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ABSTRACT

It is common in the analysis of data to provide a goodness-of-fit test

to assess the performance of a model. In the analysis of contingency tables,

goodness-of-fit statistics are frequently employed when modeling social sci-

ence, educational or psychological data where the interest is often directed at

investigating the association among multi-categorical variables. Pearson’s chi-

squared statistic is well-known in goodness-of-fit testing, but it is sometimes

considered to produce an omnibus test as it gives little guidance to the source

of poor fit once the null hypothesis is rejected. However, its components can

provide powerful directional tests.

In this dissertation, orthogonal components are used to develop

goodness-of-fit tests for models fit to the counts obtained from the cross-

classification of multi-category dependent variables. Ordinal categories are

assumed. Orthogonal components defined on marginals are obtained when

analyzing multi-dimensional contingency tables through the use of the QR

decomposition. A subset of these orthogonal components can be used to con-

struct limited-information tests that allow one to identify the source of lack-of-

fit and provide an increase in power compared to Pearson’s test. These tests

can address the adverse effects presented when data are sparse. The tests rely

on the set of first- and second-order marginals jointly, the set of second-order

marginals only, and the random forest method, a popular algorithm for mod-

eling large complex data sets. The performance of these tests is compared to

the likelihood ratio test as well as to tests based on orthogonal polynomial

components.
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The derived goodness-of-fit tests are evaluated with studies for detect-

ing two- and three-way associations that are not accounted for by a categorical

variable factor model with a single latent variable. In addition the tests are

used to investigate the case when the model misspecification involves param-

eter constraints for large and sparse contingency tables.

The methodology proposed here is applied to data from the 38th round

of the State Survey conducted by the Institute for Public Policy and Michigan

State University Social Research (2005). The results illustrate the use of the

proposed techniques in the context of a sparse data set.
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Chapter 1: INTRODUCTION

It is common in the analysis of data to provide a goodness-of-fit test

to assess the performance of a model. In the analysis of contingency tables,

goodness-of-fit statistics are frequently employed when modeling social science,

educational or psychological data where the interest is often directed at inves-

tigating the association among multi-categorical variables. One of the most

investigated goodness-of-fit tests employed in this context is the traditional

Pearson’s chi-squared test. Pearson’s chi-squared statistic is well-known in

goodness-of-fit testing, but it is sometimes considered to produce an omnibus

test as it gives little guidance to the source of poor fit once the null hypothesis

is rejected. However, its components can provide powerful directional tests.

In this dissertation, limited-information goodness-of-fit tests are ob-

tained through the use of a subset of the orthogonal components defined on

marginals. Limited-information tests based on marginals are expanded to be

applicable to large contingency tables formed by the cross-classification of or-

dinal categorical variables through the use of the QR decomposition which

decomposes a matrix A into an orthogonal matrix Q and an upper triangular

matrix R i.e., A = QR. Orthogonal components are obtained from the de-

composition of Pearson’s chi-squared statistic. The QR decomposition can be

applied to any matrix, unlike the Cholesky decomposition which only works

well with positive definite and nonsingular diagonally dominant square ma-

trices. In addition the random forest method, a commonly known algorithm

for modeling large complex data sets, is used to develop and investigate some

goodness-of-fit tests.



Rayner and Best (1989) suggested that Pearson’s chi-squared test is

used to test goodness-of-fit when particular alternatives are not specified; how-

ever if they were specified, more powerful directional tests could be applied.

Rayner and Best emphasized that the user has the flexibility to construct

test statistics that are more appropriate for the problem at hand by form-

ing a focused test statistic that is obtained by summing a “small” number of

components of Pearson’s chi-squared statistic. The limited-information test is

designed to either improve the chi-square approximation or the power against

specified alternatives. Consequently, using subsets of these orthogonal com-

ponents leads to the construction of new limited-information tests that allow

one to identify the source for the lack of fit, increase the power and decrease

the dilution.

These proposed tests rely on the set of first- and second-order marginals

jointly, the set of second-order marginals only, or the random forest method,

a popular algorithm for modeling large complex data sets.

Often, in large multi-dimensional contingency tables many response

patterns which are used to identify specific cells might not occur in the sample

or might have small frequencies resulting in sparse data. The size of a contin-

gency table grows exponentially with the number of variables. For example, in

a study of social life feelings, Schuessler (1982) produced a self-determination

scale consisting of 14 items. An item response theory model (IRT) for 14 di-

chotomous items would require a table with 214 = 16, 384 cells. An IRT model

is a measurement model for categorical responses that provides a framework

for analyzing the relationships between item responses and the latent vari-

2



able or variables that are not directly observable. Examples of such latent

variables include intelligence, happiness and satisfaction. Sparse data implies

that the χ2 approximation to the null distribution for Pearson’s statistic might

not be accurate (Koehler and Larantz 1980). Since marginals are essentially

overlapping cells, tests that rely on them should improve the reliability of the

asymptotic chi-square distribution when sparseness is present, thereby allow-

ing for the assessment of the model fit.

However, a large multi-dimensional contingency table results in a large

number of components irrespective of sparseness. The large number of com-

ponents raises the issue of how to select the optimal number of components in

the construction of limited-information tests. Some authors advocate a small

number of components (Eubank 1997; Ledwina 1994; Rayner and Best 1990),

whereas others show that a large number of components can be profitable

when data are sparse (Inglot et al. 1990). Most suggestions about selecting

the number of components exploit some preliminary knowledge about a possi-

ble alternative hypothesis. As proposed in this dissertation, an alternative is to

use the random forest method to select the number of orthogonal components

to use in the construction of a limited-information test. Such an approach

is data-driven and would eliminate any disadvantage connected with fixing

the number of components in advance if that number is based on inaccurate

knowledge about the possible alternative hypothesis (Ledwina 1994).

The remaining chapters of this dissertation are as follows. In Chap-

ter 2 the most commonly used goodness-of-fit statistic, namely Pearson’s χ2,

as well as various traditional and limited-information goodness-of-fit statistics
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are discussed. Commonly used measures of sparseness in large multi-way con-

tingency tables are also presented along with an explanation of the adverse

effects of sparseness on goodness-of-fit statistics. Chapter 2 also provides a

description of the generalized linear latent variable model (GLLVM), a model

for confirmatory factor analysis of ordinal categorical variables with a logistic

regression function. This model is used to investigate the size and power of the

proposed tests based on various components while focusing on interpretability

and computational practicality. The chapter concludes with a brief review

of some data-mining techniques including CART and an ensemble method,

random forest (RF), (Breiman et al. 1984).

Chapter 3 describes the proposed computational methods for selecting

chi-squared orthogonal components defined on marginals as a means for pro-

viding more powerful directional tests for large cross-classified tables. Type I

error rates and power are also discussed in order to evaluate and compare the

proposed methods to traditional methods by examining asymptotic power and

using Monte Carlo simulations.

Chapter 4 discusses power comparisons for the proposed test statistics

when the departure from the null hypotheses is in the form of two- or three-way

association that is not accounted for by the categorical variable factor model

with a single latent variable. Power comparisons for multi-category variables

and large sparse contingency tables are given in Chapter 5. The model mis-

specification in the power comparisons involves parameter constraints using

the categorical variable factor model with a single latent variable. Chapter 6

addresses the comparison of tests based on orthogonal polynomial components
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to tests based on components defined on marginal frequencies. The proposed

tests are applied to real-life data from the 38th round of the State Survey con-

ducted by the Institute for Public Policy and Michigan State University Social

Research (2005) in Chapter 7. Finally, Chapter 8 includes some concluding

remarks with a discussion of limitations, possible improvements, and further

work on the proposed methodology.
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Chapter 2: LITERATURE REVIEW

In this chapter the most investigated goodness-of-fit statistic, namely

Pearson’s χ2 statistic, as well as various traditional and limited-information

goodness-of-fit statistics are discussed. Commonly used measures of sparseness

in large multi-way contingency tables are reviewed, and the adverse effects

of sparseness on goodness-of-fit statistics are explained. A brief review of

some data-mining techniques including CART (Breiman et al. 1984) and an

ensemble method, random forest (RF), is also included.

1. Quadratic Form Statistics for Multinomial Data

The two most commonly used goodness-of-fit statistics are Pearson’s

χ2 (PGF) and the likelihood ratio G2 statistic (LR). Both of these have been

found to be specific cases of a general family of goodness-of-fit statistics called

the power divergence family (Cressie and Reed 1984) that is indexed by the

parameter λ, where λ > 0. For a given value of λ the corresponding test

statistic is

CR(λ) =
2n

λ(λ+ 1)

T∑
s=1

p̂s

[(
p̂s
π̂s

− 1

)λ]
,

where the p̂s are the observed cell proportions, π̂s are the estimated expected

cell proportions and T is the number of cells. The χ2 and G2 statistics are

obtained with λ = 1 and, as the limiting case, with λ → 0, respectively.

When the hypothesized model holds the statistics χ2 and G2 are asymp-

totically equivalent in that they both have a chi-square distribution with

T − g − 1 degrees of freedom, with g being the number of estimated pa-

rameters. Investigating Pearson’s χ2 is the primary objective of this research.



The discussion of the χ2 test begins in the next section with the introduction

of Pearson’s χ2 in 1900.

1.1. Traditional Goodness-of-fit Statistic. For a multi-way contingency

table, the traditional PGF statistic is obtained by comparing observed frequen-

cies to the expected frequencies specified under the null hypothesis as in

χ2
P =

T∑
s=1

(observeds − expecteds)
2

expecteds
.

For a simple null hypothesis where the random sample comes from a population

with completely specified cumulative distribution function F (x), the PGF has

an approximate chi-square distribution with T − 1 degrees of freedom in large

samples and is defined as:

χ2
P = n

T∑
s=1

(p̂s − πs
o)2

πs
o

,

where p̂s is the sample proportion of the sth cell, πs
o is the corresponding

proportion under the specified null hypothesis and n is the sample size.

On the other hand, for a composite null hypothesis where the null dis-

tribution depends on a g−vector of unknown parameters θ = (θ1, ..., θg)
T , the

πs
o in χ2

P above are replaced with corresponding estimated expected propor-

tions π̂s = πs(θ̂), where θ̂ is the vector of parameter estimates. This yields

the Pearson-Fisher statistic

χ2
PF = n

T∑
s=1

(p̂s − π̂s)
2

π̂s

.

The Pearson-Fisher statistic has an asymptotic chi-square distribution with

T−g−1 degrees of freedom under the large sample theory conditions (Koehler
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and Larantz 1980) that i) the null hypothesis is true, ii) T is fixed, and iii)

min( 1 ≤ s ≤ T ) nπs → ∞ for n → ∞. The PGF phrase is often used to refer to

both the Pearson and Pearson-Fisher χ2 statistic. However, in this research

PGF will refer to the Pearson-Fisher χ2 statistic.

1.2. Decomposition of Pearson Chi-Square Statistic. A goodness-of-fit

test such as the PGF is often referred to as an omnibus test. However, de-

composing Pearson’s chi-squared statistic into components, which has a long

history as discussed in Lancaster (1969), can provide powerful directional tests.

A well known and most widely used decomposition of the components

may be associated with (T − 1) orthonormal functions {g1, g2, ..., gT−1} on the

set {1, ..., T}. Moreover, these orthonormal functions are perpendicular to the

unit function for n observations given on a set of k indicator variables of the

multinomial distribution (Lancaster 1969). Then, (by Parseval’s relation)

χ2 =
T−1∑
j=1

Û (j)
2

,

with

Û (j) =
T∑

s=1

gj(xs),

where xs is the observed value for the sth observation and therefore necessarily

in {1, 2, ..., T}. These have a useful property of breaking the contributions

to χ2 into component pieces that may be associated with T − 1 orthogonal

directions corresponding to the basis functions {g1, g2, ..., gT−1}. Note that

orthogonality translates into

T∑
s=1

gi(xs)gk(xs)π̂s = δik,
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where δik is the Kronecker delta, δik = 1 for i = k, and δik = 0 for i ̸= k

and π̂s, s = 1, ..., T , is the estimated cell probability. Usually, the Û (j) are

chosen so that they have interesting individual interpretations. Also, χ2 =∑
Û (j)

2

is invariant for any choice of the set {g1, g2, ..., gT−1}, i.e., these can

be orthonormalized indicator variables, the Walsh functions, the orthogonal

polynomials on T points with equal weights and so on (Lancaster 1969).

Rayner and Best (1989) also considered in detail components using the

Chebyshev orthogonal polynomials. However, these are computed under the

equiprobable situation or ordered response patterns, which is not usually the

case with large multi-way tables. This decomposition usually results in one to

four large components, where the first component reasonably detects shifts in

mean, the second component detects shifts in variance, the sum of the first two

components detects shifts in both mean and variance, etc., which may not be

useful for a multi-way contingency table with a large number of components.

Eubank (1997) also used a chi-square component decomposition

χ2 = n
T∑

s=1

((p̂s − πo
s)/
√
πo
s)

2 = n
T∑

s=1

f̂(s)2 =
T−1∑
j=1

nb2j ,

where bj are associated (discrete) generalized Fourier coefficients

bj =
T∑

s=1

f̂(xs)gj(xs) =
T∑

s=1

f̂(s)gj(s), j = 1, ..., T − 1,

with xs = s for the sth cell and gj, j = 1, ..., T −1, being functions on {1,...,T}

satisfying certain orthogonality conditions. Note, that f̂ is an unbiased esti-

mator of the function

f(s) = (πs − πo
s)/
√

πo
s , s = 1, ..., T.
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The collection of test statistics

χ2
q =

q∑
j=1

nb2j , q = 1, ..., T − 1,

are essentially directional tests that may outperform omnibus tests such as

χ2
PF , provided that the order q of the test is chosen optimally. It is always

possible to chose xs such that nbj, j = 1, ..., T − 1, have interesting individual

interpretations in the sense of measuring higher-frequency departures from the

null as their associated indices increase (Eubank 1997). Moreover, Eubank

(1997) defined the optimal value of q to be the one that minimizes

T∑
s=1

(fq(s)− f(s))2, (2.1)

where fq(s) =
∑q

j=1 bjgj(s), or equivalently, maximizes

M(q) = −
q∑

j=1

b2j + 2

q∑
j=1

βjbj, (2.2)

with associated Fourier coefficients βj =
∑T

s=1 f(s)gj(s), j = 1, ..., T − 1.

Since, neither of the quantities in (2.1) and (2.2) are observable, a strategy for

estimating the optimal q is obtained by maximizing an unbiased estimator of

M .

Assessing the goodness-of-fit of a hypothesized model and determining

the source of misfit in poorly fitting models using an orthogonal polynomial

decomposition may not be applicable as the number of multinomial categories

increases. Some reasons are that the equiprobable cells assumption might

not be appropriate, the cells might not be ordered and sparseness may be

present. Another issue is that a large classification table results in many more
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components which might not necessarily be ordered large to small. In this

case, selecting components becomes increasingly difficult.

An alternative partition of Pearson’s chi-squared statistic into indepen-

dent chi-square components is discussed in Agresti (2002). This partition is

not based on the orthogonal polynomial decomposition. Agresti (2002) gives

the necessary conditions for determining subtables for which components are

independent chi-square random variables. The sum of the chi-squared values

for any separate subtables do not sum to the overall Pearson’s chi-squared

statistic.

Let H be a q by T matrix of constants of rank q, and let πo =

(πo
1, π

o
2, ..., π

o
T )

T , and set π = (π1, π2, ..., πT )
T . Now consider testing a sim-

ple null hypothesis, Ho : Hπ = Hπo against Ha : Hπ ̸= Hπo. There are

many ways to create orthogonal components via a transformation matrix H,

and Rayner and Best (1989) presented H as a general transformation matrix

not necessarily specific to produce marginal probabilities. Under certain con-

ditions on H, the corresponding Pearson’s chi-square test statistic can be seen

as a special case of the score statistic given in Rayner and Best (1989) written

as

χ2
P = n

(
p̂− πo

π
1
2
o

)T

HT
(
HΣHT

)−1
H

(
p̂− πo

π
1
2
o

)

= n

(
p̂− πo

π
1
2
o

)T

HT
(
H(I− π

1
2
o (πo

1
2 )T )HT

)−1

H

(
p̂− πo

π
1
2
o

)

= nzTHT
(
H(I− π

1
2
o (πo

1
2 )T )HT

)−1

Hz, (2.3)

where z =

(
p̂−πo

π
1
2
o

)
is the vector of standardized residuals, Σ is the covariance
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matrix of the standardized residuals, p̂ is the vector of observed probabilities

and πo is the vector of probabilities specified under the null.

If a composite null hypothesis is tested, Ho : Hπ = Hπ(θ) against

Ha : Hπ ̸= Hπ(θ) where π(θ) is the multinomial vector of cell probabilities

that depend on the parameter vector θ, the PGF (according to Rayner and

Best 1989) can be written as

χ2
PF = n

(
p̂− π̂

π̂
1
2

)T

HT
(
HΣ̂HT

)−1

H

(
p̂− π̂

π̂
1
2

)
= nzTHT

(
HΣ̂HT

)−1

Hz, (2.4)

where Σ̂ = Σ(θ̂) is the estimated covariance matrix of the standardized resid-

uals evaluated at the maximum likelihood estimator θ̂ and π̂ = π(θ̂) is the

vector of cell probabilities evaluated at the maximum likelihood estimator θ̂.

Namely, H should be chosen such that in matrix terms HD̂HT = IT−g−1,

Hπ̂ = 0 and HĜ
T
= 0, where D̂ = D(π ˆ(θ)) = diag(π̂1, ..., π̂T ), Ĝ = ∂π̂

∂
ˆθ
and

g is the number of estimated parameters.

Since, Rayner and Best (1989) takeH as a general matrix, not necessar-

ily producing marginal probabilities in order to obtain orthogonal polynomial

components, H must be chosen appropriately. Then, under certain conditions,

they propose partitioning χ2
PF into components defined as V̂

T
V̂ such that

V̂j =
T∑

s=1

Ns gj(xs)√
n

, j = 1, ..., T − 1,

where Ns is the frequency of the sth cell, xs is the observed value for the

sth cell, n =
∑T

s=1Ns and gj(x) is a polynomial of degree j in x where
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g0(x), g1(x), ..., gT−1(x) are orthonormal functions in that

T∑
s=1

gi(xs) gk(xs)p̂s = δik, i, k = 1, ..., T − 1,

where δik is the Kronecker delta, δik = 1 for i = k, and δik = 0 for i ̸=

k. The Gram-Schmidt method may be used to construct the functions gj(x)

recursively from the relation

g0(x) =

[
T∑

s=1

p̂s

]− 1
2

= 1,

qj(xk) = xj
k − gj−1(xk)

T∑
s=1

p̂s x
j
s gj−1(xs)− ...− g0(xk)

T∑
s=1

p̂s x
j
s g0(xs),

where k = 1, ..., T and the normalization

gj(xk) =
qj(xk)

[
∑T

s=1 p̂s q
2
j (xs)]2

,

is performed at each step for k = 1, ..., T . The V̂ 2
j each have an asymptotic χ2

1

distribution and are jointly asymptotically independent. In the univariate case

the first component is good for detecting changes in location and the second

component is sensitive to scale changes. The Cholesky factorization method

is, among other things, a way to implement the Gram-Schmidt method.

On the other hand, a more useful decomposition of the PGF statis-

tic for extremely unbalanced non-equiprobable situations and for very sparse

multinomials is based on orthogonal components usually defined on low-

order marginals; first-order marginals are univariate distributions of variables,

second-order marginals are bivariate distributions of variables, etc. The de-

composition of the PGF statistic assumes that the regularity conditions (Birch

1964) for the asymptotic chi-square distribution are met. There are numerous
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ways to create these orthogonal components which can be obtained via the

multiplication of the multinomial vector π = (π1, π2, ..., πT )
T by the transfor-

mation matrix H. Components based on these low-order marginals are most

often justified as easily interpretable because they are related to the model

variables and somewhat computationally practical. In general, tests based on

a subset of these types of orthogonal components are essentially a low-order

cell focusing test (Reiser 2008). They should have higher power than the tradi-

tional test to detect a departure from certain null hypotheses for any finite sam-

ple size, when the lack-of-fit is expected in lower-order marginals. Also, since

low-order marginals are overlapping cells, using them to form a test statistic

should improve the reliability of the asymptotic chi-square distribution when

expected cell frequencies are small or when sparseness is present. Thus, when

H produces marginal probabilities the components of PGF then become both

an overlapping cells test and a focused test. Reiser (2008) proposed using (2.4)

with H as a transformation matrix that produced all possible marginal proba-

bilities. Reiser (2008) also partitioned PGF into orthogonal components based

on lower-order marginal frequencies using the same Cholesky decomposition

as Rayner and Best (1989) for a cross-classification table of q dichotomous

variables. He defined γ̂ as

γ̂ = n− 1
2 Ĥ

∗
z, (2.5)

where Ĥ
∗
= F̂H, F̂ is the matrix F evaluated at θ̂ with F being an upper

triangular matrix such that FTΣF = I. Specifically, F = (CT )−1, where C is

the Cholesky factor ofΣ, the asymptotic covariance matrix of the standardized
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residuals. Then,

χ2
PF = γ̂T γ̂ =

∑
k

γ̂2
k. (2.6)

The orthogonal components γ̂2
k in expression (2.6) are asymptotically inde-

pendent χ2
1 random variables. Although the H matrix here must be full rank

in order for the Cholesky decomposition algorithm to be numerically stable,

Reiser (2008) demonstrated the advantage of orthogonal components in terms

of power and avoiding dilution of a test, i.e., watering down the test with extra

degrees of freedom.

There are many ways to create orthogonal components via the trans-

formation matrix H, other than that based on marginal frequencies. Other

options are Hall’s (1985) approach, where H routinely combines pairs of ad-

jacent cells, using Helmertian matrices where cells are combined only in the

sense of contrasts, and combining each small cell probability with a high prob-

ability cell. One should keep in mind that some ingenuity may be required in

interpreting the alternatives being tested with different H matrices (Rayner

and Best 1989).

In summary, components based on orthogonal polynomials may not be

applicable for large multi-way contingency tables unlike the proposed orthog-

onal components defined on marginals in this dissertation. The next section

discusses in detail the limited-information test statistics that use information

contained in the low-order marginals.

1.3. Limited-Information Goodness-of-fit Statistics. One way of reme-

dying the problem of sparseness is to consider limited-information test statis-

15



tics that are based on information contained only in the low-order marginals,

e.g., just the first- and second-order marginals. Any statistic formed from a

sum of components, not necessarily ones based on marginal frequencies, can

be considered a limited-information statistic. The idea behind this approach

of summing a subset of components is that using a limited-information test

statistic should further increase the power against the alternatives they can

detect and decrease dilution of a test.

The limited-information approach has a long tradition in psychomet-

rics. Christoffersson (1975) first introduced the idea of using first- and second-

order marginals for a test of fit in dichotomous variable factor analysis. Muthèn

(1978) improved his statistic, but both used observed proportions and neither

presented their test as having higher power or as a remedy for sparse data.

Salomaa (1990) showed that lack-of-fit usually occurs in the second-

order marginals for psychological data. As a result, this research proposes

test statistics using components based on first- and second-order marginals

and just second-order marginals. These proposed test statistics will be more

focused than PGF while still providing power to detect lack-of-fit in many

directions.

Reiser (1996) proposed a limited-information statistic using first- and

second-order marginals to test the fit of item response models when there are

a large number of manifest variables and the sample size is small to moder-

ate. Reiser and Lin (1999) developed a similar limited-information statistic for

testing the fit of latent class models. Similar use of the residuals in the Gener-

alized Linear Latent Variable Model (GLLVM) for binary data was discussed
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in Bartholomew and Tzamourani (1999). GLLVM is a model for confirma-

tory factor analysis of ordinal categorical variables with a logistic regression

function. An extension of work by Bartholomew and Tzamourani (1999) is pre-

sented by Moustaki (2007) where she proposed a goodness-of-fit test based on

the residuals associated with the bivariate marginal distributions for a categor-

ical variable factor model with ordinal variables. Her proposed goodness-of-fit

test is over-parameterized compared to the most recent work by Reiser (2008)

and is discussed in more detail in Chapter 3.

Joe (1993) and Maydeu-Olivares and Joe (2001, 2005, 2006) proposed

a class of chi-square tests for sparse dichotomous and multidimensional data

with applications to the item response model. Their approach is closely related

to that of Reiser (2008) but their limited-information statistic M2 does not

correspond to the same decomposition of the PGF. M2 is discussed in more

detail in Chapter 3.

Although overcoming the adverse effects of sparseness may be a reason

for using orthogonal components (Reiser 2008), these effects have not been

investigated. Other work based on low-order marginals includes Knott and

Tzamourani (1997) who suggested that it would be informative to compare

observed and fitted values for first-, second- and third-order marginal frequen-

cies when assessing model fit.

Bartholomew and Leung (2002) developed an alternative goodness-of-

fit statistic that is computationally simpler than other suggested statistics and

can easily be “decomposed” into simple additive pieces to assess the contribu-

tions of individual marginals to the poor fit. The distribution of the statistic
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was approximated under the simple null hypothesis. Moment adjustments

were used to account for the composite null hypotheses, but they did not work

very well for the extreme tail areas of the distribution.

Approaches given by Eubank (1997) and Ledwina (1994) can also be

considered as limited-information. Eubank used orthogonal polynomial com-

ponents and estimated the optimal value for the correct order, assuming

equiprobable cells. Ledwina (1994) proposed a data-driven method consisting

of using Schwatz’s BIC procedure to choose the dimension of the exponential

model and then using the chosen dimension as the number of components. In

this way any disadvantage connected with fixing q in advance that may be

based on inaccurate knowledge about the possible alternative model is elimi-

nated.

In summary, components based on first- and second-order marginals as

well as only second-order marginals are useful for large multi-way contingency

tables. Still, a precise method for determining which and how many of these

components to use for the construction of a limited-information test statistic

has not been determined.

1.4. Sparseness. The two most commonly used goodness-of-fit statis-

tics are the Pearson’s χ2 (PGF) and the likelihood ratio G2 statistics (LR).

In large sample sizes when the model under the null hypothesis holds, the

two statistics are asymptotically equivalent and follow an approximate a chi-

square distribution with T − g − 1 degrees of freedom, where g is the number

of estimated parameters. However, the problem of sparse data can arise in the

presence of a large number of variables with several categories, as the num-
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ber of possible response patterns can be very large. Even with a moderate

sample size, many response patterns may not be realized or might have small

frequencies. Sparse data have an adverse effect on goodness-of-fit tests as they

may invalidate using the chi-square distribution as an approximation for the

distribution of PGF and LR (Agresti and Yang 1987).

It is known that in sparse tables the empirical Type I error rates of

both PGF and LR often do not match their expected rates under the chi-

square approximation; in fact Cochran (1952) thought that both PGF and LR

are asymptotically normally distributed under sparseness. However, according

to Koehler and Larantz (1980) who examined the accuracy of the chi-squared

and normal approximations for PGF and LR via a Monte Carlo study, it was

found that in general the chi-squared approximation for PGF is appropriate

even when the expected frequencies are as low as 0.25 with T ≥ 3, n ≥ 10

and n2/T ≥ 10. On the other hand, LR is not well approximated by a chi-

squared distribution when n/T ≤ 5. Several other simulation studies have also

confirmed that the PGF approximates a chi-squared random variable more

closely than LR (Agresti and Yang 1987).

Many suggestions have been given on how to measure sparseness in

multi-way contingency table. But, to date, no universal definition of sparseness

has been adopted. The most widely used rules of thumb are to consider the

percentage of expected cell frequencies smaller than or equal to 1, 5 or 10

(Cochran 1954; Agresti and Yang 1987; Fisher 1941; Cramer 1946; Kendall

1952; Tate and Hyer 1973; Lancaster 1969), and the percentage of observed

zero frequencies. The first choice would be too insensitive to expected cell
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frequencies approaching 0 and the second would not be informative because

the chi-square asymptotic approximation depends heavily on the expected cells

which cannot be controlled for a simulation study.

Generally, the ratio n/T is used to measure the amount of spareness

present in a table. This ratio alone is also not informative as models where a

single cell has a probability near 1 with the rest approaching 0 is more likely

to be sparse than an equiprobability model. Moreover, extreme parameters

should also be considered. In existing literature, the extremity of parameters

was recognized as an important factor directly contributing to the expected

values. Furthermore, the extremity of parameters is also very important be-

cause the more extreme the parameters are, the more likely it is that there

will be boundary parameters and estimated zeros, and thus resulting in an

undefined chi-square statistic (Tollenaar and Mooijaart 2003).

Tollenaar and Mooijaart (2003) proposed a measure of sparseness veq,

a special version of Cohen’s (1988) effect size w, defined as

veq =

√√√√ T∑
s=1

(πM
s − πeq

s )2

πeq
s

,

where πM
s is the probability of cell s under the model and πeq

s is the probability

of cell s under equiprobability. Note that this measure is independent of the

sample size. They showed severe sparseness present with veq > 2 in conjunction

with n/T ratios of 1 and 3.

Using limited-information statistics as a potential solution for over-

coming adverse effects of sparseness has been studied by a number of authors:

Knott and Tzamourani (1997), Reiser (1996), Reiser (2008), Bartholomew
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and Tzamourani (1999), Bartholomew and Leung (2002), Maydeu-Olivares

and Joe (2005), Maydeu-Olivares and Joe (2006) and Moustaki (2007). When

sparseness is present, overlapping cells have an advantage of improving the

χ2 approximation. If a cell has a small expectation, combining cells in this

manner can give a more moderate expectation improving the χ2 approxima-

tion under the null distribution. An overlapping cells approach which does not

use marginal frequencies is Hall’s method (Hall 1985) which involves routinely

combining pairs of adjacent cells.

Other solutions include adding a small constant to the frequency of

every response pattern (which could cause havoc with the distribution of the

Pearson statistic), pooling cells or using resampling methods such as the para-

metric bootstrap. However, pooling cells after the model has been fitted often

results in statistics with an unknown sampling distribution, as the procedure

is data dependent. It may also lead to gross loss of information about model

misfit and, as is often the case, no degrees of freedom left for testing.

The use of resampling methods such as the parametric bootstrap to ob-

tain an empirical p-value for χ2 and G2 (Bartholomew and Tzamourani 1999

and Tollenaar and Mooijaart 2003) has become increasingly popular given to-

day’s computing power. However, this method is computationally intense since

in order to obtain a stable p-value several hundred bootstrap resamples are

needed for each model the researcher is interested in comparing (Bartholomew

and Leung 2002).

On the other hand, according to Agresti and Yang (1987), a beneficial

aspect of spareness is that the power of certain single-degree-of-freedom test

21



statistics, e.g., likelihood ratio test, tends to increase as the table becomes more

sparse for a fixed sample size. The likelihood ratio statistic can be written as

Λ =
sup{L(θ| x) : θ ∈ Θo}
sup{L(θ| x) : θ ∈ Θ}

,

where L(θ| x) is the likelihood function, the “sup” notation refers to the Supre-

mum function and Θo is a specified subset of the parameter space Θ. In most

cases, however, the exact distribution of the likelihood ratio corresponding to

a specific hypotheses is difficult to determine. A convenient result says that as

n → ∞, the test statistic −2 log(Λ) for a nested model will be asymptotically

χ2 distributed with degrees of freedom equal to the difference in dimensionality

of Θ and Θo.

If a hypothesis can be expressed as the condition that some model

M1 holds, and moreover, if it is possible to imbed that model in a slightly

more complex model M2 that reflects the pattern of departures from the

hypothesis one expects then a likelihood ratio difference statistic (LRdiff ) can

be computed as the difference of two likelihood ratio statistics where

ΛMi
=

sup{L(θMi
| x) : θMi

∈ Θo}
sup{L(θMi

| x) : θMi
∈ Θ}

,

and θMi
is the vector of parameters when model Mi holds. Even when data

are sparse, the standard asymptotic approximation for the likelihood ratio

difference statistic given by

−2 log(ΛM1)− 2 log(ΛM2), (2.7)

can hold quite well. Agresti (2002) uses the expression G2(M1|M2) to refer

to this statistic. In particular, for the studies presented below, the LRdiff
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is computed as the difference between the likelihood ratio statistics from the

constrained and unconstrained version of the categorical variable factor model

which will be discussed in Section 3 of this chapter. The degrees of freedom for

LRdiff are the difference of the degrees of freedom for the two likelihood ratio

statistics. Furthermore, results from Agresti and Yang (1987) showed that

the likelihood ratio difference statistics may perform well when sparseness is

present, so it may be a competitor to tests based on lower-order components.

In terms of power, LRdiff may outperform all other statistics as it will usually

have a smaller number of degrees of freedom.

In summary, carefully defined components on overlapping cells could be

useful for large multi-way contingency tables that exhibit sparseness as means

for assessment of goodness-of-fit of a hypothesized model. In case of severe

sparseness, one should consider that higher-order overlapping cells too could

become sparse, and thus careful thought should be applied when selecting the

number of components for the construction of a lower-order focused test. Also,

benefits such as increased power and small number of degrees of freedom of

test statistics like the likelihood ratio difference statistic should be considered

as a potential remedy for sparseness.

2. Tree-Based Ensemble Methods

A recently developed popular Classification and Regression Tree

(CART) (Breiman et al. 1984) algorithm ensemble method called random

forest (RF) (Breiman 2001) has become a widely used method in regression

and multi-class data settings. While CART and RF are primarily used for pre-
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diction, they can also be used to select variables and reduce dimensionality.

In many psychological and biological applications, the number of explanatory

variables can be very large, into thousands. They tend to be correlated, with

outliers while having only a few hundred observations. A fully parameterized

hierarchal regression model in this case would not be feasible. Furthermore, a

fully parameterized regression model with only main effect terms would likely

yield poor estimators, as many complex interactions amongst the explanatory

variables would not be included (van der Laan 2006).

A large multi-way contingency table results in a large number of com-

ponents irrespective of sparseness. The large number of components raises the

issue of how to select the optimal number of components. Most suggestions

about selecting the number of components exploit some preliminary knowledge

about a possible alternative hypothesis. An alternative proposed here is to ex-

plore using the random forest algorithm as a means for selecting the number

of components of PGF to use in the construction of the limited-information

test proposed in this research. CART and RF are discussed in more detail in

the following section.

2.1. Random Forest. There are many statistical techniques for mod-

eling a categorical/continuous response. However, most of them come with

inherent assumptions such as linearity, additive effects, etc., which might not

be part of the data structure. The Classification and Regression Tree (CART)

algorithm (Breiman, Friedman, Olshen, and Stone 1984) is one technique

which, unlike others, does not make any functional assumptions about the

model structure of the data. In CART, a binary tree is grown using recursive

24



splitting based on node impurity, with a constant response value at each node.

At each internal node, the values of predictors are used to determine simple

binary conditions. If the condition is satisfied at the node, the left path is

chosen, otherwise the right path is selected. This process continues until the

terminal node is reached, and finally prediction is made. The CART algorithm

builds a tree by selecting the best variables for splitting, optimizing the nodes

and “pruning” in order to find the right-size tree.

The CART algorithm has some distinct advantages and disadvantages.

One of CART’s major advantages is that it is intuitive and simplistic. The

fitted model can be easily interpreted by non-statisticians. Moreover, the

algorithm can handle a large number of predictors and nonhomogeneous re-

lationships between predictors. Also, unlike linear regression models where

the model estimates unit changes in the predictor on the response, trees can

identify important ranges of continuous predictors or common clusters of cat-

egorical factors. Most of all, CART models are robust with respect to outliers

and misclassified observations. Every observation has weight among N data

points. Therefore, one essentially counts how many observations go left or

right. This is similar to the robustness property of median values (Breiman et

al. 1984).

On the other hand, the CART modeling process is very data dependent

and therefore small changes in the data can have a dramatic impact on the

final tree. This instability is attributed to the variability in the selection of the

optimal variable and/or its splitting point at each internal node. Lastly, the

CART algorithm defines a non-smooth prediction surface with sharp jumps.
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In order to account for the lack of smoothness and instability inherent

in the CART, Breiman (2001) proposed the RF algorithm, which extended

the CART algorithm by adding an additional layer of randomness to bagging

(Liaw and Wiener 2002). Bagging is building a set of trees using modified

training sets of equal size created by bootstrapping the original training set

with replacement. Consequently, slightly different trees will in turn produce

different predictions. More formally, Breiman (2001) proposed a random for-

est construction as a process where given a specific training set T with M

predictors and N observations, one forms bootstrap samples T1, ..., TK (with

replacement) with equal size of T . Then using the CART algorithm, one builds

tree k using Tk where the split at each node is determined from a randomly

chosen subset of all M predictors, unlike in the construction of the standard

tree where each node is split using the best split amongst all predictors. The

number of predictors randomly chosen is ⌊M/3⌋ where ⌊·⌋ is the floor function

(for M = 1 or 2, only one predictor is randomly selected). The RF prediction

is the unweighted averaged prediction across the forest. Averaging over trees

in combination with the randomization used in growing them, enables random

forests to approximate a rich class of functions while maintaining low gener-

alization error. Generally, K = 500 unpruned trees are built to maximum

depth, and because of such a large number of trees, predictions tend to be

more accurate than those from a single classification tree (Breiman 2001).

Let f̂(x,θk) represent the prediction from the kth tree model in the

forest where x is an input vector and θk is a random vector: i.e., a random

sample of predictors at each node. The vector θk is generated independently of
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the past random vectors θ1, . . . ,θk−1 but with the same distribution (Breiman

2001). We can think of the vector θk as the mechanism which creates tree k.

Given a new input vector x0 the RF prediction is

f̂RF (x0,Θ) = K−1

K∑
k=1

f̂(x0,θk), (2.8)

where Θ = {θk}Kk=1 is the set of realized random vectors.

Great interest in the random forest method has been stimulated by

its nature to easily adapt to data, fitting higher order interactions and non-

linear terms, making limited model assumptions, while being robust against

overfitting (Breiman 2001). In fact, as more trees are grown a limiting value

of the prediction error is achieved. In addition, the RF algorithm’s accuracy

has been shown to be competitive with many other data mining techniques

(Breiman 2001; Segal 2004) and is very user friendly in the sense that it has

only two parameters (the number of predictors in the random subset at each

node and the number of trees in the random forest), and is usually not very

sensitive to either (Liaw and Wiener 2002).

Since the trees are built independently given the data, the RF model

can be easily parallelized and is computationally faster than many ensem-

ble methods, including Bootstrap AGGregatING or bagging (Breiman 1996a;

Breiman 1996b; Dietterich 2000), output smearing (Breiman 2000) and ran-

domizing internal decisions made by the CART algorithm (Dietterich 2000).

Yet, such a method can be difficult to interpret compared to a single tree and

as a result is sometimes thought as a “black box” with little to say about the

relationship between the response and predictor variables.
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The RF algorithm in R (The R Project for Statistical Computing 2.6.0)

is able to estimate two other important properties: the variable importance

scores and proximity measures (measure of the internal structure of the data).

Both of these measures are calculated using the cases not selected (bagged)

in the bootstrap samples, which are called out-of-bag, or OOB, observations.

Variable importance scores are discussed in the next section.

2.2. Variable Importance Scores. Variable importance scores (VIMP)

can be used on a large set of predictor variables to reduce dimensionality

without any model assumptions. These scores do not depend on a specific

model structure and complex interactions amongst the predictors do not need

to be explicitly stated, as is the case with traditional model selection methods

(Breiman 2001 and Ishwarn 2007). The VIMP method estimates the impor-

tance of a variable by looking at how much the prediction error increases when

OOB data for that variable is permuted while others are left unchanged.

The prediction error can be estimated without using a separate test

set. Specifically, after each tree is created, the OOB data are used to estimate

the tree prediction error. The tree prediction errors are then averaged over all

trees to get the RF prediction error estimator (Breiman 1996c). Wolpert and

McCready (1999) compared estimating prediction error using OOB cases with

estimates using cross-validation and concluded that using OOB cases produced

a better estimate especially with small data sets.

Large positive values of VIMP for a variable indicate a predictive na-

ture of that predictor, whereas zero or negative importance values identify

a variable as not predictive (Ishwarn 2007). This random forest byproduct
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will be used to select the number of orthogonal components of PGF for large

multi-way tables, and will be described in detail in Chapter 3.

3. Generalized Linear Latent Variable Models

The categorical variable factor model will be used to investigate the

size of the proposed tests and power based on various components in addition

to focusing on interpretability and computational practicality. The aim of the

categorical variable factor model is to describe a relationship between manifest

variables and unobserved variables (latent variables) through the so-called lin-

ear predictor; that is, the link function that maps the manifest variable space

to the latent one. Categories can be graded such as: (1) letter grading, (2) an

attitude survey with “strongly disagree, disagree, agree and strongly agree”,

etc.

In psychometrics, for example, data from questionnaires and tests are

used as a basis for measuring abilities, attitudes, or other variables. At its

most basic level, a categorical variable factor model is based on the idea that

the probability of getting an item correct is a function of a latent trait or

ability. For example, a person with higher intelligence would be more likely to

correctly respond to a given item on an intelligence test. The main assump-

tion is that given the latent variables, the manifest variables are conditionally

independent. In other words, the latent variables explain all the dependence

structure between manifest variables. The latent variables may be assumed

to have a standard multi-variate normal distribution. Note, unless otherwise

stated, a categorical variable factor model in this research will have a single
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latent variable. Exact tests for latent traits for an omnibus null hypothesis are

still not computationally feasible as the amount of computations grows facto-

rially (faster than exponential growth) along with the size of the contingency

table (Gooijer and Yuan 2011).

If y = (y1, y2, ..., yp)
T is a vector of p ordinal observed variables, each

having the same number of categories K, η is the vector of continuous latent

variables and θ is a vector of parameters, the K categories have the associated

probabilities π
(i)
0 (η;θ), π

(i)
1 (η;θ), ..., π

(i)
K−1(η;θ), i = 1, ..., p, for yi. Moreover,

the number of latent variables is essentially the number of factors in the model.

Then, the probability of the sth response pattern ys over the different response

categories of the p variables, is

πs(θ) =

∫ ∞

−∞
...

∫ ∞

−∞
πs(η;θ)h(η)dη, (2.9)

where h(η) is the density function of η that may be assumed to be multivariate

normal (Bartholomew and Tzamourani 1999) and πs(η;θ) is the conditional

probability of ys given η with the form

πs(η;θ) =

p∏
i=1

K−1∏
j=0

Pr(Yi = j | η;θ)yij =
p∏

i=1

K−1∏
j=0

(π
(i)
j (η;θ))yij , j = 0, ..., K−1

(2.10)

where yij = 1 if the response falls in category j of variable i and yij = 0

otherwise. The conditional probabilities assuming a single latent variable in
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the model are given by

π
(i)
j (η;θ) = Pr(Yi = j | η;θ) =



1−G(αi,1 + βiη), if j = 0,

G(αi,j + βiη)−G(αi,j+1 + βiη), if 0 < j < K − 1,

G(αi,K−1 + βiη), if j = K − 1,

(2.11)

where G(x) equals the standard logistic distribution function

G(x) = [1 + e−x]−1. (2.12)

In this model, for each variable there is one slope parameter βi and K − 1

intercept parameters αi,j with αi,j decreasing in j for each i. The integral of

expression (2.9) is evaluated using Gauss-Hermite quadrature with r quadra-

ture points and their corresponding weights (r = 32 in this dissertation as it

was found to be adequate in many previous studies). Derivatives of expression

(2.9) are also evaluated using quadrature

∂πs(θ)

∂θ
=

∫ ∞

−∞
...

∫ ∞

−∞

∂πs(η;θ)

∂θ
h(η)dη. (2.13)

The quadrature method gives an approximation of a definite integral

of a function, usually as a weighted sum of function values at specified points

within the domain of integration. An r-point Gaussian-Hermite quadrature

rule has the form

∫
f(x) dx =

∫
w(x)g(x) dx ≈

r∑
i=1

wi(xi)g(xi),

where f(x) = w(x)g(x) and wi(xi) = e−x2
i . Gauss-Hermite calculations with a

fixed number of quadrature points represent the latent variable as discrete with
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weight wi at point xi, i = 1, 2, ..., r. Note, for a fixed number of quadrature

points, the accuracy of the maximum likelihood estimation may decrease as the

slope parameters increase in absolute value (Maydeu-Olivares and Joe 2006).

For the multidimensional latent variable case, the integral in expression (2.9)

and its derivatives in expression (2.13) are evaluated as iterated integrals.

The GRM function in R fits the graded response model for ordinal

polytomous data. The parameters in the GRM function in R which are esti-

mated by maximizing the marginal log-likelihood under the conditional inde-

pendence assumption, i.e., conditionally on the latent structure the items are

independent Bernoulli variates under the logit link and the required integrals

are approximated using the Gauss-Hermite rule. The optimization procedure

used is a hybrid algorithm. The procedure initially uses a moderate number of

EM iterations and then switches to quasi-Newton iterations until convergence.

A special case of the categorical variable factor model with all slopes

equal to 1 is known as the unidimensional Rasch model (Rasch 1980). In

reality the Rasch model is an unrealistic approach for a model because the

requirement of equal slopes is too restrictive. Even so, the Rasch model is

often selected to demonstrate power calculations because a log-linear version

is available. Tjur (1982) and Cressie and Holland (1983) demonstrated the

equivalence of the logit version of the Rasch model to a generalized log-linear

version. In this generalized log-linear version of the Rasch model for 5 variables

the log cell frequencies can be obtained by

log(ms) =λ+ λY1
g + λY2

h + λY3
i + λY4

j + λY5
k + λT

t , (2.14)
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where ms is the sth cell frequency, λYi
g is the effect for level g of manifest

variable i and λT
t is an effect for respondents with the same total score, t =

0, 1, ..., k. Using the log-linear version of the model has the advantage that it

is convenient to demonstrate the influence of higher-order interactions and to

estimate the model with widely used software. Also, a generalized log-linear

version of the Rasch model does not assume a specified distribution of the

latent variable. However, the model given in expression (2.14) does not allow

for higher-order interactions. Thus, the power calculations under the condition

that the null hypothesis is false because it omits a higher-order interaction use

frequencies generated from a log-linear model that includes that interaction.

For 5 variables the log-linear model that generates cell frequencies with a single

three-way association among variables Y2, Y3 and Y4 can be obtained by

log(ms) =λ+ λY1
g + λY2

h + λY3
i + λY4

j + λY5
k + λY1Y2

gh + λY1Y3
gi + λY1Y4

gj + λY1Y5
gk +

λY2Y3
hi + λY2Y4

hj + λY2Y5
hk + λY3Y4

ij + λY3Y5
ik + λY4Y5

jk + λY2Y3Y4
hij ,

(2.15)

where ms is the sth cell expected frequency, λYi
g is the effect for level g of

manifest variable i, λ
YiYj

ab is the two-way effect for a pair of manifest variables

i at level a and b at level h and λYtYlYk
cde is the three-way effect among manifest

variables c at level t, d at level l and e at level k.
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Chapter 3: COMPUTATIONAL METHODS

1. Chi-Square Orthogonal Components

The primary focus of this research is calculating and selecting orthogo-

nal components of PGF that are interpretable and computationally practical

for large multi-way contingency tables. These components may serve as a

means for providing more powerful directional tests and for overcoming the

adverse effects of sparseness. In particular, the idea of components in this

research is extended to large cross-classified tables with graded multi-category

variables. Graded categories are encountered in both log-linear and logistic

models.

Moses et al. (1984), for instance, reported that ordered categorical data

occurred in 32 of 168 articles in volume 36 (1982) of the New England Journal

of Medicine. Using standard log-linear models with ungraded variables for

data sets where at least one variable is graded ignores important information

about the data. With such large cross-classified tables it is acknowledged that

there will be even more components to select from than in a binary variable

model. It is also acknowledged that for some models computing components

based on orthogonal polynomials may not be feasible in all applications. As a

result, this research explores the full- and limited-information goodness-of-fit

statistics for multidimensional multinomial data in the particular case of the

categorical variable factor model for ordinal data.

The H transformation matrix, as discussed in Chapter 2, along with

certain conditions discussed in this section, uniquely define various orthogonal



components. Thus, the orthogonal components defined on marginal frequen-

cies for graded categorical variables can be obtained by using an expanded H

matrix. Examples are given in the following section for ordinary marginals.

1.1. Ordinary Marginals. The focus of this section is to provide a

link between the joint proportions and first-, second-order and higher-order

marginal proportions as a means for constructing proposed orthogonal com-

ponents.

A p-dimensional vector with zeros and ones is often called a response

pattern and can be used to identify a specific cell from the contingency table

formed by the cross-classification of p response variables each at K categories.

A T = Kp-dimensional set of response patterns can thus be generated by

varying the pth variable most rapidly in K−1 columns, (p− 1)st variable next

in K − 1 columns, etc.

Define V as the T by p(K− 1) matrix with response patterns as rows.

For example, with 3 variables each at 2 categories (i.e., p = 3 and T = 23 = 8),

V8×3 =



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



.
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The first row represents the response pattern for Y1 = 0, Y2 = 0 and Y3 = 0, the

second row represents the response pattern for Y1 = 0, Y2 = 0 and Y3 = 1,...,

and the last row represents the response pattern for Y1 = 1, Y2 = 1 and Y3 = 1.

Similarly, for 3 variables each at 3 categories (i.e., p = 3 and T = 33 = 27),

V27×6 =



0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 0 1 0 1 0

0 0 1 0 0 1

0 0 0 1 0 0

0 0 0 1 1 0

0 0 0 1 0 1

1 0 0 0 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 1 0 0 0

1 0 1 0 1 0

1 0 1 0 0 1

1 0 0 1 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 0 0 0 0

0 1 0 0 1 0

0 1 0 0 0 1

0 1 1 0 0 0

0 1 1 0 1 0

0 1 1 0 0 1

0 1 0 1 0 0

0 1 0 1 1 0

0 1 0 1 0 1



.

The first row represents the response pattern for Y1 = 0, Y2 = 0 and Y3 = 0,

the second row represents the response pattern for Y1 = 0, Y2 = 0 and Y3 = 1,

the third row represents the response pattern for Y1 = 0, Y2 = 0 and Y3 = 2,...,

and the last row represents the response pattern for Y1 = 2, Y2 = 2 and Y3 = 2.

Let vsj represent element s in column vector vj where j = 1, ..., p(K−1).

For example,

V27×6 =

(
v1 v2 v3 v4 v5 v6

)
.
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Now let Y be a vector of multidimensional multinomial variables with cell

probabilities π(θ) = (π1(θ)fromamodelofinterest, π2(θ), ..., πT (θ))
T that de-

pend on the parameter vector θ. Then, under the model, the first-order

marginal proportion for category 1 of Yi, can be defined as

PYi
(1;θ) = Prob(Yi = 1 | θ) = vT

(1+(K−1)(i−1))π(θ) =
T∑

s=1

vs,(1+(K−1)(i−1)) πs(θ).

In general, marginal proportions are linear transformations of the cell

proportions in the multinomial vector π = (π1, π2, ..., πT )
T with associated

response patterns. They can be obtained via the multiplication of π by a

certain transformation matrix, denoted by H. In particular, matrix H can

be defined from matrix V such that H = VT for first-order marginals to be

obtained as Hπ. For example when p = 3 and K = 3, the first-order marginal

proportion for category 1 of Y1 is given by the first row of Hπ as

PY1(1;θ) = Prob(Y1 = 1 | θ) = vT
1π(θ)

= π10 + π11 + π12 + π13 + π14 + π15 + π16 + π17 + π18.

The first-order marginal proportion for category 2 of Y1 is given by the second

row of Hπ as

PY1(2;θ) = Prob(Y1 = 2 | θ) = vT
2π(θ)

= π19 + π20 + π21 + π22 + π23 + π24 + π25 + π26 + π27.

Moreover, the matrix producing a full set of marginals can be obtained

by forming Hadamard products (Magnus and Neudecker 1999) either among

the columns of V or the columns of matrix HT . The kth element in the
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Hadamard product of two vectors (vi ◦ vj) is given by

(vi ◦ vj)k =


1 if vki = vkj = 1

0 otherwise.

The second-order marginals can then be obtained by Hamadard products of

columns of V as (vi ◦ vj), the third-order marginals (vi ◦ vj ◦ vk), etc. For

example, a matrix HT that would produce marginals from first- to third-order

for 3 variables each with 3 categories is given below. The first 6 rows of Hπ

produce all first-order marginals for Y1, Y2 and Y3, the next 12 rows produce all

second-order marginals and the last 8 rows produce all third-order marginals.

HT
27×26 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1


For example, the second-order marginal proportion for category 1 of Y1
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and category 1 of Y2 is given by the seventh row of Hπ as

PY1Y2(1, 1;θ) = Prob(Y1 = 1, Y2 = 1 | θ) = (v1 ◦ v3)
Tπ(θ)

=
T∑

s=1

vs1vs3πs(θ)

= π13 + π14 + π15.

In the same way, higher-order marginals can be defined.

The following section describes in detail methods for computing com-

ponents defined on marginals.

1.2. Methods for Computing Chi-Square Orthogonal Components. A

very large H matrix results in a high degree of collinearity among the rows.

This collinearity can produce inaccuracy in the calculation of components.

Because of the need for high numerical accuracy, the following procedure for

calculating orthogonal components of PGF is proposed.

In what follows we use the standardized cell residual (Cochran 1954)

zs =
(p̂s − π̂s)

π̂
1
2
s

, s = 1, ..., T,

for which

χ2
PF = zTz. (3.1)

1.2.1. Composite Null Hypothesis. From Reiser (2008), PGF in terms

of the standardized residuals can be obtained by

χ2
PF = (HD̂

− 1
2 r)T (HΣ̂HT )−1(HD̂

− 1
2 r) = (Hz)T (HΣ̂HT )−1(Hz) (3.2)

where H may be the matrix for all possible joint marginals, r is the vector of

raw residuals, z is the vector of standardized residuals, Σ̂ = Σ(θ̂) = n−1(I −
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π̂
1
2 (π̂

1
2 )T − Â(Â

T
Â)−1Â

T
), which is Σ evaluated at the maximum likelihood

estimates π(θ̂),

D̂ = D(π ˆ(θ)) = diag(π̂1, ..., π̂T ),

and

Â = D̂
− 1

2 ∂π̂

∂θ̂
.

One method for obtaining orthogonal components defined on marginals

is the QR decomposition. The QR decomposition (also called the QR factor-

ization) of a matrix is a decomposition of the matrix into an orthogonal and

an upper triangular matrix. Any real square matrix B may be decomposed as

B = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. If B

is invertible, then the factorization is unique if the diagonal elements of R

are positive. There are several methods for computing the QR decomposition,

such as by means of the Gram-Schmidt process, Householder transformations,

or Givens rotations. The routine in R uses the Gram-Schmidt process. The

Gram-Schmidt process is applied to the columns of the full column rank matrix

B = [b1, · · · ,bn], with inner product ⟨v,w⟩ = v⊤w (or ⟨v,w⟩ = v∗w for the

complex case). If the projection operator is defined by

projeb = ⟨e,b⟩
⟨e,e⟩e

then Gram-Schmidt process then works as follows
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u1 = b1, e1 =
u1

∥u1∥

u2 = b2 − proje1 b2, e2 =
u2

∥u2∥

u3 = b3 − proje1 b3 − proje2 b3, e3 =
u3

∥u3∥
...

...

uk = bk −
k−1∑
j=1

projej bk, ek =
uk

∥uk∥

The sequence u1, ...,uk is the required system of orthogonal vectors, and the

normalized vectors e1, ..., ek form an orthonormal set. The calculation of the

sequence u1, ...,uk is known as Gram-Schmidt orthogonalization, while the

calculation of the sequence e1, ..., ek is known as Gram-Schmidt orthonor-

malization as the vectors are normalized. Thus, Q = [e1, · · · , en] and

R =



⟨e1,b1⟩ ⟨e1,b2⟩ ⟨e1,b3⟩ . . .

0 ⟨e2,b2⟩ ⟨e2,b3⟩ . . .

0 0 ⟨e3,b3⟩ . . .

...
...

...
. . .


.

If z is regressed on the columns of HT (Reiser 2008) then

z = HT β̂.

There is no error term when H contains coefficients for all possible joint ma-

riginals and β̂ is given by

β̂ = (HŴHT )−1HŴz (3.3)

with weight matrix Ŵ = D̂
− 1

2 Σ̂Σ̂D̂
− 1

2 = D̂
− 1

2 Σ̂D̂
− 1

2 , since Σ̂ is idempotent.
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There is no intrinsic interest in β̂, since the purpose of the regression is to

obtain the sequential sum of squares.

Let M̂ = Σ̂D̂
− 1

2HT . Then, expression (3.3) becomes

β̂ = (M̂
T
M̂)−1M̂

T
z. (3.4)

Direct orthonormalization, via Gram-Schmidt orthonormalization or QR de-

composition, can then be applied to M̂ to obtain an orthogonal regression

γ̂ = (M̂∗TM̂∗)−1M̂∗Tz = M̂∗Tz, (3.5)

where M̂
∗
is the orthonormalized standardized transformation matrix M̂ and

the elements of γ̂ are known as the orthogonal coefficients. The vectors β̂

and γ̂ are related via the Cholesky factor C of HŴHT with β̂ = (CT )−1γ̂.

It follows from Reiser (2008) that M̂∗Tz is multivariate normal with mean 0

and covariance matrix IT−g−1; i.e., M̂
∗Tz has the limiting covariance matrix

FTΣF = IT−g−1, where F̂ = (Ĉ
T
)−1 is the Cholesky factor of Σ̂.

Using the QR decomposition does not place any constraints on the H

matrix. In contrast, the Cholesky decomposition requires deletion of rows from

H which have a linear dependency with G = ∂π̂
∂
ˆθ
and which results in HŴHT

having deficient rank.

Since

γ̂ = M̂∗Tz, (3.6)

if rank(H) > T − g − 1 and rank(HG) = g, the PGF defined in expression

(3.1) is the sum of the γ̂2
k according to the proof given in Reiser (2008) and

χ2
PF = γ̂T γ̂. (3.7)
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The chi-square statistic is obtained by summing the orthogonal components

which are asymptotically independent χ2
1 random variables. Moreover, using

the relationship between normal and chi-squared distributions given by Rao

(1973, p. 188) implies that γ̂T γ̂ is asymptotically chi-squared. Furthermore,

limited-information test statistics can be obtained by summing a subset of

these orthogonal components.

Alternatively, the orthogonal components of PGF can be obtained from

the sequential sums of squares that result from an ordinary regression of z on

the columns of HT . If hT
l represents row l of H, and hl represents column

l of matrix HT then, using results from linear models for the regression that

produces the orthogonal components, the sum of squares that constitute the

first component, γ̂2
1 , is given by

SS(h1) = n−1zTŴD̂
− 1

2h1

(
hT
1 D̂

− 1
2ŴD̂

− 1
2h1

)−1

hT
1 D̂

− 1
2Ŵz,

provided hT
1 D̂

− 1
2ŴD̂

− 1
2h1 is non-zero.The orthogonal compliment of h2 to h1

is given by

hI
2 = h2 − h1

(
hT
1 Ŵh1

)−1

hT
1 Ŵh2,

provided hT
1 Ŵh1 is non-zero, and the sequential sum of squares that constitute

the second component, γ̂2
2 , is given by

SS(h2|h1) = n−1zTŴD̂
− 1

2hI
2

(
hI
2

T
D̂

− 1
2ŴD̂

− 1
2hI

2

)−1

hI
2

T
D̂

− 1
2Ŵz.

provided hI
2

T
D̂

− 1
2ŴD̂

− 1
2hI

2 is non-zero. Sequential sum of squares for addi-

tional orthogonal components may be obtained in a similar manner (Reiser

2008).
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Unlike the QR decomposition which does not detect linear dependencies

or make any adjustments, the sequential sum of squares are calculated using

Goodnight’s (1978) sweep operator. When a dependency is encountered for

a component, the sweep operator sets that component to zero and proceeds

(Goodnight 1978). The critical issue here is not the sequential sum of squares

versus the QR decomposition. The issue here is writing the code for the

decomposition to deal with linear dependencies as does the Goodnight’s code

for the sweep operator. The routines for the QR decomposition in R and in

SAS IML are not written to check carefully for linear dependencies. Routines

for the QR decomposition both in R and in SAS IML could be written to

check for linear dependencies, and then they would be as reliable as the sweep

operator in PROC REG in SAS. PROC REG in SAS is used to obtain the

sequential sums of squares.

The method given here is numerically more accurate than the Cholesky

factor method used by Reiser (2008) which is important when there are a large

number of components. Table 1 compares the numerical accuracy of the QR

decomposition versus the Cholesky factor method. A categorical variable fac-

tor model for non-sparse data was generated with intercepts with magnitude

in the range (-1,1) and slopes with magnitude in the range (0,3). As the size

of the contingency table increases with the number of variables the numeri-

cal accuracy of both the QR decomposition and the Cholesky factor method

decrease. However, the decrease is greater for the Cholesky factor method

with the exponential growth of the table size i.e., the number of orthogonal

components summed for the χ2 statistic.
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Table 1. Numerical accuracy for the QR decomposition and the Cholesky

factor method for a categorical variable factor model for non-sparse data

No. of Degrees of χ2
PF Sum of components Sum of components

variables freedom using the QR using the Cholesky
decomposition factor method

5 21 15.11165 15.11113 15.11613
6 51 34.12063 34.12100 34.10810
7 113 119.48340 119.33701 118.09701
8 239 226.01750 225.97232 223.47231
9 493 476.67530 475.39827 473.32277

An example of the calculations of orthogonal components defined on

marginal frequencies is given below as a preview of a two-way association

study in Chapter 4. A categorical variable factor model given in expression

(2.9) for 5 variables, each at 2 categories, when n = 1000 was extended to

include an extra two-way association between Y1 and Y2. In this example the

model misspecification under the null hypothesis was in a two-way association

not accounted for by a categorical variable factor model with a single latent

variable, and as such a large second-order component between Y1 and Y2 was

expected. The data were generated with α1 = (0.50, 0.25, 0.75,−0.25,−0.50),

β1 = (0.50, 0.50, 1.00, 0.75, 1.00) and an extra two-way association between Y1

and Y2 of 0.80 in magnitude. The model given in expression (2.9) with a single

latent variable was fitted producing parameter estimates given in Table 2.

χ2
32−10−1 = χ2

21 = 11.41 was observed for this data set. Orthogonal components

defined on the full set of marginal frequencies, H31×32, were computed from
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Table 2. Parameter estimates when the model under the null hypothesis a

categorical variable factor model.

Y1 Y2 Y3 Y4 Y5

α̂i 0.4612420 0.2301011 0.7389288 -0.2463937 -0.4893528

β̂i 0.5980901 0.5927957 0.9187180 0.7167252 0.9284945

expression (3.5) where

z =



0.001

0.001

0.001

0.001

0.003

0.004

0.004

0.006

−0.002

−0.002

−0.002

−0.001

−0.005

−0.003

−0.003

−0.001

−0.002

−0.002

−0.002

−0.001

−0.005

−0.003

−0.004

−0.001

0.009

0.001

0.002

0.000

0.005

0.001

0.001

0.000



,
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and,

M̂
∗
32×31 =



−16.072 9.510 5.446 1.222 −0.847 −0.234 . . . 1.902

8.891 −5.250 2.307 1.459 −8.715 −0.822 . . . 2.945

6.366 −5.902 −4.842 −0.954 −3.012 −2.449 . . . 0.514

2.843 2.227 1.823 −3.698 3.635 −4.267 . . . 0.427

5.056 −10.836 −1.507 5.490 −10.210 −3.205 . . . 11.638

2.671 4.284 −0.843 −6.407 6.279 −9.331 . . . 1.430

2.881 3.719 2.401 −5.303 8.153 −8.935 . . . 6.506

−3.799 1.265 −4.286 11.418 8.168 −12.653 . . . −2.505

3.475 −7.267 −9.956 −5.028 6.636 2.596 . . . −0.083

4.100 2.186 4.315 −2.256 2.294 4.875 . . . 0.520

4.116 1.706 5.711 4.617 −0.755 6.043 . . . 1.324

−3.100 1.873 −3.730 −0.427 −2.419 3.822 . . . −0.016

3.121 3.420 6.023 −1.839 6.609 7.572 . . . 8.097

−3.280 2.376 −6.106 8.387 −0.978 5.860 . . . −2.730

−2.754 3.544 −5.335 −0.474 −5.364 5.858 . . . 7.274

−5.139 −5.861 7.633 −6.753 −7.028 1.018 . . . −5.260

2.720 −8.017 −10.113 −5.172 5.176 1.625 . . . −6.587

4.350 2.511 4.921 −2.553 2.436 4.671 . . . −0.801

4.200 2.003 6.658 5.106 −1.207 5.829 . . . −0.775

−3.324 2.039 −4.324 −0.241 −2.325 3.675 . . . 0.485

3.096 3.952 6.947 −2.120 7.119 7.015 . . . 6.483

−3.193 2.543 −7.118 9.842 0.055 5.560 . . . −1.460

−2.755 3.867 −6.211 −0.105 −5.353 5.439 . . . 9.066

−4.486 −6.729 7.988 −7.738 −6.942 0.079 . . . −1.140

3.990 1.417 9.422 13.554 −5.294 −11.419 . . . −2.693

−2.795 3.336 −3.857 −4.196 −5.097 −3.445 . . . −0.075

−2.136 4.771 −0.439 −7.380 −0.562 −6.026 . . . 4.287

−9.086 −6.263 −1.685 3.126 7.266 0.578 . . . 3.576

−2.587 6.158 −5.607 −6.914 −9.657 −8.207 . . . 9.871

−4.226 −9.126 5.812 −2.881 3.754 −1.027 . . . −1.930

−4.791 −10.880 2.519 5.901 7.978 −0.412 . . . 18.051

13.705 9.326 −4.186 1.887 0.674 0.008 . . . 2.762



.

The QR decomposition was applied to M̂ in expression (3.4) in order to obtain

M̂∗. Thus, the calculated orthogonal components, γ̂2, given in expression (3.6)

were
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γ̂2 =



0.000

0.004

0.042

0.377

0.001

10.963

0.000

0.000

0.001

0.000

0.000

0.004

0.000

0.001

0.001

0.000

0.002

0.000

0.000

0.000

0.000


Individual γ̂2

k’s are orthogonal components defined on marginal fre-

quencies and are asymptotically independent χ2
1 random variables. Moreover,∑21

k=1 γ̂
2
k = 11.40. The first 5 γ̂2

k’s are first-order marginal components, the next

10 are second-order marginal components, etc. As can be seen, γ̂2
6 = 10.963

and this component captures a two-way association between Y1 and Y2 not ac-

counted for by a categorical variable factor model with a single latent variable,

as expected.

Since not all components of H are necessary for constructing various

limited-information test statistics, using the random forest method may enable

a reduction in the number of components. Applying the random forest method

to expression (3.4), where z is the response vector and M̂ is the model matrix,

components will be obtained in an exploratory mode, using the positive VIMP

scores for columns of M̂. Large positive values of VIMP for a variable indicate
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the important nature of that component in terms of variable selection in the

orthogonal regression (Ishwarn 2007). Note that the number of selected com-

ponents is random from sample to sample. As explained in Section 2.2, VIMP

scores can be used on a large set of components to reduce dimensionality of

M̂, without any model assumptions.

The notation χ2
rf denotes the test statistic where the random forest

method has been applied to the full set of marginals. χ2
rf[1:2]

denotes the test

statistic applied to first- and second-order marginals and χ2
rf[2]

denotes the

test statistic applied to second-order marginals only. The distribution of these

statistics under the null hypothesis is a mixture of chi-squares because they are

a sum of orthogonal components obtained using the random forest method, and

it will be investigated in a simulation study using the moment approximation

(Mathai and Provost 1992; Box 1954). This data-driven approach for selecting

components of PGF should further increase the power and decrease dilution

of such test, as it will not include superfluous degrees of freedom.

1.2.2. Related Limited-information Statistics Defined on Lower-order

Marginals. Moustaki (2007) defined GFfitij as part of her goodness-of-fit

statistic for bivariate marginal distributions of the variables i and j as a remedy

when sparseness is present as

GFfitij = n
∑
ab

(f ij
ab − π̂ij

ab)
2

π̂ij
ab

, i = 1, ..., p− 1 j = i+ 1, ..., p

where f ij
ab is the sample proportion from the bivariate marginal distribution of

the variables i and j, each at categories a and b respectively and π̂ij
ab is the

corresponding estimated probability. The values
(f ij

ab−π̂ij
ab)

2

π̂ij
ab

are standardized
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residuals computed from the bivariate marginal distributions of the variables

i and j and measure the discrepancies between observed and expected propor-

tions. However, using this GFfitij definition over-parameterizes the H matrix

compared to the component approach proposed here. For example, if the H

matrix was defined on ordinary marginals for 3 variables each at 3 categories,

then the statistic GFfit12 between variable 1 and variable 2 would imply a

H9×27 matrix using the Moustaki (2007) approach where number of rows are

given by p2 , versus a H4×27 matrix using the components approach. Using the

components approach, the GFfit12 is computed by the sum of the components

of Hπ produced by rows (7, 8, 9, 10). Similarly, GFfit13 is the sum of the

components produced by rows (11, 12, 13, 14) and GFfit23 is the sum of the

components produced by rows (15, 16, 17, 18).

Maydeu-Olivares and Joe (2005) developed a family of statistics, Mr,

that are closely related to test statistics obtained by summing components over

lower-order marginals proposed here. M2 and a limited-information statistic

defined on first- and second-order marginals proposed in this research are not

equivalent. In the quadratic form in (2.4), M2 uses Ĉ2 instead of Σ̂, where Ĉ2

is given by

Ĉ2 = (HΓ̂HT )−1−(HΓ̂HT )−1HĜ
(
Ĝ

T
HT (HΓ̂HT )−1HĜ

)−1

Ĝ
T
HT (HΓ̂HT )−1,

where Γ̂ = D(π̂) − π̂π̂T and H contains first- and second-order marginals

(Reiser 2008). The degrees of freedom of M2 are given by
∑2

j=1

(
p
j

)
(K−1)j−g.

1.2.3. Simple Null Hypothesis. Although the primary focus of this re-

search is a test for a composite null hypothesis, the Pearson’s chi-squared test
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statistic for a simple null hypothesis H0 : Hπ = Hπ0 can be partitioned by

using a procedure similar to the method described previously as

χ2
T−1 = (Hz)T (HΣ̂HT )−1(Hz)

= n−1(Hz)T (H((I− π
1
2
o (πo

1
2 )T ))HT )−1(Hz). (3.8)

where π0 is the vector of probabilities specified under the null hypothesis and

H may be chosen as the matrix of all possible joint marginals for all given

variables.

1.2.4. Size of the Test and Power. Given the various H matrices dis-

cussed previously, comparisons were made of orthogonal components defined

on marginal frequencies, for both data that are not sparse and sparse, to the

traditional Pearson’s chi-square test and the likelihood ratio test. These com-

parisons were in terms of the size of the tests and their relative power.

In the case when data are not sparse and the number of components

is known, asymptotic power was computed. Asymptotic power is discussed

in detail in the next section. When data are sparse, power calculations were

supplemented by Monte Carlo simulations. Monte Carlo simulations were also

used when the random forest method was applied as the number of selected

components is unknown at the outset. Comparing proposed test statistics to

orthogonal polynomials components using equal correlations among observed

variables in the one parameter categorical variable factor model is also of

interest in this research. Generalized categorical variable factor models for

graded data will be used to generate data.
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2. Performance Measures

A distinction should be drawn between omnibus (tests such as the PGF)

and directional tests. Lancaster (1969) explained that omnibus tests are in-

tended to have moderate power against all alternatives, while the directional

tests are intended to detect specified alternatives well. In summary, against

specified alternatives, directional tests are more powerful than the omnibus

tests, while against other alternatives omnibus tests should be superior. The

PGF statistic was constructed to be an omnibus test, but its components can

provide powerful directional tests.

Type I error rates and power performance of the proposed test statistic

based on various components was assessed. Regardless of power, if the em-

pirical α is close to the nominal α, this implies that the proportion of times

for rejecting the model falsely is indeed the proportion of times it is expected

to be. Of course, the test with the largest power will always be preferred,

provided the size of the tests are the same.

2.1. Power. Given specific choices of sample sizes, class size, null hy-

pothesis, and the alternative hypothesis, the power function is the most im-

portant criterion for comparing tests. Under some circumstances power can be

calculated analytically; under other circumstances, Monte Carlo simulations

must be used to estimate power.

When large sample assumptions are met, the asymptotic power of the

Pearson’s χ2 statistic for the composite null hypothesis can be considered by

using a sequence of local alternatives for which the model lack-of-fit diminishes
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as n increases: i.e.,

πn = π(θ) + δ/
√
n, (3.9)

where πn is the vector of true probabilities for a sample of size n. The “best

fit” of the model to the population gives πs(θ) as the probability for cell s, and

the true probability differs from that value by δs/
√
n. The model lack-of-fit

goes to zero at the rate n− 1
2 as n approaches infinity. Mitra (1958) showed

that under (3.9) the Pearson’s χ2 statistic has a limiting noncentral chi-squared

distribution, with degrees of freedom T − g − 1 and non-centrality parameter

λ = δTD[π(θ)]−1δ.

Reiser (2008) showed that the non-centrality parameter can also be expressed

as

λ = δTHT (HΣHT )−1Hδ.

Furthermore according to Reiser (2008), it is possible to decompose the non-

centrality parameter into orthogonal components associated with marginals of

different order, in a manner very close to the proposed decomposition of the

PGF.

Using the QR decomposition of the non-centrality parameter, let

ζ = M∗Tδ, (3.10)

where M∗ has been defined in Section 2 of this chapter. Then, λ = ζTζ, and

the orthogonal components are ζ2j , where ζj is an element of ζ. According to

Agresti (2002) it is often reasonable to adopt expression (3.9) for fixed, finite

n in order to approximate the distribution of PGF, even though it might not

be expected to hold as substantially more data are obtained.
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For purposes of power calculations under fixed, finite n, cell proportions

were generated from a known model, with parameter vector θa. These propor-

tions are then multiplied by a selected initial sample size such as n0 = 1000.

The model of the null hypothesis was then fit using maximum likelihood on

the resulting cell frequencies without any added random variability. Let θ∗
a be

the vector that maximizes the function

F (p,π(θ)) = n
∑
s

ps log(πs(θ)),

where π(θa) is the vector of multinomial proportions. The vector δ∗ is then

chosen such that

δ∗ =
√
n(πa − π(θ∗

a)),

where πa = π(θa) corresponds to the known generated cell proportions. This

method uses δ∗′D[π(θ∗
a)]

−1δ∗ as an approximation to λ. Assuming that θa is

close to the value specified by the null hypothesis, it could be expected that

n(πn − π(θ∗
n))

′D[π(θ∗
n)]

−1(πn − π(θ∗
n)) = λ+ o(1),

where πn is given in expression (3.9) and θ∗
n is the vector maximizing

F(πn,π(θ)).

The chosen value of δ∗ can be used to approximate the non-centrality

parameter for the initial sample size n0. The non-centrality parameter for any

other sample size, say simply n, can be approximated by using the expression

λ ≈ n
n0
λ0. Power can then be computed for a specified α as

P (X(df, λ) > χ2
(df, α))

where X is χ2 with df degrees of freedom and non-centrality parameter λ.
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When large sample theory isn’t applicable, as is the case when sparse-

ness is present, Monte Carlo simulations can be used to perform a power in-

vestigation in order to detect a false null hypothesis. Monte Carlo simulations

will also be employed when computing power for test statistics constructed

using the random forest method as the number of components is unknown at

the outset.

2.2. Type I Error. The Type I error rate shows the percentage of rejec-

tions of the hypothesized model under the null. Monte Carlo simulations will

be used to compare the empirical α to the nominal α rate. For the random

forest method, in addition to power and Type I error rates, the total number

of components used in the statistic as well as the individual components that

are chosen in each case were also recorded.
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Chapter 4: COMPARISONS OF TEST STATISTICS WITH TWO- AND

THREE-WAY ASSOCIATION EFFECTS

To investigate the performance of the proposed methods for selecting

chi-squared orthogonal components as a means for providing more powerful

tests for large cross-classified tables, various components are defined via the H

matrix, as discussed previously in Chapter 3. In order to obtain test statistics

based on orthogonal components of PGF, the following cases were investigated;

• Full set of marginal frequencies: These marginal frequencies are usually

interpretable as they relate lack-of-fit to associations among variables.

Summing the components of the full set produces χ2
PF as shown in ex-

pression (3.7).

• First- and second-order marginals: First- and second-order marginals

are less sparse than those of higher order, if sparseness is present.

Summing components of first- and second-order marginals produces

χ2
[1:2] =

∑(c−1)p+ 1
2
p(p−1)(c−1)2

k=1 γ̂2
k, where p is the number of variables and c

is the number of categories of each variable.

• Second-order marginals only: For psychological data it has been shown

that the lack-of-fit is often in the second-order marginals. Second-order

marginals will enable an investigation of whether or not including first-

order marginals dilutes the test. Summing components of second-order

marginals produces χ2
[2] =

∑(c−1)p+ 1
2
p(p−1)(c−1)2

k=(c−1)p+1 γ̂2
k.

• Second- and third-order marginals: Summing components



of second- and third-order marginals produces χ2
[2:3] =∑(c−1)p+ 1

2
p(p−1)(c−1)2+ 1

6
p(p−1)(p−2)(c−1)3

k=(c−1)p+1 γ̂2
k .

Section 1 describes the study of the proposed methods when the model

misspecification is in a two-way association not accounted for by the categorical

variable factor model with a single latent variable. Section 2 presents results

of that study. Section 3 describes the study of the proposed methods when

the model misspecification is in a three-way association not accounted for by

the categorical variable factor model with a single latent variable. Section 4

presents results of that study.

For all studies the software used was R, and the parameters were

estimated using marginal maximum likelihood estimation (MLE) with the

Newton-Raphson method. All code used in this research was personally writ-

ten except for the in-built GRM function in R. The code can be found at

http://math.asu.edu/∼jelena. Furthermore, where appropriate, one and two

sample proportion tests were performed at the 5% significance level.

1. Two-way Association Effects

The focus of Study 1 was comparing power and Type I error for χ2
PF ,

test statistics based on components defined on marginals, χ2
[1:2] and χ2

[2], and

tests based on the random forest method. The comparisons were performed

using the categorical variable factor model, which by nature has large cross-

classification tables that often encounter sparseness. Powers for the selected

test statistics are calculated when the alternative model to Ho was a two-way

association not accounted for by a single latent variable model. Two models
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under the null hypothesis were considered for 5 variables, each at 3 categories.

In Study 1a the model under the null was the categorical variable factor model

with a single latent variable given in expression (2.9) with null hypothesis

Ho : π = π(θ),θ =



α1,1 α1,2 β1,1

α2,1 α2,2 β2,1

α3,1 α3,2 β3,1

...
...

...

αp,1 αp,2 βp,1


. (4.1)

The Study 1b null model is a special case where all slopes are equal: i.e.,

Ho : π = π(θ),θ =



α1,1 α1,2 β

α2,1 α2,2 β

α3,1 α3,2 β

...
...

...

αp,1 αp,2 β


. (4.2)

The purpose of Study 1b was to investigate if components defined on

first-order marginals would contain lack-of-fit information when slopes were

constrained. It was suspected that with the constrained version of the model,

estimation of intercepts would be affected, and therefore, components defined

on first-order marginals might contribute to the power of the test.

Because Study 1 uses a composite null hypothesis, the orthogonal com-

ponents were calculated from expression (3.2). Given that both models under

the null hypothesis are misspecified since they omit a two-way association, the

question of how well the selected statistics might perform when sample sizes
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were large and not sparse (n = 5000) and when sample sizes were small and

sparse (n = 300, 500, 1000) were investigated.

The alternative hypothesis for both Study 1a and Study 1b included

a two-way association for a pair of variables (e.g., variables 1 and 2) not

accounted for by the single latent variable. The model in expression (2.9) was

extended to include two latent variables, η = (η1, η2)
T . Thus, the alternative

when Ho is false has the parameter matrix, θ, with an additional column and

is given by

A11 : π = π(θ),θ =



α1,1 α1,2 β1,1 β1,2

α2,1 α2,2 β2,1 β2,2

α3,1 α3,2 β3,1 0

...
...

...
...

αp,1 αp,2 βp,1 0


. (4.3)

A11 denotes the 1
st alternative investigated in Study 1. In general, Aij denotes

the ith alternative investigated in Study j.

The Study 1 design was as follows:

• Ho model: Categorical variable factor model

• Number of variables: p = 5

• Number of categories: 3

• Sample sizes: n = 300, 500, 1000, 5000

• Number of samples for the Monte Carlo simulations: 1000

This design produced tables with 35 = 243 cells which in turn for sample sizes
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n = 300, 500, 1000 are likely to produce cross-classified contingency tables that

are sparse in nature.

The test statistics investigated were χ2
PF , χ

2
[1:2] and χ2

[2] and tests based

on the random forest method. With such an alternative hypothesis the model

misfit is in the second-order associations, and it was suspected that more

focused tests such as χ2
[1:2] and χ2

[2], along with tests based on the random

forest method, would be more powerful in detecting this misfit than χ2
PF . The

χ2
[2] statistic should have higher power since χ2

[1:2] may have superfluous degrees

of freedom which dilute the test, as it includes the first-order marginals which

should not detect for the lack-of-fit in the second-order associations.

In both Study 1a and Study 1b, probabilities were calculated from the

categorical variable factor model with two latent variables with parameter

matrix, θ, given by expression (4.3). A two-way association for variables 1

and 2, not accounted for by the single latent variable, was included. The

population parameters in Study 1a for the extended model included the

following vectors of θ

α1 = (0.75, 0.75, 0.75, 0.75, 0.75)T ,

α2 = (−0.5,−0.5,−0.5,−0.5,−0.5)T ,

β1 = (0.5, 0.5, 1, 0.75, 1)T ,

and

β2 = (b, b, 0, 0, 0)T , where the values of b investigated were

{0, 0.2, 0.4, 0.6, 0.8, 1.0}.

In Study 1b for the constrained version of the model

α1 = (0.75, 0.75, 0.75, 0.75, 0.75)T ,
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α2 = (−0.5,−0.5,−0.5,−0.5,−0.5)T ,

β1 = (1, 1, 1, 1, 1)T ,

and

β2 = (b, b, 0, 0, 0)T , where the values of b investigated were

{0, 0.2, 0.4, 0.6, 0.8, 1.0}.

The integral of expression (2.9) was evaluated as an iterated integral

when there were two latent variables, and derivatives were approximated using

Gauss-Hermite quadrature with 32 quadrature points and their corresponding

weights.

For evaluating the Type I error rate, a true model was fitted and Monte

Carlo simulations were performed. To assess the power of a test, a false model

was specified. Asymptotic power was computed for all statistics except for the

random forest method. For the random forest method the number of compo-

nents is unknown at the outset, so Monte Carlo simulations were performed in

order to approximate power and Type I error rates. Monte Carlo simulations

were also used to evaluate the accuracy of the asymptotic power calculations.

2. Results

2.1. Study 1a. Empirical Type I error rates at the nominal 5% level of

significance are given in Table 3 for all statistics considered when the model

under the null hypothesis is the categorical variable factor model. The propor-

tions in Table 3 multiplied by 1000 are binomial with success proportion 0.05

and 1000 trials. If the true Type I error probability is 0.05,
√

(0.05)(0.95)
1000

= 0.007

provides a standard error value that can be used when comparing the table
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entries to the nominal level. In particular, it can be seen that the Type I error

rates for χ2
PF and χ2

[rf ] when n = 300 are inflated and significantly different

from the nominal 5% level. This demonstrates the already well known adverse

effects of sparseness on PGF. Power comparisons are thus not reliable for both

χ2
PF and χ2

[rf ] when n = 300, since inflated Type I error rates imply that power

is confounded with Type I error rate. On the other hand, empirical Type I

error rates for χ2
[1:2] and χ2

[2] are not significantly different from the nominal

level for all sample sizes considered.

Table 3. Empirical Type I error rates of χ2
PF , χ

2
[1:2], χ

2
[2] and χ2

[rf ] when the

model under the null hypothesis is the categorical variable factor model. ‘*’

denotes Type I error rates significantly different from 5% nominal level.

Sample size χ2
PF

χ2
[1:2]

χ2
[2]

χ2
[rf ]

300 0.125∗ 0.056 0.060 0.084∗

500 0.054 0.062 0.053 0.054
1000 0.062 0.044 0.037 0.055
5000 0.046 0.050 0.058 0.052

QQ-plots of the empirical quantiles for χ2
[1:2] and χ2

[2] versus those from

the appropriate chi-squared distributions when n = 300 are attached in Ap-

pendix A in Figure 3 and Figure 4, respectively, along with corresponding

estimated slopes and p-values. The Kolmogorov-Smirnov goodness-of-fit test

statistic for the chi-squared distribution to the χ2
[1:2] data was found to be

D = 0.0225 with corresponding p-value of 0.6939. Similarly, the Kolmogorov-

Smirnov statistic for χ2
[2] was D = 0.0293 with corresponding p-value of 0.3578.
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Thus, both test statistics support the asymptotic chi-square distribution for

the considered chi-squared statistics when expected cell frequencies in the joint

distribution are small.

QQ-plots for χ2
PF when n = 300 and n = 500 are also attached in

Appendix A in Figure 1 and Figure 2, respectively. In the case of n = 300 the

QQ-plot suggests poor asymptotic chi-square approximation for this statis-

tic. The poor asymptotic chi-square approximation was further verified by a

Kolmogorov-Smirnov goodness-of-fit test that produced a test statistic value

of D = 0.0777 having a p-value of 10−4. On the other hand, for n = 500 even

though the QQ-plot suggests a somewhat poor fit the Kolmogorov-Smirnov

goodness-of-fit test statistic (D = 0.0386 with p-value of 0.1023) did not detect

problems with the chi-square approximation. Summary of the Kolmogorov-

Smirnov goodness-of-fit test p-values of χ2
PF , χ

2
[1:2] and χ2

[2] are given in Table

4.

Table 4. Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values

of χ2
PF , χ

2
[1:2] and χ2

[2]. ‘*’ denotes significant p-values at the 5% significance

level. ‘-’ denotes that the test was not performed for the given sample size.

Sample size χ2
PF

χ2
[1:2]

χ2
[2]

300 10−4∗ 0.6939 0.3578
500 0.1023 - -

Table 5 shows asymptotic power rates when the model under the null

hypothesis is the categorical variable factor model with no parameter con-

straints and the alternative of interest is A11 at the nominal 5% level for χ2
PF ,
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χ2
[1:2] and χ2

[2]. Asymptotic power rates of χ2
PF are not comparable to those of

χ2
[1:2] and χ2

[2] for n = 300 as discussed previously. From Table 5, it can be

seen that asymptotic power increases with the increasing two-way effect size

and increasing sample size. χ2
PF is outperformed by both χ2

[1:2] and χ2
[2] for

n = 500, 1000, 5000. Moreover, there is an unsubstantial difference in asymp-

totic power between χ2
[1:2] and χ2

[2], so components for first-order marginals do

not appear to contribute to the power of the test and appear to dilute the

test to a minor degree. Also, for χ2
PF power seems to increase slightly with in-

creasing two-way effect size. Asymptotic power cannot be computed for χ2
[rf ].

Graphs of asymptotic power versus a two-way effect size of χ2
PF , χ

2
[1:2] and χ2

[2]

for n = 300, 500, 1000, 5000 are attached in Appendix B.

Table 6 shows empirical power rates when the model under the null hy-

pothesis is the categorical variable factor model with no parameter constraints

and the alternative of interest is A11 at the nominal 5% level for χ2
PF , χ

2
[1:2],

χ2
[2] and χ2

[rf ]. Corresponding standard errors for the values in the table are

given in parentheses next to each value. In finite samples, it is known that the

asymptotic power rates of χ2
PF are only accurate for a small number of cells

when the table is not sparse (Maydeu-Olivares and Joe 2005). So, comparing

asymptotic power rates in Table 5 to empirical power rates in Table 6 shows

that empirical power rates are generally not significantly different from asymp-

totic power rates for all statistics except for χ2
PF for n = 300. When n = 300,

the cross-classified tables exhibited severe sparseness with n/T ratio of 1.235

and all expected cell frequencies smaller or equal to 5. Table 6 reveals that

χ2
[1:2] and χ2

[2] are not affected by sparseness in this case, and there is no sig-
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Table 5. Asymptotic power rates of χ2
PF , χ

2
[1:2] and χ2

[2] when the model under

the null hypothesis is the categorical variable factor model with no parameter

constraints and the alternative of interest is A11 at the nominal 5% level. ‘*’

denotes Type I error rates significantly different from the nominal level.

Two-way Sample χ2
PF

χ2
[1:2]

χ2
[2]

effect size (b) size

0.2 300 0.050∗ 0.050 0.054
500 0.050 0.051 0.051
1000 0.051 0.051 0.051
5000 0.053 0.056 0.057

0.4 300 0.052∗ 0.055 0.056
500 0.054 0.059 0.060
1000 0.058 0.069 0.071
5000 0.099 0.182 0.203

0.6 300 0.061∗ 0.076 0.079
500 0.069 0.096 0.103
1000 0.092 0.162 0.180
5000 0.427 0.840 0.882

0.8 300 0.082∗ 0.134 0.147
500 0.110 0.216 0.242
1000 0.202 0.473 0.528
5000 0.968 1.000 1.000

1.0 300 0.127∗ 0.266 0.299
500 0.205 0.478 0.532
1000 0.471 0.878 0.913
5000 1.000 1.000 1.000
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Table 6. Empirical power rates of χ2
PF , χ

2
[1:2], χ

2
[2] and χ2

[rf ] when the model

under the null hypothesis is the categorical variable factor model with no

parameter constraints and the alternative of interest is A11 at the nominal

5% level. Corresponding standard errors are given in parentheses next to each

value. ‘*’ denotes Type I error rates significantly different from the nominal

level.

Two-way Sample χ2
PF

χ2
[1:2]

χ2
[2]

χ2
[rf ]

effect size (b) size

0.2 300 0.127∗ (0.011) 0.070 (0.008) 0.062 (0.008) 0.094∗( 0.009)
500 0.054 (0.007) 0.038 (0.006) 0.039 (0.006) 0.049 (0.007)
1000 0.064 (0.008) 0.050 (0.007) 0.061 (0.008) 0.040 (0.006)
5000 0.054 (0.007) 0.055 (0.007) 0.051 (0.007) 0.052 (0.007)

0.4 300 0.140∗ (0.011) 0.079 (0.009) 0.069 (0.008) 0.117∗ (0.010)
500 0.061 (0.008) 0.060 (0.008) 0.065 (0.008) 0.065 (0.008)
1000 0.069 (0.008) 0.076 (0.008) 0.069 (0.008) 0.059 (0.007)
5000 0.098 (0.009) 0.181 (0.012) 0.200 (0.013) 0.095( 0.009)

0.6 300 0.130∗ (0.011) 0.088 (0.009) 0.102 (0.010) 0.125∗ (0.010)
500 0.060 (0.008) 0.085 (0.009) 0.088 (0.009) 0.051 (0.007)
1000 0.089 (0.009) 0.158 (0.012) 0.180 (0.012) 0.087 (0.009)
5000 0.431 (0.016) 0.848 (0.011) 0.883 (0.010) 0.373 (0.015)

0.8 300 0.148∗ (0.011) 0.164 (0.012) 0.161 (0.012) 0.136∗ (0.011)
500 0.117 (0.010) 0.207 (0.013) 0.207 (0.013) 0.105 (0.010)
1000 0.196 (0.013) 0.473 (0.016) 0.515 (0.016) 0.165 (0.012)
5000 0.970 (0.005) 1.000 (0.000) 1.000 (0.000) 0.941 (0.007)

1.0 300 0.165∗ (0.012) 0.249 (0.014) 0.271 (0.014) 0.145∗ (0.011)
500 0.183 (0.012) 0.449 (0.016) 0.495 (0.016) 0.168 (0.012)
1000 0.432 (0.016) 0.843 (0.012) 0.880 (0.010) 0.372 (0.015)
5000 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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nificant difference between χ2
[2] and χ2

[1:2] for all sample sizes considered. Also,

χ2
PF is not significantly different from χ2

[rf ] for n = 500, 1000, 5000 neither of

which are competitive with χ2
[1:2] and χ2

[2].

The random forest method was also applied to first- and second-order

marginals, χ2
[rf[1:2]]

, and second-order marginals only, χ2
[rf[2]]

. Although both of

these test statistics attained satisfactory empirical Type I error rates at the

5% level, compared to χ2
[rf ] they did not perform well for large sample sizes

and thus no further investigation into these statistics was performed when

cross-classified tables exhibited sparseness. These results are demonstrated in

Table 7. Corresponding standard errors for the values in the table are given in

parentheses next to each value. There is no significant difference in empirical

power rates between χ2
[rf[1:2]]

and χ2
[rf[2]]

. Furthermore, due to the overall poor

performance of tests based on the random forest method the implementation of

the moment approximation discussed previously in Chapter 2 was not pursued.

2.2. Study 1b. In Study 1a it was discovered that components for first-

order marginals did not contribute to the power of the test. However, in

Study 1b the model under the null hypothesis was the constrained version of

the categorical variable factor model, i.e., all slopes equal, and estimation of

intercepts under this model may be affected by constraints on slopes, which

in turn might result in first-order marginal components actually contributing

to the power of the test.

Empirical Type I error rates at the nominal 5% level are given in Table

8 for all statistics considered when the model under the null hypothesis is the

constrained version of the categorical variable factor model. As discussed in
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Table 7. Empirical power rates of χ2
[rf[1:2]]

and χ2
[rf[2]]

when the model under

the null hypothesis is the categorical variable factor model with no parameter

constraints and the alternative of interest is A11 at the nominal 5% level for

n = 5000. Corresponding standard errors are given in parentheses next to

each value.

Two-way χ2
[rf[1:2]]

χ2
[rf[2]]

effect size (b)

0.2 0.052 (0.007) 0.049 (0.006)
0.4 0.069 (0.008) 0.072 (0.008)
0.6 0.173 (0.012) 0.161 (0.012)
0.8 0.483 (0.016) 0.507 (0.016)
1.0 0.852 (0.010) 0.866 (0.011)

Study 1a, proportions in Table 8 multiplied by 1000 are binomial with success

proportion 0.05 and 1000 trials. Moreover, if the true Type I error probability

is 0.05, 0.007 provides the standard error value. In particular, it can be seen

that the Type I error rates for all test statistics for various sample sizes are not

significantly different from the nominal 5% level, which enabled reliable power

comparisons for the small sample sizes considered. Even though the data in

the cross-classified contingency tables when n = 300, 500 are sparse, χ2
PF had

the expected Type I error rate, which is possible if cell probabilities are fairly

uniform.

QQ-plots of the empirical quantiles for χ2
PF and χ2

[2] when n = 300

are attached in Appendix C in Figure 9 and Figure 12, respectively, along

with corresponding estimated slopes and p-values. The Kolmogorov-Smirnov
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Table 8. Empirical Type I error rates of χ2
PF , χ

2
[1:2], χ

2
[2] and χ2

[rf ] when the

model under the null hypothesis is the constrained version of the categorical

variable factor model.

Sample size χ2
PF

χ2
[1:2]

χ2
[2]

χ2
[rf ]

300 0.053 0.049 0.055 0.046
500 0.058 0.040 0.049 0.055
1000 0.057 0.044 0.045 0.050
5000 0.060 0.050 0.055 0.052

goodness-of-fit test statistic for the chi-square distribution to the χ2
PF data was

found to be D = 0.0186 with corresponding p-value of 0.8793. Similarly, the

Kolmogorov-Smirnov statistic for χ2
[2] was D = 0.0145 with p-value of 0.9850.

Thus, both test statistics support the asymptotic chi-square distribution for

the considered chi-squared statistics when expected cell frequencies in the joint

distribution are small.

QQ-plots for χ2
[1:2] when n = 300 and n = 500 are also attached in Ap-

pendix C in Figure 10 and Figure 11, respectively, along with corresponding

estimated slopes and p-values. In the case of n = 300 even though the QQ-plot

does not suggest poor asymptotic chi-square approximation for this statistic

the Kolmogorov-Smirnov goodness-of-fit test produced a test statistic value

of D = 0.0584 having a p-value of 0.0022, which suggests the contrary. On

the other hand, for n = 500 even though the QQ-plot suggests a somewhat

poor fit, the Kolmogorov-Smirnov goodness-of-fit test statistic (D = 0.0385

with p-value 0.1036) did not detect problems with the chi-square approxima-

tion. As discussed in Study 1a, due to the overall poor performance of tests
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based on the random forest method the implementation of the moment ap-

proximation discussed previously in Chapter 2 was not pursued. Summary of

the Kolmogorov-Smirnov goodness-of-fit test p-values of χ2
PF , χ

2
[1:2] and χ2

[2]

are given in Table 9.

Table 9. Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values

of χ2
PF , χ

2
[1:2] and χ2

[2]. ‘*’ denotes significant p-values at the 5% significance

level. ‘-’ denotes that the test was not performed for the given sample size.

Sample size χ2
PF

χ2
[1:2]

χ2
[2]

300 0.7893 0.0022∗ 0.9850
500 - 0.1036 -

Table 10 shows asymptotic power rates when the model under the null

hypothesis is the constrained version of the categorical variable factor model

and the alternative of interest is A11 at the nominal 5% level for χ2
PF , χ

2
[1:2] and

χ2
[2]. From Table 10 it can be seen that asymptotic power rates increase with in-

creasing two-way effect size and increasing sample size. Table 10 also suggests

that there is an unsubstantial difference in asymptotic power between χ2
[1:2]

and χ2
[2], so components for first-order marginals do not appear to contribute

to the power of the test. χ2
PF is outperformed by both χ2

[1:2] and χ2
[2], for all

sample sizes. For small sample sizes n = 300, 500, 1000 asymptotic power rates

for χ2
PF are generally half those of χ2

[1:2] and χ2
[2]. Graphs of asymptotic power

versus a two-way effect size of χ2
PF , χ

2
[1:2] and χ2

[2] for n = 300, 500, 1000, 5000

are attached in Appendix D.

Table 11 shows empirical power rates when the model under the null hy-
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Table 10. Asymptotic power rates of χ2
PF , χ

2
[1:2] and χ2

[2] when the model under

the null hypothesis is the constrained version of the categorical variable factor

model and the alternative of interest is A11 at the nominal 5% level.

Two-way Sample size χ2
PF

χ2
[1:2]

χ2
[2]

effect size (b)

0.2 300 0.050 0.050 0.050
500 0.050 0.050 0.050
1000 0.050 0.051 0.051
5000 0.052 0.054 0.055

0.4 300 0.051 0.053 0.054
500 0.052 0.055 0.056
1000 0.055 0.061 0.063
5000 0.078 0.122 0.132

0.6 300 0.057 0.066 0.068
500 0.062 0.078 0.082
1000 0.075 0.114 0.124
5000 0.252 0.584 0.640

0.8 300 0.070 0.101 0.109
500 0.087 0.148 0.162
1000 0.138 0.301 0.337
5000 0.802 0.994 0.997

1.0 300 0.098 0.182 0.202
500 0.144 0.316 0.353
1000 0.301 0.676 0.729
5000 0.999 1.000 1.000

pothesis is the constrained version of the categorical variable factor model and

the alternative of interest is A11 at the nominal 5% level for χ2
PF , χ

2
[1:2], χ

2
[2] and

χ2
[rf ] when n = 300, 500, 1000, 5000. Corresponding standard errors are given

in parentheses next to each value. Comparing asymptotic power rates in Table

10 to empirical power rates in Table 11, shows that empirical power rates are

generally not significantly different from asymptotic power rates for all statis-

tics considered. Empirical power rates in Table 11 for χ2
PF and χ2

[rf ] are not
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significantly different from each other, irrespective of the two-way effect size

and sample size. χ2
[1:2] did not result in significantly higher power compared to

χ2
[2] as initially suspected. The initial thought was that first-order marginals

would contain useful information about lack-of-fit because of the constraint.

The estimators of the intercepts may be biased, so first-order marginals may

not be fit well. In such case, components for first-order marginals may con-

tribute to the power of the test. It can be seen from Table 11, that χ2
[2] is not

affected by sparseness in this case. On the other hand, for n = 300 although

the size of the test is accurate for χ2
[1:2] the Kolmogorov-Smirnov goodness-of-

fit test detected problems with the chi-square approximation for this sample

size. Moreover, for n = 500, 1000, 5000 there is no significant difference be-

tween χ2
[1:2] and χ2

[2] for all two-way effect sizes considered. For scenarios with a

two-way effect sizes of 0.2, 0.4, 0.6 and small sample sizes there is no significant

difference between any of the test statistics considered. However, χ2
PF and χ2

rf

are not competitive with test statistics defined on marginal frequencies when

a two-way effect is greater than 0.6 and increasing sample sizes. As in Study

1a, results of Study 1b also showed that first-order marginal components do

not contribute to the power of the test.

Even though some sets of parameters produce cell frequencies where the

effects of sparseness are not seen, as the case above, some parameter values

on the other hand do reveal adverse effects of sparseness. Table 12 shows

empirical Type I error rates for two sets of parameters when the model under

the null hypothesis is the constrained version of the categorical variable factor

model and the alternative of interest is A11 with two parameter value matrices
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Table 11. Empirical power rates of χ2
PF , χ

2
[1:2], χ

2
[2] and χ2

[rf ] when the model

under the null hypothesis is the constrained version of the categorical variable

factor model and the alternative of interest is A11 at the nominal 5% level.

Corresponding standard errors are given in parentheses next to each value.

Two-way Sample χ2
PF

χ2
[1:2]

χ2
[2]

χ2
[rf ]

effect size (b) size

0.2 300 0.044 (0.006) 0.035 (0.006) 0.044 (0.006) 0.047 (0.007)
500 0.059 (0.007) 0.045 (0.007) 0.046 (0.007) 0.045 (0.007)
1000 0.059 (0.007) 0.046 (0.007) 0.053 (0.007) 0.048 (0.007)
5000 0.061 (0.008) 0.058 (0.007) 0.054 (0.007) 0.054 (0.007)

0.4 300 0.056 (0.007) 0.056 (0.007) 0.058 (0.007) 0.058 (0.007)
500 0.058 (0.007) 0.043 (0.006) 0.045 (0.007) 0.049 (0.007)
1000 0.059 (0.007) 0.044 (0.006) 0.057 (0.007) 0.047 (0.007)
5000 0.067 (0.008) 0.096 (0.009) 0.113 (0.010) 0.061 (0.008)

0.6 300 0.054 (0.007) 0.049 (0.007) 0.062 (0.008) 0.054 (0.007)
500 0.066 (0.008) 0.080 (0.009) 0.099 (0.009) 0.059 (0.007)
1000 0.081 (0.009) 0.102 (0.010) 0.120 (0.010) 0.081 (0.009)
5000 0.247 (0.014) 0.547 (0.016) 0.556 (0.016) 0.204 (0.013)

0.8 300 0.068 (0.008) 0.085 (0.009) 0.094 (0.009) 0.062 (0.008)
500 0.103 (0.010) 0.136 (0.011) 0.149 (0.011) 0.092 (0.009)
1000 0.145 (0.011) 0.251 (0.014) 0.253 (0.014) 0.106 (0.010)
5000 0.807 (0.012) 0.995 (0.002) 0.986 (0.004) 0.700 (0.014)

1.0 300 0.108 (0.010) 0.159 (0.012) 0.181 (0.012) 0.093 (0.009)
500 0.145 (0.011) 0.283 (0.014) 0.302 (0.015) 0.115 (0.010)
1000 0.310 (0.015) 0.638 (0.015) 0.640 (0.015) 0.244 (0.014)
5000 0.999 (0.001) 1.000 (0.000) 1.000 (0.000) 0.996 (0.002)
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given by

θ1 =



0.50 0.25 1.00

0.95 0.00 1.00

0.50 −0.50 1.00

2.00 −0.75 1.00

0.5 −0.25 1.00


, (4.4)

and

θ2 =



0.75 0.05 1.00

1.00 0.25 1.00

0.50 −0.05 1.00

1.00 −0.75 1.00

0.50 −0.25 1.00


. (4.5)

For both sets of parameter values, Type I error rates for χ2
PF are inflated

at the nominal 1%, 5% and 10% levels, which demonstrates the adverse effects

of sparseness for n = 300.

Table 12. Empirical Type I error rates of χ2
PF , χ

2
[1:2] and χ2

[2] when the model

under the null hypothesis is the constrained version of the categorical variable

factor model with parameter value matrices given by (4.4) and (4.5) respec-

tively, for n = 300.

Parameter χ2
PF χ2

[1:2] χ2
[2]

values 1% 5% 10% 1% 5% 10% 1% 5% 10%

θ1 0.069 0.121 0.174 0.014 0.044 0.092 0.099 0.038 0.097
θ2 0.071 0.142 0.183 0.012 0.052 0.091 0.010 0.058 0.106
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3. Three-way Association Effects

The primary focus of Study 2 was comparing the powers of χ2
PF , orthog-

onal components, χ2
[1:2], χ

2
[2] and χ2

[2:3], and χ2
[rf ] using the categorical variable

factor model when the lack-of-fit was in a three-way association not accounted

for by a single latent variable. Study 2 consists of two sub-studies, Study

2a and Study 2b. In Study 2a, the model under the null hypothesis was the

categorical variable factor model given by

Ho : π = π(θ),θ =



α1,1 β1,1

α2,1 β2,1

α3,1 β3,1

...
...

αp,1 βp,1


. (4.6)

In Study 2b, the model under the null hypothesis was the constrained version

of the categorical variable factor model given by

Ho : π = π(θ),θ =



α1,1 β

α2,1 β

α3,1 β

...
...

αp,1 β


. (4.7)

Because Study 2 also uses a composite null hypothesis, the orthogonal com-

ponents were calculated from expression (3.2). Powers for the selected test

statistics are calculated when the alternative to Ho included a three-way as-

sociation not accounted for by a single latent variable model. Answering the

question of how well these selected test statistics might perform when sample
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sizes were large and not sparse (n = 1000) and when sample sizes were small

and sparse (n = 100, 300, 500) was the goal of this study.

The log-linear version of the model described in expression (2.15) has

the advantage that it is convenient to demonstrate the influence of higher-

order interactions (in particular a three-way association in this study) and to

estimate the model with widely used software. Consequently, for the purpose

of calculating cell frequencies under the alternative hypothesis, the log-linear

form of the model was used. Power calculations and simulations were per-

formed using the logistic form of the model as described previously.

In both Study 2a and Study 2b, cell frequencies were generated from

the log-linear model given in expression (2.15) with

λ = 0.5,

λY1
1 = −0.15,

λY2
1 = −0.10,

λY3
1 = 0,

λY4
1 = 0.10,

λY5
1 = 0.15,

λ
YiYj

11 = λ
YiYj

00 = −λ
YiYj

01 = −λ
YiYj

10 = 0.2, for i, j = 1, 2, 3, 4, 5,

and,

λY2Y3Y4
001 = λY2Y3Y4

010 = λY2Y3Y4
100 = λY2Y3Y4

111 = −λY2Y3Y4
000 = −λY2Y3Y4

011 =

−λY2Y3Y4
101 = −λY2Y3Y4

110 = k, where the values of k investigated were

{0, 0.025, 0.050, 0.075, 0.100, 0.125, 0.150, 0.175}.

It was suspected that both χ2
[1:2] and χ2

[2] would perform poorly as the

lack-of-fit is in third-order marginals, and they only extend to second-order
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marginals. Moreover, since the random forest method was applied to all

marginals it may be able to identify this misfit in a three-way association,

unlike χ2
[1:2] and χ2

[2]. The expectation was that power calculations for χ2
[2:3]

and χ2
PF would be fairly equal when data were not sparse for 5 variables as

χ2
PF has degrees of freedom given by 25− 10− 1 = 21 and χ2

[2:3] has 20 degrees

of freedom from the sum of 10 second-order and 10 third-order marginals.

The Study 2 design was as follows:

• Ho model: Categorical variable factor model

• Number of variables: p = 5

• Number of categories: 2

• Sample sizes: n = 100, 300, 500, 1000

• Number of samples for the Monte Carlo simulations: 1000

In this study, 5 variables, each at 2 categories resulted in tables with 25 = 32

cells which in turn for sample sizes n = 100, 300, 500 is likely to produce cross-

classified contingency tables that are sparse in nature.

For evaluating the Type I error rate, a true model was fitted and Monte

Carlo simulations were performed. To assess the power of a test, a false model

was specified. Asymptotic power was computed for all statistics except when

the random forest method was applied since the number of components is

unknown at the outset. Monte Carlo simulations were performed in order to

approximate power and Type I error rates when the random forest method
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was used. Monte Carlo simulations were also used to evaluate the accuracy of

the asymptotic power calculations.

4. Results

4.1. Study 2a. The focus of Study 2a was comparing components de-

fined on marginals, χ2
[1:2], χ

2
[2] and χ2

[2:3], to χ
2
PF and χ2

[rf ]. Using the alternative

described in (2.15), data were generated for 5 variables, each at 2 categories,

for the large sample case of n = 1000. However, the investigation of compo-

nents prior to performing any simulations revealed that for three-way associ-

ation values components were not calculated nor ordered correctly when the

QR decomposition was applied. Namely, prior to any Type I error or power

calculations it was imperative that components obtained from the QR decom-

position were checked against calculations of components obtained from the

sequential sum of squares discussed in Chapter 3, Section 1. Since the QR de-

composition is an alternative to the sequential sums of squares approach, the

two methods should produce the same orthogonal components. The mismatch

in component calculations between the QR decomposition and the sequential

sum of squares was discovered in this study, irrespective of the parameters

values selected.

To demonstrate this mismatch in component calculations, parameter

values described previously were used with k = 0.15 in expression (2.15).

The generated three-way association was between variables Y2, Y3, and Y4

and should manifest in a ‘large’ magnitude for component 22 when the QR

decomposition was applied. Only χ2
[2:3], which has 20 degrees of freedom and
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is the sum of components 6 through 25 inclusive, should have included this

large component. However, as can be seen from the components below, the

largest component was not component 22.

γ̂2
(QR decomposition) =



3.622

1.084

0.041

0.003

0.008

0.002

0.005

0.071

0.693

0.151

0.067

0.007

0.003

1.024

0.070

0.213

1.688

0.001

2.831

0.463

5.472

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000



.

On the other hand, components below were obtained from the sequential sum

of squares and resulted in the ‘largest’ value for component 22, as should have

been the case.
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γ̂2
(Sequential sum of squares) =



3.622

1.084

0.041

0.003

−

0.003

0.005

0.072

0.693

0.147

0.068

0.010

0.003

0.000

−

0.030

0.021

1.323

0.000

1.151

0.798

8.441

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000



.

The variance inflation factors, VIF, for each of the components are

shown in Table 13. A ‘-’ is recorded for components 5 and 15 since they are

both linear combinations of other components. Namely, there is a linear de-

pendency among first- as well as second-order marginal proportions such that

they both sum to 1. Therefore, the number of orthogonal components for

first-order marginals is one less than the number of first-order marginals. The

same is true for the number of components for second-order marginals. Specif-

ically, there are linear dependencies among the columns of M. Large variance
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inflation factors for the first 15 components suggest severe collinearity among

the columns of M. The QR decomposition as a result fails in the calculation

as well as the ordering of components. Unlike the QR decomposition which

does not detect linear dependencies or make any adjustments, the sequential

sum of squares are calculated using Goodnight’s (1978) sweep operator. As

discussed in Chapter 3, the critical issue here is not the sequential sum of

squares versus the QR decomposition. The issue here is writing the code for

the decomposition to deal with linear dependencies as does the Goodnight’s

code for the sweep operator. The routines for the QR decomposition in R and

in SAS IML are not written to check carefully for linear dependencies. They

both could be written to check for linear dependencies, and then they would

be as reliable as the sweep operator in PROC REG in SAS which is used to

obtain the sequential sums of squares.

Even though the sequential sum of squares produced orthogonal com-

ponents in an accurate order which could have been used in the calculations of

Type I error rates and power, since the primary focus of this research was in

using the QR decomposition no further work was pursued including a three-

way association. This problem was not encountered in other studies as there

were no linear dependencies detected among the columns of M.

4.2. Study 2b. Given the outcome of Study 2a, the focus of Study 2b

was to produce components accurately calculated and ordered when the model

under the null hypothesis is the constrained version of the categorical factor

variable model with a single latent variable. Since the constrained model ex-

hibits less collinearity than the unconstrained version of the model the hope
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Table 13. Variance inflation factors for the components obtained from the

sequential sum of squares when the model under the null hypothesis is the

unconstrained version of the categorical variable factor model.

Component VIF

1 76627489032
2 1.052305 ∗ 1012
3 1.064977 ∗ 1012
4 91823087638
5 -
6 1387846
7 573399
8 135991
9 425046
10 727454
11 231749
12 585507
13 2564.886
14 127171
15 -
16 12.240
17 4.599
18 10.486
19 2.427
20 2.662
21 2.401
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was that components obtained using the QR decomposition would be calcu-

lated correctly. Data were generated under the same conditions as in Study

2a. The fitted model has 25 degrees of freedom, and once again component 22

was not the largest in magnitude.

γ̂2
(QR decomposition) =



3.701

1.074

0.057

0.000

0.020

0.006

0.012

0.071

0.126

0.003

0.004

0.227

0.000

0.000

0.060

0.812

0.201

1.229

1.497

8.605

0.000

0.006

0.003

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000



.
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On the other hand, components below were obtained from the sequential sum

of squares and resulted in the ‘largest’ value for component 22 once again.

γ̂2
(Sequential sum of squares) =



3.701

1.074

0.057

−

−

0.000

0.020

0.006

0.693

0.012

0.126

0.003

0.004

0.227

−

0.030

0.060

0.812

0.201

1.229

1.497

8.605

0.000

0.006

−

0.000

0.000

0.000

0.000

0.000

0.000



.

The variance inflation factors, VIF, for each of the components are

shown in Table 14. A ‘-’ is recorded for components 4, 5, 15 and 25 since

they are linear combinations of other components. The presence of the lin-

ear dependency among components was explained previously in Study 2a.

Large variance inflation factors were obtained only for the first 3 components.

Although severe collinearity among the components is present, components
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Table 14. Variance inflation factors for components obtained from the sequen-

tial sum of squares when the model under the null hypothesis is the constrained

version of the categorical variable factor model.

Component VIF

1 236349
2 597210
3 84319
4 -
5 -
6 5.459
7 4.555
8 4.542
9 3.900
10 3.087
11 3.307
12 2.959
13 2.761
14 2.534
15 -
16 3.737
17 3.435
18 3.160
19 3.439
20 3.193
21 3.007
22 2.814
23 2.655
24 2.528
25 -

85



obtained from the QR decomposition are much ‘closer’ in magnitude to com-

ponents obtained from the sequential sum of squares unlike the case with the

unconstrained version of the model in Study 2a. Overall, using the QR de-

composition in Study 2b fails in the calculation as well as the ordering of

components when the model under the null hypothesis is the constrained cat-

egorical variable factor model. Even though the sequential sum of squares

produced orthogonal components in an accurate order which could have been

used in the calculations of Type I error rates and power, since the primary

focus of this research was in using the QR decomposition no further work was

pursued including a three-way association.
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Chapter 5: COMPARING NESTED MODELS

In this Chapter, Section 1 describes the study of the proposed methods

when the model misspecification is in parameter constraints. The categorical

variable factor model for large and sparse cross-classified contingency tables

was used. Section 2 presents results of that study.

1. Comparing Nested Models

The focus of Study 3 was comparing power for χ2
PF and LRdiff and test

statistics based on orthogonal components defined on marginals, χ2
[1:2], χ

2
[2] and

M2 for multi-category variables and large sparse contingency tables. Study 3

consists of two sub-studies, Study 3a and Study 3b. Study 3a considered two

cases, 5 variables, each at 2 categories and 5 variables, each at 3 categories,

when the model misspecification was in parameter constraints using the cat-

egorical variable factor model. Study 3b investigated the case of larger and

sparse cross-classified contingency tables when 10 dichotomous variables were

considered. Essentially, Study 3b is an extension of Study 3a with a larger

number of variables, which in turn resulted in larger cross-classified tables and

a large number of orthogonal components, i.e., 210 = 1024 components.

Results from Agresti and Yang (1987) showed that the likelihood ratio

difference statistic performs well in sparse tables. So, it may be a competitor

in terms of power to a test based on lower-order marginal components when

data are sparse. As discussed in Chapter 2, the LRdiff statistic was calculated

from expression (2.7), where M1 is the constrained version of the categorical

variable factor model and M2 is the unconstrained version. Agresti and Yang



(1987) also demonstrated that the likelihood ratio difference statistic behaves

quite well for some sparse two-way tables.

In common log-linear models, the expected cell counts for the categor-

ical variable factor model are functions of cell counts in the lower-dimensional

marginal tables that are the minimal sufficient statistics. These tables are

much less sparse than the full table (Agresti and Yang 1987).

The comparison of χ2
[1:2] and χ2

[2] to the closely related statistic M2 is

also investigated in this study. LRdiff may have higher power followed by χ2
[2]

and M2, which should have fairly close power rates for the scenario considered.

1.1. Multi-category Variables. Test statistics investigated in Study 3a

were χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2]. In Study 3a the model under the null hy-

pothesis for 5 variables, each at 2 categories was the constrained categorical

variable factor model with the null hypothesis as given by expression (4.7)

Ho : π = π(θ),θ =



α1,1 β

α2,1 β

α3,1 β

...
...

αp,1 β


,

and the alternative of interest was as given by expression (4.6)

A13 : π = π(θ),θ =



α1,1 β1,1

α2,1 β2,1

α3,1 β3,1

...
...

αp,1 βp,1


.
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The model under the null hypothesis for 5 variables, each at 3 categories was

the constrained categorical variable factor model with the null hypothesis as

given by expression (4.2)

Ho : π = π(θ),θ =



α1,1 α1,2 β

α2,1 α2,2 β

α3,1 α3,2 β

...
...

...

αp,1 αp,2 β


,

and the alternative of interest was as given by expression (4.1)

A23 : π = π(θ),θ =



α1,1 α1,2 β1,1

α2,1 α2,2 β2,1

α3,1 α3,2 β3,1

...
...

...

αp,1 αp,2 βp,1


.

This alternative departs from the null model due to the misspecified parameter

constraints. It was suspected that with the constrained version of the model,

estimation of intercepts would be affected and therefore, components defined

on first-order marginals might contribute to the power of the test. The question

of how well the selected statistics might perform when variables are multi-

category in nature when sample sizes were large and not sparse and when

samples sizes were small and sparse was investigated. Furthermore, LRdiff

may outperform all other statistics in terms of power as it will usually have a

smaller number of degrees of freedom, as discussed previously in Chapter 2.

Study 3a design was as follows:
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• Ho model: Categorical variable factor model

• Number of variables: p = 5

• Number of categories: 2, 3

• Sample sizes: 5 variables, each at 2 categories, n = 100, 300, 500, 1000

5 variables, each at 3 categories, n = 300, 500, 1000, 5000

• Number of samples for the Monte Carlo simulations: 1000

In this study, 5 variables, each at 2 categories resulted in tables with

25 = 32 cells which in turn for sample sizes n = 100, 300 are likely to produce

cross-classified tables that are sparse in nature. Moreover, 5 variables, each at

3 categories resulted in 35 = 243 cells which for sample sizes n = 300, 500 are

also likely to produce cross-classified tables that are sparse in nature. Because

Study 3a uses a composite null hypothesis the orthogonal components were

calculated from expression (3.2).

In Study 3a probabilities were calculated for the categorical variable

factor model described in expression (2.9). The parameters for the alternative

model with dichotomous variables were

α1 = (0.75, 0.75, 0.75, 0.75, 0.75)T ,

and

β1 = (0.5, 0.5, 1, 0.75, 1)T .

For variables with 3 categories the parameters were

α1 = (0.75, 0.75, 0.75, 0.75, 0.75)T ,

α2 = (−0.25,−0.25,−0.25,−0.25,−0.25)T ,
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and

β1 = (0.5, 0.5, 1, 0.75, 1)T .

For evaluating the Type I error rate, a true model was fitted and Monte

Carlo simulations were performed. To assess the power of a test, a false model

was specified. Asymptotic power was computed for all test statistics using

the power calculations described earlier in Section 2 of Chapter 3. Monte

Carlo simulations were used to evaluate the accuracy of the asymptotic power

calculations.

1.2. Large Cross-classified Contingency Tables with a Large Number of

Variables. The primary interest of Study 3b was investigating how well χ2
PF ,

LRdiff , M2, χ
2
[1:2] and χ2

[2] performed when sample sizes were very sparse for

a large number of variables. In Study 3b the model under the null hypothesis

was the constrained categorical variable factor model with the null hypothesis

as given by expression (4.7)

Ho : π = π(θ),θ =



α1,1 β

α2,1 β

α3,1 β

...
...

αp,1 β


,
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and the alternative of interest was as given by expression (4.6)

A33 : π = π(θ),θ =



α1,1 β1,1

α2,1 β2,1

α3,1 β3,1

...
...

αp,1 βp,1


.

Study 3b design was as follows:

• Ho model: Categorical variable factor model

• Number of variables: p = 10

• Number of categories: 2

• Sample sizes: n = 300, 500, 750, 1000

• Three levels (0.5, 1.0, 1.5) for the true average slope parameter β̄1

• Number of samples for the Monte Carlo simulations: 1000

In this study, 10 variables, each at 2 categories resulted in tables with 210 =

1024 cells which in turn for sample sizes n = 300, 500, 750, 1000 are likely to

produce cross-classified tables that are sparse in nature. Because this study

uses a composite null hypothesis the orthogonal components were calculated

from expression (3.2).

For evaluating the Type I error rate, a true model was fitted and Monte

Carlo simulations were performed. To assess the power of a test, a false model

was specified. The population parameters for the model under the alternative
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hypothesis were

α1 = (−2.7,−2.1,−1.5,−0.9,−0.3, 0.3, 0.9, 1.5, 2.1, 2.7)T ,

and three levels of the true average slope parameter with β̄1 = 0.5, 1.0, 1.5.

Namely, the average of the true slope parameters of column vector

β1 = (0.35, 0.25, 0.8, 0.5, 0.6, 0.6, 0.5, 0.8, 0.25, 0.35)T is β̄1 = 0.5,

β1 = (0.35, 0.25, 0.8, 0.5, 0.6, 0.6, 0.5, 0.8, 0.25, 0.35)T is β̄1 = 1,

and

β1 = (2.0, 1.35, 1.65, 1.0, 1.5, 1.5, 1.0, 1.65, 1.35, 2.0)T is β̄1 = 1.5.

Asymptotic power was computed for all test statistics using the power

calculations described earlier in Chapter 3. Monte Carlo simulations were used

to evaluate the accuracy of the asymptotic power calculations.

2. Results

2.1. Study 3a. The primary focus of Study 3a was comparing power for

test statistics based on components defined on marginals, χ2
[1:2] and χ2

[2], χ
2
PF

and LRdiff for a multi-category setting: i.e., 5 variables, each at 2 categories

and 5 variables, each at 3 categories.

Empirical Type I error rates at nominal significance levels

(1%, 5%, 10%) are given in Table 15 when the model under the null hypothesis

is the constrained version of the categorical variable factor model for 5 vari-

ables, each at 2 categories. If the true Type I error probabilities are 0.01, 0.05

and 0.10, then 0.003, 0.007 and 0.009 provide respective standard error values

that can be used when comparing the table entries to the nominal levels. In

particular, it can be seen that the Type I error rates for all statistics considered
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when n = 100 are significantly different only from the nominal 10% level. How-

ever, all power comparisons were performed at the 5% significance level which

is not significantly different from its respective nominal level. On the other

hand, empirical Type I error rates for all test statistics are not significantly

different from their respective nominal levels for n = 300, 500, 1000, which

enabled reliable power comparisons for the small sample sizes considered.

Table 15. Empirical Type I error rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the

model under the null hypothesis is the constrained version of the categorical

variable factor model for 5 variables, each at 2 categories. ‘*’ denotes Type I

error rates significantly different from the specified nominal level.

χ2
PF LRdiff

Sample size 1% 5% 10% 1% 5% 10%

100 0.008 0.049 0.081∗ 0.011 0.062 0.121∗

300 0.012 0.045 0.096 0.012 0.057 0.106
500 0.010 0.052 0.098 0.008 0.049 0.098
1000 0.013 0.054 0.107 0.010 0.050 0.099

χ2
[1:2] χ2

[2]

Sample size 1% 5% 10% 1% 5% 10%

100 0.012 0.036 0.076∗ 0.012 0.042 0.081∗

300 0.013 0.056 0.089 0.012 0.060 0.114
500 0.011 0.053 0.094 0.011 0.053 0.098
1000 0.009 0.051 0.112 0.014 0.055 0.104

A QQ-plot of the empirical quantiles for χ2
[1:2] when n = 100 is at-

tached in Appendix E in Figure 21 along with corresponding estimated slope

and p-values. The Kolmogorov-Smirnov statistic for χ2
[1:2] was D = 0.0286

with p-value of 0.3886. Thus, the test statistic supports the asymptotic chi-

square distribution for the considered chi-squared statistic when expected cell
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frequencies in the joint distribution are small.

QQ-plots for χ2
PF when n = 100 and n = 300 are also attached in

Appendix E in Figure 17 and Figure 18, respectively, along with corresponding

estimated slopes and p-values. In the case of n = 100 the QQ-plot and the

Kolmogorov-Smirnov goodness-of-fit test that produced a test statistic value

of D = 0.0457 having a p-value of 0.0305 suggest poor asymptotic chi-square

approximation for this statistic. However, when n = 300 neither the QQ-plot

nor the Kolmogorov-Smirnov goodness-of-fit test statistic (D = 0.0180 with

p-value 0.9024) detected problems with the chi-square approximation even

though the contingency table was sparse in nature.

Similarly, QQ-plots for χ2
LRdiff

when n = 100 and n = 300 are also

attached in Appendix E in Figure 19 and Figure 20, respectively, along with

corresponding estimated slopes and p-values. In the case of n = 100 the QQ-

plot and the Kolmogorov-Smirnov goodness-of-fit test produced a test statistic

value of D = 0.0527 having a p-value of 0.0078, suggest poor asymptotic chi-

square approximation for this statistic. However, when n = 300 even though

the QQ-plot appears to be very poor fit for this statistic the Kolmogorov-

Smirnov goodness-of-fit test statistic (D = 0.0197 with p-value 0.8345) did

not detect problems with the chi-square approximation.

Furthermore, QQ-plots for χ2
[2] when n = 100 and n = 300 are also

attached in Appendix E in Figure 22 and Figure 23, respectively, along with

corresponding estimated slopes. In the case of n = 100 the QQ-plot and the

Kolmogorov-Smirnov goodness-of-fit test that produced a test statistic value

of D = 0.4132 having a p-value of 10−4 suggest poor asymptotic chi-square
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approximation for this statistic. However, when n = 300 even though the

QQ-plot appears to be very poor fit for this statistic the Kolmogorov-Smirnov

goodness-of-fit test statistic (D = 0.0241 with p-value 0.6070) did not detect

problems with the chi-square approximation. Summary of the Kolmogorov-

Smirnov goodness-of-fit test p-values of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] are given

in Table 16.

Table 16. Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values

of χ2
PF , LRdiff , χ2

[1:2] and χ2
[2]. ‘*’ denotes significant p-values at the 5%

significance level. ‘-’ denotes that the test was not performed for the given

sample size.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

100 0.0305∗ 0.0078∗ 0.3886 10−4∗

300 0.9024 0.8345 - 0.6070

Table 17 shows asymptotic power rates for χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] at

a nominal 5% level when the model under the null is the constrained version of

the categorical variable factor model and the alternative of interest is A13 for 5

variables, each at 2 categories. As seen from Table 17, LRdiff is more powerful

compared to χ2
PF , χ

2
[1:2] and χ2

[2] for n = 500, 1000. χ2
[2] generally outperforms

both χ2
PF and χ2

[1:2] for n = 300, 500, 1000 and χ2
[1:2] outperforms χ2

PF . χ
2
[1:2] is

outperformed by χ2
[2] which was surprising as it was suspected that when the

model under the null hypothesis was the constrained version of the categorical

variable factor model estimation of intercepts would be affected and, therefore,

that components defined on first-order marginals might contribute to the power
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Table 17. Asymptotic power rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the

model under the null hypothesis is the constrained version of the categorical

variable factor model and the alternative of interest is A13 for 5 variables, each

at 2 categories at a nominal 5% level.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

100 0.067 0.100 0.073 0.079
300 0.110 0.225 0.132 0.154
500 0.163 0.364 0.206 0.246
1000 0.332 0.672 0.424 0.501

of the test. Furthermore, slightly higher power rates of χ2
[2] compared to χ2

[1:2]

suggest that components defined on first-order marginals do not contribute to

the power of the test as initially suspected and appear to dilute the test with

superfluous degrees of freedom to a minor degree.

Comparing asymptotic power rates in Table 17 to empirical power rates

in Table 18 shows that empirical power rates are generally not significantly

different from asymptotic power rates for all statistics. In terms of power,

LRdiff is significantly different from all other statistics for n = 300, 500, 1000.

Moreover, no other statistic is competitive with LRdiff . There is no signifi-

cant difference in empirical power between χ2
[1:2] and χ2

[2] for all sample sizes

suggesting that components defined on first-order marginals do not contribute

to the power of the test. Empirical power rates for χ2
PF , χ

2
[1:2] and χ2

[2] are not

significantly different for n = 300. However, as sample size increases differ-

ence in empirical power rates between χ2
PF and both χ2

[1:2] and χ2
[2] becomes
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Table 18. Empirical power rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the model

under the null hypothesis is the constrained version of the categorical variable

factor model and the alternative of interest is A13 for 5 variables, each at 2

categories at a nominal 5% level. Corresponding standard errors are given in

parentheses next to each value.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

100 0.057 (0.007) 0.121 (0.010) 0.071 (0.008) 0.087 (0.009)
300 0.115 (0.010) 0.251 (0.014) 0.125 (0.010) 0.144 (0.011)
500 0.154 (0.011) 0.366 (0.015) 0.196 (0.013) 0.234 (0.013)
1000 0.306 (0.015) 0.656 (0.015) 0.410 (0.015) 0.436 (0.016)

significant.

Table 19 shows empirical Type I error rates at nominal significance lev-

els (1%, 5%, 10%) when the model under the null hypothesis is the constrained

version of the categorical variable factor model for 5 variables, now each at

3 categories. As discussed above, if the true Type I error probabilities are

0.01, 0.05 and 0.10, then 0.003, 0.007 and 0.009 provide respective standard

error values that can be used when comparing the table entries to the nominal

levels. In particular, it can be seen that the Type I error rates for χ2
[1:2] and χ2

[2]

when n = 300 are significantly different only from the nominal 10% level. How-

ever, all power comparisons were performed at the 5% significance level which

is not significantly different from its respective nominal level. On the other

hand, empirical Type I error rates for all test statistics are not significantly

different from their respective nominal levels for n = 300, 500, 1000, which
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enabled reliable power comparisons for the small sample sizes considered.

Table 19. Empirical Type I error rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the

model under the null hypothesis is the constrained version of the categorical

variable factor model with 5 variables, each at 3 categories.

χ2
PF LRdiff

Sample size 1% 5% 10% 1% 5% 10%

300 0.013 0.058 0.106 0.011 0.041 0.100
500 0.009 0.053 0.097 0.013 0.049 0.101
1000 0.010 0.045 0.086 0.007 0.047 0.094
5000 0.009 0.051 0.099 0.010 0.049 0.101

χ2
[1:2] χ2

[2]

Sample size 1% 5% 10% 1% 5% 10%

300 0.005 0.047 0.080∗ 0.014 0.066 0.120∗

500 0.012 0.049 0.097 0.019 0.056 0.105
1000 0.011 0.053 0.098 0.008 0.039 0.088
5000 0.010 0.050 0.104 0.009 0.051 0.102

QQ-plots of the empirical quantiles for χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when

n = 300 are attached in Appendix F in Figure 24 to Figure 27, respectively,

along with corresponding estimated slopes and p-values. The Kolmogorov-

Smirnov goodness-of-fit test statistic for the chi-square distribution to the

χ2
PF data was found to be D = 0.0348 with corresponding p-value of 0.1775.

Similarly, the Kolmogorov-Smirnov statistic for LRdiff was D = 0.0381 with

p-value of 0.1092, for χ2
[1:2] was D = 0.0202 with p-value of 0.8082, and for

χ2
[2] was D = 0.0278 with p-value of 0.4206. Thus, all test statistics support

the asymptotic chi-square distribution for the considered chi-squared statistics

when expected cell frequencies in the joint distribution are small. Summary

of the Kolmogorov-Smirnov goodness-of-fit test p-values of χ2
PF , LRdiff χ2

[1:2]
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and χ2
[2] are given in Table 20.

Table 20. Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values

of χ2
PF , LRdiff , χ2

[1:2] and χ2
[2]. ‘*’ denotes significant p-values at the 5%

significance level.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

300 0.1775 0.1092 0.8082 0.4206

Table 21 shows asymptotic power rates for χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2]

at a nominal 5% level when the model under the null is the constrained version

of the categorical variable factor model and the alternative of interest is A23

for 5 variables, each at 3 categories. From Table 21 it can be seen that LRdiff

is more powerful than χ2
PF , χ

2
[1:2] and χ2

[2], especially for small sample sizes.

χ2
[2] generally outperforms both χ2

PF and χ2
[1:2] for all sample sizes, and χ2

[1:2]

outperforms χ2
PF . As with the 5 variable, 2 category scenario above, slightly

higher power rates of χ2
[2] compared to χ2

[1:2] suggest that even with multiple

categories components defined on first-order marginals do not contribute to

the power of the test and appear to dilute the test with superfluous degrees of

freedom to a minor degree.

Comparing asymptotic power rates in Table 21 to empirical power rates

in Table 22, shows that empirical power rates are generally not significantly

different from asymptotic power rates for all statistics. In terms of power

LRdiff is significantly different from all other statistics for all sample sizes.

Moreover, no other statistic is competitive with LRdiff . There is no signifi-
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Table 21. Asymptotic power rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the

model under the null hypothesis is the constrained version of the categorical

variable factor model and the alternative of interest is A23 for 5 variables, each

at 3 categories at a nominal 5% level.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

300 0.077 0.358 0.120 0.131
500 0.100 0.573 0.187 0.208
1000 0.176 0.891 0.403 0.450
5000 0.930 1.000 1.000 1.000

Table 22. Empirical power rates of χ2
PF , LRdiff , χ

2
[1:2] and χ2

[2] when the model

under the null hypothesis is the constrained version of the categorical variable

factor model and the alternative of interest is A23 for 5 variables, each at 3

categories. Corresponding standard errors are given in parentheses next to

each value.

Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2]

300 0.078 (0.008) 0.371 (0.015) 0.100 (0.009) 0.113 (0.010)
500 0.098 (0.009) 0.593 (0.016) 0.169 (0.012) 0.192 (0.012)
1000 0.164 (0.012) 0.874 (0.010) 0.398 (0.015) 0.439 (0.016)
5000 0.925 (0.008) 1.000 (0.000) 0.999 (0.000) 0.999 (0.000)
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cant difference in empirical power between χ2
[1:2] and χ2

[2] for all sample sizes

considered. As with the 5 variables, each at 2 categories, no significant dif-

ference in empirical power between χ2
[2] and χ2

[1:2] suggests that components

defined on first-order marginals yet again do not contribute substantially to

the power of the test. Note, simulations with 1000 samples was not sufficiently

large enough to detect the small difference between χ2
[1:2] and χ2

[2] in terms of

asymptotic power. χ2
PF is not competitive with either χ2

[1:2] or χ
2
[2].

2.2. Study 3b. The primary focus of Study 3b was comparing power for

χ2
PF , LRdiff , M2 and test statistics based on components defined on marginals,

χ2
[1:2] and χ2

[2], for large and sparse cross-classification contingency tables with

10 dichotomous variables. The corresponding degrees of freedom for χ2
PF ,

LRdiff , M2, χ
2
[1:2] and χ2

[2] were 1003, 9, 44, 55 and 45, respectively.

Empirical Type I error rates at nominal significance levels

(1%, 5%, 10%) are given in Table 23 for χ2
PF when the model under the null

hypothesis is the constrained version of the categorical variable factor model.

If the true Type I error probabilities are 0.01, 0.05 and 0.10, then 0.003, 0.007

and 0.009 provide respective standard error values that can be used when com-

paring the table entries to the nominal level for all number of samples with

converged iterations. In the simulation study depending on the various con-

ditions considered, some iterations in the optimization procedure used in the

estimation of the parameters in the categorical variable factor model did not

converge. The number of samples with converged iterations were recorded for

each scenario for all sample sizes considered. In particular, it can be seen that

the Type I error rates for χ2
PF are significantly different from the correspond-
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Table 23. Empirical Type I error rates of χ2
PF when the model under the

null hypothesis is the constrained version of the categorical variable factor

model with 10 variables, each at 2 categories. ‘*’ denotes Type I error rates

significantly different from the specified nominal level.

χ2
PF

β̄1 Sample size No. samples 1% 5% 10%

0.5

300 999 0.180∗ 0.199∗ 0.206∗

500 1000 0.210∗ 0.235∗ 0.242∗

750 1000 0.211∗ 0.227∗ 0.236∗

1000 1000 0.214∗ 0.234∗ 0.247∗

1.0

300 996 0.193∗ 0.202∗ 0.207∗

500 994 0.201∗ 0.222∗ 0.232∗

750 994 0.209∗ 0.230∗ 0.238∗

1000 995 0.204∗ 0.233∗ 0.249∗

1.5

300 983 0.192∗ 0.200∗ 0.208∗

500 982 0.223∗ 0.234∗ 0.241∗

750 981 0.221∗ 0.240∗ 0.249∗

1000 975 0.230∗ 0.244∗ 0.252∗

ing nominal levels (1%, 5%, 10%) for all sample sizes and all values of the true

average slope parameter values. The significant Type I error rates demonstrate

the already well known adverse effects of sparseness on PGF. Thus, no reliable

power comparisons of χ2
PF with other statistics can be made in this study.

Empirical Type I error rates at nominal significance levels (1%, 5%, 10%) are

given in Table 24 for LRdiff , χ
2
[1:2], χ

2
[2] and M2 when the model under the null

hypothesis is the constrained version of the categorical variable factor model.

Convergence problems occurred as noted in Table 23. Note, convergence prob-

lems were not observed in previous studies. Empirical Type I error rates for

χ2
[1:2], χ

2
[2] and M2 are not significantly different from their respective nominal
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Table 24. Empirical Type I error rates of LRdiff , χ
2
[1:2], χ

2
[2] and M2 when the

model under the null hypothesis is the constrained version of the categorical

variable factor model with 10 variables, each at 2 categories. ‘*’ denotes Type

I error rates significantly different from the specified nominal level.

LRdiff χ2
[1:2]

β̄1 Sample size 1% 5% 10% 1% 5% 10%

0.5

300 0.028∗ 0.115∗ 0.222∗ 0.007 0.032∗ 0.077∗

500 0.024∗ 0.086∗ 0.160∗ 0.020 0.053 0.090
750 0.017∗ 0.069∗ 0.132∗ 0.011 0.046 0.091
1000 0.020∗ 0.067∗ 0.125∗ 0.013 0.045 0.095

1.0

300 0.015 0.057 0.115 0.014 0.049 0.101
500 0.013 0.064 0.115 0.009 0.046 0.092
750 0.012 0.055 0.120 0.003 0.040 0.095
1000 0.012 0.056 0.105 0.013 0.047 0.110

1.5

300 0.010 0.054 0.110 0.009 0.044 0.094
500 0.010 0.051 0.095 0.012 0.059 0.098
750 0.013 0.061 0.114 0.012 0.056 0.100
1000 0.013 0.059 0.106 0.012 0.054 0.105

χ2
[2] M2

β̄1 Sample size 1% 5% 10% 1% 5% 10%

0.5

300 0.007 0.030∗ 0.067∗ 0.006 0.030∗ 0.064∗

500 0.012 0.049 0.082 0.009 0.041 0.086
750 0.005 0.048 0.089 0.008 0.048 0.093
1000 0.010 0.051 0.088 0.011 0.050 0.098

1.0

300 0.013 0.056 0.097 0.013 0.050 0.092
500 0.011 0.045 0.091 0.009 0.043 0.096
750 0.007 0.041 0.097 0.009 0.043 0.096
1000 0.010 0.051 0.112 0.009 0.051 0.103

1.5

300 0.012 0.047 0.100 0.008 0.048 0.112
500 0.015 0.056 0.113 0.016 0.051 0.105
750 0.011 0.048 0.108 0.011 0.045 0.114
1000 0.014 0.052 0.101 0.007 0.046 0.112
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levels for n = 500, 750, 1000. However, it can be seen that the Type I error

rates for LRdiff when the true average slope parameter β̄1 = 0.5 for all sam-

ple sizes are significantly different from their respective nominal levels. The

combination of small sample size and small value of the true average slope

parameter results in bias in the maximum likelihood slope estimator, which

most directly affects the LRdiff since this statistic compares the constrained

model result to the unconstrained model result. In order to determine that the

presence of bias caused the significant Type I error rates observed in Table 24,

actual parameter values were fitted when computing the test statistics. The

problem did not persist under such conditions.

In this study, the empirical mean square error, MSE, is calculated as

M̂SE(θ) =
1

Number of simulations

Number of simulations∑
i=1

(θ̂i − θ)2,

and the empirical bias, BIAS, is calculated as

B̂IAS(θ̂, θ) =
1

Number of simulations

Number of simulations∑
i=1

(θ̂i − θ).

Table 25 shows MSE and BIAS when the model is the unconstrained

version of the categorical variable factor model when the true average slope

parameter β̄1 = 0.5 for n = 300, 500, 750, 1000. Corresponding standard errors

are given in parentheses below each value. From Table 25 it can be seen that

both MSE and BIAS decrease with increasing sample size when β̄1 = 0.5.

Table 26 shows MSE and BIAS for n = 500 and the true average

slope parameters β̄1 = (0.5, 1.0, 1.5). From Table 26 it can be seen that MSE

decreases with increasing true average slope parameter for n = 500. The fitted

unconstrained version of the model seems to produce bias in the direction that
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Table 25. MSE and BIAS when the model under the null hypothesis is the un-

constrained version of the categorical variable factor model for 10 dichotomous

variables when β̄1 = 0.5 for n = 300, 500, 750, 1000. Corresponding standard

errors are given in parentheses below each value.

MSE when β̄1 = 0.5

Sample β1,1 β2,1 β3,1 β4,1 β5,1 β6,1 β7,1 β8,1 β9,1 β10,1

size

300 4.166 6.792 4.984 9.431 5.898 5.251 3.807 2.357 4.133 3.492
(0.069)(0.085)(0.075)(0.105)(0.081)(0.076)(0.065)(0.053)(0.068)(0.064)

500 1.796 0.264 0.983 0.519 0.461 1.116 1.096 1.535 0.608 1.128
(0.047)(0.023)(0.036)(0.029)(0.028)(0.038)(0.038)(0.043)(0.031)(0.038)

750 0.100 0.454 0.101 0.847 0.229 0.122 0.100 0.080 0.070 0.109
(0.019)(0.027)(0.019)(0.034)(0.023)(0.020)(0.019)(0.019)(0.018)(0.020)

1000 0.082 0.060 0.042 0.066 0.030 0.155 0.123 0.039 0.053 0.079
(0.019)(0.018)(0.017)(0.018)(0.017)(0.021)(0.020)(0.017)(0.018)(0.018)

BIAS when β̄1 = 0.5

Sample β1,1 β2,1 β3,1 β4,1 β5,1 β6,1 β7,1 β8,1 β9,1 β10,1

size

300 0.423 0.279 0.332 0.410 0.370 0.333 0.218 0.159 0.300 0.366
500 0.162 0.029 0.090 0.048 0.062 0.105 0.074 0.096 0.076 0.095
750 0.020 0.032 0.013 0.045 0.033 0.018 0.013 0.028 0.009 0.034
1000 0.018 0.016 0.004 0.024 0.004 0.015 0.015 0.006 0.012 0.001
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Table 26. MSE and BIAS when the model under the null hypothesis is the

unconstrained version of the categorical variable factor model for 10 dichoto-

mous variables for n = 500 and β̄1 = 0.5, 1.0, 1.5. Corresponding standard

errors are given in parentheses below each value.

MSE for n = 500

β̄1 β1,1 β2,1 β3,1 β4,1 β5,1 β6,1 β7,1 β8,1 β9,1 β10,1

0.5 1.796 0.264 0.983 0.519 0.461 1.116 1.096 1.535 0.608 1.128
(0.047)(0.023)(0.036)(0.029)(0.028)(0.038)(0.038)(0.043)(0.031)(0.038)

1.0 0.083 0.054 0.049 0.322 0.924 0.038 0.038 0.045 0.054 0.077
(0.034)(0.033)(0.033)(0.037)(0.045)(0.033)(0.033)(0.033)(0.033)(0.033)

1.5 0.085 0.054 0.048 0.296 0.906 0.033 0.035 0.048 0.054 0.073
(0.050)(0.049)(0.049)(0.052)(0.057)(0.047)(0.048)(0.049)(0.049)(0.049)

BIAS for n = 500

β̄1 β1,1 β2,1 β3,1 β4,1 β5,1 β6,1 β7,1 β8,1 β9,1 β10,1

0.5 0.162 0.029 0.090 0.048 0.062 0.105 0.074 0.096 0.076 0.095
1.0 0.032 0.009 0.016 0.031 0.065 0.015 0.009 0.025 0.029 0.013
1.5 0.044 0.003 0.014 0.032 0.048 -0.008 0.003 0.023 0.029 0.012

the magnitude of the slopes are too large for small sample size and small true

average slope parameter β̄1 values. This bias decreases with both increasing

sample sizes and β̄1 values.

The constrained version of the categorical variable factor model on the

other hand, does not demonstrate such severe bias in the maximum likelihood

slope estimators. Table 27 shows MSE and BIAS when β̄1 = 0.5 for n =

300, 500, 750, 1000. As can be seen from Table 27, MSE is much smaller and

more nearly constant than with the unconstrained version of the categorical
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Table 27. MSE and BIAS when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables when β̄1 = 0.5 for n = 300, 500, 750, 1000. Corresponding standard

errors are given in parentheses below each value.

MSE when β̄1 = 0.5

Sample size β

300 0.009
(0.003)

500 0.005
(0.002)

750 0.003
(0.002)

1000 0.003
(0.002)

BIAS when β̄1 = 0.5

Sample size β

300 -0.003
500 -0.001
750 -0.001
1000 -0.001
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variable factor model and decreases with increasing sample sizes when β̄1 = 0.5.

Table 28 shows MSE and BIAS for n = 500 and β̄1 = 0.5, 1.0, 1.5.

From Table 28 it can be seen that MSE decreases with increasing true slope

parameter values for n = 500 and is smaller with the constrained version of

the model than with the unconstrained version. Bias of the estimator in the

fitted constrained version of the model is also significantly smaller and constant

compared to the unconstrained version of the model.

Table 28. MSE and BIAS when the model under the null hypothesis the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 500 and β̄1 = 0.5, 1.0, 1.5. Corresponding standard errors are

given in parentheses below each value.

MSE for n = 500

β̄1 β1

0.5 0.005
(0.002)

1 0.004
(0.002)

1.5 0.004
(0.002)

BIAS for n = 500

β̄1 β1

0.5 -0.002
1 0.002
1.5 0.002

QQ-plots of the empirical quantiles for LRdiff for n = 300 and β̄1 =
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1.0 and 1.5 and for n = 500 and β̄1 = 1.5 are attached in Appendix G in Figure

28 to Figure 30, respectively, along with corresponding estimated slopes and

p-values. In the case of n = 300 and β̄1 = 1.0, the QQ-plot suggests poor

asymptotic chi-square approximation for this statistic, and the Kolmogorov-

Smirnov goodness-of-fit test produced a value of D = 0.0471 having a p-value

of 0.0023, confirming poor asymptotic chi-square approximation. However,

when n = 500 and β̄1 = 1.0 even though the QQ-plot suggest very poor

fit the Kolmogorov-Smirnov goodness-of-fit test statistic (D = 0.0271 with

p-value 0.4543) did not detect problems with the chi-square approximation.

The Kolmogorov-Smirnov statistic for LRdiff when n = 300 and β̄1 = 1.5

was D = 0.0180 with p-value of 0.9018. Thus, the test statistics supports

the asymptotic chi-square distribution for LRdiff statistic when expected cell

frequencies in the joint distribution are small (n = 300) and the true average

slope parameter values are β̄1 = 1.0 and 1.5.

QQ-plots for χ2
[1:2] for all sample sizes when β̄1 = 0.5, n = 300 and

when β̄1 = 1.0, 1.5 are also attached in Appendix H in Figure 31 to Figure

36, respectively. In the case of n = 300, 500, 750 and β̄1 = 0.5, the QQ-plots

suggest poor asymptotic chi-square approximation for this statistic and the

Kolmogorov-Smirnov goodness-of-fit tests produced values of D = 0.1171 hav-

ing a p-value of 10−4, D = 0.0854 having a p-value of 10−4, and D = 0.0624

having a p-value of 0.0001 confirming poor asymptotic chi-square approxi-

mation. However, when n = 1000 and β̄1 = 0.5 neither the QQ-plot nor

the Kolmogorov-Smirnov goodness-of-fit test statistic (D = 0.0242 with p-

value 0.6006) detected problems with the chi-square approximation. The
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Kolmogorov-Smirnov goodness-of-fit test statistic for the chi-square distribu-

tion for χ2
[1:2] when n = 300 and β̄1 = 1.0 was found to be D = 0.0343 with

corresponding p-value of 0.1890. Similarly, the Kolmogorov-Smirnov statistic

for χ2
[1:2] when n = 300 and β̄1 = 1.5 was D = 0.0379 with p-value of 0.9995.

Thus, the test statistics support the asymptotic chi-square distribution for

χ2
[1:2] statistic when expected cell frequencies in the joint distribution are small

(n = 300) and the true average slope parameter values are β̄1 = 1.0 and 1.5.

Similarly, QQ-plots for χ2
[2] for all sample sizes when β̄1 = 0.5, n = 300

and when β̄1 = 1.0, 1.5 are attached in Appendix H in Figure 37 to Figure

42. In the case of n = 300, 500, 750 when β̄1 = 0.5 the QQ-plots suggest poor

asymptotic chi-square approximation for this statistic, and the Kolmogorov-

Smirnov goodness-of-fit tests produced values of D = 0.1011 having a p-value

of 10−4, D = 0.0761 having a p-value of 10−4, and D = 0.0541 having a p-value

of 0.0058 confirming poor asymptotic chi-square approximation. However,

when n = 1000 and β̄1 = 0.5 neither the QQ-plot nor the Kolmogorov-Smirnov

goodness-of-fit test statistic (D = 0.0203 with p-value 0.8063) detected prob-

lems with the chi-square approximation. The Kolmogorov-Smirnov goodness-

of-fit test statistic for the chi-square distribution for χ2
[2] when n = 300 and

β̄1 = 1.0 was found to be D = 0.0133 with corresponding p-value of 0.9946.

Similarly, the Kolmogorov-Smirnov statistic for χ2
[2] when n = 300 and β̄1 = 1.5

was D = 0.0274 with p-value of 0.4398. Thus, both test statistics support the

asymptotic chi-square distribution for χ2
[2] statistics when expected cell fre-

quencies in the joint distribution are small and the true slope parameter is

small in magnitude.
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Furthermore, QQ-plots for M2 for all sample sizes when β̄1 = 0.5,

n = 300 and β̄1 = 1.0, 1.5 are also attached in Appendix H in Figure 43 to

Figure 48, respectively. In the case of n = 300, 500, 750 and β̄1 = 0.5 the QQ-

plots suggest poor asymptotic chi-square approximation for this statistic and

the Kolmogorov-Smirnov goodness-of-fit tests produced test statistic values of

D = 0.1051 having a p-value of 10−4, D = 0.0801 having a p-value of 10−4, and

D = 0.0647 having a p-value of 0.0005 confirming poor asymptotic chi-square

approximation. However, when n = 1000 and β̄1 = 0.5 neither the QQ-plot

nor the Kolmogorov-Smirnov goodness-of-fit test statistic (D = 0.0381 with

p-value 0.0968) detected problems with the chi-square approximation. The

Kolmogorov-Smirnov goodness-of-fit test statistic for the chi-square distribu-

tion to the M2 data for n = 300 when β̄1 = 1.0 was found to be D = 0142 with

corresponding p-value of 0.9880. Similarly, the Kolmogorov-Smirnov statistic

for M2 for n = 300 when β̄1 = 1.5 was D = 0.0425 with p-value of 0.0537.

Thus, the test statistics supports the asymptotic chi-square distribution for

M2 statistic when expected cell frequencies in the joint distribution are small

(n = 300) and the true average slope parameter values are β̄1 = 1.0 and 1.5.

Power comparisons are not reliable for χ2
PF for all conditions considered and

for χ2
LRdiff

when β̄1 = 0.5 as Type I error rates are confounded with power.

Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values of χ2
PF ,

LRdiff , χ
2
[1:2], χ

2
[2] and M2 are given in Table 29.

Table 30 shows asymptotic power rates at a nominal 5% level for χ2
PF ,

LRdiff , χ
2
[1:2], χ

2
[2] and M2 for n = 300, 500, 750, 1000 when β̄1 = 0.5, 1.0, 1.5.

However, as can be seen from Table 30 when β̄1 = 1.0, 1.5 irrespective of
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Table 29. Summary of the Kolmogorov-Smirnov goodness-of-fit test p-values

of LRdiff , χ
2
[1:2], χ

2
[2] and M2. ‘*’ denotes significant p-values at the 5% signif-

icance level. ‘-’ denotes that the test was not performed for the given sample

size.

β̄1 Sample size LRdiff χ2
[1:2]

χ2
[2] M2

0.5 300 - 10−4∗ 10−4∗ 10−4∗

500 - 10−4∗ 10−4∗ 10−4∗

750 - 0.0001∗ 0.0058∗ 0.0005∗

1000 - 0.6006 0.8063 0.0968
1.0 300 0.0023∗ 0.1890 0.9946 0.9880

500 0.4543 - - -
1.5 300 0.9018 0.9995 0.4398 0.0537

sample size LRdiff is more powerful than all other statistics. Asymptotic

power for both χ2
[2] and M2 is generally identical and increases with increasing

true slope parameter values and increasing sample size. Similarly, power for

χ2
[1:2] closely follows both χ2

[2] and M2. Moreover, as discussed in Study 3a,

slightly higher power rates of χ2
[2] compared to χ2

[1:2] suggest that components

defined on first-order marginals do not significantly contribute to the power of

the test as initially suspected and appear to dilute the test with superfluous

degrees of freedom to a minor degree. Asymptotic power rates for χ2
PF are not

comparable to other statistics under any conditions due to extremely inflated

Type I error rates discovered previously.

Table 31 shows empirical power rates at a nominal 5% level for χ2
PF ,

LRdiff , χ
2
[1:2], χ

2
[2] and M2 for n = 300, 500, 750, 1000 when β̄1 = 0.5, 1.0, 1.5

along with corresponding standard errors. Comparing empirical power rates
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Table 30. Asymptotic power rates of χ2
PF , LRdiff , χ

2
[1:2], χ

2
[2] and M2 when the

model under the null hypothesis is the constrained version of the categorical

variable factor model and the alternative of interest is A33 for 10 dichotomous

variables for n = 300, 500, 750, 1000 when β̄1 = 0.5, 1.0, 1.5 at a nominal 5%

level. ‘*’ denotes Type I error rates significantly different from the nominal

level.

β̄1 Sample size χ2
PF LRdiff χ2

[1:2]
χ2
[2] M2

0.5 300 0.059∗ 0.174∗ 0.093∗ 0.098∗ 0.099∗

500 0.066∗ 0.283∗ 0.130 0.141 0.142
750 0.075∗ 0.429∗ 0.185 0.206 0.208
1000 0.085∗ 0.568∗ 0.252 0.281 0.281

1.0 300 0.090∗ 0.673 0.318 0.353 0.355
500 0.127∗ 0.910 0.566 0.619 0.614
750 0.186∗ 0.988 0.812 0.854 0.858
1000 0.258∗ 0.999 0.938 0.958 0.959

1.5 300 0.097∗ 0.729 0.371 0.412 0.414
500 0.143∗ 0.941 0.651 0.705 0.703
750 0.215∗ 0.994 0.881 0.914 0.914
1000 0.303∗ 1.000 0.971 0.982 0.983

in Table 31 to asymptotic power rates in Table 30, it can be seen that the

empirical power rates are generally not significantly different from asymptotic

power rates for all statistics considered for conditions when β̄1 = 1.0, 1.5.

Empirical power of χ2
[1:2] is significantly different from both χ2

[2] and M2 with

increasing sample size and increasing true slope parameter values. Higher

power of M2 compared to χ2
[1:2] can be attributed to the number of first- and

second-order marginals used to obtain either statistic. M2 uses first- and

second-order marginals that result in a total of 44 degrees of freedom while
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Table 31. Empirical power rates of χ2
PF , LRdiff , χ

2
[1:2], χ

2
[2] and M2 when the

model under the null hypothesis is the constrained version of the categorical

variable factor model and the alternative of interest is A33 for 10 dichotomous

variables for n = 300, 500, 750, 1000 when β̄1 = 0.5, 1.0, 1.5 at a nominal 5%

level. Corresponding standard errors are given in parentheses below each value.

‘*’ denotes Type I error rates significantly different from the nominal level.

β̄1 Sample sizeNo. samples χ2
PF LRdiff χ2

[1:2]
χ2
[2] M2

0.5 300 999 0.244∗ 0.261∗ 0.095∗ 0.105∗ 0.112∗

(0.014) (0.014) (0.009) (0.010) (0.010)
500 1000 0.273∗ 0.345∗ 0.134 0.156 0.164

(0.014) (0.015) (0.011) (0.011) (0.012)
750 1000 0.262∗ 0.472∗ 0.190 0.209 0.205

(0.014) (0.016) (0.012) (0.013) (0.013)
1000 1000 0.309∗ 0.564∗ 0.201 0.272 0.286

(0.015) (0.016) (0.013) (0.014) (0.014)
1.0 300 996 0.201∗ 0.677 0.302 0.343 0.350

(0.013) (0.015) (0.015) (0.015) (0.015)
500 995 0.238∗ 0.909 0.532 0.592 0.591

(0.014) (0.009) (0.016) (0.016) (0.016)
750 993 0.221∗ 0.988 0.818 0.862 0.856

(0.013) (0.003) (0.012) (0.011) (0.011)
1000 997 0.248∗ 0.999 0.940 0.968 0.968

(0.014) (0.001) (0.008) (0.006) (0.006)
1.5 300 980 0.147∗ 0.721 0.328 0.385 0.378

(0.011) (0.014) (0.015) (0.016) (0.015)
500 980 0.148∗ 0.935 0.589 0.653 0.651

(0.011) (0.008) (0.016) (0.015) (0.015)
750 981 0.131∗ 0.993 0.876 0.916 0.915

(0.011) (0.003) (0.011) (0.009) (0.009)
1000 982 0.134∗ 0.995 0.970 0.993 0.992

(0.011) (0.003) (0.005) (0.003) (0.003)
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χ2
[1:2] uses all first- and second-order marginals resulting in a total of 55 degrees

of freedom. The larger number of degrees of freedom for χ2
[1:2] dilute its power.

There is no significant difference between χ2
[2] and M2 in terms of empirical

power. However, the preference of χ2
[2] over M2 is due to χ2

[2]’s capability of

isolating second-order marginals only, unlike M2, which includes first- and

second-order marginals and cannot isolate any second-order marginals, since

it is not constructed out of components. When χ2
[2] is used, second-order

associations could be isolated from first-order associations.
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Chapter 6: COMPARING ORTHOGONAL POLYNOMIAL COMPONENTS

TO ORTHOGONAL COMPONENTS DEFINED ON MARGINALS

Section 1 discusses the study of orthogonal polynomials components

relative to components based on marginal frequencies. Section 2 presents

results of that study.

1. Orthogonal Polynomial Components Compared to Orthogonal Compo-

nents Defined on Marginals

The primary focus of Study 4 was on comparing orthogonal polynomial

components to components defined on marginal frequencies. Included were

the statistics χ2
PF , χ

2
[1:2], χ

2
[2] and V̂ 2

i , i = 4, 5, 6, 7: i.e., orthogonal polynomial

components of order 4, 5, 6 and 7, for 5 variables each at 2 categories. As

discussed in Chapter 2, when the conditions for large sample theory are met,

it is known that PGF tests are used to test goodness-of-fit when particular

alternatives are not specified. However, if they were specified, more powerful

directional tests could be applied. Consequently, tests based on orthogonal

polynomial components may need fewer components and may have higher

power than traditional tests (Rayner and Best 1989). Even though the lack-of-

fit for a cross-classified table often occurs in lower-order marginals as discussed

earlier in Chapter 2 (Salomaa 1990), χ2
[1:2] and χ2

[2] are still in a sense omnibus

tests that are more focused than χ2
PF , but still probably not optimal as they

may include components that are not related to the lack-of-fit. Thus, the

purpose of this study was to use orthogonal polynomial components which

may be able to form a limited-information statistic that is more focused on



the lack-of-fit than tests based on the marginals.

As discussed earlier in Chapter 2, orthogonal polynomial components

can usually detect lack-of-fit in the first four components, which may pro-

vide a test with higher power than unfocused tests. χ2
[1:2] and χ2

[2] may have

lower power compared to orthogonal polynomial components due to superflu-

ous degrees of freedom, since they include all the first- and/or second-order

marginals. However, orthogonal polynomial components of higher-order may

be required if the cells are not ordered in a way that is associated with the lack-

of-fit. Orthogonal polynomial components have been previously applied to

one-dimensional tables for testing goodness-of-fit for a specified univariate dis-

tribution. The applications under consideration here include high-dimensional

multi-way tables, and it may be difficult to order the cells of the multi-way

table in a way that would be conducive to a test on low-order components.

In general, with multi-way tables interpretations of orthogonal polynomial

components may not be the same as interpretations in the univariate case

where first-degree orthogonal polynomial components tend to detect change

in means, second-degree orthogonal polynomial components tend to detect

change in variance etc. (Eubank, LaRiccia, and Rosenstein 1987).

The comparison of orthogonal polynomial components to components

defined on marginals is conveniently implemented when the simple null hy-

pothesis is the model of equally correlated variables, i.e., all the slopes are

equal to 1 in the categorical variable factor model for 5 variables each at 2
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categories.. Ho is given by

Ho : π = π(θ),θ =



0 1

0 1

0 1

0 1

0 1


.

The model of equally correlated variables is another instance of the constrained

categorical variable factor model discussed in Chapter 3. The constrained

version of the model is a more realistic and useful model compared to equal

probable cells, where the slopes and intercepts are all set to 0, and there is

no way to order the cells, at least not with relation to the underlying latent

variable. Because the study uses a simple null hypothesis, the orthogonal

components defined on marginals were calculated from expression (3.8).

Since the hypothesis of equally correlated variables does not have equal

probable cells, orthogonal polynomial component calculations from Emerson

(1968), as used by Rayner and Best (1989), were implemented. The method

for obtaining orthogonal polynomial components is given in Chapter 2 where

the xj used in the orthonormal functions g0(x), g1(x), ..., gT (x) is a score value

for jth cell. The score for each cell is sometimes known as a factor score.

The score value was obtained from the likelihood function maximized over the

latent variable for each pattern with known parameters i.e., the log likelihood

function was maximized with respect to η,

log(L(η)) = log(n!) +
T∑

s=1

Ns log(πs(θ|η)),
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where L(η) is the likelihood function, πs(·) denotes the probability function for

the sth cell pattern as given in expression (2.10) and n =
∑T

s=1Ns is the sample

size. The fitted model is an example of a non-linear mixed model with fixed

parameters for the intercepts and slopes and random effect for the subjects

which is normally distributed. As such, another way to obtain the score values

is to use empirical Bayes predictors from the non-linear model (Searle, Casella,

and McCulloch 1992). These score values were used to order the cells. This

means that the cells were ordered from lowest to highest along the underlying

factor, in an attempt to correlate the lack-of-fit with the underlying factor.

There was no apparent natural way to order the frequencies for cells formed by

cross-classification of a large number of variables. Cells could be ordered by the

overall correct number of items scored: i.e., with possible values 0, 1, 2, 3, 4, 5.

However, this results in ties and only 6 possible outcomes limiting a polynomial

to order 6.

Power calculations were performed using a large sample theory ap-

proach to power as discussed earlier in Chapter 3 in order to investigate the

following five alternatives

A14 : π = π(θ),θ =



0 1

0 1

0 1

−0.5 1

0.5 1


,
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A24 : π = π(θ),θ =



0.5 1

−0.25 1

0 1

−0.25 1

0.5 1


,

A34 : π = π(θ),θ =



0 2

0 2

0 1

0 1

0 1


,

A44 : π = π(θ),θ =



0 1.25

0 1

0 2

0 0.75

0 1.5


,

and

A54 : π = π(θ),θ =



0 0.75

−0.25 1.25

0 1

−0.5 1.25

0.25 2


.

The alternatives A14 and A24 provide an avenue for investigating the effect of

fitting the null model which departs from the alternative model with respect
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to intercept parameters. A14 captures a small effect size with two non-zero

intercepts, since the departure of the null model from the true model is minor,

and A24 captures a larger effect size as the departure of the null model from the

alternative model is greater in this case. A34 and A44 give two alternatives

for investigating the effect of fitting the null model which departs from the

alternative model with respect to slope parameters. A34 investigates the case

where two variables have a large slope, and A44 captures unevenly distributed

slopes. A54 is an alternative for investigating the effect of fitting the null

model to data that departs from the alternative model with respect to both

intercept and slope parameters.

As discussed earlier, a test based on orthogonal polynomial components

may be more focused and have higher power than tests based on orthogonal

components defined on marginals. In fact, Rayner and Best (1989, p.62) stated

that in their experience “lower order alternatives occur more frequently than

higher order alternatives, so that unless there is some reason to expect higher

order alternatives, a low-order test should be used”. On the other hand, if the

ordering of the cells is not related to the lack-of-fit for the model under the null

hypothesis, tests based on orthogonal components for lower-order polynomials

may not detect the poor fit of the model. For the alternatives given above,

lack-of-fit is in the pair-wise associations among the manifest variables.

For evaluating the Type I error rate, a true model was fitted and Monte

Carlo simulations were performed. To assess the power of a test for the cat-

egorical variable factor model, known cell frequencies from the models under

null and alternative hypotheses were used to calculate power using the ap-
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proach that relies on the large sample approximation using the chi-squared

distribution. In this study, 5 variables each at 2 categories resulted in 25 = 32

cells which in turn for samples sizes n = 50, 100 are likely to produce cross-

classified tables that are sparse in nature. Overall, sample sizes considered

were n = 50, 100, 300, 500 in order to measure the performance of selected test

statistics both when sample sizes were large and not sparse and when sample

sizes were small and sparse.

2. Results

2.1. Study 4. Empirical Type I error rates at nominal 5% significance

level for χ2
PF , χ

2
[1:2], χ

2
[2], V̂

2
4 , V̂

2
5 , V̂

2
6 and V̂ 2

7 for 5 variables each at 2 categories

are given in Table 32. As discussed previously, the proportions in Table 32

multiplied by a 1000 are binomial with success proportion 0.05 and 1000 trials.

If the true Type I error probability is 0.05, 0.007 provides a standard error

value that can be used when comparing the table entries to the nominal level.

In particular, it can be seen that the Type I error rates for all test statistics

for various sample sizes are not significantly different from the nominal 5%

level, which enabled reliable power comparisons for the small sample sizes

considered. It is important to note that the empirical Type I error rates given

in Table 32 are not comparable to empirical Type I error rates given in Table

15 as the first uses a simple null hypothesis and the other uses a composite

null hypothesis.

Tables 33 and 34 depict asymptotic results for two alternatives for inves-

tigating the effect of fitting the null model which departs from the alternative
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Table 32. Empirical Type I error rates for χ2
PF , χ

2
[1:2], χ

2
[2], V̂

2
4 , V̂

2
5 , V̂

2
6 and

V̂ 2
7 when the model under the null hypothesis depicts equal correlation among

observed 5 variables each at 2 categories.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.061 0.059 0.058 0.059 0.061 0.062 0.061
100 0.053 0.049 0.053 0.053 0.052 0.054 0.055
300 0.051 0.051 0.050 0.055 0.053 0.053 0.053
500 0.052 0.052 0.049 0.049 0.050 0.052 0.051

model with respect to intercept parameters. A14 captures a small effect size

with two non-zero intercepts, since the departure of the null model from the

true model is minor and A24 captures a larger effect size as the departure of

the null model from the alternative model is greater in this case. Tests based

on orthogonal polynomial components required higher-degree polynomials to

achieve high power as the ordering of the cell frequencies was not informa-

tive about the lack-of-fit in both cases, as demonstrated in Tables 33 and 34,

where the orthogonal polynomial components have lower power compared to

χ2
PF , χ2

[1:2] and χ2
[2]. Overall, in both Tables 33 and 34, χ2

[1:2] outperforms

both χ2
[2] and χ2

PF for all sample sizes which did not match results discovered

in earlier studies, and χ2
[2] slightly outperforms χ2

PF . χ2
[1:2] has higher power

than χ2
[2] which indicates that some of the effect of change in the intercepts

was manifested in first-order marginals. The manifestation of the lack-of-fit in

first-order marginals can be attributed to parameter values being specified for

both the null and alternative hypotheses. Unlike in the earlier studies, Study
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4 uses the simple null hypothesis. In earlier studies slopes and intercepts were

estimated due to the composite null hypothesis, and results indicated that

second-order associations accounted for most of the lack-of-fit. For both, the

unconstrained and constrained versions of the models under the null hypothesis

in earlier studies, first-order marginals were almost perfectly fit which implied

that first-order components did not contribute to identification of model mis-

fit. This is not the case here with the simple null hypothesis, since intercepts

and slopes are not fitted but are specified. Consequently, first-order marginals

are not almost perfectly fit as the case with the composite null hypothesis,

and as a result, contribute to the lack-of-fit.

Table 33. Asymptotic power when the alternative of interest is A14. Investi-

gating the effect of misspecified intercept parameters.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.164 0.231 0.196 0.127 0.118 0.116 0.123
100 0.337 0.479 0.394 0.221 0.202 0.198 0.216
300 0.906 0.972 0.920 0.608 0.570 0.569 0.624
500 0.996 1.000 0.996 0.850 0.822 0.826 0.873

Table 35 and 36 depict results for two alternatives for investigating the

effect of fitting the null model which departs from the alternative model with

respect to slope parameters. A34 investigates the case where two variables have

a large slope, and A44 captures unevenly distributed slopes. Once again tests

based on orthogonal polynomial components required high-degree polynomials

to achieve high power. For both alternatives, χ2
[1:2] outperforms both χ2

PF and
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Table 34. Asymptotic power when the alternative of interest is A24. Investi-

gating the effect of misspecified intercept parameters.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.198 0.283 0.240 0.101 0.104 0.110 0.112
100 0.422 0.583 0.488 0.164 0.169 0.190 0.191
300 0.963 0.993 0.969 0.469 0.472 0.552 0.554
500 1.000 1.000 0.999 0.721 0.724 0.828 0.829

χ2
[2]. χ2

[2] performs worse in terms of power, compared to both χ2
[1:2] and χ2

PF

for all sample sizes. χ2
[1:2] has the highest power indicating that the lack-of-

fit is not only manifested in second-order marginals as initially suspected but

also in first-order marginals which did not match results discovered in earlier

studies. The manifestation of the lack-of-fit in first-order marginals has been

previously discussed above in relation to A14 and A24. Power is higher in

Table 36 than in Table 35 suggesting that all the test statistics become more

powerful as the slope effect increases in magnitude among the model variables.

This phenomenon is expected since the Ho model fits slopes equal to 1, and

the greater the departure from the true model the higher the power of the test

statistics.

Table 37 depicts results for investigating the effect of fitting the null

model which departs from the alternative model with respect to intercept

and slope parameters. In this setting, tests based on orthogonal polynomial

components become competitors to the other chi-squared statistics, as the

lack-of-fit seemed to be more related to the ordering of the cells. In general
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Table 35. Asymptotic power when the alternative of interest is A34. Investi-

gating the effect of misspecified slope parameters.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.113 0.150 0.075 0.079 0.081 0.085 0.091
100 0.204 0.292 0.104 0.112 0.118 0.127 0.140
300 0.662 0.821 0.255 0.267 0.294 0.333 0.386
500 0.922 0.979 0.431 0.433 0.483 0.545 0.626

Table 36. Asymptotic power when the alternative of interest is A44. Investi-

gating the effect of misspecified slope parameters.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.096 0.122 0.070 0.078 0.080 0.083 0.087
100 0.158 0.221 0.092 0.110 0.115 0.116 0.119
300 0.506 0.674 0.208 0.260 0.288 0.291 0.292
500 0.802 0.919 0.347 0.423 0.479 0.481 0.484

however, it is not clear how to interpret tests based on orthogonal polynomial

components in the case of multi-way contingency tables. χ2
[1:2] outperformed

χ2
PF , χ

2
[2] and V̂ 2

4 , for all sample sizes, for the very same reason outlined above

in the investigation of the effect of misspecified slope parameters. χ2
[2] is slightly

outperformed by V̂ 2
4 since first-order marginals do contain useful information

about the lack-of-fit. χ2
[1:2] does slightly better than the χ2

PF since χ2
PF is

diluted by superfluous degrees of freedom.

Overall, an attempt to correlate the lack-of-fit with the underlying fac-

tor was unsuccessful, as tests based on orthogonal polynomial components

required higher-order polynomials in order to achieve adequate power, which
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Table 37. Asymptotic power when the alternative of interest is A54. Investi-

gating the effect of misspecified intercept and slope parameters.

Sample size χ2
PF

χ2
[1:2]

χ2
[2] V̂ 2

4 V̂ 2
5 V̂ 2

6 V̂ 2
7

50 0.143 0.194 0.142 0.069 0.069 0.070 0.074
100 0.282 0.398 0.268 0.080 0.084 0.085 0.088
300 0.835 0.935 0.759 0.187 0.187 0.189 0.190
500 0.986 0.998 0.955 0.297 0.297 0.299 0.302

was not desired. Consequently, empirical power was not calculated for any

of the alternatives considered. Moreover, in general with multi-way contin-

gency tables interpretations of orthogonal polynomial components may not

be the same as interpretations in the univariate case. Thus, even in cases

when tests based on orthogonal polynomial components became competitors

to other statistics, they did not have a clear interpretation.
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Chapter 7: APPLICATIONS TO REAL LIFE DATA

Proposed limited-information test statistics based on orthogonal com-

ponents defined on marginal frequencies in this research were applied to a

real-life data set with sparse cell counts. The test statistic based on the ran-

dom forest method was also applied here. The main focus with this data set

was to assess how well the proposed statistics perform with respect to detect-

ing the lack-of-fit when data are sparse, as is frequently the case with real-life

psychological data.

The data used for this example are from the 38th round of the State

Survey conducted by the Institute for Public Policy and Michigan State Uni-

versity Social Research (2005). The survey was administrated by telephone to

949 Michigan citizens from 28 May to July 18, 2005. The focus of the survey

was on charitable giving and volunteer activities of Michigan households. Five

questions measured the public’s faith and trust in charity organizations. Re-

spondents were asked to what degree they agree with the following statements.

• “Charitable organizations are more effective now in providing services

than they were 5 years ago”

• “I place a low degree of trust in charitable organizations”

• “Most charitable organizations are honest and ethical in their use of

donated funds”

• “Generally, charitable organizations play a major role in making our

communities better places to live”



• “On the whole, charitable organizations do not do a very good job in

helping those who need help”

All questions have four response categories corresponding to “strongly agree”,

“somewhat agree”, “somewhat disagree”, and “strongly disagree”. For our

example the responses are coded from 1 to 4, with larger scores indicating less

favorable views of charities.

As discussed previously, in reality the constrained version of the cat-

egorical variable factor model with equal slopes is too restrictive. So, the

unconstrained version of the model was used. This data set has an extremely

large degree of sparseness with n/T ratio of 0.927. Moreover, 730 cells have

zero counts in this situation. In such cases the likelihood ratio statistic yields

a p-value of almost 1 and PGF a p-value of 10−4, very different conclusions.

Table 38 shows goodness-of-fit results for: χ2
PF , G

2, LRdiff , χ
2
[1:2], χ

2
[2],

M2 and χ2
[rf ] at the nominal 5% significance level. Moreover, it lists the test

Table 38. Goodness-of-fit results of χ2
PF , G

2, LRdiff , χ
2
[1:2], χ

2
[2], M2 and χ2

[rf ]

when the model under the null hypothesis is the categorical variable factor

model at the nominal 5% level.

Statistic Value df value/df p-value

χ2
PF 3220.547 1003 3 10−4

G2 879.800 1003 1 0.998
LRdiff 59.445 4 15 10−4

χ2
[1:2] 398.224 105 4 10−4

χ2
[2] 308.720 90 4 10−4

M2 347.252 85 4 10−4

χ2
[rf ] 3218.083 1014 3 10−4
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statistics and their corresponding value/df ratios to show that the order of the

ratios are comparable to the ordering of power as discovered in Study 1 and

Study 3. Furthermore, from the earlier research of nested models in Study 3

it was discovered that LRdiff performs well under sparse conditions as long as

the slope parameter estimates were not too small, which is the case here. Also,

from earlier results it was discovered that the asymptotic p-values for χ2
[2] and

M2 statistics are quite accurate when data are sparse. This is reflected in the

equivalent value/df ratio values of 4.

Although χ2
[1:2] also has value/df ratio of 4 it was discovered that this

test statistic should only be included when a simple null hypothesis is used

because it was discovered that first-order marginal components did not con-

tribute to the power when a composite null hypothesis was used. Thus, the

equivalent value/df ratio should not be taken to imply that χ2
[1:2] is as powerful

as χ2
[2] and M2.

Test statistics should not only be chosen based on power. χ2
[rf ] has a

value/df ratio of 3 which might imply that this statistic could be a competitor

to χ2
[2] and M2. However, ease of computation should also be an important

factor and including a test based on the random forest method with 45 = 1024

components resulted in intense and long computations.

Although in this case, the same conclusion would be reached by per-

forming χ2
PF or χ2

[2] and M2, earlier results show that a test based on second-

order marginals has higher power when the lack-of-fit is in the second-order

associations and is generally not affected by sparseness. Furthermore, since

the model does not fit well, the investigation of orthogonal components of χ2
[2]
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could reveal the source of misfit. The large components are shown in Table

39. All second-order orthogonal components in Table 39 are significantly dif-

ferent from 0 at the nominal 5% significance level. Unfortunately, meaningful

extraction of any trends in these patterns could not be obtained.

Table 39. Second-order orthogonal components when the model under the null

hypothesis is the categorical variable factor model is fit to data from the 38th

round of the State Survey.

Marginal Component γ̂2
k

Y2Y4(1, 1) 25.871
Y2Y4(1, 2) 15.668
Y2Y5(1, 1) 11.360
Y2Y5(2, 3) 46.255
Y3Y5(1, 1) 14.127
Y3Y5(3, 1) 11.355
Y4Y5(1, 2) 15.219
Y4Y5(2, 1) 13.201

As discussed in Chapter 3, Moustaki’s GFfitij can be used to ob-

tain more detailed information about the model fit. Individual GFfitij iden-

tify pair-wise associations and can be obtained by summing the appropri-

ate number of orthogonal components of PGF as demonstrated in Chap-

ter 3. For example, the sum of 16 second-order marginal components or

GFfit24 =
∑4

i=1,j=1 Y2Y4(i, j). Individual GFfitij’s are given in Table 40.

As can be seen from Table 40 the categorical variable factor model

does not fit well as 5 bivariate test statistics each with 9 degrees of freedom

are significantly different from 0 at the nominal 5% level. Moreover, this
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implies that these 5 pairs of variables are responsible for the poor fit of the

model. Furthermore, the main contributors to the lack-of-fit as can be seen

from Table 40 are variables 2, 3 and 4. It is important to note that lack-of-fit

in this example may be attributed to the fact that one or more assumptions

in the model have been violated. Perhaps the number of latent variables was

incorrectly chosen or the wrong model was selected. These possibilities have

not been tested in this research.

Table 40. Pair-wise associations using GFfitij when the model under the null

hypothesis is the categorical variable factor model with a single latent variable

is fit to data from the 38th round of the State Survey. ‘*’ denotes significant

bivariate test statistics at the 5% nominal level.

GFfitij Value p-value

(12) 15.584 0.076
(13) 13.381 0.146
(14) 16.251 0.062
(15) 10.200 0.335
(23) 21.469 0.011∗

(24) 60.188 10−4∗

(25) 63.433 10−4∗

(34) 9.327 0.408
(35) 38.257 10−4∗

(45) 49.310 10−4∗
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Chapter 8: CONCLUSIONS AND FURTHER RESEARCH

In this dissertation, orthogonal components of Pearson’s chi-squared

statistic defined on marginal frequencies were used to develop goodness-of-fit

tests. A subset of these orthogonal components lead to the construction of

limited-information tests that allowed one to identify the source of lack of fit

and to increase the power of the tests. The derived goodness-of-fit tests (χ2
[1:2],

χ2
[2] and χ2

[rf ]) were evaluated in studies for detecting two-way and three-way

associations that were not accounted for by a model on a multi-dimensional

contingency table for a single latent variable. In addition the derived tests

were also used to investigate the case when the model misspecification involved

parameter constraints for large but sparse contingency tables.

In the case of detecting two-way associations that were not accounted

for by the model, two versions of the model under the null hypothesis were

considered: the unconstrained and the constrained versions. For the model

with the unconstrained version, both PGF and χ2
[rf ] had inflated empirical

Type I error rates when n = 300. So power was confounded with Type I er-

ror rate and was not comparable to power rates for other test statistics when

n = 300. For the model under the constrained version, all statistics performed

adequately when sparseness was present. With both constrained and uncon-

strained versions of the model under the null hypothesis, it was discovered that

there was no significant difference in terms of power between χ2
[1:2] and χ2

[2].

Both χ2
[1:2] and χ2

[2] attained higher power compared to other statistics consid-

ered. However, since the power for χ2
[1:2] is diluted with superfluous degrees

of freedom, the recommendation is to use χ2
[2]. As expected, the traditional



Pearson’s chi-squared test was adversely affected by sparseness and was not

competitive in terms of power with the other statistics investigated in this

research.

The recommendation in the case of nested models for multi-category

variables and large multi-way contingency tables is that the likelihood ratio

difference test should be used to select models. However, bias in the parame-

ter estimates may cause poor results with the likelihood ratio difference test.

Specifically, when the average slope parameter in a logistic regression was small

in magnitude, the likelihood ratio difference test, LRdiff , resulted in inflated

empirical Type I error rates for all sample sizes considered. Moreover, LRdiff

should be used especially when sparseness is present, as it resulted in higher

power compared to tests defined on lower-order marginals.

For nested models with dichotomous variables in multi-dimensional

contingency tables, χ2
[1:2], χ

2
[2] and M2 all had inflated empirical Type I error

rates when n = 300, irrespective of the value of the average slope parameter.

Even though the power for χ2
[2] and power for M2 were not different from each

other, the recommendation is to use χ2
[2] since M2 includes first- and second-

order marginals and cannot isolate components to determine source of lack

of fit. On the other hand, for nested models with multi-categorical variables,

all statistics performed adequately when sparseness was present. Thus, the

recommendation is to use χ2
[2] for reasons previously stated.

Chi-squared limited-information test statistics proposed in this disser-

tation are still in a sense omnibus tests but less so than PGF. Although the

chi-squared test statistics were formed by adding a subset of components, a
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clear method for selecting the optimal number of components using the ran-

dom forest method was not achieved in this research.

The use of the random forest algorithm did not result in test statistics

with higher power and fewer components. This could possibly be attributed to

incorrectly specifying z as the response vector and/or M̂ as the model matrix

in the random forest algorithm in R. Also large positive values of VIMP for a

variable might not indicate the important nature of that component in terms

of variable selection in the orthogonal regression as stated by Ishwarn (2007).

Thus the use of VIMP might not result in dimensionality reduction of the

model matrix. Although the benefit of applying the random forest algorithm

was in its lack of the need for additional assumptions, further research needs

to be performed in order to more accurately relate the response vector to the

model matrix in this application.

Orthogonal polynomial components have been previously applied to

one-dimensional contingency tables in testing goodness of fit for a specified

univariate distribution. However, in this dissertation the focus was on higher-

dimensional multi-way contingency tables. In this setting it was difficult to

order the cells of the multi-way table in a way that would be conducive to a

test on low-order polynomial components. Also, with multi-way tables inter-

pretations of the orthogonal polynomial components may not be the same as

interpretations with the univariate case, where first-degree orthogonal polyno-

mial components tend to detect a change in mean, second-degree orthogonal

polynomial components tend to detect change in variance, etc. Overall, an at-

tempt to correlate the lack of fit with the underlying factor was unsuccessful,
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as tests based on orthogonal polynomial components required a larger number

of higher-order components than desired in order to achieve adequate power.

Among the conclusions it is important to note that for tests based

on marginals, inclusion of first-order components should be considered when

testing a simple null hypothesis, as higher power was obtained when they were

included. However, when a composite null hypothesis was tested, first-order

components did not contribute to increased power.

Further, it was found that when linear dependencies among the com-

ponents were present, components obtained from the QR decomposition were

usually not calculated accurately nor were they ordered correctly. The rou-

tines for the QR decomposition in R and in SAS IML are not written to check

carefully for linear dependencies. If the routines for the QR decomposition

were written to check for linear dependencies, then they would be more reli-

able. Goodnight’s sweep operator in SAS PROC REG produced components

from sequential sum of squares and performed reliably even when linear de-

pendencies were encountered.

Overall, this research has confirmed that tests based on first-order

marginals do not contribute to the power of the test for a composite null

hypothesis. Test statistics defined on just second-order marginals can serve as

a remedy for sparseness and are competitive with other limited-information

tests such as M2. However, the preference of using a test statistic defined on

components over M2 is due to the capability of isolating lack of fit.

Research in this dissertation was directed toward the specific case of

multi-dimensional contingency tables when a model using a single latent vari-
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able was employed. Only settings with 5 and 10 variables with 2 and 3 cate-

gories for each variable were considered. Further research needs to be explored

to examine the cases of large numbers of variables i.e., p = 15, 20 with varying

degrees of sparseness. Based on the cases studied here, it can be concluded

that tests formed on orthogonal components defined on marginal frequencies

(χ2
[2]) can provide more powerful directional tests both when data are sparse

or not sparse. The applications of the proposed limited-information tests are

especially important in applications which exhibit severe sparseness as does

the real life data set examined in Chapter 7.
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APPENDIX A

Figure 1. QQ-plot for χ2
PF for n = 300 when the model under the null hypoth-

esis is the categorical variable factor model for 5 variables, each at 3 categories.

The estimated slope in the QQ-plot is 1.022 and the corresponding p-value is

10−4.



Figure 2. QQ-plot for χ2
PF for n = 500 when the model under the null hypoth-

esis is the categorical variable factor model for 5 variables, each at 3 categories.

The estimated slope in the QQ-plot is 0.997 and the corresponding p-value is

0.1023.
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Figure 3. QQ-plot for χ2
[1:2] for n = 300 when the model under the null

hypothesis is the categorical variable factor model for 5 variables, each at 3

categories. The estimated slope in the QQ-plot is 0.965 and the corresponding

p-value is 0.6939.
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Figure 4. QQ-plot for χ2
[2] for n = 300 when the model under the null hypothe-

sis is the categorical variable factor model for 5 variables, each at 3 categories.

The estimated slope in the QQ-plot is 0.957 and the corresponding p-value is

0.3578.

142



APPENDIX B

Figure 5. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the categorical variable factor model and the alternative

of interest is A11 for 5 variables, each at 3 categories for n = 300.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]



Figure 6. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the categorical variable factor model and the alternative

of interest is A11 for 5 variables, each at 3 categories for n = 500.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]

Figure 7. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the categorical variable factor model and the alternative

of interest is A11 for 5 variables, each at 3 categories for n = 1000.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]
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Figure 8. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the categorical variable factor model and the alternative

of interest is A11 for 5 variables, each at 3 categories for n = 5000.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]
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APPENDIX C

Figure 9. QQ-plot for χ2
PF when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.991

and the corresponding p-value is 0.8793.



Figure 10. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.951

and the corresponding p-value is 0.0022.
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Figure 11. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 500. The estimated slope in the QQ-plot is 0.948

and the corresponding p-value is 0.1036.
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Figure 12. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.952

and the corresponding p-value is 0.9850.
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APPENDIX D

Figure 13. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the constrained version of the categorical variable factor

model and the alternative of interest is A11 for 5 variables, each at 3 categories

for n = 300.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]



Figure 14. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the constrained version of the categorical variable factor

model and the alternative of interest is A11 for 5 variables, each at 3 categories

for n = 500.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]

Figure 15. Asymptotic power Vs Two-way effect size when the model under

the null hypothesis is the constrained version of the categorical variable factor

model and the alternative of interest is A11 for 5 variables, each at 3 categories

for n = 1000.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]
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Figure 16. Asymptotic power Vs Two-way effect size when the true model

is the constrained version of the categorical variable factor model and the

alternative of interest is A11 for 5 variables, each at 3 categories for n = 5000.

Key: — χ2
PF , · · · χ2

[1:2], – · – χ2
[2]
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APPENDIX E

Figure 17. QQ-plot for χ2
PF when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 100. The estimated slope in the QQ-plot is 0.908

and the corresponding p-value is 0.0305.



Figure 18. QQ-plot for χ2
PF when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 300. The estimated slope in the QQ-plot is 0.907

and the corresponding p-value is 0.9024.
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Figure 19. QQ-plot for LRdiff when the model under the null hypothesis is

the constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 100. The estimated slope in the QQ-plot is 0.702

and the corresponding p-value is 0.0078.
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Figure 20. QQ-plot for LRdiff when the model under the null hypothesis is

the constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 300. The estimated slope in the QQ-plot is 0.686

and the corresponding p-value is 0.8345.
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Figure 21. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 100. The estimated slope in the QQ-plot is 0.871

and the corresponding p-value is 0.3886.
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Figure 22. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 100. The estimated slope in the QQ-plot is 0.817

and the corresponding p-value is 10−4.
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Figure 23. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 2 categories for n = 300. The estimated slope in the QQ-plot is 0.824

and the corresponding p-value is 0.6070.
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APPENDIX F

Figure 24. QQ-plot for χ2
PF when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.993

and the corresponding p-value is 0.1775.



Figure 25. QQ-plot for LRdiff when the model under the null hypothesis is

the constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 1.020

and the corresponding p-value is 0.1092.
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Figure 26. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.961

and the corresponding p-value is 0.8082.
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Figure 27. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 5 variables,

each at 3 categories for n = 300. The estimated slope in the QQ-plot is 0.956

and the corresponding p-value is 0.4206.
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APPENDIX G

Figure 28. QQ-plot for LRdiff when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.0. The estimated slope in the QQ-plot is

1.086 and the corresponding p-value is 0.0023.



Figure 29. QQ-plot for LRdiff when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 500 when β̄1 = 1.0. The estimated slope in the QQ-plot is

1.031 and the corresponding p-value is 0.4543.
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Figure 30. QQ-plot for LRdiff when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.5. The estimated slope in the QQ-plot is

1.003 and the corresponding p-value is 0.9018.
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APPENDIX H

Figure 31. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.919 and the corresponding p-value is 10−4.



Figure 32. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 500 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.946 and the corresponding p-value is 10−4.
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Figure 33. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 750 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.949 and the corresponding p-value is 0.0001.
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Figure 34. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 1000 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.961 and the corresponding p-value is 0.6006.
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Figure 35. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.0. The estimated slope in the QQ-plot is

0.962 and the corresponding p-value is 0.1890.
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Figure 36. QQ-plot for χ2
[1:2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.5. The estimated slope in the QQ-plot is

1.000 and the corresponding p-value is 0.9995.
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Figure 37. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.916 and the corresponding p-value is 10−4.
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Figure 38. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 500 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.936 and the corresponding p-value is 10−4.
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Figure 39. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 750 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.940 and the corresponding p-value is 0.0058.
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Figure 40. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 1000 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.953 and the corresponding p-value is 0.8063.
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Figure 41. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.0. The estimated slope in the QQ-plot is

0.958 and the corresponding p-value is 0.9946.
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Figure 42. QQ-plot for χ2
[2] when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.5. The estimated slope in the QQ-plot is

0.978 and the corresponding p-value is 0.4398.
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Figure 43. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.901 and the corresponding p-value is 10−4.
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Figure 44. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 500 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.916 and the corresponding p-value is 10−4.
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Figure 45. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 750 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.922 and the corresponding p-value is 0.0005.
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Figure 46. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 1000 when β̄1 = 0.5. The estimated slope in the QQ-plot is

0.933 and the corresponding p-value is 0.0968.
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Figure 47. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.0. The estimated slope in the QQ-plot is

0.945 and the corresponding p-value is 0.9880.
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Figure 48. QQ-plot for M2 when the model under the null hypothesis is the

constrained version of the categorical variable factor model for 10 dichotomous

variables for n = 300 when β̄1 = 1.5. The estimated slope in the QQ-plot is

0.970 and the corresponding p-value is 0.0537.
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