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ABSTRACT

Redundant Binary (RBR) number representations have been extensively used in the

past for high-throughput Digital Signal Processing (DSP) systems. Data-path components

based on this number system have smaller critical path delay but larger area compared to

conventional two’s complement systems. This work explores the use of RBR number rep-

resentation for implementing high-throughput DSP systems that are also energy-efficient.

Data-path components such as adders and multipliers are evaluated with respect

to critical path delay, energy and Energy-Delay Product (EDP). A new design for a RBR

adder with very good EDP performance has been proposed. The corresponding RBR par-

allel adder has a much lower critical path delay and EDP compared to two’s complement

carry select and carry look-ahead adder implementations. Next, several RBR multiplier

architectures are investigated and their performance compared to two’s complement sys-

tems. These include two new multiplier architectures: a purely RBR multiplier where both

the operands are in RBR form, and a hybrid multiplier where the multiplicand is in RBR

form and the other operand is represented in conventional two’s complement form. Both

the RBR and hybrid designs are demonstrated to have better EDP performance compared

to conventional two’s complement multipliers. The hybrid multiplier is also shown to have

a superior EDP performance compared to the RBR multiplier, with much lower implemen-

tation area. Analysis on the effect of bit-precision is also performed, and it is shown that

the performance gain of RBR systems improves for higher bit precision.

Next, in order to demonstrate the efficacy of the RBR representation at the system-

level, the performance of RBR and hybrid implementations of some common DSP kernels

such as Discrete Cosine Transform, edge detection using Sobel operator, complex multipli-

cation, Lifting-based Discrete Wavelet Transform (9, 7) filter, and FIR filter, is compared

with two’s complement systems. It is shown that for relatively large computation modules,

the RBR to two’s complement conversion overhead gets amortized. In case of systems with

high complexity, for iso-throughput, both the hybrid and RBR implementations are demon-

strated to be superior with lower average energy consumption. For low complexity systems,
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the conversion overhead is significant, and overpowers the EDP performance gain obtained

from the RBR computation operation.
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Chapter 1

INTRODUCTION

Contemporary Digital Signal Processing (DSP) systems are characterized by high-throughput,

energy-intensive computations. Examples of such systems include image and video codecs.

Many of these computation-intensive systems are on portable platforms, where energy con-

straints pose a rigid limitation to the number of computations that can be performed given

the battery restrictions. Thus, for high-throughput, energy-efficient DSP systems, it is de-

sirable to have low delay, energy and the energy-delay product.

The performance of a DSP system is dictated by the performance of datapath com-

ponents that are used to implement the constituent kernels. This is because most DSP

kernels can be reduced to a mix of add/shift/multiply operations. This work looks at opti-

mizing the speed and energy performance of data-path components in a for DSP system.

1.1 Redundant Number Systems

Conventional DSP data-path components are based on two’s complement binary arithmetic.

They are popular because of legacy architectures and ease of implementation. However,

two’s complement adders and multipliers encompass carry propagation chains, which limit

the speed performance, especially for large operand bit-widths. Even the best two’s comple-

ment adders and multiplier designs have a critical path delay that is proportional to O(logn),

where n is the bit-width. For high-throughput DSP systems, these two’s complement adders

and multipliers are heavily pipelined so that high frequency of operation may be achieved.

This, in turn, increases the system latency and area.

In this thesis, we focus on design of data-path components operating in the re-

dundant number system. These systems were first conceived in order to reduce or elim-

inate carry propagation chains in arithmetic circuits. They are characterized by carry-

propagation-free addition; addition can be performed in constant time, independent of the

operand bit-width. This feature of fast, parallel addition was also utilized in multipliers,
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to yield fast multiplication times. While two’s complement systems are characterized by

unique number representations, redundant number systems have multiple, redundant, rep-

resentations for the same number. This allows the addition rules to be manipulated, so that

fast, parallel, carry-propagation-free addition can be accomplished. However, since mul-

tiple representations are possible, more number of bits are required to represent a single

two’s complement bit (called a digit in the redundant system). This translates to processing

more number of bits at a single digit position, and so, the gate complexity for single-digit

redundant system adders is higher than two’s complement single-bit adders. Also, since

majority of the processing environment is in two’s complement, any computation block

that uses redundant representations is required to convert to and from two’s complement

representation, leading to additional circuit overhead.

Redundant number systems were very popular, a couple of decades ago, for high-

throughput applications. This is because the carry-propagation-free addition allowed Most-

Significant-Digit (MSD) first computation [7, 9, 15, 22, 21, 43, 49].Conversion from and

to two’s complement representation were performed only when the operands are read from

or written to memory. Even Intel introduced a processor architecture that used redundant

intermediate forms to improve the instruction pipelines [11]. However, due to the circuit,

and conversion overhead involved, these number systems are not very popular today.

1.2 Contributions

In this work, redundant number system arithmetic is revisited, and its applicability to the

design of energy-efficient systems is investigated. The idea is that since computation units

that use redundant number representation are high speed, in order to obtain the same speed

of operation as two’s complement systems, the supply voltage of the redundant number

representation units can be scaled. Since energy is proportional to the square of the supply

voltage, this reduces the average energy consumption while maintaining the throughput.

Three performance metrics are considered: delay, energy and energy-delay prod-

uct (EDP). We include energy-delay product since the deisgn objective is to have the best
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speed perfromance, with the least possible energy consumption. First, a new radix-2 Re-

dundant Binary (RBR) number representation based adder is proposed and its performance

is compared with an existing RBR adder design as well as two’s complement Carry -Select

Adder (CSA) and carry look-ahead Adder (CLA). The proposed design is shown to have

reduced critical path delay, and comparable EDP performance with respect to the reference

RBR adder design. The proposed RBR parallel adder has a superior EDP performance with

respect to the two’s complement CSA and CLA adders. Since the RBR adder delay is inde-

pendent of bit-width, the EDP performance gain of RBR adders increases with increasing

bit-width.

Second, a new hybrid digit-parallel multiplier design that accepts the multiplicand

operand in RBR form and the second operand in two’s complement form is proposed and its

performance evaluated. A novel architecture for a RBR digit-parallel multiplier that accepts

both operands in RBR form that is based on the new hybrid multiplication architecture is

also proposed. The performance of this new RBR multiplier is compared with existing RBR

tree multiplier architectures. This new design is both energy and area-efficient compared to

the RBR tree multiplier designs, with and a 22% relative EDP performance gain, as well as

40% relative area efficiency.

Extensive performance evaluations of the new multiplier architectures are per-

formed in comparison to two’s complement multipliers. The EDP performance of both

the proposed multiplication architectures is evaluated with respect to that of existing two’s

complement Wallace tree multiplier designs. Both new multiplication architectures have

superior EDP performance over the two’s complement multiplier. For iso-throughput com-

parison, with voltage scaling, the new architectures are found to have lower average energy

consumption. The RBR multiplier exhibits 14% EDP performance gain, while the hybrid

multiplier shows a substantial 42% EDP performance gain over conventional two’s com-

plement multiplier, for iso-throughput. Analysis on the implementation area comparisons

for all multiplier architectures is also performed, and it is shown that while the RBR im-

plementation has a 25% area overhead, the hybrid multiplier exhibits comparable area with

3



respect to the two’s complement system.

Next, popular DSP kernels such as edge detection using Sobel operator, Discrete

Cosine Transform, complex multiplication, lifting-based Discrete Wavelet Transform (9, 7)

filter, and FIR filter design are built using the proposed RBR adder, and the proposed RBR

and hybrid multipliers. Performance evaluations are performed in comparison to two’s

complement modules to demonstrate the efficacy of RBR representation for implementing

DSP systems. Conversion overhead, which is inevitable for RBR systems, is analyzed for

all the RBR implementations of the DSP kernels. For low complexity systems, the RBR

conversion presents a significant overhead and the EDP performance of two’s complement

systems is found to be better. As the complexity of the computation system increases,

the conversion overhead is shown to get amortized over the computation operation, and

the RBR systems are found to have superior EDP performance over two’s complement

systems. In fact, for high complexity DSP kernels, substantial relative EDP performance

gain is observed. For iso-throughput, the hybrid implementations achieve an impressive

37% average EDP performance gain over two’s complement systems.

1.3 Thesis Organization

The layout of this work is as follows. Chapter 2 presents an in-depth discussion on re-

dundant number representations. The simulation environment and the Verilog-based model

used for performance evaluations in this work is also introduced here. In Chapter 3, the

addition algorithm and design of the proposed new RBR adder design is described in detail

with all supporting simulation results. Chapter 4 presents EDP performance evaluations

of RBR and two’s complement multipliers. The architectures of the proposed new, digit-

parallel, purely RBR and hybrid multiplier is also introduced here. Chapter 5 addresses

the issue of overhead in RBR systems and considers five popular DSP applications to com-

pare the performance of the two’s complement and RBR implementations. Concluding

comments, along with pointers to further research in this area are provided in Chapter 6.

4



Chapter 2

BACKGROUND

This chapter elaborates on some of the representations that have been researched in the past

for high-performance computing. The focus here is on the redundant number representa-

tion, which forms the basis of this work.

2.1 Two’s Complement Representation

In a conventional number system with radix-r, the digits can assume exactly r values, from

0 to r−1. For instance, the binary (radix-2) system has the digit-set {0,1}, while the radix-

4 system has the digit-set {0,1,2,3}. In the weighted positional system in radix r, a number

X with n digits, written as xn−1xn−2x1x0, has the value,

X =
n−1

∑
i=0

xiri

Each digit position i has an assigned weight ri, and the digits are multiplied by this weight

to calculate the numeric value of the number. Thus, each number has a unique digit repre-

sentation in this system.

In the two’s complement binary representation, the range of numbers is from−2(n−1)

to 2(n−1)− 1 [35]. Although two’s complement systems usually have relatively low com-

plexity, in the worst-case, there is a carry propagation from the least significant to the most

significant position. Even for the most efficient two’s complement adder designs, the delay

of an n-bit adder is proportional to O(logn). Thus, these systems tend to have large latency,

and additional techniques have to be incorporated before they can be used to build high

throughput systems.

2.2 Redundant Number Representation

In order to speed-up computation and improve the performance of the arithmetic units,

redundant number systems were developed. Arithmetic circuits built in this number system

had reduced carry propagation systems. In contrast to the conventional number system
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that consists of only unique number representations, the redundant number system permits

multiple (redundant) representations of the same number.These multiple representations

allow the addition rules to be manipulated, resulting in fast, parallel addition. For instance,

in the addition intermediate representation of the incoming operand sum (xi+yi) is chosen,

so that the final-stage addition will not present a carry to the higher-level digit position.

Implementation of redundant arithmetic algorithms can be broadly classified into

the following categories, [12]: (1) conventional binary logic encoding, wherein the multi-

valued redundant digits are encoded using two or more binary bits; (2) current-mode cir-

cuits, which use non-binary digital current signals to represent multi-valued redundant dig-

its; (3) heterostructure and quantum electronic circuits, which rely on device-level inno-

vations to incorporate redundancy. The focus of this work is entirely on implementation

of redundant arithmetic algorithms using conventional binary logic circuits, and addressing

its design challenges. The following sections elucidate the fundamental concepts of the

redundant number representation.

2.2.1 Signed Digit Representation

The signed-digit number system [3] was originally proposed by Avizienis, with the purpose

of implementing parallel addition where carry propagation is eliminated altogether. The

algebraic value of a signed-digit number is given by

P =
m

∑
i=−n

pir−i

where r is the radix, r > 0 and pi are the digits. In a redundant number representation, the

digit-set is comprised of more than r values, unlike the conventional number representation,

where it is restricted to exactly r values. The values of the radix and the digits, pi, are

chosen to satisfy the condition of unique representation for the value P = 0. The sign of a

redundant number is the sign of the most-significant non-zero digit. Also, the signed-digit

representation of P is simply obtained by changing the sign of every non-zero digit in the

representation of P.
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The parallel addition algorithm of the signed-digit representation is performed in

two steps, and is shown pictorially in Figure 2.1.

xi + yi = rci +wi

si = wi + ci−1

Figure 2.1: Signed Digit Representation. Totally parallel addition

The addition of two digits xi and yi is totally parallel only if: (1) the final sum digit

is a function of only the operand digits xi and yi, and the interim carry digit, c(i−1) from the

adjacent digit position; (2) the interim carry digit to the next position, ci, is a function of

only the operand digits, xi and yi. From the above definition of the two-step totally parallel

addition algorithm, the required and allowed digit values for each of the variables can be

derived. The upper bound for the magnitude of the interim sum is |wi| ≤ r− 2 and the

smallest sufficient set of values for the carry digit is ci = {−1,0,1}.

Importantly, from the derivation, it is apparent that Avizienis signed-digit repre-

sentation is valid only for radix values r > 2. This is because, for radix r = 2, the allowed

digit-set for the interim sum isi is only {0}! Although Avizienis signed-digit representation

excludes radix-2 representation, one possible way to make it work for radix-2 is by allowing

the carries to ripple two positions, making it a three-step addition process [19].
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2.2.2 Generalized Signed Digit Representation

Parhami investigated digit-level redundant representations, and introduced a framework for

generalized signed digit (GSD) number systems [33, 34, 35]. Avizienis signed-digit repre-

sentation is included in this framework, and is called the Ordinary Signed-Digit number sys-

tem (OSD). The GSD number system unified the OSD and the Binary Signed-Digit (BSD)

number systems, and included other practical redundant number representations such as

stored-carry and stored-borrow as special cases.

Parhamis GSD number system is a weighted positional system with digit-set {−α,−α+

1, ...,β −1,β}, where α ≥ 0, and β ≥ 0, α +β +1 > r, where r is the radix of the number

representation. The excluded case α +β + 1 = r results in a non-redundant number sys-

tems, which covers the conventional radix-r system with α = 0, β = r−1 as a special case.

GSD number systems cover the following number systems as special cases.

(1) Binary Stored-Carry (BSC): r = 2, α = 0, β = 2.

(2) radix-r Stored-Carry (SC): α = 0, β = r.

(3) Binary Stored-Borrow (BSB or BSD): r = 2, α = β = 1.

(4) radix-r Stored-Borrow (SB): α = 1, β = r−1.

(5) Binary Stored-Carry-or-Borrow (BSCB): r = 2, α = 1, β = 2.

(6) radix-r Stored-Carry-or-Borrow (SCB): α = 1, β = r.

(7) Minimally redundant symmetric signed-digit: 2α = 2β = r ≥ 4 .

(8) Ordinary Signed-Digit (OSD): r ≥ 3, 1/2r ≤ α = β ≤ r.

Minimally redundant: α = β = b1/2rc+1.

Maximally redundant: α = β = r−1.
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For a symmetric digit set, α equals β . A maximally redundant radix-4 OSD num-

ber representation has the digit-set {−3,−2,−1,0,1,2,3}, while the minimally redundant

radix-4 OSD representation has the digit-set {−2,−1,0,1,2}.

The BSC number representation, which is a special case of radix-r stored-carry

representation, has a digit-set {0,1,2}. A BSC number can be added to a conventional

binary number to give a BSC result, using a set of full adders without carry propagation,

and has been used before in a few implementations [50].

SB number representation uses the digit-set {−1,0,1, ,r− 1}. For radix r=2, this

system is called the Binary Stored-Borrow (BSB) or the Binary Signed-Digit (BSD) number

system, and has the digit-set {−1,0,1}. BSD numbers have been used for representing

intermediate temporary values in high-speed multiplication and division algorithms such

as Booths recoding algorithm for multiplication [12]. Two BSD numbers can be added by

limited carry propogation. Examples of BSD implementations are given in [16, 29, 47].

2.2.3 Choice of Radix in the Redundant Representation

As the radix r increases (and hence the number of bits required to represent a number in

conventional number system increases), the number of extra bits required for the redundant

representation relative to the number of bits for the conventional representation decreases.

Thus, as r increases, the representation overhead for redundant systems decreases as shown

in Table 2.1. The same cannot be said, however, for the implementation complexity.

Radix-2 and radix-4 are the most commonly chosen representations for redundant

representations. For instance the Paste-up system, introduced by Irwin and Owens in [22]

uses radix-4, which they claim has fewer interconnects and simpler logic. Their rationale

for choosing radix-4 is that relatively low latency radix-2 systems are difficult to design

[19, 22]] and the gate complexity and slow processing speed of radix-8 precludes its usage,

although it can process more data per cycle. In [19], Irwin illustrates that radix-2 redundant

binary addition can be performed by limiting the carry chain ripple to two digit positions

by a three-step addition process.
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Table 2.1: Representation Overhead in Redundant Systems

Base 2 3 4 8 10 16 32
No. of bits in redundent
representation

2 3 3 4 5 5 6

No. of bits in conventional
representation

1 2 2 3 4 4 5

Overhead 100% 50% 50% 33% 25% 25% 20%

In iterative or serial implementations of arithmetic operations, higher-order radices

can be employed to reduce the number of iteration cycles [36]. Radix-4 representation is

advantageous for such systems, since it halves the number of iteration cycles in comparison

to radix-2. However, the basic components in a radix-4 system are far more complex. In

this work, we used the radix-2 representation for the adder and multiplier implementations.

2.2.4 Redundant Binary Representation

In redundant binary logic, each redundant digit is encoded by two or more bits. For exam-

ple, a radix-2 redundant digit can be encoded using two bits [12]. Carry-save is one such

type of redundant representation, having the digit-set {0,1,2}. There are two well-known

encodings [28] for {−1,0,1}, which are sign-mag, where the two-bits represent a magni-

tude and a sign, respectively, and borrow-save, wherein one bit is positive and the other

negative [12]. We choose the borrow-save representation for representing the radix-2 digits

in our proposed designs.

2.2.5 Conversion Issues

Since legacy architectures use two’s complement arithmetic, any system using redundant

number representation kernels must address the issue of converting to/from the redundant

digit system. Redundant systems have an overhead, not only in terms of the additional

number of bits used for the data representation, but also in terms of the input and output

conversion as shown in Figure 2.2. Conversion to the redundant-binary representation is

trivial, and is comprised of only expanding the operand bit-width. Only the MSB-bit re-
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quires little manipulation to take care of negative numbers.
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Figure 2.2: Overhead in a typical RBR System

The real overhead for RBR systems lies in the RBR-to-two’s complement conver-

sion, which is typically implemented by converting the RBR result to two unsigned two’s

complement numbers R+ and R−, obtained by mapping only the ‘1’ digit and ‘-1’ digit

positions respectively, and then finding their difference, R+−R−. This RBR-to-two’s com-

plement conversion unit is typically implemented by a fast two’s complement parallel adder,

the delay and power consumption of which increases with increasing bit precision.

In addition to communication with other computation units, any data-path kernel

also communicates with the system memory. If a RBR kernel is used to fetch and store

RBR operands from and to memory, then the memory requirement of the system automat-

ically doubles because of the representation overhead. Doubling the system memory leads

to almost double the average energy consumption. Hence, to avoid increasing the mem-

ory capacity and subsequent energy consumption, converting the RBR numbers into two’s

complement and storing them in two’s complement form is advisable.

2.3 Performance Metrics: Delay, Average Energy Consumption, and Energy-Delay Prod-

uct (EDP)

We compare the competing designs with respect to critical path delay, average energy con-

sumption, EDP and implementation area. The power consumption of a design governs the
11



amount of energy consumed per operation, and how much heat the circuit dissipates. It

is an important design metric, because, it directly affects the system requirements such as

power supply ratings, battery specifications, packaging and cooling requirements. In addi-

tion, increased on-chip power density is extremely detrimental to reliability, as it makes the

chip more easily prone to ‘thermal runaway’.

The power consumption of a system is given by P =VDD.Itotal , where Itotal is com-

prised of Istatic and Idynamic.Istatic is the total leakage current across the integrated circuit,

while Idynamic is the total switching power, due to the charging and discharging of the circuit

capacitances, that is, Idynamic = αCLV 2
DD f , where α is the activity factor, which indicates

how often the circuit switches, CL is the effective load capacitance that is switched, VDD is

the supply voltage, and f is the frequency of operation. The dynamic power has a quadratic

dependence on the supply voltage VDD. Thus, reducing the supply voltage, also known as

voltage scaling, will automatically lead to quadratic reduction in power. While this is true,

it does come with a penalty in terms of speed performance. This is because, with reduc-

tion in supply voltage, the current drive reduces, and hence, the signal slopes suffer, thus

affecting transition and propagation delay times, and ultimately the frequency of operation.

Thus, propagation delay and power consumption of a gate are interrelated.

Figure 2.3: Trade-off between supply voltage and frequency of operation

The Power-Delay Product (PDP), is a quality measure that determines the energy
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consumption of a gate per switching event, that is, charging or discharging of the load

capacitance. Faster the energy transfer, the faster the gate, however, higher the power con-

sumption. The power-delay product, or the average energy consumption, however, does

not give any information regarding the speed of operation. In contrast, the EDP unifies

the two quality metrics, propagation delay and energy consumption, and allows designers

to trade-off one with the other. Figure 2.3 depicts the trade-off between supply voltage

and frequency of operation of a processor. In this work, we use delay,energy, EDP as per-

formance metrics while evaluating data-path components based on two’s complement and

RBR representation systems.

2.4 Simulation Environment

Figure 2.4 is a pictorial representation of the simulation environment. In order to model the

delay, energy consumption and EDP characteristics of the various arithmetic units, a gate

library consisting of the commonly used logic gates, including multiplexers, and registers,

is characterized using HSPICE. The circuit-level implementation of these gates and their

HSPICE characterization was performed using the PTM 45 nm process technology mod-

els [18] (fanout-of-4 (FO4) inverter delay is 40 ps for this technology). The propagation

delay and average switching energy consumption for both rising and falling transitions is

estimated for each gate for different load conditions such as FO1, FO2, and FO4. The gate

libraries were also characterized for supply voltages ranging from 0.6 V to 1 V (nominal) in

steps of 0.1 V. The average energy consumption in each case is determined by integrating

the total switching power consumption of the gate over the transition time.

Verilog HDL structural constructs were used to simulate all the circuits with the

delay and energy parameters referenced from the characterized gate library. To elaborate,

a gate-level model of the arithmetic unit was developed in Verilog, such that every time

the input to any gate switches, its output takes its logical value after a circuit propagation

delay as determined by the HSPICE parameter library. The average energy consumption of

each system is approximated by calculating the number of rising and falling transitions of

each gate, and replicating the average switching energy consumption of a single transition

13



as obtained from the HSPICE parameter library.
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Figure 2.4: Pictorial representation of simulation environment

The simulation setup involved applying large number of randomized input vectors

(both operands) to the circuits, for instance 32,767 in case of the 16-bit adders and 16-bit

multipliers. The critical path delay was obtained across the entire range of input vectors.

The signal path delay calculations were performed by detecting signal transitions at each

output and by recognizing the most delayed output signal transition with respect to the sys-

tem inputs, as the critical path. The energy consumption was estimated by averaging the

energy values for all input combinations. The system energy values for each input combi-

nation are calculated by counting the number of rising and falling signal transitions. Each

rising or falling transition of any signal in the system is linked to the HSPICE-generated

gate library to obtain the average rising/falling transition energies for each gate. The cu-

mulative transition energies of all the switching gates in the system for each input operand

combination is the system average energy consumption for that input combination.
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Chapter 3

REDUNDANT BINARY ADDER ARCHITECTURES

Adders based on RBR representations have a fixed delay, independent of the bit-width of

the operands, which makes them highly efficient for large operand-width computations.

Such adders have been extensively researched in the past. Apart from speeding up addition,

they also enable fast multiplication.

Since the basic redundant binary adder cell processes more bits than a normal bi-

nary full adder cell, these units are quite gate-intensive. To the best of our knowledge, these

structures were seldom researched for low energy designs. In this work, we revisit RBR

adder designs and evaluate their effectiveness in terms of delay, energy and EDP. A new

radix-2 RBR adder with novel addition rules is proposed, and its performance compared

with a previously reported RBR adder [29]. The RBR adders are also compared with the

two’s complement adders in order to demonstrate their superiority in terms of EDP.

3.1 Existing Radix-2 RBR Adder Designs

A lot of the prior research on RBR systems focused on finding the best representation that

resulted in a compact adder cell. Many algorithms and circuits have been reported for the

redundant binary adder [5, 16, 29, 39, 8, 25, 42, 48, 46]. Most of the early radix-2 RBR

adders, based on the digit-set {−1,0,1}, used the three-level scheme, where the sum digit

is a function of the digits in three adjacent digital positions. Figure 3.1 shows the high-

level representation of such a 1-digit RBR adder [19]. Stage I produces a transfer carry tc j;

Stage II generates the interim carry ic( j+1) and the interim sum is j. The interim carry and

interim sum digit sets are chosen such that they can never be simultaneously 1 and −1, thus

eliminating a possible carry condition. Stage III performs addition of the interim sum and

carry to generate the final RBR sum digit s j. Variations of this scheme were also researched

[5]. However, as seen, the sum digit depends on the operands from three adjacent positions,

leading to relatively slow parallel addition.
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Figure 3.1: Three level redundant binary addition scheme

New addition schemes were later devised to shorter addition time by making the

sum digit dependent on only two adjacent operand positions [29, 8, 25, 42, 48]. In [25],

Kuninobu et al. presented a new logic circuit for the RBR adder, which is smaller and faster.

In [42], a transmission gate based RBR adder was designed, which resulted in a compact

and efficient basic building block for the technology node considered, which was 0.8µm.

However, these transmission gate RBA blocks may not be viable for contemporary deep

sub-micron processes.

In [29], a fast redundant-binary multiplication scheme based on a high speed RBR

adder design was proposed. The adder was not only fast but had a more compact circuit

realization compared to normal binary 4:2 compressors, as well as other RBR adder designs

such as those in [25] and [48]. This is shown in Figure 3.2. Because of the relatively

superior RBR adder design in [29], this scheme is chosen as a benchmark for comparing

with the proposed adder design.
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Table 3.1: Bit-level digit representation of the borrow-save encoding scheme

xi x−i x+i
0 0 0
1 0 1
-1 1 0

3.2 Proposed Radix-2 Redundant Binary Adder Design

3.2.1 Encoding Scheme

The proposed addition algorithm is based on a radix-2 representation, with the digit-set

{−1,0,1}, encoded using two bits. In this representation, if x j is a redundant binary digit

denoted using two bits (x−j ,x
+
j ), then the algebraic value of the digit x j can be calculated as

x j = x+j −x−j , where x j ∈ [−1,0,1], and {x+j ,x
−
j } ∈ [0,1]. The assumed representation leads

to a bit-level encoding as shown in Table 3.1. Note that the (1,1) combination is unused,

since the encoding shown in Table 3.1 was found to give lower implementation overhead.
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3.2.2 Addition Algorithm

Most redundant binary radix-2 adder designs express the addition of two redundant binary

operands x j and y j as a combination of an intermediate sum, is j, and an intermediate carry,

ic j+1. Thus the sum of x j and y j is represented by x j +y j = 2ic j+1 + is j [19]. The interme-

diate sum and carry digits are chosen such that there is no carry signal propagation into the

next digit position. This further entails that the digits is j and ic j can never be both ‘1’ or

‘-1’.

The proposed addition algorithm uses a similar approach. In the proposed algo-

rithm, a transfer carry of ‘1’ from the previous digit position, automatically implies a carry

of ‘-1’ into the next digit position. The transfer carry into the jth digit position indicates if

either of the previous digit position operands is negative, as shown below.

(i) tc j = 0, for positive previous operands, indicating a possible carry of ‘+1’ from the

previous digit position.

(ii) tc j = 1, for negative previous operands, indicating a possible carry of ‘-1’ from the

previous digit position.

The intermediate sum bit is j is a single bit (0 or 1) while the intermediate carry

ic j+1 is represented as ic j+1 = (ic−j+1, ic+j+1) = ic+j+1 − ic−j+1. The bit ic+j+1 = 1 indicates

ic j+1 = 1 while ic−j+1 implies ic j+1 = −1. The jth intermediate carry ic j comes from the

adjacent digit position, and is a function of the operands at that digit position, as well as the

transfer carry. The final sum output at the jth digit position, s j, is a function of the bits is j,

ic+j , and ic−j , as well as the transfer carry from the previous digit position tc j−1, thus giving

totally parallel addition.

The proposed radix-2 addition algorithm can be summarized as under:

x j + y j =+2(ic j+1)− is j, for tc j−1 = 0 (1)

x j + y j =−2(ic j+1)+ is j, for tc j−1 = 1 (2)
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Figure 3.3: High-level block diagram of the proposed RBR addition algorithm

The above two equations essentially imply that for tc j−1 = 0, corresponding to a

possibility of ic j = 1 (x j + y j = 2) from the previous digit position, we choose the sign for

is j as ‘-’, while for tc j−1 = 1, corresponding to a possibility of ic j = −1 (x j + y j = −2)

from the previous digit position, we choose the sign for is j as ‘+’. Similar to the signed-

digit characteristics, zero has a unique digit representation of is j = 0 and ic j+1 = 0. The

effective intermediate carry in turn depends on the bits ic+j and ic−j . The bit ic+j = 1 indicates

a positive intermediate carry into the jth position, while ic−j = tc j−1 = 1 directly implies a

negative intermediate carry into the jth position.

The proposed algorithm essentially implements the following steps:

(1) Determine the jth intermediate sum bit is j based on the jth digit operands.

(2) Determine the ( j+ 1)th intermediate carry bits, ic j+1, based on the jth digit operands

and tc j−1.

(a) If tc j−1 = 0, depending on the jth digit operands, the bit ic+j+1 has a possibilty of

being ‘1’.
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(b) If tc j−1 = 1, the bit ic−j+1 = tc j−1 = 1.

(c) If both ic+j+1 = ic−j+1 = 1, the effective carry into the (j+1) digit position is ‘0’.

(3) Next, assign the bits is j, ic+j , and ic−j appropriately to the bits of the pre-sum output

a j = (a−j ,a
+
j ) based on the transfer carry tc j−1.

(a) For tc j−1 = 0, that is, non-negative adjacent operands, the effective carry into the

jth digit position can never be ‘-1’, and so is j is assigned to the negative pre-sum

bit a−j , while the positive pre-sum bit a+j = ic+j .

(b) For tc j−1 = 1, the effective carry into the jth digit position can never be +1 and so

is j is assigned to the positive pre-sum bit a+j , while a−j = ic−j .

(4) Generate the final sum output (s−j ,s
+
j ) by converting any ‘11’ bit combination obtained

at the pre-sum output as a result of the step (3) concatenation to ‘00’, since it is outside

the assumed encoding scheme.

Figure 3.3 depicts the high-level block diagram of the proposed RBR addition

scheme. Block I receives the input operands x j,y j as well as the transfer carry from the

previous digit position tc j−1, and determine the intermediate carry and sum bits. Block II

receives the jth intermediate carry and sum bits, ic j and is j, and concatenates them, de-

pending on tc j−1 to generate the final sum bits s j = (s−j ,s
+
j ). Depending on c j−1, it forces

a bit ‘1 and ‘0 respectively at a−j , and b+j of the interim sum respectively, or passes them

through as is. The final operation is the elimination of the ‘11 combination to generate s j.

The truth table for this addition algorithm is given in Table 3.2. The possible com-

binations for is j and ic j+1 are given for tc j−1 = 0, and tc j−1 = 1. As seen from the truth

table, for every input operand combination, the is j and ic j+1 bits are never both assigned

to the pre-sum bits a−j and a+j , and the concatenation operation leads to totally parallel

addition.

As seen from the truth table, the positive intermediate carry bit ic+j+1, should be ‘1

for is j = 1, and tc j−1 = 0, as well as, x j + y j = 2. For ease of circuit implementation, the
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Table 3.2: Intermediate carry and sum digit possibilities for proposed addition algorithm

x j + y j tc j−1 ic∗j+1 is∗j

0
0 (0,0+) 0−

1 (0−,0) 0+

1
0 (0,1+) 1−

1 (0−,0) 1

−1
0 (0,0+) 1−

1 (1−,0) 1+

2 0 or 1 (0,1+) 0−

−2 0 or 1 (1−,0) 0+
∗The superscript ‘+’ indicates the bit is assigned to the positive pre-sum bit a+j ,

while ‘-’ indicates the bit is assigned to the negative pre-sum bit a−j

Table 3.3: Variable values for x j + y j = [−2,0,2]

x−j x+j y−j y+j x j+y j ic+j+1 is j tc j c j

0 1 0 1 2 1 0 0 0
0 1 1 0 0 1 0 1 0
1 0 0 1 0 1 0 1 0
1 0 1 0 −2 1 0 0 0

algorithm is modified slightly in that, in addition to the above condition, ic+j+1, is also ‘1 for

the input operand combinations x j + y j = [−2,0,2]. These input operand combinations are

detected using the variable p j, that is, p j = 1, for x j+y j = [−2,0,2]. Table 3.3 indicates the

values of the various bits for these operand combinations. This modification helps achieve

the following simplification:

(1) For tc j−1 = 0, assign ic+j+1 to a−j , is j to a+j

(2) For tc j−1 = 1, assign ic+j+1 to a+j , is j to a−j

As seen from the table, ic+j+1 = 1 for an additional input operand combination

x j +y j =−2. For this operand combination, the effective carry ic j+1 should be ‘-1’. This is

accomplished by forcing a bit ‘1’ at the a−j bit position, after the pre-sum bits (a−j ,a
+
j ) are

assigned. The input operand combination x j + y j =−2 is detected using the variable c j.
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3.2.3 Illustration of addition algorithm

The proposed addition algorithm is further explained with the aid of the following example.

Consider the addition of two redundant binary numbers whose numeric values are equal to

- 42 and - 7 respectively. The digit-level representation of these numbers is as shown in

Figure 3.4 below. For the least significant digit position ( j = 0), the bits tc j−1, and ic+j

from the previous digit position, are assumed to be zero. The intermediate sum bit is j

for each digit position is found based on the input operand bits at the corresponding digit

position. The intermediate sum and carry bits generated at each digit position are grouped

together as shown in Figure 3.4. The intermediate carry bit ic+j+1 is asserted if the jth bit

position operands are non-negative, for is j = 1, and also if p j = 1, when is j = 0.

The pre-sum bits (a−j ,a
+
j ) take on bit values derived from is j or ic+j , at each digit

position depending on the value of tc j−1. The final sum bits are simply (a−j ,a
+
j ), except for

the case of (a−j ,a
+
j ) = (1,1), which is converted to ‘00’ at the final sum output. However,

if input operands in the adjacent digit position are such that x j−1 + y j−1 = −2 (as shown

highlighted in the example at the j = 4 digit position), that is, for c j−1 = 1, a ‘1’ must

be forced at the a−j position, because this indicates a carry of ‘-1’ from the previous bit

position. In the digit-position j = 5, for which c j−1 = 1, forcing a ‘1’ at the a−j position

makes the effective (a−j ,a
+
j ) = (1,1), which is then converted to s j = (0,0). As seen from

the final output, the sum is −49 as expected.

3.2.4 Gate-level Implementation

The gate-level implementation of the proposed algorithm is derived below. The transfer

carry into the next bit position indicates if either of the present operands is negative, i.e.,

tc j = 1 if either x j = (1,0) or y j = (1,0). This yields the following equation for tci.

tc j = x−j + y−j

As seen from the truth table, s j = 1 for an odd number of ones in the input operand bits.
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cj = 1, pj = 1

pj = 1

pj = 1

0    -1    -1     0     1    1     0                                    -42

0     0    -1     1     1   -1    -1                                     -7

______________________                                  ___

1     1     0     0     1     1     0        tcj-1                             -49

0     1     0     1     0     0     1        isj
+

0     1     1     1     1     1     0        icj
+

_______________________

10   01* 01   11   00   00   10       (aj
- aj

+)

_______________________

10   00   01   00   00   00   10       sj

-1     0 1     0     0 0 -1                                   -64 + 16 -1

= -49     

Figure 3.4: Addition Example

is j = (x−j + x+j )⊕ (y−j + y+j )

Also, ic j+1 =+1, for is j = 1, and tc j−1 = 0. Additionally, ic j+1 =+1 for xi + yi = 2. The

bit p j is asserted for xi+yi = 2. This, and the assumed rules from (1) and (2) help determine

the logic expression for ic+j+1 as:

ic+j+1 = is j.(tc j−1)+ p j

where, p j = (x−j + x+j )+(y−j + y+j )

The pre-sum bits (a−j ,a
+
j ) are determined by the following concatenation operation

depending on is j and the previous digit position intermediate carry, ic+j , as controlled by

tc j−1.
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a−j = tc j−1.(ic+j )+ tc j−1.(is j)

a+j = tc j−1.(ic+j )+ tc j−1(is j)

The pre-sum bits (a−j ,a
+
j ) may result in (1,1), which is outside the assumed repre-

sentation, and hence must be converted to (0,0). This can be accomplished by the following

equation:

s+i = a−j .a
+
j

s−i = a−j .a
+
j

It follows that, in addition to the above-mentioned conditions, ic+j+1 is ‘1’ for the

{(1,0)+(0,1)}, {(0,1)+(1,0)}, and {(1,0)+(1,0)} input operand combinations as well.

For the first two cases, since tc j = 1, the effective carry is zero, as desired. However, for

the input operands {(1,0)+ (1,0)}, the negative pre-sum bit a−j must be forced to ‘1’ and

the positive pre-sum bit a+j to ‘1’, as explained previously. This is incorporated in the

conversion function itself, as shown below. The bit c j is asserted for the (1,0)+ (1,0) input

operand combination.

s+i = a−j .a
+
j .c j−1

s−i = (a−j + c j−1).a+j

where, c j−1 = x−j−1.y
−
j−1

These equations are summarized in Figure 3.5. The complete gate-level implemen-

tation for a one-digit adder is as shown in Figure 3.6.

3.3 Simulation Results

3.3.1 One-digit Redundant Binary Adder Performance Comparisons

In order to evaluate the performance of the proposed RBR adder, it is compared with the

reference RBR adder [29], RBA ref. Both the adder designs are implemented and simulated

using HSPICE, as well as the Verilog-based model.
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Figure 3.5: Summary of equations for proposed RBR adder

In order to test the adders in a realistic environment using HSPICE, two-digit RBR

adders are constructed, with the carry outputs of one adder driving the inputs of the other

adder. The adders are characterized in terms of critical path delay, average energy con-

sumption, and EDP. The adders are tested across a majority of input operands, and realistic

carry input combinations to yield the results as shown in Figure 3.7.

As seen from Figure 3.7a, the proposed design has a lower critical path delay com-

pared to the reference circuit, higher average energy consumption, and comparable energy-

delay product. As seen from the delay plots, at lower supply voltages, the reference design

has a longer delay due to signal slope degradation for the chain of transmission gates. In

the proposed design, the transmission gates are placed always between logic gates.

A similar characterization using Verilog yields the plots shown in Figure 3.8.We see

that, the delay and energy trends are similar to those obtained from HSPICE, though the

absolute numbers are slightly different. In both cases, the proposed design has lower critical

path delay and slightly higher average energy consumption. In the rest of the chapter, we

will present results using Verilog-based characterization, owing to its easy portability for

high complexity designs.
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Figure 3.6: Gate-level implementation for proposed 1-digit radix-2 RBR adder (RBA new)

3.3.2 16-digit Redundant Binary Adder Performance Comparisons

In order to demonstrate the energy-efficacy of RBR systems, the performance of two’s

complement and RBR adder architectures are compared in terms of delay, average energy

consumption and EDP. We consider 16-bit two’s complement Carry Select (CSA), and

Carry Look Ahead (CLA) adders for the two’s complement case, and, 16-digit redundant

binary adder based on RBA ref and the proposed parallel adder design, RBA new, for the

RBR case. The simulation results for delay, average energy and EDP are as shown in

Figures 3.9a, 3.9b and 3.9c, respectively.
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Figure 3.7: HSPICE characterization: 1-digit RBR Adder Performance Comparisons
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Figure 3.8: Verilog-based characterization: 1-digit RBR Adder Performance Comparisons

We see that the RBR parallel adders have a very short critical path delay when com-

pared to the two’s complement CSA and CLA adders. The RBR adder designs, RBA ref

and RBA new, have comparable critical path delay. In terms of the average energy con-

sumption, the CLA has significantly lower energy compared to other adders. The RBR and

CSA adders have comparable average energy consumption, although the CSA has higher

critical path delay. However, when we compare the performance for nearly the same crit-

ical path delay, i.e. for iso-throughput, RBA ref has a 37% lower energy consumption

compared to CSA and 56% lower energy consumption compared to CLA. For the same

iso-throughput case, RBA new has a 44% lower energy consumption compared to CSA

and 62% lower energy consumption when compared to CLA.
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Figure 3.9: 16-bit Adder Performance Comparisons

At higher supply voltages, the proposed design has comparable energy to RBA ref.

Since the distribution of randomly-generated input operands for both sets of redundant

binary adders is exactly the same, and also since the Verilog-model does predict higher

average energy consumption for the proposed single-digit adder, this comparable trend in

average energy is solely due to the signal switching and propagation paths of the two adders.

Thus, the proposed design is a competing design for RBR addition. In terms of EDP,

RBA new has a superior performance with a nearly 1.9x reduction compared to CSA, 2.7x

reduction when compared to CLA, and comparable performance with respect to RBA ref.

The delay distribution plots for the reference and proposed 16-digit RBR adders are

shown in Figure 3.10 and Figure 3.11 respectively. As seen from the plots, a majority of the

input operand combinations for the reference RBR adder have the critical path delay, while
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the proposed design has a majority of input operand combinations at 90% of the critical

path delay.

Figure 3.10: Delay distribution histogram: 16-digit RBA ref

Figure 3.11: Delay distribution histogram: 16-digit RBA new

3.3.3 Effect of bit-precision

The performance trends for all adders as a function of bit precision at nominal supply and

0.8 V supply, is given in Figure 3.12 and Figure 3.13 respectively. As seen from Figures

3.12a and 3.13a, the critical path delay of all the RBR and Hybrid multipliers is constant

and independent of bit-width for all the bit-precision nodes. In contrast, for both the two’s

complement adders, the critical path delay increases with increasing bit-precision. All the

adders have increasing average energy trends with increase in bit-precision, as expected.

In terms of EDP, the RBR adders have a superior EDP performance at all the bit-precision
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nodes. As the supply voltage is reduced from 1 V to 0.8 V, the critical path delay for all the

adders at all bit-precision nodes increases, while average energy shows quadratic reduction.
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Figure 3.12: Adder Architectures: Effect of varying bit precision at nominal supply

Figure 3.14 depicts the EDP values of the different adders for 8, 16, 24, and 32-bit

precisions at iso-throughput. The operating supply voltages are depicted for each adder.
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Figure 3.13: Adder Architectures: Effect of varying bit precision at 0.8 V

Both RBR adders operate at 0.6 V for iso-throughput case for all bit-widths. As seen from

the figure, since the critical path delay of RBR adders is independent of bit-width, the EDP

values change only marginally due to increase in average energy with increase in bit-width.

However, the CSA and CLA adders have increased delay as well as increase in energy with
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bit-width increase, and therefore, their EDP values increases significantly with bit-width.

Thus, the EDP performance of RBR systems improves compared to two’s complement

systems for larger bit-width.
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Figure 3.14: Adder architectures: Effect of bit-precision

3.3.4 Area Comparison

Figure 3.15 compares the transistor count for the two’s complement and 16-digit RBR adder

designs. The proposed adder design has relatively higher layout footprint compared to the

other designs. Between the two RBR adder designs, the proposed design has a nearly 28%

area overhead. In comparison to two’s complement adders, the proposed adder design has

a 11% larger area compared to CSA, and a 17% larger area compared to CLA.
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Figure 3.15: Transistor Count for 16-bit adder designs
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Chapter 4

MULTIPLIER ARCHITECTURES

High-speed multipliers are essential components of DSP architectures. A multiplication

operation essentially consists of partial product generation and accumulation. From a high-

level perspective, high speed multipliers may be classified into the following three types

[23]: parallel multipliers, serial multipliers, and array multipliers. In parallel multipliers,

the partial products are generated in parallel, and the accumulation phase consists of multi-

operand adders. The serial multiplier sequentially generates the partial products, and adds

each newly generated partial product to the previously accumulated sum. Array multipliers

have no separate circuits for partial product generation and accumulation; the two opera-

tions are performed simultaneously. Although array multipliers exhibit low latency, they

have increased implementation complexity.

In this work, we explicitly focus on parallel multiplier architectures for computation-

intensive applications. Several RBR multiplier architectures are investigated and their per-

formance compared to two’s complement systems. Two new parallel multiplier architec-

tures are proposed. These include an RBR multiplier which has both of its operands in

the RBR form, and a hybrid multiplier which has the multiplicand in RBR form and the

other operand in two’s complement form. RBR multipliers may be used for systems where

both operands are obtained from other RBR computation units. The hybrid multiplier, on

the other hand, would be apt for systems where multiplicand is obtained at processing time

and the multiplier operand is pre-determined. The assumed encoding scheme for the RBR

operands is the same as the representation used for the adders.

4.1 Two’s Complement Multiplication

Two’s complement arithmetic is the most popular form of computation for data-path com-

ponents. For two’s complement multiplication, one popular scheme for fast accumulation

of partial products is the Wallace tree structure [40], which normally uses a tree of binary

full adders or (3,2) counters. The (3,2) counters achieve a 3:2 compression ratio, and any
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carry propagation is deferred until there are only two partial sums left to be added. The

final stage addition is generally performed using a fast parallel adder. In order to achieve

high throughput with two’s complement multipliers, these designs are heavily pipelined;

for instance, six levels of pipelining for 16-bit multipliers.

Higher compression ratios can be achieved by using higher-input counters such as

(4,2), (7,3) counters [35, 30]. However, as the compression-level increases, the process-

ing load of a single-stage increases, consequently increasing the stage delay. Compressor-

based multipliers have been extensively researched, and the (4,2) compressor approach is

presently the most popular one. Figure 4.1 shows a (4,2) compressor based multiplier with a

CSA adder in the last stage. Santoro et al. [41] combined a pipelined Wallace tree with (4,2)

compressors, and an iterative accumulation approach to implement a 64 x 64-bit pipelined

multiplier called the Stanford Pipelined Iterative multiplier (SPIM). Nagamatsu et al. [31]

built a non-pipelined 32 x 32-bit multiplier that used Booth’s algorithm, (4,2) compressor

based Wallace tree and a carry-select final stage adder for fast multiplication. Mori et al.

[29] and Goto [14] used a similar approach in their multipliers with the final stage adder

being different. Okhubo et al. presented a multiplier based on a Wallace tree of (4,2)

compressors in [32]. They proposed a new (4,2) compressor design, shown in Figure 4.2,

which is very compact and has only three gate delays. This is the multiplier architecture

against which we compare our proposed designs.The parallel adder in the final stage is im-

plemented using a carry-select adder, because of its superior EDP performance compared

with the carry look-ahead scheme (from Figure 3.9c).

In case of two’s complement multiplication for signed operands, if the generalized

Wallace tree structure has to be used, the partial products must be sign extended throughout

the summation tree to account for the negative weight of the sign-bit of the multiplicand.

In case of a negative multiplier operand, the final partial product bits are inverted and a

’1’ is added to its least significant bit position. To eliminate the negative-weighted bits

from the partial product matrix, Baugh and Wooley suggested an efficient manipulation

of the bits in the partial-product matrix [30]. In the modified Baugh-Wooley multiplier of
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Figure 4.1: Two’s complement multiplier - Partial product accumulation using 4:2 com-
pressors

[23, 4, 35], by adding a few entries to the bit matrix, signed multiplication can be imple-

mented with the same number of addition levels and almost the same gate complexity as

the unsigned Wallace tree multiplication scheme. Throughout this work, we consider this

modified Baugh-Wooley design for two’s complement signed multiplication.

4.2 Existing RBR Multiplication schemes

Conventional RBR multipliers typically use a binary tree of RBR parallel adders for sum-

ming up the partial products [47]. In these architectures, N partial products are grouped into

pairs and added using a tree of N or higher digit RBR adders. Since addition at each tree

level is performed in constant time, the multiplication time is proportional to O(logN). The

enhanced versions of this multiplier are based on reducing the number of operands for the

partial product tree addition by using modified Booth encoding [29, 1, 20] and employing

intelligent RBR coding schemes [42, 52, 51, 53].

In the work presented by Makino et al. in [29], a 54x54-bit fast multiplier based on

radix-2 RBR is described. In this architecture, the incoming two’s complement operand is

pre-processed by using modified Booth encoding to halve the number of partial products.
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Further reduction in the number of partial products is achieved by grouping together pairs

of normal binary partial products to form redundant binary partial products. A total of 15

redundant binary partial products are then summed together using a 4-level binary tree of

redundant binary adders.

In [42], an 8x8-bit radix-2 redundant-binary hybrid complex number multiplier is

introduced. This algorithm reduces the computation to two redundant-binary multiplica-

tions, one for the real part, and one for the imaginary part. Both are implemented using a

pipelined binary tree of RBR adders.

A radix-4 16x16-bit RBR complex number multiplier is discussed in [52]. This

multiplier accepts RBR operands, and so the Booth strategy of encoding consecutive dig-

its cannot be applied directly. Filtering using binary signed digit recoders is performed to

reduce it to a form suitable for radix-4 recoding. This in turn allows operands to halve

the number of summands to be added in each of the three real multiplier units. The dis-

advantage of this scheme is that the BSD recoder is twice as complex and slower than
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a regular Booth recoder inputting a binary operand. Similarly, in [20], a radix-4 Booth

encoding-based 16-bit multiply-and-accumulate (MAC) unit using a 16x16 redundant bi-

nary multiplier and 35-bit redundant binary accumulator is implemented. The partial prod-

uct summation is performed using a pipelined redundant binary addition tree. The method

in [17] proposes a novel technique for Booth encoding of redundant binary operands for

partial-product reduction.

The work in [51] describes a radix-2 RBR system that implements an inner-product

processer, and the one in [53] describes iterative computations of division and square root

algorithms in RBR. Similar to [29], these designs rely on partial product reductions due to

efficient pairing and modified Booth encoding of the normal binary partial products. The

actual summing operation of the RBR partial products is, as in the preceding examples,

implemented as a binary tree of RBR adders.

Ferguson and Ercegovac designed a multiplier that accepts both operands in re-

dundant form [10]. They employ hybrid techniques such as recoding the multiplier to

minimally-redundant radix-4, and transforming the redundantly represented multiplicand

into radix-2k carry/save form by splitting it into k-digit groups, and assimilating them using

conventional (3,2) counters. Their design trades-off area and power for significant speed-up

when compared to a conventional two’s complement multiplier.

4.3 Redundant Binary Multiplier Architectures using proposed radix-2 RBA

Partial product accumulation using a binary tree of RBR adders is extremely popular owing

to its regularity of design and low latency. For such multiplier architectures, the perfor-

mance of the RBR adder dictates the performance of the multiplier. Figure 4.3 shows the

block diagram of an 8x8-bit RBR tree multiplier. In this work, we build and compare RBR

tree multipliers that accept both operands - multiplicand and multiplier - in the redundant

binary form. These RBR tree multipliers include designs that are based on both the pro-

posed redundant binary adder design and the reference adder design.
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Figure 4.3: Block diagram of an 8x8-bit RBR Tree Multiplier

4.3.1 Partial Product generation

If the RBR multiplicand is represented by b j = (b−j ,b
+
j ), and the RBR multiplier is repre-

sented by a j = (a−j ,a
+
j ), where a j, b j ∈ [0,1,−1], then the partial product pi j = (p−i j , p+i j),

where pi j ∈ [0,1,−1] can be generated using the following expressions.

p+i j = b−j .a
−
i +b+j .a

+
i

p−i j = b+j .a
−
i +b−j .a

+
i

4.3.2 Partial Product accumulation

The partial product accumulation for RBR tree multipliers essentially consists of a binary

tree of RBR parallel adders (or 2:1 digit-level compressors), as shown in Figure 4.4 for a

8x8-bit multiplier. Each pair of the eight partial products are added, creating four partial

sums. The partial sums are again grouped together and added, thus forming a binary tree.

In general, for an nxn multiplier, the n partial products are added using a binary tree with

O(logn) levels. Although this structure leads to high throughput, the average energy con-

sumption of tree multiplier designs is much higher, owing to the gate-intensive RBR adder

blocks. The performance plots of the two tree multipliers is presented in section 4.6.
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4.4 Proposed Digit-parallel Hybrid Multiplier Architecture

Hybrid representation systems process both two’s complement and redundant number rep-

resentation operands. Phatak and Koren presented a unified framework for redundant num-

ber representations in [38], which they called the hybrid signed digit. This unified frame-

work includes the two’s complement representation and the signed digit representation as

special cases. The hybrid signed digit system allows some digits to be signed while others

may be unsigned, and permits non-uniform distance between the signed digits.

The carry-free arithmetic property of redundant representations has helped realize

MSD-first computation systems [22, 21, 49, 9, 7, 43, 15], where MSD stands for most-

significant-digit. A hybrid number representation, where one input operand is redundant

signed-digit, and the second operand is in two’s complement representation is explored

in [15, 44, 36]. References [15], [44] illustrate the use of ”PPM” (plus-plus-minus), and

”MMP” (minus-minus-plus) operators that process one redundant binary digit and a two’s

complement bit, to build arithmetic computation units that are digit-serial. [36] elucidates

the use of these operators for both radix-2 and radix-4 hybrid arithmetic. In [44], a high-

speed pipelined digit-parallel two’s complement multiplier (input and output operands are
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in two’s complement form) that internally uses a radix-2 hybrid number representation is

presented. It also demonstrates the use of the hybrid number scheme to implement non-

restoring division and square-root algorithms.

In this work, a digit-parallel hybrid multiplier architecture is presented. It multi-

plies a radix-2 RBR operand with a two’s complement operand to produce digit-parallel,

RBR multiplication output. In the radix-2 redundant representation, each digit of the multi-

plicand is represented using two bits. The encoding scheme for the radix-2 redundant binary

multiplicand is the same as that of the adders; the borrow-save scheme is used, where the

digit-set {0,1,−1} is represented by {00,01,10} respectively.

4.4.1 Digit-Parallel Hybrid Multiplication Algorithm

The algorithm for the digit-parallel hybrid multiplication scheme is described below.

Let ai represent the bits of the two’s complement multiplier, and b j = (b−j ,b
+
j )

represent the digits of the radix-2 redundant binary multiplicand.

1. Generate the partial products aib j for each digit position of the multiplicand.

2. If the multiplicand digit is negative (b j = −1), the partial product is simply equal

to the two’s complement of the multiplier. This essentially allows the generation of

partial products with a single-bit at each digit position. In contrast, in conventional

partial product generation, since the multiplicand is comprised of two bits, and the

multiplier is a single bit, the partial-product would comprise of two bits at each digit

position.

3. Since the multiplier is in two’s complement form, and signed numbers are allowed,

a ‘1’ in the most-significant-bit (MSB) position, (ai(MSB) = 1) indicates a negative

value. In order to account for negative multipliers, the partial product generated

using this bit, ai(MSB)b j, is subtracted from the result of the previous partial product

accumulation. Thus, for a positive multiplier (ai(MSB) = 0), a zero is subtracted, while

for a negative multiplier (ai(MSB) = 1), the partial product is subtracted.
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4.4.2 Partial product generation

The partial product generation logic for the hybrid scheme is described in this section. For a

negative multiplicand digit (b j =−1), the partial product is simply the two’s complement of

the multiplier. Since, the two’s complement of a number is simply the bit-wise complement

of the number added to 1, for each negative b j, the partial product can also be generated by

inverting the multiplier bit, and adding a bit ’1’ in the partial product matrix. The partial

product generation logic can be summarized as follows

1. If (b−j = 0), then simply multiply ai and b+j to generate the partial product. This takes

care of multiplication by digit 0 and 1.

2. If (b−j = 1), then invert ai to generate the partial product. In other words, for b−j =

1 , the partial product is basically the inverted multiplier bit. This takes care of

multiplication by digit -1.

Thus the partial product generation scheme can be represented by the following

equation. Note that this is just a multiplexing operation.

pi j = b−j .(ai)+b+j .(ai)

4.4.3 Illustration of the Hybrid Multiplication Scheme

The hybrid multiplication scheme is explained with the help of the following multiplication

examples. Figure 4.5 depicts example-1, which is the multiplication of a 4-digit redun-

dant binary number -4 with a 4-bit two’s complement positive multiplier +6. As seen from

example-1, for the least significant three multiplicand digits, the partial products are gener-

ated similar to the conventional multiplication algorithm. However, for the most significant

multiplicand digit, which is ‘-1’, the partial product is simply the inverted multiplier bit.

These inverted multiplier bits are highlighted using the red circles. Since (b3 = −1) a ‘1’

is added to the partial product matrix at digit position 3. This forms the two’s complement
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of the multiplier. Although the multiplier is positive (ai(MSB) = 0) indicating that the last

partial product should be zero, since the multiplicand has a MSD of ‘-1’, the final partial

product bits must be subtracted. Thus, the subtraction in the final step takes care of this con-

dition. Figure 4.6 shows example-2 which illustrates multiplication with a negative two’s

complement operand.

-4 x 6 = -24

-1   1   0   0      -4     B

0   1   1   0      +6     A

1

* 1   0   0   0       P1

* 0   1   0   0   X       P2

* 0   1   0   0   X   X P3

* 1   0   0   0   X   X   X P4

0   0   1   0   1   0   0   0       P1+P2+P3

1   0   0   0   0   0   0   0      (Subtract P4)

-1   0   1   0   1   0   0   0 

Add ‘1’ since 

b3 is negative
*Since b3 is negative (-1),  

invert ai

-64 + 32 + 8 = -24

Figure 4.5: Hybrid Multiplication: Example - 1

4 x -5 = -20

1     -1     0     0       4     B

1      0     1     1      -5     A

1

1  * 0     0     0      P1

1 * 0      0     0     X      P2

0  * 1     0      0     X     X P3

1  * 0      0     0      X     X     X P4

0      1      0      1     1     0     0      P1+P2+P3

1      0      0      0     0     0     0      (Subtract P4)

-1       1      0      1     1     0     0    -64 + 32 + 8 + 4 = -20

Add ‘1’ since 

b3 is negative

Figure 4.6: Hybrid Multiplication: Example - 2
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4.4.4 Plus-Plus-Minus (PPM) Operator [15]

Once the partial product matrix is generated, all the partial products (except the last one)

have to be added using a tree of full adders. However, since the last partial product is to

be subtracted from the previously accumulated sum, the last stage requires an arithmetic

block that can add two vectors generated by the tree, and also, subtract the last partial

product vector. This is accomplished by using the ”Plus-Plus-Minus” or PPM operator

that was first designed for on-line (or MSD-first) arithmetic systems that used redundant

binary intermediate forms [15, 36]. Figure 4.7 shows the circuit diagram for the PPM

operator, which essentially performs parallel addition of a radix-2 redundant binary digit

and a two’s complement bit. Fig. 6 shows the circuit diagram for the PPM operator, which

essentially performs parallel addition of a radix-2 RBR digit and a two’s complement bit.

This operator assumes an encoding scheme of {00 or 11,01,10} for the radix-2 digit set

{0,1,−1} respectively. The PPM operator logic function can be summarized as [S∗,S∗∗] =

x+i − x−i + yi, where xi = [x−i ,x
+
i ] = x+i − x−i is a redundant binary digit, and yi is a two’s

complement bit.

S∗∗ = x−i ⊕ x+i ⊕ yi

S∗ = x−i .x
+
i + x−i .yi + x+i .yi

4.4.5 Proposed Plus-Plus (PLPL) Operator

For the blocks in the tree edges, which generate the lower significant output bits, PPM

operators are required in order that the lower significant bits comply with the PPM addition

scheme. However, these blocks have to process only two bits and add them to produce the

output in PPM format. This can be done using another operator that can be obtained by

reducing the Boolean expression of the PPM operator to yield the equations given below.

Since this operator simply adds two bits, xi,yi, it is known as the PLPL operator. Figure 4.8

shows the logic diagram.

S∗∗ = xi⊕ yi
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xi
+

yi

xi
-

S* = xi
-.xi

+ + xi
-.yi + xi

+.yi S** = xi
- yi xi

+

xi
-.xi

+
xi

-.yi
xi

+.yi
xi

- yi

-S**  + 2S* = -xi
- + xi

+ + yi

Figure 4.7: PPM Operator [15]

S∗ = xi + yi

S* = xi + yi

yixi

S** = xi ⊕ yi

-S** + 2S* = xi + yi

Figure 4.8: Proposed PLPL Operator
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4.4.6 Block Diagram of the Digit-parallel Hybrid Multiplier

Figure 4.9 shows the block diagram of 4x4 hybrid multiplier architecture. The diagram

depicts all the bit values for the multiplication example in Figure 4.5 that multiplies the RBR

and two’s complement operands ’-4’ and ’+6’ respectively. The incoming redundant binary

multiplicand digits are combined with the two’s complement multiplier bits to generate the

partial product bits. The partial product bits in turn are added using a tree of full adders (FA)

as shown in Figure 4.9. The partial product generator, as discussed in Section 4.4.2, takes

care of complementing the multiplier bits for any negative multiplicand digit. The last stage

PPM operator implements the dual functions of adding the tree-accumulated sum vectors

as well as subtraction of the last partial product in case it is negative. This leaves adding the

bit ’1’ to the partial product matrix for any negative multiplicand digit at the corresponding

digit position. This is accomplished by applying the negative bit of each redundant binary

digit, b−j , to the inputs of the first level of full adders as shown in the figure. The final

output digits of the hybrid multiplier are generated in parallel by the PPM units. Since

the PPM outputs are obtained by concatenating the output bits of adjacent PPM blocks,

the edges of the tree that generate the lower significant output bits are comprised of the

newly introduced PLPL blocks. Finally, since the PPM digit-set includes {00or11,01,10},

while the assumed digit-set is {00,01,10}, any ’11’ bit combination generated, must be

converted to ’00’. This is accomplished by the following conversion function. Let (a−i ,b
+
i )

be the final concatenated output digits of the PPM unit, and (m−i ,m
+
i ) be the final multiplier

outputs at the ith digit position.

m+
i = ai.bi = ai +bi

m−i = ai.bi = ai +bi

4.5 Proposed Digit-parallel Redundant Binary Multiplier Architecture

In this section, a new architecture for a RBR multiplier which has both its operands in RBR

form is introduced. The algorithm for this multiplication scheme is derived from the hybrid
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Figure 4.9: Block diagram of proposed hybrid multiplier architecture

multiplication scheme, described in detail in Section 4.4. The RBR multiplication algorithm

generates n+1 partial products of n+1 bit each for n-digit multiplication, as opposed to 2n-

bit partial products that are generated in case of the conventional method. As a result

the implementation complexity and thus the average energy consumption are significantly

reduced.

4.5.1 Digit-Parallel Novel Redundant Binary Multiplication Algorithm

Consider a RBR multiplicand, −5, represented by four bits (−1 0 1 1), which is to be

multiplied by the RBR multiplier, −11, represented by (−1 −1 0 1). This multiplication

can also be performed by splitting up the multiplier into two two’s complement numbers,

the number 1, that is, (0 0 0 1) and the number 12, represented as (1 1 0 0), generating

the multiplication with 1 and 12 and subtracting the multiplication result with 12 from the

multiplication result with 1. The split multiplier values, 1 and 12, are obtained by mapping
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Figure 4.10: Conversion circuit to eliminate the ‘11’ combination

only the 1 and −1 digit positions of the RBR multiplier with the bit 1 in the corresponding

bit position of the two’s complement multiplier. Figure 4.11 shows the partial product

accumulation of this split multiplication scheme using the hybrid multiplication algorithm.

The proposed RBR multiplication algorithm is based on this split multiplication

technique. Specifically, the separate partial product accumulation for each of the split mul-

tipliers is fused. The partial product arrays are simply folded together, and the following

multiplication algorithm is obtained. Let pi j represent the partial product of the multiplier

digit ai and the multiplicand digit b j.

(1) Generate the partial product bits pi j as explained below:

(a) If the RBR multiplier digit ai is ’1’ and the RBR multiplicand digit b j is also ’1’,

then the partial product bit pi j=1. Also, left shift the generated partial product by

’1’.

(b) If the RBR multiplier digit ai is ’-1’ and the RBR multiplicand digit b j is also ’-1’,

then the partial product bitpi j=1. Also, left shift the generated partial product by

’1’.

(c) If the RBR multiplier digit ai is ’0’, then pi j = 1 at all the bit positions for which
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-1    0   1   1                   -5

x    -1   -1   0   1                   -11

- 1   0   1   1       -5 - 1   0   1   1        -5

0   0   0   1        1 1   1   0   0       12

1 1

0   0   1   1        P1 1   0   0   0       P1

1   0   0   0   X       P2 1   0   0   0   X      P2

1   0   0   0   X  X P3 0   0   1   1   X  X P3

1   0   0   0   X  X X P4 0   0   1   1   X  X X P4

1   1   1   1   0   1   1 1   0   0   0   1   0   0

0   0   0   0   1   0   1 0   1   1   1   1   0   0

-5                                                                                 -60

-5 – (-60) = 55

Two’s complement Two’s complement

Figure 4.11: Illustration of RBR Multiplication using split multipliers

b j is ’1’ or ’-1’.

(2) Add the bit ’1’ at all the bit positions at which b j is ’1’ or ’-1’.

(3) Since the hybrid multiplication algorithm assumes a two’s complement multiplier, the

above steps would take care of all the cases where the split multipliers have the MSB

bit as ’0’. However, if there is, a ’1’ in the MSB position, it has to be interpreted

as a positive weight in that bit position, unlike two’s complement numbers, where a

’1’ in the MSB position implies negative numbers. To account for this case, an extra

multiplier bit ’0’ is added to the RBR multiplier in the MSB position. The partial

product for this bit is generated similar to step 1(c) above.

(4) The final partial product, generated with the additional MSB bit, is simply subtracted,

similar to the hybrid multiplication scheme from the accumulated partial products for

the other RBR multiplier digits.
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An example of the proposed RBR multiplication scheme is depicted in Figure 4.12

below.

-1   0   1   1       -5

0   -1  -1   0   1       -11

1           1    1 C | bj |

0   0   1   1   0* P1                  1 << (bj
+.a0

+)

1   0   1   1   X       P2 | bj |

1   0   0   0   0   X  X P3 1 << (bj
-.a2

-)

1   0   0   0   0   X  X X P4 1 << (bj
-.a2

-)

1   0   1   1   X  X X X P5 | bj |

P1+P2+P3+P4+C :        1   1   1   0   0   1   1   1

-P5 :        1   0   1   1   X  X X X

0   0   1   1   0   1   1   1 32 + 16 + 4 + 2 + 1 = 55 

Additional

* underscore indicates zero due to left shift

Figure 4.12: Example illustrating proposed RBR multiplication scheme

4.5.2 Partial product generation

The partial product generation logic, which is crucial for the RBR multiplication scheme, is

described in this section. Detecting if the multiplier digit ai is ‘1’ or ‘-1’ is equivalent to the

modulus operation, |ai|= 1, that is, |ai|= a+i +a−i . Similarly, detecting if the multiplicand

digit b j is ‘1’ or ‘-1’ amounts to the modulus operation, |b j| = b+j + b−j . Based on the

partial product generated algorithm listed in section 4.5.1, the partial product bits pi j can

be generated as follows:

1 If (|ai|= 0), then pi j = |b j|.

2 If (|ai| = 1), then pi j = mi j−1, where mi j is generated by the following multiplexing

operation, mi j = b+j .a
+
i +b−j .a

+
i

This yields a partial product generation equation as follows, which is yet another

multiplexing operation.

pi j = |ai|.mi j−1 + |ai|.|b j|
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4.5.3 RBR Multiplier Architecture

In terms of the high-level multiplier architecture, the structure for the partial product accu-

mulation stage and subtraction of partial product in the last stage is exactly the same as the

hybrid multiplication scheme, shown in Figure 4.9. It is also composed of (4,2) compressor

blocks, PPM and PLPL blocks; only the partial product generation circuitry is different.

Since the effective number of partial products for the hybrid case is n+2, for n-bit multipli-

cation, an extra level of full adders or (3,2) compressor blocks is required, which increases

the critical path delay of the RBR multiplier relative to the hybrid multiplier case. The im-

plementation complexity of the partial product generation circuit is higher than that of the

hybrid multiplier, and so the overall complexity of the RBR multiplier is higher, as will be

illustrated in the next section.

4.6 Performance Comparisons

The delay, average energy, and EDP performance comparisons of the following five 16x16

bit multiplier architectures are depicted in Figures 4.13a, 4.13b, and 4.13c respectively.

The architectures are (4,2) compressor-based Wallace Tree Multiplier (WTM 4:2), RBR

tree multiplier based on the reference adder (RBR Tree ref), RBR tree multiplier based

on the proposed adder (RBR Tree new), the proposed novel RBR multiplier architecture

(MRBR new), and the proposed novel hybrid multiplier (Hybrid new). As seen from Fig-

ure 4.13a, the critical path delay of the two’s complement system is significantly higher

than the RBR and hybrid designs. In terms of average energy consumption, shown in Figure

4.13b, all the RBR multiplier designs, including the tree multipliers as well as MRBR new,

have higher average energy consumption compared to WTM 4:2. The hybrid multiplier

design has a significantly lower average energy consumption compared to all the other ar-

chitectures. In terms of EDP, both the proposed multiplier architectures have significantly

lower EDP among all the designs, as evident from Figure 4.13c.

The RBR tree multipliers RBR Tree ref and RBR Tree new have overall similar

performance trends. The RBR Tree new has a lower EDP compared to RBR Tree ref at
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lower voltages. This is because the critical path delay at lower supply voltages is larger for

RBR Tree ref due to slow signal propagation through the chain of transmission gates. The

proposed RBR multiplier architecture has a significantly better EDP performance compared

to the RBR tree multipliers. At nominal supply voltage, MRBR new has a 25% lower

EDP compared to RBR Tree reference, and a 19% lower EDP compared to RBR Tree new.

With respect to the two’s complement WTM 4:2, MRBR new has an 8.1% lower EDP. The

hybrid multiplier is the architecture with the lowest EDP. At nominal supply, Hybrid new

has a 45.5% better EDP performance in comparison to WTM 4:2 and 40% lower EDP

compared to MRBR new.

For an iso-throughput comparison, that is, comparing all the 16-bit multiplier de-

signs for the same critical path delay, for a clock period of approximately 950 ps, both RBR

tree multiplier designs have a higher EDP compared to WTM 4:2. However, the two new

multiplication schemes, namely, MRBR new and Hybrid new, have a significantly lower

EDP compared to WTM 4:2. Hybrid new has an appreciably large 42% EDP performance

improvement while, MRBR new has a 14% EDP performance improvement.

4.7 Effect of Bit Precision

The performance trends for all multipliers at nominal supply and 0.8 V supply as a function

of bit precision are shown in Figures 4.14 and 4.15, respectively. As seen from Figures

4.14a and 4.15a, the critical path delay of all the RBR and Hybrid multipliers increases

from 8-bit to 12-bit precision, due to increase in the number of addition levels in the partial

product accumulation stage. For 16-bit precision, since the number of addition levels is

the same as for 12-bit, the critical path delay remains the same. In contrast, for the two’s

complement WTM 4:2, the critical path delay increases with increasing bit-precision. All

the multipliers have increasing average energy trends with increase in bit-precision, as ex-

pected. In terms of EDP, the proposed multipliers have a better EDP performance with

respect to all other multipliers at all the bit-precision nodes. As the supply voltage is re-

duced from 1 V to 0.8 V, the critical path delay for all the multipliers at all bit-precision

nodes increases, while average energy shows quadratic reduction. Hence, all multipliers
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Figure 4.13: 16-bit Multiplier Performance Comparisons

exhibit reduced EDP at 0.8 V supply.

Figure 4.16 shows the EDP plots for all the multiplier architectures as a func-

tion of bit-width, for iso-throughput conditions. For 8-bit precision and iso-throughput,

the EDP performance of both tree multipliers is not significantly different compared to

WTM 4:2. The EDP performance improvement is 8.5% and 19% for RBR Tree ref and

RBR Tree new repectively. The EDP performance of the tree multipliers degrades with

increase in bit-precision, with comparable EDP at 12-bit precision, and significantly higher

EDP at 16-bit precision.
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Figure 4.14: Multiplier Architectures: Effect of varying bit precision at nominal supply
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Figure 4.15: Multiplier Architectures: Effect of varying bit precision at 0.8 V
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Figure 4.16: Multiplier Architectures: EDP as a function of bit precision at iso-throughput
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The proposed designs, clearly have a better EDP performance over WTM 4:2 for

all the bit precision nodes considered. For 8-bit precision and iso-throughput, MRBR new

has a 37% lower EDP, while Hybrid new has a substantial 58% lower EDP. At 12-bit preci-

sion, the EDP performance gain marginally reduces to 55% and 20% respectively. At 16-bit

precision, as demonstrated before in Figure 4.13c, Hybrid new has a 42% better EDP, while

MRBR new has a 14% better EDP. This EDP trend with respect to varying bit precision is

different from that seen for RBR adders, where the performance gain improves for greater

bit precision. This is primarily because for 12-bit and 16-bit precision, the high-level mul-

tiplier structure for both proposed RBR and hybrid multiplier designs is precisely the same.

The number of 4:2 compressor levels is exactly the same, and hence, the critical path delay

is exactly the same. The only change is in the number of compressors at each level, with

more units required for 16-bit multiplier than for 12-bit multiplier, leading to higher energy

consumption, and hence, relatively higher EDP.
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Figure 4.17: 16-bit Multipliers - Area Comparison

4.8 Area Comparison

Figure 4.17 compares the transistor count of all the 16-bit multiplier designs considered

here. The two’s complement multiplier has the lowest implementation area, as expected.
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The RBR tree multipliers have the largest area overhead, as seen from the figure. This is

because the partial product accumulation in the tree multipliers is composed of the gate-

intensive RBR adder blocks. The proposed RBR multiplier design MRBR new, has a rela-

tively higher layout footprint of around 25% compared to WTM 4:2. In stark contrast, the

hybrid multiplier design, Hybrid new has a comparable implementation area compared to

WTM 4:2.
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Chapter 5

SYSTEM LEVEL DSP APPLICATIONS
5.1 RBR Overhead

As mentioned in Section 2.2.5, RBR systems have an associated conversion overhead. This

is primarily because any processing kernel using RBR representation must communicate

with other units, which are conventionally implemented in two’s complement form. Figure

2.2 shows the block diagram of a RBR system. At the input end, the two’s complement-

to-RBR conversion is trivial and only requires explicit handling of the MSB bit. If the

incoming two’s complement number is negative, that is, its MSB bit is a ‘1’, then the

corresponding most significant digit in the equivalent RBR representation is a ‘-1’. At

all other bit positions, for the case of the assumed encoding scheme, the ‘+’ bit of each

equivalent RBR digit is simply the corresponding two’s complement bit, while the ‘-’ bit is

‘0’.

The RBR-to-two’s complement conversion block, however, presents significant

overhead. It is typically implemented by converting the RBR result to two positive two’s

complement numbers R+ and R− obtained by mapping only the ’1’ digit and ’-1’ digit po-

sitions respectively, and then taking their difference, (R+−R−). In this work, a carry-select

adder is used as the conversion module. Although this is an inevitable overhead for RBR

systems, it can be shown that if the RBR computation module is of moderate to large size,

this overhead is amortized over the computation operation, as illustrated by the following

case studies. The delay, energy, and EDP performance of two’s complement based DSP

computation systems is evaluated and compared with that of RBR computation systems.

In all cases, the overhead of converting from RBR to two’s complement representatiion is

taken into account.
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5.2 Case Studies

5.2.1 Edge Detection

Edge detection is one of the most common image processing kernels used to extract features

in images. It involves estimating the size of the transition (edge magnitude) and direction

in which the intensity changes most rapidly. These are generally obtained from the partial

derivatives of the image function and is implemented using two-dimensional convolution,

with a window of known weights. The Sobel operator [13, 24] is considered here, whose

3x3 kernels are given by Wx =


−1 0 −1

−2 0 2

−1 0 1

 and Wy =


−1 −2 −1

0 0 0

1 2 1

. To compute

the (k, l)th outputs, OUTx (k, l)and OUTy (k, l), we consider a window of 3x3 pixels centered

at (k, l).

Edge detection using Sobel operator is implemented as shown in Figures 5.1 and

5.2 for two’s complement and RBR systems respectively. The input pixels can assume

values from -256 to +255 and are represented by 9 bits. After each stage of addition, the

precision is increased by one-bit. This is a pipelined implementation with registers after

each adder. For the two’s complement implementation (Sobel 2comp), which uses CSA

adders, number of pipe stages is three, and the critical path delay is determined by the 12-bit

adder delay. For the RBR implementation (Sobel RBR), the proposed parallel RBR adder

design, RBA new is used, and the RBR-to-two’s complement conversion is implemented

using a 13-bit CSA adder in the last stage. A two-stage pipelined 13-bit CSA adder is

employed, so as to clock the RBR system at a higher rate. The entire RBR computation

operation is spread over five pipe stages.

Figures 5.3a, 5.3b, and 5.3c compare the critical path delay, energy and EDP per-

formance of the two’s complement and RBR Sobel edge detection systems, respectively.

As evident from the trends, Sobel RBR has no EDP performance gain over two’s comple-

ment Sobel. While Sobel RBR has a lower critical path delay compared to Sobel 2comp,
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Figure 5.1: Data Flow graph of Edge Detection using Sobel operator - Two’s complement
system
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Figure 5.2: Data Flow graph of Edge Detection using Sobel operator - RBR system

its average energy consumption over the entire computation operation spanning five pipe

stages is significantly higher than Sobel 2comp. This leads to EDP degradation at all sup-

ply voltage nodes. Even for iso-throughput comparison, as depicted in Figure 5.3a, there

is no improvement in EDP performance, with a significant 47% EDP degradation. Thus,

it is clear that for low complexity systems, such as Sobel edge detection, the conversion

overhead overpowers the EDP performance gain seen with the RBR adder itself.
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Figure 5.3: Edge Detection using Sobel operator: Performance Comparisons

Figures 5.4a, 5.4b, and 5.4c respectively compare the critical path delay, energy

and EDP performance of the RBR Sobel edge detection system, for variable number of

pipeline stages. Sobel RBR p1, Sobel RBR p2, and Sobel RBR p5, are respectively one-

stage, two-stage, and five-stage pipelined implementations of the RBR Sobel system. As

seen from the figures, with increase in the number of pipeline stages, the system through-

put increases. However, due to increase in the number of registers, the average energy

consumption increases as well. In terms of EDP, the five-stage pipeline design shows the

lowest EDP, primarily due to the low critical path delay.

Figure 5.5 compares the total implementation area in terms of transistor count for

both systems. Because of the significant conversion overhead, the area overhead for So-

bel RBR is significant as well with a 60% higher area compared to Sobel 2comp.
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Figure 5.4: Edge Detection using Sobel operator: Effect of pipeling for RBR implementa-
tions

5.2.2 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a common image processing kernel used in many

image and video codecs. Due to its efficiency in spectral compaction of signals, DCT finds

several applications in data compression. 2-D DCT can be separated into two 1-D DCTs

and implemented using a single DCT and a transpose unit as illustrated in Figure 5.6. 1-D

DCT transform of 8x8 DCT used in JPEG can be expressed as follows:

wi =
ci

2

7

∑
k=0

xk cos
(2k+1)kπ

16

ci =
1
2

f or i = 0

ci = 1 f or i = 1, ...,7
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Figure 5.5: Edge Detection using Sobel operator - Area Comparison

The DCT architecture considered here is the popular add-shift architecture [37] and

shown in Figures 5.7 and 5.8 for two’s complement system and Figure 5.9 for RBR system.

The input data-width is assumed to be 9 bits, and the internal precision is 12-bits (for the

assumption that the same computation unit maybe used for row and column DCT). Pipeline

registers are added for a high-throughput design. For the two’s complement system, two

cases are considered, a two-stage pipeline (DCT pipe 2), with a critical path delay of three

12-bit adders, and a three-stage pipeline (DCT pipe 2), with a critical path delay of two

12-bit adders. For the RBR system, a three-stage pipeline (DCT RBR) is considered, with

double the number of registers. In this case, the critical path is comprised of a single 12-

digit RBR parallel adder, RBA new, and a 12-bit CSA, which acts as the RBR-to-two’s

complement converter.

Figures 5.10a, 5.10b, and 5.10c compare the critical path delay, energy and EDP

performance of the two’s complement and RBR DCT systems respectively. While DCT RBR

has a lower critical path delay compared to both DCT pipe 2 and DCT pipe 3, its energy

consumption is higher. In terms of EDP, DCT RBR shows better performance over both
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Figure 5.6: 2D DCT architecture using 1-D DCT and transpose unit
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Figure 5.7: Data flow graph of the DCT kernel - Two’s complement system (2-stage
pipeline)

two’s complement systems from 0.8V to 0.6 V, and comparable performance for the 0.9

V and 1 V nodes. For iso-throughput, as highlighted in Figure 5.10a, DCT pipe 2 oper-

ates at 0.9V and DCT RBR operates at 0.7V, and the RBR system has a marginal EDP

performance gain of around 4.5%. In comparison to DCT pipe 3 (0.9 V operation), for

iso-throughput, DCT RBR operates at 0.8 V, and the EDP performance gain is about 7%.

The conversion overhead of RBR restricts the relative performance gain observed for RBR

parallel adders.

Figure 5.11 shows the area comparison of DCT pipe 2, DCT pipe 3 and DCT RBR.

While both the two’s complement pipelined systems have comparable area, DCT RBR has

a relatively higher layout footprint of around 33%.
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Figure 5.9: Data flow graph of the DCT kernel - RBR system

5.2.3 Complex Multiplication

Complex number multiplication is used in many DSP operations such as the Fast Fourier

Transform (FFT) butterfly, and other applications where the data streams and coefficients

have complex number representations. Conventional implementation of complex number
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Figure 5.10: Discrete Cosine Transform: Performance Comparisons

multiplication involves four real multiplications and two additions. Here, we consider the

implementation in [52], where algebraic transformations reduce the computation complex-

ity to three multiplications and five additions as shown below:

A = (A+ jB)(C+ jD) = R+ jI

m0 = (C−D)B

m1 = (A−B)C

m2 = (A+B)D

R = m0 +m1

I = m0 +m2
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Figure 5.11: DCT - Area Comparison

Figures 5.12 and 5.13 depict the pipelined structure for two’s complement and

RBR/Hybrid systems respectively, to compute the product of two complex numbers, namely,

(A + jB) (C+ jD). The inputs A, B, C, D are 16-bits, while the outputs R and I are 32 bits.

Three implementations are considered, namely, two’s complement, RBR and hybrid rep-

resentation systems. All three systems use 16-bit adders and multipliers in addition to a

final-stage 32-bit adder. A high-throughput three-stage pipelined implementation is consid-

ered for all systems.

The two’s complement implementation CM 2comp uses 16-bit CSA adders and 16-

bit 4:2 compressor-based Wallace tree multiplier (WTM 4:2) such that the critical path is

the 16-bit multiplier delay. The RBR system CM RBR uses the proposed designs, 16-digit

parallel adder (RBA new), and 16-digit proposed RBR multiplier MRBR new, and double

the number of registers. The hybrid system, CM Hybrid, is composed of the proposed

hybrid multiplier Hybrid new, and RBA new, and also consists of almost double the number

of registers. In both the RBR and Hybrid systems, the RBR outputs obtained at the end

of the computation operation, are converted to two’s complement form using 32-bit CSA

adders. This 32-bit CSA is incorporated comfortably in the third pipeline stage itself.

Figures 5.14a, 5.14b, and 5.14c depict the critical path delay, the average energy
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Figure 5.12: Dataflow graph of complex multiplication - Two’s complement system

consumption and the EDP performance plots for the two’s complement, hybrid, and RBR

CM kernels respectively. The critical path of both CM MRBR and CM Hybrid is shorter

than CM 2comp. In terms of average energy consumption, CM 2comp has a better per-

formance compared to CM MRBR, while CM Hybrid has comparable performance. The

shorter critical path and comparable average energy consumption of the CM Hybrid lead

to a lower EDP with respect to CM 2comp. The EDP performance of CM MRBR is better

with respect to CM 2comp from nominal to 0.8 V supply, below, which, the EDP perfor-

mance becomes comparable. This is largely due to the partial product generation becoming

slower and relatively more energy consuming due to slow transition times through the mul-

tiplexers at reduced supply voltages.

At nominal supply, CM MRBR shows a 5% lower EDP while CM Hybrid has a

35% EDP performance gain compared to CM 2comp. For iso-throughput, with a clock pe-

riod of 850ps, CM MRBR has around 12% EDP performance gain compared to CM 2comp,

while CM Hybrid has a high 41% EDP performance improvement, largely because the 16-

bit multipliers constitute a major part of the computation operation.
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Figure 5.13: Dataflow graph of complex multiplication - RBR and Hybrid systems

Figure 5.15 depicts the total implementation area of all three complex multipli-

cation systems. It is evident from the figure that the implementation overhead for RBR

representation reduces as the system complexity increases. The hybrid design CM Hybrid

has only 13% area overhead compared to CM 2comp with significantly high EDP perfor-

mance gain. CM MRBR has a 35% area overhead owing to the relatively large area of both

the MRBR multiplier as well as additional registers.

5.2.4 Lifting-based Discrete Wavelet Transform (9, 7) Filter

The discrete wavelet transform (DWT), which uses the concept of multi-resolution repre-

sentation of signals, is popularly used in image compression. In particular, the lifting-based

discrete wavelet transform (LDWT) [45] has been adopted in the JPEG2000 image com-

pression standard. Some of the advantages of the lifting-based implementation include

increased computation efficiency as compared to the convolution-based approach, limited

memory resource requirement, and ease of architecture-level parallelism [2].
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Figure 5.14: 16-bit Complex Multiplication: Performance Comparisons

In this section, we consider the simple (9, 7) filter used in JPEG2000. The most

efficient factorization of the polyphase matrix for (9, 7) filter is as under [6]:

P(z) =

1 a(1+ z−)

0 1


 1 0

b(1+ z) 1


1 c(1+ z−)

0 1


 1 0

d(1+ z) 1


K 0

0 1/K


where, a =−1.586134342,b =−0.0529801185,c = 0.882911076,d = 0.443506852,

K = 1.149604398

Figure 5.16 shows the direct-mapped form of the data-flow graph of the (9, 7) LDWT

filter [27]. The input data is split into even and odd samples and the outputs are obtained

with four pipelined lifting steps. The even terms of the output stream are the samples of

the low pass subband and odd terms are the outputs of the high pass subband, for samples

numbered from zero onwards. The hardware utilization of the data-path components can
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Figure 5.15: 16-bit Complex Multiplication - Area Comparison

be increased by folding the last two pipeline stages into the first two stages, as shown in

the folded architecture proposed in [26]. This folded architecture is implemented using

the two’s complement, RBR and hybrid representations, as shown in figures 5.17 and 5.18

respectively. The incoming input data is assumed to be 8-bits, and the co-efficients a, b,

c, d, K, and 1/K are represented in integer form using 10-bits. Based on the co-efficient

values, an internal precision of 12-bits is chosen for the folded implementation. The two’s

complement implementation, LDWT 2comp, uses 12-bit CSA and 12x12 WTM 4:2. The

RBR implementation, LDWT MRBR, uses 12-digit parallel adder RBA new, and 12x12

MRBR new, while the hybrid system LDWT Hybrid uses 12-digit RBA new and 12x12

Hybrid new.

Figures 5.19a, 5.19b, and 5.19c plot the critical path delay, average energy con-

sumption and EDP performance for the two’s complement, hybrid, and RBR LDWT ker-

nels respectively. The critical path delay of LDWT MRBR and LDWT Hybrid are both

significantly less compared to LDWT 2comp. In terms of average energy consumption,

both LDWT Hybrid and LDWT MRBR have a relatively higher energy consumption com-

pared to LDWT 2comp. The EDP performance of both LDWT MRBR and LDWT Hybrid

is significantly better than LDWT 2comp for all the supply voltage nodes.
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Figure 5.17: Data flow graph of LDWT (9, 7) filter (folded architecture) - Two’s Comple-
ment system

For iso-throughput comparison, as depicted inFigure 5.19a, the EDP performance

of both LDWT MRBR and LDWT Hybrid is appreciably better as compared to LDWT 2comp.

For iso-throughput with a clock period of nearly 1.25 ns, LDWT MRBR had an EDP perfor-

mance gain of 19%, while LDWT Hybrid shows an EDP performance gain of 38%. Thus,

the conversion overhead is found to be insignificant for the folded LDWT (9, 7) architec-

ture, for iso-throughput comparison, and considerable EDP performance improvement is

obtained from both RBR and Hybrid systems.

Figure 5.20 depicts the total implementation area for all three LDWT (9, 7) fil-
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ter systems. The hybrid design LDWT Hybrid has only 14% area overhead compared to

LDWT 2comp with significantly high EDP performance gain, while LDWT MRBR has a

37% area overhead over LDWT 2comp with considerable EDP performance gain.

5.2.5 FIR Filter

Consider a pipelined 10-tap FIR filter implementation as shown in 5.21 and 5.22 for two’s

complement, and RBR based systems respectively. The two’s complement system, FIR 2comp,

uses 20-bit CSA and 16x16 WTM 4:2 modules. The RBR system, FIR RBR, uses 20-digit

RBA new, and 16x16 MRBR new. The hybrid system, FIR Hybrid is comprised of 20-digit

RBA new and 16x16 Hybrid new. The critical path delay of the non-pipelined implementa-

tion, is determined by tcritical = tmultiplier +n∗ tadder; n = 10 in this case. A 4-stage balanced

pipeline implementation is considered here for both systems. For the FIR 2comp system,

even when registers are introduced after the multiplier followed by three adders, the criti-

cal path delay is determined by the 16-bit multiplier delay. In contrast, for FIR RBR and

FIR Hybrid, registers are introduced after the multiplier, and a chain of four RBR adders

and so, the critical path delay is four RBR adder delays. The last pipeline stage is com-

prised of one 20-digit RBR parallel adder, and a 20-bit CSA, which is the RBR-to-two’s

complement converter.

Figures 5.23a, 5.23b, and 5.23c plot the critical path delay, the average energy
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Figure 5.19: LDWT (9, 7) filter: Performance Comparisons

consumption and the EDP for the two’s complement, hybrid, and RBR FIR filter ker-

nels respectively. The critical path of the FIR MRBR and FIR Hybrid designs is shorter

than FIR 2comp. In terms of average energy consumption, FIR 2comp has a better perfor-

mance compared to FIR MRBR. However, the average energy consumption of FIR Hybrid

is lower than FIR 2comp, primarily because of the lower total average energy consump-

tion of the ten multipliers. The shorter critical path and lower average energy consump-

tion of the FIR Hybrid leads to a relatively high EDP performance gain when compared

to FIR 2comp, despite the conversion overhead. The EDP performance of FIR MRBR

is better with respect to FIR from nominal to 0.8 V supply, below, which, the EDP per-

formance becomes comparable, again due to the effect of slow transition times through

multiplexers at lower operating voltages. At nominal supply, FIR MRBR shows an 8%
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Figure 5.20: LDWT (9, 7) filter - Area Comparisons
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Figure 5.21: Data flow graph of FIR Filter - Two’s Complement system

EDP performance gain while FIR Hybrid has a 31.5% EDP performance gain compared

to FIR 2comp. For iso-throughput, with a clock period of 1ns, FIR MRBR has 11% EDP

performance improvement compared to FIR 2comp, while FIR Hybrid has a 32% EDP per-

formance improvement. The relatively large EDP performance improvements observed for

the FIR filter design shows that for high complexity systems, both the conversion overhead,

as well as the register overhead of RBR systems are minor components in the overall EDP

performance.

Figure 5.24 shows the area comparison plot for all three FIR filter implementa-

tions. FIR Hybrid has an 8% larger implementation area compared to FIR 2comp, while

FIR MRBR has a 28% larger implementation area. However, both the hybrid and the RBR
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Figure 5.22: Data flow graph of FIR Filter - RBR system

implementations have a significant EDP performance gain that makes the EDP-area tradeoff

possible for high complexity deisgns.

5.2.6 Summary

Figure 5.25 summarizes the performance of RBR systems for all the case studies con-

sidered. In case of low to medium complexity systems, the data-path is comprised only

of adders, and the RBR representation yields very little performance gain. However, for

high complexity systems (with nearly 30,000 transistors or higher) that are comprised of

both multipliers and adders, the RBR system shows significant EDP performance gain for

iso-throughput comparison. The hybrid system, especially shows an improved EDP perfor-

mance gain.
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DSP kernel Data-path
Total Transistor

Count*
Complexity

Iso-throughput EDP 

Performance

Edge Detection Adders only 7718 Low No gain

Discrete Cosine 

Transform
Adders only 10584

Low to 

Medium

Comparable

(5% Gain)

LDWT 

(9, 7) Filter 

Adders & 

Multipliers
27984 High

38% Gain - Hybrid

19% Gain - RBR

Complex 

Multiplier

Adders & 

Multipliers
41576 High

41% Gain - Hybrid

12% Gain - RBR

10-tap 

FIR Filter

Adders & 

Multipliers
123338 High

32% Gain - Hybrid

11% Gain - RBR

* Indicates the total implementation area for conventional two’s complement system

Figure 5.25: Summary of RBR system performance with varying system complexity
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Chapter 6

Conclusion

This thesis investigated the applicability of radix-2 RBR arithmetic for data-path design

of high-throughput, energy-efficient DSP systems. A case is presented here for voltage-

scaled RBR systems that have reduced energy consumption for iso-throughput compared

to conventional two’s complement systems. It is shown that for applications where energy

consumption is a primary design constraint and area constraints are relaxed, RBR systems

provide a viable alternative that should be seriously considered.

6.1 Summary

A new design for a RBR parallel adder with good EDP performance is proposed. It is

shown that the proposed RBR parallel adder has lower critical path delay and better EDP

performance compared to two’s complement CSA and CLA adders. The EDP performance

gain of RBR parallel adders increases with increasing bit-precision, owing to the critical

path delay being independent of bit-width.

Novel multiplier architectures that process operands in RBR representation are pro-

posed, and their performance evaluated. A new RBR multiplier design that multiplies two

RBR operands is proposed and its performance compared with existing RBR tree multiplier

architectures. The new design has 22% lower EDP for 16-bit precision, with a significant

implementation area reduction of around 40%. In comparison to 16-bit two’s complement

multiplier, the new architecture is shown to have an 8.1% EDP performance gain at nomi-

nal supply voltage. For iso-throughput comparison, the RBR multiplier is found to have a

14% EDP performance gain, but with a 25% higher area compared to a two’s complement

multiplier.

A novel hybrid multiplier architecture where the multiplicand is in RBR form and

the second operand is in two’s complement form is also proposed. The hybrid design has

a superior EDP performance among all the investigated multiplier architectures, specifi-
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cally the conventional two’s complement multiplier. The hybrid design shows a 45% EDP

performance gain over the two’s complement multiplier at nominal supply voltage, and a

40% EDP performance gain over the proposed RBR multiplier for 16-bit precision. For

iso-throughput, the hybrid multiplier has a substantial 42% EDP performance gain over the

two’s complement multiplier. The hybrid design is also an area-efficient implementation,

with comparable area with respect to the two’s complement multiplier.

The energy-efficacy of using RBR arithmetic modules at the system-level is shown

through five popular signal processing kernels. These include kernels whose data-path is

comprised only of adders such as Discrete Cosine Transform, and edge detection using

Sobel operator, and kernels with both adders and multipliers in the data-path such as com-

plex multiplication, lifting-based Discrete Wavelet Transform (9, 7) filter, and FIR filter.

The conversion overhead of RBR systems is taken into account for all these computation

modules. It is shown that for low complexity computation systems, such as Sobel edge

detection, the conversion overhead of RBR systems presents a significant overhead, and

consequently the EDP performance deteriorates. For low to medium complexity systems

such as the DCT add-shift architecture, the EDP performance gain of RBR systems is found

to be very small.

As the system complexity increases, the conversion overhead of RBR modules gets

amortized. For all three high complxity systems considered here, including complex mul-

tiplication, lifting-based DWT (9, 7) filter, and FIR filter systems, the RBR and hybrid

systems depict significant EDP performance gain compared to conventional two’s comple-

ment implementations. In case of the complex multiplier, for iso-throughput, both the RBR

and hybrid designs exhibit 12% and 41% EDP performance improvement with respect to

the two’s complement system, respectively. The RBR and hybrid implementations of the

folded lifting-based DWT (9, 7) filter architecture also have a significant ED performance

gain over the two’s complement implementation. The RBR implementation is shown to

have a relative EDP performance gain of 18% for iso-throughput, while the relative perfor-

mance gain of the hybrid system is higher, with 38% lower EDP. For the FIR filter system,
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for iso-throughput, the RBR system demonstrates a 11% performance gain, while the hy-

brid design shows a 31% performance gain.

6.2 Future Work

RBR systems have very high-throughput compared to conventional systems, and so RBR

representation could be suitable for near-threshold computing. Near threshold operation

gives 10x more energy efficiency than nominal voltage operation, at the expense of 10x

reduction in frequency. The reduction in frequency can be partly compensated by using

RBR units which have significantly lower critical path delay. This presents an open-ended

issue in low power computing.

Floating point operations are quite energy-intensive. Since RBR systems are found

to perform better for higher bit-width systems, the use of RBR representation for floating

point units should be researched. Floating point operations typically require 24-bit man-

tissa multiplication for single precision, which increases to 54-bit multiplication for double

precision. The energy-efficient RBR and hybrid multiplier structures proposed here may be

used for internal RBR representation in floating point kernels. However, comparison and

rounding operations in RBR representation are non-trivial, and present a design challenge

that will have to be explored.
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