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ABSTRACT  
   

The focus of this investigation is on the renewed assessment of nonlinear 

reduced order models (ROM) for the accurate prediction of the geometrically 

nonlinear response of a curved beam. In light of difficulties encountered in an 

earlier modeling effort, the various steps involved in the construction of the 

reduced order model are carefully reassessed. The selection of the basis functions 

is first addressed by comparison with the results of proper orthogonal 

decomposition (POD) analysis. The normal basis functions suggested earlier, i.e. 

the transverse linear modes of the corresponding flat beam, are shown in fact to 

be very close to the POD eigenvectors of the normal displacements and thus 

retained in the present effort. A strong connection is similarly established between 

the POD eigenvectors of the tangential displacements and the dual modes which 

are accordingly selected to complement the normal basis functions. 

The identification of the parameters of the reduced order model is 

revisited next and it is observed that the standard approach for their identification 

does not capture well the occurrence of snap-throughs. On this basis, a revised 

approach is proposed which is assessed first on the static, symmetric response of 

the beam to a uniform load. A very good to excellent matching between full finite 

element and ROM predicted responses validates the new identification procedure 

and motivates its application to the dynamic response of the beam which exhibits 

both symmetric and antisymmetric motions. While not quite as accurate as in the 

static case, the reduced order model predictions match well their full Nastran 

counterparts and support the reduced order model development strategy. 



  ii 

DEDICATION 
   

To my parents, my twin brother, and my sister. 



  iii 

ACKNOWLEDGMENTS 
   

I would like to thank my advisor, Dr. Mignolet, for all his guidance; 

support and the opportunity. Thanks to Dr. Davidson for his teaching and 

participation in my committee and to Dr. Spottswood for being one of my 

committee member and his time and effort in traveling to the defense. I would 

also like to acknowledge Dr. Wang, who has given me so much help and 

instruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  iv 

 

TABLE OF CONTENTS  

          Page 

LIST OF TABLES ....................................................................................................... v  

LIST OF FIGURES .................................................................................................... vi  

CHAPTER 

1    INTRODUCTION ..................................................................................  1  

2    PARAMETRIC FORMS OF NONLINEAR REDUCED ORDER 

MODELS .........................................................................................  3  

3    INDENTIFICATION OF THE REDUCED ORDER MODEL 

PARAMETERS ...............................................................................  8  

4    BASIS SELECTION ............................................................................  19 

Section 4.1 Introduction .................................................................... 19  

Section 4.2 Representation Error...................................................... 20  

Section 4.3 Dual Modes .................................................................... 21  

Section 4.4 Curved Beam – Observations ....................................... 28  

Section 4.5 Curved Beam – Normal Basis Functions ...................... 35  

Section 4.6 Curved Beam – Tangenital Basis Functions  ............... 38  

5    CURVED BEAM STATIC RESPONSE VALIDATION  ................  41 

6    CURVED BEAM DYNAMIC RESPONSE VALIDATION  ...........  49 

7    SUMMARY  ........................................................................................  58 

REFERENCES  ........................................................................................................  59 



  v 

LIST OF TABLES 

Table Page 

3.1.      Lowest eigenvalue of the matrix BK  for different STEP identified 

models and a LS identified model .....................................................  15 

4.1.      Maximum absolute normal and tangential displacements of some 

uniform negative pressure loads on the curved beam (in thickness)  28 

5.1.      Representation error (in percentage) of the basis for some uniform 

pressure static loadings ......................................................................  43 

6.1.      Representation error (in percentage) of the basis on the snapshots 

with symmetric normal components .................................................  50 

6.2.      Representation error (in percentage) of the basis on the snapshots 

with antisymmetric tangential components ......................................  50 

6.3.      Representation error (in percentage) of the basis on the snapshots 

with antisymmetric normal components ...........................................  50 

6.4.      Representation error (in percentage) of the basis on the snapshots 

with symmetric tangential components .............................................  50 

 
 

 

 

 

 

 



  vi 

LIST OF FIGURES 

Figure Page 

2.1       Reference and deformed configurations [16]  .....................................  3 

3.1       Curved beam geometry  .....................................................................  12 

3.2       Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 2 lb/in. 

(a) Normal and (b) tangential displacements.  ..................................  13 

3.3       Modal forces versus modal displacements curves of 1-mode models 

identified by STEP and LS  ...............................................................  14 

3.4       Modal forces versus modal displacements curves of 12-mode models 

identified by STEP and LS ................................................................  15 

4.2       Comparison of dual modes and POD eigenvectors of static and 

dynamic responses, clamped-clamped flat beam  .............................  27 

4.3       Linear modes of the curved beam.  

(a) Modes 1, 2 and 3 – Normalized normal displacement ..............  29 

(b) Modes 1, 2 and 3 – Tangential displacement ............................  29 

(c) Modes 4, 7, and 8 – Normalized normal displacement .............  30 

(d) Modes 4, 7, and 8 – Tangential displacement ...........................  30 

4.4       Normalized static responses of the curved beam to uniform loads P. 

(a) Normalized normal displacement ..............................................  31 

(b) Normalized tangential displacement .........................................  31 

4.5       Snap-shots of the dynamic response of the curved beam – I. 

(a) Normalized normal displacement ..............................................  33 



  vii 

(b) Normalized tangential displacement .........................................  33 

4.6       Snap-shots of the dynamic response of the curved beam – II. 

(a) Normalized normal displacement ..............................................  34 

(b) Normalized tangential displacement .........................................  34 

4.7       Comparison of the POD eigenvectors of static and dynamic responses 

in normal direction of the curved beam and the corresponding flat 

beam transverse modes  .....................................................................  37 

4.8       Comparison of the POD eigenvectors of static and dynamic responses 

in tangential direction and the dual modes, curved beam  ................  40 

5.1       Relation between applied static pressure and vertical displacement of 

the beam middle, curved beam, predicted by Nastran and ROM  ...  42 

5.2       Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P=1.7 lb/in. 

(a) Normal and (b) tangential displacements.  ................................  45 

5.3       Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P=3 lb/in. 

(a) Normal and (b) tangential displacements.  ................................  46 

5.4       Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P=1 lb/in. 

(a) Normal and (b) tangential displacements.  ................................  47 

5.5       Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P=10 lb/in. 

(a) Normal and (b) tangential displacements.  ................................  48 



  viii 

6.1       Curved beam quarter-point power spectral density for random loading 

of RMS of 0.5 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  52 

6.2       Curved beam quarter-point power spectral density for random loading 

of RMS of 1 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  53 

6.3       Curved beam quarter-point power spectral density for random loading 

of RMS of 2 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  54 

6.4       Curved beam center-point power spectral density for random loading 

of RMS of 0.5 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  55 

6.5       Curved beam center-point power spectral density for random loading 

of RMS of 1 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  56 

6.6       Curved beam center-point power spectral density for random loading 

of RMS of 2 lb/in, [0, 500Hz].  

(a) X and (b) Y displacements .........................................................  57 

 



  1 

Chapter 1 

INTRODUCTION 

Modal models have long been recognized as the computationally efficient 

analysis method of complex linear structural dynamic systems, yielding a large 

reduction in computational cost but also allowing a convenient coupling with 

other physics code, e.g. with aerodynamics/CFD codes for aeroelastic analyses. 

Further, these modal models are easily derived from a finite element model of the 

structure considered and thus can be obtained even for complex geometries and 

boundary conditions. However, a growing number of applications require the 

consideration of geometric nonlinearity owing to the large structural 

displacements. For example, panels of supersonic/hypersonic vehicles have often 

in the past been treated in this manner because of the large acoustic loading they 

are subjected to as well as possible thermal effects. Novel, very flexible air 

vehicles have provided another, more recent class of situations in which 

geometric nonlinearity must be included. 

For such problems, it would be very desirable to have the equivalent of the 

modal methods exhibiting: (i) high computational efficiency, (ii) an ease of 

coupling to other physics codes, and (iii) generality with respect to the structure 

considered and its boundary conditions. To this end, nonlinear reduced order 

modeling techniques have been proposed and validated in the last decade [1-13]. 

Although several variants exist, their construction share the same aspects. First, 

they involve a parametric form of the model, i.e. one in which the nonlinearity is 

only on the “stiffness” and includes linear, quadratic, and cubic terms of the 
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displacement field generalized coordinates (see chapter below). Second, they rely 

on an identification strategy of the parameters of the model, i.e. the linear, 

quadratic, and cubic stiffness coefficients, from a finite element model of the 

structure for a particular set of “modes” or basis functions. Differences between 

the existing methods center in particular on the way the linear and nonlinear 

stiffness coefficients are estimated from a finite element model and on the extent 

and specificity of the basis functions, i.e. modeling of only the displacements 

transverse to the structure or all of them. 

As may be expected, the first validations of these reduced order models 

focused on flat structures, beams and plates, and an excellent match between 

responses predicted by the reduced order models and their full finite element 

counterparts have been demonstrated. Curved structures, curved beam most 

notably, have also been investigated in the last few years and a very good match 

of reduced order model and full finite element results was obtained. Yet, the 

construction of the reduced order model was not as straightforward in this case as 

it had been in flat structure, instabilities of the model were sometime obtained. 

The issue of constructing stable and accurate nonlinear reduced order 

models for curved structures is revisited here and an extension of the 

displacement-based (STEP) identification procedure [14, 8] is first proposed. 

Then, its application to a curved beam model is demonstrated, and shown to lead 

to an excellent matching between reduced order model and full finite element 

predictions. 
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Chapter 2 

PARAMETRIC FORMS OF NONLINEAR REDUCED ORDER MODELS 

The reduced order models considered here are representations of the 

response of elastic geometrically nonlinear structures in the form  

 
( ) ( ) ( )∑

=
ψ=

M

n

n
ini XtqtXu

1

)(ˆ,ˆ  , i = 1, 2, 3   (2.1)  

where ( )tXui ,ˆ  denotes the displacement components at a point X = (𝑋1,𝑋2,𝑋3), 

see Fig. 2.1, of the structure and at time t. Further, ( )Xn
i

)(ψ̂  are specified, 

constant basis functions and ( )tqn  are the time dependent generalized coordinates. 

 

Figure 2.1. Reference and deformed configurations [16].  

A general derivation of linear modal models is classically carried out from 

linear (infinitesimal) elasticity and it is thus desired here to proceed similarly but 

with finite deformation elasticity to include the full nonlinear geometric effects. 

Then, the first issue to be addressed is in what configuration, deformed or 

undeformed, the governing equations ought to be written. In this regard, note that 
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the basis functions ( )Xn
i

)(ψ̂  are expected to (a) be independent of time and (b) 

satisfy the boundary conditions (at least the geometric or Dirichlet ones). These 

two conditions are not compatible if the basis functions are expressed in the 

deformed configuration as the locations at which the boundaries are will vary with 

the level of deformations or implicitly with time. However, these conditions are 

compatible if one proceeds in the undeformed configuration and thus X in Eq. 

(2.1), will denote the coordinates of a point in the undeformed configuration. 

Accordingly, the equations of motion of an infinitesimal element can be 

expressed as (e.g. see [15, 16], summation over repeated indices assumed) 

 ( ) iijkij
k

ubSF
X

̂
0

0
0 ρ=ρ+

∂
∂  for 0Ω∈X  (2.2)  

where S denotes the second Piola-Kirchhoff stress tensor, 0ρ is the density in the 

reference configuration, and 0b  is the vector of body forces, all of which are 

assumed to depend on the coordinates iX . Further, in Eq. (2.2), the deformation 

gradient tensor F is defined by its components ijF  as 

 

j

i
ij

j

i
ij X

u
X
xF

∂
∂

+δ=
∂
∂

=
ˆ

 (2.3)  

where ijδ  denotes the Kronecker symbol and the displacement vector is û  = x - 

X, x being the position vector in the deformed configuration. Finally, 0Ω  denotes 

the domain occupied by the structure in the undeformed configuration. It has a 

boundary  0Ω∂  composed of two parts: t
0Ω∂  on which the tractions 0t  are given 
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and u
0Ω∂  on which the displacements are specified (assumed zero here). Thus, the 

boundary conditions associated to Eq. (2.2) are 

 00
ikjkij tnSF =   for tX 0Ω∂∈  (2.4)  

 û  = 0  for uX 0Ω∂∈  (2.5)  

Note in Eqs (2.2) and (2.4) that the vectors 0b  and 0t  correspond to the transport 

(“pull back”) of the body forces and tractions applied on the deformed 

configuration, i.e. b and t, back to the reference configuration (see [15, 16]). 

To complete the formulation of the elastodynamic problem, it remains to 

specify the constitutive behavior of the material. In this regard, it will be assumed 

here that the second Piola-Kirchhoff stress tensor S is linearly related to the Green 

strain tensor E defined as 

 ( )ijkjkiij FFE δ−=
2
1  (2.6)  

That is, 

 klijklij ECS =   (2.7)  

where ijklC  denotes the fourth order elasticity tensor. 

Introducing the assumed displacement field of Eq. (2.1) in Eqs (2.2)-(2.7) 

and proceeding with a Galerkin approach leads, after some manipulations, to the 

desired governing equations, i.e. 

 
ipljijlpljijljijjijjij FqqqKqqKqKqDqM =++++ )3()2()1(  (2.8)  
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in which ijM  are mass components, )1(
ijK , )2(

ijlK , and )3(
ijlpK  are the linear, 

quadratic, and cubic stiffness coefficients, and iF  are the modal forces. Note that 

the damping term jij qD   has been added in Eq. (2.8) to collectively represent 

various dissipation mechanisms. Further, the symmetrical role of j and l in the 

quadratic terms and j, l, and p in the cubic ones indicates that the summations 

over those indices can be restricted to p ≥ l ≥ j. 

Once the generalized coordinates ( )tq j  have been determined from Eq. 

(2.8), the stress field can also be evaluated from Eqs. (2.3), (2.6), and (2.7). 

Specifically, it is found that every component of the second Piola-Kirchhoff stress 

tensor can be expressed as 

 ∑∑ ++=
nm

nm
nm

ij
m

m
m

ijijij qqSqSSS
,

),()( ~ˆ  (2.9)  

where the coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  depend only on the point X 

considered. 

The governing equations for the full finite element model can be derived 

as in Eqs (2.1)-(2.8) but with the coordinates iq  replaced by the finite element 

degrees of freedom iu  and the basis functions ( )Xn
i

)(ψ̂  becoming the element 

interpolation functions. This process accordingly leads to the equations 

 
ipljijlpljijljijjijjij FuuuKuuKuKuDuM ˆˆˆˆˆˆ )3()2()1( =++++   (2.10)  

Introducing in Eq. (2.10) a modal expansion of the form of Eq. (2.1), i.e. 



  7 

 
( ) ( )∑

=
ψ=

M

n

n
n tqtu

1

)(  (2.11)  

where )(nψ  are basis functions and ( )tqn  are the associated generalized 

coordinates recovers Eq. (2.8) and Eq. (2.9) as expected. 
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Chapter 3 

INDENTIFICATION OF THE REDUCED ORDER MODEL PARAMETERS 

One of the key component of the present as well as related nonlinear 

reduced order modeling approaches (see introduction) is the identification of the 

parameters of Eqs (2.8) and (2.9) from a finite element model of the structure 

considered in a standard (e.g. Nastran, Abaqus, Ansys) software. The reliance on 

such commercial codes gives access to a broad database of elements, boundary 

conditions, numerical algorithms, etc. but is a challenge from the standpoint of the 

determination of the parameters of Eqs (2.8) and (2.9) as one has only limited 

access to the detailed element information and matrices. 

The estimation of the mass components ijM  and modal forces iF  is 

achieved as in linear modal models, i.e. 

 
        

)()( j
FE

Ti
ij MM ψψ=  (3.1)  

 
       ( )tFF Ti

i
)(ψ=  (3.2)  

where FEM  is the finite element mass matrix and F(t) is the excitation vector on 

the structure.  

Next is the determination of the stiffness coefficients )1(
ijK , )2(

ijlK , and

)3(
ijlpK . In this regard, note first that the linear coefficients )1(

ijK  could be 

determined as in linear modal models, i.e. 

 )()1()()1( j
FE

Ti
ij KK ψψ=  (3.3)  
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where )1(
FEK  is the finite element linear stiffness matrix. Another approach must 

be adopted however for )2(
ijlK  and )3(

ijlpK  as nonlinear stiffness matrices are 

typically not available. Two approaches have been proposed to identify these 

parameters (and potentially the linear ones as well) from a series of static finite 

element solutions. The first one relies on prescribing a series of load cases and 

projecting the induced responses on the basis functions )(nψ  to obtain the 

corresponding generalized coordinates values )( p
jq , p being the index of the load 

cases. Then, introducing these values into Eq. (2.8) for each load case yields 

 )()()()()3()()()2()()1( p
i

p
r

p
l

p
jijlr

p
l

p
jijl

p
jij FqqqKqqKqK =++  

i = 1, ..., M  
(3.4)  

Proceeding similarly for P load cases yields a set of linear algebraic 

equations for the coefficients )2(
ijlK  and )3(

ijlpK , and possibly the linear stiffness 

coefficients )1(
ijK  as well, which can be solved in a least squares format to 

complete the identification of the stiffness parameters. 

An alternate strategy has also been proposed (e.g. see [14]) in which the 

displacements are prescribed and the required force distributions are obtained 

from the finite element code. The corresponding modal forces are then evaluated 

from Eq. (3.3) and a set of equations of the form of Eq. (3.5) is again obtained. 

Appropriately selecting the displacement fields to be imposed can lead to a 
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particularly convenient identification of the stiffness coefficients. Specifically, the 

imposition of displacements proportional to the basis function )(nψ  only, i.e. 

 )(n
nqu ψ=                 

)(ˆˆ n
nqu ψ=  

)(~~ n
nqu ψ=  

(3.5)  

leads to the 3 sets of equations 

 
ininnnninnnin FqKqKqK =++ 3)3(2)2()1(  

ininnnninnnin FqKqKqK ˆˆˆˆ 3)3(2)2()1( =++  

ininnnninnnin FqKqKqK ~~~~ 3)3(2)2()1( =++  

(no sum on n) 

(3.6)  

for i = 1, ..., M. In fact, these 3 sets of equations permit the direct evaluation of the 

coefficients )1(
inK , )2(

innK , and )3(
innnK  for all i. Repeating this effort for n = 1, ..., M 

thus yields a first set of stiffness coefficients. 

Proceeding similarly but with combinations of two basis functions, i.e. 

 )()( m
m

n
n qqu ψ+ψ=     m ≥ n (3.7)  

and relying on the availability of the coefficients )1(
inK , )2(

innK , )3(
innnK  and )1(

imK , 

)2(
immK , )3(

immmK  determined above, leads to equations involving the three 

coefficients )2(
inmK , )3(

innmK , and )3(
inmmK . Thus, imposing three sets of 
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displacements of the form of Eq. (3.8) provides the equations needed to also 

identify )2(
inmK , )3(

innmK , and )3(
inmmK . 

Finally, imposing displacement fields linear combination of three modes, 

i.e. 

 )()()( r
r

m
m

n
n qqqu ψ+ψ+ψ=     r ≥ m ≥ n (3.8)  

permits the identification of the last coefficients, i.e. )3(
inmrK . 

The above approach, referred to as the STEP (STiffness Evaluation 

Procedure), has often been used and has generally led to the reliable identification 

of the reduced order model parameters, especially in connection with flat 

structures, with values of the generalized coordinates nq  of the order of, or 

smaller than, the thickness. However, in some curved structures, e.g. the curved 

beam of [11], models identified by the STEP process are sometimes found to be 

unstable, i.e. a finite valued static solution could not be obtained with a time 

marching algorithm, when the applied load magnitude exceeded a certain 

threshold. This problem occurred most notably for loads inducing a snap-through 

of the curved beam. On other occasions, the matching obtained was poor although 

the basis appeared sufficient (see section 4.2 for discussion of this issue) for an 

accurate representation.  

Such a situation is shown in Fig. 3.2 for the curved beam of Fig. 3.1 with 

the ROM of [11]. The model identified as above was indeed unstable when loaded 

to a static force of P = 3 lb/in. This issue led in [11] to an ad hoc zeroing out of 

some of the coefficients of the model leading to the predictions shown in Fig. 3.2. 
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These results match quite well their Nastran counterparts but such an effort is not 

easily repeated to any other structure for which the terms to be zeroed out are not 

easily predicted.  

 

Figure 3.1. Curved beam geometry. 

 It was conjectured from [11] that the difficulty in capturing a stable snap-

through response is due to the lack of continuity in the corresponding 

displacement vs. load curve. To assess better the difficulties, the snap-through 

Nastran displacement field corresponding to the uniform load P = 2 lb/in was 

scaled through a broad range of amplitudes. Each such displacement field was 

imposed in Nastran and the forces necessary to achieve it were determined. 

Projecting these forces on the scaled displacement provided the “modal force” 

required. 

 

 

 

 

n t 

t = 0.09 in 
w = 1 in 



  13 

 

(a) 

 

(b) 

Figure 3.2. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 2 lb/in. 

(a) Normal and (b) tangential displacements. 
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Then, shown in Fig. 3.3, curve labeled Nastran, is the obtained modal 

force vs. modal displacement (i.e. the scaling of the Nastran displacement of Fig. 

3.2) curve. The mass normalized P = 2 lb/in displacement was then used as a 

single mode and the STEP identification was performed to get the corresponding 

linear, quadratic, and cubic coefficients for various values of the parameter 1q  of 

Eq. (3.5). The corresponding modal force vs. modal displacement curves are also 

shown in Fig. 3.3. Differences clearly occur between the Nastran and STEP 

curves, either at low or high displacement levels. A similar process was repeated 

with the 12-mode model of [11] before the zeroing out operation and the 

comparison with the Nastran results is shown in Fig. 3.4 which shows larger 

differences than in Fig. 3.3. This observation suggests that the identification of an 

accurate model becomes more challenging as the number of modes increases. 

 

Figure 3.3. Modal forces versus modal displacements curves of 1-mode models 

identified by STEP and LS. 
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Figure 3.4. Modal forces versus modal displacements curves of 12-mode models 

identified by STEP and LS. 

 

Table 3.1. Lowest eigenvalue of the matrix BK  for different STEP identified 

models and a LS identified model. 

 q1 1 mode 12 modes 

STEP 4.00E-05 2.17E+04 2.21E+04 

STEP 4.00E-04 2.52E+04 2.39E+04 

STEP 4.00E-03 7.06E+04 6.48E+04 

STEP 2.00E-02 1.77E+04 -2.54E+05 

STEP 4.00E-02 2.43E+04 -1.20E+06 

LS 4.00E-04 1.31E+05 1.42E+05 
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The lack of a close matching in Fig. 3.3 and 3.4 of the STEP results with 

their Nastran counterpart suggests that neither the 1-mode nor the 12-mode model 

would provide a close fit of the displacements on Fig. 3.2 but does not seem to 

justify the instability observed. A different perspective on this issue can be 

obtained by analyzing the eigenvalues of the matrix BK , see [18], defined for a 

single mode as  

 












= )3(

1111
)2(

111

)2(
111

)1(
11

23/2
3/2

KK
KK

BK . (3.9)  

and which should be positive definite. The lowest eigenvalue of BK  for the 

STEP identified models considered for Figs 3.3 and 3.4 are shown in Table 3.1. 

Note that two of these models (both based on 12-mode) yield non-physical 

negative eigenvalues. Further, there is a significant sensitivity of this lowest 

eigenvalue to the specific value of 1q  used. These findings confirm the difficulties 

involved in identifying an accurate model using the STEP procedure, Eqs (3.5)-

(3.8). 

The perceived weakness of this procedure is that the identification is 

conducted near the undeformed configuration for which the linear terms are much 

larger than the quadratic ones, themselves much larger than the cubic terms. That 

is, in conditions in which the critical balance of the terms on the left-hand-side 

does not take place. In this light, it was proposed to shift the baseline point around 

which the identification is achieved from the undeformed state to one in or near 

the expected difficult conditions, e.g. in a snap-through configuration of the 

curved beam. This baseline solution admits the representation 
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∑
=

ψ=
M

n

n
nqu

1

)(
0,0  (3.10)  

Then, the test displacement fields imposed for identification are 

 )(
0

n
nquu ψ+=  (3.11)  

 )()(
0

m
m

n
n qquu ψ+ψ+=     m ≥ n (3.12)  

 )()()(
0

r
r

m
m

n
n qqquu ψ+ψ+ψ+=     r ≥ m ≥ n  (3.13)  

More specifically, for each value of n = 1, ..., M, three cases of the form of 

Eq. (3.11) were considered with nq = +q, -q, and q/2 as before with q typically 

smaller than the thickness. The four cases corresponding to positive and negative 

values of nq  and mq  in Eq. (3.12) were also included for each n and m ≥ n. 

Finally, all eight cases associated with positive and negative values of nq , mq , 

and rq  for r ≥ m ≥ n  and all n were used. 

The displacement fields of Eqs (3.11)-(3.13) include generalized 

coordinates along all basis functions and thus no simplification of Eq. (3.4) takes 

place as in Eq. (3.6). Accordingly, the stiffness coefficients were obtained by a 

least squares solution of Eq. (3.4) with the complete set of displacement fields 

imposed by Eq. (3.11)-(3.13). Note that the linear, quadratic, and cubic stiffness 

coefficients are often of very different magnitudes and thus an appropriate scaling 

of the terms is recommended to keep low the condition number of the least 

squares matrix. It was also found beneficial to include the equations 

corresponding to two different baseline displacement fields 0u . 
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 A preliminary assessment of the above revised model identification 

approach was obtained by computing the modal force vs. modal displacement 

curves corresponding to the Nastran scaled displacement of Fig. 3.2. This effort 

was accomplished first in a single mode format using the two baseline solutions 

with modal displacements of 3.328e-4 and 1.14e-2 and 1q = 4e-4. The 

corresponding curve, named “LS”, see Fig. 3.3, matches very closely its Nastran 

counterpart. The computation was also repeated with the 12-mode model of [11] 

with baseline solutions corresponding to the projection on this basis of the 

Nastran displacements induced by the load P = 1.7 lb/in and P = 2 lb/in. The 

results, named “LS”, see Fig. 3.4, again match very closely those obtained with 

Nastran. Finally, the eigenvalues of the matrix BK  were also recomputed for the 

two models and the results are shown in Table 3.1. Note that these values are 

significantly larger than those obtained with the STEP algorithm highlighting the 

difference in the identified models. 
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Chapter 4 

BASIS SELECTION 

4.1 Introduction 
 

The two previous chapters have focused on the derivation of the 

parametric form of the reduced order model governing equations, Eqs (2.8) and 

(3.5), and on the estimation of the parameters from a set of well chosen finite 

element solutions. The last key aspect of the construction of reduced order models 

is the selection of the basis functions )(nψ . In this regard, the expected features of 

the reduced order model are that (i) it leads to an accurate representation of the 

full finite element results and (ii) it includes a “reasonably” small number of basis 

functions. 

The selection of such a basis is not as straightforward a task as in linear 

systems. Consider for example a flat homogenous structure subjected to 

transverse loads. In the linear response range, only transverse deflections result 

from the loading. However, these deflections induce a stretching in the in-plane 

direction and thus give rise to in-plane motions as well which are a second order 

effect and thus not captured by linear analyses. Nevertheless, such motions must 

be captured when constructing the nonlinear reduced order model. 

As another example of complexity introduced by nonlinear effects, note 

the existence of “symmetry breaking bifurcations”. The response of the 

symmetric curved beam shown in Fig. 4.1 to a uniform dynamic loading is known 

(see [4]) to be symmetric, as in the linear case, for small loading levels. However, 

when the response becomes large enough, antisymmetry arises through a 
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nonlinear coupling of antisymmetric and symmetric modes. In such cases, it is 

thus necessary to also include antisymmetric modes in the basis to accurately 

capture the beam response. 

In light of the above observations, this chapter is focused on the 

clarification of the steps followed for the selection of the basis used in connection 

with the curved beam of Fig. 3.1. 

4.2 Representation Error 

Since the selection of the basis is not a straightforward task, it is necessary 

to quantify the appropriateness of a particular choice of modes for the 

representation of the response. It is proposed here to introduce the representation 

error 

 
         Erep =

�u − u
𝑝𝑟𝑜𝑗

�

�u �
 (4.1)  

where u is a particular response of the finite element model (referred to as a test 

case) and u
𝑝𝑟𝑜𝑗

 is its projection on the basis selected, i.e.  

 
∑
=

ψ=
M

n

n
projnproj qu

1

)(
,  (4.2)  

where 

 uMq FE
Tn

projn
)(

, ψ=  (4.3)  

assuming that the basis functions )(nψ  are orthonormalized with respect to the 

finite element mass matrix FEM . 
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A basis will be considered to be acceptable for the modeling of the 

structural response when the representation error for a series of test cases, 

including both static and dynamic ones, is below a certain threshold. Visual 

correlations of the responses u and their projections suggest that this threshold 

should be taken of the order of 0.01. 

Note that even a zero representation error does not guarantee that the 

reduced order model constructed with the basis will lead to a good match of the 

ROM and finite element predicted displacement fields as the generalized 

coordinates ( )tqn  will not be obtained from Eq. (4.3) but rather through the 

governing equations, Eqs (2.8) and (3.5). So, the representation error should be 

considered as only an indicator, not an absolute measure of the appropriateness of 

the basis. Further, the worth of the representation error is dependent on the test 

cases selected which must span the space of loading and responses of interest. For 

example, including only symmetric basis functions and considering test cases in 

which this symmetry also holds may suggest that the basis is appropriate while in 

fact it may not if symmetry breaking does take place for some loadings of interest. 

4.3 Dual Modes 

The discussion of section 4.1 highlights that the basis appropriate for a 

nonlinear geometric ROM must include other modes than those considered for a 

linear modal model but provides no guidance on how to select them. This issue 

has been investigated recently, see [8], and it has been suggested that the “linear 

basis”, i.e. the modes necessary in linear cases, be complemented by “dual 

modes” which capture the nonlinear interactions in the structure. 
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While the construction of the dual modes is applicable to any structural 

modeling, it is most easily described in the context of an isotropic flat structure, 

e.g. beam or plate, subjected to a transverse loading. Selecting an appropriate 

basis for the transverse displacements follows the same steps as in a linear 

analysis in which no further modeling is necessary. When the response level is 

large enough for nonlinear geometric effects to be significant, small in-plane 

displacements appear in the full solution which are associated with the 

“membrane stretching” effect. While small, these in-plane motions induce a 

significant softening of the stiffening nonlinearity associated with pure transverse 

motions. 

One approach to construct a full basis, i.e. modeling both transverse and 

in-plane displacements, appropriate for the modeling of the nonlinear response is 

to focus specifically on capturing the membrane stretching effects. The key idea 

in this approach is thus to subject the structure to a series of “representative” static 

loadings, determine the corresponding nonlinear displacement fields, and extract 

from them additional basis functions, referred to as the “dual modes” that will be 

appended to the linear basis, i.e. the modes that would be used in the linear case. 

In this regard, note that the membrane stretching effect is induced by the 

nonlinear interaction of the transverse and in-plane displacements, not by an 

external loading. Thus, the dual modes can be viewed as associated (the adjective 

“companion” would have been a better description than “dual”) with the 

transverse displacements described by the linear basis. The representative static 

loadings should then be selected to excite primarily the linear basis functions and, 
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in fact, in the absence of geometric nonlinearity (i.e. for a linear analysis) should 

only excite these “modes”. This situation occurs when the applied load vectors on 

the structural finite element model are of the form 

 ∑ ψα=
i

i
FE

m
i

m KF )()1()()(  (4.4)  

where )(m
iα  are coefficients to be chosen with m denoting the load case number. 

A detailed discussion of the linear combinations to be used is presented in [8] but, 

in all validations carried out, it has been sufficient to consider the cases 

 )()1()()( i
FE

m
i

m
i KF ψα=    i = dominant mode (4.5)  

 [ ])()1()()1(
)(

)(
2

j
FE

i
FE

m
im

ij KKF ψψ
α

=                                 

i = dominant mode, ij ≠  

(4.6)  

where a “dominant” mode is loosely defined as one providing a large component 

of the response. The ensemble of loading cases considered is formed by selecting 

several values of )(m
iα  for each dominant mode in Eq. (4.2) and also for each 

mode ij ≠  in Eq. (4.3). Note further that both positive and negative values of 

)(m
iα  are suggested and that their magnitudes should be such that the 

corresponding displacement fields )(m
iu  and )(m

iju  range from near linear cases to 

some exhibiting a strong nonlinearity. 

The next step of the basis construction is the extraction of the nonlinear 

effects in the obtained displacement fields which is achieved by removing from 
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the displacements fields their projections on the linear basis, i.e. by forming the 

vectors 

 [ ] s
s

m
iFE

T
s

m
i

m
i uMuv ψψ−= ∑ )()()(  (4.7)  

 [ ] s
s

m
ijFE

T
s

m
ij

m
ij uMuv ψψ−= ∑ )()()(  (4.8)  

assuming that the finite element mass matrix serves for the orthonormalization of 

the basis functions )(nψ  (including the linear basis functions and any dual mode 

already selected). 

A proper orthogonal decomposition (POD) of each set of “nonlinear 

responses” )(m
iv  and )(m

ijv  is then sequentially carried out to extract the dominant 

features of these responses which are then selected as dual modes. The POD 

eigenvectors rφ  selected as dual modes should not only be associated with a large 

eigenvalue but should also induce a large strain energy, as measured by 

rFE
T
r K φφ )1( , since the membrane stretching that the dual modes are expected to 

model is a stiff deformation mode. 

To exemplify the above process, a flat aluminum beam (see [17] for 

details), cantilevered on both ends was considered and the duals corresponding to 

the first four symmetric transverse modes are shown in Fig. 4.2. Note that these 

duals are all antisymmetric as expected from the symmetry of the transverse 

motions assumed. To obtain a better sense of the appropriateness of these 

functions, a POD analysis of an ensemble of nonlinear responses was carried out 
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and also shown on Fig. 4.2 are the mass normalized POD eigenvectors found for 

the in-plane displacements. In fact, two such analyses were conducted, one using 

a series of static responses and the other using snapshots obtained during a 

dynamic run. It is seen from these results that the dual modes proposed in [8] are 

in fact very close to the POD eigenvectors obtained from both static and dynamic 

snapshots. Note that both POD eigenvectors and dual modes are dependent on the 

responses, e.g. their magnitude, from which they are derived. The results of Fig. 

4.2 were obtained with responses ranging typically from 0.08 to 0.8 beam 

thickness. In fact, in this range of displacements, the POD analysis of the static 

responses yielded only two eigenvectors with significant eigenvalue and thus no 

POD-static curve is present in Figs 4.2(c) and 4.2(d). 
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(c) 

 

(d) 

Figure 4.2. Comparison of dual modes and POD eigenvectors of static and 

dynamic responses, clamped-clamped flat beam.  
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4.4 Curved Beam - Observations 

 The first step in the selection of the basis for the curved beam of Fig. 4.1 

was the determination of its linear mode shapes and of a series of static and 

dynamic nonlinear test cases to be used in the evaluation of the representation 

error, Eq. (4.1). Shown in Fig. 4.3 are the first 6 modes with dominant 

components in the plane of the beam. Modes 5 and 6 were found to be out-of-

plane modes and thus were not included in the reduced order model as no such 

motion was observed in the validation cases considered. Displayed in Fig. 4.3 are 

modal displacements along the locally normal and tangential directions, not along 

the global X and Y coordinates. 

Shown similarly in Fig. 4.4 are static responses of the curved beam 

induced by a uniform pressure P acting along the negative Y axis, see Fig. 4.1. For 

ease of presentation, the responses were scaled by their respective peak values 

which are given in Table 4.1. Note that the cases P = 1 and 1.5 lb/in lead to 

nonlinear deflections but no snap-through while the load of P = 2 lbs/in does 

induce such an event. Further, the normal components are all symmetric while the 

tangential ones are antisymmetric, consistent with the symmetry of the beam and 

its excitation. 

Table 4.1. Maximum absolute normal and tangential displacements of some 

uniform negative pressure loads on the curved beam (in thickness). 

 P=1 P=1.5 P=2 

Max Normal Disp. 0.158 0.262 9.7 
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Max Tangential Disp. 0.0028 0.0046 0.2551 
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(c) 

(d) 

Figure 4.3. Linear mode shapes 1, 2, 3, 4, 7, and 8 of the curved beam. 

(a) Modes 1, 2 and 3 – Normalized normal displacement. 

(b) Modes 1, 2 and 3 – Tangential displacement. 

(c) Modes 4, 7, and 8 – Normalized normal displacement. 

(d) Modes 4, 7, and 8 – Tangential displacement. 
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(a) 

 

(b) 

Figure 4.4. Normalized static responses of the curved beam to uniform loads P. 

(a) Normalized normal displacement. 

(b) Normalized tangential displacement.  
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Snap-shots of the dynamic response of the beam are shown in Figs 4.5 and 

4.6. On the former figure, the responses are strongly symmetric in the normal 

direction and antisymmetric in the tangential, although not exactly as in the static 

cases, see Fig. 4.4. However, in the latter figure 4.6, no symmetry of the 

responses is observed, either exactly or even approximately. These observations 

confirm the observations of [4,11] that a symmetry breaking bifurcation takes 

place dynamically and thus the lack of symmetry will need to be reflected in the 

basis. 
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(a) 

 

(b) 

Figure 4.5. Snap-shots of the dynamic response of the curved beam - I. 

(a) Normalized normal displacement. 

(b) Normalized tangential displacement. 
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(a) 

 

(b) 

Figure 4.6. Snap-shots of the dynamic response of the curved beam - II. 

(a) Normalized normal displacement. 

(b) Normalized tangential displacement. 
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4.5 Curved Beam - Normal Basis Functions 

 Consistently with linear modal models, the appropriateness of the linear 

mode shapes to represent the nonlinear responses was first investigated. From Fig. 

4.3, it is seen that all mode shapes exhibit at least one zero of the normal 

displacements which thus alternate (except mode 3) between positive and 

negative values. However, all static responses and most large dynamic ones do 

not, their normal displacements are all one sided and no zero at the middle (as the 

linear mode 3). To get an overall perspective on that issue, the ensembles of static 

and dynamic responses were analyzed separately in a POD format to extract the 

dominant features of the beam response. The corresponding POD eigenvectors of 

the normal components (treated separately of the tangential ones), shown in Fig 

4.7, do indeed confirm the above impression: the first normal POD eigenvector of 

both static and dynamic responses does indeed exhibit a one-sided normal 

displacement reaching its maximum value at the middle, at the contrary of the 

linear mode shapes. However, the second normal POD eigenvector is somewhat 

similar to the second (lowest symmetric) mode shape. While the mode shapes are 

known to form a complete basis for all deflections, linear or nonlinear, of the 

curved beam, the above observations suggest that the convergence with the 

number of modes used may be slow. 

 On this basis, it was decided here not to use the linear mode shapes but 

rather a set of basis functions that is consistent with the POD eigenvectors of Fig. 

4.7. Certainly, the POD eigenvectors themselves could have been selected but it 

was desired to select basis functions originating from a natural family of modes. 



  36 

In this regard, a strong similarity was observed between the normal POD 

eigenvectors and the mode shapes of a flat beam spanning the same distance, see 

Figs 4.7. Accordingly, it was decided to use these mode shapes as basis functions 

for the normal direction. Note that the value of the modal displacement of the flat 

beam in the transverse direction was directly used for the curved beam basis 

functions as a normal component with zero tangential counterpart. 
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(c) 

 

(d) 

Figure 4.7. Comparison of the POD eigenvectors of static and dynamic responses 

in normal direction of the curved beam and the corresponding flat beam 

transverse modes. 
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4.6 Curved Beam - Tangential Basis Functions 

 The basis functions introduced in the previous sections do not have any 

tangential component and thus cannot provide a complete representation of the 

beam response. This situation closely parallels the flat beam where the modes first 

selected were purely transverse. For that structure, the “dual modes” of section 

4.3 were successfully used to complement the transverse modes suggesting a 

similar choice for the curved beam using the normal basis functions as linear 

basis. In fact, the dual modes and POD eigenvectors were found to be very similar 

for the flat beam, see Fig. 4.2 and it was desired to first assess whether a similar 

property would hold for the curved beam. 

  Since the normal basis functions do not have any tangential component, it 

was decided that the dual modes that would be used should exhibit purely 

tangential displacements and the procedure of section 4.3 was modified 

accordingly by zeroing the normal components of the “nonlinear responses” )(m
iv  

and )(m
ijv  before performing the POD analysis. The resulting dual modes 

corresponding to the symmetric normal basis functions are compared in Fig. 4.8 

to the POD eigenvectors obtained from the ensemble of static and dynamic 

tangential responses. A good qualitative agreement is observed although the 

quantitative match is not as close as seen for the flat beam, see Fig. 4.2. On the 

basis of this successful comparison, the dual modes were selected to complement 

the normal basis functions for the representation of the curved beam response. 
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(c) 

 

(d) 

Figure 4.8. Comparison of the POD eigenvectors of static and dynamic responses 

in tangential direction and the dual modes, curved beam. 
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Chapter 5 

CURVED BEAM STATIC RESPONSE VALIDATION  

This chapter presents static response validation for the identification 

strategy based on Eqs (3.10)-(3.13) using the clamped-clamped curved beam of [4, 

5, 11], see Fig. 4.1. The beam has an elastic modulus of 10.6×106 psi, shear 

modulus of 4.0×106 psi, and density of 2.588×10-4 lbf-sec2/in4. A Nastran finite 

element model with 144 CBEAM elements was developed to first construct the 

reduced order model and then assess its predictive capabilities. The reduced order 

model development aimed at the dynamic response to a pressure uniform in space 

but varying in time. This chapter focuses solely on the static response to such a 

loading, i.e. F(t) = P constant, and shown in Fig. 5.1 is the vertical displacement 

induced at the middle of the beam as a function of P. Note that the beam exhibits 

a snap-through at P = 1.89 lb/in and that the magnitude of the snap-through 

deformation is quite large, of the order of 10 thicknesses. If the beam is unloaded 

from this point, it will not go back to the neighborhood of the undeformed 

position, i.e. on the left branch, until the load reduces to approximately 0.45 lb/in, 

which represents the snap-back condition. 
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Figure 5.1. Relation between applied static pressure and vertical displacement of 

the beam middle, curved beam, predicted by Nastran and ROM. 

 

The basis used for the reduced order model included the first 6 normal 

basis functions, see section 4.5, and the corresponding 6 dual modes with the first 

normal basis function dominant, see section 4.6. This process led for the present 

static computations to a 12-mode model similar to the one considered in [11]. To 

get a first perspective of how well this 12-mode basis might capture the uniform 

pressure static responses, the representation error was computed for a few load 

cases, see Table 5.1. The small magnitudes of these errors suggest that the basis is 

probably acceptable for the representation of the response. 

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Vertical displacement (in)

P
re

ss
ur

e 
(lb

/in
)

 

 

Nastran
ROM



  43 

Table 5.1. Representation error (in percentage) of the basis for some uniform 

pressure static loadings.   

 P=1 lb/in P=1.7 lb/in P=2 lb/in P=3 lb/in 

Normal 1.095e-002 1.159e-002 1.478e-002 1.848e-002 

Tangential 2.152e-002 1.637e-002 2.418e-002 4.749e-002 

 

The construction of the reduced order model according to the STEP 

procedure of Eqs (3.5)-(3.8) led to the same difficulties as those encountered in 

[11] and described in chapter 3, i.e. difficulty in obtaining a finite valued static 

solution by a time marching integration of the reduced order equations of Eq. 

(2.8). Even when a solution could be found, it led to a poor matching of the finite 

element results. This issue was resolved in [11] by a detailed study of coefficients 

and a zeroing out of those that drove the instability; a model matching well the 

full finite element results was then obtained. 

The present effort relied instead on the revised identification procedure, i.e. 

Eqs (3.10)-(3.13). Specifically, two baseline solutions were considered that 

correspond to the projection of the full finite element results at P = 1.7lb/in on the 

left branch, i.e. below the snap-through limit, and at P = 2lb/in, i.e. above the 

snap-through transition. No instability of the model was found in any of the 

computations carried out thereby suggesting that this phenomenon was indeed 

related to the near cancelation of terms and demonstrating the benefit of the 

revised identification of Eqs (3.10)-(3.13). 



  44 

The assessment of the reduced model in matching the full finite element 

results was carried out in two phases corresponding to the two branches, left and 

right, of the response curve of Fig. 5.2. Shown in Fig. 5.3 are the normal and 

tangential displacements obtained at the load of P = 1.7lb/in which are typical of 

the left branch. An excellent match between Nastran and reduced order model 

results is obtained. A similar analysis was conducted with loading conditions on 

the right branch and shown in Fig. 5.4 are the normal and tangential 

displacements obtained for P = 3 lb/in. Both Nastran and reduced order models 

were then unloaded to P = 1 lb/in, see Fig. 5.5. Finally, a load of P = 10 lb/in was 

also considered and the responses are shown in Fig. 5.6. In all of these cases, an 

excellent match is obtained between the full finite element model results and the 

reduced order model predictions. 

Even with these excellent comparisons, it should be noted that the reduced 

order model does not predict correctly the snap-through load. Indeed, the load-

deflection corresponding to the reduced order model, also shown in Fig. 5.1, 

indicates that its snap-through occurs at a load of 2.3lb/in vs. the 1.89lb/in for the 

finite element model. Nevertheless, these overall results indicate that the 

identification algorithm based on Eqs (3.10)-(3.13) has led to a very reliable 

reduced order model. 
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(a) 

 

(b) 

Figure 5.2. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 1.7 lb/in.  

(a) Normal and (b) tangential displacements. 
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(a) 

 

(b) 

Figure 5.3. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 3 lb/in.  

(a) Normal and (b) tangential displacements. 
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(a) 

 

(b) 

Figure 5.4. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 1 lb/in (right branch).                          

 (a) Normal and (b) tangential displacements. 
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(a) 

 

(b) 

Figure 5.5. Comparison of static responses predicted by Nastran and by the 

reduced order model, curved beam, P = 10 lb/in.  

(a) Normal and (b) tangential displacements. 
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Chapter 6 

CURVED BEAM DYNAMIC RESPONSE VALIDATION  

The 12-mode reduced order model obtained in the previous chapter only 

includes symmetric normal modes and thus is not appropriate for dynamic loads 

because of the potential occurrence of symmetry breaking. Accordingly, this 

chapter focuses on the construction and validation of an extended ROM that is 

appropriate for such dynamic loadings, i.e. includes anti-symmetric normal basis 

functions and corresponding dual modes.  

Normal basis functions were first considered and 7 such functions were 

selected, more specifically 3 anti-symmetric and 4 symmetric ones, all based on 

the linear modes of the corresponding straight beam. Next, the 6 antisymmetric 

dual modes of chapter 5 were retained and complemented by 5 mostly symmetric 

dual modes created with the first symmetric and first antisymmetric normal basis 

functions as dominant. These dual modes were also made purely tangential by 

stripping their normal components. This process led to an 18-mode model. 

Before identifying the stiffness parameters associated to this model, its 

adequacy to represent both static and dynamic responses of test cases was first 

assessed. Specifically, the representation error was computed for a series of 

snapshots of the dynamic response. The snapshots selected here exhibited 

strongly dominant symmetric or antisymmetric normal or tangential components 

to judge each group of the 18-mode basis separately.       
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Table 6.1. Representation error (in percentage) of the basis on the snapshots with 

symmetric normal components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Normal 2.46E-01 1.13E-02 4.69E-02 1.69E-01 

 

Table 6.2. Representation error (in percentage) of the basis on the snapshots with 

antisymmetric tangential components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Tangential 2.49E-02 1.68E-02 1.38E-02 1.73E-01 

 

Table 6.3. Representation error (in percentage) of the basis on the snapshots with 

antisymmetric normal components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Normal 1.82E-01 1.31E-01 1.37E-01 2.23E-01 

 

Table 6.4. Representation error (in percentage) of the basis on the snapshots with 

symmetric tangential components. 

 Snap-shot1 Snap-shot2 Snap-shot3 Snap-shot4 

Tangential 1.63E-01 1.48E-01 3.39E-02 2.97E-01 

 

The representation errors, given in Table 6.1-6.4, were found to be low 

enough to proceed with the identification of the stiffness parameters. 

Accomplishing this effort requires the selection of at least one, two were selected, 
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baseline solutions. To exercise all basis functions, it was desired that the baseline 

solutions exhibit a lack, notable preferably, of symmetry. To this end, the baseline 

solutions were selected as the static responses to pressure distributions linearly 

varying along the beam. The first such distribution varied from 0.98lb/in on the 

left side to 1.82 lb/in on the right one. The second varied similarly from 1.4 to 2.6 

lb/in. The baseline loading P = 1.4-2.6 lb/in has a mean value of 2 lb/in and leads 

to a snap-through response but it is very close to symmetric. However, the 

baseline solution induced by the pressure P = 0.98-1.82 lb/in is not a snap-through 

but exhibits a significant lack of symmetry. 

The dynamic validation was achieved by comparing the power spectra of 

the stationary responses of the center and quarter points of the beam in the global 

X and Y directions obtained by a full Nastran analysis and the reduced order 

model. The random excitation considered was uniform along the beam, in the 

global Y direction, and varied with time as a bandlimited white noise with a flat 

spectrum in the range of [0, 500Hz]. Three excitations levels were considered 

yielding RMS forces of 0.5, 1, and 2 lb/in, see [11]. The higher levels 1 and 2 

lb/in displayed intermittent and nearly continuous snap-through excursions, 

respectively. The comparison of power spectra for these 3 cases and 2 locations, 

see Figs 6.1-6.6, demonstrates a good to very good matching, most notably at the 

two smallest levels, suggesting indeed the appropriateness of the reduced order 

model. 
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(a) 

 

(b) 

Figure 6.1. Curved beam quarter-point power spectral density for random loading 

of RMS of 0.5 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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(a) 

 

(b) 

Figure 6.2. Curved beam quarter-point power spectral density for random loading 

of RMS of 1 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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(a) 

 

(b) 

Figure 6.3. Curved beam quarter-point power spectral density for random loading 

of RMS of 2 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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(a) 

 

(b) 

Figure 6.4. Curved beam center-point power spectral density for random loading 

of RMS of 0.5 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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(a) 

 

(b) 

Figure 6.5. Curved beam center-point power spectral density for random loading 

of RMS of 1 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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(a) 

 

(b) 

Figure 6.6. Curved beam center-point power spectral density for random loading 

of RMS of 2 lb/in, [0, 500Hz]. (a) X and (b) Y displacements. 
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Chapter 7 

SUMMARY 

The present investigation focused on a revisit and extension of existing 

approaches for the reduced order modeling of the geometrically nonlinear 

response of a curved beam. The work carried out addressed two particular aspects 

of the ROM development: the selection of the basis and the identification of the 

coefficients. In regards to the basis, a close relation between the recently 

introduced dual modes and proper orthogonal decomposition (POD) eigenvectors 

of the response was demonstrated for both the curved beam and its flat 

counterpart. This POD analysis also supported the earlier choice of normal basis 

functions as the linear modes of the flat beam. 

In regards to the identification of the parameters, the difficulties, i.e. 

instability of the reduced order model, encountered in the past were first analyzed. 

This effort then served as the basis for the formulation of a revised identification 

procedure of the parameters of the reduced order model, see Eqs (3.10)-(3.13). 

The application of this procedure to the curved beam model removed the 

instability issue previously encountered and led to an excellent matching of 

reduced order model and finite element predictions for a broad range of external, 

static or dynamic, loading. Further, this matching was obtained without 

performing the zeroing out process suggested in an earlier investigation. The 

present results extend previous validation studies in demonstrating the worth of 

reduced order modeling of nonlinear geometric structures. 
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