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ABSTRACT

Real-world environments are characterized by non-stationary and
continuously evolving data. Learning a classification model on this wiaitgd
require a framework that is able to adapt itself to neweueistances. Under
such circumstances, transfer learning has come to be a dbjgendzthodology
for improving classification performance with reduced trainiogts and without
the need for explicit relearning from scratch. In this thesisowel instance
transfer technique that adapts a “Cost-sensitive” variation @&BAost is
presented. The method capitalizes on the theoretical and functionaltigoér
AdaBoost to selectively reuse outdated training instances obtdined a
“source” domain to effectively classify unseen instances oogum a different,
but related “target” domain. The algorithm is evaluated on reakdw
classification problems namely accelerometer based 3D gestagnition, smart
home activity recognition and text categorization. The performamcehese
datasets is analyzed and evaluated against popular boosting-basetteinst
transfer techniques. In addition, supporting empirical studies, that igatest
some of the less explored bottlenecks of boosting based instance transfer methods,
are presented, to understand the suitability and effectivenedssofotm of

knowledge transfer.
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CHAPTER 1

INTRODUCTION AND MOTIVATION
Statistical machine learning frameworks aid approximating unknawnotibns
based on data examples. Their utility in recognizing patterdatanmakes them a
core component in intelligent systems. Among the various challeiaged in
building such systems, of particular interest is that of develoibgst learning
frameworks that function in real-world environments, charactrizg non-
stationary and continuously evolving data. Today when an enormous amount of
data is being generated and collected every second, thereeigeaincreasing
need for these systems and their learning frameworks to pdassesdbility to
handle evolving data by adapting to newer circumstances and reladagnize
newer patterns. This chapter lays the groundwork for this tlgsgiving an
overview of the challenges real-world data pose with respeceamihg a
classification model and some of the known learning strategiesfoaséackling
the problem. The foundation is used to broach upon the idea of transfemdearni

delved in detail over the rest of the document.
1.1. Dataset Shift in Real-World Conditions

Deducing the output of unseen future data is impossible without making
assumptions concerning the nature of the data. These assumptions asiragd
define the hypothesis space and enable algorithms to favor oneulpartic
generalization over others [1]. A classic assumption, manpifeaframeworks

are known to make is to consider training and test data to be calénti

distributed (ID). This assumption, however, fails to hold in real-wookiditions,
1



where data gets outdated frequently over time leading to poorparfoes of the

trained classifier models. This problem need not be restrictecertpatral

sequences alone, but can be generalized to all forms of sequensia]2fat

Examples of application domains where this phenomenon can be observed

include signal processing, speech recognition, computer vision, system

monitoring, financial forecasting, natural language processing and web mining.
2.1.1.Types of Dataset Shift

The objective of a statistical learning framework can bergéimed to the idea of

learning a model that makes predictioRéy|x) for targetsy given data examples

x. Given this formulation, the problem dftaset shiftcan be understood and

differentiated based on the model to be learnt and the cause fahange

between the training and test datasets. A brief explanation ofiffexent
gualitative categories of dataset shift, as mentioned in [3], is given below:

a. Simple Covariate Shift: Given a data distribution that can be modeled as
P(y|x) P(x), the change in data is termed as covariate shift, when thare is
change inP(x) as a causal effect of the change in the covariate distribution. A
covariate can be defined as an explanatory or a control varfedilenay be
used along with other variables of primary interest for predigiivgoses.

The covariate is not hidden and is a known component. The change in
covariate distribution will not have any effect on the predici¢n|x).

b. Prior probability shift: If the data distribution is modeled in a target-
conditioned fashion i.eP(x|y)P(y) and the predictiorP(y|x) is inferred

using the Bayes rule, a change in data distribution betweemtyaanid test

2



scenarios can be caused due to the change in the prior distriBgginrwhile
P(x|y) remains unchanged. This problem is termed as prior probability shift.
Sample selection bias: Sample selection bias occurs when the training data
points{x;} do not accurately represent the distribution over test scenario due
to a selection process for each itemSimilar to covariate shift, the selection
process can be modeled to depend on a selection vaviaH®vever, unlike
covariate shift, in this problem, the selection variableas an influence over
the label distributioP (y).

Imbalanced data: The problem of imbalanced data arises when in a
multiclass dataset one or more classes occur rarely, compared to theTaihers
avoid redundant training examples of one class, a class-balancedtdata
typically obtained by discarding samples belonging to the fratyuen
occurring class samples or synthetically adding instances rubrityi class
examples. This, leads to a difference in data distribution, bettheetraining
and test scenarios, and is termed as a Bhiflesign Given the change, the
problem can be perceived as the case of a prior probabilitynstiifa known
P(y) value.

Domain Shift: Domain shift refers to the shift in the value of data pdings

as a function of a latent variabtg specific to a domain. A common way of
looking at it is a change in the measurement syster of

Source component shift: When data is made up of a number of different
sources, each with its own characteristics, the proportions obthrees can

vary between training and test scenarios. This change in dat@ried to as
3



source component shift. Three further cases of this shift namietyre

component shift, factor component shift and mixing component shift are

detailed in [3]. The difference between this problem and samigletisa bias

is explained on the basis of quality of the shift. While the shift has more

to do with the change in the underlying causes we may not haveoatrgl
over, the change in sample selection bias has more to do witlayhthe data
points have been sampled from a specific population — a factor thdieca
controlled.

A closely related dataset shift that often gets mentioned iodhtext of on-
line incremental learning over data streams is the probleraoon€ept drift
Concept drift refers to the change in the underlying classdicétinction, which
might be the result of a changeHiiy), P(x|y) or P(y|x). The core assumption
with the notion of concept drift is the uncertainty with respecthe future
samples (test instances), unlike the problems described above,wéhare well

aware of the presence of a shift [4].
1.2. Transfer Learning

In the presence of such data shifts, a straightforward apptoaadapting to the
changes would be to re-train a separate classifier modelstatch over the new
training instances. The process, however, is expensive and can bersome

owing to the costs associated with collecting and labeling reanirng datasets.
Still, in some scenarios, it may be possible to obtain very &bheléd target
instances, but insufficient for training a reliable classifiersuch circumstances,

a viable alternative that has the potential to minimize the overall cost dingua
4



classifier for the newer instances is to transfer appropkiabevledge from the
outdated data for use with the new data. The suggested approaclogoasdb
how humans generalize when learning a new task from extremelgXamples.
This learning technique is broadly termedlasnsfer Learning

The idea of transfer is a central component of learning in hundens.
humans, we face a continuous stream of tasks to be learnt oviéetoue and h-
andle it with our ability to build on existing knowledge or expemgracquired
from tasks learnt in the past [1]. The transfer of knowledge in hsims
instinctive, occurring without any conscious thought process, and involves
distinguishing relevant and irrelevant knowledge across multigkstaThis
process allows us to generalize well and learn new tasksarfasbetter. For
example, when faced with learning a skill as complex as driziogr, years of
learning experience with basic motor skills, typical traffgatterns,
communication, logical reasoning, language, etc., play a role imbelsi learn.
Learning relies so heavily on transfer that without it; theelleof human
intelligence would be substantially lower [5].

In the last couple of decades, significant research has beda ma
formulating methodologies for tackling the different kinds of shifts udised
above. A detailed discussion of all these methods would lie beyondape st
this thesis. Nevertheless, a brief survey of some of the codniteteature has
been presented in Chapters 2 and 3 to provide the reader with sufficient
background and understanding. A majority of the approaches are efsential
modifications of established traditional machine learning techniquek as

5



neural networks, relational learning, on-line incrementainiag and ensemble

learning that incorporate the idea of knowledge transfer in them.
1.3. Motivation

The work presented in this thesis derives its motivation from tpecifc
computational challenges that were faced in realizing automatéslitya
recognition [6]. The challenges and an illustration of datasétisha real-world
setting are discussed as part of the following case study.

2.1.2.Recognition of Cooking Activities: A Motivational Case Study
In recent times, an increased interest in the fields of human cemptdraction
and pervasive computing has given rise to many challenging prslidased on
pattern classification. Among these, activity recognition has beeimportant
problem that has found use in applications as diverse as gamingjla@nicee
location recognition, social interaction and assistive and rehébditdevices.
The basic idea behind activity recognition is to recognize actibrene or a
group of users by extracting and interpreting data captured asimsing devices
(cameras, accelerometers, microphones, etc.,) that are cayridie buser or
present in the operating environment. For these systems to be aoldusasily
deployable, it is necessary they overcome challenges swttaage in operating
environments, addition of new sensing technologies and variations vityacti
traits across individuals [7].

In this case study, an activity recognition problem namelyx6geition of
Cooking Activities” is reviewed. The task is a research prolileah focuses on

establishing a framework that can be used to support patients, reyffesm
6



memory impairment, in their instrumental activities of dailyinlg (IADL)™
Developing an activity recognition system that can be useddémtifying the
different stages of a cooking activity requires pattern ¢leason of fine-grained
tasks unlike the classification of ambulatory movements. With thectg of
training a classifier in a supervised manner, motion data of &cipants
performing the activity of “making a drink and drinking it” werecorded in
video and with accelerometers. In order to obtain sufficient hgidata, the data
capture session had been designed to have users enact actions 20singes
mock objects (dummy objects). Relevant features were extraottdhe points
annotated with one of the 5 common hand gestures napuly, scoop
screw/unscrew caystir andlift to mouth.5-fold cross validations were run with
SVM and AdaBoost such that in each fold, data points corresponding to 4 subjects
were used to train the classifier and the data instances laffttoeit subject were
used for testing, to obtain high mean accuracies of 92% and 90% respectively.
The classifier models obtained were then tested for their yalioit
generalize over data points captured in a real-world settindhidnsetting, no
mock objects were used and the activities were actually pextbinmstead of
being enacted out like in training. The new data points captured iastivit 4
participants who “made a glass of Tang and drank it”. Each ipamicwas asked
to repeat the entire process 4 times, in order to obtain suffidaatpoints for

testing. This time however, the average accuracies obtained $\kh and

! The Lawton Instrumental Activities of Daily Living (IADL)seablished in 1969
counts food preparation as one of the eight IADLs used for ass@ssapgndent
living skills among old adults [19]

7



AdaBoost over 5 folds were 79.4% and 68.4% respagti significantly lowel
than the earlier results. In this process of lewyra classifier that classes data
points from a reaworld setting with good accuracies, two computalc
challenges can be obsen

The first observation is the failure of the ID asguion to hold on the da
considered. The PCA plot (Figure 1) shows signa dfataset shift between t
points of the twalomains— mock data space and reebrld space. The decrea
in the classification accuracies correlates witts thbservation, indicating tf
occurrence of spatitemporal variations in the movement patterns batv
different system contexts (e.g. oping environments, user traits, etc.,). Si
the model was trained on a dataset that consistigdob instances captured fro
the mock data space, the problem here is a cesample selection bia3his car

be further affirmed by observing that the tem context affects the lak
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distributionP (y) as well.

The second observation is the difficulty in collecting real-wordihing
data. The difficulty is primarily because of the cumbersomegsof collecting,
cleaning and annotating real-world data. Besides the effortejpapation of the
data, the process of getting participants involved in a real-lifeitgaeduces the
data point throughput during data capture sessions, for the samanhedfort
spent. Owing to this the costs associated with such processestemake it
inefficient and preventive.

These challenges together with the application setting, aifefge scope
for studying how “knowledge” from the labeled training datasetturag in
sufficient amounts from the mock data space, and the few laimstzahces that
were captured from the real-world space, can be exploited to belddsfier that
shows an improved performance on the real-world data.

2.1.3.Problem Statement

This thesis explores the idea of knowledge transfer betweerdeaheal training
(source) and test environments (target), by weighting instamessd on their
relevance in the test environment. The central problem addreasée stated as
“given a significant amount of source data, whose distribution is krtowre
different from that of the target data, and a small samiplabeled target data, is
it possible to design a method that combines these different datasetiably
classify new unseen data points from the target domain”.

To solve this problem, a boosting based transfer learning framawork
designed and evaluated. In the process, the following issues are discussed:

9



1. How can the relevance of instances in a source domain be nteastire
respect to that of a target domain?
2. How can the boosting algorithm be modified to incorporate the usefulness

of source instances and develop a robust transfer learning technique?
1.4. Summary

The rest of this thesis is divided into the following chapters:p@ha? gives a
brief background of transfer learning methodologies and reviews sbrtige
prominent works published in the area. Chapter 3 discusses on using bfmsting
transfer learning by showcasing some of the known literatuesept. The
properties of each technique are highlighted and their limitatioastiomed.
Chapter 4 describes the proposed methodology — cost sensitive boosting for
transfer learning — and elaborates on the different boosting schdraespst
estimation processes investigated as part of the thesis. Inoadditithorough
description of the different real-world datasets, the algorithrase tested on,
namely, gesture recognition, activity recognition and text categmn datasets

is also included. Chapter 5 presents the results obtained from ftheerdi
experiments conducted over the datasets and proceeds to analyzeegmétint
them. Chapter 6 summarizes the work presented in this thesis arddesnby

highlighting the potential future directions of this research.
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CHAPTER 2
BACKGROUND AND RELATED WORK

Even though “transfer” has been an actively studied phenomenon iniwegnit
literature, transfer learning as a research direction in compaience attained
prominence only in the last decade. Literature published sincénéisegiven rise
to a variety of transfer learning algorithms, referred usinfgmdifnt titles such as:
lifelong learning, multi-task learning, inductive transfer, domaustaptation,
cross-domain transfer, context-sensitive learning, meta-learninghareinental
learning [8]. In this chapter, an introductory account of trans@ming is given
supported by a brief literature review done by the author a®ptus thesis. The
literature review is by no means exhaustive and is ratherdeteto provide the
reader with a well organized overview on the subject. For furéestimg it is
recommended to go through the following survey papers [9; 8; 10], reoct

proceedings [1] and books [3].
2.1. Definitions and Vocabulary

The NIPS Inductive Transfer Workshop 2005 defines transfer learnirfg as
transfer of knowledge across domains, tasks and distributions thatmales but

not the samie In general, the training and test datasets involved in transfer
learning can be described in terms of the domains they havedaenpled from
and the learning tasks they represent. A donfaiis the marginal distribution
P(X) observed over an instance Xein a specific feature spadé (typically R%).

Given an input spac& and a label spac§ ({—1,1} for binary classification

11



problems), a taskl" is equivalent to the unobserved classification function
f: X - Y to be learnt, which can be stochastically modeledi(@3 = P(y|x),
wherey € Y is the corresponding label of an instamoe X'. The termsourceis
used to refer to the data from which knowledge is extracted, thieileermtarget

is used to refer to the data, over which a classifier modelbe tearnt, under the
support of the transferred knowledge. A formal definition of trarisfeming, as
stated by[8], is given below. The definition takes only one source domain and
one target domain into account. It can, however, be generalized totamalyes
dealing with multiple sources and multiple targets.

Definition: Given a source domai®, and a learning task;, a target
domainD; and a learning task; transfer learning aims to help improve the
learning of a target predictive functigfa(.) in D; using the knowledge b and
T;, whereDg # Dy, or Ty + T,

In the above definition, the conditio®, # D; andT; # J; denote the
differences between the source and target domains and taskdivepecThe
difference between the domains can be explained as either aitgispathe
feature spaceX # X, or a shift in the marginal distribution over the instances
P(X;) # P(X;). On the other hand, the differences between the tasks can be
interpreted as either a change in the label sfface Y,, or that of the predictive
function £;(.) # f;(.). As seen in Section 1.1.1, covariate shift, sample selection
bias, domain shifts or source component shifts are typical causes! lbetuiginal
distribution shifts, while imbalanced data or concept drift créalbel space

differences. Table 1 gives examples illustrating these diffas based on the
12



document classification problem. While these differences may allow justitiye

use of transfer learning, a vital aspect that should not be overlmkeztelated

ness between the source and target datasets. Similazéwtigl to transfer and is

a fundamental rationale behind a successful transfer.

Table 1 Source and Target Differences illustratethé case of Document Classification.

Difference Document Classification Example
Documents in source domains may
Xs + Xt in English, while documents in target

domains are in Chinese.

be

P(Xs) # P(X¢)

Term frequencies for the documents
distributed differently in the tw

domains.

are

Ys # Y,

Training domain has binary docume
classes and test domain has multi

document classes.

nt

ple

fsC) # £ ()

When the document classes i
balanced in training environment a

imbalanced in the test environment.

are

nd

2.2. Categorizing Transfer Learning Algorithms

It is useful to categorize transfer learning algorithms in otdebe able to

separate out the concerns and capabilities of systems incorgdfase. Like in

13



humans, transfer learning algorithms facilitate in improving theget task
performance, learning speed or, sometimes, both. Which one can beedchie
depends on the availability of adequate training data to learnH8j.example,
the objective of the transfer technique used in a speech recogrysiemsthat
can adapt to new speakers would be different for a dictatiomsysten that of

an interactive voice response system. For a dictation systemmjght be
acceptable to expect a new speaker to train a system forZ&Drhinutes, as the
speaker may eventually go on to use the system for yearsi\eQuthter hand, a
recognition framework that is used as part of an interactive vegmonse system
can only count on a few seconds of unsupervised speech [10] and should learn
fast.

A set of distinctions in transfer [9], can be made based on whttee
algorithms retain the source task accuracy, after leathimgarget task or focus
exclusively on learning the target task alone. Algorithms tHanhgedo the former
group are termed asequential transfeand those that go by the latter approach
are termed ason-sequential transfeFurther distinctions can be made in the case
of sequential transfer algorithms based on whether the source getttaks are
learnt simultaneously or separate in time. Algorithms that atiegdirst approach
are generically termed &snctional transferwhile other algorithms that learn the
tasks one at a time by carrying an explicit representatmm bne task to the
other are known asepresentational transferMulti-task learning[11] is a

commonly cited technique that falls under the category of functional learners.

14



Transfer learning settings can be characterized byatrelability of

labeled data and the variation in the domain or task distributionsabmsource

and target domains. Founded on these learning settings and simithe to

categorization of traditional machine learning algorithms, trarssf¢ings can be

conveniently categorized [8] as:

Inductive transfer: In this setting, the target task is different from the source
task and has very less labeled data to obtain the requiredficissi
performance. Similar to inductive learning, the labeled databeansed to
obtain a weak target inductive bias. The bias can then be corresed dra

the knowledge derived from the source tasks. Here, the source datar may
may not be labeled.

Transductivetransfer: The objective of transduction is to label the unlabeled
data seen during training. Following this, in a transductivestea setting, the
target data is unlabeled and available, while the source datheiedaand
available in abundance. The difference in the data, between theaadgtte
source tasks, is generally modeled as a difference in th&iureé space or
domains.

Unsupervised transfer: Here, the target tasks are different from, but related

to, the source tasks. However, just as in unsupervised learning, both the source
and target data are unlabeled. Common unsupervised techniques such as
clustering, dimensionality reduction and density estimation areaipiused

to make sense of the target data.
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It is important that the knowledge to be transferred is wellesgmted.

The knowledge may be specific only to certain source domains grbma

common across many domains. A good representation makes this imdorma

easily identifiable. The knowledge can be modeled as a set afigastaa group

of features, model parameters or a relational map. Based sn tthAnsfer

algorithms can be classified into the following categories [8]:

e Instance-based transfer: reuses training instances from the source domain to
augment the training instances observed in the target domain lyigale-
weighting or re-sampling.

e Feature-based transfer: aims at finding an alternate feature space for the
target domain. Common approaches include feature selection and veceor spa
transformations.

e Model-based transfer: uses components such as model parameters, of
previously learnt source models to influence learning the targit. ta
Approaches vary from plain superimposing of model shape constraints to
partitioning of the parameter-space.

e Reation-based transfer: works with the idea of spotting and capitalizing on
the structural or relational similarity between the sourde dad the target
data. Suitable statistical relational learning techniquesganerally applied
for the purpose.

The literature review presented from Section 2.4 onwards is orgavesed on

the above categorization.
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2.3. Relatedness and Negative Transfer

The effectiveness of transfer depends on the source task and hted iielis to
the target task [12]. When the source and target tasks are strongly relataddit
be worthwhile for a transfer algorithm to take advantage obiimiprove the
performance on the target tasks significantly. Here, the &amsftermed to be
positive However, when the source tasks are not sufficiently similaf thre
algorithm itself fails to exploit the existing knowledge in t#murce tasks, the
performance over the target tasks may not only fail to improvenbytactually
decrease. This phenomenon is calegdative transferThe problem of avoiding
negative transfer is an open research issue and can be viewedpelilem of
“when to transfer”.

Proper selection of the source knowledge can be the differetwedne
positive and negative transfer [5]. Many of the current algoridssame that the
given source tasks are relevant to the target task. Thgeetlains separate out
the process of selection from the transfer framework and assamnthé source
tasks have beemanually selectedor transfer, by human experts using heuristics
or domain knowledge. On the contrary, it would be more suited for usalin r
world applications, if the selection sitomaticand embedded into the transfer
framework. Automatic selection would entail the computation of apriori”
measure of task relatedness before training, instead of engltla¢ performance
of the classifier retrospectively. The problem of automaticcseleis difficult to
solve owing to the missing target domain information. Often, thediioit is

partially overcome by structuring the abundant source data ihierarchy of
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similar source tasks. Selective transfer helps improving thitses cases where
only few support tasks are relevant. Known literature explain thimmatf
relatedness based on two ideologies (1) Task based sim#auity2) Domain
based similarity. Task based similarities are generally cadparnid applied in an
inductive transfer setting. The latter finds more application amsuluctive
transfer settings such as domain adaptation and assumes thavarddrattions
to be constant across the two domains.

Task based similarityefers to a measure that quantifies the difference
between a source tagk(X,,Y;) and a target tasR(X,,Y,;). Ben-David and
Schuller [13] define relatedness in the case of a data gemenaddel. They term
tasks asF-related, whereF is a set of transformationg X — X, if for some
fixed probability distribution oveX X Y, the data in each of these tasks is
generated by applying sonfies F to this fixed distribution.

Showcasing a more practical approach, Thrun and O’Sullivan’s [14]
propose a Task Clustering algorithm that groups learning tasksclmsses of
mutually related tasks, by usinggbobally weighted Euclidean distance metiac
measure the proximity between data points. The distance metleanst by
minimizing the average inter-cluster similarity and maxingzthe intra-cluster
similarity. Similarity between tasks is then computed usingsszvalidated
predictive accuracies #&fnearest-neighboclassifiers, learning one task using the
distance metric of another. Under test conditions, the target ¢tdsiesved are
matched with source task clusters and the appropriate distancesneste

transferred for classification.
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Eaton [5] defines the concept tvhnsferabilityas the transfer relationship
between two tasks as the change in performance between leantingna
without transfer. The measure’s viability is demonstrated @sgbaa boosting
based instance transfer [15] and a relational transfer frarkd®@]. The instance
transfer algorithm titledr'ransferBoostis discussed in the next chapter in more
detail. The relational transfer framework is modeled on the fiae®as the task
clustering algorithm mentioned above with the transferability somea used
instead of the Euclidean distance metric.

Domain based similarityefers to a measure that quantifies the difference
between the source domal(X;) and the target domaiA(X;). Kifer et al.,
introduce the concept ofd-distance in [17]. For a given domaid and a
collectionA of subsets o and probability distribution® andD’ over X', such
that every set inA is measurable with respect to both distributions, Jhe
distance between the distributions is theoretically defined as

d;(D,D") = 2sup | Pr[A] — Pr[A])]
AeAa D Dr

A-distance is closely related to learning a classifier disdriminates between
points sampled from different domains. It can be implemented [18} dns

associating a positive label with the source data and a negdatelew#h the

target data, thereby modeling this into a binary classificatroblem. For two
dataset sample& ands;, each of sizen, the error of a classifiér, A-distance is
theoretical proven to be,

dq(8,8)=2(1-2 glrélj{[l err(h))
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Though, some of the above methods can be helpful in detecting change in
data and task distributions, in practice, the goals of avoidinginegetnsfer and
facilitating a positive transfer is difficult to realize. @ft algorithms that have
safeguards to avoid negative transfer have a reduced effecpésitive transfer
due to the extra caution [12]. On the other hand, approaches that transfer
aggressively might transfer better, but may lack protection fregative transfer.

In addition, one cannot discount the inevitable bias actual applicationd fagcel

when predicting negative transfer with very less information in hand.

2.4. Instance-based Transfer

In instance-based transfer, individual data instances are selentethe source
domains to help train a classifier for the target domain. Whersdbece and
target tasks can be represented in the same instance spacetaaceibased
transfer may be sufficient for generalizing over the tadgehain. The training
objective for an instance-based transfer is to minimize an &mation over
target instances and the selected source instances. Instandghtieggeand
importance sampling are two popular methodologies applied to réaditzance-
based transfer.

Jiang and Zhai [17] linearly combine several adaptation heurissics
instance-level and global coefficients, into a unified objective tiomc They
tackle domain adaptation using a three step strategy over apisittamodel of
the data, which includes, (1) removing “misleading” training instarinethe

source domain, (2) assigning more weights to labeled target instidwacelabeled
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source instances and finally (3) augmenting training instancey) uarget
instances with predicted labels.

Wu and Dietterich [18] use source domain instances, referred to as
“auxiliary data”, to improve the classification accuracy afpport vector
machines (SVM) and identify support vectors that are applicaldedoget task.

Liao et al.[19] propose an active learning method to select thbalaethdata in a
target domain to be labeled with the help of source domain data. Tdiizg rthis
with the help of auxiliary variables and a Fisher information matrix.

A popular framework that finds use as an instance weighting soliation
domain adaptation [22] is that empirical risk minimizationThe objective of
this method is to learn an optimal modEl€ © in a model family, such that
expected risk, expressed in terms of a loss funktiom, 6), is minimized. The
objective function can be written as,

0" = argmin Exy) e xxyll(x,y,0)]
For the setting of domain adaptation, the idea is to obtain an optimal model for the
target domain and minimize the expected loss over the targebutistin. This

can be expressed as,

o; =argmin > P(D).1(x,7,0)
(x,y)eP(Dy)

The problem then is reduced to approximatiR@D,) utilizing the labeled
instances picked from the source domaAin The above problem can be then

rewritten as
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6; = argmin z P(D.) l(x,y,0)
6T ABGE Py Y
(x,¥)EP(Ds)

Ng
~ arg glelgz B-L(xs,)
i=1

_ P(xti’yti)

o )y Since it is assumed that the predictive functions are constant,
xSL"ySl'

i P(x¢, . . . .
p can be estimated 2%;. This process of estimating the properties of the target
Xs;

distribution with samples generated from source distribution, diftefrom the
target distribution, is termed asportance sampling

Huang et al., [23] propose a kernel mean matching algoritheatag by
matching the means between the source and target domain dagpnoducing
kernel Hilbert space (RKHS). An advantage of using KMM is thavibids
performing density estimation of eithB(x,,) or P (x.,), which is difficult when
the size of the dataset is small.

Sugiyama et al., [24] propose an algorithm nankadlback-Leibler

Plxs)

. . . Xs; .
Importance Estimation Procedu®&LIEP) to estimate——= directly, based on
Xt.

P(xe;)

the minimization of the Kullback-Leibler divergence measurelBRLcan be
integrated with cross validation to perform model selection autoafigtin two
steps: (1) estimating the weights of the source domain data; (2) granoidels on

the reweighted data.
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2.5. Feature-based Transfer

Argyriou et al., [25] propose a method for learning a low-dimensiorauife
representation which is shared across a set of multiple reias&d. Building
upon the 1-norm regularization problem, they use a(2eiy-norm regularizer to
come up with a non-convex optimization problem, which attempts to
simultaneously select a low dimensional feature representatioteand them.
They proceed on to formulate an equivalent convex optimization problemsand
an iterative algorithm to solve the problem. The algorithm alteihaierforms a
supervised and unsupervised step, where the first step independemtbythear
parameters of the tasks’ regression or classification funciindsthe latter step
converges towards a low-dimensional representation for these taskgtars in
an unsupervised manner. The optimization problem can be written irothext

of TL as given below:

ng

. 2
arg min Z Z L(ye, < ap, UTxy, >) + ]/||A||2,1
te{T,s} i=1

In this equation, S and T denote the tasks in the source domain getddtamain,
respectively.A = [as, ar] € R**? is a matrix of parameterd/ is ad xd
orthogonal matrix for mapping the original high-dimensional data to low

dimensional representationd(X, andUTX;). The (2,1) norm of A is defined

1

1P\p

as||A||r'p ::( ?=1||a‘||r) .
Blitzer et al., [26] focus on using unlabeled data from both the samdte

target domains to learn a common feature representation thaarsngful across

23



both the domains. The authors term this metho&tasctural Correspondence
Learning (SCL). The first step of SCL is to define a setpofot features on the
unlabeled data from both domains. These are features that behave in the same way
for discriminative learning across both domains. After having walethe pivot
features, these are removed from the data and treated waslabeévector. Thus,
m binary classification problems can be constructed, wheis the number of
pivot features. These classification problems are then trainedtfreranlabeled
data and solved using a linear classififif,) = sign(w/.x), I =1,...,m to
learn a parameter matri¥ = [w,w,...w,,]. After obtainingl/, singular value
decomposition (SVD) is applied on it. List = UDVT, then 8 = U[Tl:h‘:], whereh
is the number of shared features, is the matrix whose rowbketep left singular
vectors ofl/. In the final step, standard discriminative algorithms canpipéeal
to the augmented feature vector to build models. The augmented feattwe
contains all the original feature appended with the new shared featu#es
Though it has been shown experimentally, that SCL can reduce faeenitde
betwen domains, selecting the pivot features is difficult and dedependent. In
this paper, Blitzer et al. have used a heuristic method to slettfeatures for
natural language processing (NLP) problems, such as POS tagging.

Pan et al.,, [27] exploit a dimensionality reduction method named,
Maximum Mean Discrepancy EmbeddifyMDE) to learn a shared low
dimensional latent feature space, such that the distributions Imethveesource
and target domain data are the same or close to each other. ©he dhe

Maximum Mean Discrepancy states that the distance betweaebutisns of two
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samples is equivalent to the distance between the means aivdhsamples
mapped into a Reproducible Kernel Hilbert Space (RKHS). By aaitg on
this theory, MMDE converts the problem of minimizing a distangection in
feature space into a semidefinite program in RKHS to ideatifgntent set of
features. Post this, supervised and semi-supervised learning appraseheed
to train a model for a mapping between the tasks and data acrdsshbot

domains. The method, however, is computationally inefficient.
2.6. Model-based Transfer

Most model-based transfer techniques can be categorized intpp(baahes that
partition the parameter space of a conventional learning algoiittontask-
specific parameters and general (cross-task) parameteér&p approaches that
learn shape constraints, which are superimposed when learning a neanfuncti

Evgeniou and Pontil [28] propose an SVM based parameter transfer
approach, where the parameters of SVMs for the source and dargain,w,
andw, share a common parametey,. Thus,w, = w, + v, andw; = w, + v;.
An optimization framework is then formulated for determining plagameters,
W, Vg, V.

Raina et al., [29] present an algorithm for constructing the coaia
matrix, £ € R%*¢ for an informative Gaussian priofy (o,%), to learn and
classify documents observed in a specific target domain, whenvtikakde

training data from the target domain is scafee<< d). The algorithm uses
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other "similar" learning problems to learn a good underlying nmgpfrom word
pair features to word parameter covariances.

Lawrence and Platt [30] propose an efficient algorithm known as MT
IVM (Multi-task, Informative vector machine), which is based on Geums
Processes (GP), to handle the multi-task learning case. MTi\dd to learn
parameters of a Gaussian Process over multiple tasks bynglibe same GP
prior.

Gao et al., [31] observe that several classification models maydiable
in a training domain, either sourced from a set of relevaks tas learnt using
different classifiers. No single model may help in summaritiegtarget task as
such. Thus, they propose a locally weighted ensemble in order tovabditi
combine the predictions of multiple source models. The weights fomtuels
are computed by clustering the different tasks into graphs andaéisygy the

similarity of the neighborhood of test instances in these graphs.
2.7. Relation-based Transfer

Different from the other three contexts, the relational knowledgester
approach deals with transfer learning problems in relational idemahere the
data are non-id and can be represented by multiple relations, sungtvweorked
data and social network data. This approach does not assume thaatteadet
from each domain be independent and identically distributed as traditional
assumed. It tries to transfer the relationship among data fresarae domain to

target domain.
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Mihalkova and Mooney [32] perform transfer between Markov Logic
Networks (MLN). An MLN consists of a set of first-order logarmulae, each
with a weight attached, and provides a model for the joint distributi@nset of
variables. Given a learned MLN for a source task an MLNamtefor a related
target task by starting with the source-task one and diagnosamg feanula,
adjusting ones that are too general or too specific in the tdaetin. The
hypothesis space for the target task is therefore defined tioreta the source
task MLN by the operators that generalize or specify formulas.

Dai et al.,, [33] present a general transfer learning fraorievealled
EigenTransfer Their idea is to construct a task graph to represent theerans
learning tasks and model the relations between the target rthtidnea auxiliary
data. Instances, features and labels are represented as noledask graph,
while the edges are set based on the relations between the esdauraecting
the target and auxiliary data in a unified graph structure. Bypating the
eigenvectors of the graphs, the tasks can be represented in al deatira
space, reflecting the intrinsic structure of the target, daiailiary data and the
relations between them. Knowledge transfer from the auxitlaty is then done
in this new feature space, to help learning the target data.

Dai et al., [34] investigate the concept wanslated learning where
knowledge transfer is performed between two entirely differettifeapaces, in
this case, text and images. Their algorithm combines fea@msldtion and the
nearest neighbor into a unified model by making use of a languneadel, which
is represented using Markov Chains. They adopt the Risk Minimization
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framework and formulate a problem that minimizes the &, x;) of
misclassifyingx; to the category. Assuming no prior difference among all the
classes, the risk is simplified to represent the distanceeketwhe feature and
task space, measured using Kullback-Leibler divergence measuyemake the
actual transfer with the help of a translator functidy,, ys) < p(y:|ys)-

In the domain of activity recognition, Kasteren et al., [35] prese
framework that allows to transfer knowledge of activity rectign from one
context to the next. They use wireless binary sensing nodes thhtaazsed to
capture activities anywhere in a household, such as measuringrabeing
opened, a toilet being flushed or the temperature of a stove risitigs Iwork,
they describe a method which uses unlabeled data captured from hagsthiet
with labeled data from house B, to learn the parameters of modeicfivity
recognition in house A. The difference in the domains appears in theofathe
difference in the layout of the houses and thereby differentteitocation of the
sensors and the properties they measure. To solve this problem,hibies ause a
set of manual mapping operations namely Intersect, Duplicate and tdnget
the final feature set over which a semi-supervised learning algorithseds

Rashidi and Cook [36] propose an unsupervised approach for mapping the
sensor and layouts of different living spaces for transferring abivity

information from a set of source living spaces to a target living space.
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CHAPTER 3

BOOSTING AND TRANSFER LEARNING
The central challenge in transfer learning lies in formulatingapproach that
makes most of the available auxiliary data. In instance tnaajerithms; this
problem gets manifested into that of identifying the relevanamest points that
would be useful in helping learn a tuned classifier that classifiyet domain
data points correctly. AdaBoost, short for "Adaptive Boosting", is d-wel
established algorithm that boosts a weak learning algorithm istmag one by
calling it repeatedly so that the cumulative error of the stotagsifier is reduced.
It is essentially a greedy algorithm that incrementallgrs the distribution of the
training data points, used for training the weak-learning algoridtneach
iteration. This process allows identifying important exampiteghe training
dataset. However, similar to other traditional learning algonst, it assumes that
the training and test data are sampled from the same instpace. Recent
research efforts have looked to extend the boosting principle t& wih
auxiliary data. Typical challenges faced in modifying AdaBoost for the perplos
transfer learning include:

e Formulation of a similarity measure between cross-domain samples

e Design of weight update factors and obtaining the corresponding optimal

value of the parameter that minimizes the training error bound in the target
domain.

e Definition of an appropriate loss function.
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e Linear combination of the weak classifiers to obtain a strongsifiler that
generalizes well over the target domain.

This chapter gives a brief background of the boosting theory and contmues

provide a small survey of novel boosting based algorithms that haneabepted

for transferring knowledge from source instances to a target domain.
3.1. AdaBoost: An Overview

The basic idea of boosting is to learn a "strong" classifiecdmbining simple

classifiers known as "weak learners”, which would do at le@gttl§l better than

Algorithm 2 AdaBoost

Input Given a set of N labeled examples {(z1,v1), ..., (zn, yn)}.distribution D over
the N examples, an integer T specifying maximum number of iterations and a weak
learner Weak Learn

Fort=1,..., T

=ty

2. Call Weak Learn, providing it with the distribution p‘. Then, get back a hy-
pothesis f, : X — ¥ (or [0, 1]).

3. Calculate the error of h;:

N
eo= 3 ptlhe () — vl (5.1)
i=1

4. Set a, = log (1’”).

- E (3
5. Update the new weight vector:

witt = wlexp (—ouyihy (24)) (5.2)

Output the final classifier

—
on
o

—

H (z) = sign (Z oy (r))

Figure 2: The AdaBoost algorithm as described lepRd et al [37]
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chance. AdaBoost [37], as proposed in the seminal work of Freund et al., i
probably the most popular boosting algorithm. It maintains a distriboti@enset
of weights over the training set and presents the weak leartiethgi important
examples from the set to obtain a "weak hypothesis". The goodhasweak
hypothesis, as measured by the error over the distriliytisrused to update the
weights of the training points. In a boosting iteration, the weighthe correctly
classified instances are reduced, while the incorrectlysifled points are
increased. As a result, the weak learner for the subsequetioitefocuses on
learning a model that correctly classifies the incorredtgsified instances of the
previous iteration. The objective of the algorithm is to find a strong hypsthmBsi
linearly combining the set of weak hypotheses, with a low cumalativor
relative to a given distribution. The pseudo-code for the algorithgivien in
Figure 2. In the context of transfer learning, AdaBoost impfidocuses on the
small amount of target domain training data if they are inctyrelassified at
any given iteration. It uses the rest of the source dat@aim la model that

classifies this set of target domain data.
3.2. Instance-based Transfer: TrAdaBoost and Transfer Boost

The foremost boosting based algorithm that was proposed for the purpose of
transfer learning is Dai et al. &AdaBoos{38]. TrAdaBoost considers the target
and source data separately by applying different weight updaéenes on them.

The weights of misclassified target data points are increased) AdaBoost,
using the weight update factey computed from the errat, over the target data.

The weights of source data points are, however, decreased, similar to the weight-
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Table 2 : TrAdaBoost algorithm from [38]

Algorithm TrAdaBoost
Input: the two labeled datasefs andTy, the unlabelled dataset
S, a base learning algorithm Weak Learner, the maximum number

of iterations, C, a vector consisting of cost factors assooratad
every sample iff.

Initialize: the initial weight vectow!={w}, w3, ---,wl,,.}.

Fort =1,..,N
t
1. Setpt = W/ )
P Tt (i)

2. Call the weak learner, providing it wigh and the
combined training set df; andT along with the cost
factors forT,; C. Get back the hypothedig: X - Y;Y €
{—1,1}.

3. Calculate the weighted error bf onT;
m+n

fm S MO G0~ i

;r;-::ll+1 wt(j)

i=m+1

4. SetB, = ——andp = 1/(1+ /2logn/N). Note that

1—8[;
e:has to be less thalry?2
5. Update the new weight vector

t4+1/: Witﬁ|ht(xi)_yi|, 1<i<n
wi (@) = t o= )= il :
w; B, , n+l <i<m+n
Output: The final hypothesis
N N

—he(x) -1/2
heGe) =4 " nﬁt e nﬁt/
! t=N/2 t=N/2

0, Otherwise

ed majority algorithm, using a constant factothat has been set according to
Littlestone and Warmuth [39]. The concept of similarity fonsfar is implicit
and assumes misclassified source instances to be the masildrst the target
instances. The weights of the misclassified source instameeslecreased to

weaken their impact on the weak learner at a given iteratturs, Bource domain
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Algorithm 3.2 TransferBoost

. : _ ! . 5|

Input: source tasks Sy, ..., S;, where S, = {(z;,y,)},5.
target training examples T = {{x;, 1)}, and
the number of iterations K.

1: Merge the source and target training data

D=5)...UsUT.

Initialize w,(r,) = 1/|D)|, for (r,,y,) € D. Let wy () be the weight vector for all
instances in {2, {Optionally, these initial weights could be specified by the user.)

fort=1,.... K do

I

()

: Choose o} € E.
7: end for
g Choose 5, € B.

9 Update the weights for all (x,,y;) € D:

M

M
S o

Lo xy) exp (— Gy ey )) (ry, 1) €

1 PR PR i \

) i) exp (=G (ry) +al) (xy,04)

weey (25) ={ A 7 ) EX] Yy 1) : 12 Uy
z!

where Z, normalizes w, (7} to be a distribution.
10: end for

Output: the hypothesis

K
Hizx) = =ign (Z 3 fi:-f:'_]j
t=1

Figure 3: TransferBoost Algorithm from [15]

instances that are similar to the target domain instancésavié large training
weights, while the source domain instances that are not so smiilaave lower
weights. Dai et al. provide a theoretical analysis of therglgo and derive the

training and generalization error bounds and show that the averagbtasleig

th
training loss on the source data converges to zero froﬁ]theo theTt"

th
iteration. Hence, only the weak hypotheses betweeE—}heand theT thiterations

are linearly combined to obtain the strong hypothesis.
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TransferBoost[15] uses a hierarchical weight updating scheme which
boosts both individual instances and a set of instances corresponding teea sour
task. Sufficient information is assumed to be available from aat@h of source
tasks,S;, ..., Sk, each characterized by differedt— Y mappings. On boosting
iteration t, each source task; is assigned a weight! based on a notion of
transferability from the source task to the target task. Thesghts denote the
contribution made by each source tasks to learn a target baslexd their
relatedness. Transferability, as previously mentioned, is esserdiafjreedy
measure, defined as the change in classification performandke target task

between learning with and without transfer. To compute transhtyaba

w(T)

. Another
[lw(DI|,

classifierh,is first trained on the target dafawith distribution

w(S;UT)

——~——— Based on the
[lw(s;um)I],

classifierh! is then trained ois; U T with distribution

individual performance of these classifiers, transferabiditgiven bya} = & —

EZ, wheree is the weighted error of classifieron T. The weighting scheme for
individual instances follows from AdaBoost, increasing the weights of
misclassified instances disregarding whether they belonfpeasdurce or the

target domain. The algorithm is given in Figure 3.
3.3. Feature-based Transfer: Joint Boosting

Torralba et al., [40] present a multi-class boosting procedurel, faseobject
recognition in images, which learns an array of strong class(fiec) , that can

classify different object classese C by finding a shared feature space for the
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classes, instead of separately training binary classifidreagh boosting round,
various subset§ € C of classes are examined and a weak classifier is learnt t
distinguish the subset from the background. The subset learnandixanally
reduces the weighted error on the training set for all tresetais added to the
strong learner for that class. Instead of iterating througexmaustive list of
(2I€1 — 1) subsets, the authors use forward selection of the best fedtures
recognizing a class. By using a decision stump for a weakeleashich can be
viewed as a feature selection process, the algorithm, in do@@gmes equivalent
to functioning within a manifold. The transfer here is probably naits@ous as
the other algorithms, and can be readily seen as related ttagiulgarning when

each object class is considered as a task.
3.4. Model-based Transfer: TaskTr AdaBoost

Yao and Doretto [41] extend the boosting algorithm to transfer kngeléodm
multiple source tasks to learn a specific target task. Wighassumption that
closely related tasks are likely to share some param#terBamework works on
transferring suitable parameters from multiple source taskstarget task in two
phases. In the first phase, standard AdaBoost is used to leaacthesource task
and obtain a collection of candidate weak classiftérsA regularizing threshold
y is utilized to constraint the coefficieatto selecting the best of weak classifiers
to be included in the set. In the second phase, another boosting algonitimids
select the best of the weak classifiers in thetsetvith respect to the target data.

At each round of the boosting iterations, a weak clasgifier{ is chosen such
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that it gives the lowest weighted error on the target traidetg, ensuring the
harder examples are learnt. Intuitively, the strong classifierbe seen as a linear
combination of selected source task classifiers. In some waigsmiethod is
remarkably similar to the Locally Weighted Ensemble atgori[31] mentioned

in the previous chapter.
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CHAPTER 4

COST-SENSITIVE BOOSTING
This chapter presents different schemes for employing a aostige framework
for transfer learning, by extending the original AdaBoost [37mé&aork
proposed by Freund and Schapire. In the proposed extension, the boosting
framework is applied separately to source and target domainTdeteboosting
updates for the source domain data is modified to take into accounbgshe c
factors that represent the relevance of the source domain samiplesspect to
target domain data. This ensures that weights of instances sestmmain data
that are not relevant to target domain data are slowly dedre¢aseeduce its

impact on learning, while maintaining the weights of the relevant samples.
4.1. Notation

Formally, the labeled source and target training data samm@esfarred to as

diff-distribution and same-distributiortraining data, following the notation in
[38], while underlining the difference in them. Thus, &t= {(xl-d,yl-d)}?z1

represent diff-distribution samplesT, = {(x}, y;)}/%,represent the same-
distribution training samples arflrefer to the set of unlabeled test data taken
from the target domain. The objective of the algorithm is to leamarget
classifier (Figure 4) that classifies the test datgith minimum error, by training

on the same-distribution datagetsupplemented by the relevant instances picked
out from the diff-distribution source datasBf. The approach for solving the

problem is centered around two main heuristics namely (19hatg weights or
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cost items to based on the estimated relevance v and (2) applyin¢

separate boosting schemes and

e 4 . T - */. Little Labeled
Soue Data + *| = - %/ Taet Training Data
P —~ (Ts)

(Fa) + - \
: \
Model trained on T; <~ ' X ‘\;
. o /e Model trained on Ty

Unseen * / O
Target TestData %,/ ~ O
hY

AN
\

\\_

7 Target model

Figure 4An illustration of the problem statem:
4.2. Cost-Sensitive Boosting Framework for Transfer Learning

The CostSensitive Boosting framework is a result of an erogi exploration o

building a fast instanebased transfer algorithm on top of AdaBo{®1], for

learning a task observed in a target domain wighatia « a small set of labele

target training instances and sufficient set of labeled source training insés
. The algorithm design is based on three straigidicd principles:

e to compute source relevance, right at the ins-level (rather than a ta-
level) and to keep it independent from the boostaigorithm (agains

encapsulating it with the boosting algoritht
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to keep the interests of the boosting schemes applied over sarieHist
data and the diff-distribution data separate (instead of havingifeed
boosting scheme) and

to train a common weak learner, on each boosting iteration, from@esaat
of the most relevant and hard to learn instances for thatisteréarget

instances are relevant by default).

The algorithm attaches a relevance indicating cost factoo @very instance in

T,;, determining how useful learning from that instance would be. Ehis

motivated by an intuition that, given the cost of misclassifyirsparce domain

instance that holds a good probability of occurring as part of a teglet an

existing robust target classifier model would be expected tconoerfvith a

minimal classification error over the target domain data, antieasame time

manage to classify the source domain data with a reduced aset of

misclassification. Framing such a dual objective helps reduti@gchances of

Algorithm 1 Cost-sensitive Boosting for Concept Drift

Given: Labeled datasets T; and T, and the number of iterations T'.
1. Compute a cost item C, € [0,1] for each instance (z¢,y?) € Ty.

2. Initialize weight vector D' (z*%) = 1/(n + m).

3 Fori=1,..1T:

4. Train base learner using distribution D*.

. Obtain hypothesis by : X = VY € {—1,1}.

Calculate weighted errors, €; and n':‘fi on T: and T; respectively.

. Choose af (refer Table 1).

. Update weight vectors D**!(z%) augmented by the cost items C, (refer Table 1).

= & O

o0

P l—(.se

. Set af = tlog(—+).
= L

]

_ . . ot (% Verp(—afhe(z3)yZ)
10. Update weight vectors D'+ (z%) = I 7 R e

where Z; normalizes D**! to a distribution.

Output: the hypothesis H(z) = S'a'gnfzg;l aihe(z)).

Figure 5 Generalized Cost-Sensitive Boosting Akioni
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learning a classifier that may over fit ovigr considering that it is made up of far
few target samples than required for generalization.

A formal description of the framework is presented in Algorithm
described in Figure 5 . As seen in the algorithm, regular AdaBedsgectly used
for minimizing the training error ovel;. The boosting coefficients; allow the
weak learners to focus on the hard target domain examples. On the other hand, the
samples inT,; are weighted based on the influence they have in predicting
instances in the target domain. This boosting scheme combines agstiéactor
with the classification error based weight update factor, t@ @ different
boosting coefficientr? for every chosen instance in the source domain. Thus, for
a given iteration, if an instance that is considered to be irrgiévanisclassified,
the factor by which the instance weights are increasedngfisantly low when
compared to that of a more relevant misclassified instanogla8y, the weight
of a correctly classified source domain sample with low relexas made lower
than a correctly classified source domain sample with a higistr Thus, the
weight update curves are more gradual and hence, natural basedrelevance
of a source domain instance.

The boosting schemes for samples Tip are responsible for the actual
knowledge transfer and have been adapted from the cost-sensitive boosting
framework proposed by Sun et al. for dealing with imbalancededg#?2]. The
proposed approach in this thesis, in contrast to the boosting frameworibées
in [42], applies cost-sensitivity selectively to samplesjnalone. The weight

update coefficiente? is derived using one of the three algorithm schemes namely
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Table 3: Weight update equations for the diffe@owbsting schemes [42]

; . : o t4+1y dy
Algorithm (o' D7 x))
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— 1 ]+\_‘,. _u; h!l_Jr,_ J&y I (=5) n (=] _u.:l.*p,—(':e{.,_hg,r,_ Jug )
AdaCl EIOQ 1-3, y T by [::-:" Yoy DT _1::" ) Zy
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AdaCl, AdaC2and AdaC3 summarized in Table 33. A brief analysis on the

impact of these different weight update equations is given below:

e AdaC:t the weights of thel; samples that are incorrectly classified are
reduced by a factor oéxp(C). Among these, samples that have higher
relevance as indicated by the cost, tend to be reduced by kersambunt
compared to samples with lower cost. However, the differencgressed in
exponential terms.

e AdaC2:the weight updates are impacted directly by the cost fadus The
weight change is directly related to the relevance of dngpke. Even though
the weights of the samples Ty decrease over iterations, the change in the
weight is conservative for samples that are more relevaoonmparison to
samples that are less relevant. This is the weight update mesialibed in
the algorithm.

e AdaC3: the sample weights are updated by the combinational results of
AdaC1 and AdaC2. Due to the complicated situation of training erroc@std
setups, it is difficult to decide how AdaC3 changes the weigitsadmples in

T,; according to the cost factors.
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The next subsection elaborates on the approaches adopted in this work for

estimating costs.
4.3. Cost Estimation

The role of the cost items is primarily to associate tlevamce of source domain

samplesl; with respect to the target domain samflesThis can be computed in

a supervised or unsupervised manner. We select techniques from botheof thes

approaches to study their impact on the end result. Following areifteeent

approaches employed in this work:
¢ Instance Pruning based cost estimate (IP): This is a supervised approach
and follows the technique proposed by Jiang et al., [19] for pruning
misleading different domain instances. Their approach involves leaeing
classifier model using the few labeled target domain sangplB @nd using
this model to select instances from the source domain thatoarectty
classified. Instead of eliminating all the instances that ias®rrectly
classified, we use the probability of correct classificaissociated with each
sample as the cost factor. Thus in the process, sampl&s with high
probability of correct classification have higher cost items pamed to the
samples inT; with low probability of correct classification. Since the
estimated values are probabilities, the cost thus computed isdyalrea
normalized betweef0, 1]. Since we have primarily used SVM as our base
classifier, we have adopted the probability estimation as propgsgd®pfor

determining the costs of samplesTip For a binary class problem, a simple
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Platt’s scaling through logistic sigmoid function is used. Tharpaters of
this function are learnt from the classification margins ofttaming sample.
For the multi-class scenario, we use a one vs one multi-8\skthat learns
the decision boundaries between all pairs of classes. The margins ftoof eac
these classifiers are converted to probability values usirgsPéaaling. In
the second step, an optimization procedure is employed to learnuthe tr
classification probabilities from these pair wise probabilities. This tqaens
implemented in the popularly used LIBSVM package [43].

e Relevance Measure based on a distance metric(ED): This too is a
supervised technique and consists of two steps. In the first ls¢epair-wise
distance between all the samples (source and target domaimngpated. In
the second step, a ratio between the sums of the distances'bfitistance in

T4 from all the samples iy that belong to different and same class
respectively.

dlst(xl, )
dist(x&, ])

G =
This measure can be considered as a relevance measurasliresehow
similar a sample from a particular class is with resgecta target set.
Different distance metrics can be employed depending on thestldtas the
experiments conducted in this work, we used a Euclidean distance eatslata
of low dimension and the cosine distance for datasets with high dimensions.
e KLIEP based cost estimate: Kullback-Liebler Importance Estimation

Procedure [24] is a technique that is used for transductive instieamsfer
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learning that involves estimation of weights for source domain ssmpl
through the minimization of the KL-divergence measure between the
probability densities of the source and target domain data. The basic i
behind the technique is to compute an importance estimate (that idereds

as the cost factor by our algorithm) such that the KL-divergémen the true

test input density to its estimate is minimized. The algoritlamies out this
minimization without explicitly modeling the training and test dag¢asities.

The optimization problem for KLIEP is convex, so the true globaltsol

can be obtained. A cross validation approach is typically used forIlmode
selection process of the minimization procedure in KLIEP. A Gaussmel

is used during the minimization procedure.

» Concept Feature Vector Distance(CFVD): Concept feature vector is a
term that is used in the context of detecting concept drift inaasieeam. The
sequential data is divided into batches. Concept feature vectorsaestiie
data in each batch are then determined. The distance betweeptdeatare
vectors of consecutive “batches” of data is calculated. Conceyit idlrif
detected if this distance is greater than a certain thresholthel current
context of determining the similarity between the source amgttalomain,

we define the batches to be the source and target domain ddteCioselept
feature vectors are determined for samples belonging totiaybar class of

the source and target domain respectively. The distance between these concept
feature vectors of the source and target domain is treated assthef the

source domain samples. Formally, ¥t and X} be the source and target
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samples belonging to classThen the concept feature vector for source set is

defined as

The concept feature vector for class of the target donfairalso follows
similarly. The concept feature vector distance is the distaateeenC! andC;.

These distances are calculated for each of the classestsgpawhich is then
normalized. The cost factors associated with every sample diedprio a
particular class is then determined as difference between lhanabtmalized
concept feature vector distance associated with that class. thaitehe cost
factors of all the samples belonging to a particular class will be idéntic

dist(Ci — C})
¥, dist(C! - ¢])

Thus the cost of samples belonging to “very different” source angettdomain
class will be lower than the samples belonging to “similarirese and target
domain classes. We use Euclidean distance metric to computesthacdi
between the concept feature vectors for datasets with ldwrdedimension and

use cosine distance metric for datasets with very large feature dimension.

4.4. Dynamic Cost Update

The cost factors associated with can be static, in the sense remain the same

across boosting iterations. However during the course of the bopsticgss, the

weights to sampleg; change. Thus, at certain iteration it is possible to observe a
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higher weight to a subset of samplesTin This essentially means that the
algorithm is finding it difficult to learn this particular subsdtT,. Thus, the
distribution of samples ifi; changes, reflecting their ability to be learned. To take
into account the changes in the weight§ . o$amples, we ensure that thecost
factors are also updated. Thus, relevancé;teamples is determined based on
harderT; samples.

A new SVM model is learned, at every iteration; from the tadgenain
labeled samples drawn according to the distribution of these sarfguléhat
particular iteration. Samples iy that have higher weights influence the decision
boundary of this model. This SVM model is then used to classifthalsource
domain samples. The hypothesis is that the newly computed cassfattheT,
samples reflects the importance of these samples with tespethe new

distribution of thel, samples.
4.5. Comparing with other boosting based transfer-lear ning approaches

While this is not the first boosting approach for transfer learrandiscussion
centered on the similarity between the proposed approach preseités work

and other boosting based transfer-learning approaches. The most comitazhly
boosting based transfer learning approach is the TrAdaBoost alg@itbai et

al., [38]. Both, Cost-sensitive boosting and TrAdaBoost, employ the original
boosting based approach for updating the weights of labeled targetindom
samples. The main difference between the two algorithms iseirmanner in

which the source domain samples are handled. TrAdaBoost uses theedeight
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majority algorithm to adjust the weights, repeatedly decreasiagweight of

incorrectly predicted source domain sample by a constant factor

g =1/ (1 + /21n%) where,a = —log (%) It also notes that since the error on

the labeled target domain samples converges to O only after hdie dbtal
number of iterations, the TrAdaBoost algorithm considers only the weak
hypothesis learned in the second half of the boosting iterationsite at the
final strong classifier. Intuitively the weak hypothesis el during the initial
rounds of boosting fit a majority of data, with the focus on thedragxamples
during the later rounds. If the harder examples represent outliehe T; data,
then TrAdaBoost has a tendency to over fit the same-distribution training data.
Another important difference between TrAdaBoost and Cost-sensitive
boosting is the manner in which weight updates are performed on thee sour
domain training data. In TrAdaBoost, the weight§ psamples either decrease or
remain constant between successive iterations. There is no wakidh the
weight of a relevant sample can be increased, once decreasegltdarprevious
rounds of boosting. When the weights of these relevant samples becgnmwer
their influence on learning a good weak hypothesis becomes negligible
contrast, the Cost-sensitive boosting algorithm allows for inergasveights for
the target domain samples. However it ensures that weightasecrés
proportional to the relevance of the sample with respect to the itpagbrthe

labeled target domain samples. Thus during the later rounds of fgpoSost-
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sensitive boosting has a higher potential to retain relevantesdornain samples
for learning the weak hypothesis compared to TrAdaBoost.

The set based boosting for instance level transfer (Tr&wiet)
proposed by Eaton et al., [15] is another algorithm that uses boé&stitrgnsfer
learning. Transferboost uses a set based weight-updating schhdmeaks the
source domain instances into task-based sets. Instead of updatingighés vof
individual instances, it updates the weights of instances in ansatsimilar
manner. The scheme adopted for updating the weights of the |afaetpt
domain data is similar to the Cost-sensitive boosting algorithimth&more, it
can be noted that the weight update in TransferBoost for the sourcendoma
instances is a special case of the Cost-sensitive boostingtralgoWhen the
parameter, , in the TransferBoost algorithm that represents the transiigyadil
set is made a constant at the individual instance level, then &rBaskt boils

down to Cost-sensitive boosting.
4.6. Datasets

The proposed methodology was experimented on various real-world and isynthet
datasets. Each of the chosen datasets have unique charactansdticean be
described by properties such as number of instances, number of attributest num
of class labels and class imbalance. A brief description df ehthe dataset is
given below.

5.6.1.Activity Gesture Dataset (act-ges)
The activity gesture dataset is a multiclass real-worléisgatof motion data

collected for learning to recognize the different gestuise=d in the activity of
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“making a drink and drinking it". Each instance can be associatbedowe of the
5 class labels namefyour, scoop, screw/unscrew cap, stirdlift to mouth.The
data was collected from two domains, over which, data and taskudisin were
observed to vary.

The first domain refers to data motion data collected from 5 esarsing
out the different activity gestures with the help of dummy objeldie motion
data was captured using three tri-axial accelerometeredlact the user’s
dominant wrist, elbow and non-dominant wrist respectively. Out of thelyethe
data captured from the dominant wrist and elbow were retained far the
discriminative properties. The activity gestures were enactedins to be
sufficient for training. The participants were given expliogtructions on how to
perform the activity gesture. The data obtained was then managhyesited and
annotated with the help of a synchronized video of the activities pextbrThe
second domain corresponds to data captured similarly as describedlalioney
more realistic setting. In this setting, 4 users were asieghake a glass of
Gatorade and drink it, instead of enacting the different gestusang dummy
objects. The entire activity was repeated 4 times by eaah Tse mock and
realistic scenarios are taken as the source and target dorsétctreely in our
experiments. A brief description for both the mock and realistmatos is
presented in Table 4. The objective is to recognize gestures medoin a
realistic scenario, using the data from the mock scenarfoavémall number of

labeled samples from the realistic scenario.
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Table 4 Description of the Activity Gestures

Activity Gesture Mock Scenario Realistic Scenario
Pour Take the glass that is fulPour the water from the
and pour its contents intaglass.
the empty glass. Pour |a
small quantity every
time.
Scoop Use a spoon to scoopse two scoops df

contents from the glas
that is full into the empty

glass

gowder for making thé
drink.

U

Unscrew Cap

Unscrew the lid of tf
water bottle. Pause for
couple of seconds. Scre
on the lid on the bottle

n©pen the powder drin
gar, and close it after yo

winish using it

=

Stir Take the spoon and stiEnsure the powdered
the contents of the glasslrink has dissolved by
for 30 seconds stirring the mixture

Lift to Mouth Take an empty glass an®rink the glass of
pretend that you arebeverage that was

drinking water from the

glass by taking severs:

 prepared.

A

short sips.
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Lifttomouth | |

Pour

Scoop

Stir

Unscrew
cap

Figure 6: Capturing activity gesture datastreams

A distinct pattern can be spotted for each of the activity gesiaréhe
data stream sample captured using the accelerometer platieslwnst in Figure
6. Intuitively, the individual characteristics of each of the gestoam be tracked
in the patterns seen. For example, the gesture unscrew cap defineel by a
number of rapid repetitive movements of the unscrew action witimitied effort
to loosen the cap, while stir can be represented by a morededsrd relatively
slower set of mechanical movement. A dip in the z-axis actelerappears for
the gestures, scoop and lift to mouth, but the y-axis values indorassoop and
falls for lift to mouth. On the basis of these observations discative features

that either aggregated over the temporal and frequency chetacdeof each of
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the axes or combined data across multiple axes as done byatiomre
coefficients, were extracted to obtain instance points in a 44-dimensional space.
5.6.2.WSU Smart Home Datadéact-rec)
The WSU Smart Home dataset is a multi-class datasetetadates learning
general models of activities by abstracting over differenvironments and
residents. The dataset is being used in an on-going research profecCenter
for Advanced Studies in Adaptive Systems (CASAS), Washington State
University and has been collected from 7 smart environment tsstieedh
consisting of a variety of sensors that include motion, door, tenperdight,
item, etc., embedded on The dataset contains sensor events relatedttofa
eleven ADL activities namely - Cooking, Eating, Sleeping, RetaxWorking,
Bed-to-toilet, Enter Home, Leave Home, Taking Medicine, Perddygilene and
Bathing. Pre-segmented sequences of sensor events correspondirgctioign
were used to form a feature vector that represents thesthend time, duration,
frequencies of different sensor firings within this duration and grexeding
activity. All the sensor IDs were mapped onto labels correspondlitige room in
which the sensor resided including: Kitchen, Kitchen Cabinet, MedCaienet,
Front Door, Lounge Chair Bedroom, Living Room, Dining Room, Bathroom,
Hallway, Bathtub, etc., Each of the apartments had different layandsthe
number of people and pets who resided in them also varied. The laydbhts of
different apartments and the different sensors present in theshasa in Figure

7. For the experiments conducted, the activity samples corresponding to one

%2 Most of the dataset is available at http://ailab.wsu.edu/casas/dimsets
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Figure 7: Sensor layout for the seven CASAS smairenment testbeds [49]
apartment was taken to be the target data while the sainmiesall the other
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apartments were considered to be the source domain. Since dal fioe
activities was not present in every apartment, only those sounsair@ctivity
samples whose labels were present in the target domain were used.
5.6.3.20Newsgroups
The 20 Newsgroups dataset is a collection of approximately 20,000 oeyysgr
documents, partitioned across 20 different newsgroups. It primarily too0$ig
top-level categories, with each category consisting of maeltgub-categories
totaling to 20. Its hierarchical structure facilitates in madgtext categorization
datasets into resembling transfer learning scenarios susdngse selection bias
and has de facto become a dataset used prominently for companadiies stf
transfer learning algorithms. For the experiments, two diffesetd of transfer
learning datasets were extracted from the 20Newsgroups cayphNswsgroupsl
- one modeled for transfer frogingle source task to a single target taskd (2)
Newsgroups2 - modeled for transfer fromultiple source tasks to a single target
task Apart from this, experiments were also run on a readily abaildataset
extracted from the 20Newsgroups corpus, named Usenetl that sincliass
imbalance. Though the original corpus is a real-world datasedathsets worked
with have all been simulated and can thus be considered to be synthetic
nevertheless applicable to a real-world scenario. All of thenilegrproblems
formulated on these datasets are binary classification probl®ome more
information on the sub-category distributions and pre-processins see

explained below.

54



e Newsgroupsl: the task to be learnt is that of categorizing documents into two
parent categories. The original feature space of the unprocdssaset was
reduced to that of 45000 by removing the common list of 526 stop words and
having a document frequency threshold value of 2. The feature spacalso
converted into a binary space such that Data points in the source damaain
target domain are drawn from different subcategories that belotige tparent
category, thus inflicting a change in the space in which dadiésisbuted. The
division of the subcategories for the source and target domain isbaesc Six
different binary class datasets were generated for fheriexents based on these
divisions. Due to computational constraints, we randomly pick 1000 sanaples f
the source and target domain dataset.

e Newsgroups2: this dataset was created to evaluate the performance of the
proposed approach in multi-source domain scenarios. The dataset eslddamt

the work done by Eaton et al., For each domain, a set of binary task was generated
to distinguish one class from a set of negative classes, entatreach task had
unique negative examples and equal class priors. The first newsgr@asehn
major category was used as negative examples for the tasks lgy the 13
remaining newsgroups. These negative examples are drawn fromlltvarg
newsgroups: alt.atheism, comp.graphics, misc.forsale, rec.autosypdcifeor
each dataset, there was one target task and the other taskbdreame domain
serve as the source tasks. The original 20newsgroup datasetpnesented as a

binary vector of the 100 most discriminating words determined bya/edtring
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to work vector filter. Only 5% of the original dataset is usedHerexperiments,
since the originals are very large.

Usenetl: This dataset [44] is based on the newsgroup collection. Simulated
streams of messages from different newsgroups are sequyeptiadented to a
user, who then labels them as interesting or junk according teehigérsonal
interests. The messages are presented to the user in batchesef lsavitches
between his/her choices of junk for every batch. As a result, ihereomplete
reversal in the class labels as we move across each batathdllemge here is to
classify the user choices for a particular batch, using tamirig samples
available from the previous batch and a few samples from thentiaiech. The
description of the dataset in terms of its size and feapaeesis presented. We
consider this to be hardest dataset, due to the reversal of ¢abets batches,

which also leads to a class imbalance problem.
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CHAPTER 5
RESULTS AND DISCUSSION
Various experiments were conducted on the datasets mentioned pretheaus
chapter to understand the properties of the data, evaluate the perderof the
proposed approach under static and dynamic configurations, spot the effect of cost
computation in knowledge transfer, empirically note the effectudfiphe source
transfer and make comparative studies with related algorithims. dhapter
presents the results of these experiments and analyzes tleisvaspects

observed during the study.
5.1. Properties of Data

Principle component analysis was used for visualizing and understahdidgta

and task distributions over the training and test domain of thgeattand act-rec

Source Domain

Target Domain

Component 3

Component 2
Component 1

Figure 8: Source and target distribution of act-gesaset
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datasets. This exercise was done in order to establish an ainpasss for the
appropriateness of applying transfer learning to a real-wortiblggm and
therefore does not distinguish between training and test data poatéspbints
belonging to both source and target domains were projected onto the spa
defined by the first three principle component vectors. Figurasd8aplot the
data points of act-gest and act-rec datasets respectiveheincobrresponding
PCA vector space. Figure 8 uses all source and target instamtlee act-gest
dataset. The changes in task distributions between source anditangéns were
earlier illustrated in Figure 1 over two basis vectors. Hdre, visualization
presented indicates signs of the data suffering fidomain shift defined
essentially as a change in the measurement system of thdatewoints;. A
pretty much uniform and uni-directed translation of patterns icewhtbetween
the source and target domain, plotted by a path connectingettiers of the
cluster of points associated with the different activity lapelsr, scoop, unscrew
cap, stirandlift-to-mouth in the source and target domains respectively. Among
the five activity labels, the one that has a rather skewedad&plent (not very
noticeable in the Figure) ipour, which may be a result of latent and
uncontrollable factors such as user traits, weight and shape odritener being
held, etc.,

Figure 9 plots the data points of Apartment_B dataset, spliBiditierent
plots showing the shift in task distributions across the source aget thomains.
Act_rec_B was chosen as it contains data points associatedlivlifh activities.
Here only 8 of the 11 are chosen for illustration purposes. The plptarea
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interesting patterns connected with the characteristics addinties performed
by different residents in smart home test-beds under diffesgor settings and
home layouts. Despite these differences, activities suehtagy enter homeand
leave homeshow little variations owing to the basic nature of these tasiese
activities cannot be performed very differently either byedéht residents or
under different settings. Dataset shift cannot be always \zsdiain this manner
particularly over datasets with high dimensionality. Sometittieschange in the
distribution may be perceivable only in higher dimensions (> 3). This
expectedly the case with the 20Newsgroups datasets, which posgéss hi
dimensions and are sparse, as they showed no reliable differenceibdtve
source and the target instances despite having synthetically made todtaregge

in the dataset distribution.
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5.2. Performance Evaluation

All experiments were conducted using SVM as the base fidgis3ihe toolbox by
Chang and Lin [43] — LibSVM was used for conducting experiments Witi1.S

This toolbox supports multi-class SVMs through pairwise couplingoriistructs

k(k —1)/2 number of binary classifiers forlaclass problem and combines the
probability of classification obtained from each classifier thihoBgatt's scaling

to obtain the final probability of a sample belonging to a partictlEss. SVM

was run using a linear kernel. The penalty factor C for act-gest and 20Newsgroups
datasets it was set to 1 and for act_rec it was set to 100parhmeters were
selected based on the best classification accuracy obtaoraddnning a 5-fold
cross validation over the source data. The maximum number of boosting
iterations was set to 100 for all the boosting variants includicigBaost,
TrAdaBoost and the Cost-sensitive boosting framework. At every boastiingl,

the training dataset was sampled, such that all class laketsrepresented and
uniformly distributed. Comparison of performance over the various iexpets

were done using an average generalized accuracy obtained -toler Goss
validations. The various approaches were implemented using well atedgr
programs in MATLAB and will be shortly made available for public use.

5.6.4.Comparison of Classification Accuracies

Table 5 : Comparison of Performance at 1% of thrgiarraining Data

Dataset Svnly, SvnT; SvnT,, Ada Trada Adacl Adac2 Adac3
User 1 0.77 0.56 0.79 0.85 0.82 085088 0.85
User 2 0.84 0.64 0.98 0.93 098 097 098 098
User 3 0.54 0.33 0.71 0.67 065 070075 0.74
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Dataset SvnTy, SvnT; SvnT,, Ada Trada Adacl Adac2 Adac3
User 4 0.44 0.61 0.77 0.73 0.75 0.76 0.790.80
Apartment-A 0.71 0.67 0.712 0.78 0.63 0.800.82 0.75
Apartment-B 0.67 0.62 0.68 0.72 0.57 0.790.80 0.76
Apartment-C 0.79 0.37 0.81 0.76 0.49 0.790.83 0.78
Apartment-D 0.76 0.34 0.77 0.82 0.52 0.83 0.81 0.81
Apartment-E 0.29 0.04 0.45 0.46 0.70 0.46 0.48 0.49
Apartment-F 0.58 0.20 0.60 0.62 0.40 0.670.68 0.67
Apartment-G 0.52 0.44 0.55 0.53 0.46 0.59 0.59 0.58
Rec vs Talk 0.68 0.72 0.75 0.72 0.73 0.710.83 0.72
Rec vs Sci 0.63 0.70 0.69 0.69 0.69 0.700.77 0.69
Sci vs Talk 0.60 0.64 0.67 064 070 0.67074 0.68
Comp vs Rec 0.80 0.73 0.85 0.83 0.72 0.820.86 0.84
Comp vs Sci 0.62 0.64 0.67 0.68 0.58 0.690.76 0.69
Comp Vs Talk 0.86 0.68 0.87 087 0.73 0.880.89 0.88

Table 5 compares the classification accuracy given by algaitiimen trained on
1% of the target training data and supplementary source data. Inasest one
of the three cost-sensitive boosting procedures is seen to perétien than the
other algorithms, withAdaC2 performing the best among the three and
consistently better than TrAdaBoost. Some of the individual trendsaties
owing to the properties of each dataset is further discussed below:

Act_gest: The difference in the performance of the three cost-sensitiveifgos
approaches looks marginal. Retrospectively, having assessedutie oésll the
datasets, a possible reason that can be associated with thisstteedelatively
low number of test samples available for each of the useriniteiesting to note
that, while Svrii; and Svrf,; separately yield poor performances, just combining
the source and target domain data results in an increased pederoer the

target domain. This can be attributed to two particular progeofi¢his dataset.
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The first one being that the data points belonging to each Idlsk are well
separable in their common feature space and respective domainbagheen
pointed out previously in [6]. Secondly, since it is suspected thatdheset
suffers fromdomain shift the separability of data points facilitate knowledge
transfer by either extrapolating or translating the source Imadthe feature
space. Thus, an addition of labeled target data, as few as 1 enpenclass, to
the source data might improve the performance by a good deal tinggss, the
cost-sensitive boosting scheme&daC2 and AdaC3 further improve the
performance over SVW;,.

Act_rec: Once again, the results obtained from these datasets alsojustoav
marginal difference between the accuraciefAddCl, AdaC2and AdaC3 with
AdaC2giving the best performance most of the time. Though the cositise
boosting algorithms have an upper hand in the performance in aimdseall
cases, the dataset pertaining to Apartment-E has TrAdaBoost gaing
improvement of over 20 percentage points from the next best performing
technique. It was noticed that the number of target domain trainingpées
available for Apartment-E was very low (equivalent to having osénce per
class) in contrast to the other apartments. This low sample&izecould have
resulted in incorrect cost estimation, learding to a poor perfarenahthe cost-
sensitive schemes. Unlike the act_gest dataset, no stomghtél correlation is
found to exist between the performance of SYM SVMT; and SVMy.
Furthermore, the performance of AdaBoost is noticed to be grimate that of

SVMTy, indicating that the expected correlations may be captured by asing
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boosting framework that focuses on a specific subset of samplegy ceach
iteration.

20Newsgroupsl: Among the three datasets, it is only in this dataset that 2daC
shows a significantly better performance among the three austige boosting
algorithms. In contrast to the observation made in act_rec dathses be seen

that adding a small amount of labeled target domain data to the stamaen

helps in improving the performance of the model that is trained only on the source
data as inferred from the classification performances of BvVihd SVM ,,
indicating the complementary nature of the source data in leathengarget
tasks.

5.6.5.Advantage of AdaC2 over AdaC1 and AdaC3

150

100

Resulting Multiplicative Facator

AdaC2 09

Cost Factor (o) K= expl-oq h) v)
AdaC3

Figure 10 : Comparison of the weight update faotdérsdaC1, AdaC2 and AdaC3

63



AdaCl AdaC2andAdaC3all boost more weights on relevant samples that are
misclassified than irrelevant samples that are miscledsifSimilarly, they
decrease weights more on relevant samples that are ieldsfrectly than less
relevant samples classified correctly. However, theransuked difference in the
way these weighting equations have an effect over a spectimaesbased on its
relevance. Figure 10 pictorially shows the effecAdaC2weighing each sample
by its associated cost directly agaiAslaC1lwhich attaches the cost factor in the
exponential term thereby having a diminished role. The res@litdaC1ends up
conserving the weights of less relevant samples and veryeegmivards highly
relevant samples. On the other hahdaC2 reacts to relevance in a smoother
fashion thereby resulting in its tending towards conserving Meigf relevant
instances. Though effectiveldaC3is a combinatorial result oAdaC2 and
AdaCl] the result of attaching the cost in the exponential component of the
equation makes it act similar ’addaClwhen the variable K in the graph is high
and like AdaC2when K is low. More noticeably it acts closerAdaClwhen
handling samples on the basis of its misclassifications. Figjirpresents the
plots obtained of the experimental results of the three algoritmall the
datasets. It is very evident thatlaC2has a much more effective influence on
utilizing a cost measure for reliable knowledge transfer. Frora, ta further
analyses would use onRdaC2for their study.

5.6.6.Correlation Between the Performances of SYMsVM;, and AdaC2
An interesting pattern that establishes the idea of relassdemerges from the

results obtained in Table 5 is of a subtle correlation between the clagsificat
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accuracies of baseline SVIM and the improvement in performance shown by
AdaC2 over SVMy,. The relationship noticed is that of an increase in the
classification accuracies over S\Ilyl when the source training data alone is able
to classify target domain samples to a reasonable extent.h&gpurpose of
illustrating this idea, plots were generated from the obtaiasdlts of SVM,,
SVMT,, SVMT,, and AdaC2 by sorting the datasets in the increasing order of
accuracies of SVW; on the target dataset. This is shown in Figure 12. It can be
observed that the highest difference betwAdaC2and SVMy, is obtained in
the middle of this sequence. For the act_gest datasets, User san@ show
little to no improvement, while User 3 and User 1 show significhabges, while
act_rec datasets, apartments F, B and A show improvement close fmik@%6n
accuracies while the other apartments seem to step up by aréadpdints
alone. Similarly, in the case of 20Newsgroupsl, datasets Comp \anB&omp
vs Talk seem to give the best results over SYM

The difference in the accuracies seem to follow a bell curgents$, with
no or very low improvements for very similar and dissimilak t@istributions, as
inferable from the target domain accuracies of SYMrhis once again takes us
back to the idea of “different, but related” datasets. If thgetadomain dataset
was very similar or identical to the source domain, no transfeeeded and an
improvement may not be expected out of transfer. On the other haémel target
domain is vastly different from the source domain, then a transhgr mat be
possible and instead learning may need to be done from scrasitoulid be

noted here that though this pattern may be a useful indicator inrapewiether
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“to transfer or not”, the measure is still done only retrospdgtiaed across
different datsets, over a scale of relative similarity and disgiityila

5.6.7.Classification Accuracy vs. Size of Target Training Data
Figures 13(i) — 13(vi) illustrate the change in the accuraa@ess SVM;,
SVMTy,,, AdaBoost, TrAdaBoost anidaC2when 1%, 5% and 10% of the target
training data is used for training on the act_rec datasetg alith the auxiliary
source domain data. When 5% of the target training exampleseade applying
cost-sensitive boosting for transfer learning continues to be fruttbwever, the
difference in the performance #&daC2 and SVM; or AdaC2 and SVM
reduces with the increase in target training data, indicatinghbaarget data is
moving towards becoming sufficient for learning a reliable di@ssvithout the
need for auxiliary data.

It had been earlier mentioned, how 1% of the target trainingodat&d to
be far too insufficient for computing the cost of source instantéle case of
Apartment-E, leading to a drop in the performancAddC2 while TrAdaBoost
gave a good performance. On increasing the percentage of titeblavéarget
training data to 5%, the performanceAafaC2is seen to improve. However, on a
closer observation, the performance AifaC2 seems to correlate with that of
SVMT,. Comparatively, the increase in target training data does eot se
evoke an equally significant response from SKM Given this, and the fact that
SVMT, gives low accuracies for this apartment, the target donhaamly seems

to be so much more different from the source domain. In this aAstaBoost
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seems to have a clear sign of advantage AdacC2 The reason is not very clear
due to the correlation between S¥Mand AdaC2 which does away with the
possibility of 1% target training data representing the tadmhain data

sufficiently.

Similar trends can be observed on the 20Newsgroupl dataset asswell
illustrated by Figures 14(i) to 14(vi). It can be noticed that performance of
SVMT; increases significantly as we progress from 1% to 5%. Hawewe
remains marginally lower thanAdaC2 transfer learning approach. The
performance of the other techniques at 5% is lower than thatMf'Sur AdaC2
At 10%, SVMTs alone is sufficient to reliably classify tharget domain
unlabeled data. The change over AdaC2 becomes very marginal. Hatviesve
still worthwhile to note that while the performance AfiaC2 and SVM is

comparable, it still is significantly better than TrAdaBoost and AdaBoost
5.3. Effect of Cost

The four different similarity measures mentioned in Chapter 4 weed for
computing the cost factors and the performancAda#C2was evaluated in each
case to check how the classification accuracies varied wittdiffe¥ent cost
estimation techniques. To understand if the weighting instances gatiy
measures had any effect at all in the first place, tharitdgn’s performance was
measured over the base of a uniform cost. RunAdeC2with uniform costs is

equivalent to running AdaBoost but with separate weight updates for samples in



m Uniform ®IP ©ZED ®mCFYD = KLIEP

1.00

0.90

0.80

0./0

0.60

0.50

Classification Accuracy

0.40

Userl User2 Jeer3 Userd

®m Uniform ®mIP ©ED ®mCFVD = KLIEP

1.00
0.90

0.80

0.70

(L.h0)

0.50

Classification Accuracy

0.40

0.30
Apt-A Apt-3 Apt-C Apt-D Apt-E Apt-T Apt-G

W Uniform mIP = CVFD

1.00

0.90

0.80

0.70

0.60

0.50

Classification Accuracy

0.40

0.30

Rec vs Talk Rec vs Sci Scivs Talk Compvs Rec  Compvs Sci CompVs Talk

Figure 15 : Comparison of the classification acciemofAdaC2using different cost estimation techniques.



T, and T,;. Figure 15 illustrates the varied performances obtained and the
prevalence of instance pruning is briefly explained below.

There is a no clear trend that is noticeable from the resbitsned from
act_gest dataset, though there are changes in the accwaaeg \across the
different users. It can be seen that Euclidean distance balssdnce measure
(ED) performs at par with the other techniques, when the sinyilagtween the
source and target domain is the highest, in this case that beingfdeger 2. In
fact, for user 2, all the cost estimating procedures resulvery similar
performance. ED based cost performs poorer than the other approachies f
other users. The performance of the algorithm takes a margmaivbien we
assign uniform cost to all the samples in the source domain Batmskd cost
procedure performs almost at par of sometimes even betteresjibct to all the
other techniques. The CFVD based cost performs significantly pduaer IP
based method for two of the 4 users and is at par with IP forethaiming 2
users. Overall, no straightforward conclusions can be madetfre performance
of the different cost estimation procedures on this dataset.

The act_rec dataset presents more clear trends in termspErtbemance
of the different cost estimation procedures. The first thing todiieed is the
sharp increase in the performance of the ED based cost fotnfgrdrE. The
performance increase is nearly 30%. It is interesting to tiigeresult in the
context that the target domain data for apartment E is ma$tndar to its source

data. This probably implies that ED cost is able to clearlewdifftiate between



very different datasets. In contrast, the performance of ED drgpgicantly,
when the source and target activities are similar asraliest by its performance
on Apartments C and D. The second thing to be noticed here iavhaably all
cost estimation approaches perform yield a better performanceimi@m cost,
except for Apartments C and D. Even in this case, IP based cdetnpe
marginally better than uniform cost. The similarity betwé®e source and target
domain samples is highest for these two datasets. Hence this @&sIP and
uniform cost appear to be similar. This implies that thereastrim considering
cost estimation process to determine the relevance of sourcendsangples with
respect to target domain. IP based cost appears to be yieédteg results on this
dataset. It can also be noted that the performance of KLIBPpar with that of
uniform cost. This could be attributed to the low number of target domain samples
available for the importance estimation procedure. Incorporatinglabel
information of the small amount of target domain training data dols tbhe
estimate better costs.

The most significant change in the plot pertaining to 20Newsgroups
dataset is the absence of KLIEP and ER based cost estimaticesges. We
observed that the KLIEP process does not converge on this datasegdrimary
reason for this is the significantly large dimension of this s#atéof the order
40,000). Furthermore the sparse nature of this dataset could alsbwentoi the
lack of convergence of the KLIEP procedure. Euclidean distance astd

estimation on such a high dimensional dataset is also not worthwitcibssadler,



as the output of such a process will be very similar to a unifash & based
cost appears to be performing better than the other two approacheshaygm
the difference is only marginal. Similar to the observationenawl the activity
recognition dataset, uniform cost performs at par with the othemajwproaches
when the similarity between the source and target domain tsvedyahigher, as
illustrated by the performance on Comp vs Rec and Comp vs Talk datasets.
Overall the results from this set of experiments seem toatelithat the
merit of IP based cost process over the other approachesherfruote,
considering that the performance of this approach does not varficsigtly over
a uniform cost suggests that the division of the boosting approach wahate
weight update equations for the source and target domain also hetgsawving
the performance. The performance of the cost based methods i:ahomi

considering that the number of labeled target domain training samples is gery les

5.4. Dynamic Cost Update

Table 6 : Comparison betwe&daC2andDAdaC2

Dataset AdaC2 DAdaC2
Userl 0.88 0.87
User2 0.98 0.98
User3 0.75 0.71
User4 0.79 0.80
Apt - A 0.82 0.82
Apt-B 0.80 0.74
Apt-C 0.83 0.80
Apt-D 0.81 0.77
Apt-E 0.48 0.48
Apt-F 0.68 0.69
Apt - G 0.59 0.60

Rec vs Talk 0.83 0.84




Dataset AdaC2 DAdaC2

Rec vs Sci 0.77 0.77
Sci vs Talk 0.74 0.74
Rec vs Comp 0.86 0.89
Comp vs Sci 0.76 0.75
Comp vs Talk 0.89 0.90

Table 6 compares the results obtained from Dynamic Cost-sen&bosting
(DAdaC2 and theAdaC2scheme of Cost-sensitive Boosting algorithm over the
three datasets, act_gest, act_rec and 20Newsgroupsl, to verdyrifmic cost
update has any advantage over a static cost factor or not. Thef déalaC2is

to adapt to the changes in the weightg§.osamples by keeping the cost factor
constantly updated. However, as the results indicate, therendbegem to be
much of difference between the two results save for the fenginah points up
and down. This is once again caused due to the small size of thebba/&dirget
training data (1% in this case). Due to the siz&dhe cost computer over every
iteration inDAdaC2is pretty much the same as the initial cost computedelf th
size ofT, was bigger, then there might be a better a chance for thiowlistin of
hard examples to vary over every iteration and perhaps even esdiiasuch

scenario®AdaC2may be more useful.

5.5. Comparison with Multi-Sour ce Transfer

Table 7 : Comparison of performance betwAeiaC2and TransferBoost

Dataset TrAda AdaC2 Transfer Boost
Apt-A 0.63 0.82 0.71
Apt-B 0.57 0.80 0.69
Apt-C 0.49 0.83 0.79

Apt-D 0.52 0.81 0.78




Dataset TrAda AdaC2 Transfer Boost
Apt-E 0.70 0.48 0.37
Apt-F 0.40 0.68 0.61
Apt-G 0.46 0.59 0.56
baseball 0.46 0.78 0.54
electronics 0.65 0.64 0.54
med 0.52 0.67 0.51
mideast 0.39 0.54 0.48
misc 0.47 0.51 0.53
pchardware 0.63 0.69 0.53
windowsx 0.64 0.66 0.57

Table 8 : Comparison between cost based rankingandon SVM,

Source Cost Rank Err SV
Apt-A

Apt-F 0.529517 0.431791
Apt-C 0.923077 0.452148
Apt-B 1 0.490467
Apt-G 0.488372 0.530998
Apt-D 0.423971 0.656869
Apt-E 0.547406 0.892347
comp.sys.ibm.pc.hardware

comp.sys.mac.har dware 0.913907 0.268817
comp.windows.x 0.900662 0.283871
sci.electronics 0.84106 0.32043
windows.misc 0.900662 0.337634
sci.med 0.84106 0.427957
rec.sport.hockey 0.834437 0.477419
rec.sport.baseball 0.960265 0.483871
rec.motorcycles 1 0.494624
talk.politics.mideast 0.662252 0.56129
talk.politics.misc 0.304636 0.582796
talk.religion.misc 0 0.589247
sci.space 0.940397 0.619355

Tables 7 shows the performance of AdaC2 on multisource datasetscaahd

20Newsgroups2, with the training done on 1% target training data amauthe



source auxiliary datasets. The results are compared with tHandadBoost and
TransferBoost. The better performance of AdaC2 in a multisaataset can be
explained based on the advantage a lower level measure ofriggnmigght gain
over a higher-level measure of similarity. In this case theldewvel similarity is
measured using instance pruning between each source instance daayehe
instances while the higher-level similarity is measured gudmansferability
between a source task and a target task. Computing simaatite lowest level
allows choosing similar instances that might be spread in ardisptashion
across the different source dataset. Another factor by whichotteeamputation
in AdaC2 might be superior to that of TransferBoost is its indirekitimn to
source—target macro-level similarity which can be checkedobyputing a score
for each source dataset by normalizing the total sum of cosputed over a
particular source. This score is presented in Table 8 alotigtihe error of a
model trained orT,; over the entire target domain datasett is to be noted that
the cost computed has only available from the target domain and would in
variably suffer from bias at one point or the other. Neverthelessimilarities in
the patterns are pretty striking. Referring to the actualsdafaroperties, it can
easily be seen that Apartment — A shares a similar lagioditsame number of
residents with Apartment — B and C, while documents related tdhdpdware”
would typically be similar to “comp.sys.mac.hardware” and "comp.wirsdotv
Thus, the failure of TransferBoost can thus be attributed to thedaf a top-

down cost estimate for the datasets considered here. Of couta@nivt be



guaranteed that a bottom-top approach would always work. A best solutideh w
be to incorporate both top-bottom and bottom-top knowledge for computing

similarity.



CHAPTER 6

CONCULSION AND FUTURE WORK
This thesis explores the idea of knowledge transfer betweerdeatieal training
and test environments, devising an instance-based transfer techhigue t
integrates a measure of relatedness onto a boosting frameworknoclivation
for this work stemmed from drawing a parallel between lifeldgmyning in
humans and intelligent systems that function in real-world environmetits
particular focus on the research on building a robust and adaptablerameter
based gesture recognition system that can automaticallg spato handling
varying user traits and environmental factors affecting the ingaakigiven to
the system. A system that incorporates a transfer leanr@ngefvork as suggested
would be able to successfully transfer knowledge between stackgralata and
the new target domain to classify gestures reliably. The prdposethod
conforms to the boosting theory that supports the convergence of AdaiBdast
shown to provide empirical success over different real-world elstas
Accelerometer based 3D Gesture Recognition and Smart HontierityAc
Recognition, and synthetic datasets generated from the 20Newsgi@mupaent
corpus. Despite a successful showcase, much future work remaingioméoéo
understand and perfect such a technique of knowledge transfer alongseitbfa

open questions about transfer learning.

6.1. Summary of the Work
A summary of the different contributions made in this thesis is listed below:



1. Three different variants for cost-sensitive boosting were inastig for

improving the generalized performance of activity and gestregnition.

The algorithms were compared with that of baseline result§ ekdiaBoost,

a well cited boosting based instance-transfer algorithm. Among tients
AdaC2 was seen to work the best, with useful theoretical properties and
promising empirical results.

2. The effect of using four different relatedness measures faokirs) were
studied and compared against each other. There is certainlgria im
determining cost as it always performs better than a uniforsasore.
Invariably instance pruning was found to give the best results. Thedat@mn
of these measures along with the actual posteriori measures weizedratd
spotted.

3. The Cost-sensitive boosting algorithm was modified to include aptiae
cost estimated based on the changing distribution of the targebhdralata.
This, however, did not result in a significant change in performanceat
times lead to overfitting.

4. The equivalence of computing cost over multiple source domains bundled
together against training seperately over the most relatedesdoneains was
analyzed using two multisource datasets and it was found thancestevel
similarity can very well propogate into task based similaritye performance

of AdaC2was further compared with the performance of a recently pedpos



boosting based multi-source transfer algorithm named TransferBottst w

positive results.
6.2. Future Work

Some of the future directions founded on the limitations of this wosk, it
application and some open research questions in the field of tréeesfieing are
discussed below:

e Estimating Relatedness: An often-discussed issue in this thesis has been the
idea of measuring relatedness to decide whether to transfaptorCan
relatedness be measured at all with only very few targigiing instances? Is
it correct to call two tasks related just because they bathh other when
trained together? Sometimes injecting noise improves genei@iizathis
does not mean that noise task is related to the target task [@d$ukihg the
relatednessa priori helps automating knowledge transfer in intelligent
systems. On a different note, the different cost factors dsiihia this thesis
is not exhaustive. There always lies the scope of modelingdeleds as an
optimization problem similar to structural risk minimization.

e Target Domain Instance Selection: Besides faced with the problem of
insufficient quantity of target training data, a parallel isselates with the
quality of the data. Given, that the approach suggested here istamcais
based transfer technique, it is all the more important thatatigettdomain
training data that is available reflects the unseen targetidarata points or

target tasks. It might be possible in some applications where ciineA



learning methodology of collaborating with an expert might helgcs¢arget
data of good quality.

Discovering Structure: Many-a-times, an instance-based transfer approach
that uses just the low level similarities between data naybe very helpful

for learning. Or even if it is, more success might be obtaineddkng use of

an underlying structure in the dataset. In such cases, the cust fean be
computed probably using a linear combination of the various structural
properties of the data and the tasks. This would facilitate better learning.
System Integration: An important challenge that gets overlooked in such
research is that of building a system based on the algorithmsictessfully
deploy transfer-based systems, many factors must be takercauiona such

as how relevant source tasks and target tasks can be capturedegided
costs, how much of the source task information requires to be stooednint
efficient database and how well the framework interact witterotequired

learning frameworks already present in the system.
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