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ABSTRACT  

   

 The properties of materials depend heavily on the spatial distribution and 

connectivity of their constituent parts. This applies equally to materials such as diamond 

and glasses as it does to biomolecules that are the product of billions of years of 

evolution. In science, insight is often gained through simple models with characteristics 

that are the result of the few features that have purposely been retained. Common to all 

research within in this thesis is the use of network-based models to describe the 

properties of materials.  

 This work begins with the description of a technique for decoupling boundary 

effects from intrinsic properties of nanomaterials that maps the atomic distribution of 

nanomaterials of diverse shape and size but common atomic geometry onto a universal 

curve. This is followed by an investigation of correlated density fluctuations in the large 

length scale limit in amorphous materials through the analysis of large continuous 

random network models. The difficulty of estimating this limit from finite models is 

overcome by the development of a technique that uses the variance in the number of 

atoms in finite subregions to perform the extrapolation to large length scales. The 

technique is applied to models of amorphous silicon and vitreous silica and compared 

with results from recent experiments. 

 The latter part this work applies network-based models to biological systems. 

The first application models force-induced protein unfolding as crack propagation on a 

constraint network consisting of interactions such as hydrogen bonds that cross-link and 

stabilize a folded polypeptide chain. Unfolding pathways generated by the model are 

compared with molecular dynamics simulation and experiment for a diverse set of 

proteins, demonstrating that the model is able to capture not only native state behavior 

but also partially unfolded intermediates far from the native state. This study concludes 

with the extension of the latter model in the development of an efficient algorithm for 
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predicting protein structure through the flexible fitting of atomic models to low-

resolution cryo-electron microscopy data. By optimizing the fit to synthetic data through 

directed sampling and context-dependent constraint removal, predictions are made with 

accuracies within the expected variability of the native state.             
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CHAPTER 1: INTRODUCTION 

 Common to all research within in this thesis is the use of network-based models 

to describe the properties of materials. To illustrate the importance of networks, imagine 

that you are in command of a large crowd and you ask each person to grab hold of two of 

their neighbors’ jackets. If you then ask the whole crowd to move around as much as 

possible without letting go, you will find that the movement and distribution of the 

people in the crowd depends heavily on the properties of the network connecting them. 

This analogy applies equally well to the nanoscale, where properties of materials depend 

on the network of covalent bonds and electrostatic interactions between atoms. As with 

crowds, these networks generally do not have periodicity or long-ranged order, forming 

amorphous structures. The great importance of amorphous structures can be seen 

everywhere from state-of-the-art electronics (1) to the very building blocks of life itself 

(2, 3). 

 Amorphous materials are ubiquitous in our lives and widespread in industry. 

Every time you look out the window, you are peering through an amorphous material that 

allows visible light to travel through virtually unaffected. Amorphous silicon is used in 

photovoltaic cells (4) and is the material of choice for thin-film transistors (5) used in 

large-area electronics such as liquid-crystal displays. Amorphous forms of silica, other 

than being the major component in window glass, are used in optical fibers, providing 

good optical transmission while also being mechanically strong and chemically inert (6). 

 Our dependence on amorphous materials goes far beyond electronics and optical 

fibers, as our very lives depend on them. Each of the trillions of cells in our body uses 

millions of nanoscopic biological machines to keep themselves running (7). Most 

commonly they are made of proteins, amorphous structures composed of folded chains of 

amino acids. The manner in which these chains are folded and cross-linked determines 

their flexibility, mechanical resistance, and function (3, 8, 9). Efficient models focusing 
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on networks of specific interactions can be used to characterize the ensemble of 

conformations that biomolecules are likely to possess (10), allowing a better 

understanding of their role in disease (11) and the engineering of proteins with enhanced 

function (12). 

Materials research 

 One very important difference between crystalline and amorphous materials is 

the inability to determine the latter’s atomic arrangement directly from experimental 

measurements such as X-ray or neutron diffraction experiments (13). This can be seen as 

resulting from the fact that whereas a crystal contains translational symmetry that allows 

it to be characterized by a finite set of numbers describing the positions of atoms within 

the unit cell and the geometry of the associated lattice, each atom in an amorphous 

material has a unique environment due to disorder (14). While not uniquely specifying 

the position of each atom within an amorphous material, a diffraction experiment does 

determine the distribution of atomic pair separations, characterized by the radial 

distribution function (RDF) (15). This distribution links microscopic atomic placements 

with macroscopic experimental observables such as pressure, compressibility, energy, 

and phase transitions (16). By comparing the experimentally derived RDF with that from 

a computational model, insight can be gained into the structural origin of such 

experimental observables. For example, RDFs have been used to probe the architecture of 

novel amorphous and porous materials (17), illustrate the phase transition across optimal 

doping of superconducting materials (18), and detect randomness in periodic superlattices 

(19).  

 In general, the RDF is affected by two types of structural properties. The first 

type relates to the intrinsic geometry of the atomic network, i.e., the average coordination 

of each atom, the distortion of bond lengths and angles, and the randomness of the atomic 

network. These properties determine the positions, intensities, widths, and overlaps of the 
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peaks in the RDF. The second type relates to spatial confinement, i.e., the shape and size 

of the material sample. For bulk materials, the RDF is determined solely by the first 

effect reflecting the intrinsic properties of the bond network, but for nanomaterials the 

RDF is affected by both types of structural properties. Determination of the shape and 

size of a nanomaterial is not usually the goal of RDF analysis, as they can be obtained by 

other experimental techniques such as small-angle X-ray scattering (20) and transmission 

electron microscopy (21). The main research interest in this study is the determination of 

the RDF characteristic of the intrinsic atomic geometry of a nanomaterial and its 

deviations from the equivalent bulk material. The first part of this thesis (Chapter 5) 

describes a method for modifying the form of the RDF that decouples shape and size 

effects from intrinsic effects so that nanomaterials of any shape and size sharing a 

common atomic geometry fall onto a universal curve. This allows more subtle differences 

in the atomic geometry of nanomaterials due to effects such as surface relaxation to be 

directly compared. 

 After more than half a century of theoretical effort, determination of the atomic 

structure of amorphous materials from experimental observables such as the RDF 

remains one of the outstanding challenges of our day (22, 23). The difficulty of this 

problem is best exemplified by the extensive studies on vitreous silica (24). Significant 

progress has been made through the construction of physical and computational models, 

from which RDFs can be calculated and compared with experimental data to gain insight 

into features of the model that are likely correct and those associated with remaining 

discrepancies. Many of these models stem from Zachariasen’s famous proposal that the 

structure of glasses form a continuous random network (24), a view supported by the 

experiments such as those of Warren (25-27). Modern computers and efficient algorithms 

(28) have permitted the construction of very large computer models (29, 30) that are 

commonly validated against experiment through comparison of the position, shape, and 
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area of peaks in either real space (RDF) or reciprocal space (structure factor, S(Q)), and 

as a result have focused on short and intermediate length scales. In contrast, properties on 

the largest length scales in the form of long-wavelength density fluctuations, described by 

the limiting behavior of the structure factor       , are rarely discussed in the context 

of amorphous modeling but are of considerable interest (31). The limiting value can be 

estimated from small angle elastic scattering experiments using either X-rays or neutrons 

(23). For a liquid in thermal equilibrium,        is a linear function of the liquid’s 

density, isothermal compressibility, and temperature. Upon cooling, the structural 

disorder of the liquid is frozen in at the glass transition, and therefore        contains 

information about how far the system is from thermal equilibrium. Additionally, Florescu 

and coworkers (31) recently conjectured that a tetrahedrally coordinated continuous 

random network material with          have substantially larger photonic band 

gaps than those that do not, suggesting the commercial importance of such large length 

scale properties. 

 While providing important insight into the nature of amorphous materials, 

accurate determination of        from finite models poses greater difficulty than the 

determination of more local properties, even from large models. The second part of this 

thesis (Chapter 6) describes a method that overcomes this difficulty by permitting 

accurate extrapolation to the limit        using a general geometric principle true for 

any distribution of atoms, independent of thermal equilibrium (32). By calculating the 

variance in the number of atoms within finite regions as a function of the regions’ 

volume, the method can be used not only to extrapolate to large length scales, but also as 

a metric for determining if a model is sufficiently large to make such an extrapolation 

accurate (32). The technique is applied to large models of both amorphous silicon (33, 



5 

34) and vitreous silica (30) and compared to recent experiments (35). Interesting 

implications of the results are discussed (32). 

Biological research 

 Much like glasses, proteins are compact, cross-linked polymers stabilized by 

covalent bonds and weaker non-covalent interactions (10, 36). Similar in philosophy to 

the former network models of glasses, a simplified picture of folded proteins in terms of a 

discrete network of interactions can be used to gain insight into the sources of their 

underlying properties. One such property is the manner in which proteins respond under 

an applied force. This is of direct biological significance, as the physiological role of 

many proteins requires them to resist mechanical unfolding (8, 37-39). A complete 

understanding of the mechanical, regulatory, and signaling properties of many proteins 

depends not only on their native state conformations, but also on the nature of the 

intermediate states that become populated when subjected to an applied load. Unfolding 

behavior is studied experimentally using atomic force microscopy (39) and optical 

tweezers (40), but neither give direct atomistic descriptions of the unfolding pathways 

(41). Instead, they are sensitive to properties of the transition state and can identify the 

extension of partially unfolded intermediates (42). Computer-generated pathways from 

methods such as molecular dynamics simulation can then be compared to these 

observations to gain a better understanding of the atomistic identities of the transition 

state and intermediates (39).  

While it is possible to study the unfolding behavior of proteins using detailed all-

atom force fields, there is great interest in understanding simple yet general geometric 

principles underlying the mechanical anisotropy of protein stability. Recent work has 

come in the form of simplified coarse-grained dynamic models such as Gö-like models 

where each residue is represented by a bead (43, 44). More geometry-oriented approaches 

have been taken using elastic network models (45-48) in which the protein is modeled as 
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a set of coarse-grained beads connected by springs. One such study correlated stability 

with the effective force constant along the pulling direction (49), while another used the 

equilibrium force distributions to determine mean fracture forces under the assumption 

that collective unfolding occurs upon fracture of the very first bond (50). While being 

very insightful models, their coarse-grained nature means that they lack the specific 

interactions such as hydrogen bonds that are largely responsible for a protein’s 

mechanical stability (51, 52). The potential of Gö-like models are also intrinsically biased 

towards the native state (44, 53), making important conformational transitions requiring 

non-native interactions difficult or even impossible to model (54), whereas elastic 

network models represent an even more extreme case (49, 50), as they are unable to 

explore beyond the native basin. 

 To better understand the influence of the network of specific interactions on the 

mechanical anisotropy of protein stability and its role in determining unfolding pathways 

and the presence of metastable intermediates, I created a simple geometric model of 

protein unfolding that draws analogy to crack propagation in a solid. The algorithm 

builds on the all-atom constraint-based model developed in the Thorpe group, called 

FRODAN (10, 55). Within the protein unfolding model, non-covalent interactions such 

as hydrogen bonds, salt-bridges, and hydrophobic contacts are modeled as harmonic 

inequality constraints capable of supporting a finite load before breaking. Upon applying 

an external force and minimizing the constraint energy, an equilibrium strain distribution 

is produced that reflects the anisotropies of the underlying network of interactions. 

Complete unfolding pathways are generated by minimally overloading the network in an 

iterative fashion. By comparing the results for 12 proteins of diverse topology to both 

molecular dynamics simulation and experiment, it is demonstrated that for the majority of 

proteins studied (9/12), the simple model of protein unfolding as crack propagation on a 
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constraint network is sufficient to capture both native state behavior as well as partially 

unfolded intermediates far from the native state. 

Determination of a protein’s structure is essential in order to fully understand its 

functional properties, as structure determines the conformational ensemble necessary for 

such actions as ligand binding, signaling, or catalysis (3). While there exists several 

techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy, that are able to determine the structure of proteins to atomic resolution, 

each have limitations in the systems that they can study. NMR spectroscopy is typically 

limited to small proteins due to the increased crowding of NMR spectra with peaks from 

an increasing number of atoms, whereas X-ray crystallography requires the formation of 

large protein crystals, which are difficult if not impossible to make for many proteins. 

Membrane proteins, highly flexible proteins, and loosely bound protein complexes are 

notoriously difficult to crystallize. In contrast, cryo-electron microscopy (cryo-EM) (56, 

57) allows proteins to be imaged individually in conditions closer to their native 

environment by rapidly freezing them in thin aqueous samples. The process occurs so 

rapidly that the protein structure is not significantly perturbed by the freezing process. 

The higher scattering cross-section of electrons compared to X-rays allows single 

proteins to produce a sufficient amount of scattering to classify the resulting image. The 

ability to image a single layer of biomolecules is particularly advantageous with 

membrane proteins, for which the membrane serves as a natural template for one-

dimensional crystals. Unfortunately, cryo-EM suffers from the major drawback that 

atomic resolutions cannot yet be reached due to effects such as radiation damage and 

sample charging (56, 58, 59).  

While cryo-EM data typically possess resolutions of around 10 Å, when 

combined with the known structural constraints associated with the stereochemistry of a 

polypeptide chain, the cryo-EM data provides sufficient information to predict the 
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underlying protein structure to near-atomic resolution (60). Current fitting techniques 

range from all-atom MD simulation to normal mode fitting (61, 62).  While the 

computational requirements of MD techniques may be manageable for a single fit of a 

large complex to experimental data, the energy landscape must be heavily biased in order 

to complete the fit in a short amount of time and errors in the folded topology of the 

native state are likely to be retained. This is problematic, as starting structures are not 

generally in the same conformation as the one imaged (63) and are often the result of 

homology modeling for which hundreds of proposed models can be created with limited 

a priori knowledge of which starting model will result in the best fit to the experimental 

data (64). Coarse-grained normal mode techniques offer a means of rapidly fitting many 

models to the target data, but are limited to rather trivial conformational changes 

associated with normal modes. While the problem of structure determination from cryo-

EM maps is of great importance, there is yet to be a technique that serves as a gold 

standard (65). 

The constraint-based algorithm FRODAN used in the unfolding study possesses 

many properties that would be desired in an ideal fitting algorithm. Its constraints are 

sufficient to enforce high stereochemical quality comparable to that of an all-atom MD 

force field, whereas its efficient conformational sampling is similar to that of efficient 

coarse-grained methods, while allowing extensive conformational sampling for which 

normal mode techniques are incapable. The final work of my thesis consists of the 

development of a constraint-based fitting algorithm using a dynamic context-dependent 

constraint breaking criteria for the prediction of atomic protein conformations from cryo-

EM data. By biasing the relatively flat FRODAN energy landscape towards 

conformations having high correlation with the target data, the algorithm iterates between 

phases of rapid conformational exploration and phases where constraints are sparsely 

removed based on equilibrium strain distributions. The automated method is tested on a 



9 

set of seven proteins, each possessing synthetic cryo-EM target data with 10 Å resolution. 

In every case, after only two hours of computer time the fitting algorithm converges to a 

solution is closer to the known solution than the prediction made by the group that 

produced the benchmark set (64). 
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CHAPTER 2: REVIEW OF EXPERIMENTAL IMAGING TECHNIQUES 

X-ray diffraction 

Overview 

 X-ray diffraction is an imagining technique whereby a sample is imaged by 

recording the X-rays that are elastically scattered by the electron density of the sample as 

a function of the scattering angle. For a monoatomic sample containing atoms at positions 

ri, the scattered amplitude ψ(Q) is given by 

      ∑           

 

 (2.1) 

where Q = ki – kf is the difference between the incident and scattered wavevectors and 

the sum runs over all N atoms in the sample. Elastic scattering requires that |ki| =  |kf|, 

allowing |Q| to be expressed in terms of |ki| and the deflection angle 2θ according to 

          (2.2) 

The scattering amplitude is never measured directly, as the measured quantity is the 

intensity I(Q), which is related to ψ(Q) by 

      
  

 
          (2.3) 

where f is the scattering factors of each of the N atoms. The most common quantity used 

to describe scattering data is a scaled version of the intensity called the structure factor 

S(Q) which takes the form 

      
    

  
 (2.4) 

 Samples can be classified as either resulting in an isotropic or anisotropic 

structure factor. Isotropic scattering can result from either a sample which is inherently 

isotropic, such as a bulk amorphous material for which all directions are equivalent, or 

one that contains many small anisotropic domains arranged in random orientations 

relative to one another, as in the case of powder diffraction (15). Spatial isotropy leads to 
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isotropy in reciprocal space, such that in S(Q) = S(Q). The spherically averaged structure 

factor can be related to a quantity characterizing the distribution of atomic pair 

separations called the reduced pair distribution function G(r) (15) by the equation  

      
 

 
∫  [      ]          

 

 

 (2.5) 

 For crystalline samples, isotropy does not exist in either real space or reciprocal 

space. The atomic positions of all atoms in crystals can be described by their positions in 

the unit cell and by the lattice describing the set of translations of the unit cell needed to 

tile all of space. For a general scattering vector Q, the scattering contributions of each 

atom, shown in Eq. (2.1), will add up in a fairly random manner, leading to a scattered 

amplitude that scales as √  and therefore an intensity that scales as N. For very special 

scattering vectors, the translational symmetry of the crystal allows the phases from 

scattering events in different unit cells to add constructively, causing the scattered 

amplitude to scale as N and thus the intensities as N
2
. For large crystals with many unit 

cells, the intensity of these constructive reflections, called Bragg reflections, completely 

dominate the scattered intensity pattern. The locations of these Bragg reflections can be 

understood by examining the condition necessary for constructive interference. If one 

imagines a crystal with a square lattice, the Bragg condition can be determined by 

examining parallel crystal planes, as shown in Figure 2.1. For X-rays with an incident 

 

Figure 2.1  Illustration of Bragg’s Law for constructive interference. Figure reproduced 

from (66). 
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Figure 2.2  Illustration of lattice planes with Miller indices (234). Figure reproduced from 

(67). 

angle θ relative to the planes, the path length difference between rays scattered from the 

top and bottom planes is 2dsinθ. Constructive interference requires that the path length 

difference be an integer number of wavelengths, described by the Bragg condition 

           (2.6) 

A cubic lattice does not just contain the three crystalline planes parallel to the x, y, and z 

axes, but an infinite number described by the integer Miller indices hkl, as shown in 

Figure 2.2. By ensuring that the planes cut each edge of the unit cell an integer number of 

times, the corners of all unit cells in the lattice can be guaranteed to lie on a plane, 

causing the X-rays incident on each crystal cell to be in phase, and thus constructive 

interference to occur. By plotting all Bragg reflections in reciprocal space, one can show 

that they form a reciprocal lattice that can be related to the real space lattice of the crystal 

(67). 

Application to experiment 

 A richer understanding of the prior mathematics can be gained by applying them 

to predict the results of a scattering experiment. A two-dimensional example will be used 

for ease of illustration. Imagine that a crystal sample is in the middle of a room in the 

path of an X-ray beam. For every orientation of the crystal, there is a unique orientation 

of the reciprocal lattice that one can imagine existing around the crystal. The two- 
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Figure 2.3  Diagram describing the necessary condition for a Bragg reflection. Figure 

reproduced from (67). 

dimensional geometry of the scattering experiment is displayed in simplified form in 

Figure 2.3, where the crystal is located at point O in the path of the incident beam 

traveling from B to O. The grid represents the reciprocal lattice and the circle (called the 

sphere of reflection or the Ewald sphere in three dimensions) with radius Q = |ki| 

represents the condition for elastic scattering. Figure 2.3 appears complicated, but it boils 

down to this: if the incident wavevector ki is drawn from C to O and the scattered 

wavevector kf is drawn from C to some point on the surface of the circle, the condition 

for a Bragg reflection is satisfied whenever the tip of kf lies on a reciprocal lattice point, 

as it does at point P. This is necessarily true because the vector Q = ki – kf extends 

between two reciprocal lattice points O and P. High-resolution X-ray crystallography 

typically uses a beam with Q ≈ 1 Å
-1

 on a crystal with a real space lattices spacing of  20 

– 100 Å and therefore a reciprocal lattice spacing of ∆Q ≈ 1/100 – 1/20 Å. In practice, the 

reciprocal lattice spacing is therefore much smaller relative to the radius of the sphere of 

reflection than is displayed in Figure 2.3, causing many lattice points to lie on the sphere 

of reflection for a given crystal orientation. While a single crystal orientation results in a 

single two-dimensional slice through a three-dimensional intensity pattern, measurements 

can be performed for many crystal orientations in order to measure the intensity for all 
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Bragg reflections with |Q| < 2|ki|, which serves as input for electron density 

reconstruction. 

Electron density reconstruction 

 The ultimate goal of X-ray crystallography is to determine the atomic structure of 

the biological object being imaged. Ideally, an experiment would result in the 

measurement of the amplitude and phase of the diffracted waves, which could then be 

Fourier transformed to find the electron density of the sample and in turn be used to 

determine a likely atomic model, as shown in Figure 2.4. Unfortunately, detectors only 

measure the scattered intensity, causing all phase information to be lost.  

 This shortcoming can be overcome by several phase-recovering techniques. One 

of the most common techniques is called isomorphous replacement (67, 68) in which 

scattered intensities are collected from crystals with and without heavy atoms bound to 

the biomolecule. While these two scattering experiments both lack phases, the  

 

Figure 2.4  Determination of an atomic model from a protein crystal. Figure reproduced 

from (67). 
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information from the second scattering experiment with heavy atoms bound is sufficient 

to determine the phases for the first experiment. This amazing result can be understood 

by focusing on a single Bragg reflection from both experiments. Each of the two 

reflections is fully described by the incident wave’s amplitude and phase and can 

therefore be represented by a vector in the complex plane confined to separate circles 

with radii |PH| and |P| equal to the amplitude of the scattered wave with and without the 

heavy atoms respectively. The two vectors are not independent, as the scattered wave of 

the system with heavy atoms (PH)  is equal to the sum of the scattered wave from just the 

protein (P) and the scattered wave from just the heavy atoms (H), thus PH = P + H. This 

additional constraint, rearranged as PH - P = H, allows H to be phased using a Patterson 

map, as shown schematically in Figure 2.5a-e. This can in turn be used to constrain the 

vectors P and PH according to the relation PH = P + H, which in general contains two 

symmetry-related solutions for the desired phase of P, as shown in Figure 2.5. This 

ambiguity in the phase of each of the peaks in the structure factor is usually resolved by 

obtaining an additional constraint from a second heavy-atom experiment. A more detailed 

explanation can be found in (67). 

 

Figure 2.5  Determination of scattered wave from heavy atoms used as a constraint to 

determine the phases for a protein crystal. Figure reproduced from (67). 
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 Once estimates of the phases are found, they can be combined with the 

amplitudes and Fourier transformed into real space. Even for perfect phases, the result is 

not a crisp electron density, but instead a resolution-limited distribution due to the finite 

number of structure factors that can be measured. The resulting distribution is similar to 

the correct “infinite resolution” density distribution blurred by the resolution function. As 

a first approximation, the resolution function is the Fourier transform of a sphere of 

uniform density in reciprocal space extending out to values of Q at which structure 

factors can be collected.  

Cryo-electron microscopy 

Brief history of electron microscopy 

 The beginnings of electron microscopy can arguably be traced back to the 

discovery by Julius Plücker in 1858 that cathode rays (electron beams) can be deflected 

with magnetic fields. This led to the realization by Eduard Rieke in 1891 that electron 

beams could be focused in a manner similar to a simple lens, although it was not until 

1926 that it was shown theoretically by Hans Busch that under certain assumptions the 

lens maker’s equation could be applied to electron beams. These early efforts culminated 

in the construction of the first electron microscope by a German group led by Max Knoll 

and Ernst Ruska in 1931 (69). Interestingly, this occurred one year before the group 

became aware of the doctoral work of Louis de Broglie that described the wave-like 

nature of electrons, characterized by the de Broglie wavelength λe (70). The incredibly 

small wavelength of electrons (0.037 Å for a 100 kV accelerating voltage) was 

immediately recognized as offering the possibility of imaging atomic scale objects, 

thousands of times smaller than anything that could be imaged using visible light. By the 

late 1930’s, research at Siemens was already underway with the intent of imaging 

biological specimens (71), and by the 1950’s, work at Siemens by Ernst Ruska led to the 
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first microscope with 100,000 times magnification, having a design similar to those in 

use today. 

Transmission electron microscope 

 A modern transmission electron microscope (TEM) can be broken down 

functionally into five key parts: the creation and preparation of the electron beam, the 

sample, the objective lens, the intermediate and projector lenses, and the detector (56), as 

shown in Figure 2.6. Electrons are emitted by a thermally assisted field emission source 

and accelerated by a large electric field. Emitted electrons are pushed closer to the optical 

axis by a cup-shaped electrode containing a small opening, after which they travel 

through a set of condenser lenses that control the physical size of the beam and the beam 

convergence at the location of the specimen. Upon traveling through the specimen, the 

beam immediately travels through an objective lens. Unlike X-rays, which cannot be 

focused by any sort of lens, the use of magnetic fields to create an objective lens for 

electrons has the benefit of creating an image plane in addition to a back focal plane 

containing the diffraction pattern. Electron microscopy therefore has the advantage over  

 

Figure 2.6  Schematic diagram of a transmission electron microscope (Web site: 

http://barrett-group.mcgill.ca/teaching/nanotechnology/nano02.htm). The intermediate 

lenses are grouped together with the projector lenses. The viewing screen is equivalent to 

the detector. 

http://barrett-group.mcgill.ca/teaching/nanotechnology/nano02.htm
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X-ray crystallography of not suffering from the phase problem, as phases can be 

extracted directly from the image plane. Next, intermediate lenses serve both to control 

the overall magnification of the microscope and to determine whether it is the real image 

or the diffraction pattern that is projected by the set of projector lenses onto the detector. 

Modern TEMs detect and record the intensity using either a photographic emulsion film 

or a charge-coupled device (CCD) camera consisting of a scintillator optically coupled to 

an array of photosensitive silicon diodes (56). 

Theory 

 The traditional physics approach to electron scattering is to view a sample as a 

sum of individual scattering bodies, each described by a scattering amplitude      . The 

total wave      can be written as the sum of the incident plane wave and the scattered 

wave as 

                 
     

 
 (2.7) 

Insight into the form of the scattered wave can be found by beginning from the wave 

equation for an electron of energy E in the presence of a potential V(r), which takes the 

form  

        
   

  
          

   

  
      (2.8) 

The general solution (57) 

             ∫
   [          ]

|    |
              (2.9) 

for an incident plane wave       can be seen to have a form similar to that of Eq. (2.7), 

but unfortunately the desired solution      appears on both the left and right hand sides. 

The general solution of Eq. (2.9) can be expressed as a Born series, with the first Born 

approximation sufficient for a weak enough potential that it can be assumed that the wave 

inside the sample is not significantly affected by the sample itself, allowing the 
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substitution            
 
 within the integral of Eq. (2.9). In addition, if the wave      

is observed a large distance R from the sample, the second term in Eq. (2.9) can be 

written as (57) 

        
            

 
∫        [          ]    (2.10) 

By making the substitution       , Eq. (2.10) can be written as 

        
            

 
∑      

 

 (2.11) 

with  

        ∫        [     ]    (2.12) 

called the first Born approximation for the scattering amplitude (57), equal to the Fourier 

transform of the screened Coulomb potential of an atom. As the potential for an atom 

satisfies Poisson’s equation 

                   (2.13) 

the form of          [     ] for a given atom j can be found by taking the Fourier 

transform of Eq. (2.13) and solving for       , which gives 

        
 [        ]

   
 

 (2.14) 

called the Mott formula (57), where Z is the atomic number of atom j (here representing 

the nuclear contribution),        the Fourier transform of the atom’s electron 

distribution, e the unit charge, and    the permittivity of free space. While the first Born 

approximation is the most popular estimate of       , a more detailed one called the 

Moliere approximation (72) leads to a complex scattering amplitude, in contrast to the 

purely real form of Eq. (2.12) resulting from the first Born approximation. The complex 
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component of the Moliere approximation, which can be interpreted as contributing to 

absorption, is significant for heavier atoms, especially at large scattering angles. 

 A complimentary view to the one above begins with the realization that the de 

Broglie wavelength λe of an electron wave varies throughout a sample. Just as light 

undergoes a phase change when traveling through a lens relative to air due to differences 

in wavelength in the two materials, the de Broglie wavelength of an electron  

    
  

√       
     

 (2.15) 

with kinetic energy eV due to the accelerating voltage of the TEM is further shortened by 

the generally positive screened Coulomb potential within a sample. If the screened 

potential is weak, the spatially varying phase shift         that it induces can be 

expressed as  

                    (2.16) 

where ζ is the interaction parameter and         ∫           is the potential 

projected along the  ̂ direction. In the weak-phase approximation (57), the transmitted 

wave exiting the sample can therefore be expressed as 

                        (2.17) 

For a thin sample containing elements with low atomic number,         is indeed small, 

allowing             to be written approximately as 

                          (2.18) 

by ignoring all terms higher than first order in        . The transmitted wave 

            [           ] (2.19) 

is therefore the sum of an unscattered component and a term that depends linearly on the 

projected potential. While the phase component           of the specimen transmission 

function is purely imaginary and to first order does not affect the magnitude of      , 
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attenuation can be incorporated by the addition of an amplitude component        in the 

second exponent of Eq. (2.17). If the sample is a weak-amplitude object, a similar 

expansion to that of Eq. (2.18) can be performed, leading to 

            [                  ] (2.20) 

If the optics of a TEM were “perfect”, the wave in the back focal plane would be 

the Fourier transform of the wave       exiting the sample and the wave in the image 

plane would be a scaled version of      . It should be noted that it is never the wave 

itself that is measured experimentally, but the intensity      |    | . Unfortunately 

the optics of real TEMs are not perfect and their effects on the wave and thus the 

intensity in the back focal plane and image plane are characterized by a set of functions. 

Among these is the effect of lens aberration and defocusing, which shifts the phase of the 

wave by an amount 

             (2.21) 

where each   (     ) corresponds to a spatial position in the back focal plane (56). If 

this were the sole effect from the optics, the wave function in the back focal plane would 

have the form  

          {     } 
      (2.22) 

Above a certain value of  ,      increases rapidly, making data difficult to interpret. To 

remove this region from measurement, the objective lens is coupled with a finite aperture 

that blocks all wave vectors   having an angle greater than      with respect to the 

optical axis. The effect of the aperture is modeled by a function      that is 1 for 

       and zero otherwise. The wave function in the back field therefore becomes 

          {     }           (2.23) 

from which the measured intensity in the image plane is 
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           |         |
 
 (2.24) 

where               [      ].  

The effects of the TEM on the transmitted wave      , which are conveniently 

expressed as products in  -space, can be modeled as convolutions in  -space. If we let 

         [          ], then           can be written as the convolution 

                        (2.25) 

The effect in real space is therefore equivalent to a convolution of the “ideal” wave by the 

point spread function     . Inserting Eq. (2.25) into Eq. (2.24) and using the weak-phase 

approximation for      expressed in Eq. (2.19) leads to  

           |[           ]       |
  (2.26) 

for which expansion to first order in         gives  

                                (2.27) 

where            [       ] is the weak-phase point spread function. Similar steps 

can be followed using Eq. (2.20) instead of Eq. (2.19) in order to include absorption in 

the weak-amplitude (small       ) limit, resulting in the additional term          

       in Eq. (2.27), where            [       ] is the weak-amplitude 

equivalent of       . In total, the image intensity can be conveniently written in 

reciprocal space as  

                                                 (2.28) 

The functions         and         are called the phase contrast and amplitude 

contrast transfer functions (CTFs) and are of vital important in electron microscopy 

because of their effect on the image at low and high k. For a particular choice of defocus 

and objective lens aberration, the form of     ,        , and         are displayed in 

Figure 2.7. Unique to         is its reduction of the small k (long wavelength) 

components of the contrast, while both         and         display rapid oscillation, or  
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Figure 2.7  a) Form of the aberration function      for several values of the normalized 

defocus D and b) the associated phase (solid) and amplitude (dashed) contrast transfer 

functions for D = 1. Figure reproduced from (72). 

contrast flipping, at large k (short wavelength). Finite variation in the energy of incident 

electrons has the effect of averaging the CTF over local regions of  , causing the 

amplitude of the rapid oscillations at large k to be heavily attenuated. The phase CTF 

        thus acts as a band-pass filter, passing an intermediate range of frequencies with  

a flipped (negative) contrast. An example of the effects of such a filter is shown in Figure 

2.8. For images of thin biological samples containing much less contrast than that of the 

frog in Figure 2.8, the contrast-reducing effects of         can make it extremely 

difficult to locate individual biomolecules in experimental data. This difficulty has had a 

large influence on the techniques used to prepare biological samples for imaging. 

 

Figure 2.8  Image of a frog (a) before and (b) after being subjected to the contrast-

reducing effects of the phase CTF        , with      possessing a form similar to those 

in Figure 2.7. Image (c) is identical to (b) upon flipping the contrast so that the reduced 

contrast can be directly compared with (a). Figure reproduced from (56). 
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Sample preparation 

 The properties of samples used to image biomolecules can be classified into two 

groups: those in which the biomolecules are organized in regular crystalline arrangements 

and those lacking such spatial order. The high atomic scattering cross section of electrons 

compared to X-rays allows sufficient contrast to be obtained from crystalline arrays that 

are a single layer thick in one of the dimensions. This makes TEM a powerful tool for 

imaging membrane proteins for which the plane of the membrane serves as a natural 

basis for the two-dimensional crystal. For such crystalline specimens, both the back focal 

plane and the image plane can be used to extract complimentary information, namely the 

amplitudes of the structure factor from the Bragg peaks in the diffraction pattern and the 

phases from the image. Many of the early high-resolution TEM images came from such 

crystalline samples (73).  

Samples lacking spatial order do not result in the formation Bragg peaks and 

imaging of such samples can be viewed as an independent measurement of many 

individual (single) biomolecules. Single-particle measurements have the advantage that 

they do not require the molecules to be arranged in a crystalline array, which can be 

challenging for many biomolecules, but the disadvantage that they require the 

identification and classification of individual biomolecules in the image. Such 

identification is extremely difficult due to low contrast and poor signal-to-noise ratios. 

The low contrast is the result of the thinness of the sample, similarity in the scattering 

properties of protein to the surrounding substance, and aforementioned effects of the 

CTF, while the poor signal-to-noise ratio is due to sample exposure limitations of no 

more than a few e
-
/Å

2
 due to radiation damage from free radicals that form as a result, 

discussed later in greater detail. 
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Negative staining 

 Limitations on the contrast can be partially overcome through the use of negative 

staining, introduced in 1959 by Brenner and Horne (74), in which heavy metal salts such 

as uranyl acetate are added to the sample solution. These salts coat the solvent-accessible 

boundary of the biomolecules with atoms of high atomic number that have considerably 

stronger Coulomb potentials and proportionally even higher absorption that their low-

atom number surroundings. The staining supplies much needed contrast, but only at the 

surface with very little internal detail. The aqueous solution with the sample and stain is 

never inserted directly into the high vacuum of the electron microscope, due to the high 

volatility of the solution. Instead, liquid is blotted away and the sample is allowed to dry. 

While the stain does provide a certain degree of protection, the removal of the aqueous 

environment during drying can cause significant distortion of the biomolecules, the 

degree of which depends on structural features such as the existence of internal cavities. 

Several alternatives to negative staining have been developed, such as glucose 

embedding. Glucose embedding was introduced by Unwin and Henderson in 1975 (75) 

as a means of replacing the aqueous medium with one having similar properties except 

with the additional benefit of being non-volatile. Unfortunately, the lack of heavy atoms 

in glucose causes poor contrast with biomolecules and was supplanted in the early 1980’s 

by the much more successful technique of cryo-electron microscopy (cryo-EM). 

Vitrified aqueous samples 

 An alternative method of maintaining the aqueous environment of biomolecules, 

developed by Taylor and Glaeser (73, 76, 77) and Dubochet (78), is to freeze the aqueous 

sample so rapidly as to avoid crystallization of the water, trapping the biomolecules in 

vitreous ice. The formation of vitreous ice is essential, as the volume change of water 

upon crystallizing damages samples. Like glucose embedding, vitrification has the 

advantage of not causing collapse or significant distortion of the sample, but with the 
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added benefit of increasing the dose at which significant radiation damage occurs by a 

factor of two to six. An ice-embedded sample is prepared by first placing a small amount 

of aqueous specimen on a hydrophilic grid. The sample is then blotted to get rid of excess 

buffer until only a thin layer less than 1000 Å remains. The grid is immediately 

submerged into a cryogen such as liquid ethane cooled in a bath of liquid nitrogen, upon 

which it is transferred to the liquid nitrogen bath within the cryo-holder, which is in turn 

placed into the TEM and kept at temperatures of 100-115 K. Cryo-EM in vitreous ice is 

currently the most successful method of imaging biomolecules with electrons. The use of 

cryo-EM on samples of individual biomolecules in solution, called single-particle cryo-

EM will be the focus of subsequent discussion. 

Radiation damage 

 Presently, the resolution obtainable by cryo-EM is inferior to that of alternative 

techniques such as X-ray crystallography. One of the factors limiting the resolution of 

cryo-EM is the radiation damage incurred on a sample by the incident electron beam (56, 

59). For typical energies of 100-300 keV used in modern TEMs, significant radiation 

damage begins to appear for exposures above 1       at room temperature and roughly 

2-6       at the lower temperatures of liquid nitrogen (98-113 K) or liquid helium (10 

K). Interactions of the electron beam with the sample produce free radicals that react with 

biomolecules, causing their gradual degradation (56, 59). As these effects are local, the 

high frequency components of the images are the first to be affected. This limitation on 

the incident flux in turn places a very low limit on the signal-to-noise ratio of the 

individual projections, making it very difficult to identify the small contrast differences 

between a biomolecule and its surroundings. Such identification is necessary in 

determining the location and orientation of each biomolecule, one of the first steps in 

image reconstruction.  
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Image reconstruction 

 The raw data consisting of the projections of individual biomolecules have a poor 

signal-to-noise ratio, low contrast, and measurement artifacts such as contrast flipping 

due to the oscillatory nature of the CTF, as shown in Figure 2.7. The poor signal-to-noise 

ratio can be improved by classifying projections based on the cross-correlation of their 

optimal alignment and averaging similar projections, as averaging reinforces the features 

due to the biomolecules while averaging out random noise. To collect the large amount of 

information required for high-resolution cryo-EM maps, tens of thousands of projections 

of individual biomolecules are needed. The effects of the CTF on the images can also be 

partially removed by characterizing the CTF and reversing the phase flipping and 

amplitude attenuation that it causes, while minimizing the amplification of noise (79). 

Images at several values of defocus can also be used to compensate for the effects of the 

zeros in the CTF.  

 One of the large challenges to determining a three-dimensional map is to 

determine the relative orientations of the averaged projections. They must be merged to 

form one or, in the case of samples containing multiple stable conformations, a few EM 

maps. It is not immediately obvious that all the information about the three-dimensional 

object is contained within a complete set of projections. Luckily, Radon’s Theorem (80) 

and particularly one instance of it called the Fourier Projection Theorem (81) proves that 

a complete set of projections is sufficient for a complete three-dimensional 

reconstruction. The Fourier Projection Theorem states that for a three-dimensional 

distribution represented in r-space by          and in reciprocal space by  (        ), 

that the act of taking a projection of          along a direction  ̂ is equivalent to 

retaining only the values of  (        ) on the plane normal to  ̂ that traverses the 

origin. From this theorem, the challenge of three-dimensional reconstruction can be 
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viewed as one of filling Fourier space (out to a maximum wave vector corresponding to 

the limiting resolution) by a set of planes obtained from experimental projections.  

 A popular method for determining the relative orientations of the projections (or 

more directly their associated Fourier planes) is the “method of common lines” first 

proposed by Crowther (82). This method is based on the fact that the Fourier planes of 

any two projections intersect along a line, which in principle allows the determination of 

two of the three Euler angles relating one plane to the other by finding the pair of 

common lines with the greatest cross-correlation. A second common solution is the 

“random conical” data collection method (83) which takes advantage of the fact that 

many biomolecules have preferred orientations due to interactions with the surface of the 

sample. By tilting the sample in the TEM relative to the beam prior to measurement, a set 

of biomolecules in the sample sharing a common zero-tilt projection (but with random 

rotation angle) form a conical projection series in the tilted sample that fill Fourier space 

except for a conical section along the axis of the beam. The volume of this missing 

conical section can be minimized by choosing high tilt angles, typically 60-70°. While 

the method of common lines requires the biomolecule to occupy all orientations in the 

untilted sample, the random conical method works when either random or preferred 

orientations exist within the sample. 

 Once the orientation of a set of projections has been determined, a three-

dimensional r-space model can be created in a number of ways. A common method is 

weighted back-projection (56), whereby the projected potential is speared out uniformly 

over a distance D along the direction of the projection. If D is greater than the maximum 

diameter of the object, by adding up smears with appropriate weighting for all 

projections, one obtains a three-dimensional reconstruction of the biomolecule. A more 

intuitive method is to estimate the value of the Fourier components at a set of grid points 

by interpolating the data on the Fourier planes obtained from the experimental 
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projections, upon which an inverse Fourier transform can be performed. It should be 

noted that the determination of projection orientations and three-dimensional 

reconstruction are not generally separate. Often a preliminary three-dimensional model is 

created in order for its simulated projections to be used to help classify the experimental 

data, which in turn can be used to create a better model. Such iterative refinement can be 

followed to convergence. 

Resolution 

 Resolution is a vital characteristic of an imaging technique, as it determines the 

amount of information contained in the experimental measurement. A common method 

of assessing the resolution of an experimental map is to divide the measured projections 

into two sets of equal size and reconstruct the corresponding complex Fourier space 

values from each set. The similarity of the two reconstructions in Fourier space can then 

be determined by calculating the correlation of the two functions on shells of constant 

radius | |, called the Fourier shell correlation (56, 84). This correlation generally 

decreases with increasing wave vector, with the resolution typically defined as the 

reciprocal of the wave vector at which the correlation drops to 0.5, as Fourier components 

beyond this wave vector are dominated by noise. As discussed previously, one of the 

major factors limiting spatial resolution is the low exposure allowed due to radiation 

damage (56, 58, 59). The combination of low contrast and a poor signal-to-noise ratio 

increases the error in the angular assignment of each projection, which in turn leads to 

errors in the reconstruction of a three-dimensional model. This can be partially overcome 

by taking a large number of projections to improve averaging, with recent experiments 

using in excess of 100,000 projections of individual biomolecules for a single 

reconstruction. Another major factor that limits resolution is charging, whereby a positive 

charge is induced in the sample and carbon substrate due to the removal of electrons by 

the incident beam. The electric field associated with this charging affects the transmitted 
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beam in an unpredictable and time-dependent way (59). Specimen movement and 

inelastic scattering can further reduce resolution (59). Lastly, as higher resolutions are 

reached, the heterogeneity of the sample being imaged becomes increasingly relevant. 

Biomolecules do not possess a single native conformation, but instead undergo 

conformational changes within the native ensemble. By wrongly assuming that all 

projections come from identical structures, a final model is obtained that resembles an 

average of this ensemble. Many biomolecules undergo conformational changes of several 

angstroms, and thus stabilization of a particular conformer through ligand binding or 

proper sorting of the projections are required if atomic resolutions are to be reached.  

 It is often the case that the atomic structure of a protein similar to the one being 

imaged by cryo-EM has been determined by other means such as X-ray crystallography, 

albeit not necessarily in the same conformation. By using such a structure or an 

associated homology model as a starting model (64), atomic structures can be predicted 

by flexibly fitting the model to the cryo-EM data. This can result in a structural prediction 

with much greater accuracy than one would infer from the resolution of the data itself 

(85). In Chapter 8, I will describe an efficient all-atom flexible fitting algorithm that I co-

developed that performs this final step in the determination of atomic models from low-

resolution experiments.  
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CHAPTER 3: REVIEW OF AMORPHOUS MATERIALS 

Crystalline versus amorphous materials 

 The most immediately apparent difference between crystals and amorphous 

solids is the latter’s lack of translational symmetry. In an infinite crystal, the positions of 

all atoms can be determined by knowing 1) the positions of a finite set of atoms in a local 

volume called the unit cell and 2) the lattice representing all translations of the unit cell 

necessary to tile all of space. A perfect infinite crystal therefore contains order extending 

to infinite length scales. An amorphous solid on the other hand lacks translational 

symmetry and long-ranged order (86). It contains short-ranged order due to chemical 

bonding and steric interactions, but correlations characterizing this order diminish with 

distance as the number of chemical bonds separating pairs of atoms increases. The 

difference between a crystalline solid and an amorphous glass can be seen from the two-

dimensional models (24) displayed in Figure 3.1. Bond lengths and bond angles centered 

on the dark atoms are well-preserved, whereas bond angles centered on the light atoms 

are highly flexible; causing longer ranged behavior to be less predictable. 

            

Figure 3.1  A two-dimensional crystalline solid and a corresponding continuous random 

network (CRN) model of a glass of composition A2O3. Figure reproduced from (24). 
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Supercooled liquids and glasses 

 The behavior of a liquid upon cooling below its melting temperature Tm differs 

greatly from substance to substance. In general, a liquid can either remain a liquid below 

Tm (becoming a supercooled liquid), form a crystal, or have the disorder in the liquid 

frozen in to form an amorphous glass (87). Below Tm there exists three competing 

timescales: the nucleation time, the relaxation time of the substance, and the cooling rate. 

Common substances like water typically freeze into a crystal upon cooling below Tm 

because impurities in the water help seed nucleation, causing the nucleation time to be 

short. If nucleation does not occur, cooling below Tm will result in a supercooled liquid, a 

metastable state having properties expected of a liquid, as can be seen by plotting the 

isobaric heat capacity Cp and entropy S as functions of temperature, shown in Figure 

3.2a, and Figure 3.2b respectively. A supercooled liquid is metastable because below Tm 

the crystalline phase is the lowest free energy state and given enough time a nucleation 

event will occur that seeds the formation of a crystal. As a supercooled liquid is cooled, 

 

Figure 3.2  Behavior of the isobaric heat capacity and the entropy as a function of 

temperature, showing how the properties of the supercooled liquid behave like the liquid 

state before deviating near the glass transition temperature Tg. Figure reproduced from 

(87). 
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Figure 3.3  Schematic of the dependence of the glass transition temperature on the 

cooling rate due to increasingly long relaxation times at lower temperatures. Figure 

reproduced from (88). 

the barriers in the energy landscape become increasingly high relative to typical thermal 

excitations on the order of kBT, causing atomic rearrangement and relaxation to occur on 

increasingly long timescales (88), as shown in Figure 3.3. 

Relaxations within the supercooled liquid can be categorized as being of two 

types: β-relaxations having Arrhenius relaxation time-temperature dependence and α-

relaxations that depart from such a relation (89). The latter α-relaxations tend to occur on 

longer timescales and be of greater spatial extent than β-relaxations. The glass-forming 

properties of a liquid can be described in terms of the temperature dependence of their 

overall relaxation times, with liquids having a predominantly Arrhenius dependence, such 

as SiO2, termed strong liquids, whereas those departing heavily from an Arrhenius 

dependence called fragile liquids (90). 

For any fixed non-zero cooling rate, a temperature is eventually reached at which 

the relaxation times are longer than the time permitted by the cooling rate. The system 

will no longer be able to remain in metastable equilibrium and the bond topology of the 
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supercooled liquid will be effectively frozen in, forming an amorphous glassy state. Thus 

in contrast to the melting temperature, which is a discrete point, the glass transition 

temperature Tg depends on the cooling rate. A very interesting consequence of this 

dependence is that it allows disorder in the atomic geometry of the supercooled liquid to 

be trapped at various temperatures and probed by X-ray and neutron scattering 

experiments (23). The temperature dependence of correlated density fluctuations over 

large length scales in vitreous silica will be discussed in Chapter 6 (32). 

There are various ways of defining Tg, but a common one defines it as the point 

of intersection of the linear volume-temperature behavior in both the supercooled and 

glassy states, shown schematically in Figure 3.3. The act of freezing in the disorder is 

equivalent to trapping the liquid in a local minimum of the energy landscape, as 

displayed in Figure 3.4. Whereas the transition from a liquid to a crystal involves a first-

order phase transition, the nature of the transition from a liquid to a glass is probably the 

“deepest and most interesting unsolved problem in solid state theory” (91). Due to the 

freezing in of the covalent bond network near Tg, the nature of the glass must be 

characterized by two distinct temperatures: the “standard” temperature describing the 

kinetic energy of the atoms and the fictive temperature Tf reflecting the strain energy of 

the system. It has long been observed that glasses possess structural heterogeneity in 

 

Figure 3.4  Schematic of glass formation by trapping a supercooled liquid in a metastable 

state. Figure reproduced from (88). 
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which certain spatial regions of a glass are more highly strained or “hot” than their 

surroundings, with such local variation having correlation lengths that define a 

characteristic length scale for the glass (92, 93).  

Structure determination 

 Unlike crystalline materials, the position of all atoms in an amorphous material 

of substantial size cannot be described by a small amount of information and can 

therefore not be determined exactly by experiment (94). A great leap forward in the 

theory of the structure of glasses was made by Zachariasen in a landmark paper in 1932 

(24). Zachariasen proposed that oxide glasses of the form AX2 could be described by a 

random network of corner-sharing tetrahedra, with each tetrahedron having one X atom 

at each of the four corners surrounding a central A atom, as depicted in Figure 3.5. Such 

an arrangement is ideal energetically because it fills the valence shell of each atom while 

keeping the electronegative oxygen atoms separated from one another. A CRN requires 

that all four corner oxygens are shared with a neighboring tetrahedron such that all 

bonding needs are satisfied. In contrast to crystalline forms of AX2 materials, where the 

orientations of the tetrahedra are specified by the particular  

 

Figure 3.5  Local geometry of vitreous silica (SiO2), showing three corner-sharing 

tetrahedra. 
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crystalline geometry, Zachariasen hypothesized that AX2 glasses consist of alternative 

low-energy corner-sharing configurations of the tetrahedra represented by a CRN. His 

hypothesis soon gained support from the X-ray diffraction studies of Warren and co-

workers (25-27).  

 It was not until the 1960’s that questions were being asked as to what such 

glasses would look like in three dimensions. This led to the advent of structural modeling, 

the first models being of vitreous silica. While the initial models, such as the famous 614-

atom hand-built CRN model of Bell and Dean (95), agreed well with experimental data, 

there were clear limitations to these physical models, including the difficulty of 

controlling the distribution of various structural parameters during construction. 

With increasing computer power, it became possible to generate larger, less 

biased, and lower energy models than could be built by hand. Two classes of 

computational methods are commonly used to investigate glasses; one applies first-

principles MD simulation (96), which due to computational requirements is limited to 

relatively small systems, and the other consists of iterative Monte Carlo (MC) algorithms 

similar to procedures one might follow in constructing a hand-built model (28). In 

addition to experimental validation, the quality of a model is generally measured by the 

amount of strain in the bond network, with the low spread in bond lengths and angles 

measured experimentally being ideal. According to this metric, higher quality models can 

be obtained by MC algorithms that allow greater relaxation of network strain than models 

produced by MD simulation (30), with some MC models having spreads in bond length 

and angle comparable to that of experimentally measured samples (34). While MD 

simulation permits the investigation of many properties that cannot be inferred from the 

static models produced by the iterative model-building algorithms, for the purposes of 

investigating the large length scale properties of interest in this thesis, very large models 

are essential. For this reason, the models of amorphous silicon and vitreous silica 
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investigated in Chapter 6 are generated by methods specifically designed to efficiently 

produce large, low-energy CRN models. These methods all stem from the WWW 

algorithm, created by Wooten, Winer, and Weaire (28).  

The WWW algorithm  

 The WWW algorithm begins from a crystalline structure and gradually 

introduces disorder into the bond network through numerous iterations of a “bond 

switching” step. This switch, illustrated in Figure 3.6, involves a rotation of 

approximately 90
o
 of a chosen bond (in this case the bond between atoms B and C, or BC 

for short), followed by the swapping of two old covalent bonds for two new ones in order 

to maintain bond angles close to their ideal tetrahedral values. In this example, the 

covalent bond AB is replaced by bond AC, and likewise bond CD is replaced by bond 

BD. This bond switching step preserves the total number of bonds and the coordination 

of each atom.  

 

Figure 3.6  A schematic of a bond switch used in the WWW algorithm. Figure 

reproduced from (34). 

After each iteration, the system is geometrically relaxed by minimizing the 

potential energy of the system while keeping the network of covalent bonds fixed. For 

monatomic materials such as silicon, the Keating potential (33) of the form 
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is commonly used, where ro is the rest length of a covalent bond, rli is the vector 

difference in the positions of bonded atoms l and i, and α and β are the parameters 

controlling the bond length and bond angle stiffness respectively. The Keating potential 

was used to construct the amorphous silicon models described in Chapter 6. Upon 

minimization, the new structure is accepted or rejected with a Boltzmann probability  

      [     (
     

   
)] (3.2) 

that depends on the difference in the minimized energies before (Eb) and after (Ef) the 

bond switch, and the temperature T, given a value above the melting temperature Tm. If a 

sufficient number of iterations are performed, the model will lose all memory of the 

crystalline state and become fully amorphous. 

 Upon reaching a satisfactory amorphous state, the model is quenched by 

decreasing the temperature in small steps, each time allowing a new equilibrium to be 

reached through both topological relaxation (bond swapping) and geometrical relaxation 

(energy minimization within a fixed topology) . The temperature is decreased until an 

optimized amorphous structure is reached as the temperature approaches zero. A final 

relaxation can be performed by minimizing the total model energy with respect to the 

volume of the periodic cell, allowing the model to slightly expand or contract. Just as 

with experimental glass formation, the topology and structure of the model depends on 

the temperature at which the topology is frozen in. The models of amorphous silicon and 

vitreous silica built with modified WWW algorithm (30, 33, 34) and studied in Chapter 6 

are among the largest and highest quality models built to date.  
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CHAPTER 4: REVIEW OF SIMULATION TECHNIQUES 

Introduction 

 The human genome, encoding all the raw information needed to create a vibrant 

PhD student, is but a mere 3 billion nucleotide base pairs (7). From these nucleotide 

sequences, we can obtain protein sequences, and from protein sequences, folded 

structures (for intrinsically folded proteins), but the ultimate goal is to determine 

function. A complete understanding of such function, which can include catalysis of 

chemical reactions, chemical signaling, regulation of gene transcription, as well as 

mechanical infrastructure, requires more than just static structures; it requires knowledge 

about dynamics (3, 7). Since the determination of the first protein structures, those of 

hemoglobin and myoglobin by Max Perutz and Sir John Cowdery Kendrew by X-ray 

crystallography in 1958 (97), a protein’s folded native state has typically been 

represented by a single conformation representing the best fit of an atomic model to the 

measured electron density. A major computational challenge has therefore been to 

determine, from a static structure, the ensemble of functionally relevant conformations in 

which a biomolecule can partake. 

Molecular dynamics 

Overview 

The same tools that allowed Isaac Newton to understand the motion of the 

planets around the Sun form the basis of one of the most intuitive methods of 

conformational sampling. Newton’s second law, which relates the translational 

acceleration of a body  ̈i to the total external force Fi via the equation 

    ̈     (4.1) 

was first used in conjunction with a realistic potential to iteratively update the positions 

and velocities of atoms by Aneesur Rahman in 1964 in his study of liquid argon (98).  
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The first simulation of a biomolecule came 13 years later with the 8.8 ps vacuum 

simulation of bovine pancreatic trypsin inhibitor by McCammon et al. (99). 

 Beginning from an initial set of atomic positions and velocities, a basic method 

for evolving a system forward in time is to discretize time into small intervals ∆t (usually 

1-2 fs) and use the velocity Verlet algorithm (100, 101) to update the positions, 

velocities, and accelerations from one time step to the next. Given the position     , 

velocity  ̇   , and acceleration  ̈    of each atom in the system at some time t, the 

velocity Verlet algorithm first finds the new positions at time t+∆t using 

               ̇      
 

 
 ̈       (4.2) 

Next, accelerations are updated by finding the forces on each atom at its new position 

       . Lastly, the new positions and accelerations are used to update the velocity 

through the equation 

  ̇        ̇    
 

 
[ ̈     ̈      ]   (4.3) 

which assumes that the average acceleration over the interval is equal to the mean of the 

end points.  

 Standard all-atom class 1 force fields used to characterize inter-atomic atomic 

forces have a potential energy U(r) of a form similar to (CHARMM (102))  
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The potential can be divided into harmonic terms controlling the bond lengths b, the 

three-body angles θ formed by two covalent bonds meeting at a single atom, the Urey-
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Bradley term between atoms separated by two covalent bonds, a sinusoidal term 

representing energy barriers between atoms separated by three covalent bonds as a 

function of the dihedral angle  , the out-of-plane improper distortions   defined by a 

central atom and its three coplanar covalently bonded neighbors, and a term            

serving as a correction to the backbone dihedral angle energy. Additionally, the energy 

function contains a pair of nonbonded terms, the first representing the van der Waals 

interaction in the form of a Lennard-Jones 12-6 potential and the second representing the 

Coulomb interaction between pairs of charges qi and qj. The degree to which the ideal 

geometry of each bonded interaction can be violated is dictated by a set of spring 

constants Kb, Kθ, KUB, Kχ,n, and Kψ, the well depth of the van der Waals interaction εij 

between atoms i and j, and the dielectric constant   describing the extent of screening of 

the Coulomb interaction. The potential is individually parameterized for all atom types, 

typically resulting in a few thousand parameters, many of which are calibrated directly 

against quantum mechanics calculations (103, 104) and experimental measurements 

(104). 

Solvation 

 Unlike the first MD simulation of a biomolecule, which was performed in 

vacuum (99), modern simulations account for the effects of the solvent environment 

either explicitly by surrounding the molecule with atomic water molecules, or implicitly 

through a continuum approximation (105). Due to the need to keep an explicitly solvated 

protein (in a periodic simulation volume) a sufficiently large distance from its periodic 

images, the box needs to be made so large that there are typically several times more 

solvent atoms than there are protein atoms, greatly increasing the computational cost of 

simulations with explicit solvent. Researchers tried to circumvent this problem by 

inventing implicit solvent models that mimic the properties of a solvent. Whereas explicit 

water molecules are constantly colliding with the protein, exchanging energy and creating 
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a viscous environment, implicit solvent models use Langevin dynamics (100, 101) in 

which the force on each atom, given by  

                           ̇        (4.5) 

contains two force terms in addition to the gradient of the potential, one proportional to 

velocity that represents viscous drag, and a second term that mimics random collisions. 

Common implicit solvent models include the computationally expensive Poisson-

Boltzmann model (105), which solves the Poisson-Boltzmann equation for the 

electrostatic environment of a solute in a solvent with ions, and the more efficient 

Generalized Born model (105), which is an approximation to the linearized Poisson-

Boltzmann equation. A third, even less computationally demanding implicit model is the 

EEF1 model (106), which approximates the free energy of solvation by estimating how 

much of each atom’s total possible solvent exposure is occluded away by surrounding 

atoms. The EEF1 model also includes a distance-dependent dielectric constant. Molecular 

dynamics simulations performed using the EEF1 implicit solvent model are discussed in 

Chapter 7. 

Simplified methods 

Normal mode analysis 

 Normal mode analysis (NMA) (46, 107-109) assumes that the global properties 

of the energy landscape can be estimated, to a first approximation, from the local 

curvature of the landscape about a native state conformation. This equates to determining 

the harmonic response to perturbations of each atom’s position (the Hessian matrix) and 

diagonalizing it to re-express this curvature in the basis of normal modes. The 

functionally relevant motions, which tend to correspond to the low-frequency modes, are 

heavily determined by the overall shape of a protein and can be estimated from coarse-

grained Cα-based network models. The most common such model is the Elastic Network 

Model (45-48) in which a protein is modeled as a set of infinitesimal beads (Cα) 
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connected by a harmonic spring to all other Cα atoms within a cutoff distance. The 

probability of a particular conformation in such a harmonic model is Gaussian along each 

individual normal mode directions with a width proportional to   √ , where k is the 

curvature of the energy harmonic well along the normal mode. While computationally 

efficient, NMA and ENM have several drawbacks. One drawback is that non-globular 

proteins with significant conformational flexibility often have a high degree of 

anharmonicity along their most flexible directions of deformation, as they often involve 

hinge-like motions about the polypeptide backbone. Another drawback is that any 

significant displacement along an individual or linear combination of normal modes 

creates unphysical stereochemical distortions in all-atom models. 

Essential dynamics 

 Essential dynamics (110, 111) is a method related to NMA in which the Hessian, 

which contained local curvature information in NMA, is replaced by a covariance matrix 

         [    [ ]     [ ]  ] (4.6) 

calculated using conformations X from sources such as molecular dynamics simulation. 

Diagonalization of the covariance matrix results in a set of eigenvectors, which in this 

case represents principal components instead of normal modes. A harmonic profile is still 

implicitly assumed, as the variance represents the second moment of the conformational 

distribution. Characterizing a distribution by its variance is equivalent to fitting it to a 

Gaussian distribution. Sorted in ascending order of their eigenvalues, principal 

components represent the directions of greatest variance remaining in the data after being 

projected along the directions of all lower principal components. Essential dynamics have 

the advantage that conformations outside of the native basin can contribute to the modes, 

but they only do so if such conformational variation is present in the input ensemble used 

to define the covariance matrix. The resulting principal components serve as an effective 



44 

dimensional reduction technique by identifying directions of high flexibility and can in 

turn be used to help guide subsequent molecular dynamics simulations in directions that 

are likely to contain low energy conformational states. Such sampling methods are called 

enhanced sampling techniques (111). 

Constrained geometric simulation 

 All of the previous techniques, including MD simulation, involve varying 

degrees of approximation regarding the true nature of the system that serve as trade-offs 

between realism and computational efficiency. For example, all-atom MD energy 

functions contain explicit dihedral angles but lack the quantum nature of the system, 

whereas ENM efficiently estimates large-scale motions but treats a biomolecule very 

much like a continuous elastic solid. There is plenty of room in the middle of these two 

extremes. 

The constraint-based model FRODAN (10), used in the biological portion of this 

thesis, is one such example and shares a likeness to the very first ball-and-stick hand-built 

models used by pioneers in the field such as Watson and Crick, as shown in Figure 4.1. 

Whether the metal and plastic models were of DNA or proteins, these early models  

 

Figure 4.1  Watson (left) and Crick (right) analyzing a model of DNA. 
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implicitly assumed that bond lengths and angles are approximately fixed and that motion 

is confined to the subspace of torsion angles. Within this subspace, early model builders 

found conformations that allow DNA bases to pair up through the formation of hydrogen 

bonds, whereas in proteins certain backbone angles were found that cause the polypeptide 

to form helices, also possessing favorable hydrogen bonds. Treating non-covalent 

interactions as distance constraints between pairs of atoms, such as the hydrogen and 

oxygen atoms of a hydrogen bond for example, one could ask the following question: 

given the set of rigid bond lengths and angles and the set of non-covalent constraints, 

which parts of the model are flexible and which are rigid? 

Rigidity analysis: FIRST 

 Such a question, viewing a mechanical system in terms of a set of fundamental 

bodies (i.e. nucleotide bases etc.) connected by distance constraints, can be expressed 

formally through the mathematical discipline of graph theory (112). The object of study 

in graph theory is called a “graph” and consists of a set of vertices and a set of edges that 

connect these vertices, as shown in Figure 4.2. While the uses of graph theory are very 

broad, of interest here is the subdiscipline of rigidity theory (113) and its application to 

biomolecules (114), where vertices represent objects with spatial degrees of freedom and 

edges represent distance constraints. Insight into the application of rigidity theory to more 

complex systems such as biomolecules can be gained from the history of rigidity 

analysis. 

Perhaps the first person to use graph theory to infer the mechanical properties of 

a network was James Clerk Maxwell while studying the structural integrity of bridges. 

Treating the joints of a bridge as the set of vertices V and the beams as the set of edges E, 

he realized that he could approximate the number of degrees of freedom (dof) N of the 

framework (i.e., the number of independent motions that kept the lengths of all the beams 
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Figure 4.2  A graph containing 6 vertices (green dots) and 9 edges (black bars). 

fixed) by the equation    | |  | | where |V| is the number of vertices, |E| the number 

of edges, and d the dimensionality of the space (three in the case of bridges). The 

limitations of his equation, called a Maxwell count, can be seen by applying it to the two-

dimensional graph in Figure 4.2. The 6 vertices, which have a total of 6 x 2 = 12 dof, are 

constrained by 9 edges, leading to a Maxwell count of 12 – 9 = 3 dof. As all bodies in 

two-dimensions have at least 3 dof (2 translational and 1 rotational), the Maxwell count 

would imply that the graph is completely rigid. This is clearly not the case, as the left side 

of the graph contains an internal dof, called a floppy mode that allows the rhombus to be 

sheared without changing the lengths of any of the edges. The failure of the Maxwell 

count is due to its inability to recognize that the right half of the graph contains more 

edges than are necessary to make it rigid (try removing one and see). One of the edges is 

therefore said to be redundant. A redundant constraint does not remove a dof from the 

system, as a rigid object already possesses the minimal number of dof. This problem can 

be avoided by removing redundant constraints prior to performing the Maxwell count, 

but identification of all redundant constraints in general requires Maxwell counts to be 

performed on all possible subgraphs, the number of which grows exponentially with the 

size of the system, making an exhaustive analysis of even moderately sized graphs 

infeasible.   
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 Interestingly, the verbal expression of bodies “possessing” dof and constraints 

“taking them away” offers a subtle clue to an efficient algorithm for determining the 

rigidity of frameworks that requires at most order N
2
 steps (in practice scaling closer to 

N
1.2

). Such an algorithm, called The Pebble Game, was found by Jacobs and Thorpe in 

1995 (115). In the Pebble Game, each vertex “possesses” one pebble for each of its dof 

(two for the example in Figure 4.2) which are “taken away” by the edges. As an edge (i.e. 

a distance constraint) can only remove one dof, the effect of the edge is to require one 

pebble from one of its terminal vertices to be placed on it if and only if a few specific 

rules are satisfied (115). The beauty of the algorithm is that the satisfaction of a few 

simple rules is sufficient to ensure that no redundant edge is ever covered and only one 

attempt to cover each edge is necessary for the algorithm to converge. From the final 

arrangement of pebbles, one can determine the regions that are rigid and those that are 

not. It might seem fortuitous that such a “pebble game” exists for characterizing rigidity. 

It can be shown that rigidity in three dimensions lacks an associated pebble game if the 

vertices are modeled as points with three dof. Luckily one does exist if the vertices are 

modeled as objects with six dof (116), which can be interpreted as the three translational 

and three rotational rigid-body dof. The Pebble Game algorithm is contained within the 

software package FIRST (Floppy Inclusions and Rigid Substructure Topography) (114). 

 When modeling the flexibility of biomolecules, each atom is treated as a generic 

body with six dof. Each stereochemical interaction can be modeled by a certain number 

of edges between pairs of bodies, each edge removing one dof from the system. For 

example, a single covalent bond is represented by 5 edges, as two bodies connected 

solely by a covalent bond possess only 7 of the 2 x 6 = 12 dof they would have in the 

absence of the covalent bond, as the connected bodies have the 6 rigid-body dof and one 

internal torsion angle. Similarly, a double bond is represented by 6 edges due to its lack 

of rotational freedom. It is more difficult to rigorously infer from mechanical behavior  
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Figure 4.3  Large rigid regions within barnase. Figure reproduced from (117). 

the number of dof removed by each of the non-bonded interactions (hydrogen bonds, salt-

bridges, and hydrophobic contacts), but values of 5, 5, and 2 respectively result in 

flexibilities with optimal agreement to experiment and MD simulation (117).  

 When both stereochemical and non-bonded constraints are used to determine the 

rigid clusters, alpha helices and sufficiently large beta sheets possessing standard 

backbone hydrogen bonding pattern form single rigid clusters, as shown in Figure 4.3 for 

barnase (117). Interestingly, high densities of specific side-chain constraints can 

collectively cause rigidity to “percolate” between rigid secondary structures, forming the 

large rigid cluster in Figure 4.3. The net effect of non-bonded constraints on the 

polypeptide chain is to reduce the number of rotatable torsion angles. Rigidity analysis 

can therefore be viewed as an intuitive and chemically justified method of dimensional 

reduction.  

Conformational sampling: FRODAN 

 Rigidity analysis can quickly determine which parts of a framework are rigid and 

which contain floppy modes that allow flexibility, but it does not determine the amplitude 

of these modes. This limitation is somewhat analogous to that of NMA and ENM: 

analysis is performed on a single static structure with a single geometric relationship 
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between the atoms. Determining how far along a floppy mode a protein can move before 

encountering steric clashes or limitations due to the complex network of stereochemical 

constraints is an incredibly difficult problem that can only be approximately solved by 

building a computational model, similar in spirit to those of Watson and Crick, and 

exploring the accessible conformational space. 

 Such a model, called FRODAN (10), was created by Daniel Farrell and is based 

on an older version called FRODA (117) developed by Stephen Wells. The first step 

within FRODAN is to determine the rigid units (RUs) that will serve as the fundamental 

mobile components of the model. Unlike FRODA, which used both covalent and non-

covalent constraints to determine RUs resulting in large clusters such as those in Figure 

4.3, FRODAN uses only covalent bond and angle constraints to perform the rigidity 

analysis. Non-covalent interactions in the form of hydrogen bonds, salt bridges, and 

hydrophobic contacts are instead modeled as tethers, acting as upper limit “less than” 

distance constraints between pairs of atoms in different RUs, discussed in more detail 

later this section. The RUs defined using only covalent constraints have a very intuitive 

property: for fixed bond lengths and angles, the relative positions of all atoms within a 

RU are fixed, while the relative position between pairs of atoms in different RUs can vary 

through the rotation of torsion angles. This is made clearer by looking at the RU 

decomposition of phenylalanine shown in Figure 4.4A. Imagining that you are one of the 

carbon atoms of the aromatic ring, your position is fixed relative to the other atoms in the 

aromatic ring as well as the atoms sharing a covalent bond with the ring. Likewise, taking 

the perspective of the Cα and Cβ atoms, your position relative to your four covalent 

neighbors is fixed, but no others. An interesting consequence of the rigid unit 

decomposition is that a single atom can be shared by more than one RU. This is a natural 

consequence of the fact that torsional rotation preserves a bond’s length while creating 

relative motion between the rigid bodies that it connects. Analyzing a full polypeptide  
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Figure 4.4  (A) Decomposition of phenylalanine into rigid units. The shared atoms are 

labeled and are non-overlapping simply for clarity. (B) Demonstration of the “shared 

atom” constraints that connect rigid units. (C) Demonstration of a “greater than” 

constraint enforcing steric repulsion between two atoms. Figure modified from (10). 

chain, one would find that all torsion angles are represented by shared edges between 

pairs of rigid units. 

 Now that RU decompositions with and without non-covalent interactions are 

better understood, an explanation is needed for their absence from the rigidity analysis in 

FRODAN. Both choices lead to models that are equally simple conceptually and roughly 

equal in terms of computational efficiency, but whereas hydrogen bonds and hydrophobic 

interactions located in large RUs have both their lengths and angles locked, in FRODAN 

they always possess a small window of possible lengths and angles (no angular 

restrictions exist for hydrophobic contacts). Collectively, these small windows allow 

alpha helices and beta sheets to have a small amount of flexibility instead of being strictly 

rigid blocks, resulting in protein models with conformational subspaces that agree much 

more closely with those explored during MD simulation. It should be stressed that 

regions that are rigid in FRODA still have very rigid behavior in FRODAN due to the 

dense array of upper distance constraints imposed on the smaller RUs by the set of non-

covalent interactions. 

 It may have come to your attention that whether the RUs be the larger ones of 

FRODA or the smaller ones of FRODAN, the relative motions of the RUs must be 
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limited by more than just non-covalent constraints, otherwise phenylalanine shown in 

Figure 4.4A would fall apart. In FRODAN, which will be the sole focus of discussion 

from this point forward, these additional constraints are similar to those for the non-

covalent interactions in that they are not constraints in the graph theory sense, but act to 

limit the relative motion of the RUs. These constraints can be categorized into three 

types: equality constraints, “less than” constraints and “greater than” constraints. The 

constraints are enforced by minimizing an objective function that is zero if the constraints 

are met and rises quadratically as constraints are violated. Equality constraints have 

potentials of the form 

           
 

 
     (4.7) 

where Δx is the separation between two atoms. The only examples of these are the 

“shared atom” constraints that force copies of the same atom in different rigid units to be 

located at the same place, as shown in Figure 4.4B. “Greater than” constraints are half-

harmonic springs with potentials of the form 
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 (4.8) 

that try to keep the distance x between two atoms greater than some bound xo. These 

include the steric interactions, shown in Figure 4.4C, that prevent atoms from 

overlapping, as well as the constraints that enforce proper Ramachandran angles and 

torsion angles. The use of distance constraints to maintain proper Ramachandran angles 

follows the work of Ho et al. (118) and Farrell et al. (10). Similarly, defining minimum 

allowable distances between all pairs of 1-4 atoms on either side of a rotatable bond can 

be used to enforce low-energy staggered conformations. Lastly, “less than” constraints 

are half-harmonic springs with potentials of the form 
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 (4.9) 

that try to keep the distance x between two atoms less than some bound xo and include 

hydrogen bonds and salt bridges, as well as hydrophobic interactions. Hydrogen bonds 

and salt bridges are identified as those having an energy E < -1.0 kcal/mol according to a 

modified Mayo potential (119, 120). Hydrophobic interactions occur between pairs of 

non-polar carbon or sulphur atoms separated by less than 3.9 Å that belong to the side-

chains of hydrophobic residues. Overall, the constraint-enforcing energy function within 

FRODAN can be summarized as 

                         (4.10) 

Conformations that satisfy all bonded and non-bonded constraints have zero energy. 

There is no consideration of electrostatic interactions or solvation effects other than those 

implicit in the non-bonded constraints. With the exception of small torsional energy 

barriers, the energy landscape is therefore flat within the allowed floppy mode subspace, 

outside of which it rises harmonically.  

The allowed subspace is explored by independently perturbing the positions and 

orientations of all RUs, followed by a conjugate gradient minimization of the constraint 

 

Figure 4.5  Example iteration in FRODAN involving an initial perturbation of the rigid 

units, followed by re-enforcement of the constraints (10). Figure courtesy of Daniel 

Farrell. 
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energy Eprot that enforces the set of constraints, as shown in Figure 4.5  These 

perturbations can be quite large, involving translations of up to 2 Å and rotations of up to 

180
o
. If upon perturbation, the constraints cannot be satisfied to within a strictly chosen 

tolerance, the structure is reverted to its last good conformation and a new perturbation is 

performed. The ability to traverse torsional barriers in a single perturbation step and the 

flat energy landscape of the FRODAN model can be seen as two of FRODAN’s greatest 

strengths, as it allows the conformational subspace to be extensively sampled far more 

rapidly than with MD techniques (55). In fact, many MD sampling techniques exist that 

attempt to flatten out the landscape (121), whereas this is implicit in the constraint-based 

model.  
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CHAPTER 5: FINITE SIZE CORRECTION FOR SCATTERING FROM 

NANOMATERIALS 

Introduction 

 The atomic pair distribution function describes the distance-dependent density of 

a material as viewed from an average atom. It links microscopic atomic positions with 

macroscopic experimental observables such as pressure, compressibility, energy, and 

phase transitions (16). It can be determined either experimentally by taking the Fourier 

transform of neutron or X-ray diffraction data or from computer-generated structure 

models (13). We will focus on the radial distribution function (RDF) that is closely 

related to the pair distribution function. A comparison between the measured and 

computed RDFs provides insight into the structural origin of experimental observables. 

For example, RDFs have been used to probe the architecture of novel amorphous and 

porous materials (17), illustrate the phase transition across the optimal doping of 

superconducting materials (18), and detect randomness in periodic superlattices (19).  

 The computation of an RDF consists essentially of counting the number of atoms 

within a thin shell a given distance away from an average atom. In general, it is affected 

by two types of structural properties. The first type relates to the intrinsic geometry of the 

atomic network, i.e., the average coordination of each atom, the distortion of bond 

lengths and bond angles, and the randomness of the atomic network. These properties 

influence how atoms are placed with respect to each other. They determine the positions, 

intensities, widths, and overlaps of the peaks in the RDF. The second type relates to 

spatial confinement, i.e., the shape and the size of the material sample. They determine 

the envelope of the RDF. Infinite in all directions, a bulk material has neither shape nor 

size. Thus the RDF of a bulk material is only determined by the intrinsic geometry of its 

atomic network. In contrast, the RDF of a nanomaterial is a function of its shape and size 

in addition to the atomic geometry (122). A nanomaterial, by definition, is smaller than 1 
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µm in at least one dimension and thus a non-negligible fraction of the atoms are on or 

close to the surface of the material. These surface atoms are surrounded partially by the 

material and partially by vacuum. The density distributions viewed from these atoms 

differ from those viewed from the deeply buried atoms. Since the RDF of a nanomaterial 

is the average of the density distributions viewed from all atoms, the RDF entangles the 

contributions from both the intrinsic atomic geometry and the spatial confinement.  

 The main research interest here is to describe a method for removing the effects 

of the finite nature of nanomaterials on scattering data so that the RDFs for all materials 

sharing a common atomic geometry fall on a single universal curve. The determination of 

the shape and size of a nanomaterial are usually not the goal of RDF analysis, as they can 

be obtained from experimental techniques such as small-angle X-ray scattering (20) and 

transmission electron microscopy (21). Most conventional forms of RDFs discussed in 

textbooks and the literature, however, do not take spatial confinement factors into 

consideration. This is not a surprise, as most of the RDF theory was developed in the 

days when bulk materials were the main if not the sole research subjects in condensed-

matter physics and materials science. With ever-growing interest in nanomaterials, it is 

desirable to have a form of RDF that is free of the spatial confinement effects so 

deviations in the intrinsic atomic geometry can be more easily compared. 

 As my contribution to this work, I derived the shape factor for an infinite 

cylindrical rod (see Appendix A) and corrected the code that creates nanomaterial RDFs 

and maps them to the universal curve. I also had a significant role in writing the resulting 

paper (123) and determining its logical flow. 

Theory and methodology 

 Under the general name of pair distribution functions, several sets of functions 

are used in the powder-diffraction community (124). The nomenclature used here follows 
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that of the book by Warren (13). The most intuitive of the distribution functions is the 

RDF, defined as  
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 (     )

  

 (5.1) 

where rij is the interatomic distance between atoms i and j, δ is the Dirac delta function, 

the wi’s are the atomic weight factors suitable for X-ray or neutron scattering, and <w> = 

Σi wi/N, where N is the number of atoms in the material. The sum in Eq. (5.1) is over all 

atom pairs. The function that is found directly from the structure factor S(Q) measured 

experimentally is the reduced pair distribution function G(r). The form of G(r) is found 

from S(Q) according to  
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 (2.5)  

This commonly used equation is somewhat misleading, as it assumes that S(Q) does not 

contain contributions from small-angle scattering (SAS), a point discussed in more detail 

later in this section. For bulk materials, G(r) can be related to R(r) through 

           (
    

      
  ) (5.2) 

The derivation of a universal function characteristic of any given material free of finite-

size effects will be performed using R(r) due to its intuitive nature. For a bulk material, 

the RDF R(r) approaches 4πr
2ρo at large distances, where ρo is the average density of the 

material. A reduced RDF (RRDF) P(r) is frequently used in the literature to normalize 

out the long-distance trend 

       
    

      
 (5.3) 

so that at large distances, this function approaches 1 for bulk systems. The subscript b 

indicates that this form of the RRDF only possesses the desired normalization behavior 

for bulk systems. For bounded systems, P(r) would decrease asymptotically as 1/r and 
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1/r
2
 for nanomaterials finite in 1 and 2 dimensions respectively, and would be exactly 

zero beyond some maximum distance for nanomaterials finite in all three dimensions. For 

such nanomaterials, it is also desirable to have a similarly defined distribution function 

that has the same flat baseline of unity at large distances and be independent of the shape 

of the material, depending only on the intrinsic atomic geometry of the material.  

 The reason the RRDF as defined by Eq. (5.3) trends away from unity for a 

material bounded in one or more dimensions is that a spherical shell of radius r placed 

about a typical atom can have part its surface outside of the bounded material, whereas 

this can never occur for a bulk material. The RDF of a bounded material is therefore 

always less than its bulk equivalent, causing the RRDF to trend below unity. For the 

infinite sheet and infinite rod, their long-distance trends indicate that the average fraction 

of the spherical shell lying outside the boundary of the material decreases as 1/r and 1/r
2
 

respectively. The function that describes the distance dependence of this fraction has 

been called the characteristic function of the shape (122) or the nanoparticle form factor 

(125) in the literature, but for clarity I will simply refer to it as the shape factor, α(r). 

Shape factor 

 The shape factor α(r) is equal to 1 at all r for a bulk material. For materials with 

boundaries, α(r) can be written as a Taylor series expansion about small r as  

                  (5.4) 

The value of c1 can be shown to be –S/4V, where S/V is the surface to volume ratio of the 

nanomaterial. The argument is based on consideration of length scales such that the 

surface is approximately locally flat on small enough scales. Let us consider an atom 

lying at a distance a inside a surface. When we construct R(r) for r > a, part of the 

spherical shell extending from r to r + dr centered at atom will lie in empty space rather 

than within the material, and thus the contribution of the atom to R(r) will be less than 

that of an atom in the bulk. The lost contribution can be quantified in terms of the fraction 
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of the surface area of the sphere of radius r that lies outside of the boundary of the 

nanomaterial. This “missing” contribution is that of a spherical cap, equal to 2πr(r − a), 

while the remaining surface area is 4πr
2 
– 2πr(r − a). We now consider that there will be 

a missing area contribution in R(r) from all points lying within 0 < a < r of the surface. 

We therefore integrate the missing and remaining contributions. For the missing 

contribution we have 

 ∫                
 

 

 (5.5) 

and for the remaining contribution, 

 ∫ [            ]       
 

 

 (5.6) 

The net effect is that we are missing 1/4 of the total contribution to R(r) from points lying 

within a distance r of the surface. For a nanomaterial of volume V and surface area S, the 

volume lying within a very small distance r of the surface is rS, which is a fraction rS/V 

of the total volume of the nanomaterial. Therefore, R(r) for the nanomaterial at small r 

will be equal to Rb(r), the value for the infinite bulk material, less 1/4 of the contribution 

from the “surface volume;” so the shape factor α(r) to first order in r is 

        
 

  
  (5.7) 

At larger values of r, α(r) will deviate from this linear form as the assumption that the 

surface is locally flat begins to break down. We can confirm that α(r) for all the shapes 

we list in this work behave as Eq. (5.7) at low r. This indicates that α(r) can be similar for 

solids of different shapes, e.g., different ellipsoids, as the leading term in α(r) depends 

only on the surface-to-volume ratio S/V. This suggests a limitation on the amount of 

shape information that can be obtained from RDF studies on nanomaterials.  

 While this prior derivation of the first order term in α(r) was made more intuitive 

by considering the limit of small values of r, a similar procedure can be followed for all 
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values of r to derive a complete expression for the shape factor of any object. The steps 

followed for small r can be written as a double integral, one corresponding to integrating 

over the shell centered around a fixed “observer” atom, located somewhere within the 

material, and the second integral acting to average this result over all possible observer 

positions. Written mathematically, this is equivalent to a density-density autocorrelation 

function c(r) of an object of the desired shape and uniform density, namely 

      
 

   
∫              

 

 

 (5.8) 

where ρ(r) is the three-dimensional density distribution of the object of interest and V is 

its volume. The autocorrelation is normalized here so as to have a maximum density of 1 

at c(0). Note that c(r) is proportional to the probability of finding two units of density 

within the object with separation r. The RDF is by its very nature spherically averaged, 

depends only on the magnitude of r, and can therefore be found by performing a spherical 

integration of c(r) about the origin. For objects of uniform density, Ru(r) = 4πr
2
ρo α(r), 

allowing α(r) to be found directly from the spherical average of c(r). 

 Not all shapes have shape factors that can be solved in closed form and must be 

solved numerically. As a simple example, applying Eq. (5.8) for a sphere of radius R and 

dividing by 4πr
2
ρo produces the shape factor 
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 (5.9) 

which can be seen to possess the same first order term derived earlier.  

 Shape factors that are commonly used are Gaussian [exp(−r
2
/σ

2
)] and exponential 

[exp(−r/σ)], where σ is the length scale describing the nanomaterial. In Figure 5.1 we 

show α(r) for a sphere of radius a = 10 Å and compare it with two Gaussian and two 

exponential shape factors. The Gaussian shape factors are shown with ζ = a and ζ = 2a, 

and of the two exponential shape factors, one has a length scale ζ = a and the other has  
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Figure 5.1  The shape factor for a sphere of radius a =10 Å (black solid) compared with 

four commonly used shape factors. The Gaussian shape factors have length scales σ = a 

(purple dot) and σ = 2a (red dot dash) while the exponential shape factors have σ = a 

(green dash) and σ such that the gradient at r = 0 Å matches the gradient of α(r) for the 

sphere (blue double dot). 

the gradient at r = 0 matched to the gradient of α(r) for the sphere. None of these 

functions is a good match to the actual shape of α(r) for the sphere, with the Gaussian 

even lacking the proper linear behavior at small r. The Gaussian and exponential shape 

factors can also be shown to fail at modeling α(r) of spheroids and other simple 

geometric shapes. Great caution should therefore be taken when using Gaussian or 

exponential shape factors in the interpretation of RDF data on nanomaterials. For films, 

cylinders, etc., the volume of the nanomaterial would of course be infinite. By combining 

Eq. (5.7) with the general sum rule    ∫         
 

 
   relating the volume Vn to the 

shape factor of a nanomaterial and applying it to an exponential form factor       

           leads to a volume of 8πσ
3
 and a surface area of 32πσ

2
 with at least one 

dimension being infinite in extent. It is unlikely that such a shape of uniform density 

exists. Thus we recommend that in the absence of any information concerning the shape 

of the nanomaterial, it is better to use the form for a sphere given in Eq. (5.9), with an 

appropriate choice of the radius a. 
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Boundary corrections 

 If the RRDF in Eq. (5.3) is instead defined as 

      
    

          
 (5.10) 

the distance dependence of R(r) is matched by that of α(r), causing this more general 

RRDF to fluctuate about unity for a nanomaterial of any shape and size, as desired. The 

general RRDF P(r) is shape-invariant, depending only on the intrinsic atomic geometry 

of the bulk material and not on the shape and size of possible boundaries.  

 Rewriting Eq. (5.3) as R(r) = 4πr
2
ρoP(r)α(r) and recognizing that 4πr

2
ρoP(r) is 

the RDF Rb(r) of the bulk material, Eq. (5) is equivalent to 

                (5.11) 

The RDF of an undistorted nanomaterial can therefore be expressed as the product of two 

independent distributions, one containing only information regarding the intrinsic atomic 

geometry of the material and the other describing only the effects of spatial confinement. 

From Eq. (5.8), α(r) for a nanomaterial can also be interpreted as describing the 

probability that two randomly chosen points from the bulk material separated by a 

distance r will be found within the boundary of the nanomaterial. The nanomaterial can 

be imagined to have been cut from the bulk material without undergoing deformation or 

 

Figure 5.2  The statement that R(r) = Rb(r)α(r) is equivalent to averaging the RDFs of the 

ensemble of nanomaterials cut from the bulk at all locations and orientations with equal 

probability. Two such random locations and orientations are displayed for the case of 

rectangular nanomaterials cut from a triangular lattice. 
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reconstruction. Unfortunately, knowing the bulk material and the boundary describing the 

shape and size does not uniquely specify the nanomaterial, as it could be cut from the 

bulk at any location and orientation, each giving a different realization of the 

nanomaterial with a different RDF, as shown in Figure 5.2. The RDFs of the two cuts in 

Figure 5.2 not only contain peaks of different amplitude but the rightmost cut contains a 

peak due to the atoms in the upper and lower corners, that is, entirely absent in the first 

cut. The apparent dilemma is due to the fact that α(r) depends only on a nanomaterial’s 

shape and size and is defined for an object of uniform density, while here the density is 

inhomogeneous at the atomic level. The problem is resolved and Eq. (5.11) made exact if 

cuts at all locations and orientations are sampled with equal probability and R(r) is the 

average RDF of the ensemble. For any sample of nanomaterials that does not contain an 

equal representation of all boundary locations and orientations, as is the case for 

nonspherical nanomaterials with preferential directions of growth that correlate with the 

underlying atomic geometry (126), Eq. (5.11) is only an approximation for the average 

RDF of the sample. As the shape factor α(r) is independent of the density distribution 

within the boundary, it can be calculated by finding the RDF R
u
(r) (the superscript u 

stands for uniform density) of a material of uniform density ρo of the desired shape and 

size, and dividing it by the RDF of the uniform bulk, Rb
u
 (r) = 4πr

2
ρo. The general RRDF 

for infinite or bounded materials can therefore be written as 

      
    

     
 

    

  
        

 
    

          
 (5.12) 

 For bulk materials, α(r) = 1 and the RRDF given by Eq. (5.12) reduces to Eq. 

(5.3). Therefore, Eq. (5.12) is an extension of an already widely used distribution 

function. The RRDF P(r) is a means of plotting RDF data such that data for 

nanomaterials of all shapes and sizes with a common atomic arrangement fall on a single 

curve, allowing differences in their intrinsic atomic geometry to be more readily 
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compared. Although strictly speaking, the shape independence of P(r) in Eq. (5.11) is 

only true after averaging over nanomaterials with all possible locations and orientations 

with respect to the bulk material, in practice it can be used to approximate the RDF of a 

single realization of the nanomaterial, except at the very largest spanning distances within 

the nanomaterial, discussed further in the Results section. Care is needed when the 

nanomaterials are highly non-spherical, as for example in needles for which the 

deviations from spherical symmetry are strongly correlated with asymmetries of the 

atomic lattice (126). For nanomaterials, where all the spanning lengths are at the same 

length scales, deviations in P(r) from that of the bulk material can be ascribed to 

structural changes from the bulk due to surface relaxation and structural rearrangement 

(126). 

 While R(r) is intuitive, G(r) is the distribution determined directly from 

experimental data. The form of G(r) in Eq. (2.5) assumes that the structure factor S(Q) is 

measured down to a Qmin > 0, that is, large enough to exclude contributions from small 

angle scattering (SAS) (20) in either X-ray or neutron-scattering experiments, as the 

second term in G(r), namely, 4πrρo, is the contribution from S(Q < Qmin) for bulk 

materials (127). Within the small Q region containing the SAS data, scattering is 

unaffected by the atomic granularity of the density and is thus equal to that for a material 

of uniform density. The general form of S(Q < Qmin) for materials of any shape and size 

(127) is 

          ∫         
       

  
  

 

 

 (5.13) 

Transforming the SAS data to r space using Eq. (2.5) gives 4πrρoα(r). Knowing that α(0) 

= 1, the form of α(r) can thus be found directly from SAS data. If the second term in Eq. 

(5.2) is replaced by 4πrρoα(r), one finds the general form of G(r) that fluctuates about 

zero at large r for materials of all shapes and sizes, namely, 
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Solving Eq. (5.14) for R(r) gives 

                       (5.15) 

Inserting this expression for R(r) into Eq. (5.12), one gets the expression for the universal 

RRDF P(r) of the material that can be found directly from experimental data, namely, 

        
    

         
 (5.16) 

The first term describes the baseline that represents the homogeneous density limit and 

the second term describes the fluctuations due to atomic geometry and granularity.  

 In addition to the finite extent of a material, another experimental limitation that 

affects the amplitude of the peaks in G(r) is the finite Q-space resolution of the 

instrument. The finite resolution has the effect of convoluting the true structure factor 

S(Q) by a resolution function, causing the true G(r) to be multiplied by an envelope 

function equal to the Fourier transform of the resolution function, thus dampening the 

peak amplitudes. For example, a Gaussian resolution function causes G(r) to be 

multiplied by the corresponding Gaussian envelope function and more complex functions 

can also be used (94). The finite resolution of the instrument acts on data from bulk 

materials and nanomaterials alike.  

 This raises the question of the best way to analyze experimental data and the key 

decision as to whether to compare theory (including computer simulations) in real space 

or reciprocal space (15). There are advantages to both approaches. If the resolution 

function of the instrument is unknown and has a significant effect on the structure factor 

S(Q), then there is little choice than to do the comparison in reciprocal space. One way to 

do this would be to use a RRDF P(r) as in the bulk material and obtain the reduced pair 

distribution function G(r) via Eq. (5.14). This requires some assumed form for the shape 
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factor α(r) to be used, which will have to be obtained from microstructural information, 

small-angle scattering, a plausible guess, etc. Then the structure factor S(Q) can be 

obtained from the back sine Fourier transform of Eq. (2.5) and compared to the 

experiment. The fact that P(r) oscillates about unity at large values of r provides a very 

useful consistency check on procedures.  

 If sufficient knowledge of the experimental resolution is available, then the 

experimental structure factor S(Q) can be resolution corrected, and the reduced pair 

distribution function G(r) obtained via Eq. (2.5). One way this can be done is provided by 

a parameterization scheme given in (94), which is particularly straightforward if a single 

Gaussian convolution is involved. The RRDF P(r) is then obtained via Eq. (5.16), where 

the resolution function is removed as a multiplicative Gaussian. The form factor α(r) used 

should be such that at large distances r, the RRDF goes to unity as shown, for example, in 

the lower panel of Figure 5.4. This is a rather strong constraint. The determination of an 

appropriate shape factor α(r) is facilitated if independent data is available via 

microstructural studies, small-angle scattering, etc. If there is a distribution of shape 

factors, due to differences in the sizes and shapes of the nanomaterials, then an ensemble 

averaged α(r) can be used (127) because G(r) is linear in α(r) from Eq. (5.14). It should 

be noted that all this analysis assumes that there are no correlations between the 

orientation of the nanomaterial boundaries with that of the atomic lattice, that is, the 

individual nanomaterials act independently and are uncorrelated, and also that there is no 

matrix material between the nanomaterials. Further refinements to the theory are needed 

to incorporate such effects. 

Results 

 Three amorphous silica models were built as part of a study on noncrystalline 

networks using a modified Wooten, Winer, and Weaire (WWW) approach (28, 33, 128): 

a bulk, nanofilm, and nanorod model. In the bulk model the cubic supercell is periodic in  
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Figure 5.3  Network models of amorphous silica are shown for (a) a nanorod, (b) bulk, 

and (c) a nanofilm. These models are fully coordinated everywhere, including at the 

surface. A crystalline silica network in the shape of a nanotetrahedron is shown in both 

(d) and (e). In all five figures, silicon and oxygen atoms are colored yellow and red, 

respectively. Those surfaces subject to periodic boundary conditions are indicated by 

their normal vectors. In the first four figures, the supercells are outlined with black lines, 

while (e) shows a more accurate space-filling representation of (d). 

all three dimensions (Figure 5.3b). In the nanofilm model the rectangular supercell is 

periodic in two dimensions while having two free surfaces along the remaining 

dimension (Figure 5.3c). The model represents an infinitely wide nanomaterial that has a 

finite thickness. In the rod model the supercell is periodic in only one dimension (Figure 

5.3a) and represents an infinitely long nanomaterial with a roughly circular cross section. 

In all three models, each silicon and oxygen atom, including those at the surface is, 
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respectively, bonded to four nearest-neighboring oxygen atoms and two nearest-

neighboring silicon atoms. 

 The three amorphous silica models differ significantly from each other in shape 

and size. Their RDFs as defined in Eq. (5.1) differ considerably, as shown in the top 

panel of Figure 5.4. At large distances, the RDFs of the bulk, nanofilm, and nanorod 

models are proportional to r
2
, r, and a constant respectively, as expected. We apply Eq. 

(5.12) to decouple the intrinsic atomic geometry of the three amorphous silica models 

from the shape and size effects. The denominator R
u
(r) for each model, namely, the RDF 

of the medium of uniform density having the same shape and size, has an analytical form 

for the three models. As discussed previously,                for the bulk model. To 

the best of my knowledge, the RDF of an infinite uniform cylindrical rod has not 

previously been found in the concise form derived in the Appendix A. By dividing the 

raw RDF data of the three models displayed in the top panel of Figure 5.4 by the 

appropriate R
u
(r), we obtain the RRDFs of the three models, as shown in the bottom 

panel of Figure 5.4.  

 Independent of the shape and size of the network model, the RRDF reveals the 

underlying intrinsic atomic geometry with great accuracy. As shown in the bottom panel 

of Figure 5.4, the RRDFs of the bulk, nanofilm, and nanorod are essentially the same. 

This correctly represents the fact that the three models are virtually indistinguishable 

from each other in terms of local topology with minor differences due to surface 

reconstruction and distortion from the ideal geometric shape (the nanorod is not a perfect 

cylinder, etc.). In all three models, atoms are fully coordinated; bonding networks are 

amorphous; distortions in bond lengths and bond angles are within narrow ranges. The 

nanorod model has the widest second peak in its RRDF due to the high fraction of surface 

atoms that have had their bond angles distorted due to surface reconstruction.  
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Figure 5.4  The distance distributions computed according to the RDF (top) and the 

RRDF (bottom) of the bulk (black), nanofilm (red), and nanorod (blue) amorphous silica 

network models. The inset figures show closeups at short distances 0 - 4.5 Å. The atomic 

numbers are used as weight factors in the computation of the RDF and RRDF. 

 The nanofilm and cylindrical nanorod models are two of the few fortunate cases 

for which the RDFs R
u
(r) of the corresponding uniform media have analytical 

expressions. For nanomaterials of most shapes, analytical expressions for R
u
(r) are not 

available. In fact it is quite challenging to derive the analytical form of the RDF of almost 

any geometrical shape, and to date it has not been possible for any shape whose surface 

contains a singularity, such as an edge or vertex. For example, even for the simplest case, 

the RDF of a uniform medium in the shape of a cube has not been derived in closed form, 

although it is easy to write in terms of a double integral that does the spherical averaging.  

 The computation of the RRDF according to Eq. (5.12), however, is not hindered 

by the lack of analytical expressions for RDFs of uniform media. No matter how 

complicated the shape of a nanomaterial, the RDF of the correspondingly shaped uniform  
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Figure 5.5  The RDF of a bulk crystalline-quartz network model (black) compared to the 

RDF of a single tetrahedral silica network model (red). Also included is the average RDF 

of one million tetrahedral silica network models with random locations but fixed 

orientation (green), fixed location but random orientations (purple), and random locations 

and orientations (blue). The purple and blue curves are indistinguishable at the resolution 

plotted. The inset figure shows a close-up over distances from 20 to 30 Å. 

medium can be calculated numerically. As long as the definitions of the “inside” and 

“outside” of a material are programmable, a large number of distances can be computed 

between randomly generated pairs of points that lie within the boundary of the shape. The 

histogram of pair separations is proportional to the RDF of the uniform medium of the 

same shape and size as the real material. The RRDF of the nanomaterial is then computed 

according to Eq. (5.12). 

 To demonstrate this numerical procedure, the RRDF is computed for a crystalline 

silica network model in the shape of a regular tetrahedron (Figure 5.3d and e). The 

nanotetrahedron model is cut out of a bulk crystalline-quartz network model without 

further optimization, creating dangling bonds at the surfaces. The edge length of the 

tetrahedron is chosen to be 28.3 Å. The model is used in this study to exemplify the 

numerical calculation of an RRDF for an object bounded in all three dimensions. The 

RRDF is well defined up to the maximum possible separation within the object. To the 

best of the authors’ knowledge, the analytical form of the RDF of a regular tetrahedron of 

uniform density has not been derived. We therefore numerically compute the RDF of a  
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Figure 5.6  The same distribution as Figure 5.5 but plotted as RRDFs. The inset figure 

shows a close-up over distances from 20 to 30 Å. The largest distance within the 

nanotetrahedron is the edge length, 28.3 Å. 

uniform tetrahedron using one billion pairs of points to achieve a smooth and well-

converged distance distribution. The RRDF of the tetrahedral silica network model is 

then computed according to Eq. (5.12).  

 As discussed previously, expressing R(r) as Rb(r)α(r) is exact only when R(r) is 

the RDF averaged over nanomaterials representing cuts in all possible locations and 

orientations with respect to the bulk material, as shown in Figure 5.2. If the set of 

nanomaterials does not represent all possible locations and rotations, the use of the shape 

factor through Eq. (5.12) gives only an approximation to the average RDF of the set. The 

robustness of this approximation is shown in Figure 5.5 and Figure 5.6 by comparing the 

RDF and RRDF of the bulk material with the average RDF and RRDF of several sets of 

tetrahedra. These sets include a single tetrahedron, tetrahedra with a single fixed 

orientation but all possible locations, tetrahedra with a single fixed location but all 

possible orientations, and tetrahedra with all possible locations and orientations.  

 The RRDFs of all four sets show good agreement with the RRDF of the bulk 

material except at distances that approach the maximum possible pair distance contained 

within the tetrahedral boundaries. All peaks in the RRDF represent genuine interatomic 

distance contributions, as the numerically determined RDF of the tetrahedron of uniform 
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density is smooth and nonzero over the relevant distances. The deviations from unity at 

large distances are amplified in the RRDF relative to the RDF, as α(r) in the denominator 

of Eq. (5.12) becomes small at these distances. The small disparity between the average 

RRDF of the set of tetrahedra with all possible locations and orientations and the RRDF 

of the bulk (below 28.3 Å) is due only to the computational limitations of sampling a 

finite number of tetrahedra in the calculation of R(r) and a finite number of pairs in the 

calculation of R
u
(r). Otherwise the agreement would be perfect, as this set represents the 

complete ensemble of possible tetrahedra. For the other three sets, additional deviations 

in peak amplitude are due to differences in the frequency that a pair of atoms of a given 

separation appears in the sets relative to the frequency in the complete ensemble. Some 

atom pairs from the bulk may be completely absent within a given set of tetrahedral 

despite having separations below 28.3 Å due to constraints on location and orientation. 

Averaging over orientation alone results in an RDF that more closely resembles the 

RRDF of the bulk than does the average over location, although this may not be a general 

result for nanomaterials of all shapes and sizes, and for materials of all atomic 

geometries. 

Summary 

 In this work it has been demonstrated that a shape factor can be used to transform 

the RDF of finite and bulk material onto a more general function, the RRDF depending 

only on the intrinsic atomic geometry of the material and not on the shape and size of the 

nanomaterials. The RRDF will be affected by surface reconstruction and other changes, 

such as voids, for example, when compared to bulk material with nominally similar 

atomic structure. The RRDF has a baseline of unity for materials of all atomic geometries 

and of any shape and size, as illustrated in Figure 5.4 and Figure 5.6, and this is a 

particularly useful constraint on the data at large r where the oscillations in the RRDF 

decay. The RRDF keeps the information describing the vital atomic geometry intact so 
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that differences between nanomaterials of various shapes and sizes due to surface 

relaxation and structural rearrangement can be directly observed, independent of the main 

size and shape effects. 
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CHAPTER 6: LONG-WAVELENGTH LIMIT OF THE STRUCTURE FACTOR IN 

AMORPHOUS MATERIALS 

Introduction 

 Correlated density fluctuations over large length scales can be determined from 

the small   limit of the static structure factor     , and thus can be obtained directly 

from diffraction experiments (15). As discussed in Chapter 5, the structure factor can be 

defined in terms of the real-space pair density      via the sine Fourier transform  

 

 [      ]  ∫    [       ]         

 

 

 

 ∫             

 

 

 

(6.1) 

where    is the average density and         [       ] is the reduced pair 

distribution function. This is also a convenient way to obtain      from computer 

generated structural models, as      and hence      is rather straightforward to compute. 

 Of interest here is the structure factor (15) in the small   limit        

describing correlated density fluctuations over large length scales. This limit has rarely 

been discussed in the context of amorphous modeling but which is of considerable 

interest. We will refer to this limit as the static structure factor, which can be measured by 

small angle elastic scattering (i.e. diffraction) experiments using either X-rays or 

neutrons, and it is of considerable interest theoretically as it contains information about 

how far the system is from thermal equilibrium, which will be discussed later. We note 

that it is      in the limit as     that is of interest, and not      itself, as     is a 

singular point. For brevity, this limit will henceforth be implied whenever      is used.  

In order to obtain any kind of reliable estimate of      from computer generated 

models, it is necessary for the model to be large, and I will focus on the excellent models 
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of amorphous silicon and vitreous silica developed by Mousseau, Barkema and Vink (30, 

34). I will describe an extrapolation technique that I developed, building upon concepts 

from Chapter 5, which removes much of the finite size effects at low Q that would 

otherwise make accurate extrapolation difficult. I will also show that the method provides 

a quantitative measure of how large a model must be in order to make a reliable estimate 

of     . I performed all analyses, wrote the majority of the resulting paper (32), and was 

involved in its submission. 

Theory and methodology 

 In Chapter 5, I showed how nanomaterials sharing the same shape and size could 

differ from one another due to differences in the position and orientation of the boundary 

relative to the atoms in the bulk material from which the nanomaterials can be envisioned 

to have been “cut.” If out of simplicity we imagine this material to be composed of a 

single type of scatterer (ie. a single isotope of a single element), density fluctuations can 

be straightforwardly associated with differences in the number density of atoms in 

different regions. For such a material, a non-vanishing limit      would therefore 

correspond to correlations in fluctuations of atom number density that extend over very 

large length scales. If we were to create many nanomaterials by taking an ensemble of 

cuts from the bulk (let them be spherical cuts for simplicity) and count the number of 

atoms in each, we would observe fluctuations due to two sources.  The first is due to 

differences in the number of atoms very close to the boundary that are included or 

excluded. Slight changes in the origin of a sphere will cause a small number of surface 

atoms to pop in and out of the boundary, with this number being proportional to the 

surface area. The second source of variation is due to differences in the local density that 

are being sampled by cuts sampling different regions of the bulk material and scales as 

the volume of the nanomaterial. It is this latter source of variation, which is independent 

of boundary effects and generally dominates as the size of the nanomaterial is increased, 
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that is of interest here. In the limit of very large nanomaterials, it is density fluctuations 

on the size scale of the system that are the main source of number variance within the 

ensemble of nanomaterials. 

 From general considerations (129), there is a sum rule relating the limit      to 

the variance in the number of atoms   within a volume  , namely 

      [〈  〉  〈 〉 ] 〈 〉 (6.2) 

in the thermodynamic limit as    . We demonstrate that the static structure factor in 

the small   limit is small but non-zero for realistic and large enough models of 

amorphous silicon and vitreous silica that numerical values can be obtained with some 

confidence. For crystals, with no variance in the density due to their periodicity, Eq. (6.2) 

gives       . Note that there are no assumptions about thermal equilibrium in the 

derivation of Eq. (6.2) which is of purely geometrical origin (130).  

 If further assumptions about thermal equilibrium and ergodicity are made, there 

is the additional result, well known in liquid theory (129), that relates number 

fluctuations to the isothermal compressibility   , namely 

 [〈  〉  〈 〉 ] 〈 〉          (6.3) 

This relation assumes that all the states of a system at temperature   governed by a 

potential are sampled according to Boltzmann statistics. Hence for liquids (and other 

thermodynamic, ergodic systems in thermal equilibrium), we have  

              (6.4) 

Eq. (6.4) is also true for multi-component systems if    is interpreted as the atomic 

number density, causing      to become       , a Bhatia-Thornton structure factor (22, 

131, 132) where   refers to the total number of atoms. 
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Background on amorphous materials 

 Amorphous silicon is perhaps the furthest from equilibrium of all amorphous 

materials. This is because it is highly strained, with most of the strain being taken up by 

deviations of the bond angles from their ideal tetrahedral value of 109.5°. Each silicon 

atom has 3 degrees of freedom. The important terms in the potential are the bond 

stretching and angle bending forces around each atom. There are 4 covalent bonds at each 

silicon atom, each of which is shared, giving a net of 2 bond stretching constraints per 

atom. Of the 6 angles at each silicon atom, 5 are independent, giving a total of 7 

constraints per atom. As there are considerably more constraints than degrees of freedom, 

the network is highly over-constrained (133). In thermal equilibrium, silicon cycles 

between crystalline solid and liquid forms. There is no glass transition. However, 

amorphous silicon can be prepared by various techniques involving very fast cooling and 

provides an extreme example of a non-equilibrium state. 

 Vitreous silica is a bulk glass, which contains very little strain, as can be seen as 

follows. The important constraints are the bond stretching and angle bending forces 

associated with the silicon atoms, as in amorphous silicon. The angular forces at the 

oxygen ions (β) are weak (134). The total number of constraints per SiO2 unit is 4 Si-O 

bond stretching constraints plus 5 angular forces at the Si giving a total of 9 constraints. 

However, the number of degrees of freedom per SiO2 is also 9 (3 per atom). The system 

is therefore isostatic and not over-constrained (133). Thus, the strong Si-O bond 

stretching and 0-Si-O angle bending forces are well accommodated (although the weaker 

angular distribution at the oxygen atom less so), so that vitreous silica is closer to thermal 

equilibrium than amorphous silicon, although not close enough that Eq. (6.4) can be used.  

However, Eq. (6.4) is much more likely to be obeyed if the fixative temperature Tf  at 

which the glass was formed is used instead of T (including for the compressibility). A 

much slower decrease in      is observed as the temperature is decreased below Tf due to 
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the freezing out of thermal vibrations about a fixed topology, as shown in the extensive 

and informative experiments of Levelut et. al (23, 135, 136). 

Computer models 

 In this study, I analyzed two high-quality periodic computer generated models of 

amorphous silicon. The first is a small model with 4096 atoms (henceforth called the 

4096 atom model) (33), built within a cubic super-cell with sides of length L = 43.42Å. 

The average bond length is a = 2.35Å, equal to the known value for crystalline silicon, 

and the model has the same density as crystalline silicon, which is about right for 

structurally good samples of amorphous silicon containing few voids, defects, etc.  The 

network was constructed using the Wooten, Winer, and Weaire (WWW) technique (28, 

33), based on locally restructuring the topology of crystalline silicon, while keeping the 

number of atoms and covalent bonds fixed, until the ring statistics settle down and there 

are no Bragg peaks apparent in the diffraction pattern. 

 The second model contains 100,000 atoms (referred to as the 100k model) within 

a cubic super-cell of sides L = 124.05Å, with an average bond length of a = 2.31Å, and 

was built using a modified WWW technique (34) based on previous work by Barkema 

and Mousseau (29). We note that the models of Mousseau and Barkema have the 

narrowest angular variance ( ~9) at the silicon atoms ever achieved in a non-crystalline 

tetrahedral network, and they also avoid the issue of possible crystal memory effects in 

WWW type models, as they use a non-crystalline atomic arrangement initially. The 100k 

model, like other models built by Barkema and Mousseau (29), has a density ~5% above 

that of crystalline silicon, which is too large for amorphous silicon. The reason why this 

model has a higher density, while being excellent in other aspects is not entirely clear, but 

it may be necessary to let the angular variance increase back up to ~11 in order to get the 

experimental density of amorphous silicon.  The correlation between this angular spread 
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and the density needs further study. This difference should not affect the limit      to 

first order, as an isotropic compression or expansion of the whole structure leaves the 

relative number fluctuations invariant in the thermodynamic limit. 

 A very large model of vitreous silica (300k model) has been produced by the 

same group (30) by first decorating the 100k amorphous silicon model with an oxygen 

ion between each silicon ion  and relaxing appropriately. The covalent bond network was 

then modified using the WWW technique. With only a few exceptions, all silicon atoms 

maintain only oxygen atoms as covalently bonded neighbours and vice versa. An 

important difference between the 100k amorphous silicon and the 300k vitreous silica 

models is that by effectively changing the fundamental unit from a silicon atom to a 

corner sharing SiO2 tetrahedron, the system is no longer overconstrained but instead 

isostatic (133), a point that was discussed in the Amorphous materials section. One might 

expect the greater number of degrees of freedom and the lower internal stress of the 

vitreous silica model to affect the static structure factor, as vitreous silica is closer than 

amorphous silicon to thermal equilibrium. We will return to this point later. 

Methods for calculating the structure factor in the limit     

Directly from the set of pair distances 

 The static structure factor      can be calculated in a number of ways, some of 

which are more useful (i.e. smoother) than others when extrapolating    . We focus 

first on amorphous silicon, a material with a single atomic species. The structure factor 

can be computed directly from the set of atom coordinates by taking the spherical average 

of 

        
 

 〈 〉  
∑  

               

   

 (6.5) 

where    is the scattering factor of atom i. A spherical average yields  
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 (6.6) 

where the sum     goes over all pairs of atoms (excluding the self terms) in the periodic 

cubic super-cell of size L, and is evaluated at      
  

 
√         where l, m, and 

n are integers. For a finite model with periodic boundary conditions, this means that it 

does not matter if the distances rij are measured within the unit super-cell or across unit 

super-cells, as long as all        terms are computed in Eq. (6.6).  

 This computational approach using Eq. (6.6) suffers from the problem that there 

are finite size effects at small  , even with periodic boundary conditions, creating a peak 

in      at the origin of finite width      and amplitude  . The peak at small  , studied 

by small angle X-ray or neutron scattering, is given by the convolution of the delta 

function that would exist at the origin if the model were infinite, with a function related 

to the shape of the box in which the model exists, as discussed in Chapter 5. This 

problem at small   could in principle be alleviated by subtracting the peak at the origin 

due to the finite size of the model (or sample), but the form of the peak is only known 

algebraically for a limited set of shapes (137) which do not include the cube for which a 

double angular integration is needed. The numerical subtraction of two large numbers of 

     would lead to errors of     , which is the order of the answer required. A better 

approach to finding the form of      in a form suitable for extrapolation to small   is 

described below.  

Fourier transform approach 

 As a way to circumvent issues associated with the finite size of the sample that 

affect small  , the structure factor      can be obtained from      via the sine Fourier 

transform given in Eq. (6.1). It appears from the form of Eq. (6.1) as though the limit 

       depends upon the sine transform of      alone, and thus the behavior of      



80 

at large   does not contribute much to the limit      [see Figure 6.2 for an example of 

    ]. This can be shown to be false by expanding Eq. (6.1) in powers of   and keeping 

only the lowest order terms that would dominate in the small Q limit. To the lowest order 

in Q 

        ∫     [       ]     ∫     

 

 

    

 

 

 (6.7) 

which depends on the integral of      , not     . This factor of r increases the sensitivity 

of the limit      to the details of the decay in      at large distances. Oscillations in      

associated with a single reference atom are known to persist out to large distances (14) 

and are a serious concern when computing      from a model. Even upon averaging over 

all reference atoms, the use of Eq. (6.7) to find the limit      suffers from poor 

convergence at small  , as       amplifies the ripples that persist at large distances 

because of the finite nature of the model, although it is superior to using Eq. (6.6). 

 At this point, one might wonder why we do not use the tools from Chapter 5 for a 

cubic cell to reduce finite size effects from      to compute     . The reason is that the 

periodic boundary conditions of the model causes there to be no boundaries beyond 

which atoms do not exist. While a direct application of tools from Chapter 5 to the cubic 

models is not appropriate, I will now show that they can be applied as an excellent tool 

for extrapolation. 

Sampling volume method 

 Quite generally, even in the absence of thermal equilibrium, the small   limit 

     is related in the thermodynamic limit to number (or density) fluctuations within sub-

regions of volume   according to Eq. (6.2). As we only have models of finite size, even 

with periodic boundary conditions it is not possible to determine the limit directly and it 

is necessary to extrapolate to the N →   limit as best we can. The approach of 
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extrapolating      as     suffers from finite size effects that cause oscillations about 

the ideal      which would be obtained for an infinite model. It is difficult to disentangle 

the finite size effects from the underlying ideal     , making accurate extrapolation 

always challenging. 

 A more accurate determination of      can be achieved through Eq. (6.2). The 

equality states that the relative variance in the number of atoms within an ensemble of 

randomly placed, bounded, convex volumes (130) is equal to      in the limit that the 

sampling volume goes to infinity. For a finite sampling volume of fixed shape, the 

variance in the number of atoms within the enclosed volume, which samples all possible 

positions and orientations equally, can be divided into terms that scale as the volume, 

those that scale as surface area, and those with lower order dependencies on the length 

scale of the enclosed volume (130). If   describes such a sampling length scale, then the 

relative variance, which divides the variance by the average number of atoms within the 

sampling volume, can be expressed as the sum of a volume term of order   , a surface 

term of order    , and lower order terms. 

 Atomic structures for which the number variance does not depend on volume are 

called hyperuniform, examples of which are materials with a periodic lattice, as their unit 

cells have well defined volume and density. The number variance for such systems is 

related to the Gauss circle problem (14, 130, 138). The static structure factor for crystals 

is zero, as the structure factor      is zero for all values of   smaller than that associated 

with the first Bragg peak, leading to the result       . Also the relative variance of the 

number fluctuations is clearly zero on length scales that are much greater than the size of 

the unit super-cell. This result is only strictly true in the absence of diffuse scattering at a 

temperature of absolute zero. Note it is important to take the limit     so as to avoid 

the peak at the origin. For all periodic models at large enough length scales 
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(corresponding to small enough  ), the static structure factor will go to zero as the static 

limit is approached due to the hyperuniformity associated with the crystallinity. 

Nevertheless we can get meaningful results if we restrict ourselves to distances less than 

the size of the super-cell, and   values that are small (     where   is the linear 

dimension of the supercell) but not too small. 

 For non-crystalline systems, like amorphous silicon and vitreous silica, we will 

show that determining the relative variance of      for various sampling radii   and 

extrapolating the result as     provides a much more precise method of extracting the 

limit        from a finite model. Indeed it is the optimal procedure. The relative 

variance has been thoroughly described by Torquato and Stillinger (130) and Eq. (58) 

from their paper can be written for spherical sampling volumes as 
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where   is the number of atoms in the model, and the function  (     ) is the fractional 

intersection volume of two (continuum) spheres, with radii   and centers separated by 

   . The function  (     ) is proportional to the probability of two points, separated by 

   , both being contained within a randomly placed sphere of radius  , and has a form 

given by Torquato and Stillinger in Eq. (A11) of their paper as 
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 (6.9) 

and zero if     . This is just the shape function that is widely used in describing 

scattering from spherical micro-crystallites (137), but is used in quite a different context  

here, as it is merely an arbitrary but convenient sampling volume. Using the real-space 

pair density      to convert the sum in Eq. (6.8) into an integral, we can write 
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Using the identity 
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we obtain the following result 
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which can be conveniently re-written as  
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Comparing Eq. (6.13) to Eq. (6.7), they are clearly equivalent as     and    , as 

the integrand in Eq. (6.13) contains        which tends to unity for all   as    . The 

presence of        arises due to the finite nature of the sampling volume, and acts as a 

natural convergence factor for the integral in Eq. (6.7). Notice that the relative variance 

of      is not related to      except in the limit as both     and    . The 

sampling volume factor        for a sphere can be written as a Taylor expansion in 

integer powers of    , allowing the relative variance to be written in the form 

 
〈     〉  〈    〉 

〈    〉
               (6.14) 

where        describes the volume dependence, and   describes the surface 

dependence associated with the sampling volume. In conjunction with Eq. (6.2), Eq. 

(6.14) is therefore a simple but exact relation that allows one to obtain the static structure 

factor        from a large model structure, contained within a super-cell that 

periodically repeats, and avoids problems associated with extrapolating an oscillating 

function. We have found this to be the best possible procedure. 
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Results 

Amorphous silicon models 

 One major focus of this work is to determine the limit      for amorphous 

silicon from computer models which serves as a prediction for this important material. As 

discussed earlier, there is more than one way to find the limit     , and we will explain 

the numerical results obtained with all of them here.  

 The first approach is shown in Figure 6.1, where we show the most direct 

calculation of      using Eq. (6.6) at the points      
  

 
√         determined 

by the super-cell. While this gives a good overall description of     , it is very limited at 

small   and extrapolation or analytic continuation to     is not possible, even for the 

much larger 100k model. This is because the finite size oscillations are too severe. Note 

that the higher density of the 100k model leads to a shift of the peaks to slightly larger 

  values. Note also that the structure factor approaches unity at large   as it must, which 

sets the scale for comparison for the limit      . No harmonic phonons (or zero point 

motion) were added to any of the results in this work. The inclusion of phonons would  

 

Figure 6.1  The structure factor for amorphous silicon is calculated directly using Eq. 

(6.6) at the super-cell values      , shown in the inset as red circles for the 4096 atom 

model and black crosses for the 100k model. 
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have the effect of adding a term that goes as    at small  , but this would vanish as 

   . 

 The second method is the Fourier transform method in which      is determined 

from the sine transform using Eq. (6.1) with      input from the model. Both models of 

amorphous silicon, with 4096 and 100k atoms are used in Figure 6.2 which shows the 

distribution         [       ]. Notice the differences in the two silicon models. 

The difference of 5% in the densities is apparent at small  , where            , and 

by the small shift in the peak positions. For comparison, the average separation of bonded 

silicon atoms determined from the first peak is 2.35Å in the 4096 atom model but only 

2.31Å in the 100k model. An isotropic contraction of the whole system does not affect 

the limit     , so to first order, the overly dense 100k model should give appropriate 

values in the limit, as there is no length metric in the limit    . 

 The structure factor can be found by applying Eq. (6.1) using      for each 

model. Only the structure factor of the 100k model is shown in Figure 6.3, where, even 

here, the difficulty of trying to extrapolate to     is again apparent, although the 

 

Figure 6.2  The pair distribution function      for amorphous silicon for the 4096 atom 

model (rough red line) and the 100k model (smooth black line).  
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Figure 6.3  The structure factor      for amorphous silicon obtained from Eq. (6.1) for 

the 100k model. The insert shows the small   region expanded.  

situation is improved somewhat from the direct method shown in Figure 6.1. From the 

inset of Figure 6.3 that displays      at small  , the structure factor of the 100k model 

still displays significant oscillations due to finite size effects. Of course these oscillations 

are even more pronounced for the 4096 atom model, which is not shown. These effects 

arise from the truncation of      beyond     (half the width of the cubic super-cell), 

beyond which      is almost but not quite zero. The source of the oscillations is apparent 

from their wavelength of         . A very approximate limit of           can be 

extrapolated by eye for the 100k model from Figure 6.3, through the ripples in the insert, 

but the uncertainty is almost as large as the value itself. For the smaller 4096 atom model, 

the oscillations are even larger, making any attempt to extrapolate      quite hopeless. 

Smoothing techniques can be used to attenuate the oscillations, but are not very 

convincing. There is a better approach.  

 An alternative to the Fourier transform approach involves finding the relative 

variance within finite sampling volumes of increasing size (but identical shape- we have 

used spheres) and extrapolating to the thermodynamic limit. This has the great 

operational advantage of avoiding oscillations. The relative variance in the number of  
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Figure 6.4  The relative variance in the number fluctuations in amorphous silicon is 

computed within spheres of various radii R using the sampling volume method. The 

extrapolated value of S(0), which is just the limit of the relative variance for small 1/R, is 

given by                    for the 100k mode using Eq. (6.2). The vertical 

dashed lines indicate the range over which the linear fit was performed. It can be seen 

that the smallest value of 1/R for the 4096 atom model is larger than the upper limit of the 

range over which the relative variance is linear and therefore a reliable extrapolation 

cannot be made. 

atoms within spheres of different radii is plotted in Figure 6.4 for both silicon models. 

The distribution      can only be computed safely out to       due to the periodic 

nature of the model. As the sampling volume factor        for a sphere is non-zero out 

to     , the relative variance should only be computed using Eq. (6.13) out to 

     , causing the curve for the 4096 model to terminate at a larger value of     

    than that for the 100k model. The relative variance for the 100k model shows a 

definite linear region within the interval           or             

        . From Figure 6.2, the lower limit          corresponds to the distance at 

which strong correlations in atom pair separations all but vanish. The upper limit 

         corresponds to the radius at which the relative variance within the spherical 

volumes begins to deviate noticeably from its linear behaviour due to the finite size of the 

periodic model. The maximum possible radius given the sampling volume argument 
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above is        , so         represents a conservative and safe cut-off. If the 

largest sampling volume for which the relative variance maintains linear behaviour is 

assumed to be determined by the ratio of the width of the sampling volume to the width 

of the model, we would expect the linear region to be entirely absent for the 4096 atom 

model, as               is less than the lower limit         . Indeed this is 

what is observed in Figure 6.4 for the 4096 atom model, as the oscillations at large values 

of     are still significant by the time the lower limit of     is reached. These 

observations would imply that there is a critical size that a model should be in order for a 

good extrapolation to      in the thermodynamic limit to be possible. At a bare 

minimum, the width of the box (or for general shapes, the minimum diameter) should be 

greater than six times the distance over which strong correlations in atom pair separations 

persist in order for a linear fitting window to exist. For amorphous silicon, this bare 

minimum would correspond to a periodic super-cell with sides of length      containing 

~18,000 atoms. To get a window of decent size for the linear fit, it would be very difficult 

to work with a model of less than ~50,000 atoms. Triple this amount, ~150,000 atoms, is 

needed for vitreous silica.  

  The value of the limit      found from linear extrapolation over the 

linear region of the 100k model is                 , where the uncertainty 

represents the spread in the values of the intercept that result for different choices of the 

fitting interval. Applying the same extrapolation technique for all Q values, according to 

(15), results in a structure factor similar to that of Figure 6.3 but without the oscillations 

due to the finite size of the model, as shown in Figure 6.5. The large Q values are 

unaffected by using the convergence factor in (15), but there is a significant effect at 

small values of Q. In order to compare with experiment, the Q values of the structure 

factor for the 100k model shown in Figure 6.5 were decreased to 0.985 of their original  
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Figure 6.5  Comparison of the structure factor for amorphous silicon (as implanted, blue 

crosses, and annealed, black circles) experimentally determined by Laaziri et al. (1999b) 

with the structure factor for the 100k model (red curve, no points), rescaled to make the 

density of the model match that of crystalline silicon and hence void-free amorphous 

silicon. 

value to account for the fact that the model has a higher density than that of crystalline 

silicon and hence void-free amorphous silicon. The rescaled structure factor shows good 

agreement with the experimental results of Laaziri et al. (35) (whom we thank for 

providing original data points used in Figure 6.5) except for differences in the low Q 

region and in the amplitude of the oscillations. This requires further modeling to 

determine the effects of the angular spread at the silicon atom, ring statistics etc. on the 

structure factor. 

Vitreous silica model 

 In general for polyatomic systems, it is useful to define partial pair distribution 

functions (PPDFs) and their corresponding Faber-Ziman partial structure factors (139). 

For vitreous SiO2, the three PPDFs are         ,       , and        , where the PPDFs 

are computed using the subsets of atom types specified by their respective subscripts. 

Vitreous silica can be viewed as a network of corner sharing tetrahedral SiO2 subunits 

that are very rigid compared to the flexibility of the Si-O-Si angle at their shared corners.  
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Figure 6.6  The pair distribution function          for the 300k vitreous silica model (thin 

red) rescaled by a length factor of 1/1.33 and superimposed on the same distribution from 

the 100k amorphous silicon model (thick black, as in Figure 6.2). 

To a first approximation, the density fluctuations of the 300k vitreous silica model 

produced by Vink and Barkema (30) captured by          can be compared to      of 

the 100k model of amorphous silicon produced by the same group. Figure 6.4 displays 

the PPDF          superimposed on      from the 100k silicon model, where the silicon 

distances in the 300k model have been decreased by a factor of 1.33 to make the silicon 

atom densities the same. The two distributions are not the same, nor should they be, but 

are quite surprisingly close. Using the rescaled PPDF          of vitreous silica as an 

example of a highly distorted model for amorphous silicon leads to                

      by applying the volume sampling method, and is remarkably close to the value of 

                     for the 100k model obtained in the previous section. Thus it 

appears that the fourfold tetrahedral coordination of the amorphous network is the most 

important factor in determining     .  

 The three associated Faber-Ziman partial structure factors      
    ,    

    , and 

    
     can be found from their respective PPDFs through the sine Fourier transform  
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where    is the number density associated with all the atoms in the system,      is the 

reduced pair distribution function, a scaled version of      such that it oscillates about 

unity at large  , and   and   define the atom pairs used in the distribution function. This 

definition of the partial structure factor differs from the intuitive definition that would be 

obtained if atoms of each type were isolated. This more intuitive definition (for which we 

use unprimed notation) is represented by partial structure factors of the form 
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where        ,    being the fraction of atoms of type  . These two distributions are 

simply related by 

                 [   
      ]    [   

      ] (6.17) 

Three Bhatia-Thornton structure factors (22, 131, 132, 140) that describe correlations 

between atom number and concentration can be defined in terms of the three    
     

according to 
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(6.18) 

Three of the six unknowns in Eq. (6.18) can be found in the limit as     by applying 

the sampling volume method [Eq. (6.13)] to         ,       , and        (avoiding 

terms of type        with    ). Using the same fitting interval as that for the silicon 

model results in the limiting values                     ,                   , 

and                   , as shown in Figure 6.6. Inserting these values into the 

three Bhatia-Thornton relations (18) and solving for the remaining three unknowns, one  
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Figure 6.7  The relative variance of the number fluctuations in vitreous silica within 

sampling spheres of radii R. The variance is computed using the sampling volume 

method and plotted against 1/R. The extrapolated values of     , which are just the limits 

of the relative variances of the number fluctuations for small 1/R, are given by          
           ,                   , and                   . The position 

and size of the sampling window is determined in a similar way to that described for 

amorphous silicon. 

finds              ,                 , and                 . Within the 

uncertainty of the extrapolation, and remembering that there are ~10
5
 atoms in the model, 

the limits of the last two Bhatia-Thornton structure factors are consistent with zero, i.e. 

               . This reflects the fact that the chemical disorder is virtually zero, 

as only several out of the 100,000 silicon atoms in the model are bonded to another 

silicon atom instead of to an oxygen atom. 

 If the two quantities        and        are exactly zero, which we will take to 

be true from now on, the relationship between the limiting values of the other structure 

factors simplify greatly, and can all be expressed in terms of a single structure factor 

rather than the original three. Eqs. (6.18) can be rewritten as 
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From Eq. (6.17), one can write down the relation 

 

     
     

 

   
         

  
   

 

   
     

 

  
       

   
  

 

(6.20) 

In the thermodynamic limit, the previous six equations relate the limiting values of the 

seven structure factors, and thus there is only one independent quantity. The limiting 

value of the other structure factors that one would find if each atom type was taken in 

isolation can be expressed along with the Bhatia-Thornton number correlation as 

 

                   

                
(6.21) 

The scaling factors that exist between these three values when there is no chemical 

disorder in the system explains why the values found from the sampling volume method 

follow a 1:2:3 ratio [                    ,                   , and        

           ], as         and        . Notice that this scaling is only present as 

    and of course is not true at a general  . All the analysis of the 300k vitreous silica 

model can therefore be summarized in a single number by there being virtually no 

chemical disorder and                   . 

 The expression for the limiting value of the differential scattering cross section 

per atom obtained from scattering experiments also simplifies if no chemical disorder is 

present. The general form of differential cross section per atom (22, 132, 140), namely 



94 

 ∑        
  

[   
      ]  ∑    

 

 

 (6.22) 

where    is the scattering length of atoms of type  , can be simplified in the limit     

by writing the three partial structure factors      
    ,    

    , and     
     in expression 

(6.22) in terms of        using Eqs. (6.20) and (6.21). Performing the substitutions, one 

finds that the differential cross section per atom simplifies to 

 [             ]
      (6.23) 

Eq. (6.23) is often used to interpret experimental data (23, 135, 136, 141, 142) under the 

assumption that the AX2 units can be considered as the basic entity, with an associated 

scattering factor                . It was not clear to us until doing the present analysis 

that this was justified, as two out of the four neighboring X atoms are arbitrarily 

associated with an A atom, and in addition, this AX2 unit may straddle the perimeter of 

the sampling volume, leading to partial counting. Nevertheless, the above derivation 

shows that this widely used phenomenological assumption (23) is indeed justified and 

correct, subject to there being no chemical concentration fluctuations, so that each A 

atom is bonded to four X atoms and each X atom is bonded to two A atoms. 

 Experiments to determine the absolute value of      are not easy because the 

scattering has to be normalized to a standard, and also because of multiple scattering 

corrections that are best determined by measuring a number of samples of varying 

thickness and extrapolating to zero thickness. This complicated procedure has been done 

recently by Wright (141, 142), who using Eq. (6.23) obtains a value for vitreous silica of 

                   per formula unit, which by incorporating the factor of three 

leads to a value for the static structure factor of                   . Note that 

Wright was able to get down to          , which is about a factor of 10 better than 

can be obtained with the 300k model. The model value of            is about 20% 

higher than the experimental value, which we comment on below. Nevertheless, this is 
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the first calculation of      from a model of vitreous silica and is gratifyingly close to the 

experimental value. 

 We note that Salmon (22, 132, 143) has made measurements of structure factors 

on a number of AX2 glasses using isotopes so that the partial structure factors can be 

found, and hence       . These experiments are a real tour de force but not specifically 

designed to measure the     limit. Not being performed at very small   (down to 

        ) and they are only indicative, but approximate values can be extrapolated 

from the plots of the partial structure factors at small  , giving values between ~ 0.1 and 

~ 0.15 for Ge02, GeSe2, and ZnCl2 (22, 132, 143). These are very close to the more 

accurate value for vitreous silica obtained by Wright et al. and to the model calculation 

performed here, suggesting perhaps that this value,      ~ 0.10 is a general feature of 

AX2 glasses, as a value ~ 0.035 is characteristic of single component tetrahedral glasses. 

Discussion 

 For a system in thermal equilibrium, like a liquid, we expect Eq. (6.4) to hold. It 

is useful to use this relation to access how far amorphous silicon, as well other 

amorphous materials and glasses, are from equilibrium. The compressibility    of 

amorphous silicon is between 2 x 10
-11

 m
2
/N and 3 x 10

-11
 m

2
/N, obtained from silicon-

aluminum alloy data extrapolated to zero aluminum doping (144). Using         

atoms/Å
3
 (35, 145), and using room temperature of 300 K, we find from Eq. (6.4) that 

0.004 <      < 0.006, which is an order of magnitude less than the computer model value 

of 0.035. If we use the melting temperature of crystalline silicon of roughly T = 1685 K 

(146), this estimate increases to 0.023 <      < 0.035, where we note that both the 

density    and the compressibility    are only weakly dependent on temperature so that 

almost all of the temperature dependence in Eq. (6.4) comes through the temperature 

factor   itself. Nevertheless, the figures based on high temperatures are in the general 
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area of the value of      = 0.035 determined from the 100k model, which is not 

unreasonable. Note that the comparison is a little less favorable if we use the melting 

temperatures of 1220 K to 1420 K for amorphous silicon (146, 147), which leads to 0.017 

<      < 0.030.  

When comparing      to experimental results, one must also consider the 

possibility for structural heterogeneity in the experimental sample that may depart from 

that present in continuous random network (CRN) models. For example, using electron 

correlograph analysis, Treacy and coworkers (148) demonstrated that measurements were 

more closely reproduced by modeling the sample as being at least 65% paracrystalline by 

volume, with the remaining 35% a CRN. If this were indeed the case, one would expect 

     = 0.035 for the 100k model to serve as an upper bound. It is also interesting to note 

that Treacy and coworkers observed ordering on length scales of 10-20 Å, similar to the 

distances of 12-15 Å over which strong correlations persist in the CRN models studied 

here, as shown in Figure 6.2, and comparable to estimated length scales for dynamic and 

structural heterogeneity in glasses (92). Previous studies of CRN (29) and paracrystalline 

models (149, 150) have shown structural and electronic properties in strong agreement 

with experiments. Hypotheses regarding paracrystalline regions have a long history, 

existing even in the time of Zachariasen (24), and future coupling of experiment and 

theory are needed to resolve this debate.  

 The most extensive data on the static structure factor for liquid and vitreous silica 

have been assembled by Levelut and co-workers (23, 135, 136). They used small angle 

X-ray scattering with wavevectors down to           , which is comparable to that 

obtained from the 300k vitreous silica model used in this work. Absolute measurements 

are difficult in this region [a notable exception being the work of Wright et al. (2005)] 

and so it was necessary to normalize to the assumed liquid behavior at high temperatures  
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Figure 6.8  The points and fitted blue solid lines in both the glass and liquid region of 

silica are digitized from Figure (2) of Levelut (23) multiplied by a factor of 1.43 as 

described in the text. The five lines in the glass phase correspond to fictive temperatures 

of 1373 K (open circles), 1473 K (open squares), 1533 K (solid squares), 1573 K (open 

diamonds), and 1773 K (solid squares). The lower isolated point (cian) is from Wright 

(141) and the upper isolated point (green) is from the computer model used in this study. 

using (4). However, there are discrepancies between compressibility values and so there 

is some uncertainty as to what values to take (Levelut et al., 2005). Note that there is a 

factor of 900 = (30)
2
 between the data of Wright and Levelut, due to the electron units 

used by Levelut, which in turn differs by a factor of three from the conventional 

definition of the structure factor as used here and by Salmon (22, 132, 140). 

 To try and gain some perspective, we have used another set of compressibility 

measurements (141, 142, 151) and assumed (6.4) to be true in order to renormalize the 

Levelut data upward by a factor of 1.43, which is now re-plotted in Figure 6.7. This scale 

factor is the ratio of the liquid compressibility value quoted by Bucaro (151) to the 

average of the two liquid compressibility values quoted by Levelut (23), i.e. 1.43 = 

8.50/[(6.16+5.69)/2]. Figure 6.7 raises many interesting questions relating to glass 

structure and the fictive temperature (152). It is clear from the data of Levelut et al. that 

the fictive temperature is very close to where the extrapolated straight lines from the glass 
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phase intersect with the liquid structure factor. Note that the temperature dependence is 

considerably lower in the glass phase and is due to the thermal vibrations about a fixed 

network topology (141, 142, 153). A most important and intriguing question is how is 

information about the fictive temperature embedded in the glass at room temperature? 

The information presumably involves ring statistics and possibly the oxygen angle 

distribution, but it is subtle and will require careful modeling to resolve. All models used 

will have to be as large as those used in this study to get reliable values for     , as 

discussed earlier. The dashed lines drawn through the two isolated points in Figure 6.7, 

parallel to the Levelut et al. lines, suggest a fictive temperature of ~1360 K for the 

Wright sample and a fictive temperature of ~1780 K for the 300k vitreous silica model of 

Vink and Barkema (30), which is close to the value of 1740 K used for the start of the 

quench in their computer model. Note that while this close agreement is promising, one 

must not forget that the computer model is quenched at a much more rapid rate than an 

actual sample, and it is not clear how close the values of the experimental temperature 

and the “computer” temperature should be. One might argue that the quench rate is of 

secondary importance to the fictive temperature in determining the glass structure, but 

this is very speculative and requires further study. 

 A final note regards the strange behavior of      in Figure 6.8 between 1250 K 

and the intersection with the liquid line. Instead of following the linear trend due to 

thermal vibrations about a fixed topology, the values of      noticeably descend 

prematurely towards the liquid line. This is a common behavior in glasses that can also be 

seen in the behavior of the volume as a function of temperature, as seen in Figure 6.9. 

The faster cooling necessary to obtain the higher fictive temperatures freezes in disorder 

that would have otherwise been able to relax on relatively short timescales. As the 

samples were heated and analyzed to obtain Figure 6.8, these relaxations started to  

 



99 

 

Figure 6.9  Dependence of the glass transition temperature on the cooling rate, showing 

relaxation upon reheating. Figure reproduced from (87). 

occur, causing the structure and therefore      to approach that of the metastable 

supercooled liquid. 

Concluding remarks 

 The static structure factor      for two non-crystalline materials, amorphous 

silicon and vitreous silica, lie between that of a crystalline solid (where it is close to zero) 

and that of a liquid. From the 100k amorphous silicon model of Mousseau, Barkema, and 

Vink, the static structure factor is computed to be      = 0.035±0.001. This non-zero 

value is caused by density fluctuations, similar to those found in a liquid, even though the 

system is far from thermal equilibrium, and seems to be determined largely by the 

tetrahedral coordination in the amorphous material. This result awaits experimental 

confirmation, for which it will also be interesting to measure the temperature dependence, 

caused by thermal fluctuations about the network structure.  

 For vitreous silica, the situation is richer as the results depend on both the actual 

temperature and the fictive temperature, as demonstrated clearly by the experimental 

results of Levelut et al. The large periodic computer model of Vink and Barkema gives a 
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reasonable value      = 0.116±0.003 for vitreous silica at room temperature which 

corresponds to an  experimental fictive temperature of about 1780 K, close to 1740 K 

used computationally to achieve the quenched structure. The intriguing question that 

remains unanswered is how the information about the fictive temperature is encoded 

within the network structure, and we speculate that it is in the distinct ring statistics, but 

this remains to be seen. 
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CHAPTER 7: CRACK PROPAGATION IN A NETWORK: A MODEL FOR 

PROTEIN UNFOLDING UNDER FORCE 

Introduction 

 The manner in which proteins respond under an applied force is of direct 

biological significance, as the physiological role of many proteins requires them to resist 

mechanical unfolding. A complete understanding of the mechanical, regulatory and 

signaling properties of many proteins depends not only on their native state 

conformations, but also on the nature of intermediate states that become populated when 

subjected to an applied load. Well studied cases include the A2 domain of von 

Willebrand factor in which a cleavage site is exposed upon unfolding (154-157) and the 

10
th
 domain of type III fibronectin for which it has been suggested that partial unfolding 

reveals an otherwise hidden, so-called cryptic binding site, that could signal extracellular 

matrix assembly (158). 

 Mechanical unfolding can be studied experimentally using atomic force 

microscopy (AFM) in which the two ends are stressed between the tip of a cantilever and 

a substrate. For polymeric tandem repeats of identical protein domains, this results in 

saw-tooth or plateau patterns for constant velocity and constant force experiments 

respectively. Measurements by AFM are typically limited to constant pulling speeds of 

between 10 nm/s and 1000 nm/s
 
equaling force loading rates of order 10 pN/s to 

10,000 pN/s.  An overview of this technique can be found in a recent review (159). 

Lower forces and loading rates, for which standard AFM is ill-suited, can be probed 

through the use of optical tweezers (154, 160). These experiments have been used in 

conjunction with -value analysis on mutants (54, 161) to determine the regions of a 

protein that are structured in the transition state(s) (162). 

 While current experimental techniques provide unfolding force distributions, 

extensions of stable intermediates and the regions that are non-native in structure at the 
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transition state, they do not provide atomistic detail of the underlying events. All-atom 

molecular dynamics (MD) simulations, typically either at constant force (54, 161, 163) or 

constant velocity (54, 156), have proved insightful by providing possible intermediate 

structures and, moreover, unfolding pathways (54, 164), but this comes at a high 

computational cost. As a result, they must be performed at pulling velocities that are 

roughly six orders of magnitude greater than those probed experimentally. 

 Coarse-grained techniques such as Gö-like models (165) narrow the gap in 

timescales at the cost of representing each residue by a bead and tend to use potentials 

that favor native interactions while disfavoring non-native ones. Computational cost can 

also be decreased by employing methods that do not rely on the integration of Newton’s 

equations of motion, such as Monte Carlo based methods (166). There also exists coarse-

grained techniques that focus explicitly on the topology of proteins and residue 

connectivity, such as the work by Eyal et al. (167) and Dietz et al. (50) in which the 

effective spring constants and stress distributions in elastic network models were 

correlated with the mean unfolding force of a given pulling geometry. 

 My work uses stress distributions within constraint networks to determine 

unfolding properties, similar in spirit to the study by Dietz et al. (50), but differs in many 

respects. In recognition of the importance of non-native states to the functional roles of 

many proteins, this study probes beyond the native state, in contrast to previous elastic 

network models (50, 167). Unlike these former coarse-grained studies, an all-atom 

representation is used that maintains proper stereochemistry and contains specific 

interactions such as hydrogen bonds and salt bridges that are vital to a protein’s resistance 

to force. The premise of this work is that structural heterogeneities of the bond network 

affect how stress is distributed and in turn determine the order in which different regions 

unfold, as some bonding patterns bear the load in series and others in parallel, as shown 

in Figure 7.1. By performing this work, the influence of geometry and topology on the  
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Figure 7.1  Different bond arrangements resisting a force. Figure reproduced from (50). 

complete unfolding pathways of proteins is explored and it is found that the simple and 

intuitive model of protein unfolding as crack propagation on a constraint network is 

sufficient to capture the unfolding pathways of a diverse set of proteins far from their 

native state. 

 My contribution to this study involved the customization of FRODAN to the 

unfolding problem, which included the creation of modules for determining hydrogen 

bond burial and bond breaking. I calibrated the model’s spring constants and other 

parameters to improve agreement with MD pathways, as well as performing full analysis 

of the constrain-based unfolding pathways. I also wrote the paper, which is currently in 

press.  

Model and methods 

Constraint-based model 

 The model used in this work is an extension of the FRODAN model described in 

Chapter 4. Standard applications of FRODAN treat the constraints as either fixed 

throughout a simulation or selectively removed from knowledge of the constraints in a 

final target state. The energy function serves only to re-enforce the constraints upon 

random perturbation, allowing a universal spring constant for all constraints to be 
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sufficient for this role. For the problem of modeling protein unfolding under force, the 

FRODAN model was extended in several ways.  

 The first extension stems from the fact that a constraint network under tension is 

not able to satisfy all of its constraints, as the distribution of tension in the network acts to 

balance the external force. For general networks, the tension distribution depends on the 

individual spring constants, which must therefore be set to realistic values. For this work, 

ksh was assigned a large value such that all distances between copies of a shared atom 

rarely exceed 0.02 Å after minimization. The value of kst was chosen such that atoms 

rarely approach more than 0.2 Å closer than their pair-specific constraint distance (168). 

The value of krm was chosen to roughly reproduce the barrier height associated with the 

Oi-1-C

 clash in the Ramachandran plot of alanine dipeptide, following the work of Ho et 

al. (118) and Maragakis et al. (169), and ktr was calibrated to match the anti/gauche 

barrier of n-butane (170). The remaining spring constants, khb and kph, were free 

parameters that were chosen so as to best match the MD unfolding pathways for the set of 

12 proteins in this study. Hydrogen bonds were originally divided into backbone (bbhb) 

and side-chain (hb) types with kbbhb assigned a fixed value (based on a Mayo potential 

with a well depth 2 kcal/mol (119)) and khb allowed to vary, but it was found that 

agreement with MD was best when khb possessed the same fixed value that was assigned 

to kbbhb. Once chosen, the same values for all spring constants were used for all 12 

proteins. These values are 

 

                                              

                                              

                                                 

(7.1) 

where λ = 1 kcal/(mol·Å
2
). Hydrogen bond, salt bridge and hydrophobic constraints are 

intrinsically different from the others, as they break during the unfolding process. To 
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account for this, these constraints have a maximum load that they can bear, beyond which 

they break and are removed. As the load across a constraint is equal to the product of its 

spring constant and the extent of violation, the maximum load was set by giving the 

constraints a default maximum extension xmax = 0.15 Å, a value chosen to be small 

enough to prevent significant distortion of the protein structure.  

 The strength of hydrogen bonds and salt bridges depend on the effective 

dielectric properties of their environment, with the dielectric constant of the solvent being 

much greater than that inside of a protein. To account for this, we scale the maximum 

load of hydrogen bonds and salt bridges by multiplying the breaking extension xmax by a 

factor  describing the extent of burial. The factor is simply the number of non-hydrogen 

atoms within a distance of 7.2 Å (four water layers, as used in (171)) of the geometric 

center of the interaction of interest (i.e. the hydrogen and acceptor atoms), normalized 

such that the maximum value of isfor the set of 12 proteins in their native states. To 

ensure that fully exposed hydrogen bonds and salt bridges maintained a finite load-

bearing capacity, values of  below 0.5 were set to 0.5. 

Constraint-based unfolding algorithm 

 The second extension to the standard FRODAN model involved the development 

of a force-induced constraint breaking algorithm. To induce unfolding, three backbone 

atoms of each of the terminal residues are targeted to an equal number of target atoms 

placed on either side of the protein at a separation much larger than the length of the 

unfolded protein. The targeted atoms are then pulled apart by using a biasing potential of 

the form 

       {
 

 
                            

                                                   
 (7.2) 
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and decreasing the desired RMSD, C, in steps of 0.05 Å, where the RMSD is measured 

between the six targeted atoms and their target values. The value kRMSD = 300λ was 

chosen to be as low as possible without having the difference RMSD – C ever exceed 

xmax. Throughout this work, the extension of a structure is defined as the N-to-C distance 

between the backbone nitrogen of the first residue and the backbone carbonyl carbon of 

the last residue. The complete potential is given by 

               (7.3) 

where     

                         (7.4) 

The algorithm for mapping out an unfolding pathway can be summarized as: 

1) Decrease the desired RMSD to the target C by 0.05 Å. 

2) Minimize the energy (6) within the constraint network, resulting in an 

equilibrium stress distribution. 

3) If one or more of the breakable constraints exceed their maximum allowed 

extension, remove the constraint with the greatest fractional excess and return to 

step 2. Otherwise, return to step 1. 

Upon each iteration, any new hydrogen bonds, salt bridges and hydrophobic interactions 

that have arisen are identified and added using the same criteria as previously described. 

This allows non-native interactions to form along the pathway. The algorithm is followed 

until the protein is completely unfolded. 

 This model of protein unfolding is similar to crack propagation in a solid 

material, being deterministic and force-driven. The results share many characteristics 

with unfolding at low temperature and high force, but differ in that the force distribution 

is always in equilibrium and the constraint network is minimally overloaded to cause 

unfolding to proceed. The constraints could have been broken probabilistically, but rather  
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Figure 7.2  Total constraints broken as a function of the number of residues for the 12 

proteins in this study.  On average, each residue is involved in        constraints, as 

each constraint has two end points. Figure courtesy of Phil Williams. 

variation in the pathways is allowed to arise solely from variation in the starting 

structures. 

Choice of model proteins 

 The set of 12 single-domain proteins in this study were chosen from those that 

have been experimentally characterized while selecting for a broad range of topologies, 

as described in Table 1. The set contains immunoglobulin-like β-sandwich proteins I27 

(I27, PDB ID 1tit (172)), fibronectin (FNfn10, 1fnf (173)), tenascin (TNfn3, 1ten (174)), 

PKD (ArPKD , 1loq (175)), and filamin (DDFLN4, 1ksr (176)), as well as proteins 

containing both α-helical and β-sheet regions, like the β-grasp proteins ubiquitin (1ubq 

(177)) and protein L (1hz6 (178)), and the larger proteins ribonuclease H (RNase H , 2rn2 

(179)) and von Willebrand factor (vWF A2, 3gxb (180)). The diversity of folds is 

rounded out with the non-mechanical α and β protein barnase (1bni (181)) and two all-

helical proteins spectrin (1aj3 (182)) and acyl-coenzyme A binding protein (ACA , 2abd 

(183)), the latter being the only protein in the set not to have been studied experimentally. 
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Molecular dynamics 

 Molecular dynamics simulations were performed using CHARMM (102) and an 

implicit solvation model (EEF1) (106, 184). Starting structures from the PDB were 

minimized, heated and then equilibrated for at least 1 ns (100 ps for ACA, as described 

previously (185)). For each protein a further equilibration of 5 ns was performed from 

which 10 pairs of coordinates and velocities were extracted, each spaced 500 ps apart (1 

ns equilibration and 100 ps spacing for ACA). Ten constant force molecular dynamics 

simulations were then performed for each protein. Force was applied to both the main-

chain nitrogen of the N-terminus and the main-chain carbonyl carbon of the C-terminus, 

in the direction of the vector between the two atoms such that the protein was pulled 

apart. A constant force of 265 pN was applied to I27, 220 pN to TNfn3, 300 pN to vWF 

A2, 205 pN to barnase, 525 pN to protein L, 150 pN to FNfn10, 375 pN to ubiquitin, 250 

pN to RNase H, 190 pN to DDFLN4, 250 pN to ArPKD, 250 pN to spectrin and 125 pN 

to ACA. Ten constant velocity MD simulations were also performed starting from the 

same set of coordinates and velocities used to begin the constant force simulations. A 

spring constant of 1 kcal/(mol·Å
2
) was used to enforce the constant pulling velocity, 

which was such that each protein would unfold fully in the 10 ns simulations. All 

simulations were performed at a temperature of 298.15 K using the Nosé-Hoover 

thermostat with a 2 fs timestep. 

Results 

 The constraint-based method, which models protein unfolding as crack 

propagation on a constraint network is compared with both constant force and constant 

velocity MD simulations. Within the constraint-based model, the mechanical stability of 

a given structure can be inferred from the amount of force required to minimally overload 

the network and cause unfolding to proceed. At some stages of the unfolding pathway a 

protein may be well braced with the load shared in parallel over many constraints, 
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whereas at other stages the constraints act more in series, causing the network to be more 

easily overloaded. The relative extensions of such states will be determined from the 

position of force peaks along the unfolding pathway. 

Comparison to constant force MD simulation 

 Despite the constraint-based algorithm being more akin to constant velocity MD 

simulation, a comparison is made to constant force MD unfolding pathways, as the latter 

method allows the protein to spend more time in conformations with high stability and 

thus results in pathways that may be closer to those probed experimentally.  For the 

purposes of characterizing and comparing unfolding pathways, 10 constraint-based and 

10 constant force MD pathways were generated beginning from equilibrated structures 

and a set of critical structures were identified to act as check points in a flow diagram 

connecting the native state to the unfolded ensemble, as shown in Figure 7.3 for barnase. 

Both constraint-based and MD pathways were used to select these check points, with 

those from the constraint-based method being mechanically strong structures that require 

large forces to unfold and those from constant force MD pathways being structures that 

result in stable N-to-C distances for prolonged periods of time. From both methods, 

frequently occurring structures were also selected for which whole units of secondary 

structure such as α-helices or β-strands were detached. The dominant constraint-based 

pathways are those with large numbers of trajectories passing between each pair of nodes 

in the flow diagram. While the constraint-based algorithm unfolded all proteins 

completely, unfolding was not usually completed within the 10 ns duration of the 

constant force MD simulations. The flow into and out of nodes is thus only conserved for 

the constraint-based simulations. The results for 4 of the 12 proteins are described in the 

next section, with the remaining results described in Appendix B. A summary of the 

results is shown in Table 7.1. 
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Table 7.1  Summary of the results for the 12 proteins in the data set. 

Barnase  

 Barnase is a bacterial protein with ribonuclease activity that can kill a cell when 

expressed in the absence of its inhibitor barstar, which binds over the active site to 

prevent barnase from damaging the cell’s RNA. The primary experimental and 

theoretical unfolding studies of barnase were performed by Best et al. (186) using AFM 

and MD. 

 Unfolding in the constraint-based pathways begin predominantly from the C-

terminus via the detachment of the terminal 5 (8/10), although the first unfolding event 

does depend on the constraint distribution in the starting conformation, as 1 detaches 

first on 2 occasions, as shown in Figure 7.3. Among the 8 constraint-based pathways for 

which 5 is the first to detach, 1 and 4 are equally likely to be the next to unfold. In 6 of 

the constraint-based pathways, 1 and 5 are the first two structural units to detach, and 

half of pathways lead to a core lacking 1, 4 and5 protected at each end by a pair of β- 
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Figure 7.3  Unfolding pathways of barnase. Boxes serve as check points, with the label at 

the top left corner indicating the secondary structure that has been lost. The boxes are 

connected by lines; colored blue (left) and red (right) for constraint-based pathways and 

MD trajectories respectively, and have thicknesses proportional to the number of 

pathways that transit between the two end states. The numbers at the upper right and 

lower right of each box indicate the number of incoming constraint-based pathways and 

MD pathways respectively. 

clamps, one consisting of 2 and 3, and the other of 1 and residues of the 1-2 loop. 

These features are in excellent agreement with the MD pathways. The same fraction of 

unfolding events begin from the C-terminus (8/10), detachment of 1 and 4 are both 

observed to follow the detachment of 5, and detachment of 1 and 5 share the same 

likelihood to be the first two unfolding steps (6/10). Although extreme for this protein, 

these similarities highlight the ability of the simple deterministic model of crack 

propagation on a constraint network to capture the diversity of pathways found from MD 

simulations. 
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von Willebrand factor 

 von Willebrand factor forms long tandem arrays which function within blood 

vessels to promote blood clotting. Unfolding of the A2 domain exposes a cleavage site 

that allows the body to regulate the length of the tandem arrays and consequently the 

extent of clotting at a wound. Mutation to the gene coding for these domains is the most 

common cause of genetic blood clotting disorders. Unfolding of the A2 domain has 

recently been studied by Zhang et al. (154) using optical tweezers, in which an 

intermediate was observed with an N-to-C distance 40% that of the fully unfolded 

domain, with complimentary MD studies performed by Baldauf et al. (157) and Chen et 

al. (156). 

 

Figure 7.4  Unfolding pathways of the A2 domain of von Willebrand factor. Boxes serve 

as check points, with the label at the top left corner indicating the secondary structure that 

has been lost. The boxes are connected by lines; colored blue (left) and red (right) for 

constraint-based pathways and MD trajectories respectively, and have thicknesses 

proportional to the number of pathways that transit between the two end states. The 

numbers at the upper right and lower right of each box indicate the number of incoming 

constraint-based pathways and MD pathways respectively. 
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 All constraint-based pathways began with the detachment of the C-terminal 

helix. In the majority of the pathways, unfolding continued through the sequential 

detachment of β-strands 6, 5 and 4 and unfolding of the α-helices in between, although 

in 3 pathways multiple β-strands detached as a unit prior to separating from one another. 

Two states were identified as having the highest mechanical stabilities along the 

unfolding pathways, one lacking 5,6 and 6, and the second lacking the 4 –less loop, 

5,6, 5 and 6. The latter state possesses an extension approximately 40% that of the 

fully unfolded A2 domain and is thought to correspond to the intermediate observed 

experimentally by Zhang et al. (154) using optical tweezers. Interestingly, the cleavage 

site on 4 becomes highly exposed for the first time in this latter state, as it is no longer 

protected by 5. Again, the dominant pathway from the constraint-based model is able to 

reproduce the pathways observed in the constant force MD simulations, as shown in 

Figure 7.4. 

Titin I27  

 Titin I27 is the 27
th
 immunoglobulin domain within the I-band region of the giant 

muscle protein titin. The mechanical unfolding of I27 has been studied by AFM (8, 162, 

187), combined AFM and MD studies on mutants (161), as well as by various coarse-

grained models (165, 188). At forces above about 100 pN (8, 189), I27 is believed to 

unfold via a force-stabilized intermediate I1 with an extension roughly 6 Å greater than 

that of the native state (164, 189). The results of a mutational study (161) suggest that I1 

lacks native contacts between Val4 and G, while MD simulations at forces of 300 pN 

from the same study predict the loss of some contacts between A and B, including the 

backbone hydrogen bond between Glu3(O) and Ser26(H) (161). 
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Figure 7.5  Unfolding pathways of titin I27. Boxes serve as check points, with the label at 

the top left corner indicating the secondary structure that has been lost. A box possesses 

the additional label “I” if the state has been identified as an intermediate in previous 

studies. The boxes are connected by lines; colored blue (left) and red (right) for 

constraint-based pathways and MD trajectories respectively, and have thicknesses 

proportional to the number of pathways that transit between the two end states. The 

numbers at the upper right and lower right of each box indicate the number of incoming 

constraint-based pathways and MD pathways respectively. 

 In the constraint-based pathways, represented in Figure 7.5 along with the MD 

pathways, the first constraints to break were predominantly hydrophobic interactions in 

two regions, one at the N-terminus and the other beneath the C-clamp. In all pathways, 

breaking of constraints at the N-terminus allowed residues 1 and 2 to separate from the 

hydrophobic core and extend along the direction of force. In only half of the pathways 

did this lead to the separation of residues 1 to 4 from G prior to the shearing apart of the 

C-clamp, as the ability of the C-clamp to resist the load may have been compromised by 

the aforementioned breaking of hydrophobic interactions at the C-terminus. Despite 

having an average N-to-C extension indistinguishable from the average extension of 52.5 

Å for I1 found from the MD simulations of this study, the constraint-based state in which 

residues 1 to 4 have separated from G are not considered to be I1 due to the presence of 

the backbone hydrogen bond between Glu3(O) and Ser26(H), which is absent in I1 in the 
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MD simulations of the present work. To distinguish between these two nearby states, 

they were each assigned to different nodes in the flow diagram, one labelled βA↔G and 

the other I1(βA↔B), where βA↔B implies that Glu3(O) and Ser26(H) have separated. It 

should be noted that the relative stability of the two termini are finely balanced, as 

demonstrated by the experimental observation that the single mutation of Val86 to Ala86 

is sufficient to cause I27 to no longer unfold via I1 (8). Despite this, I1 is not included in a 

dominant constraint-based unfolding pathway and is considered a failure of the model. 

Fibronectin 

 Fibronectin forms part of the extracellular matrix and is likely under frequent 

tension. It has been proposed that the stretching and partial unfolding of fibronectin may 

expose a hidden binding site that could signal extracellular matrix assembly (158). In an 

AFM study by Li et al. (190), an intermediate was observed.  By unfolding mutations, 

they concluded that the intermediate likely involved the unfolding of stands A and B. 

Several computational studies on fibronectin type III domains  (163, 191) have suggested 

the presence of multiple energy barriers along the unfolding pathway. 

 The first unfolding event in all 10 constraint-based pathways involves the 

breaking of hydrogen bonds at the N-terminus between stands A and G. The external 

force, which runs along the axis going through the N- and C-terminal residues, applies a 

torque to the two β-sheets, causing many hydrophobic constraints to break and non-native 

ones to form as the two sheets rotate relative to one another. This rotation increases the 

N-to-C distance from roughly 48 Å to 60 Å upon which the β-strands become closely 

aligned. In the majority (6/10) of the constraint-based pathways, unfolding proceeds 

through the detachment of strands A and B, forming the intermediate observed 

experimentally by Li et al. Interestingly, this structure was found to possess the highest 

mechanical stability among all structures along the unfolding pathways and thus from a  
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Figure 7.6  Unfolding pathways of fibronectin. Boxes serve as check points, with the 

label at the top left corner indicating the secondary structure that has been lost. A box 

possesses the additional label “I” if the state has been identified as an intermediate in 

previous studies. The boxes are connected by lines; colored blue (left) and red (right) for 

constraint-based pathways and MD trajectories respectively, and have thicknesses 

proportional to the number of pathways that transit between the two end states. The 

numbers at the upper right and lower right of each box indicate the number of incoming 

constraint-based pathways and MD pathways respectively. 

purely mechanical perspective would be the best candidate for the intermediate, in 

agreement with the conclusions drawn from mutation analysis (190) and the constant 

force MD simulations, as summarized in Figure 7.6. 

Comparison to constant velocity MD simulation 

 For a given protein, the mechanical strength of the corresponding constraint 

network changes along the unfolding pathway. This variation in mechanical strength is 

expressed by plotting the force required to minimally overload the network as a function 

of the N-to-C distance. The resulting profile is compared with results from constant 

velocity MD simulation in which a variable force is applied to the two terminal residues 

to cause them to separate at a constant velocity. Ten constant velocity MD simulations 

were performed for each of the 12 proteins in this study.  
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von Willebrand factor 

 The force profiles for vWF from both methods, compared in Figure 7.7, show a 

small peak at an N-to-C distances below 20 Å that corresponds to the detachment of the 

C-terminal end of 6 from the remainder of the protein. Both models display a second 

small peak at 45 Å corresponding to the breaking of strong side-chain interactions, 

allowing 6 to become completely free. The remaining peaks observed from the 

constraint-based method, located at approximately 100 Å, 175 Å and 250 Å, correspond 

to the detachment of β-strands 6, 5 and 4 respectively and agree well with peaks due to 

the same unfolding events observed in the constant velocity MD simulations. The two 

dominant peaks in the constraint-based force profiles suggest the presence of 

mechanically stable structures at extensions slightly less than the peaks at 175 Å and 250 

Å. The stability of the latter structure is supported by experiment, as it is thought to 

correspond to the intermediate observed by Zhang et al. (154) using optical tweezers.  

 

Figure 7.7  Force profiles for the mechanical unfolding of the A2 domain of von 

Willebrand factor obtained from crack propagation on the constraint network of 10 

starting structures compared with those from constant velocity MD simulations. 
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Fibronectin 

 The constraint-based profiles for fibronectin, displayed in Figure 7.8, show an 

initial broad peak that corresponds to the transitions to I1 and I2, as well as the initial loss 

of β-strands. The majority of runs from both sets of pathways form a partially unfolded 

state known as I3 in which A and B have detached. Consistent with the profiles from 

constant velocity MD simulations, the constraint-based model identifies I3 as the most 

mechanically stable structure along the unfolding pathway.  

 

Figure 7.8  Force profiles for the mechanical unfolding of fibronectin obtained from 

crack propagation on the constraint network of 10 starting structures compared with those 

from constant velocity MD simulations. 

Discussion 

 The main goal of this work has been to demonstrate that unfolding pathways 

using MD simulation can be described as crack propagation in a constraint network. 

Dominant unfolding pathways from the constraint-based approach agree with those from 

constant force MD simulation for 9 out of the 12 proteins in this study which is 

impressive considering the simplicity of the model. As experiment is the true metric of 

comparison for theory, it is valuable to compare the results with those of past 
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experimental studies. Despite the inability of experiments to give an atomic-level picture 

of the unfolding pathways, mutation analysis can be used to probe the regions of a protein 

that are altered in a transition state or intermediate. There exists sufficient experimental 

data to characterize the nature of the intermediates with some confidence for fibronectin, 

filamin, tenascin, titin I27 and the A2 domain of von Willebrand factor. The dominant 

constraint-based pathways are consistent with all known intermediates except for those of 

titin I27 and filamin. For filamin, both constraint-based and MD pathways agree with one 

another but fail to predict the unfolding of A andB observed in the mutant study of 

Schwaiger et al. (192). It should be noted that the dominant constraint-based pathway of 

tenascin was considered to disagree with those from MD simulation solely because of the 

former’s lack of I3, a state that has never been observed experimentally. Two of the other 

proteins, namely ubiquitin and RNase H, possess intermediates that have been observed 

experimentally, but their structures are less conclusively known. For ubiquitin, a 

mechanically stable state is observed in the constraint-based pathways at 78±11 Å, in 

impressive agreement with the extension of 81±7 Å found experimentally by Schlierf et 

al. (193). For RNase H, the main constraint-based pathway began with the unfolding of 

5 followed by the detachment of 1, 2 and 3, leaving the stable core observed in bulk 

studies (194, 195). 

 Unlike previous studies that use coarse-grained networks to predict properties of 

the native state alone (50, 167), this simple and intuitive model is sufficient to capture 

intermediates far from the native state when benchmarked against MD simulations. For 

example, as discussed in detail in Appendix B, in only a single case (PKD) was the 

dominant MD pathway not captured by at least one constraint-based pathway. Whilst the 

applied force caused the A-A’ loop in PKD to approach the G strand, the loop did not 

approach closely enough to form non-native hydrogen bonds, highlighting a limitation of 
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this simple model. Lacking thermal motion and electrostatics, strands are incapable of 

being electrostatically attracted to one another from a distance to create significant non-

native secondary structure. Despite this deficiency, the addition of non-native constraints 

did improve the unfolding pathways of the majority of proteins in this study. Without 

them, fibronectin and tenascin do not form I2, as the two β-sheets are unable to rotate 

relative to one another prior to separating. 

 The success of the constraint-based model is surprising, as unfolding is based 

purely on strain and does not sample the free energy of the states along the pathway. One 

might expect strain-based pathways to rapidly deviate from those of MD simulations for 

which the protein is allowed to diffuse in a detailed energy landscape. Instead sequential 

strain-based breaking events analogous to crack propagation in a solid can be followed 

far from the native state and reproduce the order of loss of many secondary structure 

units. This provides further evidence that the high forces used in typical MD simulations 

tilt the energy landscape to such an extent that the unfolding is not the thermally driven 

process that occurs under experimentally and physiologically relevant forces.  

 In principle the constraint-based method could be sensitive to mutations due to its 

all-atom representation. Of the mutations attempted, namely Ile88→Pro88 and 

Tyr92→Pro92 in fibronectin and Ile8→Ala8 in tenascin, only Tyr92→Pro92 has been 

shown experimentally to change the unfolding pathway, causing it to no longer traverse 

the stable intermediate lacking βA and βB (190). None of the constraint-based pathways 

were affected, including the Tyr92→Pro92 mutant, as the backbone hydrogen bonds 

disrupted by the latter proline mutation were replaced by side-chain hydrogen bonds of 

similar strength in the initial structures. Probing mutant sensitivity offers a challenge for 

future work. 
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 Generating constraint-based pathways is computationally less demanding than 

the 10 ns MD simulations with which they are compared. A full unfolding pathway of 

fibronectin requires only 42 minutes on a single HP DL120 3.0 Gz Intel E5472 core, 

roughly 1/20
th
 that for a constant velocity MD pathway and less than 1/20

th
 that for a 

constant force MD pathway, as unfolding was often not completed within the 10 ns 

simulation time. Potential applications of this technique include the study of the 

dependence of the unfolding pathway on pulling direction, in which force is applied 

between many pairs of residues [see (159)]. The constraint-based method, which rapidly 

produces pathways that often possess variability greater than those from MD simulation, 

can also be used to generate a vast number of stereochemically acceptable all-atom 

starting structures for milestoning calculations using MD (196). 
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CHAPTER 8: FLEXIBLE FITTING USING CONSTRAINED GEOMETRIC 

SIMULATION 

Overview 

 As an imaging technique, cryo-electron microscopy (cryo-EM) has some 

significant advantages over X-ray crystallography, including the ability to image 

biomolecules in different conformations without the need for crystallization, as discussed 

earlier in Chapter 2. The major drawback of cryo-EM is the lower spatial resolution, 

typically between 4 - 25 Å. Such maps possess relatively little information compared to 

their X-ray counterparts, the amount of which can be estimated by dividing the volume of 

a map into cubic elements with sides equal to the resolution. Even the relatively high 7.7 

Å resolution map of GroEL (a 192 Å cube) (197) only possesses roughly 25
3
 = 15,000 

pieces of information, far less than that desired to specify the atomic positions of a 

complex containing 110,000 atoms. Determining an atomic structure from a cryo-EM 

map would be hopeless were it not for the large number of constraints that we know from 

the stereochemistry of polypeptide chains in the form of known bond lengths and angles, 

favorable Ramachandran and torsion angles, as well as electrostatic interactions such as 

hydrogen bonds and salt bridges. What is more, the structures of biomolecular complexes 

imaged by cryo-EM have often been solved by alternative techniques in other 

conformations, contributing information about the general structural features of their 

native fold (197). 

 The ever-increasing number of low and medium resolution cryo-EM maps has 

spurred the development of techniques that try to predict the atomic coordinates of 

biomolecules from these maps by making use of a priori knowledge such X-ray or NMR 

structures, typically of homologous sequences in different conformations to those imaged 

by cryo-EM. These fitting techniques span a broad range of complexity, from 

computationally inexpensive rigid-body docking and coarse-grained normal mode fitting 
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to all-atom biased molecular dynamics. Due to the large amount of effort that has gone 

into determining models from experimental densities, a thorough review of current 

methods is crucial to a proper assessment of our method. 

 It should be noted that my work is an extension of previous cryo-EM fitting work 

by Craig Jolley (198). He created modules for handling density maps and perturbing the 

rigid units based on the gradient of the density and the gradient of the correlation 

coefficient. FRODAN had evolved since Jolley’s work, and one of my contributions was 

to create a new cryo-EM fitting module that both accounted for these changes and 

allowed for greater flexibility for future enhancements. I also added a density-based 

energy term given by Eq. (8.1) that allows selective bond breaking to occur. Lastly, I 

created and applied a breaking routine to a benchmark set of 7 proteins, as described in 

the Results section.   

Review of currently used techniques 

Rigid-body docking 

 The first step in most fitting algorithms is finding the optimal position and 

orientation of the initial atomic model with respect to the cryo-EM density. Treating the 

entire atomic model as a single rigid body reduces the dimensionality of the search to the 

three translational and three rotational rigid-body degrees of freedom (60). This is 

commonly solved by first representing the model and the target in a simplified 

representation. Borrowing techniques developed in the image processing field for 

creating maximally informative reduced representations of objects, a cryo-EM density 

map can be coarse-grained into a set of feature points that, generally speaking, identify 

mutually exclusive regions of high density by a method called vector quantization (60). 

The number of such features per map will depend on its resolution and information 

content, but on the order of a dozen are often sufficient to capture a map’s shape and 

structure. The same coarse-graining can be performed on an initial atomic model by first 
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creating an approximate cryo-EM density map for the model by placing diffuse 

spherically symmetric densities about each atom, often with a Gaussian profile with a 

width proportional to the resolution of the target map. Once two coarse-grained 

representations have been created, they can be optimally aligned by various techniques 

such as anchor-point matching (199) where a mapping is created between the two sets of 

feature points {i} and {j} and minimizing a distance metric between sets. Seeing as how 

rigid-body docking does not alter the internal structure of the atomic model, rigid-body 

docking is followed by optimization techniques that allow conformational changes to 

occur during the fitting process. Such processes of optimization are referred to under the 

umbrella term “flexible fitting.” 

Interpolation techniques 

 Several flexible fitting techniques exist that are based on a first-order 

approximation that the atomic model collectively deforms as a single body without an 

immediate regard to the details of the underlying stereochemistry. Possibly the most 

intuitive “first-order” method of approximate is that of interpolation. In the method of 

Rusu et al. (200), the initial model and target density map are first represented by a set of 

feature points, as described in the Rigid-body docking section, upon which an optimal 

matching of the feature points is determined. In general, the two sets of feature points 

will possess different relative geometries, reflecting the conformational differences 

between the atomic model and the structure underlying the cryo-EM map. The 

fundamental assumption of the interpolation technique is that the position of a given atom 

in the final structure relative to nearby feature points is preserved from the initial 

structure. For example, if an atom lies at the center of a tetrahedron formed by four 

feature vectors, the position of the atom is predicted to lie at the center of the matching 

set of four feature points for the target map. Various interpolation methods can be 

employed, but in the study of Rusu et al. it was found that the best results were obtained 
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when the importance of a nearby feature point in determining a final atom’s position is 

scales inversely with its distance to that atom in the initial structure.  

 This technique has the advantage that it is computationally inexpensive, but 

generally leads to only large-scale conformational changes, as it possesses no means of 

sampling such things as alternative loop conformations. The final structure formed upon 

interpolating all atoms will also contain distorted bond lengths and angles. These can be 

alleviated by running the structure through a refinement tool such as RefMac (201), but 

this is external to the method itself and could equally well be used on the output of any 

flexible fitting technique.        

Normal mode fitting 

 One of the most common methods of flexible fitting, normal mode techniques 

allow an initial model to deform along a subset of low frequency normal modes. Given an 

energy function, the energy landscape surrounding a minimized conformation can be 

approximated by a Hessian describing the local harmonic curvature under all possible 

deformations. The Hessian can be diagonalized to find a set of eigenfunctions (normal 

modes) and corresponding eigenvalues (describing the stiffness of the corresponding 

normal modes). It has been observed for a broad class of proteins that most of a protein’s 

conformational variability exists within the subspace of the lowest frequency modes (61).  

 The correlation coefficient C, given by Eq. (8.3), is a frequently used metric 

describing the quality of the fit between the target density and an atomic model 

(specifically the simulated density that it would possess, as described earlier in the Rigid-

body docking section). The initial atomic model can be flexibly fit to the target map by 

taking the gradient of C with respect to the set of low frequency modes and choosing to 

deform along a linear combination of normal modes that allows the greatest increase in 

the C per unit energy of elastic distortion. The amplitude of the motion is limited to 

prevent significant distortion to occur on any given step, although this does not prevent 
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distortion from accumulating over many such iterations of normal mode-based 

perturbations (61). While in practice the system could be relaxed according to an 

atomistic energy function after each iteration, this is not typically done in practice, as it 

would severely reduce the computational efficiency that is a major strength of the 

method. 

Hybrid elastic network-atomic model flexible fitting 

 A method implemented in the program DireX (202) developed in the group of 

Axel Brunger and Michael Levitt combines an atomistic restraint-based model (203) with 

a deformable elastic network. Proper stereochemistry of the polypeptide chain is 

maintained by a set of distance interval restraints similar in nature to those in FRODAN, 

but with a different treatment of non-bonded interactions such as hydrogen bonds, salt-

bridges and hydrophobic contacts. Generally speaking, their atomistic model is under-

restrained relative to that within FRODAN. As a result, when atoms are iteratively 

perturbed along directions based on the simulated and target densities, the structural 

integrity is reduced causing the RMSD to increase with increasing correlation in a 

process called overfitting. To counteract this effect, a large set of atom pairs are randomly 

chosen to be connected by harmonic restraints, forming an elastic network over top of the 

atomic model. By allowing the rest length of these additional restraints to slowly adapt 

during the fitting process, overfitting is greatly reduced, allowing the atomic model to 

converge to a stable structure over many iterations possessing a high correlation and low 

RMSD (for theoretical target maps for which the answer is known). 

Threading techniques 

 Threading consists of two steps; a sequence alignment (superposition) of a 

starting sequence with a template sequence, followed by the spatial overlaying of the 

starting sequence (typically a polypeptide chain) on the template model. There exists at 

least two large groups for which threading is a significant component of their methods, 
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the first developed in the group of Andrej Sali (204). The technique begins from three 

pieces of information: a known sequence, a template structure, and a cryo-EM map. The 

starting sequence generally shares relatively little sequence homology with the template, 

with the percentage of conserved residues often ranging between only 10-30%. With such 

little sequence overlap, no single alignment is vastly better than all others and it is 

appropriate to create a large family (~300) of the highest scoring alignments. In the 

second step, they use each alignment as a guide for spatial threading over the template 

structure while simultaneously attempting to satisfy spatial restraints as implemented in 

the program MODELLER (205). Each member of this set of structures is then evaluated 

according to a scoring function consisting of a weighted average of a “structural 

integrity” score and a “density fitting” score. The scores of this population are used by a 

generic algorithm to produce a new set of alignments for the next iteration of threading, 

details of which can be found in (204). This initial work, which contains no explicit 

flexible fitting, was extended in a recent work (64). Beginning from the best structure 

from the aforementioned threading method, the biomolecule is divided into large rigid 

domains, connected by flexible linkers in cases where a single chain contains more than 

one domain. A conjugate gradient minimization of a scoring metric consisting of a linear 

combination of stereochemical, non-bonded, and density fitting scores is then performed 

with respect to the rigid-body degrees of freedom. The top five scoring structures are then 

divided into smaller rigid bodies consisting of their secondary structures and the 

conjugate gradient minimization is repeated. Finally, the top scoring structure is 

subjected to several iterations of simulated annealing using the same secondary structure 

rigid bodies, followed by a final conjugate gradient minimization. 

 A second threading technique has been recently developed in the group of David 

Baker (206) that uses functionality build into the software package ROSETTA (207). 

Beginning from a set of sequence alignments, threaded structures are built. A local 
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correlation metric is then used to identify regions of the threaded models that disagree 

most with the cryo-EM density map. Using the sequence information of these regions, 

alternative conformations for 3- to 9-residue fragments within these regions are 

determined and inserted in place of the former fragment, using a Monte Carlo algorithm 

to ensure loop closure. These new structures are then subject to torsion angle 

optimization using a combination of an all-atom energy function and a density-matching 

score. Regions of high disagreement with the cryo-EM map are then re-evaluated and the 

refinement continues until satisfactory convergence. 

Molecular dynamics 

 Unlike the former techniques that apply an atomistic energy function sparingly to 

improve computational efficiency, it is possible to perform flexible fitting entirely with 

molecular dynamics simulation. Information about the target map is introduced by adding 

a biasing potential to the atomistic force field. One such biasing potential used by 

Trabuco et al. (62) has the form 

       {
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where ri is the location of an atom, Vmax sets the overall scale of the energy, ρmax is the 

maximum map density, and ρthr is the lowest allowed map density. A lower bound on the 

density is used because it is often the case in experimental maps that density drops below 

zero due to negative staining to enhance contrast. While minimizing the combined 

potential VTOT = VMD + VEM does not strictly minimize the correlation between the model 

and target density, it does act to pull the biomolecule into favorable high density regions. 

A drawback of the method is that the biasing potential often has to be applied, making it 

more than a small perturbation, in order for structural rearrangements to take place in the 

short amount of time that one is able to simulate due to the high computational costs of 
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all-atom molecular dynamics. Additional restraints are frequently added to VMD + VEM to 

stabilize secondary structure under the forces resulting from the strong biasing potential 

VEM. It is true that CPU time is becoming increasingly cheap, but the computational gap is 

likely to remain due to growth in the size and number of systems being imaged by cryo-

EM. 

Scoring metrics 

 The standard metric for assessing the quality of the fit of a model to a target 

density is the real-space correlation coefficient between the model’s theoretical density 

and that of the target map. As the model consists of a set of atomic coordinates, the 

theoretical density must be built onto the model. This can be done at several levels of 

accuracy (198), but for typical cryo-EM densities, the width of the experimental 

resolution factor (typically > 4 Å) is sufficiently large compared to the width of an atom’s 

Coulomb potential that the “density” about each atom can be approximated by a Gaussian 

distribution of width equal to the resolution of the target map. The total theoretical 

density is therefore  
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where rα is the position of atom α with atomic number Zα. The real-space correlation 

coefficient C can then be expressed as 
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where densities are evaluated at the discrete set of points at which the target density has 

been measured, typically on a cubic lattice (198).  

 The target density does not have to come from experiment. Especially when 

developing a fitting technique, it is helpful to have a target map for which the structure is 

known. For this reason, theoretical target maps are often generated from known atomic 
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models in a different conformation than the starting model. In this case, the quality of the 

fit can be determined directly from the RMSD between the two structures.  

Fitting methods 

Perturbation-based fitting 

 The methods of fitting the atomic model to the target density can be divided into 

two categories: perturbation-based fitting and fitting based on an energy bias. There are 

four ways of perturbing the rigid units (RUs), the first of which, random perturbation, 

was discussed in Chapter 4. This is not ideal as a generator of new conformations, as it 

does not direct the protein towards the target. For this purpose, one can throw each atom 

based on either the gradient of the target density at its location or the gradient of the 

correlation coefficient as a function of each atom’s location.  

Gradient-based perturbation 

 Perturbing according to the local gradient of the target density has the advantage 

that it is fast to compute, as only the target densities at the nearest grid points are needed 

to approximate the gradient, but the disadvantage that it does not strictly minimize the 

correlation coefficient. While the perturbations try to make all of the atoms to move 

towards the highest local density region, in practice this does not happen because of 

volume exclusion and stereochemical constraints. 

Correlation-based perturbation 

 Perturbation according to the gradient of the correlation coefficient has the 

advantage that it is based on the metric that one wishes to optimize, but the disadvantage 

that it is slower to calculate because it is less local in nature. Due to resolution factor 

being several times larger than the spacing of the lattice points at which the correlation 

coefficient is evaluated, calculation of the gradient of this correlation requires more 

computational time than the method based solely on the local gradient of the target 

density. This increase in computational time can be minimized by sparsening the target 
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map so that the lattice spacing is only two to three times smaller than the resolution 

factor. Very little information is actually lost by this sparsening, as the densities at nearby 

lattice points are correlated due to the smoothness of the density itself. 

Momentum-based perturbation 

 The last method of perturbation is meant to be used in conjunction with one of 

the prior three. If two or more iterations of FRODAN have been run and the 

conformations of the RUs in the two previous steps are represented by q1 and q2, with q2 

being the more recent of the two, use of the momentum perturbation serves to perturb the 

RUs by an amount ∆qmom = q2 - q1 in the current perturbation step. The total perturbation 

would therefore be ∆qmom + ∆qother, where ∆qother is the perturbation due to one of the 

three other perturbation methods. If one randomly perturbed and minimized a 

biomolecule many times, one would notice that the majority of any given perturbation is 

in a direction orthogonal to the allowed subspace. This component of the perturbation is 

wasted because is it negated upon enforcing the constraints. The momentum perturbation 

serves as memory of the component of the last perturbation that was beneficial and 

assumes that the same direction will be beneficial in the next perturbation step. It has the 

effect of finding “soft” directions in the available subspace, somewhat analogous to 

following low-frequency normal modes. Momentum perturbations also require much less 

computational time in the subsequent minimization step, as constraints tend not to be 

violated as severely as for random perturbations. The use of momentum-based 

perturbation has helped to drastically reduce fitting times, particularly for very large 

biomolecules displaying large conformational changes during the fitting process. 

Energy-based fitting 

 Biasing FRODAN conformations through the addition of an energy term to the 

constraint-enforcing energy was used previously to model protein unfolding under force. 
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In that case, the RMSD energy served to increase the distance between pairs of residues. 

The same general concept can be applied to flexible fitting, in which an energy term of 

the form Eq. (8.1) is added that favors atoms being in high density regions. This has been 

applied previously to bias MD simulations towards a target density (62). 

Constraint removal 

 The benefit of EEM is not so much to direct a biomolecule towards the region of 

the allowed subspace that maximizes the fit to the target density, as perturbation-based 

optimization is more efficient, but as a means of determining which constraints are most 

likely impeding further progress. In general, the ideal fit to the density lies outside the 

subspace defined by the initial set of constraints and thus one of the challenges is to 

remove as few constraints as possible in order to extend the subspace to include the 

desired conformation. Unlike previous applications such as geometric targeting, which 

finds pathways between two known structures (10), in cryo-EM fitting the set of 

constraints in the final structure is not known a priori. As in the protein unfolding 

problem, the biasing potential serves to create an equilibrium stress distribution due to the 

conflicting desire to simultaneously minimize the constraint energy and the biasing 

energy.  

 To demonstrate that the equilibrium stress distribution is a good metric for 

determining constraint removal, we need to understand what the constraints and the 

equilibrium stress represent. The problem of flexible fitting provides two sources of 

information: 1) the starting model provides information about favorable contacts of the 

native fold, represented in a quantized form by the set of initial constraints, and 2) the 

target density provides information about the shape and arrangement of secondary 

structure of the target conformation. I specifically say secondary structure because at the 

resolutions of typical cryo-EM maps, the only internal heterogeneities are due to the high 

atomic number backbone of secondary structure. As most conformational changes mostly 
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involve relatively minor changes in local contacts, information in the form of initial 

constraints should only be removed if there is sufficient evidence from the target map. In 

the limit that you weigh the initial information much more heavily that the target 

information, constraint removal would never be warranted. In the opposite limit, all 

initial constraints should be removed, as it is generally true that the correlation coefficient 

can be improved by removing more constraints, resulting in overfitting. The ideal balance 

of information is somewhere in between and one can interpret the static stress distribution 

as representing this compromise.  

 The spring constants used to model protein unfolding under force were also used 

in the cryo-EM fitting, with the same breaking extension of 0.15 Å. The relative 

importance of the initial and target information was controlled through the scaling factor 

EEM, for which a value of 0.15 was observed to limit breaking to those constraints that 

hindered “necessary” motions. This latter judgment is by necessity subjective. No 

constraints were added during the fitting process. 

Fitting protocol 

 Cryo-EM fitting was performed in three stages, namely: 

1) 200 steps of both correlation- and momentum-based perturbation  

(breaking disallowed) 

2) 20 steps of gradient-based perturbation with the biasing potential  

(breaking allowed) 

3) 200 steps of both correlation- and momentum-based perturbation 

(breaking disallowed) 

The 200 steps in the first stage are sufficient to converge to the region of the subspace 

with a high correlation coefficient. This number is greatly reduced through the use of 

momentum-based perturbation. The second step uses gradient-based perturbations and 
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adds the biasing energy in order to create the constraint violations required for breaking 

to occur, expanding the subspace as much as is justified by the information in the target 

map. Twenty steps are sufficient for all breaking events to occur. The final 200 steps 

allow a final optimization of the correlation coefficient within the expanded subspace. 

Benchmark set 

 A benchmark set of seven monomeric proteins was taken from the work of Topf 

et al. (64) from the group of Andrej Sali. One of the difficulties in proving the value of a 

new method is that each group applies their method to a different set of proteins. It is 

therefore appropriate to apply the FRODAN fitting algorithm to a test set that has already 

been fit by a competing method, called Flex-EM (64). For each protein in the benchmark 

set, the target map was theoretically generated using a resolution of 10 Å. The initial 

atomic model was generated by threading the target sequence into a homologous protein 

whose structure has been determined in a different conformation by X-ray 

crystallography, as described in the Threading techniques section. 

Results 

 Conformational changes required during flexible fitting can be classified into 

several categories ranging from global to local scales, namely: 

1) relative motion between secondary structure domains (and between 

monomers for multimeric proteins), 

2) Changes in the secondary structure itself, such as register shifts of α-helices 

and β-sheets, 

3) loop rearrangement, and 

4) side-chain rotamer changes.   
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Figure 8.1  Homology models (white) are used to generate flexible fits (blue) to 10 Å-

resolution target densities generated from known structures (green) for the SH3 and 

guanylate kinase domains of PSD-95 (PDB: 1jxm, left) and adenylate kinase (PDB: 1ake, 

right).    

Global motions of type 1 often connect proteins occupying different 

conformational states induced, for example, by ligand binding. These motions frequently 

form part of the subspace available to the constraint model, as these motions commonly 

involve hinges which FRODAN models explicitly. The main impedance to capturing 

these global motions is that they can involve changes in interfaces as two domains either 

separate or slide relative to one another, requiring constraints to break. The breaking 

phase of the flexible fitting protocol allows such motions to occur, as observed for the 

proteins 1jxm, 1ake, and 1cll in benchmark set, the former two shown in Figure 8.1. 

In all three cases, the force due to EEM caused both hydrogen bonds and hydrophobic 

interactions to be broken, allowing the subspace to expand in the direction of a better fit. 

Less than 5% of hydrogen bonds and salt bridges and 15% of hydrophobic constraints 

were lost in all three cases. This asymmetry can be understood by the weaker nature of 

the hydrophobic interactions, which are physically less specific than hydrogen bonds. 

Motions that resulted from this loss include the separation of an α-helix and β-sheet 

domain in 1jxm (see Figure 8.1), the closure of domains in 1ake, and the twisting of a  
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Probe 
PDB ID 

Template 
PDB ID 

Fold Seq. 
Identity 

(%) 

Initial Cα 
RMSD 

(Å) 

Final Cα 
RMSD 

(Å)       
Flex-EM 

Final Cα 
RMSD 

(Å) 
FRODAN 

Improv. 
relative to 

Flex-EM (Å)  

1akeA 1dvrB α/β 46 4.5 2.2 1.2 1.0 

1c1xA 1gtmA α/β 30 6.6 4.6 4.1 0.5 

1cll 2ggmB α 52 5.0 3.1 1.7 1.4 

1g5yD 3erdA α 30 5.4 5.1 2.8 2.3 

1jxmA 1ex7A α/β 33 5.4 3.3 2.6 0.7 

1uwoA 1k9pA α 41 4.7 4.0 3.0 1.0 

1cczA 1hnf β 37 5.2 5.1 4.7 0.4 

Table 8.1  Comparison of FRODAN results to those of Flex-EM for the benchmark set.  

terminal domain relative to a central helix in 1cll. By measuring the RMSD between the 

final fit and the known target structure, shown in Table 8.1, we see that two of the three 

conformational changes involved significant improvement compared with Flex-EM, in 

each case bringing the final model almost twice as close to the correct solution. Both 

structures are fit to within 2 Å of the target structure and thus almost indistinguishable 

from typical variation in the native ensemble. 

Motion of type 2, which involve changes to the secondary structure such as 

register shifts in α-helices and β-sheets is much more difficult, if not impossible, for 

FRODAN to capture. Such conformational changes are often necessary due to errors in 

the homology model that serves as input to the flexible fitting. The level of complexity 

required to address these problems are simply not feasible to try to address with the 

current implementation of FRODAN, as register shifts can result in very little difference 

to the density distribution while requiring many constraints to be broken. This problem is 

not unique to FRODAN, as MD flexible fitting would have similar trouble due to the 

long timescales required for partial unfolding and refolding of secondary structure. Much 

of the residual RMSD observed in the benchmark set, including 1jxm discussed earlier, is 

due to errors in the homology model. Luckily, homology models can be rapidly generated 

using many different sequence alignments. The computational efficiency of FRODAN 
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therefore makes it feasible to perform flexible fitting on hundreds if not thousands of 

homology models, some of which may lack errors in the secondary structural elements. 

 Motion of type 3 exclusively involves loop rearrangement. Loops can possess 

multiple low-energy conformations possessing different specific interactions, but of those 

a single one is typically chosen and submitted to the PDB data bank. It is therefore 

possible that the information content of a constraint in a loop region is less than that in α-

helices or β-sheets. Unfortunately this lack of a unique conformation also causes the 

gradient of the cryo-EM density to be weaker at the location of loops, as cryo-EM density 

represents an average over an ensemble of individual proteins in the sample, and thus 

averages the densities of the various loop conformations. In the fitting discussed here, 

loops were treated the same as every other part of the protein, causing much of the 

residual RMSD in structures such as 1g5y and 1uwo are due to poor loop conformations. 

Possible solutions include making it easier to break constraints in loop regions or their 

removal altogether. It is unlikely that their removal would lead to overfitting, but this 

deserves future investigation.  

 Lastly, motions of type 4 involve the most local conformational changes, namely 

changes in the rotameric states of side-chains. For models converging to less than 2 Å of 

the solution (for theoretical maps), a significant fraction of the residual RMSD can be due 

to poor side-chain conformations. While improvement can be gained by a final 

refinement stage in which random perturbations are made and conformations accepted or 

rejected in a Metropolis fashion, this level of fitting can be unjustified for experimental 

maps. As previously mentioned, experimental maps represent an average over an 

ensemble of molecules, causing specific side-chain rotamers to be washed out. This is 

contrary to theoretical maps which are typically generated from a single conformation. 

Both for clarity and because most proteins in the benchmark set displayed larger scale 
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disagreements that would make rotamer optimization difficult, a final refinement stage 

was not performed in the fitting process discussed here. 

Concluding remarks 

 A simple and computationally efficient constraint-based fitting algorithm based 

on the FRODAN package (10) was developed and shown to be effective at determining 

the atomic structure underlying cryo-EM maps for a set of 7 proteins (64). The RMSD of 

all 7 fitted structures were closer, in multiple cases significantly so, to the known 

conformation that those from the group that created the benchmark set. A few of the 

models were not significantly improved due to errors in the starting structures determined 

from homology modeling, as well as unwanted constraints in loop regions not allowing 

the necessary conformational rearrangements. Performing flexible fitting on hundreds of 

candidate homology models and selective weakening or removing loop constraints should 

allow for further improved fitting. The method’s ability to capture large scale 

conformational changes without sacrificing local stereochemistry, its conceptual 

simplicity, and its computational efficiency makes me hopeful that this can become a 

standard tool in building all-atom models from low-resolution data. 
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CHAPTER 9: OUTLOOK 

 Having had the opportunity to immerse myself in an area and encountered both 

the strengths and weaknesses of various models, it is beneficial to reflect on the 

promising avenues that could be taken in the future. In the area of amorphous materials, 

exciting experiments have very recently been conducted on amorphous silicon that probe 

density fluctuations on large length scales, allowing values of the limit        to be 

estimated. Intriguingly, the presently unpublished value lays almost exactly half way 

between the results derived in this thesis for the 100,000 atom model and that of a crystal. 

The growing interest in amorphous materials with very small density fluctuations at large 

length scales (31) is further reason to understand the disparity between the experimental 

samples and theoretical network models. Future studies could investigate the dependence 

of density fluctuations on the temperature at which bond transpositions are made in the 

WWW algorithm, as well as on the details of the energy function. 

 In the biological realm, both the constraint-based protein unfolding model and 

the flexible fitting model have room for future improvement. The protein unfolding 

model uses a rather crude estimate of the hydrogen bond burial factor that could be 

replaced by more realistic models. These include computationally efficient models for 

estimating solvent exposed surface areas, as well as future models derived from the 

excellent experimental work of Jeffery W. Kelly (208) in which he selectively knocks out 

backbone hydrogen bonds and determines their effect on protein stability. The 

deterministic breaking algorithm could also be extended to make constraint breaking 

probabilistic and dependent on the height of the bond’s energy barrier. Lastly, 

modifications could be made that improve the ability to find non-native contacts. The 

constraint network for a given protein conformation possesses flexibility that allows pairs 

of atoms to possess a range of pair distances. These biomolecular motions, which 

maintain a fixed topology, occur on short timescales compared with more complex 
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protein conformational changes requiring of considerable alteration of the bond network. 

One could therefore conceive of a search method within this flexibility window for non-

native bond formation. Such searches would necessarily make the algorithm more 

complex, but could allow for more accurate unfolding predictions, especially when 

compared with either experiment or MD simulation at slower pulling speeds.  

 Finally, I have great optimism regarding future improvements to the flexible 

fitting algorithm used to predict atomic structures from low-resolution cryo-EM density 

maps. This problem is an optimization problem and there exist a large number of 

potentially fruitful techniques to explore, especially given the computational efficiency 

and flexibility (no pun intended) of the present model. All of the methods for 

optimization described in this thesis can be categorized as local in nature, as perturbations 

are based on gradients, whether it is the gradient of the target density or the gradient of 

the correlation coefficient. Local techniques can often get trapped at local optima that 

may not be the best global solution. Feature points extracted by the method of vector 

quantization discussed previously could be used to locate geometrically unique features 

in both the atomic model and the target density and associate the two sets through a 

mapping. This has the potential, particularly for maps with better resolutions, of allowing 

associated regions to be identified even if they are not overlapping or similarly oriented 

in the initial alignment and used to guide regions of the constraint-based network model 

towards associated regions in the target density. This is likely to be particularly useful for 

large biomolecular complexes consisting of many smaller domains or individual subunits 

that display a great deal of flexibility that would otherwise be difficult to properly fit by 

local gradient-based techniques. I truly believe that the constraint-based model within 

FRODAN has the necessary properties to become a very successful fitting technique that 

can provide more accurate fitting than normal mode-based techniques while being far 
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more computationally efficient than MD techniques, allowing fits to be performed for a 

large number of starting structures derived from homology modeling. 
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APPENDIX A 

RDF OF UNIFORM MEDIA 
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 For a handful of simple geometrical shapes, the analytical forms of the RDFs of 

uniform continuous media       have been presented in the literature. For the sake of 

convenience these analytical expressions are listed here and some new expressions 

added. To save space, all those efforts that express RDFs in integral forms that need 

further numerical computations are not listed. In all the expressions below, the symbol 

   represents the three-dimensional density. 

 The RDF of single objects can be found by using the fact that the RDF is the 

average distribution seen by the units of density within it. Each unit of density observes 

the same three-dimensional density distribution as does the unit of density at the 

predefined origin, except that the distribution appears translated due to the difference in 

viewing locations. Averaging over the observed distributions is equivalent to finding the 

density-density autocorrelation of the object (126). The density-density autocorrelation 

    is a three-dimensional ρ density distribution given by 

 
 

(A.1) 

where      is the three-dimensional density distribution of the object of interest and V is 

its volume. The autocorrelation is normalized here so as to have a maximum density of 

   at     . Note that      is proportional to the probability of finding two units of 

density within the object at a separation r. The RDF depends only on the magnitude of r 

and can be found by performing a spherical integration of      about the origin. For 

objects of uniform density,                 , allowing      to be found directly 

from the spherical average of     .   

 Applying Eq. (A.1) to a single uniform sphere of density    and radius a, and 

dividing by      produces the shape factor (209)  
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(A.2) 

Similarly, the shape factor of a single uniform infinitely wide film of thickness d has the 

form (125)  

 

 

(A.3) 

The advantage of using the density-density autocorrelation to obtain the RDF over the 

method used by Kodama et al. (125) can be seen, for example, in an infinitely long 

cylinder of radius a. Calculating the autocorrelation with the proper normalization, one 

obtains a three-dimensional distribution with cylindrical symmetry and a radial 

dependence given by 

 

 

(A.4) 

where p is the distance from the axis of symmetry. By choosing a point along the axis as 

the center for the spherical averaging, p can be expressed as        , where   is the 

angle between r and the axis of the cylinder. The spherical average can be expressed as  

 

 

(A.5) 

where      is the angle at which p is maximal for a given r while remaining within the 

region      where the effective density is larger than zero. For     ,         , 

otherwise                 . By applying integration by parts to the first term, it 

becomes  
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(A.6) 

Substituting Eq. (A.6) into Eq. (A.5), the RDF of an infinite cylinder can be expressed as 

the sum of elliptical integrals, namely  

 

 

(A.7) 

where   

 
 

(A.8) 

 

 

(A.9) 

 

 

(A.10) 

For     ,          and thus                    . For     , the 

substitution                  allows                             to be 

written as              . The shape factor             
              for an infinite 

cylinder of radius a thus has the form  

 

 

(A.11) 

To the best of my knowledge, the RDF of an infinite cylinder has never been expressed in 

such a simplified form. The power of the autocorrelation method can be seen by 

comparing Eq. (A.11) to the equivalent result in Kodama et al. For a prolate spheroid 

whose three axes are a, a, and av, respectively, with v ≥ 1, the shape factor has the form 

(126)  
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(A.12) 

For an oblate spheroid whose three axes are a, a, and av, respectively, with v ≤ 1, the 

shape factor has the form (126)  

 

(A.13) 

Lastly, for a spherical shell of radius a and thickness δ, the shape factor in the range 

         has the form (94, 126)  

 

(A.14) 

where         if x < 0.  
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APPENDIX B 

PROTEIN UNFOLDING UNDER FORCE:  
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Comparison to constant force MD simulation 

 This section describes unfolding results for the remaining proteins in the 

constraint-based unfolding study. Four of the proteins do not have accompanying flow 

diagrams, as the pathways of ACA and spectrin are too diverse and lack distinct recurring 

states to be well described by flow diagrams, while PKD and protein L lack flow 

diagrams because the transition of interest for each is close to the native state structure 

and both lack distinct states further along their pathways. 

Ubiquitin 

 Ubiquitin is a highly conserved regulatory protein found in all eukaryotes. It is 

commonly used to label a protein for proteasomal degradation in which one or more 

ubiquitin domains are covalently attached to the protein being labeled. Its resistance to 

force may play an important role in proteasomal substrate unfolding (210). Ubiquitin’s 

mechanical properties have been studied using AFM (193), AFM and steered MD (211) 

and MD using umbrella sampling (52). Schlierf et al. (193) observed an intermediate at 

an extension 81±7 Å beyond that of the native state and hypothesized that it was due to 

the unfolding of the C-terminal half of the protein. Contrary to this hypothesis, a study by 

Li et al. (52) using umbrella sampling led to the conclusion that unfolding begins from 

the N-terminus through the unfolding of A and B. 

 All 10 constraint-based pathways begin with the shearing apart of the parallel β-

sheet connecting the two ends of ubiquitin (Figure B.1). In all pathways, A and B then 

separated from the core helix and separated from one another to form a set of 

mechanically robust states, as determined from the larger breaking forces observed 

between 110 Å and 140 Å in Figure B.2. The extension of highest force corresponding to 

the unfolding of the native state and the state lacking A and B were found in the  
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Figure B.1  Unfolding pathways of ubiquitin. Boxes serve as check points, connected by 

lines; colored blue (left) and red (right) for constraint-based and MD pathways 

respectively, and have thicknesses proportional to the number of paths that transit 

between the two end states. The numbers at the upper right and lower right of each box 

indicate the number of incoming constraint-based and MD pathways respectively. 

constraint-based model to be separated by an average of 78±11 Å, in agreement with the 

value of 81±7 Å observed experimentally by Schlierf et al. Interestingly, despite the 

extension being indistinguishable from that of Schlierf et al., the structure of the partially 

unfolded state differs from their hypothesized intermediate and instead lends support to 

the conclusions of Li et al. The results from constant force MD trajectories were less 

clear than those from the constraint-based method, as ubiquitin is seen to unfold 

completely as a single event without a stable intermediate, although A and B do 

separate from the core shortly before the C-terminal strands during the sudden unfolding 

events and therefore represents the same pathway. 

Ribonuclease H  

 Ribonuclease H, or simply RNase H, is a non-specific endonuclease that cleaves 

RNA by a hydrolytic mechanism. In DNA replication, RNase H also removes the RNA 

primer to allow DNA synthesis to be completed. Extensive work has been done on RNase 

H, including bulk studies that have found that the most stable region and the first to fold 

consists of 1-4 and 4-5. In a study by Cecconi et al. (160) using optical tweezers, an 

intermediate was observed and it was deduced that the region that remains folded in the  
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Figure B.2  Force profiles for the mechanical unfolding of ubiquitin obtained from crack 

propagation of the constraint network of 10 starting structures compared with those from 

constant velocity MD simulations. 

intermediate is the same as the stable core observed in folding experiments (194, 195). 

The unfolding and folding of RNase H were studied by Schmitt et al. (212) and Clementi 

et al. (213) respectively using Gö-like models.  

 In all constraint-based and MD unfolding simulations, unfolding began at the C-

terminus through the detachment of the terminal strand from the core, followed by the 

unraveling of the terminal 5. At this point the pathways diversify, with half of the 

constraint-based pathways predicting the β-sheet to break between strands 4 and 5 

while the other half separate between strands 3 and 4. This proved to be a critical step, 

as strands 4 and 5 were observed to serve as a clamp protecting the core helices from 

the external force. In most cases where strands 4 and 5 separated prior to 3 and 4, the 

core helices proceeded to unfold completely, leaving (1-3) (the bracketed numbers signify 

that they are intact) as the last secondary structure to disappear. When strands 3 and 4 

separate before 4 and 5, in 4 out of the 5 cases the N-terminal β-sheet proceeded to  
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Figure B.3  (Color online) Unfolding pathways of ribonuclease H. Boxes serve as check 

points, connected by lines; colored blue (left) and red (right) for constraint-based and MD 

pathways respectively, and have thicknesses proportional to the number of paths that 

transit between the two end states. The numbers at the upper right and lower right of each 

box indicate the number of incoming constraint-based and MD pathways respectively. 

separate (either together or individually), leaving the stable core observed in bulk studies 

(194, 195). At the level of detail described in Figure B.3, the set of pathways found by 

the constraint-based method included the MD trajectories as a subset. All but one MD 

trajectory followed the same unfolding pathway, leading to a state in which 5 is 

unfolded and (1-3) is detached, leaving the core observed in bulk studies, but in none of 

the pathways did (1-3) unfold prior to the core due to the high stability of (1-3) on the 

timescales simulated. Due to the ability of multiple constraint-based pathways to 

reproduce the order of detachment observed in the majority of MD simulations, as well as 

the observation in both models of an alternative pathway in which strands 4 and 5 
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separated prior to 3 and 4 leading most often to the unfolding of the α-helical core, we 

consider the constraint-based model to have adequately captured the unfolding behavior 

from MD simulation.   

Acyl-CoA binding protein  

 Acyl-CoA binding protein, herein called ACA, is a small helical protein that 

binds acyl-CoA esters with high affinity. To the authors’ knowledge, the mechanical 

unfolding of ACA has not been experimentally investigated, but has been studied using 

MD by Paci et al. (185). 

 In the constraint-based pathways, the first two events are always the detachment 

of A and D from the core, occurring simultaneously as well as in an ordered fashion, 

with no significant unfolding of the helices themselves. The remaining core was found to 

be resistant to force, causing varying amounts of unfolding of A and D prior to the 

unfolding of the core. These features agree with those from the MD simulations, for 

which A and D detach first, typically doing so simultaneously. There was usually, but 

not always, little loss of secondary structure of the terminal helices before detachment. A 

core resistant to unfolding formed for several of the simulations, composed of 

approximately the same residues as those from the constraint-based pathways and the 

study of Paci et al. (185). 

Filamin  

 Filamin is part of the cytoskeleton and is subject to force as part of its 

physiological role. It consists of long chains of actin-binding modules separated by 

varying numbers of immunoglobulin rod domains. This study uses the 4
th
 filamin domain 

of Dictostelium descoideum (ddFLN4). In an AFM study, Schwaiger et al. (192) inserted 

segments of glycine residues multiple loop regions to probe which strands unfold to form  



170 

 
 

Figure B.4  Unfolding pathways of filamin. Boxes serve as check points, connected by 

lines; colored blue (left) and red (right) for constraint-based and MD pathways 

respectively, and have thicknesses proportional to the number of paths that transit 

between the two end states. The numbers at the upper right and lower right of each box 

indicate the number of incoming constraint-based and MD pathways respectively. 

the observed intermediate, concluding that unfolding is restricted to A and B. 

Theoretical modelling studies have recently been performed using MD simulation (214) 

as well as coarse-grained simulation (215, 216). 

 The constraint-based pathways unfolded through two routes, as displayed in 

Figure B.4. In the majority of the pathways, unfolding began entirely at the C-terminus as 

F and G unfolded, leaving a mechanically stable state. In the other pathways, unfolding 

occurred at both termini through the detachment of A and G prior to the unfolding of 

the remaining core. All 10 MD trajectories have F and G detaching first, consistent with 

the dominant constraint-based unfolding pathway as well as that observed in a previous 

study (215). Unlike all other proteins in this study, neither the constraint-based model nor 

the MD simulations capture the unfolding pathway leading to the stable intermediate 

observed by Schwaiger et al. (192). Interestingly, the study of Li et al. (216) suggests that 

the pulling velocity determines the end at which unfolding begins, switching to the N-

terminus and passing through the experimentally observed intermediate at very low 

pulling rates. 
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Spectrin  

 Spectrin domains are triple-helical coiled-coil units located within many protein 

filaments that frequently bear a mechanical load and may function as elastic elements. 

This study pertains to the 16
th
 repeat of α-spectrin. The combined AFM and MD study by 

Altmann et al. (217) found that the spectrin unfolding pathways, unlike those of proteins 

such as titin I27 and fibronectin, possess a broad range of extensions in which it 

maintains its native fold. Despite the MD simulations of Altmann et al. (217) resulting in 

a diverse set of unfolding pathways, mutation analysis allowed them to conclude that the 

experimentally probed pathways involve the kinking of the central helix. 

 The constraint-based pathways display great variability in the amount in which 

A and C unfold prior to the loss of the native state packing of the helices, consistent 

with the findings of Altmann et al. In the majority of the pathways, the central helix B 

kinks in the middle prior to the detachment of both A and C. These features agree with 

those of the MD simulations, for which the initial effect of force was to cause the 

terminal helices to unravel by amounts that varied greatly among the simulations. As with 

the constraint-based model, B sometimes developed a kink in it before, and often during, 

the simultaneous detachment of the terminal helices.  

PKD  

 The mechanical properties associated to two PKD domain structures have been 

predominantly used in previous MD studies, that of the 1st PKD domain of human 

polycystin-1 and the archaeal PKD domain from Methanosarcina Mazei. In anticipation 

of possible future mutation studies, the structure of the archaeal PKD domain was used 

because the human structure has been found experimentally to be only marginally 

thermodynamically stable (218); which is a strategy that has been adopted previously 

(219). MD simulations have suggested that PKD’s remarkable strength may be due to 
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non-native contacts between the A-B loop and the G-strand that forms when the domain 

is subjected to force.  

 In the constraint-based model, the application of force causes the A-A’ loop to be 

drawn towards the G strand, but fails to approach close enough to the G strand to form 

the non-native hydrogen bonds observed in previous studies (218, 219). The clamp 

between the A’ and G therefore does not grow prior to the shearing apart of the two 

halves of the domain. Upon shearing, unfolding was observed to proceed from either 

terminus. The results of the MD simulations are not dissimilar to those reported by 

Forman et al. (219), with the A-A’ loop being pulled towards the G-strand resulting in 

the formation of non-native contacts and a structure referred to previously as S2 (219).  

Tenascin  

 The third fibronectin type III domain of human tenascin, abbreviated TNfn3, has 

a β-sandwich fold and forms part of the extracellular matrix. The mechanical unfolding of 

TNfn3 has been studied both with AFM (220, 221) and computationally using coarse-

grained models (165). A comprehensive study using protein engineering, AFM and MD 

simulation was also conducted by Ng et al. (54). Intermediates have not been observed 

experimentally, but -value analyses of mutants suggest that a significant amount of the 

protein is in a non-native conformation at the transition state (54), the greatest 

rearrangement taking place in A and G.  

 In all constraint-based pathways, tenascin formed intermediate I1 characterized 

by the loss of several hydrogen bonds between A and G near the N-terminus that allows 

A to extend further without significant rotation and rearrangement of the core (Figure 

B.5). Many hydrophobic contacts in the core proceed to break and non-native contacts 

form as the two β-sheets rotate until the strands of each are roughly parallel, forming I2. 

From here, strands A and G unfold in 9 of the pathways, followed by the complete 
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Figure B.5  Unfolding pathways of tenascin. Boxes serve as check points, connected by 

lines; colored blue (left) and red (right) for constraint-based and MD pathways 

respectively, and have thicknesses proportional to the number of paths that transit 

between the two end states. The numbers at the upper right and lower right of each box 

indicate the number of incoming constraint-based and MD pathways respectively. Check 

points possessing the additional label “I” have been identified as intermediates in 

previous studies. 

unfolding of tenascin. In the remaining path, A and B unfold to form the intermediate I3. 

The constraint-based unfolding pathways correspond well with those from MD, with the 

major distinction being the frequency at which I3 is formed. It should be stressed that no 

experiment has ever detected I3, in contrast to fibronectin (190). It is interesting that this 

asymmetry in the experimental detection of I3 in the structurally homologous proteins 

tenascin and fibronectin is captured in the constraint-based model.  We performed both 

constraint-based and constant force MD simulations on a conservative Ile8 → Ala8 

mutant which has been experimentally found to weaken the molecule (54). This mutation 

did not significantly alter the constraint-based or MD pathways. 
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Protein L  

 The B1 domain of Protein L is expressed in P. magnus as a tandem domain 

located in its cell walls. Protein L has no known mechanical function, but its parallel β-

sheet structure suggests a high mechanical resistance. Its response to force was studied 

both by AFM and through MD simulation by Brockwell et al. (222), as well as through a 

Gö-like model by West et al. (223).  

 In all 10 constraint-based pathways were consistent with previous findings (222), 

with the major force peaks correspond to the shearing apart of A and D followed by the 

sequential detachment firstly of C and D and secondly of A and B. In the MD 

simulations, unfolding was a single sudden event; however C andD tended to detach 

slightly before A andB, consistent with that found by Brockwell et al. 

Comparison of unfolding forces 

 The choice of parameters for the constraint-based model was made to maximize 

agreement between the model’s unfolding pathways and those from constant force MD. 

The model can nevertheless distinguish mechanically strong conformations from those 

that are less effective at supporting a load, as shown by comparisons of the force profiles 

for von Willebrand factor, fibronectin, and ubiquitin. To test the model’s ability to 

capture differences in mechanical strength between proteins, the maximum forces applied 

to the termini along the entire unfolding pathways of the constraint-based and constant 

velocity MD simulations are compared in Figure B.6. Each force value represents an 

average of the maximum force along each of the 10 pathways. The maximum forces from 

the two techniques correlate strongly (correlation coefficient of 0.82) despite the 

unfolding force not being a consideration during parameter optimization. Experimentally 

measured unfolding forces are incorporated into the figure by assigning point sizes 

according to experimental forces, as summarized in Table B.1. It should be noted that the  
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Figure B.6  Comparison of the maximum applied force along the unfolding pathways for 

the constraint-based model and constant velocity MD simulation. The size of the circular 

points reflects the unfolding forces observed experimentally by AFM, with small, 

medium, and large circles representing forces F < 75 pN, 75 pN < F < 150 pN, and F > 

150 pN respectively. Experimental forces measured by optical tweezers are represented 

by squares of fixed size. 

Protein Constraint-
based 
Maximum 
Force (pN) 

Constant 
Velocity 
MD 
Maximum 
Force (pN) 

Experimental 
Unfolding 
Force (pN) 

Pulling 
Speed 
(nm/s) 

Reference 

ACA 800 370 None known  

Barnase 948 491 70 100-500 (186) 

Fibronectin 945 649 74 +/- 20 600 (190, 224) 

Filamin 995 486 56.5 +/- 1.4 250-350 (192) 

PKD 987 524 181, 183 300, 600 (218) 

Protein L 1336 751 152 +/- 5 700 (222) 

RNase H 1135 805 19* 10-1000 (160) 

Spectrin 936 504 25-35 300 (225) 

Tenascin 933 569 137 +/- 12 200–600 (221) 

Titin I27 957 555 204 +/- 26 400–600 (226) 

Ubiquitin 1283 658 203 +/- 35 400 (211) 

vWF 1266 792 7-14* 0.35-350 pN/s(227) 

*Obtained by optical tweezers. 
Table B.1  Unfolding forces from models and experiment. 
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experimentally measured strength of a protein is a different quantity than the mechanical 

strength defined as the gradient of an energy Hamiltonian, as the experimental strength is 

sensitive to the free energy of the unfolding transition state, the displacement of the 

transition state along the vector of applied force, and the rate at which force is applied. 

Number of non-native constraints 

 Added constraints in the form of hydrogen bonds, salt bridges, and hydrophobic 

interactions are considered to be non-native if the constraint occurs between different 

pairs of atoms than those in the starting structure. Constraints that break and reform are 

not double counted. The average number of non-native constraints along each pathway 

are compared with the number of constraints in the starting structure in Table B.2.  

Protein Av. No. of 

Native 

Constraints 

Av. No. of 
Non-native 
Constraints 

ACA 89.8 91.5 

Barnase 113.1 114.4 

Fibronectin 83.8 79.4 

Filamin 79.3 79.2 

PKD 80.0 94.6 

Protein L 71.3 59.8 

RNase H 169.8 170.6 

Spectrin 109.9 114.5 

Tenascin 87.1 84.4 

Titin I27 90 73.5 

Ubiquitin 81.9 74.5 

vWF 196.9 235.6 

Table B.2  Number of non-native constraints compared with the number in the native 

state.  

Computational Cost 

 The CPU time needed for a single constraint-based and MD pathway are 

compared in Table B.3. The CPU time for the constraint-based model scales quadratically 

with the number of residues for all protein in this study, as both the number of steps as 

well as the computational cost per step scales linearly with protein size. 
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Protein CPU 
Time, 
MD (h) 

 CPU 
Time, 
Constraint 
Model (h) 

No. of 
Steps, 
Constraint 
Model 

No. of 
Residues 

ACA 10.433 0.58 3200 86 

Barnase 12.555 0.92 4100 110 

10FNIII 13.81 0.7 3400 94 

ddFLN4 9.453 0.68 3600 100 

PKD 9.094 0.72 2900 83 

Protein L 9.858 0.25 2200 64 

RNase H 20.967 1.87 5800 155 

Spectrin 15.254 0.74 3400 98 

Tenascin 17.62 0.56 3200 90 

Titin I27 11.686 0.56 3100 89 

Ubiquitin 8.763 0.42 2700 76 

vWF 24.976 2.78 6900 177 

Table B.3  CPU time and number of steps for a constraint-based pathway compared to the 

CPU time for a constant force MD pathway.  

Parameter sensitivity 

 Of the model parameters not fixed by experimental values, namely khb, kph, ksh, 

kst, krmsd, Ω, and xmax, only the dependence of the unfolding pathways on the values of khb, 

kph, and Ω were varied during optimization against MD results (summarized in Table 

B.4), as these three control the relative load that each bond can support before breaking. 

The choice of values of ksh, kst, xmax, and krmsd is described in Chapter 7. The value Ω = 0.5 

was chosen to ensure finite load bearing capacity of all hydrogen bonds and salt bridges. 

 

 

Relative side-chain hydrogen bond to hydrophic bond strength (khb/kph) 

                    15/5                           30/5 

 

Ω 

1 7 7.5 

0.5 5.5 9 

0 5.5 9 

Table B.4  Dependence of the number of proteins whose pathways agree with those from 

constant force MD as a function of the free parameters. 
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