 
Reasoning (RG) 

Gc Comprehension- Language Development (LD), Lexical 
Knowledge (VL) and Listening Abilities 
(LS),  

Gsm Short term memory 
and retrieval 

Memory Span (MS), Working Memory 
(WM) 

Gs Speed of processing Perceptual Speed (P) 
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Table 4 

Frequencies by Grade 

Grade N 

K 1 

1 10 

2 20 

3 21 

4 23 

5 25 

6 16 

7 3 

8 10 

Total 129 
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Table 5 

Sample Size and Descriptive Statistics for Clusters included in the Regression 

Models 

 N M SD 
Broad Math 124 80.56 10.29 

Math Calculation 88 78.30 12.04 
Math Reasoning 23 81.78 7.38 
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Table 6 

Standardized Regression Coefficients for WJ III Gf Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .32** 

Math Calculation                       .23* 
*p < .05. ** p < .01. 
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Table 7 

Standardized Regression Coefficients for WJ III Gc Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .33** 

Math Calculation                      .22* 
Math Reasoning                     -.14 
*p < .05. ** p < .01. 
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Table 8 

Standardized Regression Coefficients for WJ III Gsm Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .30** 

Math Calculation .29** 
Math Reasoning                      .40* 
*p < .05. ** p < .01. 
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Table 9 

Standardized Regression Coefficients for WJ III Gv Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .22** 

Math Calculation                      .21* 
Math Reasoning                      .39* 
*p < .05. ** p < .01. 
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Table 10 

 Standardized Regression Coefficients for WJ III Ga Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .22** 

Math Calculation                      .22* 
Math Reasoning                      .29 
*p < .05. ** p < .01. 
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Table 11 

Standardized Regression Coefficients for WJ III Glr Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .30** 

Math Calculation                      .24* 
Math Reasoning                      .20 
*p < .05. ** p < .01. 
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Table 12 

Standardized Regression Coefficients for WJ III Gs Cluster with Math 

Achievement 

Variable Regression coefficient 
Broad Math .21** 

Math Calculation .29** 
Math Reasoning                      .02 
*p < .05. ** p < .01. 
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