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ABSTRACT 

As existing solar cell technologies come closer to their theoretical 

efficiency, new concepts that overcome the Shockley-Queisser limit and exceed 

50% efficiency need to be explored. New materials systems are often investigated 

to achieve this, but the use of existing solar cell materials in advanced concept 

approaches is compelling for multiple theoretical and practical reasons. In order to 

include advanced concept approaches into existing materials, nanostructures are 

used as they alter the physical properties of these materials. To explore advanced 

nanostructured concepts with existing materials such as III-V alloys, silicon 

and/or silicon/germanium and associated alloys, fundamental aspects of using 

these materials in advanced concept nanostructured solar cells must be 

understood. Chief among these is the determination and predication of optimum 

electronic band structures, including effects such as strain on the band structure, 

and the material’s opto-electronic properties.  

Nanostructures have a large impact on band structure and electronic 

properties through quantum confinement. An additional large effect is the change 

in band structure due to elastic strain caused by lattice mismatch between the 

barrier and nanostructured (usually self-assembled QDs) materials. To develop a 

material model for advanced concept solar cells, the band structure is calculated 

for single as well as vertical array of quantum dots with the realistic effects such 

as strain, associated with the epitaxial growth of these materials. The results show 

significant effect of strain in band structure. More importantly, the band diagram 

of a vertical array of QDs with different spacer layer thickness show significant 
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change in band offsets, especially for heavy and light hole valence bands when 

the spacer layer thickness is reduced. These results, ultimately, have significance 

to develop a material model for advance concept solar cells that use the QD 

nanostructures as absorbing medium.  

The band structure calculations serve as the basis for multiple other 

calculations. Chief among these is that the model allows the design of a practical 

QD advanced concept solar cell, which meets key design criteria such as a 

negligible valence band offset between the QD/barrier materials and close to 

optimum band gaps, resulting in the predication of optimum material 

combinations.  
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Chapter 1 

INTRODUCTION 

1.1 Motivation 

The world total energy consumption is expected to rise by 50% in the next 

three decades from 500 quadrillion (1015) British thermal unit (BTU) to 750 

Quadrillion BTU in 2035 [1]. Most of the energy demand is met by burning oil 

and coal, which emit tremendous amounts of greenhouse gases. To solve the 

energy demand and the energy-related environmental and social crises, the 

renewable share of the energy production and consumption need to be ramped up.  

In the US, only about 8% of the total energy consumption is supplied from 

renewable sources and out of that, only 0.02% is the contribution of solar 

photovoltaic (PV) [2]. Despite the tremendous amount of energy falling on the 

earth’s surface as solar radiation (~1 kW/m2), the share of solar electricity is 

almost negligible in world energy consumption due to comparatively higher price 

of solar generated electricity. 

A key element in increasing the viability of photovoltaics (PV) is to 

increase its efficiency. A higher efficiency technology can improve the cost of 

electricity (COE in $/kWh) by reducing several cost components of a photovoltaic 

system. In a higher efficiency system, solar cell material costs are reduced since a 

higher efficiency technology produces more power per gram of material; area-

related material costs (such as glass, encapsulation materials, etc) become lower 

since fewer of these materials are needed for the same amount of power; and area-

related balance of system costs (including wiring, installation, land area, 
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mounting structures, etc), are substantially reduced as a smaller system area is 

needed for the same power. The reduction of these costs has a dramatic impact of 

PV costs. For example, in single junction crystalline silicon solar cells, about 50% 

cost of the solar electricity comes from that of wafer. While thin film technologies 

have a lower $/W cost, the lower efficiencies in thin film devices mean that the 

cost of electricity (COE) is similar to silicon technologies. Further, at present 

efficiencies, module costs comprise a substantial cost component, and because 

cost reductions in glass are unlikely, cost reduction via increased efficiency are 

compelling.  A solar cell with less material and high efficiency always drives to 

the low price in the long run. To generate solar electricity that is cost competitive 

with other forms of energy, new approaches to increase efficiency are needed. 

From detailed balance calculations[3,4,5], efficiency is inherently linked 

to the existence of materials that have not only ideal band gaps but also electronic 

properties (minority carrier diffusion length, absorption, etc.) that allow high 

collection and open circuit voltages (Voc). Tandem solar cells require multiple 

such materials. The higher the number of materials with optimum band gaps, the 

higher the theoretical efficiency. Triple junction solar cells are hitting material-

related restrictions in efficiency due to the lack of lattice-matched materials with 

optimum band gaps. This leads to the search for either new materials (e.g., 

InGaN), new substrates (e.g., bonded layer approaches), or the use of 

nanostructures to change the electronic properties.  
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The dependence of efficiency on number of materials with optimum band 

gaps may be circumvented by using advanced concepts such as multiple exciton 

generation [6], hot carrier [7] and intermediate bands [5].These approaches 

require either entirely new materials or nanostructure approaches. The attempts to 

find new “bulk” materials with optimum band gaps for some of these concepts, 

particularly intermediate band solar cells, result in suggestions of complex oxides 

[8] and/or transition metal complexes [9]. While such new materials may be 

appropriate for longer-term approaches, the entry of new materials in to the PV 

industry has historically been slow and the large infrastructure embedded in the 

large existing production lines is likely to provide an additional barrier to the 

rapid uptake of new materials. Consequently, a critical need for a path to higher 

efficiencies is to use nanostructures consisting of materials that are compatible 

with current fabrication technology and infrastructures.  

Nanostructures from existing materials such as III-V and their alloys, 

silicon and germanium can be tuned to have proper band gaps and material 

properties (e.g., band structure, absorption, etc.) as required by the detailed 

balance calculations. In addition to this, already matured processing technology of 

silicon germanium alloys and the success of III-V nanostructures in light emitting 

diode (LED) and laser devices indicate that these materials are viable for 

advanced nanostructure concepts in solar cells. 

The realization of ultra high efficiency solar cells from nanostructured 

materials depends critically on the ability to design nanostructures and predict 
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optimum performance on nanostructured solar cells. This work addresses 

fundamental issues in the design of such nanostructured solar cells. Specifically, 

the work develops the framework that allows the identification of optimum 

material/nanostructure combinations taking into account realistic impacts on band 

structure, particularly strain-related effects. The goal is to find material 

combinations (quantum dot/barrier materials), which, taking into account realistic 

effects such as strain, quantum dot shape and size, give efficiencies as close as 

possible to the ideal intermediate band solar cell, which has an efficiency of 

63.2% under maximum concentration[5].  This is accomplished by calculating the 

quantum dot (QD) band structure for every tertiary material combination of 

common III-V materials, under strained growth or relaxed growth conditions, on 

available substrates (GaAs, InP, InAs, etc), and then calculating the detailed 

balance efficiencies for this band structure.  

The work presented here is focused strongly on quantum dot materials, 

primarily for intermediate band approaches but the approach and the calculation 

methodology developed here can also be applied for nanostructured tandems, 

multiple exciton generation and hot carrier solar cells. The following sections 

provide an overview of the how cost is a driver in the development of ultra-high 

efficiency solar cells, followed by an overview of approaches which can be used 

to realize such high efficiencies. The last section in Chapter 1 overviews the steps 

necessary to achieve the goal of the thesis and the first step in the realization of 

such efficiencies via nanostructures – namely the development of the tools to 
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identify optimum materials for a given approach - and its application to 

intermediate band solar cells. 

1.2 Importance of efficiency 

 
Photovoltaic technology is often divided into several groupings (also 

called generations) [10]. The maximum efficiency of the first generation single 

junction crystalline silicon solar cells (in laboratory) has been reported to be 

24.7%, [11] which is 85% of its maximum attainable efficiency (29.8%) at AM1.5 

[12].The second generation technologies that contain thin film solar cells can 

offer comparatively lower material related costs with lower efficiency, as shown 

in Fig.1.1. The third generation concepts, whose focus is on high efficiency, can 

be obtained either with series of stack of single junction devices to match the 

energy of photons in solar radiation (e.g., tandems) or with the implementation of 

 

Fig. 1.1 Efficiency vs. cost for the three different generations of solar cells [10] 
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nanostructures and the quantum mechanical phenomena associated with them 

[13]. 

From the approximate analysis of efficiency vs. cost of the three different 

technologies (single junction silicon (I), thin film(II) and advanced concept(III)  

solar cells [10]), shown in Fig.1.1, it is clear that the third generation devices 

made from advanced technologies and materials promise high efficiency at low 

cost. The efficiency enhancement in next generation advanced concept devices 

comes from the loss minimization related to single junction solar cells. 

1.3 Efficiency limit and loss mechanisms in single junction solar cells 

 
The efficiency of single junction solar cell is limited by different loss 

mechanisms as shown in Fig.1.2. Solar spectrum contains photons with energy 

range of about 0.5 eV to 3.5 eV. Out of  these, photons with energy less than the 

band gap are not absorbed by the material, while high energy photons lose their 

energy as heat when the excited carrier relax to band edge (labeled as 1 and 2 

respectively, in Fig.1.2). These two effects alone limit the conversion efficiency 

of single junction solar cell to 44% (AM 1.5G, maximum concentration). Loss 

mechanisms of type 4 and 5 (Fig.1.2) are inevitable in single junction solar cells.  
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Despite the fact that the theoretical efficiency of single junction devices 

(AM 1.5 including Auger recombination and free carrier absorption)  is limited to 

29% [12], due to abundance of raw materials to produce silicon on earth’s crust; 

it’s interesting physical properties such as the band gap being close to the 

optimum value, comparatively easy doping to get both n- and p-type materials; 

and the mature processing technology in microchip industry, the commercial 

market of the solar cells is dominated by single junction silicon technology. 

However, since silicon is an indirect band gap material, the thickness of the 

device has to be relatively high to absorb significant fraction of above band gap 

photons without well designed light trapping techniques. The advanced concept 

devices with nanostructures use less material, which saves the material related 

cost. 

The goal of third generation solar cells is to overcome the Shockley-

Queisser limit [14], ultimately reaching the maximum thermodynamic limit in 

 

Fig 1.2 Major loss processes in single junction solar cells (1) loss of low 
energy photons, (2) thermalization loss of high energy photons, (3) voltage loss 
at the junction, (4) contact voltage loss.  
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efficiency of 70% at one sun and 86% under maximum concentration. Realization 

of some of the advanced concept solar cells with the potential efficiencies greater 

than 50% rely on nanostructures. Short overviews of these high efficiency 

devices/concepts with the significance of nanostructures are briefly presented in 

the following section.  

1.4 High efficiency solar cells  

Approaches to achieve high efficiency solar cells rely on the ideas that 

overcome the Shockley-Queisser limit by avoiding the energy loss of high energy 

photons (labeled as 2 and 2’ in Fig.1.2) and absorbing the photons that have 

energy lower than the band gap (labeled as 1 in Fig.1.2). One way to minimize the 

energy loss of high-energy photons without losing low energy photons is the use 

of a stack of single junction solar cells with different band gaps. On the other 

hand, in advanced concept devices such as hot carrier and multiple exciton 

generation solar cells, the energy loss of electron hole pairs generated by high 

energy photons can be suppressed and utilized either to enhance the photo voltage 

or to enhance the photocurrent. The enhancement in photocurrent in comparison 

to single junction device can be achieved by utilizing energy lost in the relaxation 

process to generate two or more electron hole pairs whereas the enhancement in 

photo voltage can be achieved by collecting the high energy carriers before they 

relax to the band edges. In addition to this, the loss of photons with energy less 

than the band gap can be avoided by using a material which has an intermediate 

band located in between the conduction and valence band of a semiconductor. All 

of these approaches require suppressed carrier relaxation rate which can be 
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achieved in nanostructures. In the following subsections, the author discusses the 

high efficiency approaches which require nanostructures either as absorbing or as 

transport medium with emphasis on multiple transition solar cells which is the 

main component of this dissertation. 

1.4.1 Multijunction Solar cells 

 
 

The theoretical detailed balance efficiency of a three junction tandem solar 

cells is 52% at one sun (63% for maximum concentration) [15] and the highest 

recorded three junction tandem efficiencies are 42.3% at 406 suns (AM1.5D) [16] 

and 43.5% at 418 suns [17]. The most common triple junction solar cells are 

lattice matched structure containing Ge as the bottom cell with GaAs in the 

middle and GaInP as the top cell as shown in Fig. 1.3. The major limiting factor 

 

Fig. 1.3 Schematic of triple junction solar cell 
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to get the triple junction solar cells with efficiencies higher than the reported 

values is the availability of the materials that are lattice matched to the common 

substrates that are used to fabricate these cells. The material that have optimum 

band gap combinations obtained from detailed balance calculations are not lattice 

matched to the substrate and the strain due to lattice mismatch in these structures 

leads to defects causing the degradation in cell performance. However, the self-

assembled quantum dots of III-V materials, which have strain modified band gaps 

can fill in the gaps of the materials to achieve the efficiency close the optimum.  

Also, as the triple junction technology is reaching efficiency close to 45%, 

multijunction devices with four and five junctions are getting attention of 

researchers all around the world. The detailed balance efficiency calculations 

indicate the need of 1 eV materials for monolithic (current matched) four and five 

junction devices [4]. For example, for future generation monolithic tandem solar 

cells, the lattice mismatch between the higher band gap materials grown at the top 

of the lower band gap materials causes significant defect density resulting in the 

degradation in the efficiency of the overall device. To overcome the issues related 

to the availability of lattice matched 1 eV materials in four and five junction 

current matched tandem solar cells, a lattice mismatched or metamorphic growth 

is a viable option. In this case, nanostructured self-assembled quantum dots [18] 

and quantum wells [19,20] that have thickness/size tunable band gaps can be 

useful for spectral tuning. 
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1.4.2 Multiple exciton generation solar cells 

 
In multiple exciton generation solar cells, the electron-hole pairs generated 

by the photons with energy at least two times the band gap release their extra 

energy to generate other excitons. This phenomenon, also called as impact 

ionization [21], is responsible for multiple exciton generation. The limiting 

efficiency of a solar cell working under this principle is 85.9% for the band gap of 

48 meV [6] under maximum concentration of AM0  solar spectrum and 44% at 1 

sun for EG =0.735 eV [10,22]. In bulk materials, due to the requirement of crystal 

momentum conservation together with energy conservation, the threshold energy 

for the impact ionization is higher than that required by the energy conservation 

alone. For example in bulk silicon the total quantum yield of only 125% was 

obtained for a photon of energy 4.8 eV [23]. Furthermore, the rate of impact 

ionization has to compete with the rate of carrier relaxation by electron-phonon 

scattering. To obtain the meaningful effect of carrier multiplication in solar cells, 

impact ionization rate should be maximized. In nanocrystals such as quantum 

dots, in which the momentum conservation is not required, a very efficient carrier 

multiplication effect has been reported [24]. Ultimate challenges for the 

realization of the solar cells that are based on carrier multiplication are finding out 

materials and structures that have efficient impact ionization and the collection of 

photo-generated carriers from quantum dot to the external circuit. 

1.4.3 Hot carrier solar cells 

The physical concept of hot carrier solar cells is based on extracting the 

carriers from the absorbing medium before they relax to the band edge via phonon 
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emission (the carriers are still ‘hot’). The extraction of the hot carriers depends 

mainly on two factors: (i) the carriers have to traverse the cell quickly and (ii) the 

cooling rates of the carriers have to be slow. The hot carriers should be collected 

from the absorbing medium with selective energy contacts [25]. Quantum dot 

nanostructures can be implemented in hot carrier solar cells both as absorber and 

as the energy selective contacts. The discrete density of states in these structures 

suppresses the carrier cooling in comparison to that of bulk materials [26]. Also, 

the confined energy states in nanostructures such as quantum wells, wires and 

dots can be used as energy selective resonant levels of very small width which 

transmits a very small energy window of hot carriers  reflecting the rest of the 

carriers back to absorber[27]. The extraction of ‘hot’ carriers enhances the open 

circuit voltage and hence the efficiency. The limiting efficiency of hot carrier 

solar cells is predicted to be 85% [7] which is very close to 86.8%, the efficiency 

of quantum converters optimally matched to the narrow portion of solar radiation. 

1.4.4 Multiple transition solar cells  

Multiple transition solar cells require the existence of intermediate states 

(bands) in the previously forbidden energy gap of a conventional semiconductor 

material. This intermediate band (IB) facilitates the absorption of low energy 

photons while maintaining the high open circuit voltage that is determined by the 

quasi Fermi level separation corresponding to the conduction and valence band of 

the high band gap material. For this to happen, the quasi Fermi levels 

corresponding to intermediate bands (EFI) should be optically coupled but 
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electrically isolated from the quasi Fermi level of valence (EFV) and conduction 

(EFC) bands [3]. Wolf [28] first pointed out the idea of using the energy states in 

the band gap to absorb sub-band gap photons and calculated the efficiencies using 

empirical methods. Luque and Marti [5] calculated the detailed balance efficiency 

limit for intermediate band solar cell (using black body radiation and assuming a 

zero width intermediate band) to be 63% at the optimum band gaps at EG=1.95eV, 

EIC=0.71eV and EIV=1.24eV, as shown in the Fig.1.4.  

 

In intermediate band solar cells (IBSCs), a material with an IB is situated 

in the intrinsic region in between the p-type and n-type conventional 

 

Fig. 1.4 Efficiency limit of an intermediate band solar cell, two terminal  
tandem solar cell (for the tandem the x-axis values are for the bottom cell, Eg1) 
and a cell with a single band gap (taken from [5]). 
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semiconductors as shown in Fig.1.5. The IB material should consist of at least one 

band inside the band gap of conduction band (CB) and valence band (VB). 

 Researchers around the world are actively looking for and researching on 

some of the bulk [29,30,31] and molecular materials [32], which have the 

potential of having an appropriate IB for IBSCs. Until now, to the knowledge of 

this author, none of these materials have been used as effective IB materials in an 

intermediate band solar cell.  

 
 

Nanostructures such as quantum well, wires and dots have been proposed 

as candidate materials for IBSC [33]. In these structures, a nanocrystal of a low 

band gap material is surrounded by a high band gap material in 1, 2 and 3 

 

Fig. 1.5 Schematic of the photon absorption process and quasi-Fermi level split 
in an IB solar cell.  
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dimensions yielding a quantum well, wire and a dot respectively.  The confined 

states in the conduction (Valence) band of a quantum well, wire or dot materials 

act as an intermediate state that can facilitate the absorption of sub band gap 

photons. But due to the continuum of k vectors of carriers in a non-confined 

direction, the quantum well and wires do not have the density of states suitable for 

maintaining the quasi-Fermi level, as shown in Fig.1.6. The nanocrystal quantum 

dots, due to their delta function like density of states, can be the suitable candidate 

materials for maintaining the quasi Fermi level of an  intermediate band made by 

those confined states[34]. 

 
In quantum dots, the confined states in the conduction or valence band can 

act as intermediate states, and if the separation between the quantum dot 

nanocrystals is small enough such that there is significant overlapping of the wave 

functions among neighboring dots they form a band which can act as an 

 

Fig. 1.6 Schematic of density of states of different confinement compared with 
that of bulk semiconductor.  
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intermediate band as shown in Fig.1.7. For the application of quantum dots in 

IBSCs, the well developed Stranski-Krastanov (SK) growth can be used to 

fabricate the QDs through precisely controlled epitaxial methods using molecular 

beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). 

 
In the SK growth mechanism, the lattice mismatch between the 

heterostructure materials plays a significant role to control the shape, size and the 

uniformity of the quantum dots, together with the growth conditions such as the 

flux ratio and temperature of the substrate. The dots can be well aligned along the 

vertical direction and the thickness of the barrier layers can be well controlled in 

these growth schemes. Thus, by controlling the thickness of the barrier layer in 

the vertical direction, the formation of intermediate band can be achieved [35].  

 Among the different issues and challenges in the multiple transition solar 

cells with QDs as intermediate band material, one of them is to develop a proper 

material model considering the realistic effects associated with the growth 

conditions. One of the realistic effects is to include the effect of elastic strain to 

 

Fig. 1.7 Schematic diagram of intermediate band material with the 
intermediate band formed by the overlap of quantum dot wave functions. 
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determine the energy band parameters of the QDs and the barrier materials. 

Previous research (theoretical and experimental) in quantum dot solar cells or 

quantum dot intermediate solar cells revolves around InAs/GaAs and 

InGaAs/GaAs [36,37,38,39,40] which are not the optimum material combinations 

for quantum dot intermediate band solar cells QDIBSCs. The essence of the work 

presented in this dissertation is to find out the optimum nanostructured material 

combinations for multiple transitions solar cells that have the potential of having 

photovoltaic conversion efficiency higher than 50%. The material search 

performed in this work includes some realistic effects such as strain associated 

with the epitaxial growth of these structures. 

1.5 Dissertation Outline 

The discussion above highlights the necessity of nanostructured materials 

in the realization of ultra-high efficiency solar cells. This dissertation addresses a 

fundamental need in the development of such nanostructured materials, namely 

the ability to design and predict an optimum nanostructure material and 

configuration which can be implemented. Such a design process involves the 

calculation of the band parameters taking the realistic effects such as strain into 

account, the insertion of these band parameters into detailed balance models, and 

the search among existing material space for optimum material configurations and 

different nanostructure shape and sizes  

In this dissertation, to investigate the advanced nanostructured concepts for 

ultra-high efficiency with the existing materials such as III-V and their alloys 
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together with silicon germanium nanostructures, some of the realistic effects 

associated with the growth of these materials (particularly, self-assembled 

quantum dots) are assessed. In chapter 2 of this dissertation, the author formulates 

the methodology to calculate the strain distribution in and around a single and 

vertically aligned quantum dots. Using this formulation, different strain 

components due to single and coupled quantum dots (QDs) are calculated and 

presented for a few material systems based on III-V heterostructures. Finally, the 

chapter concludes discussing the significance of strain calculations for the 

investigation of nanostructured concepts for advanced solar cells. 

In chapter 3, the author revisits the empirical methods for band structure 

calculation. A thorough revision of the k•p method is presented together with its 

formulation to account the effect of strain in the band structure. The k•p method is 

used to calculate the band edge alignment of quantum dot heterostructures. The 

effect of strain on band structure in and around a single and vertically aligned 

array of QDs is calculated for a few III-V heterostructrues and Ge/Si QD/barrier 

materials. In addition, this chapter reviews the formulation of effective mass 

method and its use to calculate the confined electronic states of quantum dots. The 

results on band structure are presented and discussed for InAs QDs grown on 

GaAs [001] substrate with GaAs and GaAsSb matrices. The chapter concludes 

with the analysis of the results and their significance in developing a material 

model for advanced concept solar cells from the existing material systems. 
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Chapter 4 is devoted to identify optimum materials by screening material 

combinations among III-V QD/barrier materials that have optimum band gaps for 

detailed balance efficiency higher than 40%. Using the effect of strain on band 

structure, a search for material combinations is performed among III-V material 

systems given design constraints such as typically achieved QD shape and size, 

minimum and maximum strain to achieve Stranski-Krastanov growth, and a 

negligible valence band offset (VBO). 

Chapter 5 is concludes the work presented in this dissertation discussing 

the significance and implementation of this work to different advanced concept 

solar cell technologies.  
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Chapter 2 

   ELASTIC STRAIN DUE TO LATTICE MISMATCH 

2.1 Introduction 

Ultra-high efficiency advanced concept solar cells require new materials 

with appropriate band gaps. For example, the efficiency of multijunction solar 

cells depends on the materials with band gaps that are close to the optimum values 

obtained from detailed balance efficiency calculations. As shown in Fig.2.1, the 

limitations on materials that are lattice matched to commonly used substrates such 

as germanium (Ge) and gallium arsenide (GaAs) impose limitations on the viable 

options for optimum band gap materials. Thus, for high efficiency multijunction 

devices with the materials of optimum band gaps, the management of lattice 

mismatch becomes critical issue. In addition to this, the strain due to lattice 

mismatch causes change in the band structure of materials and in their 

optoelectronic properties.  

 

 

Fig.2.1 Band gap vs lattice constant of III-V and Si,Ge and their alloys. 
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On the other hand, for ultrahigh efficiency concepts such as multiple 

exciton generation, hot carrier and multiple transitions solar cells, nanostructures 

are essential. The nanostructures grown by epitaxial methods have significant 

strain incorporated in the material, which causes a change in band structure. This 

band structure modification, in turn, strongly affects the performance of 

optoelectronic devices based on these QD heterostructures as active layers in the 

device. Thus, knowledge of the strain distribution due to lattice mismatch is 

essential for the further modeling of the device containing these heterostructures. 

Quantum dots (QDs) are proposed as one of the candidates as an 

intermediate band material for intermediate band solar cells [41]. One of the ways 

that is commonly used for the fabrication of quantum dots is through the epitaxial 

growth of semiconductor materials that have higher lattice constant than that of 

the materials used as substrate/buffer. When a material with a higher lattice 

constant than that of the substrate is epitaxially grown on the substrate, the 

deposited material copies the crystal structure and acquires the lattice constant of 

the substrate for the first few monolayers. For example when InAs, which has a 

higher lattice constant (0.6058 nm) than GaAs (0.5653 nm), is deposited on a 

GaAs substrate, it acquires the lattice constant of GaAs for few monolayers. The 

InAs material, in this case, is compressively strained (i.e. the lattice of InAs is 

compressed to accommodate itself to the smaller GaAs lattice constant). The 

epitaxial layer accumulates strain with its thickness. When its thickness increases 

the strain energy is released by formation of defects and dislocations or by the 

formation of quantum dots free of dislocations. In the mechanism of strain release 
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without defect formation, part of the accumulated strain energy is released by the 

reorganization of surface materials in which the grown material starts to 

accumulate at specific spots on the surface starting a three dimensional growth 

that starts the formation of quantum dots. The thickness at which the 2D growth is 

unstable either leading defects or QD formation, is called critical thickness, tc. 

This growth mode in which the 3D growth occurs at the top of the wetting layer is 

called Stranski-Krastanov growth. This mechanism of formation of 3D islands 

causes the lattice distortion in and around the QDs. The strain distribution caused 

by lattice distortion in the system substantially changes the electronic band 

structure and hence the optoelectronic properties of the devices made of the QD 

heterostructures as active layer. Thus, knowledge of strain distribution is essential 

for the further modeling of the device containing these heterostructures. 

Particularly, epitaxially grown self-assembled QDs are probable candidate 

materials for intermediate band solar cells (IBSCs) [33]. To investigate the 

feasibility of these nanostructures for IBSCs, the strain distribution due to lattice 

mismatch is investigated. The results of strain distribution are used to calculate 

the band structure and ultimately to develop a material model for QD IBSCs in 

subsequent chapters of this dissertation. As these nanostructures have small 

absorption cross section [42], a stack arrays of QDs is essential to get significant 

absorption of solar radiation. Due to this, and also due to the fact that the 

intermediate band can be formed due to the overlapping of the wave functions of 

closely spaced QDs, a vertical array of QDs is also considered here for the study 

of strain distribution. 
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This chapter starts with the review of the methods used for the calculation 

of the strain distribution in and around a single quantum dot as well as vertical 

array of quantum dots and then presents the strain distribution calculated by using 

an analytical method based on continuum theory of elasticity. Specifically, section 

2.1 reviews different methods used to calculate elastic strain due to the lattice 

mismatch between the QD and the matrix materials. Section 2.2 presents the 

results of the elastic strain distribution in and around a single quantum dot. 

Section 2.3 determines the strain distribution of a vertical QD array. This section 

starts with the explanation of the methodology that is used here to calculate the 

strain distribution in a vertical QD array. Together with the methodology, the 

results of strain distribution of vertical QD array with different barrier layer 

thickness are calculated and compared to that of single quantum dot. Section 2.4 

concludes the chapter with a discussion of the impact of the results on specific 

materials and device structures focusing on InAs/GaAs system because of their 

relevance to advanced concept approaches. However, the methods and approaches 

are applicable to a wide range of nanostructured materials and concepts and can 

be applied to any quantum dot/substrate (matrix) material systems.  

2.2 Calculation of strain distribution  

The methods of calculation of strain in and around self-assembled 

quantum dots can be categorized, mainly, in two groups namely, continuum 

elasticity model and atomistic models. The continuum elasticity model assumes 

the validity of Hooke’s law of linear elasticity. It can be applied for both isotropic 

and anisotropic materials. In the continuum elasticity model, the strain 
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distribution due to lattice mismatch in and around the quantum dot can be solved 

analytically [43,44,45,46,47] by a Green’s function method or numerically using 

finite difference [48] or finite element [49,50] methods. In atomistic models the 

elastic energy of the strained system is expressed in terms of bond bending and 

stretching and the total elastic energy is minimized to obtain the relative positions 

of the lattice sites[51,52,53].  

Each model has its advantages and disadvantages. For example, in 

continuum elasticity models the stress and strain field can be obtained in 

analytical form, which can provide insight on the strain distribution in and around 

the quantum dots. On the other hand, some of the assumptions such as isotropy in 

elastic constants, imposed on the continuum model lead to the loss of details of 

the calculations in atomic scale. For example, for very thin films (about 2 

monolayers (ML)) the continuum elasticity model is less accurate and at the dot 

barrier interfaces the strain expressions tend to diverge. On the other hand, the 

atomistic models deal with the displacement of each atom in the calculation 

domain. Thus, even applying symmetry in the calculations, the problem becomes 

computationally expensive but the results are more accurate especially at the 

dot/matrix interface for very thin layer. In Continuum methods, the calculations 

are computationally less intense. The calculations can be performed and the 

results can be expressed in any coordinate system depending on the symmetry of 

QD shape and most importantly, it can be applied to determine the strain 

distribution of large systems such as quantum dot array. Since photovoltaics 

requires the use of larger nanostructured systems to achieve substantial 
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absorption, the merits of continuum theory outweigh its shortcomings and the 

results are almost same as the one obtained from atomistic theory. Consequently, 

for this work, continuum theory of elasticity is used to calculate the strain 

distribution due to lattice mismatch between the dot and substrate/barrier material. 

The following sections describe each of these approaches in more detail, focusing 

more heavily on continuum theory of elasticity. 

2.2.1 Valence force field method 

 
Despite the computational complexity, due to the accuracy on the results 

of strain distribution, particularly at matrix/QD interfaces, the valence force field 

(VFF) method is extensively used to calculate the elastic strain distribution in and 

around self-assembled quantum dots. In this method, the elastic energy of the 

material is expressed in terms of few body potentials between the atoms in the 

crystal. Considering the interaction only up to nearest neighbors, the atomistic 

valence force field (VFF) method of Keating [54] and Martin [55] can be used to 

express the elastic energy of the system in terms of bond stretching and bending. 

The strain energy, in this approach, is written as [56], 
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In equation (2.2), 0
ijd and θ0, respectively, are the ideal bond lengths and angle 

between atoms i and j of binary constituents. Ri, Rj and Rk are the position of the 

atoms i, j and k respectively. In the summation, i runs over all atomic positions of 

the calculation domain and j and k run over only the nearest neighbor sites of ith 

atom. In this equation, α and β are the bond stretching and bending constants for 

given materials. For zincblende crystals, cos(θ0) =-1/3. The strain tensor is 

obtained by minimizing the potential defined in equation (2.2). While this is a 

computationally demanding method for quantum dot heterostructures, because the 

displacement of each atom due to lattice mismatch has to be taken into account, it 

is nevertheless extensively applied [51,56,57,58] to calculate the strain. However, 

for a system containing a vertical array of more than two quantum dot layers, the 

computational complexity of this method causes it to be discarded. For the 

calculation of the strain field due to an array of quantum dots and their effect on 

band structure a comparatively simplistic method based on continuum theory of 

elasticity is used. 

2.2.2 Green’s function method based on continuum theory of elasticity  

 
The key advantage of the continuum theory of elasticity is lower 

computational expense with almost the same accuracy as the VFF method to 

calculate stress and strain field in and around the QD. In this method, the 

calculation domain is considered to be an elastic continuum and the strain 

distribution in and around the QD is obtained by solving the equilibrium equation 

of elasticity or minimizing the elastic energy of the domain. This method has 
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some shortcomings such as; the atomistic details are lost and the results are less 

accurate at very thin layers of atomistic dimensions; and the strain fields at 

interfaces and vertices of the QD and matrix where the value of particular strain 

component is changing rapidly, are less accurate. Despite the shortcomings, 

continuum elasticity models have been experimentally verified to be valid for 

layers as thin as couple of monolayer [59]. For simple geometries such as 

spherical, cuboidal [60], and even pyramidal [46], truncated pyramidal [46,47] 

and conical [61] shaped quantum dots, analytical expressions for strain 

distribution in real space can be obtained.  

The method used in this work to find out the expressions for stress and 

strain distribution is based on Eshelby’s work [62] on the calculation of strain 

field of an inclusion within an infinite isotropic elastic medium. The analytical 

expressions presented in this dissertation for the strain distribution for pyramid 

and truncated pyramid shaped quantum dots provide an insight for the strain field 

due to point inclusion in an infinite and semi infinite isotropic elastic medium. 

The stress and strain fields due to a lattice mismatched inclusion in an infinite 

medium are derived in this sub-section. For the derivation of elastic stress and 

strain in and around a quantum dot, this work follows the approaches of 

references [47] and [63]. 

In the analytical method, the equilibrium expression  

 
0,      ( , , )  , , ,ij

j
j

F r x y z i j x y z
r


   


 (2.3) 



28 
 

is solved for the specific shape of quantum dot with proper boundary conditions. 

In equation (2.3), σij(r) are the stress tensors and Fj(r) is the force per unit volume 

at point r in the calculation domain. To be more explicit, the σij(r) component of 

the stress is the force along the direction j and perpendicular to the surface with i 

axis at point r. In Cartesian coordinates, σ12(r) (σxy(r)) is the force along OY 

direction in the plane OX=a (for cubic crystal). This specific stress causes a shear 

strain. Fj(r) is the force along jth direction at a point r. The stress tensor is related 

to the strain tensor, ε, by Hooke’s law of linear elasticity as, 
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In equation (2.4), Cijkl (i,j,k,l = x,y,z) are the elastic constants which are also called 

‘stiffness constants’. These constants characterize the elastic properties of the 

materials. These four index elastic constants, Cijkl, can be written in more concise 

two index form, Cjk, (j,k =1,2,…,6), which connects the stress and strains with 6x6 

matrix as, 
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In this notation (also called Voigt’s notation), the stress and strain components in 

equation (2.4) are expressed as, 
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Out of these 36 components of Cij, in cubic crystals such as GaAs, InAs 

etc. with the coordinate axes(X,Y,Z) chosen along the edges of the unit cell, only 

3 components , C11, C12 and C44 are non zero [64]. From (2.5),  

C1111=C2222=C3333≡C11,  

C1122=C1133=C2233≡C12 and  

C1212=C1313=C2323≡C44. All other elements are zero. Thus, the matrix of elastic 

constants in (2.5) reduces to, 
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 (2.8) 

In this stiffness matrix (2.8), with the definition C12≡λ, C44≡ G and C11= λ+2G, 

the generalized stress strain relation is written as, 

 2ij ij ij nnG      (2.9) 

In equation (2.9) λ and G are Lame’s constants, and G is also referred as shear 

modulus. The strain is related to stress as, 
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In this equation the constants Sijkl are called compliance constants and have same 

symmetry properties as that of Cijkl in equation (2.4). For [001] growth direction, 

for cubic crystals such as GaAs, InAs etc., the elastic constants; Young’s 

modulus, E, and Poisson ratio, ν, can be obtained from these stiffness and 

compliance constants as, 
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With the basic definition of stress strain relations and the different elastic 

constants, the methodology of the calculation of stress distribution due to lattice 

mismatch of the epitaxially grown material on a substrate/matrix is formulated 

below. 

When force (stress) is applied to a crystal, the lattice points gets displaced 

from their positions, and if we know the relative displacements of each lattice site, 

the state of the crystal deformation can be described by the strain components: 
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In expression (2.13), ux, uy, uz are the relative displacements of the crystal lattice 

points along x, y and z-axes respectively. Since, εij is a matrix, the diagonal 

elements represent extension (or contraction) per unit length along x, y and z and 
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the off-diagonal elements represent rotations (or shear). Substituting equations 

(2.9) and (2.13) into equation (2.3), we get: 
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This equation is called Navier’s equation of elasticity. With the body forces being 

zero, equation (2.14) can be written as, 
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Equation (2.15) can be expressed in vector form as, 
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In this equation, u is the vector field of lattice displacements. This vector field can 

be written in terms of scalar, Φ, and vector, Ψ, potentials as, 

 u 


 (2.17) 

With the substitution of u from (2.17) to (2.16) we get, 
 
    2 22 0G G        


 (2.18) 

Particular solutions of equation (2.18) are the functions that satisfy, 

2 2constant     and   constant.     


  

A particular solution can be obtained with the choice of 2 constant,  =0,   


 

Here, the function Φ is called Lame’s potential and can give the strain field. Any 

harmonic function can be used as Lame’s potential that can satisfy Navier’s 

equation and the resulting displacement field can be written as, 
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u

G
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
 (2.19) 

The Lame’s potential for strain relaxation due to an inclusion in an infinite 

medium, can be written as [65] 

 2
0

1
( ) 2 ( )

1
r G r

 



  


 (2.20) 

In equation (2.20), ν is Poission’s ratio and ε0(r) is the initial misfit strain between 

two materials. The misfit strain is defined as, 0
matrix incl

incl

a a

a
 

  ,where amatrix is the 

lattice constant of matrix material and aincl is the lattice constant of the inclusion 

(in this case a quantum dot material). The solution of equation (2.20), using the 

analogy with Poisson’s equation in electrostatics is obtained by using Green’s 

function and can be expressed as, 

 3
0

1 1 1
( ) ( , ') ( ') '

2 1 4 V

r g r r r d r
G

 
 


  

   (2.21) 

with 
1

( , ')
'

g r r
r r




 , where point r’ lies inside the volume of the dot. The initial 

misfit strain ε0 is assumed to be constant inside the dot volume for the 

calculations in this work. The Green function g (r, r’) can be written as,   

 1 '
( , ')

2 '

r r
g r r

r r


  


 (2.22) 

Substituting the expression (2.22) of g(r,r’) in equation (2.21) and using the 

Gauss’ divergence theorem of volume integrals, equation (2.21) can be written in 

terms of surface integral as, 
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The stress components, σij(r) can be obtained from (2.23) and can be expressed as, 

 
   
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  

  
   

    (2.24)

In equation (2.24), i and j are unit vectors in ith and jth directions respectively, δij is 

Kronecker delta function. The second term in equation (2.24) comes from 

evaluating the surface integral when r approaches the boundary r’, the surface of 

the dot. The expression of stress distribution is obtained by integrating equation 

(2.24), which depends strongly on the shape of quantum dots. The shape, size, 

material composition and density of quantum dots are determined by different 

growth parameters such as lattice mismatch, growth rate, substrate temperature 

and many more.  

The shape, composition and the dimension of these nanostructure 

materials influence the strain distribution in and around the quantum dot 

nanostructures and ultimately the optoelectronic properties of the device using 

these nanostructures as active components. Because the solution of the strain 

equations requires assumptions about the physical properties of the QD, the 

following section provides a brief discussion on the dependence of QDs shape 

size and composition on growth parameter and lattice mismatch.  

2.3 Physical parameters of epitaxially grown QDs 

 
In heteroepitaxial growth, the formation of self-assembled quantum dots is 

driven by the elastic strain due to lattice mismatch. In Stranski-Krastanov growth 
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mode, the layer by layer growth changes to island formation as schematically 

shown in Fig.2.2. The islands rest at the top of a 2D film called wetting layer. In 

the transition of growth mode from 2D to 3D, the strain is relieved by the 

increased surface energy of the 3D islands without formation of any defects or 

dislocations. 

 
In epitaxial growth using Molecular Beam Epitaxial (BME), atoms or 

clusters of atoms produced by heating up a solid source migrate in an ultra high 

vacuum (UHV < 10-10 torr) environment, and impinge on a hot substrate surface, 

where they can diffuse and eventually are incorporated into the growing film. In 

MBE, the molecular beams may be either from thermally evaporated elemental 

sources or from organic precursors (in gas-source MBE). The material sources 

have to be extremely pure and the entire process is done in an ultra high vacuum 

environment. In heteroepitaxial growth such as InAs on GaAs, or germanium on 

silicon the later (i.e., the substrate) is first heated to an appropriate temperature in 

an UHV to remove native oxide on the surface. In case of InAs on GaAs, arsenic 

 

Fig. 2.2 Schematic diagram of the formation of quantum dots by Stranski-
Krastanov growth.  
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has higher vapor pressure (higher volatility than the Ga atoms) that’s why there 

should be a constant supply of arsenic atoms to the surface of heated GaAs while 

it is being heated to remove oxygen. After the native oxide is removed (confirmed 

by the RHEED patters, change from hazy to streaky), the indium source is opened 

for InAs growth. Proper flux of indium (In) and arsenic (As) arriving on the 

surface of GaAs substrate bond with each other forming InAs. Experimentally, a 

change in RHEED profile from streaky to spotty is observed as an indication of 

the change of flat surface to well developed 3D islands. The shape, size, density 

and composition of the self-assembled quantum dots depend on several factors, 

which are listed and discussed below. 

1. Lattice mismatch 

For a given growth temperature, a smaller lattice mismatch between the 

substrate/buffer and QD material gives a thick wetting layer and smaller size 

quantum dots. The critical thickness of the QD formation decreases with the 

increase of lattice mismatch between the substrate/buffer material and the QD 

material. The ratio of height to lateral dimension of the QDs decrease (shorter 

QDs for same base width) with the decrease of strain [66]. It is seen, 

experimentally, that with the decrease of misfit strain between the substrate and 

QD material, the QD diameter slowly decreases and the height increases [67]. In 

the vertically stacked multilayer structures a gradual increase in the QD size from 

layer to layer  has been observed due to the reduction in strain caused by the 

relaxation of strain in underlying layer of QDs[68]. However, this can be 
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overcome by depositing a lower amount of the dot materials in consecutive layers 

[69]. 

2. Growth rate 

The growth rate has strong influence on the size and composition of QDs. 

The temperature and flux rate can be controlled to get the desired density and size 

of quantum dots up to certain range. It has been experimentally observed that 

smaller growth rate lead to larger dots with uniform size distribution [70] and 

reduced number density [71]. In addition to this, the lower growth rate gives QDs 

with higher In fraction and when the growth rate is increased both In and Ga can 

be incorporated from the wetting layer into the QD and indium fraction drops. 

3. Growth temperature 

Dot size increases as the growth temperature increases [72]. The higher 

the growth temperature, the higher will be the diffusion length of the impinging 

atoms on the surface. Thus a growth at comparatively higher temperature at given 

fluxes of In and As results larger quantum dots with better uniformity. This 

increase in volume of QD material at higher growth temperature is due to the 

incorporation of material from the wetting layer or by the Ga diffusion from GaAs 

substrate [73]. The growth temperature has a profound effect on shape and size of 

SiGe QDs as well. For general growth conditions, SiGe QDs on silicon have a 

bimodal shape and size distribution, comprising pyramid shaped small dots and 

multifaceted dome-shaped comparatively larger dots. For example, at a growth 

temperature of less than 500 oC, the pyramid shaped QDs are dominant in number 
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density while the number density of dome-shaped QDs dominates at growth 

temperature higher than 500oC[74]  

 

4. Coverage  

With the increase in thickness of the capping layer, the QDs undergo 

strong shape and size evolution. Overgrowth transforms the pyramid shaped 

islands to truncated pyramid shaped [75]. For example, when the islands of SiGe 

are covered with Si, the SiGe atoms at the apex of pyramid and deposited Si are 

intermixed to reduce the surface energy to minimize strain [66]. Also, this 

mechanism dissolves the small islands. The shape and size of the QDs change 

significantly with the thickness of the coverage layer. As shown in Fig.2.3, the 

general trend is that the atoms from the QD top surface diffuse to the side of QD 

resulting in decrease in height and increase in base dimensions [76]. Due to this 

diffusion, the shape evolves to truncated pyramid, which is confirmed by cross-

sectional scanning-tunneling microscopy [77,78]. 

 

 

 

Fig. 2.3 Schematic of the shape evolution of quantum dot while capping. 
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 The size of QD depends on the growth parameters such as substrate 

temperature, amount of material grown and arsenic flux pressure [79]. The higher 

substrate temperature causes larger diffusion length of ad-atoms. This, results into 

larger size of QDs. Thus the shape and size of the quantum dots depend on the 

material parameters and the growth conditions. The shape of quantum dots is 

reported to be as that of a lens, multifaceted dome, pyramid and truncated 

pyramid [47,78,80]. Based on the experimental reports in the literatures, the shape 

and size of the quantum dots is considered to be as that of a pyramid and 

truncated pyramid for the strain calculations in the following sections. 

2.4 Elastic strain distribution due to a quantum dot in an infinite matrix 

 
Given that the most common shapes of epitaxially grown QDs are 

pyramidal and truncated pyramidal, here we present the analytical expressions for 

pyramid and truncated pyramid shaped quantum dots. For a pyramid shaped (or 

truncated pyramid shaped) quantum dot with height h, truncation factor f (0≤ f≤ 1, 

f=1 corresponds to a full pyramid) and base dimension a and b (rectangular base, 

for squared base a=b) the integration limit for integral (2.24) is: 
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(2.25) 

With the z-axis along [001] crystallographic direction as growth direction and 

considering the origin of the Cartesian coordinate system at the center of the base 

of the pyramid, the stress components in (2.24 ) are obtained in analytical form. 
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The expressions of the stress components obtained by integrating equation (2.24) 

with the integration limit expressed in (2.25), are presented in appendix A using 

the same notation as in reference [46]. For simple geometries such as square 

based pyramid with aspect ratio 2 (the ratio between the base and the height, 

B=2a and h=a), the expressions as a function of position along z-axis (x=y=0) 

are readily obtained and can be expressed in a comparatively simplistic form as 

[47], 
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The strain components for isotropic elastic solid can be obtained from the stress 

components using Hooke’s law as, 

  1
1ij ij ij nnE

          (2.28) 

From the diagonal components of strain tensor (εij, i=j), the hydrostatic and the 

biaxial strains are defined as,  
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 h xx yy zz       (2.29) 

  1

2b zz xx yy       (2.30) 

These two strain components expressed in equation (2.29) and (2.30) can be 

coupled to energy band parameters such that the change in band structure due to 

strain can be calculated. The hydrostatic strain couples with the conduction band 

via conduction band deformation potential and the biaxial strain couples with 

valence band via valence band hydrostatic and shear deformation potentials. 

Detailed discussions of the effect of strain in the band parameters are the main 

content of chapter 3.  

The equations above allow the calculation of strain profile (1D and 3D) 

for a truncated and full pyramid shaped QDs with parameters given in Fig.2.4. 

The material parameters used to calculate the strain distribution in and around 

QD, taken from reference [81], are listed in Table 2.1. The lattice constant and 

elastic constants of GaAs1-xSbx are obtained from linear interpolation of that of 

GaAs and GaSb. 

Strain components (εxx and εzz) along a line perpendicular and passing 

through the center of the base of a pyramid shaped QD are presented in Fig. 2.5. 

In this figure, the results of strain distribution obtained from the method based on 

continuum theory of elasticity (this work) are presented together with the results 

of strain distribution calculated from VFF method [57] and finite difference 

method [58]. The size of the QD (base length 12 nm and height 6 nm) was taken 

to be same as the one in references [57] and [58] to compare the different 

methodologies. Despite the computational simplicity of the method used in this 
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work, the results are in very good agreement with the results of stain distribution 

obtained by Crusack et al. [57] using VFF method and Grundmann et al. [58] 

using finite difference (FD) method. The agreement of the results obtained from 

the analytical method and those obtained from other computationally expensive 

methods such as VFF and FD technique shows the validation of the technique 

used in this work and allows us to use computationally simple method. 

Computational simplicity is important since the strain calculations are required in 

the search of the III-V tertiary material space for optimum QD/barrier material 

combinations for intermediate band solar cells. 

 

 

 

Fig. 2.4 Schematic diagram of the truncated pyramid shaped quantum dot 
assumed in the calculations.  
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Fig. 2.5 Strain components εxx and εzz for a pyramid shaped QD along a 

line perpendicular and passing through the center of the base of pyramid: (a) 
obtained by Crusack [57] using VFF method (a) obtained by Grundmann [58] 
using FD method and (c) calculated by analytical method (this work). 

 

 

 

 

 

 

 

 

 

Table 2.1 Material parameters used in calculation of strain distribution 
 

parameters  InAs GaAs GaSb 

Lattice Constant a(oA) 5.660 5.6533 5.6096 

Elastic constants C11(GPa)

C12(GPa) 

C44(GPa) 

832.9

452.6 

396.0 

1221.0

566.0 

600.0 

884.2 

402.6 

432.2 
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Fig. 2.6 Elastic strain (εxx) distribution of InAs QD buried in an infinite GaAs 
matrix (lattice mismatch 6.7%). A square based (a=20nm), 5nm tall full 
pyramid shaped QD. 
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From the Fig 2.6 and 2.7 (the result of εxx), it can be seen that the planar 

strain component (εxx) in case of InAs QDs grown on [001] GaAs substrate has 

compressive (-ve ) value at the base of the dot in both full and truncated pyramid 

shaped quantum dots. It occurs because when the InAs is epitaxially grown on 

GaAs, the InAs grows at the lattice sites of the GaAs and have to acquire the 

lattice constant of the later. On the other hand, to compensate this, the lattice 

constant in the plane along the growth direction [001] increases causing the QD 

material to have tensile strain. Conversely, for GaAs material just below the base 

of QD, in plane lattice constant is increased and the lattice constant along the 

growth direction [001] is decreased. Except at the base of the QD structure, the 

 

Fig. 2.7 Elastic strain (εxx) distribution of InAs QD buried in an infinite GaAs 
matrix (lattice mismatch 6.7%). A square based (a=20 nm), 5 nm tall truncated 
pyramid shaped QD. 



45 
 

distribution of planar strain is different in these two cases. In case of truncated 

pyramid shaped QD, the planar strain component is always compressive inside 

whereas in case of full pyramid shaped QD, at the tip of the quantum dot, the 

stress force is mainly acting from the sides and is along the z direction. Therefore, 

at the tip of QD, the planar strain component is tensile. 

 

 

Fig 2.8 Hydrostatic and biaxial strain components of a full pyramid shaped 
InAs quantum dot grown on GaAs [001] substrate along the z axis (x=y=0) 
passing through the center of the base of the dot. 



46 
 

 
The hydrostatic and biaxial strains for full pyramid and truncated pyramid 

shaped quantum dots of base length 20 nm and height 5 nm (full height in case of 

full pyramid and truncated height in case of truncated pyramid shaped QDs) are 

presented in Fig.2.8 and 2.9 respectively. From these figures it is clear that the 

hydrostatic strain is constant inside the dot and biaxial strain has strong spatial 

variation in and outside the dot. The biaxial strain is positive everywhere inside 

the dot in truncated pyramid shaped case but changes to negative at the tip with 

very strong spatial variation in the case of pyramid shaped QD. This strain 

distribution at the tip of pyramid shaped QD explains the shape evolution of QD 

to truncated pyramid when a barrier material is deposited for QD coverage. 

2.4.1 Summary for single QD strain calculations 

 
Overall, the strain distribution of truncated and full pyramid shaped 

quantum dots was calculated and presented in this section. The strain distributions 

presented here are in a very good agreement with the results obtained from 

 

Fig.2.9 Hydrostatic and biaxial strain components of a truncated pyramid 
shaped InAs quantum dot grown on GaAs [001] substrate along the z axis 
(x=y=0) passing through the center of the base of the dot.  
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sophisticated atomistic calculations [48, 51]. The hydrostatic and biaxial strains 

distributions presented here are implemented in chapter three to calculate the band 

structure of quantum dots with the effect of strain. Importantly, this 

computationally simple method allows the calculation of the strain distribution of 

vertical array of QDs which otherwise would be very difficult if not impossible 

with atomistic approaches.  

2. 5 Elastic strain distribution of vertical array of quantum dots 

It is well known that the quantum dots have relatively small absorption 

cross section [42,82] for both inter band and intra-band transitions. Therefore, 

particularly, in quantum dot infrared photo detector (QDIP) and quantum dot solar 

cells (QDSCs), multiple layers of quantum dots have to be stacked to get 

significant contribution of QDs in device performance. The optoelectronic 

properties of vertically stacked arrays of quantum dots must be calculated for their 

application as absorbing medium in QDSCs. The starting point for this is the 

analysis of the elastic strain distribution and its effect on the band structure of 

quantum dot super lattice. In this section, we investigate the strain distribution due 

to vertically stacked arrays of self-assembled quantum dots. 

The distribution of elastic strain field due to coherently strained islands 

extends to the surrounding matrix. Thus, there is a strain field modulation at the 

surface of the material that is grown as covering layer at the top of the QDs. The 

strain field strongly affects the growth of QD material at the subsequent layer. 

The covering layer (let’s say GaAs) directly above the QD (let’s say InAs) has 

comparatively larger lattice constant (tensile strain) than the layer which doesn’t 



48 
 

have QD below it. This variation in lattice constant of the surface of covering 

layer drives the vertical stacking of the quantum dots. Thus the InAs deposited on 

the GaAs coverage layer has preferential nucleation sites directly above the 

quantum dot in lower layer. In this section, we calculate the strain distribution due 

to vertical array of InAs quantum dots grown on [001] GaAs substrate with 

varying thickness of barrier layer in order to analyze the effect of vertical spacing 

on strain distribution. The strain profile of a single QD is also presented for 

comparison.  

Previous works on calculation of strain distribution due self-assembled 

QD are focused for single QD [47,48]. Experimental studies on vertical array of 

SK QDs show the indication of electronic coupling when the vertical spacing 

between the dots is less than 10 nm [83,84,85] but for the strain coupling the 

separation between the dots can be as large as 20 nm [86,87]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.2.10 AFM image showing planar spacing, and size of InAs QDs grown on 
GaAsSb(Courtesy: K.Y Ban, Solar Power Lab, ASU). 
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For the calculation of strain distribution due to a vertically aligned array of 

quantum dots, the stress distribution due to each quantum dot is calculated from 

the analytical method based on continuum theory of elasticity as outlined in 

previous section 2.3. Since the elastic problem is linear, the stress field at each 

point in and around the QDs in the QD array is obtained by superposition of stress 

field due to each individual quantum dots in the structure. Then the corresponding 

strain components are obtained from the stress strain relations in equation (2.28). 

A five layered structure with different vertical spacing, Hz, (i.e., the spacing 

between the top of QD to the bottom of QD in two consecutive layers) as shown 

in Fig.2.11 is considered. Since the planar spacing between the QDs (Lx, in 

Fig.2.11) for normal growth conditions are reported to be about 50 nm and this is 

relatively large [88,89] for strain and electronic coupling among the QDs in a 

plane (see Fig. 2.10), here the calculations are focused only on the vertical 

spacing of the QD layers. The strain distributions εxx, εzz and the hydrostatic and 

the biaxial strains are calculated for different vertical spacing (Hz), keeping the 

shape and size of QDs to be same in all cases. For our calculations, as mentioned 

in previous section, we consider the both the pyramid and truncated pyramid 

shaped quantum dots with base length a= 20 nm and height h =5 nm (hf =5 nm, 

for truncated pyramid) respectively. The strain calculations are performed for 

spacer layer thickness between the dots (Hz) 3 nm, 5 nm, 7 nm and 10 nm. The 

minimum (3 nm) and maximum (10 nm) values of spacer layer thickness for this 

work are chosen on the basis of experimental results which show that (i) at 

thickness greater than 10 nm there is no guarantee of vertical ordering [87] and 
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(ii) for the spacer layer thickness less than 3 nm, the dots are so defective [86] that 

they have deleterious effect on device. With the above mentioned spacing layer 

thicknesses and the base dimensions, the strain distributions of both the truncated 

and full pyramid shaped quantum dots is calculated and analyzed. The results of 

the strain distribution (hydrostatic and biaxial strains) obtained in this section are 

used as input parameters to calculate the band edge alignment and hence the 

electronic structure of QD array in chapter 3. 

 

2.5.1 Results and discussions 

 
Calculated according the calculation method outlined above, different 

strain component of pyramid and truncated pyramid shaped quantum dots are 

presented in this section. Fig.2.12 shows the strain components εxx of an array of 

5 layers of QDs (each QD square based pyramid shaped with base length 20 nm 

 

Fig. 2.11 schematic of QD array with truncated pyramid shaped QDs 
considered in calculation. 
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and height 5 nm) with spacer layer thickness of 5nm. For comparison, the strain 

profile of a single QD buried in an infinite medium (legend “infinite) is also 

presented.  

The strain properties of a vertically stacked array of QDs can be expected 

to be as in the mid-QD layer, labeled as “M” in Fig.2.11, in the array of 5 QD 

layers. Therefore, further discussion of the strain profile of a QD array is focused 

on properties of this QD layer. From Fig.2.12 it is clearly seen that qualitatively,  

 

the strain component εxx inside the QD of a QD array is same as that of single QD 

buried in an infinite medium. Quantitatively, the planar strain is reduced  

significantly in the array in comparison to single QD. In the QD array, the strain 

component, εxx, is relaxed in comparison to isolated QD due to the interaction of 

the strain fields from the neighboring dots. On the other hand, in the barrier 

 

Fig. 2.12 Strain component εxx of QD array of pyramid shaped five QD layers 
with 5 nm spacer layer thickness along a line perpendicular and passing 
through the center of the base.  
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material the strain profile of the QD array is significantly changed both 

qualitatively and quantitatively in comparison to a single QD. In the array, outside 

the QDs, the tensile strain from the consecutive layers superimpose causing the 

barrier material to be more dilative. A closer view of the variation of strain profile 

of the array with different spacer layer thickness is presented in  Fig.2.13, where 

the strain profile of the mid layer are presented for different spacer layer 

thickness, namely 3 nm, 5 nm, 7 nm and 10 nm. For comparison the strain profile 

of single QD buried in an infinite medium (legend “infinite” in Fig.2.13) is also 

presented. A careful look in Fig.2.13 shows that the strain profile in the spacer 

layer changes significantly for spacer layer thickness of 3 nm in comparison to 

other values. Due to the superposition of the strain field from neighboring layers, 

the barrier is highly tensile both above and below the QD layers in the 3 nm 

spacing case. This theoretical observation is consistent with experimental 

observations of strong strain driven intermixing of indium and gallium between 

the dot and the barrier layer when the spacer layer thickness is less than 4 nm 

[90,91].  
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In Fig.2.14, the biaxial strain components εb of an array of 5 layers of QDs 

(each QD square based pyramid shaped with base length 20 nm and height 5nm) 

with spacer layer thickness of 5nm are presented. For comparison, the strain 

 

Fig. 2.13  Strain component εxx along a line perpendicular and passing through 
the center of the base of square based (20 nm) full pyramid shaped QD array 
for different spacer layer thickness.  

 

Fig. 2.14 Biaxial strain, εb of QD array of pyramid shaped five QD layers with 
5 nm spacer layer thickness along a line perpendicular and passing through the 
center of the base.  
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profile of a single QD buried in an infinite medium (legend “infinite) is also 

presented. As in the case of single QD, qualitatively, the biaxial strain component 

εb inside the QD of a QD array is same as that of single QD buried in an infinite 

medium. Quantitatively, the strain εb is reduced significantly in the array in 

comparison to single QD. 

A closer view of the variation of strain profile εzz of the vertical QD array 

with different spacer layer thickness is presented in Fig.2.15, where the strain 

profile of the mid layer are presented for different spacer layer thickness namely 3 

nm, 5 nm, 7 nm and 10 nm. For comparison, the strain profile of single QD buried 

in an infinite medium (legend “infinite”) is also presented. The perpendicular 

strain component is tensile inside the QD due to obvious reason. When the barrier 

layer thickness is reduced from infinite to 3 nm, the perpendicular strain 

component inside QD becomes less tensile at the QD base. For sufficiently thin 

barrier layer (less than or equal to 3 nm) the perpendicular strain component is no 

longer tensile even at the QD base. The reason for this is the superposition of 

large compressive stress from the other QDs with its own small tensile stress. 
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Fig.2.15 shows that the biaxial strain inside the QD base decreases when 

the spacer layer thickness is decreased from 10 nm to 3 nm. Qualitatively, the 

biaxial strain profile of the QD array inside the QD is same as that of single QD 

buried in an infinite medium. It is positive at the bottom and most part of the QD 

but becomes negative close to and at the pyramid tip. Biaxial strain is negative in 

the matrix material for all spacer layer thickness. Due to the superposition of the 

strain field from neighboring QDs the biaxial strain becomes more negative in the 

barrier layer when its thickness decreases. The hydrostatic strain is not presented 

and discussed here because for the isotropic elastic medium for a QD buried in an 

infinite matrix, its value is zero outside the dot and constant inside the dot and 

hence it does not change with the spacer layer thickness. Even with higher 

 

Fig.2.15 Strain component εzz along a line perpendicular and passing through 
the center of the base of square based (20 nm) full pyramid shaped QD array 
for different spacer layer thickness.  
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computational expense with finite element method the strain distributions in and 

around QD in a QD array [92] are same as the values obtained from our method. 

 

 
 

The shape of quantum dots covered by barrier material is reported to have 

a shape close to that of a truncated pyramid. Therefore the strain components of a 

square based truncated pyramid shaped quantum dot are also presented in this 

section. Fig.2.17 shows the strain components εxx of an array of 5 layers of QDs 

(each QD square based truncated pyramid shaped with base length 20 nm and 

height 5 nm) with spacer layer thickness of 5 nm. For comparison, the strain 

profile of a single QD buried in an infinite medium (legend “infinite) is also 

presented. 

 

 
Fig. 2.16 Biaxial strain (εb) along a line perpendicular and passing through the 
center of the base of square based (20 nm) full pyramid shaped QD array for 
different spacer layer thickness. 
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Since the QDs in the mid layer represent the QDs in the multilayered 

structure, here, the discussion of strain profiles is focused on the mid layer QD 

labeled as “M” in Fig.2.11, in the array of 5 QD layers. Therefore, as in the case 

of full pyramid shaped QD, further discussion of the strain profile of a QD array 

is focused on properties of this QD layer. From Fig.2.17, it is clearly seen that 

qualitatively, the strain component εxx inside the QD of a QD array is same as that 

of single QD buried in an infinite medium. Quantitatively, the planar strain is 

reduced significantly in the array in comparison to single QD. In the QD array, 

the strain component, εxx, is relaxed in comparison to isolated QD due to the 

interaction of the strain fields from the neighboring dots. On the other hand, in the 

 

Fig. 2.17 Strain component εxx of QD array of truncated pyramid shaped five 
QD layers with 5 nm spacer layer thickness along a line perpendicular and 
passing through the center of the base.  



58 
 

barrier material the strain profile of QD array is significantly changed in 

comparison to a single QD. In the array, outside the QDs, the tensile strain from 

the consecutive layers superimpose causing the barrier material to be more 

dilative. A closer view of the variation of strain profile of the array with different 

spacer layer thickness is presented in Fig.2.18 where the strain profile of the mid 

QD layer are presented for different spacer layer thickness; namely 3 nm, 5 nm, 7 

nm and 10 nm. For comparison the strain profile of single QD buried in an infinite 

medium (legend “infinite”) is also presented.  

 

Fig.2.18 and 2.19 show that the strain profiles εxx and εzz change 

drastically inside the QD and in the spacer layer when the spacer layer thickness 

is reduced. Due to the superposition of the strain field from neighboring layers, 

along the [001] plane (the strain component εxx) the barrier becomes highly tensile 

when the spacer layer thickness is decreased. Inside the QD, compressive strain is 

 

Fig. 2.18 Strain component εxx along a line perpendicular and passing through 
the center of the base of square based (20 nm) truncated pyramid shaped QD 
array for different spacer layer thickness.  
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reduced with the reduction in barrier layer thickness. On the other hand, the strain 

component εzz inside the QD in the array decreases from being tensile (+ve value) 

to compressive (-ve value) when the barrier layer thickness is reduced to 3 nm. 

This is due to the superposition of large compressive strains caused by QDs in the 

barrier material around them and small tensile strains due to the dot itself. 

 

Fig.2.20 shows that the biaxial strain inside the QD decreases when the 

spacer layer thickness is decreased from 10 nm to 3 nm. Qualitatively, the biaxial 

strain profile of the QD array inside the QD is same as that of a single QD buried 

in an infinite medium. It is positive inside the entire QD volume. Biaxial strain is 

negative in the matrix material for all spacer layer thickness. Due to the 

superposition of the strain field from neighboring QDs the biaxial strain becomes 

more negative in the barrier layer when its thickness decreases. 

 

Fig. 2.19 Strain component εzz along a line perpendicular and passing through 
the center of the base of square based (20 nm) truncated pyramid shaped QD 
array for different spacer layer thickness. 



60 
 

2.6 Conclusion  

In this chapter, the strain distribution for single and vertically aligned 

quantum dots is calculated based on the continuum theory of elasticity. The strain 

distribution of two different shapes namely, full pyramid and truncated pyramid 

QDs show different pattern in strain distribution in and around a single quantum 

dot. These results were reflected in vertical arrays of quantum dots as well. The 

dependence of elastic strain distribution on the vertical spacing between the QDs 

clearly shows the superposition of strain fields in neighboring dots when the 

spacer layer thickness is less than 10 nm.  

Here, I have only considered the situation with constant Indium 

composition within the InAs quantum dot. The experimental results indicate that 

there is strain driven diffusion of indium to the barrier layer. A further 

development in the analytical model would be to effectively model the QD with 

exact composition of the material which has been observed experimentally. 

 

Fig.2.20 Biaxial strain (εb) along a line perpendicular and passing through the 
center of the base of square based (20 nm) truncated pyramid shaped QD array 
for different spacer layer thickness. 
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The change in different strain profiles, especially the biaxial strain, with the 

spacer layer thickness has discernible effect on the band structure. In particular, 

the magnitude of splitting of valence band into heavy and light holes at the 

Brillouin zone center (Γ-point) and the band gap is changed with the when spacer 

layer thickness is decreased. This effect is assessed detail in chapter 3.  
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Chapter 3 

    BAND STRUCTURE CALCULATION 

3.1 Introduction 

The exploration of advanced concept solar cells using semiconductor 

nanostructures relies on the proper understanding of their interaction with 

photons. The optoelectronic properties of the nanostructures strongly depend on 

electronic structure of the bulk and confined electronic states. The inter-band 

(conduction band to valence band and vice versa) and intra-band (within the 

conduction or valence band) transitions in the nanostructure materials are 

controlled by energy spacing of the confined states in conduction and valence 

bands together with the density of states and the wave functions of these confined 

states. In this chapter, the band structure of a single and vertically coupled 

quantum dots are calculated with the effect of strain.  

This chapter starts with a brief overview of tight binding and 

pseudopotential methods for band structure calculations. These sections (3.2 and 

3.3) are followed by details of k•p method (section 3.4), which is used to calculate 

the band structure of the semiconductor heterostructures presented in this 

dissertation. Section 3.5 considers the effect of elastic strain and its incorporation 

on the energy band calculation of bulk and heterostructures. The k•p method 

together with the results of strain calculations from chapter 2 is used to calculate 

the band structure of the quantum dot heterostructures with the effect of strain. 

The results of the band edge alignment of the QD heterostructures are presented 

and discussed in section 3.6. The confined electronic states in the conduction band 
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(CB) and the valence band (VB) are obtained by solving the Schrödinger equation 

for strain modified confinement potentials and the effective masses. A single band 

effective mass method, as outlined in section 3.7, is used for the solution of 

Schrödinger equation to obtain the confined electronic states in quantum dot. 

Section 3.8 presents the results of band edge alignment of vertical QD array. 

Section 3.8 concludes the chapter by summarizing the results and their 

significance for the development of material model for advanced nanostructured 

concepts in solar cells. 

3.2 Tight binding method 

Slater and Koster were the first to advocate the use of the tight binding 

method as an empirical technique that can be used for band structure calculation 

of semiconductor materials [93]. In semiconductor materials the outermost 

valence electrons are either s or p type. This is not only true for elements in 

atomic form but also for the electrons in elements in crystalline form as the 

electrons retain the s and p character even though they are Bloch (free) electrons. 

The tight binding method (TBM) uses atomic functions as basis sets for the Bloch 

functions. The periodic part of the Bloch function is represented by some 

combination of the atomic orbitals centered at the lattice points. If φn(r-R) is such 

an orbital centered at R, the Bloch function can be written as, 

 
.( ) ( ) n

n

ik R
k n

R

r r R e    (3.1)  

When the atoms of the elements are brought together in a crystal, the valence 

electronic states are perturbed by the presence of neighboring atoms and the 
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original atomic functions describing the valence electrons are no longer 

eigenstates of the Hamiltonian. But the atomic functions can be used as a good 

approximate set of basis states to describe the crystalline electrons. 

A simple mathematical model of tight binding method starts by assuming 

that the solution of the atomic Hamiltonian 

 at n n nH E   (3.2)  

is already known. However, in crystalline structure we have, 

 ( )crystal atH H U r    (3.3)  

In equation (3.3), ∆U(r) is the perturbation introduced due to the interaction of the 

neighboring atoms. So, the new Bloch wave functions are chosen as; 

 
.( ) ( ) ik R

k
R

r r R e    (3.4)  

Where φ(r) are made up of atomic functions as, 

 
1

( ) ( )
N

n n
n

r b r 


  (3.5)  

With equations (3.4) and (3.5), the Schrodinger equation for the crystal, 

 ( )k kH E k   (3.6)  

is solved using the orthogonality of atomic functions  that are used to expand the 

Bloch functions and the fact that the atomic functions centered at different lattice 

sites are not orthogonal, expressed mathematically in equation (3.7) and (3.8) 

respectively. 
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 3 * ( ) ( )m n mnd r r r    (3.7)  

 3 * ( ) ( )m n mnd r r r R     for R≠ 0 (3.8)  

In this method, second nearest neighbor approximation for zincblende crystals in 

sp3 basis (one s and three p orbitals as px, py and pz) leads to eight basis functions 

for each of the two atoms within the Wigner-Seitz cell. This approximation 

assumes that there is spin degeneracy in the band structure of the crystal. This 

assumption leads to sixteen basis functions for zincblende semiconductors. In 

order to determine the tight binding matrix elements, which are the interaction 

parameters of the potential of neighboring atoms, the positions of the neighboring 

atoms with respect to each atom in the basis set must be known.  

3.3 Pseudopotential method 

This method was introduced by Philllips and Kleinman [94] to explain the 

validity and the modifications of nearly-free electron model to calculate the band 

structure of semiconductors. This method assumes the nature of electronic states 

in higher energy states (conduction and valence bands) is almost same as the free 

electron case with the core of the atoms replaced by a repulsive potential. This 

method is less accurate when the pseudopotential has to be calculated from first 

principles; however the accuracy is increased when it is used as an empirical 

method having free parameters which are obtained from the comparison of 

theoretical and experimental results. Since the crystal potential undergoes sharp 

change at the vicinity of the lattice points and varies smoothly over the rest of the 
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crystal, the electron wave function can be represented by a set of few plane waves 

except in the vicinity of ion cores where it is represented by oscillating functions 

as in the atomic wave functions. In this method, the strong true potential of the 

core is replaced by a weaker effective potential also called “pseudopotential” for 

the valence electrons. To solve the Schrödinger equation with this method, a 

pseudo wave function that is the approximation of true wave function outside the 

core region is used. As the pseudopotentials represent a weak perturbation in the 

free electron band structure, the Schrödinger equation can be diagonalized by 

expanding the pseudo wave functions in terms of plane waves. 

3.4 The K.P method for Bulk semiconductors 

The k•p method, introduced by Bardeen [95] and vitalized by Kane [96], 

Luttinger and Kohn [97] is extensively used to calculate the band structure of bulk 

and nanostructure semiconductor materials. This method can incorporate the 

effects of band mixing, strain and the influence of external fields (electric or 

magnetic). In semiconductors, the lowest conduction band will have contributions 

from the remote conduction bands as well as from the valence bands depending 

on the energetic separation of these bands from the lowest conduction band. On 

the other hand, the valence band edge of any of semiconductor materials is 

expected to comprise two or three of the valence bands with comparable 

contributions. Depending on the accuracy required in the calculation and the 

energetic separation of the bands in the bulk materials, different number of bands 

may be included in the calculation. Sometimes it is sufficient to include heavy 

holes and light holes, sometimes we have to include spin orbit split-off band and 
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even have to include the effect of conduction band in the description of the band 

structures. This section gives the brief overview of the k•p method for bulk 

semiconductor materials with direct band gap. 

For a periodic potential V(r), the electron wave function satisfies the single 

electron Schrödinger equation 

 
2

2( ) ( ) ( ) ( ) ( )
2

H r V r r E k r
m

 
       

 


 (3.9)  

In equation (3.9), p
i

 


 is the quantum mechanical momentum operator. 

 
The general solution of equation (3.9) is the Bloch function, 
 

 .( ) ( )ik r
nk nkr e u r   (3.10)  

with ( ) ( )nk nku r R u r  . Here, R is lattice translation vector given by, 

R=n1a1+n2a2+n3a3, with n1, n2, n3 as the integers and a1, a2, a3 as lattice vectors. 

When we substitute equation (3.10) into (3.9), we obtain 

 
2 2 2
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2 2 nk n nk

p k
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m m m

 
    

 

   (3.11)  

Using 
2

( )
2o

p
H V r

m
  , equation (3.11) can be written as, 

 

  
2 2

. ( ) ( ) ( )
2o nk n nk

k
H k p u r E k u r

m m

 
   

 

 
 (3.12)  

 
When we include the spin orbit interaction (Kane’s model for band structure) 

then, the Hamiltonian due to spin orbit interaction is  
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2 24soH V

m c
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  


 (3.13)  

where   is a Pauli matrix with its components , ,x y z    and can explicitly be 

written as, 
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z  (3.14)  

Including the effect of spin orbit interaction in the total Schrödinger equation 

(3.12) and considering the fact that the crystal momentum ћk is very small in 

comparison to the atomic momentum p in the far interior of the atom where most 

of the spin orbit interaction happens, equation (3.12) can be written as, 

  
2 2

0 2 2
( ) ( ) ( )

2 4 nk n nk

k
H k p V p u r E k u r

m m m c


 
        

 
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 (3.15) 

The solution of equation (3.15) at Γ-point (k=0) without spin orbit interaction is 

known and is given by: 

 
2
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2o no no n n

p
H u r V r u r E u r

m

 
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 (3.16)  

In equation (3.16), for direct band gap semiconductors, En0 are band edge energies 

and un0(r) are the corresponding wave functions, the Bloch functions at the band 

edge. The un0’s, for different n, form a complete orthonormal set and one can 

express the solutions away from the Γ-point (unk(r)) in terms of un0 as, 

 0( ) ( ) ( )nk mn m
m

u r c k u r  (3.17)  
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In equation (3.17), the band edge functions, um0, are: for conduction band: S  ,

S   with eigen energy EC and for valence band:

, , , , ,X Y Z X Y Z       with eigen energy E’V. In this notation, S 

refers to the fact that these functions have symmetry properties of s-function of 

the tetrahedral group, Td. This belongs to Γ1 symmetry in the notation of Koester 

[98]. The functions X, Y and Z have symmetry of p function in the solution of 

hydrogen atom problem. These functions transform according to Γ4 symmetry in 

the notation of Dresselhaus [99]. 

Substituting equation (3.17) into (3.15) and then multiplying on the left by 

un0 and using orthonormality condition, we get the Hamiltonian matrix: 

  
2 2 2

0 , 0 0 0 02 2
.

2 4nm n n m n m n m

k
H E u k p u u V p u

m m m c
 

 
       
 
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 (3.18)  

The second term in equation (3.18) is referred as k•p interaction term. The k•p 

interaction is obtained with perturbation theory 

The matrix elements of (3.18) in the basis, 

    1 2 8, ,..., , , , , , , ,u u u S X Y Z S X Y Z          (3.19) 

are given by, 

 
1

* *
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H H Hr
H

H H Hr

   
     

 (3.20)  

In equation (3.20), H1 includes the diagonal term (first term in equation 3.18) and 

the k•p interaction terms within the 8 bands (top of the valence band and the 
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bottom of the conduction bands) in the basis set defined in equation (3.19), Hso 

and Γ account for the spin orbit interaction terms. Hr includes the effect of remote 

bands (out of 8 bands under consideration) on the bands in basis (3.19).  

The term H1 in matrix H in equation (3.20) is given by [100], 
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 (3.21)  

Here, Ec and Ev’ are the conduction and valence band edge energies when the 

pin-orbit interaction is not included. The parameter P0 accounts the mixture of 

conduction and valence bands at k≠0 and is obtained from 

 0 ( / ) ( / ) ( / )z x yP i m S p Z i m S p X i m S p Y         (3.22) 

The parameter P0 can be expressed in the energy units as, 2
02

2
P

m
E P


. 

The spin-orbit interaction terms, Hso and Γ, in (3.20) can be explicitly written in 

matrix form and are presented in equation (3.23) and (3.24) respectively, 
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 (3.24)  

In the basis states defined in (3.19), the spin orbit parameter ∆ is obtained from 
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(3.25)  

The eigenvalues of the spin orbit interaction matrices are 0 (doubly degenerate, 

related to eigenstates of the conduction band), Δ/3 (four fold degenerate) and -

2Δ/3 (doubly degenerate) related to the valence band. Thus, the actual position of 

the valence band is E’V+Δ/3 which is measured experimentally and will be 

denoted as Ev, hereafter.  

The basis states presented in (3.19) interact strongly with one another and 

can be arranged in one class, let’s say A, and the states other than the ones in A 

can be considered to be in another class, let’s say B. The states in class A interact 

weakly with the states in class B. The influence of states in class B on the states in 

class A can be treated as perturbation. Using the Lowdin’s perturbation theory 

[101], the interactions connecting states in A with the states in group B are 

removed. Let Uij are the initial interaction matrix within the states in group A and 

U’ij be the renormalized matrix with second order perturbative corrections. The 
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perturbative correction of the remote bands to the states in class A can be 

expressed as, 

 
'
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i j

ij ij
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(3.26)  

In equation (3.26), the states i, j are in group A, β are in group B and Ei is the 

eigenvalue of state i. The renormalized Hamiltonian which is still 8x8, is solved 

by, 

  ' 0
A

ij i ij ji
j

U E c   (3.27)  

Here, cij are the expansion coefficients when the remote band wave functions Ψi’ 

is expressed in terms of Ψj (the wave functions in class A). 
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The cji‘s in equation (3.28) are given by, 
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In (3.29), j is in B and i, k in A. The Lowdin’s perturbation terms converges 

rapidly if ij i jU E E 
.
Thus, the remote band interaction Hamiltonian, Hr, in 

matrix expression (3.20) can be written as, 
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The interaction parameters in expression (3.30) are explicitly written in the 

following expressions. 
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(3.31)  
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M = H1+H2, N’=F’-G+H1-H2,      L’=F’+2G, 

(3.32)  

As shown in the expressions (3.31) and (3.32), the remote band interaction 

terms contain all other states excluding the states in the 8 dimensional manifold. 

The summations in the above parameters are over all single group states |nΓij> 

Here the symbol nΓij is the jth function of the nth band with symmetry Γi [102]. In 

the matrix in equation (3.30), the term A’ accounts for the coupling of conduction 

band with the states not in 8 dimensional manifold and is very small (almost 

negligible) as compared to its coupling with the valence band states [103]. The 

term B accounts for the inversion symmetry in zincblende crystals that accounts 

for the mixing of conduction and valence bands in the presence of shear 
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deformation potential. For semiconductor heterostructures grown on [001] 

substrates this is very small and can be neglected [104]. For diamond type crystal 

structures such as silicon and germanium, this term is zero. 

A new basis set of the total angular momentum operator can be formed 

from the basis set defined in equation (3.19). In this new basis set, the 

Hamiltonian is diagonal at k=0. The class A states that can be formed out of basis 

set in (3.19) with the electron spin taken into account, can be written as, for the 

conduction band: 
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 (3.33)  

and for the valence band:  
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Thus, the set of basis states expressed in (3.34)-(3.36) give the Kane’s band edge 

eigen functions. In these set of functions the total angular momentum J=L+S 

(where L is orbital angular momentum and S is the angular momentum) and its 

projection along z-axis, Jz, are diagonal. With the basis set defined in equations 

(3.34)-(3.36) and using the Lowdin’s perturbation theory to include the effect of 

remote bands , the 8x8 k•p Hamiltonian can be written as; 
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(3.37) 

The parameters used to write the elements of the matrix in equation (3.27) are 

given by, 
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In these parameterization; γ1, γ2 and γ3 are the modified Luttinger parameters 

which can be expressed in terms of Kane’s parameters given in equation (3.31) 

and (3.32) as, 
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 (3.38)  

Since the Luttinger parameters are directly related to the effective masses 

in valence band, it is convenient to express these parameters in terms of  the 

parameters of six band Luttinger-Kohn Hamiltonian[105] and taking into account 

the effect of remote bands (including conduction band) from Lowdin’s 

perturbation theory. The original Luttinger parameters, ( 1, 2,3)L
i i  , are given 

by, 
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 (3.39)  

In (3.39), L, N, F are the Dresselhaus parameters [99]. The difference between the 

Dresselhaus parameters L, N, F and the Kane parameters L’, N’, F’ comes from 
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the fact that Dresselhaus chooses three states |X>, |Y> and |Z> as a basis for his 

calculations where as Kane chooses four states |S>,|X>, |Y> and |Z> as a basis set. 

The Dresselhaus parameters can be related to Kane parameters. The relation is 

given in equation (3.40). 
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(3.40)  

Also, the 8 band Luttinger parameters are related to original Luttinger parameters 

(the Luttinger parameters from 6 band model), ( 1, 2,3)L
i i   by, 
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 (3.41)  

The bulk effective masses of heavy and light hole in different crystallographic 

directions are obtained from the Luttinger parameters. The heavy hole effective 

mass can be expressed as 
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Whereas, the light hole effective masses have the expressions 
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(3.43)  

From expressions (3.41) - (3.43) it is clear that the effective masses become larger 

for smaller momentum matrix elements and larger band separations. 

Expression (3.37), as mentioned previously, includes the conduction band, 

heavy hole, light hole and spin orbit bands. Each of them is doubly degenerate 

with the consideration of spin giving rise to eight bands. A valid simplification is 

to decouple the conduction band from the rest of the valence bands (heavy hole, 

light hole and spin-orbit). In this case the Hamiltonian reduces to 6x6, which is a 

six band model as schematically shown in Fig.3.1. Spin-orbit interaction scales 

with the atomic number of atoms and is weak for the materials containing lighter 

elements. A further simplification on k•p method, for the materials with weak 

spin orbit interactions spin-orbit band also can be decoupled and the model 

reduces to a four band k•p model also called Luttinger-Kohn model. 
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Fig. 3.1 Eight, six and four band k•p method 
 

3.5 Effect of strain on the band structure 

The lattice mismatched epitaxial growth of semiconductor heterostructures 

causes elastic strain in the system. In the strained materials the elastic strain 

causes a shift in lattice sites. The shift in lattice sites causes a change in crystalline 

potential in comparison to the unstrained crystal. This change in potential causes 

the change in energy band parameters such as band gap, the degeneracy of heavy 

and light holes at Γ-point in valence band and effective mass of electron and 

holes. The effect of strain on the electronic structure of semiconductors can be 

incorporated in the k•p model. The effect of elastic strain on the band structure is 

analyzed following the approach in Ref. [106]. 

Considering homogeneous strain in space (εij=εji, i, j = x,y,z), the 

periodicity of crystal is still maintained but the unit cell is deformed. The basis 

vectors of deformed unit cell are related to original basis vectors by, 



80 
 

 

' (1 )

' (1 )

' (1 )

x xx x xy y xz z

y yx x yy y yz z

z zx x zy y zz z

a a a a

a a a a

a a a a

  

  

  

   

   

   

 (3.44)  

In expression (3.44), ai’s (i=1, 2, 3 without primes) are the basis vectors in the 

regular crystal and the ones with prime are the unit vectors in the deformed 

crystal. The alternative way of dealing with this problem is that we can use the old 

basis vectors but use the coordinate transformation between old and new system 

as outlined by Pikus and Bir [107] so that the crystal periodicity of unstrained 

crystal is restored. The Hamiltonian in equation (3.9) can be transformed to 

deformed coordinate system using the transformation 
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The Schrodinger equation of the deformed system can be written as, 
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For 0ij  , the potential of the deformed crystal, ( , )V r  , can be expanded to the 

first order in strain as: 
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The wave functions are transformed to the 

new coordinate system as, 
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Also, the relationship between the momentum operators in the old and new 

coordinate system up to the terms linear in strain is:
'
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Using the expression in (3.45), the momentum operator in the old coordinate 

system can be written in terms of the one in the new coordinate system as; 

   'ˆ ˆi ij ij j
j

p p    (3.50)  

Substituting (3.48), (3.49) and (3.50) in equation (3.47) and applying the Bloch 

theorem in the new coordinate system, one obtains 

  '
0 1
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In equation (3.51), 'ˆ
bH is the Hamiltonian on equation (3.37) with r and p replaced 

with r’ and p’. Other two terms on the left hand side of Hamiltonian (3.51) are 

due to strain and can be expressed as: 
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(3.52)  

The terms that couple spins orbit interactions with strain can be neglected as they 

have a very small coupling. [58,108]. 

For the crystal with zincblende symmetry, the terms D0 and D1 defined in 

expression (3.52) add contributions to the 4x4 Hamiltonian and take the form, 
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Each element in equation (3.53) can be expressed as  
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(3.54)

In equation (3.54), a’, b’, l, m and n are given by, 
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In expression (3.55), Dij are the ij components of D0 defined in equation (3.52). 

With these definitions, the strain Hamiltonian in the basis defined in (3.33)-(3.36) 

becomes: 
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(3.56)

The matrix elements in (3.56) are given by,  
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Here, ac=a’ and av=-1/3(l+2m) are the conduction and valence band deformation 

potential respectively. The terms b=1/3(l-m) and d=n/√(3) are the shear 

deformation potentials. 

3.6 Band edge alignment and confinement potentials in single quantum dot 

 
In this section, the methodology used to calculate band edge alignment of 

strained III-V and Ge/Si quantum dot/barrier material system is discussed. The 

effect of strain on band edge alignment of the dot/barrier material systems is 

calculated and the confinement potentials for electrons, heavy and light holes are 

presented. For III-V material system, the focus is on InAs/GaAs dot/barrier 

material system as this is extensively studied experimentally. Together with this, 

the band edge alignment of  InAs/GaAsSb material system grown on GaAs[001] 

for different antimony composition are also presented to investigate the antimony 

composition that leads to negligible valence band offset (VBO) between the 

dot/barrier system. The condition of negligible VBO is of particular interest for 

quantum dot intermediate band solar cells(QDIBSCs) as it can avoid the voltage 

loss due to carrier relaxation via the closely spaced confined states in QD valence 

band [109]. On the other hand, due to its already matured fabrication technology 

and the abundance, the SiGe/Si system is always of great interest for advanced 

concept solar cells. The methodology for calculation and the results of the effect 

of strain on band edge alignment of SiGe/Si system are also discussed and 

presented here. 
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3.6.1 Direct band gap III-V material systems 

 
The band edge alignment in direct band gap III-V QD/barrier material 

system is calculated using k•p method at the band edge (Γ-point) with the effect 

of strain taken into account. First, the strain distribution in and around the 

quantum dot is calculated as discussed in chapter 2. The effect of strain on the 

band structure is obtained from the expressions (3.37) and (3.56). Expression 

(3.37) at the band edge (Γ-point, k=0) together with (3.56) which takes into 

account the effect of strain in band structure, give the band edge alignments of the 

conduction and valence bands of direct band gap III-V semiconductors. The 

conduction band is decoupled from the valence band and the band edge energy of 

the conduction band is given by, 

 0
cEc E Ec   (3.58)  

In equation (3.58), 0
cE  is the band edge energy of the unstrained conduction band 

and Ec  is the change in conduction band edge due to strain. The change in CB 

edge due to strain can be expressed as, 

 ( )c xx yy zzEc a       (3.59)  

In equation (3.59), ac is the hydrostatic deformation potential for the conduction 

band. The band edge energy of the unstrained conduction band, 0
cE , is given by; 

 0 0 0
, 3c v av gE E E


    (3.60)  
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In equation (3.60), gE is the unstrained band gap, 0  is the spin orbit splitting 

energy and 0
,v avE  is the average over the three uppermost valence bands at Γ-point 

(light hole, heavy hole and spin-orbit split-off band) for the unstrained bulk 

semiconductor material [47]. The heavy and light hole energies of the strained 

material at Γ-point are no longer degenerate and their energies at that point are 

given by, 

 0 0
, 3v av v h bEhh E a b 

     (3.61)  
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In equation (3.61) and (3.62) va  and b  are valence band hydrostatic and shear 

deformation potentials respectively. The band edge alignment of InAs QDs grown 

on GaAs[001] substrate with GaAs barrier is calculated using expressions(3.58), 

(3.61) and (3.62) for the conduction, heavy hole and light hole bands respectively. 

To calculate the band structure, the hydrostatic and biaxial strains are first 

calculated at the same grid points those are used to calculate the band structure. 

The results of these two strain components are coupled to band structure at the 

same grid points via corresponding deformation potentials. The material 

parameters used for the band structure calculation, taken from reference [81], are 

listed on table 3.1. Here, for a tertiary alloy of type A1-xBx, the parameter P is 

obtained by using an expression,  
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P(A1-xBx)= (1-x)P(A)+xP(B)-x(1-x)C. 

In this expression, C is a bowing parameter that accounts the deviation of specific 

material parameter of a tertiary material A1-xBx from linear interpolation between 

the binaries A and B. In table 3.1, The VBO listed for InAs and GaAs are also 

from reference [81] where those values are listed in comparison to the valence 

band edge of InSb. 

The band structure of a pyramid shaped InAs QD (along a line passing 

through and perpendicular to the base of pyramid) buried in infinite GaAs matrix  

is presented in Fig.3.2. In this figure, the band edge alignment of bulk GaAs and 

InAs are also presented for comparison. For the presentation of band edge 

alignment, the zero of energy is taken to be the energy of valence band edge of 

bulk GaAs. It is clear that the conduction band edge of the QD is shifted, 

Table 3.1 Material parameters of GaAs, InAs, GaSb and GaAsSb relevant for 
band structure calculations 

 

Parameter  InAs GaAs GaSb 
GaAs1-xSbx 

bowing 
parameter(C) 

Band Gap Eg(eV) 0.417 1.519 0.812 1.43 

Spin-orbit 
interaction 

∆0(eV) 0.39 0.341 0.76 0.6 

Conduction and 
valence band 
hydrostatic 
deformation 

potential 

ac(eV) 

av(eV) 

-5.08 

1 

-7.17 

1.16 

-7.5 

0.8 

0 

0 

Shear 
deformation 

potential 

b(eV) -1.8 -2 -2 0 

Valence band 
offset(VBO) 

∆Ev (eV) -0.59 -0.80 -0.03 -1.06 
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significantly increasing the effective band gap by almost 0.4 eV in comparison to 

unstrained case. The heavy and light holes are not degenerate at Γ-point. Also, 

there is a crossing of heavy hole and light hole band edges close to the pyramid 

tip. This is due to the strong spatial variation of biaxial strain towards the tip of 

the dot that was observed in calculation of strain distribution presented in chapter 

2. The heavy hole band edge is lower in energy (in the inverted scheme of the 

band diagram) than the light hole at the base of the pyramid where as at the tip of 

the pyramid the light hole band has higher energy than the heavy hole band. The 

hole confinement potentials are spatially varying from the bottom of the pyramid 

to its tip. On the other hand, for the truncated pyramid shaped quantum dots, the 

heavy hole band edge is always higher in energy than the light hole band edge, as 

shown in Fig.3.3. As discussed in chapter 2, keeping in mind that the realistic 

shape of quantum dots embedded in a barrier material is close to that of a 

truncated pyramid, the further discussion of band structure presented hereafter 

will be focused on truncated pyramid shaped quantum dots with base dimension 

20 nm and height 5 nm. 
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Fig.3.4 presents the band structure of InAs QDs grown on GaAs [001] 

with GaAsSb barrier. This material system is investigated to predict the negligible 

valence band offset condition that suppresses the carrier relaxation to the ground 

state of the confined valence band states from the valence band continuum via 

 

Fig. 3.3 Energy band edge diagram at the Γ point along the z axis for truncated 
pyramid shaped InAs quantum dot grown on GaAs [001] substrate with GaAs 
barriers. 

 

Fig. 3.2 Energy band edge diagram at the Γ point along the z axis for pyramid 
shaped InAs quantum dot grown on GaAs [001] substrate with GaAs barriers. 
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closely spaced confined energy states. From the calculation, it is found that the 

negligible valence band condition is achieved when the antimony composition in 

GaAsSb is 16%. Here, for the negligible valence band condition we focus on 

heavy hole band because as discussed earlier, for the materials that are 

compressively strained the heavy hole band is lower in energy (in the inverted 

band scheme) than the light hole. 

 

. 

3.6.2 Silicon germanium/silicon material systems 

The Silicon germanium (Si1-xGex) alloy grown on silicon has a lattice 

mismatch up to 4% for x = 0. In this material system epitaxial growth mode, as 

mentioned earlier, is the Stranski-Krastanov growth [110]. The shape and size of 

germanium quantum dots on silicon are reported to have bimodal distribution of 

Fig. 3.4 Energy band edge diagram at the Γ point along the z axis for truncated 
pyramid shaped InAs quantum dot in  GaAs0.84Sb0.16 matrix, grown on grown 
on GaAs[001] substrate  
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comprising both the large dome shaped and small pyramid shaped dots[111]. 

However, with the comparatively low growth temperature the shape and size of 

SiGe QDs grown on Si [001] substrate are reported to be close to that of a 

pyramid and truncated pyramid [112 ,113] with base length and  height about 20 

nm and 3 nm respectively.  

In germanium, conduction band minima is in (111) crystallographic 

direction on the surface of Brillouin zone with band gap of 0.66 eV whereas 

silicon has its conduction band minima at ∆-valleys (along Γ-X line) is at 

k=0.85kmax[001]. The unstrained Ge/Si interface has the type-II band alignment 

with 0.51 eV in VB and 0.05 eV spatially indirect band offset in CB. 

The effect of strain on the SiGe system can be obtained from deformation 

potential theory. The effect of strain in conduction band can be written as, 

  ,

1
2

3C av d u xx zzE        
 

 (3.63)  

In equation (3.63), the first term inside the bracket is conduction band 

deformation potential and the second term is hydrostatic strain. The shift of ∆-

valleys with respect to the average shift expressed in equation (3.63) can be 

expressed as, 

 2

2
( ) ( )

3C u zz xxE       (3.64)  

 4

1
( ) ( )

3C u zz xxE        (3.65)  
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In these equations, Ξu
∆ is the deformation potential for the delta valley in 

conduction band. In silicon and germanium, the effect of strain is different in 

different ∆-valleys. For example, the biaxial strain lifts the degeneracy of the ∆-

valleys into ∆4 (in the layer plane) and ∆2 (perpendicular to the layer plane, 

growth direction for growth in [001] substrate) valleys. Directly above and below 

the germanium QDs, in silicon, the ∆2 valley is lowered in energy due to tensile 

strain whereas the energy of ∆4 valleys increases. In Ge, the compressive strain 

pushes up the L-valley and switches the conduction band minimum from L-valley 

to the ∆4 valley. For the calculation of valence band edge alignment, which is at 

Γ-point, the expressions (3.61) and (3.62) are used. The band edge alignments of 

the pyramid shaped germanium quantum dots of base length 20 nm and height 3 

nm grown on silicon [001] substrate buried in an infinite silicon matrix are 

presented in Fig.3.5. The material parameters used to calculate the band structure 

of silicon germanium heterostructure, unless otherwise specified, are taken from 

reference [114] are listed in table 3.2. The band diagram, presented along a line 

passing through the pyramid vertex and perpendicular to the base of the pyramid, 

shows that at the regions directly above and below the QD the silicon ∆2 valley 

has the minimum energy whereas inside the dot for germanium ∆4 is the 

minimum. The band diagram clearly shows a spatially type-II band alignment 

with a 180 meV deep two dimensional well for electrons in silicon at the top of 

QD and a 700 meV deep three dimensional confinement potential for heavy hole 

in germanium QD. As in the case of InAs/GaAs system, the heavy hole and light 

hole bands at the Γ-point split in energy due to compressive strain inside the dot 
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(germanium) with heavy hole being the lowest energy band( in inverted band 

scheme).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.5 Energy band edge diagram (minimum energy of the valleys in 
corresponding bands) along z axis for full pyramid shaped germanium 
quantum dot in silicon matrix, grown on grown on Si [001] substrate. 
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Table 3.2 Material parameters of silicon and germanium used in band structure 
calculation 

parameter  Silicon Germanium 

Lattice constant  (oA) 5.43 5.65 

Elastic constants  

 

C11 (GPa) 

C12(GPa) 

165.8 

63.9 

131.5 

49.4 

Deformation potentials av (eV) 

b(eV) 

Ξ௨∆(eV)  

Ξௗ
∆(eV) 

4.54 

-2.1 

8.6 

-6 

-3.1 

-2.86 

9.4 

-4.92 

Valence band offset ∆ܧ௏,௔௩
௢  (eV) 0 0.47 [115] 

Spin-orbit splitting  ∆ (eV) 0.04 0.3 

 

3.7 Confined states in semiconductor quantum dots 

 
For advanced nanostructure concepts in solar cell application, knowledge 

of their optoelectronic properties is essential. Optoelectronic properties of the 

nanostructures are determined by the energetic position and the wave function of 

the confined states in conduction and valence band. In this section, the 

methodology used to calculate the confined energy states and wave function is 

formulated and the results are presented for III-V and SiGe self-assembled 

quantum dots. 

Semiconductor heterostructures such as quantum wells, wires and dots are 

obtained when a low band gap material with the dimension of few nanometers is 



95 
 

surrounded by a higher band gap materials in different dimensions (quantum 

wells: one dimension, let’s say z-axis, quantum wire: two dimensions, let’s say x 

and y axes, and for quantum dot: all three dimensions). These heterostructures 

have confined electronic states in valence and conduction bands. The confined 

energy levels and their wave functions determine the optoelectronic properties of 

these nanostructures. The calculation of these confined electronic states becomes 

a complex task due to non uniform confinement potentials and complex 

geometries of quantum dots.  

The methods used to calculate these electronic structures can mainly be 

categorized in three groups namely; (a) single particle effective mass theory, (b) 

multiband envelope function theory and (c) first principle methods. Out of these 

methods, multiband envelope function theory [57,116] is highly used for valence 

band confined states as it accounts for the interaction of heavy hole, light hole and 

spin orbit interaction bands. The conduction band is, generally, decoupled from 

valence band and is solved by using single band effective mass theory [116]. 

Here, for computational simplicity, single band effective mass theory, which is 

applied successfully to explain the electronic structure of quantum wires [117] 

and dots [118] is used. A brief overview of the method that is based on single 

band effective mass theory and the results of the calculation of confined energy 

states and the wave functions is presented in the following sub-sections. 

3.7.1 Single band effective mass method  

In this method, the confined energy eigenvalues and eigenstates are 

obtained from single parabolic band. In semiconductor heterostructures, the 
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conduction and valence band edges (strain modified) of the two constituent 

semiconductors form piecewise constant potentials. The electron in CB and hole 

in VB in each region (QD and barrier) act as free particle with effective mass 

determined from bulk band curvature at the band edge. The band offset obtained 

from the difference in the energy of band edges of two constituent semiconductors 

with the effect of strain is used to obtain the confining potential. 

The confined states and energy levels in the conduction band are obtained 

by using the single band effective mass theory for the three dimensional confining 

potential, V(x, y, z), and the effective mass, m*
c, modified by the effect of strain. 

That is to say, for the conduction band the Schrödinger equation becomes, 

 
2 2

* ( , , ) ( , , ) ( , , )
2 c

V x y z x y z E x y z
m

          
  (3.66)  

Equation (3.66) is solved by expanding the envelope function, ψ(x, y, z), in terms 

of the solution of a particle in an infinite potential cuboidal box surrounding the 

quantum dot [119]. 

 ( , , ) lmn lmn
lmn

x y z a   (3.67)  

where  

 
2 1 2 1 2

sin sin sin
2 2lmn

x x y y z z

x y z
l m n

L L L L L L
   

      
                 

 (3.68)

and almn’s  are the expansion coefficients with l, m and n =1,2,------,n, with n 

determined from the required accuracy of the calculation. The calculation domain 
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is chosen to be: [-Lx/2≤x≤Lx/2], [-Ly/2≤x≤Ly/2] and [0≤z≤Lz] for x, y and z 

respectively, as shown in Fig.3.6. A matrix of size l × m × n is obtained by 

substituting equation (3.67) into (3.66) and multiplying (3.66) by φ*
l’,m’,n’ and then 

integrating over the volume of cuboid (see Fig. 3.6). The eignevalues and 

eigenvectors of this matrix give the energy levels and the wave functions of the 

confined states in the CB of the QD.  

 

 

Fig. 3.6 Schematic diagram representing the configuration used in the calculation 
of the conduction and valence band. 
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Here, the confined energy states of electrons and holes for InAs quantum 

dots in GaAs0.84Sb0.16 grown on GaAs [001] are calculated. The conduction band 

effective mass is isotropic and the method works very well for CB confined states. 

For the valence band, the anisotropy in effective masse is taken into account. 

Here, only the heavy hole confined states are calculated and presented because 

this band is the lowest in energy for compressively strained QD material. The 

material parameters used for the calculation of confined states, taken from 

reference [81], are listed on table 3.3. Here, for a tertiary alloy of type A1-xBx, the 

parameter P is obtained by using an expression,  

P(A1-xBx)= (1-x)P(A)+xP(B)-x(1-x)C. 

In this expression, C is a bowing parameter that accounts the deviation of specific 

material parameter of a tertiary material A1-xBx from linear interpolation between 

the binaries A and B. To calculate the confined states in the conduction band (CB) 

Table 3.3 Material parameters of GaAs, InAs GaSb and GaAsSb used in the 
calculation of confined electronic states.  
Parameter  InAs GaAs GaSb GaAs1-xSbx Bowing 

parameters(C) 
Bulk effective 
mass at Γ point 
[m] 

m* 0.026 0.067 0.039 0 

Luttinger 
parameters 

ଵߛ
௅

 

ଶߛ
௅

 

ଷߛ
௅

 

 

 

 

20.0 

8.5 

9.2 

6.98 

2.06 

2.93 

13.4 

4.7 

6.0 

0 

0 

0 

Bulk valence 
band offset [eV] 

VBO -0.59 0.80 -0.03 -1.06 

Bulk Band 

Gap  

Eg(eV) 0.417 1.519 0.812 1.43 
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of InAs QD, the electron effective mass was taken to be 0.04 as reported in 

reference [120] rather than the bulk effective mass listed in table 3.3. 

3.7.2 Results and discussions 

 
The conduction band energy levels and the wave functions calculated for 

InAs quantum dots buried in a GaAs0.84Sb0.16 matrix on a GaAs[001] substrate are 

calculated by the method explained in section 3.7.1. The shape and size of the dot 

considered for this calculation is a square based (a=20nm) truncated (height, hf, 5 

nm) pyramid as shown in the Fig.3.6. At 0 K temperature, the calculated values of 

E0H0 (separation between heavy hole ground state and the CB electronic ground 

state) and E1H1 (separation between heavy hole first excited state and electron 

first excited state) are obtained to be 1.143eV and 1.23eV, respectively, as shown 

in Fig.3.7 are in good agreement with the observed experimental data [121] 

presented in Fig.3.8. 
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Fig. 3.8 The PL spectra (10K) of InAs QDs in GaAs0.92Sb0.08 matrix fitted by a 
Gaussian distribution function [121] 

 

Fig. 3.7 The calculated electron and hole energy levels of an InAs QD buried 
in GaAs0.92Sb0.08 matrix. 

Table 3.4 Material parameters of Silicon and Germanium used in calculation 
 

Parameters Silicon Germanium

ml (m)∆ 0.92 0.93 

mt(m)∆ 0.19 0.081 

(m) 0.23 0.33 
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 Germanium QDs in silicon matrix, grown on [001] silicon substrate, as 

shown in section 3.6, have type-II band alignment. The electrons are confined in 

silicon at the top of the QD while the holes are confined inside the QD in 

germanium. The energy of the confined states of heavy hole is calculated using 

the method outlined in section 3.7 with the confinement potential obtained with 

the effect of strain. The material parameters used for calculation are listed in table 

3.4. The energy of electron ground state from heavy hole ground state is found to 

be 0.81 eV as shown in figure 3.9. These results are in good agreement with 

experimental observations of the photoluminescence peak of germanium QDs in 

silicon [111]. 

 

Fig. 3.9 Heavy hole and conduction band confined states in Germanium 
quantum dot (size: base length 20 nm and height 3.5 nm) in silicon matrix. 
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The ground state electronic wave functions of an InAs QD in GaAsSb 

matrix is presented in Fig.3.10 together with the probability density of electrons 

confined in the conduction band. From this figure, it is clear that the ground state 

electronic wave function is totally restricted inside the QD and has a spherical 

symmetry. The probability density and the wave function of first and second 

excited states are presented in Fig.3.11. The wave functions of these states have p-

symmetry. As the confinement of these states is weak, the wave function extends 

to the barrier material. 

 

  
 
 
  

 

Fig. 3.10 Probability of finding the ground state (E1) electron in the QD (left 
panel) and the wave function of the electronic ground state (right panel). 
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The confined energy states and wave functions of electrons in conduction 

band confined states of InAs quantum dot in GaAsSb matrix are calculated and 

presented. The single particle effective mass method gives accurate results despite 

its simplistic formulation. 

3.8 Band edge alignment of vertically stacked QD array 

 
The band edge alignment of the QD array can be calculated using k•p 

method for k = 0 (Γ-point). Using the expressions (3.58)-(3.62) in section 3.6.1 

which account the coupling the hydrostatic and the biaxial strain fields with the 

band structure, we get the band edge alignment and hence the confinement 

potentials for the electrons and holes in quantum dots. The hydrostatic and biaxial 

strain fields are fist calculated for the vertical QD array with the method outlined 

 

Fig. 3.11 Probability of finding the first (E2) and second excited state (E3) 
electrons in QD (left panel) and the corresponding wave functions of the E2 
and E3 confined states (right panel). 
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in section 2.4. The band structure is calculated at the same grid points that are 

used to calculate the strain fields and the hydrostatic and biaxial strain fields are 

coupled to the band structure via corresponding deformation potentials.  

Fig.3.12 presents the energy band edge alignment of vertical array of InAs 

QDs in GaAs matrix along z-axis passing through the center of the base of each 

QD. Each QD in the array has the shape of a square based truncated pyramid with 

base dimension 20 nm and height 5 nm with spacer layer thickness of 5 nm. The 

zero of energy is taken to be the valence band of unstrained bulk GaAs.  As the 

strain calculation was done for an isotropic medium using the method outlined in 

section 2.1, the hydrostatic strain is constant inside the QD and zero outside for a 

single QD buried in an infinite matrix. This is reflected in the band diagram of 

QD array as well. The shift in conduction band edge due to strain in QD array is 

same as in case of single QD in an infinite matrix. Therefore, the discussion 

hereafter is focused on valence band, heavy and light holes which are 

significantly affected by the biaxial strain that depends strongly on the vertical 

spacing between the QDs. 
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In the QD array, inside the QD, the heavy hole band edge (shown in 

Fig.3.13) shifts downward in energy with decrease of spacer layer thickness from 

infinite to 3 nm. The barrier material also shows the downshift of the heavy hole 

band edge. But the downward shift of heavy hole band edge is more rapid in QD 

than in barrier material with the decrease of barrier layer thickness. These results 

together with the intermixing of indium and gallium due to strain fields can 

explain the blue shift in the PL peak energy observed when the barrier layer 

thickness is less than 5 nm [122]. On the other hand, the light hole band shifts 

upward in energy with the decrease of spacer layer thickness from infinite to 3 

nm. Fig.3.14 shows that in the barrier material the light hole band shifts upward in 

energy more rapidly than inside the QD making the light hole confinement 

 

Fig. 3.12 Energy band edge alignment of a vertical QD array of 5 QDs with 5 
nm spacing.  
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potential shallower as the spacer layer thickness is decreased from infinite to 3 

nm. As the spacer layer thickness decreases to 3 nm, the energy separation of 

heavy and light holes becomes only 0.04 eV in comparison to 0.16 eV in case of a 

QD in an infinite matrix . 

  

 

Fig.3.13 Valence band, heavy hole  band edges along a line scan  perpendicular 
and passing through the center of the base of square based (20 nm) truncated 
pyramid shaped QD array for different spacer layer thickness. 
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3.9 Conclusion 

In this chapter, the formulation for the band structure calculation with the 

effect of strain was assessed based on the k•p method. The formulation was used 

to calculate the band edge alignment with the effect of strain for III-V and silicon 

germanium quantum dot/barrier material system. The results were presented and 

analyzed for their potential implication to the advanced nanostructure solar cells. 

The results obtained for vertical array of QD in III-V materials, especially InAs 

QDs on GaAs matrix, show a significant change in valence band alignment 

between the QD and barrier materials with the change of spacer layer thickness. 

The confinement potentials of heavy and light holes changes with the spacer layer 

thickness. This, ultimately changes the energy of confined energy states in 

valence band and hence the band gap EIV (see Fig. 1.7) of intermediate band solar 

 

Fig.3.14 Valence band, heavy hole  band edges along a line scan  
perpendicular and passing through the center of the base of square based (20 
nm) truncated pyramid shaped QD array for different spacer layer thickness. 
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cells. Overall, the methodology developed in this chapter is applied to search for 

the optimum material combinations for multiple transitions solar cells, which 

could be realized with QD nanostructures. 
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Chapter 4 

MATERIAL SEARCH FOR QUANTUM DOT INTERMEDIATE BAND 
SOLAR CELLS 

4.1 Introduction 

A multiple transitions solar cell, also called intermediate band solar cell 

(IBSC), can overcome the Shockley-Queisser limit by absorbing low band-gap 

photons while preserving the voltage corresponding to high band gap material. 

This solar cell, as briefly explained in chapter 1, absorbs the below band gap 

photons via the intermediate electronic states (or bands). Single or multiple such 

electronic states (or bands) that could be introduced in an otherwise forbidden 

energy gap of a semiconductor material extend the absorption of solar radiation to 

longer wavelength by multiple electronic transitions. 

Heterostructures including self-assembled quantum dots (QDs) have been 

suggested as model systems for the realization of intermediate band solar 

cells[34,123].The experimental prototypes for quantum dot intermediate band 

solar cells (QD IBSCs) include heterostructures consisting of InAs, GaAs and 

their alloys[36,37] grown on GaAs substrates. In spite of numerous efforts, the 

prototype quantum dot solar cells show a deteriorated efficiency as compared to 

the control solar cell without quantum dots [38,124]. There is no experimental 

evidence of global efficiency enhancement in the solar cell with quantum dot 

nanostructures. Generally, the prototype intermediate band solar cells with self-

assembled QD nanostructures show the spectral response to longer wavelengths 

than that of a base GaAs solar cells without QDs but the I-V characteristics shows 

significant loss in open circuit voltage(Voc) [125, 126].  
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There are several possible reasons for the lower than predicted open 

circuit voltage (Voc). The creation of defects due to accumulation of strain due to 

the growth of many QD layers in order to obtain significant contribution to the 

photocurrent from sub-band-gap photons degrades minority carrier lifetime and 

reduces open circuit voltage. To minimize the accumulation of strain, thin strain 

compensating layers have been included in the prototype. The improvement in Voc 

due to strain balanced structures compared to devices without strain compensation 

[127,128,129] can be attributed to much lower density of dislocations (thus low 

non-radiative recombination). Nevertheless, all of the strain compensated devices 

still have lower Voc than the GaAs control cell.  

In addition to material quality issues, InAs/GaAs systems have non-

optimum band structures. For example, the InAs/GaAs material system has 

significant valence band offset (0.23 eV). Another reason for the lower Voc is the 

significant valence band offset between the dot and barrier materials in those 

material systems [109, 129]. It is well known that the valence band (heavy hole) 

effective mass of a semiconductor is higher than the effective mass of an electron 

in conduction band. From simple quantum mechanical calculations, it can be 

observed that the higher effective mass results into closely spaced confined states 

[130]. For experimentally observed shape and size of QD, the energetic spacing of 

the heavy hole confined states is so close that the holes from the valence band 

continuum of GaAs, simply, thermalize to the lowest confined energy state in 

InAs QD valence band via optical phonon interaction. This mechanism causes 

shift of quasi Fermi level corresponding to the GaAs valence band to the lowest 
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confined state in the valence band, which ultimately causes the loss in Voc. In 

addition to this, the key principle of IBSCs is that there should be a simultaneous 

existence of multiple quasi Fermi levels in an IB material. Although, some studies 

have shown the simultaneous absorption of sub-band gap photons [131,132] the 

proof of simultaneous existence of multiple quasi Fermi levels in an IB material is 

still an unresolved issue.  

Overall, a key barrier in intermediate band solar cells is the identification 

of a QD material system which can be readily fabricated to facilitate 

characterization and displays a close to optimum band structure. In this work, 

QD/barrier material combinations with band gaps (EIV, EIC, EG) capable of 

photovoltaic efficiency greater than 40% at moderate solar concentration (500x) 

are determined. These calculations include realistic effects associated with the 

growth of self-assembled quantum dots. Specifically, the effect of elastic strain 

due to lattice mismatch between the QD and barrier/substrate materials is 

calculated and the effect of strain on the band structure is taken into account to 

search the material combinations. A brief overview of the methodologies and the 

constraints used in the QD/barrier material search is given in the next sections. 

When a material with significant lattice mismatch (eg GaAs/InAs, 7.2%) 

is grown epitaxially on a substrate, initial growth occurs layer by layer but the 

accumulation of strain energy causes three dimensional growth to proceed in 

order to minimize the energy increase due to strain. This sees the formation of 

islands of grown material distributed randomly over the growth surface that act as 
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quantum dots [133]. The shape and size of these self-assembled quantum dots 

depend on the growth conditions and material parameters with reports of lens, 

multifaceted dome, pyramid or truncated pyramid shaped dots [47,78,134]. For 

this work, the shape of the quantum dot is considered to be that of a square based 

truncated pyramid as schematically shown in Fig.4.1(as described and analyzed in 

Chapters 2 and 3). The pyramid has a base width (a) of 20 nm and height (hf) 5 

nm. The QDs are considered to be grown on a (001) substrate. The initial misfit 

strain is defined as: 

0

( )s l

l

a a

a
 

                (4.1) 

 

where, as and al are the lattice constants of substrate or barrier and quantum dot 

materials, respectively and the misfit strain is, in this case, taken to be negative 

for material under compression. For simplicity, the misfit strain is considered to 

be constant throughout the QD structure. An analytical method based on the 

 

Fig. 4.1 Schematic diagram of the truncated pyramid shaped quantum 
dot assumed in the band structure calculations. 
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continuum theory of elasticity, as outlined in chapter 2, is used to calculate the 

strain distribution in and around the quantum dot. The hydrostatic and biaxial 

strains are calculated and coupled to the k•p method via deformation potentials to 

calculate the band structure. 

4.2. Calculation of the band structure of a quantum dot 

For the band structure calculation, a multi-band envelope function method 

(also called k•p method) is used. As outlined in chapter 3, this method gives the 

band structure near the band edge very accurately for bulk and heterostructures. In 

this method, as outlined in chapter 3, the strain is incorporated in the Hamiltonian 

via deformation potentials.  

The bulk and alloy band gaps at room temperature are obtained by using 

Varshni parameters (  and  ) for the materials from their corresponding values 

at zero Kelvin. The band gaps of the alloy compositions are calculated by using 

the corresponding bowing parameters for the materials. For all the III-V 

semiconductors and their alloys considered in this work, the parameters used for 

the calculation of strain and the band gaps as well as the dependence of band gaps 

on temperature and alloy composition are taken from references [135] and [81].  

By including all of these features (the modified band gap and band 

offsets), an optimum combination of III-V semiconductor binaries/ternaries can 

be found. The calculations are performed allowing a large number of 

combinations to be investigated. Some constraints to the materials are included to 

make the calculations more feasible and realistic from experimental point of view.  
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4.3 Constraints for material search for QD intermediate band solar cells 

As stated in section 4.1, the main factors limiting the materials systems 

search are the requirement of negligible valence band offset and the optimum 

band gaps. Both of these parameters are highly dependent on the elastic strain in 

the structure due to lattice mismatch between the substrate (barrier) and the dot 

materials. Two cases are considered to broaden the criteria of material search. 

1. Materials grown on lattice matched metamorphic buffer layer. 

2. Materials grown on lattice mismatched pseudomorphic buffer layer. 

Both of these cases are viable from experimental point of view with the 

‘lattice matched metamorphic buffer layer’ case giving greater flexibility in the 

choice of barrier material. This case can be experimentally realized by growth 

schemes involving compositionally graded buffer layers for obtaining the required 

composition of barrier material and localizing defects and misfits away from the 

device layers [136] as schematically shown in Fig.4.2. 

 

   

 

Fig. 4.2 Schematic diagram of the compositionally step graded buffer layer. 
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The ‘materials grown on pseudomorphic buffer layer’ case (mentioned as 

‘fully strained’ hereafter), as schematically shown in Fig. 4.3, is possible when the 

barrier thickness is kept less than its critical thickness. In both cases (fully 

strained and relaxed), the management of strain will become critical in order to 

grow a large number of QD layers (necessary in order to increase absorption), but 

with mismatch between all of the layers the fully strained case would be 

anticipated to be the more challenging of the two scenarios.  

 

 
There are also practical considerations such as the choice of III-V binary 

substrates. For this work several commercially available substrates are considered 

including GaAs, InP and InAs with preference given to GaAs and InP. Restricting 

ourselves to these three substrates, the three main criteria considered for material 

identification for high efficiency QD solar cells are: negligible valence band 

offset; constraints on lattice mismatch; and realization of optimum band gaps. 

4.3.1 Negligible Valence band offset (VBO) between barrier and QD 

 
As briefly mentioned in section 4.1, due to the higher effective mass of 

holes in valence band, even a small confinement potential gives rise to many 

 

Fig. 4.3 Fully strained case, pseudomorphic structure compressive/tensile 
strain. 
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bound states very close (in the order of kT) to each other [109,137]. Holes may 

thermalize through these states to the ground state in QD. Because of the lower 

energy level of the hole states, carriers from the barrier thermalize to the lowest 

energy in the QD. Thus, the quasi Fermi level of the valence band is determined 

by the hole ground state in QD rather than valence band continuum of the barrier 

material. This ultimately reduces the open circuit voltage (Voc).as schematically 

shown in Fig. 4.4. Also, the lifetime of the carriers is reduced as they can easily 

recombine between the conduction and valence band bound states rather than 

between the CB bound states and continuum states in VB or between continuum 

states (this can be roughly estimated from the Fermi-Golden rule for the transition 

rate due to interaction with photons)[138]. In order to minimize these effects the 

maximum for the VBO was set to be ~3kT where k is the Boltzmann constant and 

T is room temperature. 

 

Several theoretical approaches to calculate the band offsets of 

semiconductor heterostructures [139,140,141] predict different values of VBO. 

The experimental results together with the theoretical calculations provide 

 
Fig. 4.4 Schematic diagram showing the voltage loss due to VBO. 
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reasonably accurate vales of VBO for III-V heterostructures. Here, to calculate 

the VBO of strained material systems the bulk values given in reference [81], 

which presents the VBO of each III-V materials with respect to InSb valence 

band, are used. 

4.3.2 Lattice mismatch 

 
The lattice mismatch between the barrier and QD materials is taken to be 

in a reasonable range [142] for the formation of QDs by Stranski-Krastanov 

growth mode when using the epitaxial growth methods such as metal-organic 

chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE). 

Previous work has shown that, in Stranski-Krastanov growth, the onset of 3D 

growth at the top of 2D wetting layer depends on the elastic strain between the 

substrate and grown materials [143 ,144]. For very small lattice mismatch (less 

than 2%) there is no observation of formation of QDs for normal growth 

conditions [143]. At low temperature, due to limited surface diffusion of ad-

atoms, QD formation might be suppressed [142]. Taking these facts into account, 

for the materials grown on metamorphic buffer layer, the lattice constant of the 

dot material is specified to be at least 2% greater than that of barrier. For the fully 

strained case, the lattice constant of the dot material was taken to be at least 2% 

greater than that of the substrate.  

4.3.3 Band gaps 

 
The eight band k•p method including the effect of strain is used to 

calculate the band diagram along a Γ-point (k = 0) and the band alignment of the 
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barrier and dot materials are obtained. With this, the modified band gaps, the 

conduction and valence band offsets are determined. 

Due to relatively higher absorption coefficient than indirect band gap 

materials, devices with direct band gap can absorb significant amount of light at 

comparatively lower thickness. The thickness of the IB-absorbing medium is 

limited by the number of QD layers that can be achieved while retaining 

sufficiently low defect density for large carrier collection. Given the low 

absorption of a single QD layer, only direct band gap materials are considered in 

the material search in order to address the issue of absorption and the thickness of 

the absorbing medium in the nanostructured materials [145]. The barrier band gap 

is taken to be greater than 1.2 eV and conduction band offset (CBO) greater than 

0.4 eV. These values are essential for the efficiency to be greater than 45% as 

indicated by previous detailed balance calculations [146]. All of the bands gaps 

used to calculate and presented in this work are at room temperature with the 

effects of strain included. 

4.4 Material combinations for QD intermediate band solar cells 

 
Material searches were performed among III-V binaries and their alloys 

with direct band gaps applying the criteria described in the previous section. This 

corresponds to the absolute value of the VBO between the barrier and the dot 

materials at room temperature being lower than ~ 0.06 eV. The valence band edge 

energies are no longer degenerate when the strain is included and so a separate 

VBO was found for light holes and heavy holes. As discussed earlier, a higher 



119 
 

effective mass means a greater number of confined energies and hence greater 

deleterious thermalization of carriers. In addition to this, due to compressive 

strain in QD, for the shape considered in this work the heavy hole band edge is 

always lower in energy than the light hole band edge. For these reasons, the VBO 

for heavy holes was taken as the selection criterion in preference to that for light 

holes. 

 

 

Table 4.1 gives the material combination (barrier/dot) that best satisfies 

the target parameters for the case of material grown on a metamorphic buffer 

 

Fig. 4.5 Energy band edge diagram at the Γ point along the z axis through QD 
midpoint (x=0, y=0) for InP0.87Sb0.13 quantum dots with Al0.57In0.43As barriers 
(grown on lattice matched metamorphic buffer layer).  

Table 4.1 Barrier/QD materials combinations for material grown on lattice  
matched metamorphic buffer layer. 
 

Barrier X Dot y 

Al1-xInxAs [0.43→0.54] InP1-ySby [0.13→0.21] 
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layer. The InP1-ySby dots with Al1-xInxAs barrier has negligible valence band 

offset with the conduction band offset being approximately 0.5 eV. The 

theoretical efficiency of this material combination with these band gaps is 58% 

under 1000 solar concentrations for the AM 1.5D spectrum, very close to the 

maximum available (61%) for this spectrum at this concentration [15]. Shown in 

Fig.4.5 is the band edge energy at the Γ point along the z (growth) axis through 

the center of the quantum dot for InP0.87Sb0.13 dots with Al0.57In0.43As barriers. 

Also shown are the band edges without the effect of strain for comparison. The 

dot/barrier lattice mismatch in this material combination is ~2% and the band 

gaps of the barrier and dot materials are 1.707 eV and 1.183 eV respectively 

making it a close match to the low confinement energy design identified in [146]. 

Tables 4.2 and 4.3 present materials combinations for the case of fully 

strained system on GaAs and InP substrates respectively. These material 

combinations, with negligible VBO, have comparatively larger lattice mismatches 

than for the material grown on lattice matched metamorphic buffer layer case with 

the mismatch between substrate and dot generally being around 3% or higher for 

the material combinations on GaAs substrate. 
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Table 4.2 Material combinations on GaAs substrate for the materials grown on 
lattice mismatched pseudomorphic buffer layer.  
 

Barrier X Dot y 
Al1-xGaxSb [0.79→0.88] InAs1-ySby  [0.58→0.73] 

Al1-xInxAs [0.52→0.37] InAs1-yPy [0.54→1] 

Al1-xInxAs [0.37→0.41] InP1-ySby [0.01→0.06] 

 

 

 
For instance, the Al0.50In0.50As/InAs0.41P0.59 barrier/dot combination has a 3.6% 

substrate/barrier lattice mismatch and a 5% substrate/dot lattice mismatch. This 

increase in compressive strain due to lattice mismatch between the barrier and the 

dot materials results in smaller values of the CBO and so achieving the optimum 

band gaps is more difficult than for the material grown on lattice matched 

metamorphic buffer layer case. As a consequence the limiting efficiencies for 

these designs were considerably lower than for the material grown on lattice 

matched metamorphic buffer layer. On the other hand, the material combinations 

on InP substrate; particularly AlGaSb/InAsSb barrier dot combination; have 4% 

substrate/barrier lattice mismatch and a 7% substrate/dot lattice mismatch. 

Despite the very low bulk band gap of InAsSb, significant compressive strain 

Table 4.3 Material combinations on InP substrate for the materials grown on 
lattice mismatched psuedmorphic buffer layer. 
 

Barrier x Dot y 

Al1-xGaxSb [0.74→0.80] InAs1-ySby  [0.56→0.70] 

Al1-xInxAs [0.74→0.79] InP1-ySby [0.70→0.79] 

Al1-xInxAs 0.59 InAs1-yPy  0.37 
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(~7%) increases its band gap by almost 0.6eV making this material combination a 

realistic candidate material for the growth of QDIBSCs. A few specific materials 

combinations for fully strained system grown on a GaAs are listed in Table 4.4 

along with their corresponding limiting efficiencies. The efficiencies listed are for 

1000x concentration under AM1.5D spectrum calculated by detailed balance. In 

this case the theoretical efficiencies of most of the materials combinations are 

about 50% with the Al0.50In0.50As/InAs0.41P0.59 barrier/dot combination giving the 

highest value of 53%.  

 

 

Table 4.4 Barrier/Dot materials combinations on a GaAs substrate (materials  
grown on lattice mismatched pseudomorphic buffer layer) with corresponding  
efficiencies. 
 

Barrier Dot EG Bar 
(eV) 

EG Dot 
(eV) 

Eff. 
(%) 

Al0.63In0.37As InP 2.07 1.65 48 
Al0.62In0.38As InAs0.11P0.89 2.05 1.55 49 
Al0.6In0.4As InAs0.15P0.85 2.0  1.52 48 
Al0.50In0.50As InAs0.41P0.59 1.77 1.30 53 

 



123 
 

 

The band edge energy at the Γ-point along the z-axis through the center of 

the base of the quantum dot for InAs0.41P0.59 QD with Al0.50In0.50As barriers on a 

GaAs substrate is shown in Fig.4.6. As can be seen, the band gaps of the barrier 

and the dot material are 1.77 eV and 1.30 eV respectively making it the closest 

match to the optimum combination of 1.77eV and 1.20 eV respectively. What is 

also evident is the effect of the high levels of compressive strain in this materials 

system due to lattice mismatch. The compressive strain raises the conduction band 

edge of the dot material resulting in the decrease of the CBO pushing the value 

further away from its optimum.  

 

Fig. 4.6 Energy band edge diagram at the Γ point along the z axis through QD 
midpoint (x=0, y=0) for InAs0.41P0.59 quantum dots with Al0.50In0.50As barriers 
on a GaAs substrate (grown on lattice mismatched pseudomorphic buffer 
layer).  
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4.5 Issues related to growth of the optimum material combinations 

 
With one exception of InP QD in Al0.63In0.37As matrix grown on [001] 

GaAs substrate (table 4.4), all of the barrier/dot material combinations identified 

in this work as being close to optimum, require ternary compounds with two 

group V elements for the QD material. From a growth perspective, the growth of 

compounds containing more than one group V elements requires precise control 

of the flux ratio and growth temperature in order to achieve the desired mole 

fractions reproducibly. This is due to the different temperature dependencies of 

the sticking coefficients of group V elements, therefore adding to the complexity 

of the growth. As well as being dependent on flux ratio and temperature, the 

composition will depend on the strain in any grown layer making the growth of 

multiple group V element ternary quantum dots, where the strain varies 

throughout the volume of the structure, particularly challenging. However, well 

optimized growths of InAsP [147,148] and InAsSb [149] dots have been reported.  

In contrast, InPSb QDs grown on AlInAs have not been reported. This could be 

due to the reported miscibility gap of InPSb [150] which is predicted by theory to 

cover almost the whole range of compositions for commonly used growth 

temperatures. This miscibility gap is ascribed to the very different covalent 

bonding radii of phosphorous and antimony. However, the experimental 

demonstration of high quality InPSb quantum wells on InAs has been reported in 

direct contradiction of theory [151].  

With few exceptions, the barrier material for optimum material 

combinations is AlInAs, which is not lattice matched to GaAs and InP substrates. 
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Experimentally, there are reports of lateral composition modulation and the 

surface morphology of AlInAs epitaxially grown on lattice matched InP substrates 

[152,153,154]. These reports indicate that the control of shape, size and 

uniformity of quantum dots on AlInAs buffer may be challenging and would 

require extensive experimental optimization. Finally, most of the barrier materials 

identified contain significant fractions of aluminum, which would make them 

prone to oxidation in atmospheric conditions. This issue can be effectively solved 

by capping with appropriate binary compound and there would appear to be no 

other impediments to their growth. 

4.6 Conclusion 

 
Materials combinations for QD intermediate band solar cell with 

negligible valence band offset are presented with the effects of the strain due to 

lattice mismatch included in the band structure. The two cases of the barrier being 

fully relaxed and fully strained are examined. The limiting efficiencies of the 

identified material combinations are calculated using detailed balance for the 

AM1.5D solar spectrum at 1000x concentration and are presented. Two material 

combinations were obtained having limiting efficiencies greater than 50%. One of 

the material combinations, InP0.87Sb0.13 QDs with Al0.57In0.43As barriers, optimum 

for the barrier fully relaxed case, has a limiting efficiency up to 58% under 1000x 

concentration, very close to the maximum efficiency (61%) at this concentration. 

The other barrier/QD material combination identified, Al0.50In0.50As/ InAs0.41P0.59, 

with the barriers fully strained, has a limiting efficiency of 53% under 1000x 
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concentrations. Finally, it was observed that the Al0.50In0.50As/InAs0.41P0.59 system 

may be preferred to the Al0.57In0.43As/InP0.87Sb0.13 system due to a perceived 

miscibility gap for InPSb in the temperature range normally used in growth. 
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Chapter 5 

CONCLUSION 

Realization of ultra-high efficiency photovoltaic devices based on 

advanced concepts relies on materials which have the appropriate material 

parameters as determined by detailed balance efficiency calculations. From 

detailed balance calculations, the material band gap is the most fundamental 

parameter that determines the efficiency of a solar cell. Advanced concept solar 

cells rely on the modification of the absorption/recombination process in 

conventional solar cell to achieve efficiency increases. While it is possible to 

design new bulk materials which display the desired properties, nanostructures 

provide an immediate path towards the realization of advanced concept solar 

cells. However, despite the present necessity of using nanostructures to 

investigate most of the advanced concept approaches, a critical need has been an 

approach which allows design of nanostructures that can be practically 

implemented and display band structures close to those required by detailed 

balance calculations. The overarching goal of this work is to address this need, 

allowing the identification of materials and nanostructure configurations for 

advanced concept solar cells. This is by developing material models which 

include critical realistic effects, such as strain, and which can be combined with 

detailed balance calculations to predict and identify optimum material candidates 

for ultra-high efficiency approach.   

The starting point for the development of material model for advanced 

concept ultra-high efficiency solar cells using nanostructures as absorbing 
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medium is to calculate the band structure of these nanometer scale structures 

taking into account some of the realistic effects associated with growth of these 

materials. This work addresses the fundamental issues by calculating the band 

structure of the materials (specifically, self-assembled quantum dots) taking the 

effect of elastic strain due to lattice mismatch and the realistic shape of quantum 

dots into account. The results of band structure calculations are applied to search 

optimum material combinations for multiple transitions solar cells.  

In multiple transitions solar cells using nanostructures (also called 

quantum dot intermediate band solar cells); the current research revolves around 

InAs/GaAs-based material system, mainly due to well established growth 

methodology. This particular material neither has optimum band gap nor is ideal 

for device application due to its significant valence band offset. This work 

addresses the gap between the concept and the material model for multiple 

transition solar cells by searching the material combinations among existing 

materials (III-V and their alloys) with realistic effects included in band structures. 

Out of the optimum material combinations obtained, some combinations have 

efficiencies of almost 95% of the detailed balance efficiency [109,146]. However, 

some of the material combinations also have issues related to growth as they are 

tertiary materials with the combination of group III and group V materials with 

large difference on atomic sizes. This might limit miscibility of these materials to 

produce an alloy with uniform composition for normal growth conditions. These 

practical issues highlight the importance of the developed approach which allows 
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a robust search among material systems and a way to include realistic material 

effects in detailed balance calculations. 

Although the results on the band structure calculation are presented for 

specific material systems, the methodology developed here can be applied to any 

nanostructured materials and their alloys that are feasible for advanced concept or 

high efficiency tandem solar cells. For example a multijunction technology with 4 

and 5 junctions requires new materials, which may be implemented using 

nanostructures of existing materials or the existing materials strained due to lattice 

mismatch to achieve the proper band gaps. Also, the requirement of proper 

material for extraction of hot carriers in hot carrier solar cells can be fulfilled 

using confined states in nanostructures as resonant states. The methodology 

developed here could not only be applied to identify the materials for these 

selective energy contacts in hot carrier solar cells but also to identify the proper 

materials that are optimum as absorbers in these solar cells.   

Overall, the identification of optimum materials for intermediate band 

nanostructured solar cells overcomes one of the fundamental barriers in such 

approaches, namely the experimental implementation of a structure which is 

theoretically predicted to display multiple quasi-Fermi levels. Further, the tools 

developed can be further applied to other ultra-high efficiency approaches, 

including conventional tandems using nanostructured layers and multiple exciton  

solar cells. 
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APPENDIX A 

 
EXPRESSIONS FOR THE STRESS FIELD OF PYRAMID SHAPED 

QUANTUM DOT WITH ARBITRARY DEGREE OF TRUNCATION IN AN 

INFINITE MATRIX 
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The integration of integral (2.22) in section 2.2 can be expressed 

analytically in the simplified form. As mentioned in section 2.4 and shown in 

figure 2.4 the origin of the coordinate system is assumed to be center of thee base 

of the pyramid and the z-axis is the growth direction. The stress component σxx is 

expressed as, 

 
2 2

1
1
1

2,3
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2

n xx
xx xx xx
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q
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                  
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(A.1)

In equation (A1), 0

4 (1 )

E
 

 


, with ε0 as the isotropic misfit strain, E as 

Young’s modulus and ν as Poisson ratio. Equation (A 1), written in compact 

form, has eightfold summation with p, q and n. the quantities in (A1) are: 
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Similarly , the expressions for sigma σyy can be written as, 
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The other component of plane stress, σzz is obtained from the expression of 

hydrostatic stress as, 

 8xx yy zz         (A.3)

The components of shear stress σij (i≠ j) are expressed following 
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(A.6)

In equation (A.4), (A.5) and (A.6), the expressions on the right hand side are 

given by, 
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The expressions for stress from (A.1) to (A.6) are used to calculate the stress 

distribution due to lattice mismatch in section 2.4 and 2.5 of this dissertation.
 


