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ABSTRACT

Sparse learning is a technique in machine learning for feature selection and

dimensionality reduction, to find a sparse set of the most relevant features. In any

machine learning problem, there is a considerable amount of irrelevant informa-

tion, and separating relevant information from the irrelevant information has been

a topic of focus. In supervised learning like regression, the data consists of many

features and only a subset of the features may be responsible for the result. Also,

the features might require special structural requirements, which introduces addi-

tional complexity for feature selection. The sparse learning package, provides a

set of algorithms for learning a sparse set of the most relevant features for both

regression and classification problems. Structural dependencies among features

which introduce additional requirements are also provided as part of the package.

The features may be grouped together, and there may exist hierarchies and over-

lapping groups among these, and there may be requirements for selecting the most

relevant groups among them.

In spite of getting sparse solutions, the solutions are not guaranteed to be

robust. For the selection to be robust, there are certain techniques which provide

theoretical justification of why certain features are selected. The stability selection,

is a method for feature selection which allows the use of existing sparse learning

methods to select the stable set of features for a given training sample. This is

done by assigning probabilities for the features: by sub-sampling the training data

and using a specific sparse learning technique to learn the relevant features, and

repeating this a large number of times, and counting the probability as the number

of times a feature is selected. Cross-validation which is used to determine the best

parameter value over a range of values, further allows to select the best parameter

value. This is done by selecting the parameter value which gives the maximum

accuracy score. With such a combination of algorithms, with good convergence
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guarantees, stable feature selection properties and the inclusion of various struc-

tural dependencies among features, the sparse learning package will be a powerful

tool for machine learning research. Modular structure, C implementation, ATLAS

integration for fast linear algebraic subroutines, make it one of the best tool for a

large sparse setting. The varied collection of algorithms, support for group sparsity,

batch algorithms, are a few of the notable functionality of the SLEP package, and

these features can be used in a variety of fields to infer relevant elements. The

Alzheimer Disease(AD) is a neurodegenerative disease, which gradually leads to

dementia. The SLEP package is used for feature selection for getting the most rel-

evant biomarkers from the available AD dataset, and the results show that, indeed,

only a subset of the features are required to gain valuable insights.
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Chapter 1

INTRODUCTION

Machine learning is a branch of artificial intelligence which deals with learning from

past data for future predictions. Being a relatively new field, with the increasing

power of computers it is being used in almost every area dealing with empirical

data. Machine learning is broadly classified as: Supervised Learning, Unsuper-

vised learning, Semi-supervised learning, reinforcement learning. As these names

suggest, they deal with uncertainties according to what information is available,

and what is the maximum possible inference that can be done. The recent develop-

ments in computational speed and power, has led to the use of many of these tech-

niques, which were previously not possible. It is worth mentioning here that there

has been quite some interest in parallelizing these data and computation intensive

algorithms, and many of these developments along with the increasing power of

computers have led to such an interest. Learning from the past, is a useful way to

reduce uncertainty of the future. Much of statistical learning, has focused on using

existing data to predict uncertainty. Machine learning research has been an excit-

ing field for more than 30 years in the past, and is still evolving, and will continue to

be one of the primary research areas in the coming years, due to the numerous ar-

eas of application of machine learning techniques. Bio-informatics, predictive data

analytics, economic analysis, web mining, buyer recommendation systems, social

behavioural studies, and more and more areas have been finding machine learning

to be highly practical science relevant to them. With the advancement of computing

power, storage capacities, data flows, efficient algorithms for computations, efficient

parallel and distributed computing; machine learning has found even more practical

usage in every areas of science and technology.

Many of the real-world phenomena have a simple and comparatively com-
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pact representation, in spite of being represented in a non-compact way. In prac-

tice, due to empirical uncertainty, we are overloaded with a lot of irrelevant infor-

mation. The way to compactly represent and comprehend a phenomenon, has

been the most fascinating aspect of science and mathematics. Apart from the prej-

udices of compact representation for human understanding and manoeuvrability,

the representations of many real-world processes are indeed sparse and sparse

representations has found useful applications in signal processing, neuroscience,

bio-informatics, image processing, and many other fields.

Dimensionality reduction is the process of reducing the amount of data avail-

able, by cutting down the number of random variables under consideration, also

known as the features. Based on how the features are selected, the algorithms

are classified as feature extraction or feature selection; the former does it by giving

probabilities to the features, and the latter by iteratively adding or removing features

from a select or remove set thus selecting the optimal feature set.

Figure 1.1: Dimensionality reduction - reducing the number of features
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Since we are uncertain about the models, there is a possibility of using the

irrelevant information in our knowledge base, to make predictions. This turns out to

be very costly, and much of the recent works have been focusing on reducing this

unnecessary information.

Sparse learning is a relatively new area in machine learning, where new

ideas are being evolved, and it is finding practical applications. Sparse learning

focuses on using the available information to minimize the irrelevant information

in the data. Selecting genes responsible for a particular disease, predicting user

behaviour from only a subset of user data, finding regions in brain whose activities

correspond to the causation of a particular disease are all some of the applications

of sparse learning.

The SLEP package is aimed at providing many sparse learning routines,

which are fast and easy to use. The main motivation for creating the software

package, was to promote it as a tool for sparse learning applications, with its fast

routines and graphical user interface. It also provides visualization of data. The

stability selection is a model selection algorithm, which can be used for selecting

the stable set of features. The path-wise solutions, and cross validation routines

help the user choose among the different parameter values. We now give a brief

overview of the algorithms that are part of the software.

The `1 norm regularization, has been the topic of focus for much of the

research in sparse learning, due to their sparsity-inducing property, and strong the-

oretical guarantees. The `1/`q norm is another sparsity inducing norm, where the

sparsity is focused towards group of features.

Here we discuss the following sparse learning algorithms,

• `1-norm regularized - considers both least squares loss function and logistic

loss function with additional constraints such as non-negative solutions
3



• `1-norm constrained - similar to the regularized form, but the problem is for-

mulated differently, the `1-norm is added as a constraint.

• Group Lasso - uses `1/`q-norm for group sparsity, available for both least

squares loss and logistic loss

• Multi-task Lasso- uses `1/`q-norm for multi-task sparse solutions, available

for both least squares loss and logistic loss

• Multi-class Lasso- uses `1/`q-norm for multi-class sparse solutions, available

for both least squares loss and logistic loss, it is a general case of the group

lasso

• Fused Lasso - here an additional penalty, which penalizes large successive

difference in the solutions, hence the obtained solution is smooth as well as

sparse - the penalty term used is called the fused penalty :

• Sparse group lasso - the sparse group lasso, adds an additional constraint

which allows for sparsity within the groups, available for both least squares

loss and logistic loss. Also there is an algorithm for multi-class sparse-group

lasso, for use when there are multiple classes.

• Tree-structured group Lasso - here the groups further form hierarchies, and

the features are tree-structured, this is also available for both least squares

and logistic loss

• Overlapping group Lasso - group lasso, and sparse group lasso allow for

group sparsity, but the groups cannot overlap. The tree-structured group

lasso is a special case of overlapping group lasso. This is available for both

least squares and logistic loss.

There are a few batch processing routines for feature selection and for set-

ting optimal values for regularization constants.
4



• Stability Selection - selects the stable sets of features using one of the algo-

rithms above, there are utility functions for extracting features after running

this algorithms to get the probabilities of each of the features.

• Leave 1 Out cross validation - A cross-validation routine, which runs as many

times as the number of data points (or rows), each time leaving one of the

data point for test and using the remaining for training.

• k-Fold Cross Validation - A cross validation routine, which splits the data into k

folds, runs k times, each time using a new fold for testing while the remaining

is used for training.

• Bootstrapped Lasso - This is a routine which is used to find the best set of

features for least squares loss, by running the least squares loss routines

many times, with different bootstrapped samples each time.

The problems listed above are challenging to formulate, as the `1 norm, the

`1/`q norm, the fused Lasso penalty, the sparse group Lasso penalty, the fused

lasso penalty, the tree structured and overlapping group lasso penalties, are not

smooth. As mentioned earlier, the problems are solved by formulating them as

convex optimization problems which have a single global solution. As discussed in

[34], it is almost impossible to find the exact solution to any of these problems. We

use an iterative algorithm, as discussed in [34], which minimizes upto an error mar-

gin of 1/k2 for the number of iterations k. The sparse learning in general, has many

applications, as it reduces the original representation by a considerable amount.

More and more fields are considering the use of sparse learning, and also intro-

ducing additional complexities and theory. These have lead the the development of

sparse models for least squares regression, principal component analysis, support

vector machines, and logistic regression.
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The `1/`q norm regularization, belonging to the composite absolute penal-

ties family of regularizers, facilitates group sparsity which has applications in com-

puter vision, graphics, fraud detection, and many such fields. The fused Lasso reg-

ularizer, emphasizes a smooth neighbourhood of values for the weights, and this

can be used in image de-noising, prostate cancer analysis, genomic hybridization,

and time-varying networks, where the ordering of features is possible.

The sparse group lasso, is an extension of group lasso and lasso, which

achieves the within and between group sparsity simultaneously, meaning, many

groups of features are zero, and also those non-zero groups of features can be

made sparse. It is a special case of the tree group lasso. Again, many can see the

applicability of this technique to their particular area. Tree Structured group lasso,

is another powerful sparse learning routine, but here, the features are grouped, and

also have hierarchies. The leaf nodes are features, and internal nodes are clusters

of features, the structural regularization is based on the group lasso penalty, which

will be discussed in detail in later sections. This can be used mainly in image pro-

cessing, and multi-task learning. Some applications desire an overlapping group

structure in the features, which has not yet been addressed by the above algo-

rithms. For this, we provide the overlapping group lasso, which can solve problems

which organizes the features in groups, and which are overlapping.

Stability selection [31], is a work on feature extraction, which focuses on col-

lecting the best set of features, given the data and its dependent variables. This

has been proven to have strong theoretical properties, and empirically the results

have been good as well. It works by using an existing sparsity inducing routine, to

get solutions for a sub-sample of the features. The stability path for the features is

drawn, which is a path for a particular feature for the frequencies of this parame-

ter being non-zero over all the runs with different random sub-sample (drawn with

replacement), drawn through different parameter settings for the sparsity inducing
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parameter. Once we compute this path, we get the maximum probability of each

feature over its stability path, and use this as a measure of how probable this feature

is likely to get selected. This makes much sense intuitively, but has been proved

to be theoretically good as well. Using stability selection, can drastically improve

the feature extraction process, and can reduce doubts about the effectiveness of

sparsity inducing parameters.

The bootstrapped lasso, is an method to select the best set of features for

the regression problem. This makes use of the lasso, with random bootstrapping

samples, run many times, and selects those features which are constant over many

runs of the different bootstrap samples.

This package in C, provides all these algorithms with a good design, scal-

able, and natively running implementation compared to the Matlab package which

contains many of the algorithms discussed above. And, these have additional

support for extracting features, running batch algorithms, quick visualizations, and

hence will be a very useful companion in a scientific setting. The current imple-

mentation of these algorithms has faster running time than in Matlab, with exact

precision as Matlab, and many times very fast running times. This is especially

useful for the batch algorithms as the Stability Selection, Bootstrapped Lasso and

Cross Validation.
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Chapter 2

RELATED AND REFERENCED WORKS

This chapter, is intended to give a brief review of all the work on sparse learning,

and everything related to this paper. The reader is warned that, the content as-

sumes the reader is well-versed with the sparse learning terminologies. The reader

may come back after reading the rest of the document before starting with this.

For a general overview about convex optimization, [6] gives an excellent in-

troductory explanation, with some convex analysis, formulating problems as convex

optimization problems, then goes discussing about applications and many algo-

rithms for convex optimization problems. Also, [34] is another set of useful material

from lectures on convex optimization, and it gives even more insights into solving

convex optimization problems efficiently. [32] discusses some of the efficient ways

to solve convex programming problems, and most of the work in this Software has

come from an efficient way to solve convex programming problems discussed by

Nesterov in [33]. Many of these problems are also non-smooth which warrants the

use of non-conventional methods for optimization. The non-smooth problems are

hard to solve, and [5] introduces some theory on nonsmooth optimization.

The idea of sparse learning, was first a spark from the paper by Tibshirani

[38] on `1 norm and its sparsity inducing property. [38, 17] have given a good

account of `1 norm for least squares regression. [22, 20] discuss about logistic

regression and the `1 norm for sparsity. Shalev-Shwartz and Srebro give a nice

account of the guarantees of sparsifiability in [36]. They show this by introducing

a randomized procedure comparing it to the `1 norm induced sparsity and giving a

bound on the amount sparsity.

All these methods require a way to efficiently project points onto convex ob-
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jects in high dimensions. [26, 10] focus on efficient projections required for the

sparse learning algorithms, solvable by formulating as a convex optimization prob-

lem. These in turn require euclidean root finding, which has been explored very

well, and [35] can be used for an introductory text on this, with [26] giving a detailed

account of this, and a linear time algorithm with respect to the sparse learning set-

ting.

For group sparsities, [27, 30, 42, 43, 44, 15, 13] are some of the references

which discuss about group sparsities. The composite absolute penalties, which

are mainly used in group and multi-task settings are discussed in [43, 44]. The

multi-task problem in [23, 8, 2] discuss about the convex formulations, and how to

solve these efficiently. The sparse group lasso, hierarchical group lasso, and the

employment of Moreau-Yosida regularization, are discussed in detail in [21, 29].

Also the hierarchical model selection in [43, 44, 15, 13, 12] give an account of

hierarchical and overlapping groups.

[19, 9, 4, 41] discuss the linear algebraic routines, and how to implement

them in the most efficient manner, with some discussion of data structures as well.

Particularly, [41] discusses the idea of Automated optimizations targeted at par-

ticular architecture of the computer, and fast linear algebraic subroutine running

times.[28, 26, 39, 40] talk about fused lasso, efficient ways to solve the problem.

The applications of sparse learning, are discussed in [40, 1, 7, 14]. These

are varied fields from bio-informatics to signal processing. A look at various re-

search databases, suggest that sparse learning has numerous applications in a

variety of fields. Stability selection is a recent paper, which focuses on selecting the

most stable set of features among others[16, 31]. Cross validation allows us to se-

lect a good parameter value, which will be critical for a good prediction[18, 37, 11].

The bootstrapped lasso is another method which allows for feature selection by

using a novel approach[3].
9



Chapter 3

FORMULATIONS AND ALGORITHMS

This section introduces the various formulations of sparse learning methods, and

the algorithm used to solve these problems. The `1 norm and its sparsity inducing

property is discussed first, continuing with `1/`q norm and its applications to sparse

learning. This is followed by the lasso, sparse logistic regression, group lasso,

fused lasso, multi task learning, multi-class learning, tree structured group learning

and overlapping group learning.

We use some of the techniques defined in [34, 32, 33, 6, 5] to solve the prob-

lems, by formulating each as an optimization method, with additional constraints.

Additionally, the problems discussed below, belong to the convex optimization class,

which requires the objective function to be convex (though not necessarily smooth),

and the constraints to form a convex set. Convexity has been proved to be a useful

property, and more and more problems are being formulated as convex optimiza-

tion problems and being solved [6]. Many problems are not themselves convex,

but have a convex approximation which would work well. The convex problems

are easy to solve, as they have a unique minimizer, and hence the solutions of the

convex optimization problems converge to that particular solution. The zero norm

(or `0-norm) is the count of number of non-zero elements of a vector. But the `0

norm does not form a convex cone (geometrically this can be seen when drawn in

the d + 1 dimension). The closest convex norm that matches this functionality of

selecting non-zero elements from zero elements, is the`1 norm. And in fact, it does

well to induce sparsity into the solution.

Furthermore, we explore the `q/`1 norm, discussed in [43, 44], and these

are of interest in problems involving group sparsities. We discuss many problems

of this genre, and the application of `q/`1 norm to it. The next section introduces
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the `1 norm and its sparsity inducing property.

3.1 Sparsity and the `1 norm

It has been well established that the `1 norm induces sparsity while expressed along

with the loss function or used as a constraint in the minimization problems. Most

of the algorithms in this package uses `1 norm to find a sparse solution. The effect

of `1 norm and `2 norm can be combined to form regularized and sparse solutions.

Typically, the problems are of the form

minimize f(x) + λ‖x‖1

or

minimize f(x) s.t. ‖x‖1 < z

where f(x) is the loss function and ‖.‖1 is the `1 norm, and λ is the parameter

which controls the amount of sparsity, and z is the constraint. The following dia-

grams illustrate an intuitive explanation of why `1 norm induces sparsity into the

solutions. The `2 norm constraint, intersects the level curves at a point where both

the parameter values are non-zeros.

The `1 norm constraint, intersects the level curves of the objective function

at a point where one of the parameter values vanishes(is zero). This effect is more

in high dimensional feature space, and hence the sparsity inducing property of `1

norm. More information about this can be found in [38].
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Figure 3.1: The `2 norm

Figure 3.2: The `1 norm
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3.2 The `1/`q-norm

For many of the problems involving a structure in their feature space, it is more

convenient to introduce another norm, which allows the solutions to be structurally

sparse. This follows from the `1 norms sparsity inducing property and is extended

from the same. This has numerous applications specifically when there are rela-

tionship between features. This norm is represented as follows

(
∑
g∈G

‖wg‖q2)1/q

where each g represents a set of indices belonging to that particular group, and

G is the set containing all such groups. Usually the value of q is ∞ or 2. For the

∞-norm we have the following;

‖w‖1,∞ =
∑
g∈G

max
k
|wg,k|

3.3 Efficient Projections

One of the key motivation to develop the sparse learning package is to use efficient

projections of solutions on the constrained `1 norm polyhedra, which makes the

algorithm, much more efficient. One of the advantages of the SLEP package is

that it uses efficient projection algorithms, which take O(n) time rather than the

usual O(n log n) time for finding the projections onto the convex polyhedra. The

SLEP package re-uses code developed in [24] for these routines. Many of them

are built in C and are fast. The projections contain algorithms from the following

[20, 25, 26, 27, 28, 23, 22]. Many of these techniques deal with sub-differentials,

which are the differentials at a point which has more than one differential. Also

duality is heavily made use of for finding the efficient projections.
13



Improved Bisection

The problem of Euclidean projections onto the `1 ball B = {x : ‖x‖1 ≤ z} can be

represented as

arg min
x:‖x‖1≤z

1

2
‖x− v‖2

The Euclidean projection problem has been widely discussed and [25, 10]

has proposed efficient ways to solve it by converting this problem as a zero finding

problem. The problem of finding the euclidean projection of a vector of length n onto

a closed convex set, especially the `1 ball and a few other polyhedra, play a vital

role in solving many of the sparse learning problems. The improved bisection with

warm restart shows much better empirical speed up than the competing ones. The

worst case complexity of the improved bisection algorithm is linear, and hence this

improves the overall performance of the sparse learning algorithms which depend

on these projection problems. The algorithm first introduces a bisection algorithm,

and improves on it by using the piecewise linear and convex structure of the poly-

hedra onto which the projection is made. The `1 ball constrained sparse learning

algorithms especially use this algorithm to improve their efficiency.

`1/`q-Regularized Projection

The `1/`q-regularized Euclidean projection problem is an important step towards

solving the `1/`q-norm regularized problem. The problem is efficiently solved by

formulating the problem as 2 zero-finding problems as discussed in [27].

arg min
x:‖x‖1≤z

1

2
‖x− v‖2 + λ

s∑
i=1

‖xi‖q

The `1/`2 and `1/`∞ projection problems have been widely discussed and

efficient algorithms have been proposed for them. But the extension to the general
14



case has been done by [27]. Again, bisection is used to solve the zero finding prob-

lem, and the special structure is made use of to find efficient solutions. Efficiently

solving this projection problem is an important step in solving many of the sparse

learning algorithms that will be discussed.

3.4 Non-negative Solutions

For classification and regression problems, an additional useful constraint which is

often necessary for many problems is the non-negative constraint on the solution.

This is particularly useful This is introduced as an additional constraint as,

x � 0

This limits the solutions to the first quadrant which is still convex and hence the

problems domain is convex and needs little changes to the original algorithm. The

non-negative solutions has found practical applications in sparse coding and a few

other fields.

3.5 The Lasso

The lasso is one of the fundamental algorithms in the field of sparse learning. As

mentioned above, it can be expressed as a constrained and regularized version,

and the loss function is given by

||Ax− y||22

The SLEP package provides a regularization term for the `2 norm as well, which

is controlled by a parameter λ`2 . The lasso is one of the seminal ideas on sparse

learning, and has been the foundation for much of the sparse learning ideas till

date. The lasso does not create subsets of features, but it tries to shrink variables
15



such that they are exactly zero. The SLEP implementation of the Lasso is very

efficient and it uses the bisection algorithm for projections.

3.6 Sparse Logistic Regression

The logistic sigmoid function defined by

p(b|a) = 1

1 + e−b(wTa+c)

is a probability distribution function which can be used as a model for classification

problems in machine learning. For given data A ∈ Rn×p and b ∈ Rn and individual

elements of b are in {+1,−1}, the negative log-likelihood function is given by

f(w, c) = −
n∑

i=1

log
1

1 + e−bi(wTai+c)
(1)

where, w and c are the parameters, which need to be minimized. The logistic

model has the smallest probability of misclassification, given the data is from a

logistic model with the given parameters.

3.7 Structured Sparsity

The feature space may sometimes need special requirements that allow the fea-

tures to exhibit structural patterns. For example, in medical image data, different

neighbourhoods may represent an object, and need to be represented in groups,

either overlapping or not. And we can use the sparse learning to select a few

groups and unselect other groups entirely to zero. Depending on the requirement

one can use a particular structured sparsity. In the following subsections, we dis-

cuss the various structured sparsity algorithms which are available as part of the

SLEP package.
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Fused Lasso

The fused lasso is a particularly useful tool in applications which requires weights

for adjacent features to be similar. This is accomplished by introducing a penalty

which penalizes large deviation in weights for neighbouring features,

d−1∑
i=1

|xi+1 − xi|

and hence the fused lasso can be formulated as follows,

minimize‖Ax− b‖22 + λ1‖x‖1 + λ2

d−1∑
i=1

|xi+1 − xi|

The value of λ2 controls the deviation in neighbouring weights, and this com-

bined with the `1 norm regularization gives a sparse solution. The figure below

shows the solution obtained when using the fusedLeastR algorithm which will be

discussed in the implementation section. Blue represents positive value, and ma-

genta represents negative values. The amount of saturation of the color is varied,

and it has full saturation for the largest positive or negative value, and very less

saturation for values near zero. We can see that neighbouring values are fused or

have values close to each other. The white boxes represent zeros.

Figure 3.3: Fused Lasso Solution

Group Lasso

Some problems in machine learning are such that the features form a group. So,

the features can be arranged according to the group and each group can be of

different sizes. Selecting groups by assigning weights to them, such that some of
17



Figure 3.4: Group Lasso

the groups have all their weights as zeros. This can be represented by the following,

minimize
1

2
‖Ax− y‖22 + λ

g∑
i=1

di‖xGi
‖2

The logistic loss is used when the problem is used in a classification setting.

The figure above illustrates the data matrix and solution partitioned as different

groups.

Multi-task Learning

Sometimes we are presented with data which has multiple tasks combined together,

and we are required to find the weight vector for each of the tasks. The following

diagram illustrates the data matrix, observed results, and solution for multi-task

learning. The results are partitioned according to the group information, and so are

the rows of the data matrix corresponding to the result groups. And the solution

vector is learned combined, and hence it is called multi-task learning. The multi-

task least squares problem is given by

minimize
1

2
‖Ax− y‖22 + λ‖x‖`1/`q
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Figure 3.5: Multi-task Learning

For the logistic loss the problem is similar but has the weights as another input. It

is given by,

minimize
k∑

l=1

ml∑
i=1

wli log (1 + e−yli (x
T
l ali+cl)) + λ‖x‖`1/`q

Multi-class Learning

The multi-class task learning is another important problem in machine learning

where we are given results for different classes, and our task is to learn them to-

gether. This added with the `1/`q regularization term, results in a sparse solution

the the multi-class learning problem. The figure above illustrates the multi-class

learning problem.

The least squares multi-class problem is given by

minimize
1

2
‖Ax− y‖22 + λ‖x‖`1/`2
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Figure 3.6: Multi-class Learning

and the multi-class logistic classification problem is given by,

minimize
k∑

l=1

m∑
i=1

wil log (1 + e−yil(x
T
l ail+cl)) + λ‖x‖`1/`q

Sparse Group Lasso

There are cases when the solution needs to be group wise sparse, as well a need

for sparsity of features even in groups which are selected. The sparse group lasso,

introduces the additional `1 norm to the objective function to obtain sparse group

solutions. The sparse group lasso problem can be formulated as

minimize ‖x− v‖22 + λ1‖x‖1 + λ2

g∑
i=1

wg
i ‖xGi

‖2

For least squares and logistic loss this is given by

minimize ‖Ax− y‖22 + λ1‖x‖1 + λ2

g∑
i=1

wg
i ‖xGi

‖2

minimize
m∑
i=1

wi log (1 + e−yi(x
2ai+c)) + λ1‖x‖1 + λ2

g∑
i=1

wg
i ‖xGi

‖2

Also, the multi-class sparse group lasso with least squares loss is given by,

minimize
1

2
‖Ax− y‖22 + λ1‖x‖1 + λ2‖x‖`1/`q
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Tree Structured Group Lasso

The tree structured group lasso, as the name suggests, has structures which are hi-

erarchical, and the bottom most groups as the leaf groups are the smallest groups,

and contain partitions of the features dimensions. The higher level groups, contain

other leaf groups, and it goes all the way to the top, where the root node contains

the next level nodes which complete the tree which covers all the feature dimen-

sion. The following diagram illustrates the tree structure of the groups. In facial

recognition, one might need to group features belonging to different components of

the face hierarchically, which will result in a tree structure among the features.

Figure 3.7: Tree Structure of the features

The regularization problem associated with the tree structured group lasso

can be formulated as the following problem.

minimize
1

2
‖x− v‖22 + λ

d∑
i=0

ni∑
j=1

wi
j‖xGi

j
‖

The least squares loss and logistic loss problems for tree structured group

learning are represented as follows:
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minimize
1

2
‖Ax− y‖22 + λ

d∑
i=0

ni∑
j=1

wi
j‖xGi

j
‖

minimize
m∑
i=1

wi log (1 + e−yi(x
2ai+c)) + λ

d∑
i=0

ni∑
j=1

wi
j‖xGi

j
‖

The tree structured multi-task learning represented as above, forms a tree

among the k tasks and solves the problem as above. Similarly we also have the

multi-task logistic loss, multi-class least squares loss, and multi-class logistic loss

for the tree structured problem, with the same regularization term and the tree is

formed among the k tasks to be solved.

Overlapping Group Structured Lasso

The overlapping group lasso, allows for overlapping groups which introduce ad-

ditional challenges for solving, which are discussed in [44]. In cases where we

need group sparsity, which are also overlapping, we go for the overlapping group

structured lasso. The tree lasso is a special case of the overlapping group lasso.

The regularization problem associated with the overlapping group lasso problem is

described as follows.

minimize
1

2
‖x− v‖22 + λ1‖x‖1 + λ2

g∑
i=1

wg
i ‖xGi

‖2

The least squares loss and logistic loss formulations for the overlapping

group learning problem is given as follows.

minimize
1

2
‖Ax− y‖22 + λ1‖x‖1 + λ2

g∑
i=1

wg
i ‖xGi

‖2

minimize
m∑
i=1

wi log (1 + e−yi(x
2ai+c)) + λ

g∑
i=1

wg
i ‖xGi

‖2
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3.8 Cross Validation

The cross validation is an useful method for finding the best parameter values for a

given sparse learning method, for a given training data. As previously mentioned,

the data is divided into k folds, and each time a fold is picked for testing while the

others are used to train the model. Then this test set is tested against the model

trained using the rest of the data. Usually this is done over the parameter space by

setting the parameter to different values and repeating the process. The accuracy

/ root mean square error is calculated for each value of the parameter. The one

which gives highest accuracy or the least error would be a good choice for the

parameter. If there are many parameters for a particular problem, then the number

of times that we need to run the algorithm increases exponentially on the number

of parameters.

3.9 Stability Selection

Stability selection addresses the problem of proper regularisation with a very generic

sub-sampling approach [31]. Bootstrapping would also work. Beyond the issue of

choosing the amount of regularisation, the sub-sampling approach yields a new

structure estimation or variable selection scheme. For the more specialised case of

high-dimensional linear models, the sub-sampling in conjunction with `1-penalised

estimation requires much weaker assumptions on the design matrix for asymptot-

ically consistent variable selection than what is needed for the (non-sub-sampled)

`1-penalty scheme.
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Chapter 4

IMPLEMENTATION

This section starts with understanding the organization of the package, then ex-

plains the basic data structures used, the numerical routines which make it one of

the fastest implementation available, and the visualization and user interface avail-

able.

4.1 Organization of the package

The original motivation for the package was to develop a C infrastructure for sparse

learning, which will provide a strong and easy framework for the current imple-

mentation and future additions of sparse learning algorithms involving many of the

dense and sparse linear algebraic formulations. The package is structured into dif-

ferent modules which incrementally and independently provide a base for the other

modules. In this section, we will understand the organization of the package, the

functionality of each module, and future functional extensions.

Figure 4.1: Organization of the SLEP package
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The diagram above shows the basic organization of the package, the details

are discussed in the following subsections. The arrows indicate dependencies, and

test routines are drawn in rounded rectangles.

Utilities and Base

The utilities module holds the random number generating and time measurement

routines. These are key to some of the algorithms like Stability selection, boot-

strapped lasso and also for testing as they allow us to measure time and generate

data for testing. There is a random permutation routine which builds random per-

mutation of integer arrays, which are used in sub-sampling, which is being used

in stability selection. The time measurement is provided at the nanoscale, and is

specifically tuned for Windows, Mac OS X and Linux. However, the accuracy of the

time is dependent on the implementation at the OS level.

Figure 4.2: SLEP UTILS module - utility functions

The Base module, is the key element of the SLEP package. The Basic

Linear Algebra Subroutines (BLAS) is a standard in numerical computation which

defines many linear algebraic algorithms and their data structure. Netlib [] defines

the standard for the BLAS routines, which are built to be efficient, portable and

widely available. The SLEP package provides a default implementation of a subset

of the BLAS routines, and also provides options to use existing implementations
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such as ATLAS, AMD ACML or Intel MKL instead of the default one. Also, the

SLEP package is built around a few data structures which will be discussed later in

this section. One of the important things in this package is the memory allocation

routines, which are used throughout the other algorithms. The allocation and de-

allocation also involves setting up the data structures and destroying data structures

as demanded by the request.

Figure 4.3: SLEP BASE module - core data structures and linear algebra routines

Sparse Learning Algorithms

The sparse learning methods have already been discussed in chapters, Introduc-

tion and Forumulation and Algorithms. The following is a list of the available meth-

ods. The following diagram lists all the available methods and their organization

internally. Here L1 represents the `1-norm related algorithms, L1Lq represents

`1/`q norm related algorithms, the C and R stand for Constrained and Regularized

versions of the problems, since we can reformulate the constraints to regularizer

terms and vice versa.

The following figure gives a explanation of the various sparse learning rou-

tines available in the package and their organization. This forms the crux of the
26



sparse learning package, and they use the iterative schemes discussed in previous

sections.

Figure 4.4: CSLEP module - sparse learning algorithms
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UI and Visualization

The UI was completely written in Qt for the package. This makes the package

cross-platform and helps for a uniform environment in the three mainly available

OS, Windows, Mac OS X and Linux. The package calls routines from the other

modules, for time measurement, allocation, creation and generation (random) of

data, as well as calling sparse learning methods, testing the methods, and running

batch algorithms. The UI provides for the user to interact and provide customizable

input for their choice of sparse learning method, and export the results to files. The

visualization is provided to view how sparse the data is, and the convergence of the

iterations, and the path-wise solutions.

Figure 4.5: SLEP UI module - front end

Test modules

The packages described above need to be checked for their correctness and effi-

ciency as this is the key purpose of the SLEP package. Also they can be subject to

change in the future, and the changes may introduce errors or bottlenecks. Hence

we implement the test package along with the SLEP package to ensure its correct-
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ness and efficiency. The TimingTests gives us information about the time taken

to run the sparse learning and BLAS algorithms. The SLEPBASE-TEST tests the

basic datastructures, the memory allocation/ deallocation routines, and the BLAS

subroutines, which might even be from an external framework. The CSLEP-TEST

tests the sparse learning algorithms for correctness, and also has some example

routines for reference.

Figure 4.6: SLEP Tests module

Data structures

The main data structures used in the package are the slep_matrix and slep_vector.

The slep_matrix internally can store dense and sparse matrices, and has provi-

sions for future additions of algorithms supporting symmetric, banded, and trian-
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gular matrices. While the current package does not demand for the necessity of

such types of matrices, future additions of new algorithms may require such spe-

cial cases. Their design also makes use of consistent and compact storage of

values, without allowing redundancy. A further substructure in the slep_matrix

and slep_vector, is the slep_sparse_matrix and slep_sparse_vector. The

slep_sparse_matrix allows for storage of anything other than a dense matrix.

And similarly slep_sparse_vector is used to store sparse vectors.

The sparse matrices are stored in an efficient format called the compressed

sparse format. Based on which dimension it is stored it is further divided into com-

pressed sparse row format and compressed sparse column format. This way we

can store sparse matrices in an efficient manner. For example, a sparse ma-

trix of dimension 1000 × 5000 having just 10% of the entries can be stored with

500000× 2 + 5000 space compared to dense matrices which store all the 5000000

elements which is almost 10 times more wasted storage for those elements which

are zeros. If the percentage of non-zeros are even less, then there is even more

wasted storage in dense matrix. The following diagram illustrates the storage of the

elements in compressed sparse column storage format.

Figure 4.7: Compressed Column Storage

The column pointer points to the index in the row index, where each column

starts, and hence the last value of the column pointer, gives the total number of

non-zero elements present in the sparse matrix. The row index, and the values,
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correspond to each other, as we can see, the number of storage required is much

less than storing the entire dense matrix.

4.2 Numerical routines for Linear Algebra

The BLAS or Basic Linear Algebraic Subroutines, are a set of standards defined

by netlib [?], for efficient linear algebraic problems. The core of the SLEP package

has a lot of linear algebraic computations. There are 3 levels of BLAS based on

the type of operation and the operators involved. The Level 1 BLAS, consists of

scalar, vector and vector-vector operations. Level 2 BLAS consists of matrix-vector

operations. The SLEP package rigorously uses these 2 levels of BLAS routines for

computations. The Level 3 BLAS performs matrix-matrix computations and even

triangular matrix solutions. For this, we implemented some of the BLAS algorithms

in C, and for further speed up there is option to compile the programs with ATLAS,

AMD’S ACML or INTEL MKL. These are known to be the fastest linear algebraic

routines available, and some even utilizes multi-threading capabilities of the pro-

cessor to parallelize the code. The ATLAS (Automatically Tuned Linear Algebra

Subroutines) provide a fast running linear algebra library on many platforms. The

SLEP code makes use of this, and uses ATLAS in Linux and Windows.

vecLib in Mac OS X

The vecLib in Mac OS X is a library which includes many fast math routines. Specif-

ically it has support for blas, and its implementation is optimized for the Mac OS X.

Our software makes use of this framework. This allows for fast execution times of

algorithms as the numerical routines are optimized for the platform. Apart from the

usual BLAS routines vecLib framework has a few more functionality, which are quite

useful and efficient in linear algebraic expressions.

31



4.3 Matlab integration

The package supports functionality to include the implemented functions in matlab,

by allowing mex files to call the C funtions without any change in most of the cases

or with little change. Apart from these, the package can read and write .mat files

which contain vector and array data types. Allowing the tool to read matlab files,

broadens its scope and it can be used without the hassles of writing code in matlab

for the various algorithms, batch algorithms, and for commonly used functionality.

The appendix gives a detailed information about the package. There is a

section provided for header files, their use, and another provides sample code for

executing fusedLeastR. There is a detailed walkthrough of the whole package, step

by step on how to use the UI to real datasets. Please refer to APPENDIX : Header

Files, Example code to run FusedLeastR, and Walkthrough of the SLEP Software.
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Chapter 5

DATASETS, RESULTS AND INTERPRETATION

5.1 Timing tests

The purpose of the SLEP package was to have a native running software/library

with fast sparse learning routines. Developing it in C and C++ has many advan-

tages compared to Matlab. The most important factor being speed. The timing of

the various routines in their matlab prototype vs SLEP Package is shown in the fig-

ure. The running times are at least one third faster than the matlab counter parts,

with low dimensional data having additional speed ups. The speed up is attributed

to native implementation of the algorithms and availability of fast linear algebraic

routines.

Figure 5.1: Timing Tests

The sparse learning routines have been implemented with many of the

BLAS routines, and there is a possibility of optimizing the expressions. The next

versions of SLEP will focus on optimized expressions, which will result in even faster

running algorithms. Despite not being optimized at code level, the SLEP package

performs better than the Matlab prototype. There are further possiblities of using

parallel and distributed implementations of the linear algebraic routines which can
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scale the speeds even further.

5.2 AD Dataset

The AD dataset was originally a collection of files in different formats spread across

several folders. The refined data, ADNL, consists of 329 records, and 305 features.

5.3 Stability Selection on AD data

For evaluating the effectiveness of the Stability Selection, we run stability selection

on the AD data, and get the probability of the features. This is done as follows, for

the `1-norm parameter from 0.025, incremented by 0.025 up until 0.3, we run stabil-

ity selection 10000 times. This gives the stability paths, which are the probabilities

that the feature occured for different parameter values. The stability selection as

discussed earlier takes the maximum probability in the stability path ignoring the

remaining probability for that feature, and this will correspond to one of the param-

eter value which is not important. Hence we get a vector containing probabilities

for the features. This can be thought of as the ranking of the features, with higher

ones being better than the ones with low probabilities. As with any simulations,

the larger the number of times stability selection is run, the better the probabili-

ties we get are. Hence in this, we run it for 10000 times. One advantage of the

SLEP package is that, it can be many times faster than the matlab prototype for

the same implementation. This gives us the power to run it for large number of

times, getting relatively more accurate probabilities and hence ranking of features.

Also the parameter which induces sparsity over which the stability paths are drawn,

should have a relatively smooth path over the probabilities. But if we see that as

we increase the parameter, many features are not selected after a particular value,

it is better to run the algorithm only until that value, as it is not necessary to re-

duce the parameter even further. We do not use the whole range allowed for the `1

norm, which is from 0 to 1, since the increase in the coefficient reduces the num-
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ber of non-zeros drastically with `1-norm parameter equals 1 having lesser than 5

nonzero entries. The following graph shows the number of non-zero features as λ1

is increased.

Figure 5.2: Selected features

The stability paths as a whole determine the inclusion of a feature, as a

feature having the maximum probability of occuring for a particular value of the

sparsity inducing parameter, does occur for other values of the parameter as well.

The features that have very less probabilities, and many tend to zeros for most

cases.

The stability paths of the top 10 features tend to be more smooth. Though

the maximum probability can occur anywhere, most among the 10 features have

the maximum occuring at 0.3.

The following figure shows all the stability paths for all the 305 features plot-

ted together. The top 10 features are colored blue while the bottom 10 features are

colored red, the rest are black.
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Figure 5.3: Top 10 features - Stability Paths
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Figure 5.4: Stability Paths of all features
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The leave-1-out cross validation, trains and tests as many times as the num-

ber of samples, each time testing a new sample while the rest were used to train.

It is a good measure of accuracy of how well a particular algorithm performs for a

given dataset. We run leave-1-out cross validation for different number of features.

The Logistic Regression algorithm is used to train and test with the reduced data.

Note that the Logistic Regression algorithm does not contain `1 norm regulariza-

tion term but has `2-norm regularization term. The run for upto top 50 features

selected and the accuracy scores for different `2 norm coefficient is shown in the

image below.

Figure 5.5: Accuracy for upto top 50 features selected
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The following figure shows a more comprehensive selection of features. We

can see that the algorithm performs better when the number of features are approx-

imately 70.

Figure 5.6: Accuracy for upto all features selected
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Also the accuracy scores for 2 particular values of the `2 norm coefficient

over different number of features selected is shown below.

Figure 5.7: Accuracies for `2 parameters 0.3 and 0.6
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Chapter 6

CONCLUSION AND FUTURE WORK

The sparse learning package has a potential to be a vital tool for scientists, to re-

move irrelevant information, or as a dimensionality reduction technique. Its use of

the latest algorithms with the best convergence rates, allow its use in a large-scale

setting, and the performance is better than a matlab prototype. Also, the implemen-

tation of it as an independent tool, now gives way to a broader scope of audience,

who do not use matlab or other tools for their research, to benefit from this soft-

ware. The simple but useful visualizations allow for a fast view of the results. We

aim to add more routines to the software in the future, and improve the efficiency

even further. Most importantly to extend the number of algorithms to include trace

norm minimization algorithms, and the newer algorithms on sparse learning. As

discussed earlier, there is scope for improving the efficiency of the algorithms by

optimizing the expressions involving vectors and matrices for the fastest execution

time. For example, the vecLib in mac contains additional BLAS routines like the

daxpby, which does y = αx + βy, in addition to the usual daxpy which calculates

y = αx + y. Such optimizations will lead to a slightly more efficient package. The

existing tool utilizes multithreaded capabilities of the system based on the library

being used, but the parallelism can also be achieved by using distributed and mul-

ticore and graphic processors, which will linearly speed up the algorithms. The

nVidia CUDA and OpenCL are some of the specifications which have parallelized

BLAS routines. Intel has also released a math library which can use the power of

graphic processors for executing math routines. Using such powerful libraries can

drastically improve the performance of the current SLEP. The robust design of the

SLEP package allows for such enhancements and switch overs in the future.

The algorithms, especially the ones which involve group sparsity, are find-
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ing interesting applications in different fields. Adopting sparse learning algorithms

and using them for sparse learning follows certain steps: identifying the problem,

formulating them as a machine learning problem, understanding the sparse learn-

ing theory, or just experimenting the data with sparse learning techniques. Next

steps would be to identify features, the relationships among the features, establish-

ing groups, and relationships among the groups, and choosing a particular sparse

learning setting to experiment with. Though the sparse learning package provides

tools for an intermediate user, the initial steps has to be done by the user to adopt

the problem to specific settings. A possible future directions would be to help inte-

grate some of these in the sparse learning package, such as allowing more data

manipulation options and also automation as much as the user wishes. The batch

processing algorithms, which are important for the sparse learning package help

make real decisions, robustly reduce the amount of available data(using stability

selection) and check for the effectiveness of solutions and parameters(cross vali-

dation). The stability selection, is a breakthrough idea in feature selection and the

theoretical and practical guarantees it provides will be put to use in many fields.

The cross validation, support for different options executing each of the sparse

learning routines, and useful data manipulation controls makes the tool quite im-

portant among scientists and engineers. The use of sparse learning in Alzheimer’s

Disease has shown us that it has good practical uses, and can be vital in many

fields including bio-informatics, web mining, signal processing, so on. The key con-

tribution of this thesis is in the development of this tool, and applying it to the AD

data. In the future, we plan to focus on the following

• Add many of the existing sparse learning techniques to the package

• Find, solve and develop more sparse learning techniques, by identifying them

from existing problems
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• Improve the efficiency even further, and integrate advanced powerful libraries

which are capable of harnessing distributed and parallel computing technolo-

gies

• Application of sparse learning techniques to problems involving high-dimensional

data, in fields like genomics, neuroscience, signal processing and disease di-

agnosis
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Appendix A

Data Structures and BLAS Routines

We explain the different data structures available in the SLEP package for: matrix
(dense, sparse and others) and vector (dense and sparse), and also list some of
the linear algebra routines that are commonly used in the package.

The SLEP package follows many of the BLAS specifications, modified to fit
the data structures used in the SLEP package. Hence for specifying right and left
multiplication of a matrix, we have the following:

/ * Enumerator f o r L e f t or Right m u l t i p l i c a t i o n o f two matr ices A,B
L e f t : A*B
Right : B*A

* /
typedef enum{

SlepLeft , SlepRight
} slep_side ;

The sparse matrices may be represented in three different formats: Com-
pressed Sparse Row, Compressed Sparse Column and I-J-V formats. As previ-
ously discussed, this saves a lot of space if the matrix is large and sparse. The
matrix can either be dense, sparse, symmetric, triangular or banded.

/ * Enumerator f o r sparse mat r i x storage format .
* Cu r ren t l y 2 are supported Sparse Column and Sparse Row.

* * /
typedef enum{

SlepCompressedSparseColumn , SlepCompressedSparseRow
} slep_sparse_format ;

/ *
* Enumerator f o r the type of s p a r s i t y o f the mat r i x .
* 5 types o f supported c u r r e n t l y
* 1 . Symmetric − Store only the N* [N+1] /2 e n t r i e s
* 2 . T r i angu la r − Store only one h a l f
* 3 . Banded − Store only the non−zero e n t r i e s ordered s e q u e n t i a l l y row−wise
* 4 . Sparse − Store i n Compressed Column or Compressed Row storage
* 5 . Dense − Store i n dense format

* * /
typedef enum{

SlepSparse , SlepDense , SlepSymmetric , SlepTriangular , SlepBanded
} slep_sparsity ;

/ * Enumerator to spec i f y Transpose or NoTranspose * /
typedef enum{

SlepTranspose ,
SlepNoTranspose

} slep_transposity ;

/ * Enumerator f o r Upper or Lower T r i angu la r and Banded Matr ices * /
typedef enum{

SlepUpper , SlepLower , SlepBandedUpper , SlepBandedLower , SlepBandedBoth , ←↩
SlepFull

} slep_uplobanded ;

/ * The core sparse mat r i x storage s t r u c t u r e
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Stores values ( ordered row−wise [ or column−wise ] ) ,
t h e i r columns [ or rows ] , and a row [ or column ] index p o i n t e r
p o i n t i n g to s t a r t i n g value o f each row .

* /
typedef s t r u c t {

double *values ;
i n t *ColumnsORRows ;
i n t *Index ;
slep_sparse_format format ;

} sparse_matrix_base ; / / Zero Based Index ing Compressed−Sparse−Row Format

typedef s t r u c t {
union {

sparse_matrix_base spmtrx ;
double *mtrx ;

} data ;

/ * This has value i n { SlepDense , SlepSparse , SlepSymmetric ,
S lepTr iangu la r } * /

slep_sparsity sparsity ;

/ * This has value i n { SlepUpper , SlepLower , SlepBandedUpper ,
SlepBandedLower , SlepBandedBoth , S lepFu l l } * /

slep_uplobanded uplobanded ;

/ * M Rows * /
i n t m ;

/ * N Columns * /
i n t n ;

/ * Leading Dimension ( used f o r Dense Matr ices and Symmetric or
Banded Matr ices ) * /

i n t ld ;

/ * Bandwidth * /
i n t kl ;
i n t ku ;

} slep_matrix ;

/ * S t ruc tu re to represent sparse vec to rs * /
typedef s t r u c t {

double *values ;
i n t *index ;
i n t nnz ;

} sparse_vector_base ;

typedef s t r u c t {
union {

sparse_vector_base spvctr ;
double *vctr ;

} data ;

/ * This has value i n { SlepDense , SlepSparse } * /
slep_sparsity sparsity ;

i n t inc ;
i n t dim ;

} slep_vector ;
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Listed below are some of the commonly used SLEP BLAS routines that are
used inside the algorithms.

/ * [ x = alpha * x ] * /
vo id slep_dscal ( double alpha , slep_vector * x ) ;

/ * [ y = y + alpha * x ] * /
vo id slep_daxpy ( double alpha , slep_vector * x , slep_vector * y ) ;

/ * [ y = alpha * x + beta * y ] * /
vo id slep_daxpby ( double alpha , slep_vector * x , double beta , slep_vector * y ) ;

/ * [= x . y ] * /
double slep_ddot ( slep_vector * x , slep_vector * y ) ;

/ * [= s q r t ( x . x ) ] * /
double slep_dnrm2 ( slep_vector * x ) ;

/ * [ = | x | _p ( p−norm of x ) ] * /
double slep_dpnrm ( slep_vector * x , double p ) ;

/ * [ = | x | (1−Norm) ] * /
double slep_dasum ( slep_vector * x ) ;

/ * [=sum( x_ i ) (Sum of a l l elements o f x ) ] * /
double slep_dsum ( slep_vector * x ) ;

/ * [= i such t h a t | x_ i | i s maximum ] * /
i n t slep_idamax ( slep_vector * x ) ;

/ * [ = | x_ i | such t h a t | x_ i | i s maximum ] * /
double slep_damax ( slep_vector * x ) ;

/ * [= x_ i ( such t h a t x_ i i s maximum) ] * /
double slep_dmax ( slep_vector * x ) ;

/ * Level 2 BLAS * /

/ * [ y = alpha .A ` . x + beta . y ] * /
vo id slep_daAxpby ( slep_transposity trans , double alpha ,

slep_matrix * A , slep_vector * x ,
double beta , slep_vector * y ) ;

/ * [ x = A ` . x ( ` imp l i es SlepTranspose or SlepNoTranspose ) ] * /
vo id slep_dtrmv ( slep_transposity trans , slep_matrix * A , slep_vector * x ) ;

/ * [ x = {A`^(−1) } . x ( ` imp l i es SlepTranspose or SlepNoTranspose ) ] * /
vo id slep_dtrsv ( slep_transposity trans , slep_matrix * A , slep_vector * x ) ;

vo id slep_dger ( double alpha , slep_vector * x , slep_vector * y ,
slep_matrix * A ) ;
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Appendix B

Header files

In this section we will describe the available functions for the different sparse learn-
ing algorithms and a few of the commonly used functions for allocation and testing
in the SLEP package. First we list the cslep.h file which contains all the functions
that are available in the SLEP package and their definitions.

# i f n d e f CSLEP_H
# def ine CSLEP_H

# inc lude " slepbase . h "

# i f d e f __cplusplus
extern "C" {
# end i f

/ * L1R * /
i n t LeastR ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,

slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

vo id LogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;

i n t nnLeastR ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,
slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

vo id nnLogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal ) ;

/ * L1C * /
i n t LeastC ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,

slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

vo id LogisticC ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;

i n t nnLeastC ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,
slep_vector * x , slep_vector * funVal ) ;

vo id nnLogisticC ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal ) ;

/ * Lq1R * /
vo id glLeastR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,

slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

vo id glLogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;

vo id mtLeastR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;

vo id mtLogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩

* valueL ) ;

vo id mcLeastR ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,
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slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;

vo id mcLogisticR ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,
slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩

* valueL ) ;

/ * L21C * /
vo id mtLeastC ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,

slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;

vo id mtLogisticC ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩

* valueL ) ;

vo id mcLeastC ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,
slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;

vo id mcLogisticC ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,
slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩

* valueL ) ;

vo id flsa ( double *x , double *z , double *infor ,
double * v , double *z0 ,
double lambda1 , double lambda2 , i n t n ,
i n t maxStep , double tol , i n t tau , i n t flag ) ;

i n t fusedLogisticR ( slep_matrix * A , slep_vector * y , double lambda , OPTS *opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;

i n t fusedLeastR ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,
slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

vo id general_altra ( double *x , double *v , i n t n , double *G , double *ind , i n t ←↩
nodes ) ;

vo id general_altra_mt ( double *X , double *V , i n t n , i n t k , double *G , double *←↩
ind , i n t nodes ) ;

vo id altra ( double *x , double *v , i n t n , double *ind , i n t nodes ) ;
vo id altra_mt ( double *X , double *V , i n t n , i n t k , double *ind , i n t nodes ) ;

i n t sgLeastR ( slep_matrix * A , slep_vector * y , double lambda1 , double lambda2 , ←↩
OPTS *opts ,

slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;
i n t sgLogisticR ( slep_matrix * A , slep_vector * y , double lambda1 , double lambda2←↩

, OPTS *opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;
i n t mcsgLeastR ( slep_matrix * A , slep_matrix * Y , double lambda1 , double lambda2 ,←↩

OPTS *opts ,
slep_matrix *X , slep_vector * funVal , slep_vector * valueL ) ;

i n t tree_LeastR ( slep_matrix * A , slep_vector * y , double z , OPTS *opts ,
slep_vector * x , slep_vector * funVal , slep_vector * valueL ) ;

i n t tree_LogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_vector * x , double *c , slep_vector * funVal , slep_vector * ←↩

valueL ) ;

i n t tree_mtLeastR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;

i n t tree_mtLogisticR ( slep_matrix * A , slep_vector * y , double z , OPTS * opts ,
slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩

* valueL ) ;
i n t tree_mcLeastR ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,
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slep_matrix * X , slep_vector * funVal , slep_vector * valueL ) ;
i n t tree_mcLogisticR ( slep_matrix * A , slep_matrix * Y , double z , OPTS * opts ,

slep_matrix * X , slep_vector *c_v , slep_vector * funVal , slep_vector←↩
* valueL ) ;

double LogisticRTest ( slep_matrix * A , slep_vector * y , slep_vector * x , double c )←↩
;

double LeastRTest ( slep_matrix * A , slep_vector * y , slep_vector * x ) ;

/ * S t a b i l i t y Se lec t ion , and other methods * /

i n t kFoldCV ( i n t k , slep_matrix * A , slep_vector * y , slep_vector *param1 , ←↩
slep_vector * param2 , OPTS *opts , char * method_name ,

slep_vector * accuracy ) ;

i n t stabilitySelection ( i n t nRuns , slep_matrix * A , slep_vector * y , slep_vector ←↩
*z , OPTS *opts , char * method_name ,

slep_matrix * reducedDimensionA , slep_vector *xProbabilities ) ;

i n t leave1OutCV ( slep_matrix * A , slep_vector * y , slep_vector *param1 , ←↩
slep_vector * param2 , OPTS *opts , char * method_name ,

slep_vector * accuracy ) ;

i n t pathwise ( slep_matrix * A , slep_vector * y , slep_vector *z , OPTS *opts ,
slep_matrix * X , slep_vector * funValLambda , char * method_name ) ;

i n t bolasso ( slep_matrix * A , slep_vector * y , double lambda , OPTS *opts , char * ←↩
method_name , i n t nRuns ,

slep_vector *x , slep_vector * funVal , slep_vector * valueL ) ;

# i f d e f __cplusplus
}
# end i f

# end i f / / CSLEP_H
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Some definitions from the slep.h header file

slep_vector * slepAllocDenseVector ( i n t size ) ;
slep_vector * slepAllocSparseVector ( i n t nnz ) ;
i n t slepFreeVector ( slep_vector * vctr ) ;
slep_vector * slepCopyToNewVector ( slep_vector * vctr ) ;

slep_matrix * slepAllocDenseMatrix ( i n t m , i n t n ) ;
slep_matrix * slepAllocSparseMatrix ( i n t m , i n t nnz ) ;
i n t slepFreeMatrix ( slep_matrix * mtrx ) ;
i n t findNnz ( slep_matrix * mtrx ) ;

The following are related to the OPTS field which is passed on as an argu-
ment to most of the methods of the SLEP package

/ * Set / Unset the OPTS wi th a p a r t i c u l a r f i e l d name, i f set , t h i s value w i l l ←↩
be used i f requ i red , e lse a new value created * /

vo id setOPTSREGISTER ( OPTS *opts , OPTS_REGISTRY field ) ;
vo id unsetOPTSREGISTER ( OPTS *opts , OPTS_REGISTRY field ) ;

/ * Check to see i f a f i e l d has been set i n the OPTS * /
i n t hasGot ( OPTS *opts , OPTS_REGISTRY field ) ;

/ * I n i t i a l i z e OPTS to the d e f a u l t op t ions * /
vo id sll_opts ( OPTS * opts ) ;

/ * i n i t i a l i z e s no rma l i za t i on o f the A matr ix , by c rea t i ng / requ i red mu and nu←↩
matr ices f o r no rma l i za t i on * /

vo id initNormalization ( slep_matrix * A , OPTS * opts ) ;

The following routines are used to copy a vector or matrix into another, and
to set it to all zeros.

vo id slep_zerom ( slep_matrix *mtrx ) ;
vo id slep_zerov ( slep_vector *vctr ) ;
/ * [ dest = o r i g ] * /
i n t slep_dvcopy ( slep_vector * orig , slep_vector * dest ) ;
i n t slep_dmcopy ( slep_matrix * orig , slep_matrix * dest ) ;
slep_matrix * slepCopyToNewMatrix ( slep_matrix * mtrx ) ;
slep_vector * slepCopyToNewVector ( slep_vector * vctr ) ;

The following are defined to get time measurement from the system. It has
been customized for each of the OS.

# i f def ined (__APPLE__)
#include <mach / mach_time . h>
#include <time . h>
typedef s t r u c t {

uint64_t start ;
uint64_t stop ;

} Timer ;
# e l i f de f ined (WIN32)

#include <windows . h>
typedef s t r u c t {

LARGE_INTEGER start ;
LARGE_INTEGER stop ;
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} Timer ;
double LIToSecs ( LARGE_INTEGER *L ) ;

#e lse
#include<time . h>
typedef s t r u c t {

s t r u c t timespec start ;
s t r u c t timespec stop ;

} Timer ;
# end i f

vo id startTimer ( Timer *timer ) ;
vo id stopTimer ( Timer *timer ) ;
double getElapsedTime ( Timer *timer ) ;

The following routines are used to generate random numbers in the SLEP
package.

/ * generate a s i n g l e random number from the given normal d i s t r i b u t i o n * /
double Normal ( double m , double s ) ;

/ * Used to generate streams of ' n ' random numbers f o r a given normal ←↩
d i s t r i b u t i o n * /

vo id slep_randn ( double * x , i n t n , double mu , double sigma ) ;
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Appendix C

Example code to run FusedLeastR

Using the SLEP package in your program and running it from command line was
one of the important requirement behind the purpose of SLEP. The following code
shows how the FusedLeastR routine is called from command line, compiled and
executed. The main.cpp file contains the code as below.

# inc lude " slepbase . h "
# inc lude " cs lep . h "

vo id exampleFusedLeastR1 ( ) {
/ * de f ine a l l the necessary v a r i a b l e s * /
OPTS opts ;
slep_matrix * A ;
slep_vector *x , *y , *funVal , *LValue ;
double rho ;
Timer timer ;
i n t maxiterations ;

/ * A l l oca te memory f o r matr ices and vec to rs * /
A = slepAllocDenseMatrix (1000 ,1000) ;
x = slepAllocDenseVector (1000) ;
y = slepAllocDenseVector (1000) ;

/ * A l l oca te memory f o r funVal and LValue to hold upto 'maximum i t e r a t i o n s '←↩
e n t r i e s * /

maxiterations = 100;
funVal = slepAllocDenseVector ( maxiterations ) ;
LValue = slepAllocDenseVector ( maxiterations ) ;

/ * Generate s y n t h e t i c data using the random number rou t i nes * /
slep_randn (A−>data . mtrx , 1000*1000 ,0 . ,1 . ) ;
slep_randn (x−>data . vctr , 1 0 0 0 , 0 . , 1 . ) ;
/ * ' y ' which w i l l hold the r e s u l t s a f t e r generat ing / w i l l i n i t i a l l y ←↩

conta in a gaussian noise , which w i l l be added to A* x * /
slep_randn (y−>data . vctr , 1 0 0 0 , 0 . , 1 . ) ;

/ * y = A* x + 0.01* noise * /
slep_daAxpby ( SlepNoTranspose , 1 . , A , x , 0 . 01 ,y ) ;

/ * no no rma l i za t i on * /
opts . nFlag=0;

/ * l 2 r e g u l a r i z a t i o n c o e f f i c i e n t set to zero * /
opts . rsL2=0;
opts . maxIter=maxiterations ;

/ * se t i n i t , t e rm ina t i on f l a g s and maxI ter * /
opts . init = 2;
opts . tFlag=5;
opts . maxIter = 100;

/ * rF lag i s set to 1 to scale up the r e g u l a r i z a t i o n c o e f f i c i e n t as ←↩
requ i red * /

opts . rFlag = 1;

/ * The l 1 r e g u l a r i z a t i o n constant * /
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rho=0.2 ;

/ * The fused Penal ty term * /
opts . fusedPenalty = 0 . 1 ;

opts . mFlag=0;
opts . lFlag=0;

/ * Set these i n the opts REGISTER * /
setOPTSREGISTER (&opts , SlepOPT_maxIter ) ;
setOPTSREGISTER (&opts , SlepOPT_rsL2 ) ;
setOPTSREGISTER (&opts , SlepOPT_fusedPenalty ) ;

/ * w r i t e the 2 as f i l e s * /
slepWriteDenseMatrix ( "A . mat r i x " ,A ) ;
slepWriteDenseVector ( " y . vec to r " ,y ) ;

/ * S t a r t the t imer * /
startTimer (&timer ) ;

/ * Running fusedLeastR method * /
fusedLeastR (A , y , rho ,&opts , x , funVal , LValue ) ;

/ * Stop the t imer * /
stopTimer (&timer ) ;

/ * P r i n t the t ime taken * /
printf ( " Time taken = %l f \ n " , getElapsedTime (&timer ) ) ;

/ * w r i t e the r e s u l t s back to f i l e * /
slepWriteDenseVector ( " x . vec to r " ,x ) ;
slepWriteDenseVector ( " funVal . vec to r " ,funVal ) ;

/ * Free a l l the a l l o c a t e d memory * /
slepFreeMatrix (A ) ;
slepFreeVector (y ) ;
slepFreeVector (x ) ;
slepFreeVector ( funVal ) ;
slepFreeVector ( LValue ) ;

}

i n t main ( ) {
/ * running the t e s t f o r Fused Lasso * /
exampleFusedLeastR1 ( ) ;
r e t u r n 0 ;

}

As we can see, the two important header files slepbase.h and cslep.h are
required for using the SLEP library in a program. We also need the CSLEP.lib
library in windows, or libCSLEP.a in Mac and Linux to be statically linked to the
program, and compiled and linked. Additionally, preprocessor directives for using
ATLAS can be given by defining the keyword (usually specified as the -D keyword
option to the compiler) ATLAS while compiling. If you are using windows, the dy-
namic library which has the ATLAS implementation should be present while execut-
ing the created command line executable.
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Appendix D

Walkthrough of the SLEP Software

This section walks through the SLEP software providing step-by-step screenshots
and using the SLEP package in everyday setting.

The SLEP software is started by clicking on the SLEP.exe file in Windows.
It needs the additional dll files for various functionality from, UI, Matlab file read-
ing, to core linear algebra routines (ATLAS). Running the executable opens up the
following screen.

Figure D.1: SLEP.exe

Figure D.2: SLEP Software

THE WORKSPACE

The workspace is the place where all the data currently used and stored by the
software is shown. It shows the name, dimensions, type of data (sparse matrix,
dense vector,...).

Under the algorithms menu, there are many sparse learning methods as
mentioned previously.
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Figure D.3: Workspace

Figure D.4: SLEP Software - Algorithms Menu

Figure D.5: SLEP Software - Batch Algorithms
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We now add the Matlab file containing the AD data into the workspace. This
is done by clicking add under workspace, and selecting the Dataset1.mat file. Now
this imports all the data into the workspace.

Figure D.6: Importing data into workspace

Figure D.7: Importing Data into Workspace 2

Once this is done, we select cross validation bye clicking it from the Batch
menu. This opens up the cross validation options dialog, where we need to give
the parameter values, the number of folds or if it is a leave-1-out cross validation,
and the method to use. We select LogisticR here and continue.
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Figure D.8: SLEP Software - Cross Validation
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Clicking continue shows up more options for running the LogisticR. The
options menu of the LogisticR are shown below.

Figure D.9: SLEP Software - LogisticR options

Figure D.10: SLEP Software - LogisticR options

Once the cross validation finishes we get the accuracy for the same.
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Figure D.11: SLEP Software - LogisticR options

Figure D.12: SLEP Software - LogisticR options
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Figure D.13: SLEP Software - LogisticR options

Figure D.14: Cross Validation Accuracy
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