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ABSTRACT 
 

All-dielectric self-supporting (ADSS) fiber optic cables are used for data 

transfer by the utilities. They are installed along high voltage transmission lines. 

Dry band arcing, a phenomenon which is observed in outdoor insulators, is also 

observed in ADSS cables. The heat developed during dry band arcing damages 

the ADSS cables’ outer sheath. A method is presented here to rate the cable 

sheath using the power developed during dry band arcing.  

Because of the small diameter of ADSS cables, mechanical vibration is 

induced in ADSS cable. In order to avoid damage, vibration dampers known as 

spiral vibration dampers (SVD) are used over these ADSS cables. These dampers 

are installed near the armor rods, where the presence of leakage current and dry 

band activity is more. The effect of dampers on dry band activity is investigated 

by conducting experiments on ADSS cable and dampers.  

Observations made from the experiments suggest that the hydrophobicity 

of the cable and damper play a key role in stabilizing dry band arcs. Hydrophobic-

ity of the samples have been compared. The importance of hydrophobicity of the 

samples is further illustrated with the help of simulation results. The results indi-

cate that the electric field increases at the edges of water strip. The dry band arc-

ing phenomenon could thus be correlated to the hydrophobicity of the outer sur-

face of cable and damper. 
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Chapter 1 

Background on ADSS fiber optic cables and dry band arcing 

Telegraphy using copper conductors was the beginning of wire transmis-

sion technology which dates back 120 years. As technology improved, the way to 

transfer data took various forms.  In 1974, fiber was made into a cable and was 

introduced in the field as a way to transfer data [1]. Small scale and large scale 

installation of these cables followed the increasing need for better communication 

in early 80’s. 

I. DIFFERENT TYPES OF FIBER OPTIC CABLES 

In order to satisfy the needs of diversified fiber optic cable design and var-

ied working environment of fiber optic cables, a number of cable construction de-

signs were made available in the industry. These fiber optic cables can be in-

stalled along with transmission lines and could be supported at the transmission 

towers. This is an effective use of right of way, as the fiber cables can be used for 

the utility’s internal data communication and excess available fibers can be leased 

to others. Three important types of fiber optic cables used by the utilities are  

A. Optical ground wire (OPGW),  

B. WRAP type fiber optic cable and  

C. All-Dielectric Self-Supporting (ADSS) fiber optic cable. 

A. Optical ground wire 

OPGW has its optical fibers inside concentric stranded metallic wires. It 

has both the electrical properties and mechanical strength of a stranded metallic 

ground wire and also has the optical transmission properties of optical fibers. 
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OPGW can be installed where new ground wire is planned to be installed or by 

replacing the existing ground wire.  

B. WRAP type fiber optic cables 

WRAP type fiber optic cables are cables that are wrapped around the 

ground wire. When WRAP type fiber optic cables are installed, a certain amount 

of tension should be maintained while wrapping, in order to avoid damage to the 

fiber optics in the long term. WRAP type cable requires fault and lightning pro-

tection.  

C. All-dielectric self-supporting fiber optic cables 

ADSS cable, as the name suggests are self-supporting and are installed in 

a way similar to overhead transmission line conductors. But, they are installed 

separate from the power system, usually below the phase conductors. The me-

chanical strength to the ADSS cable is provided by the central strength member 

around which the loose buffers are stranded. The material and structure of the 

central strength member are selected to keep the elongation of the cable at 0.2% 

or less [1]. The central strength member is fabricated from fiber glass filaments 

bonded in resin or aramid yarn filaments [2]. Optical fibers are housed in loose 

buffer tubes to provide adequate mechanical protection. The tubes are filled with 

a gel that prevents cracks in the fibers. Solid Polyethylene (PE) buffer tubes 

known as fillers are stranded with the buffers [1]. Buffers are nothing but solid 

polyethylene tubes used to fill space and also to give additional strength to the 

cable. Cable sheath which is present in the ADSS cable protects the core from 
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thermal, mechanical and chemical effects. The cable sheath prevents the moisture 

in the atmosphere from entering the fibers present inside the cable.   

An ADSS fiber optic cable is similar to a WRAP type fiber optic cable. 

WRAP type cables lack the central strength member that ADSS cables possess. 

One more advantage that ADSS cables possess over WRAP type is the increased 

number of fiber count which results in increased data transfer through ADSS ca-

ble. An ADSS cable could be seen as a solution when there is a need for increased 

number of fiber counts and also when replacing ground wire could prove to be 

more expensive than installing ADSS cable in the existing tower structure. 

As ADSS cables are made for working with high voltage transmission 

lines, the outer jacket is made of special polymers to prevent the cable from dam-

age due to electrical discharges. The cross section of a typical ADSS cable is 

shown in Figure. 1. Usually the outer jacket is made out of Polyethylene (PE), and 

Figure. 1 Cross section of an ADSS fiber optic cable 
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for voltage levels above 138 kV the material used is a special, track resistant 

polymer. PE is one of the popular materials used to manufacture the outer sheath. 

PVC and for some special applications Polyamide (PA) protective covers are also 

used to manufacture the outer sheath. In order to reduce tensile stress and pressure 

on ADSS cables, an additional armoring is provided to protect the optical cable 

core and the cable sheath. 

II.  DESCRIPTION OF ADSS CABLE FAILURE 

ADSS cables were initially installed in transmission lines below 138 kV 

and they showed successful operation for a long time. Due to their successful op-

eration, ADSS cables were installed along with transmission lines with voltage 

levels beyond 138 kV. Even though ADSS cables performed successfully for 

voltage levels below 138 kV increased number of ADSS cable failure was ob-

served when the cables were installed in transmission lines above 138 kV [3]. 

Even though  ADSS cables were economical and had some advantages as men-

tioned earlier, the failures seem to be a drawback for ADSS cable as they will 

cause loss of valuable data and also monetary losses will be incurred as the fiber 

optics are also leased to others. The cable is considered to be failed when the opti-

cal fibers are exposed due to the outer sheath failure or the cable is dropped due to 

strength member failure. The reasons for these failures were found through inves-

tigations on these failed cables [3] and from experimental work [4]. They are 

A. Corona, and 

B. Dry band arcing 
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When ADSS cables are placed in the electric field created by the overhead 

transmission lines, the outer layer of the ADSS cable erodes due to electrical dis-

charge. ADSS cables are installed in transmission towers with mechanical support 

being provided by armor rods at the tower structure. The armor rods are grounded 

at the transmission tower structure. There is an increased electrical discharge be-

tween the tips of the armor rod and the outer sheath of ADSS cables. The surface 

of the ADSS cable sheath near the armor rod suspension points undergoes a 

change in appearance and structure due to the increased electrical discharge near 

the armor rod end points. The space potential drops near the fittings and this rate 

of decrease cause the air around the fitting to break down and the heat developed 

during this discharge can cause damage to the cable surface. Corona damage can 

be prevented by rounding the tips, which has a distributing effect on the stress 

concentration and keeps the arc away from the cable sheath [4]. Figure. 2 shows 

arcing between the tip of armor rods and the ADSS cable [5]. 

OPGW do not have corona losses because they are immune from electrical 

field as they are placed inside the ground wires. WRAP type cables have corona 

discharge in the lines on which they are wrapped. Research work has been done to 

reduce electrical discharge near the armor rods and methods to reduce this phe-

 
Figure. 2 Arcing near armor rod [5] 
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nomenon could be found in the literature [5]. Detailed explanation about dry band 

arcing is presented in the upcoming section. 

III.  DRY BAND ARCING ON ADSS CABLES 

Distributed capacitance between the ADSS cable, each phase conductor, 

ground wire and the ground results in a field gradient along the surface of the di-

electric cable [6]. In chapter 2, this distributed capacitance is explained in detail. 

The surface of the ADSS cable has a high resistance (in the order of Giga ohms) 

usually, but pollution which settles on the surface can reduce this resistance (to 

the order of Mega ohms). This allows leakage current to flow along the cable. 

Visible arcing does not occur when the cable is well wetted or when it is dry [3]. 

 

Figure. 3 Space Potential around 132 kV line, marked in percent of 

phase potential [6] 
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A wet cable suspended on a power line is likely to dry preferentially near the sup-

ports, partly because the cable slope encourages the water to drain away, and 

partly because the current and hence the electrical heating is highest there.  

Figure. 3 shows an example of space potential in which the cables sits at 

the mid span. The use of space potential contours has become a standard practice 

to identify locations of low space potential where an ADSS cable can be installed, 

thereby minimizing the current to an arc [6]. The potential contour in Figure. 3 is 

for a 132 kV line marked in percentage of phase voltage. 

IV.  VIBRATION ON ADSS CABLE 

When a smooth stream of air passes across a cylindrical shape, such as a 

conductor or an ADSS cable, eddies will be formed in the backward side of the 

cylindrical structure. The eddy alternate from the top and bottom surfaces and 

create alternating pressures that tend to produce movement at right angles to the 

direction of air flow [7]. The intensity of Aeolian vibration is more owing to the 

fact that the ADSS cable is light in weight and has a small diameter. ADSS cables 

are light and because of this they are prone to Aeolian vibrations. Aeolian vibra-

tion can cause severe damage to the cable and this could prove to be expensive.  

In order to avoid damage, dampers are used by the utilities to dampen out 

the vibration. A spiral vibration damper (SVD) is an impact type damper used for 

damping Aeolian vibration. A spiral vibration damper reduces vibration through 

dissipation of vibration energy by impacting the cable. A SVD is very effective at 

high frequencies associated with small diameter fiber optic cables and conductors. 

Work has been done to prove the effectiveness of SVDs in damping Aeolian on 
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ADSS cables [8]. They are installed near the armor rod suspension and the num-

bers of dampers used between every transmission tower differ from two to four, 

one on either side of the tower to two on either side of tower. The number of 

dampers used depends on the span of the transmission line.  

Spiral vibration dampers have a gripping section at one end and a damping 

section at the other. The radius of the helix at the damping section is larger than 

that at the gripping section. Figure. 6 shows the method used to install SVD’s 

 Figure. 4 Mechanism of Aeolian vibration on ADSS cable 

Figure. 5 Spiral vibration dampers 
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over ADSS cables. The damper will be placed with its gripping section towards 

the tower structure. The damping section will be wrapped on and out from the 

tower structure. The installation is completed by finishing up the wrapping sec-

tion. Damper could be slid out into the ADSS cable before wrapping on the grip-

ping section. The distance between the armor rod assembly and the gripping sec-

 

Figure. 6 Installation of spiral vibration damper [9] 
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tion end is around three to five inches. A similar methodology is used when in-

stalling two dampers over ADSS cables. Hot installation of the dampers is also 

possible by the use of a jumper holding tool.  

V. ORGANIZATION OF THE THESIS 

 A literature survey on the research work that has been done in the past on dry 

band arcing in ADSS cables and the goal of this thesis is presented in chapter 2. 

Methods used by the utilities before installing ADSS cable and a method to calcu-

late the power developed during the arc is presented in chapter 3. An insight on 

the experimental setup, sample preparation, setup of damper on ADSS cable and 

the results from the experiments are presented in chapter 4. Inference based on the 

observations made during the experiment is presented in chapter 5. In chapter 6, 

simulation of electric field on the surface of ADSS cable is presented and also 

models used for the simulation, properties of the material used and results from 

the simulation are shown. A conclusion based on the experiments and the simula-

tion is presented in chapter 7. 
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Chapter 2 

Literature review 

I. INTRODUCTION 

This chapter gives a review of the available literature on experimental test-

ing and simulation work done to study dry band arcing on ADSS cables. In the 

first section of this paper a short introduction about the phenomenon is intro-

duced. Then, short reviews about few papers which presented the performance of 

the early installation of these cables are given. This is then followed by an over-

view on the experimental studies available on ADSS cables. Then, an overview 

on the research work performed to simulate dry band arcing on ADSS cables is 

presented. Finally, the chapter ends with a summary of the research work done in 

the past and the goal of the thesis.  

II.  DRY BAND ARCING ON ADSS CABLE 

The outer layer of ADSS fiber optic cables when it is fresh is non-

conductive as it is made of dielectric material. After a certain period of time, pol-

lution settles down on the surface of the cable and forms a semi-conductive layer 

in the presence of moisture. When installed along high voltage overhead transmis-

sion lines, capacitive coupling is formed between high voltage lines and ADSS 

cable and also between the ADSS cable and the ground. This capacitive coupling 

induces a voltage on the ADSS cable. This induces a current through the conduc-

tive layer. The current flow generates heat in the moist conductive layer. The wet 

layer will be dried due to this heat developed in small bands forming ‘dry-bands’.  

An arc will be formed across this dry band as an induced voltage will appear 
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across this dry band. The outer surface of ADSS cable will be damaged due to the 

heat developed due to arcing. 

A. Experimental work 

In [3], C. N. Carter mentions that cable failure has been observed after one 

year from the installation of these cables along 220 kV lines. Performance of 

ADSS cables was observed and the formation of dry band on ADSS cable is ex-

plained. It is mentioned in the paper that wet, polluted cables cause dry band arc-

ing. Variation of voltage across a dry-band with position and sheath specific resis-

tance is shown. C. N. Carter suggests that dry bands and the degradation caused 

by the dry band, is confined to an active length of cable adjacent to the support.  

A novel design of self-supporting fiber optic cables has been proposed in 

[10]. U. H. P. Oestreich and H. M. Nassar calculated the voltage and current on 

the ADSS cable for different resistances and suggest that introduction of semi-

conducting material will reduce dry band arcing phenomenon on these cables. The 

semi-conductive material used is a pretreated aramid yarn. The authors mention 

that the pretreated aramid yarn satisfies the two basic requirements, semiconduc-

tion and high mechanical strength. 

In [11], cable samples from three different manufacturers were tested. The 

test setup had an RC circuit to simulate pollution. The test cycle included two 

minutes of water spraying and twenty eight minutes of drying. Current measure-

ments were taken to check the proper operation of the test setup. Voltage applied 

to the setup is the maximum space potential that the cable can withstand which is 

25 kV. The resistance and capacitance value of the RC circuit used is 13.1 MΩ 
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and 200 pF. Test results indicate the number of cycles taken by the three cable 

samples to fail. In order to calculate the mean time to failure rate of the three ca-

ble samples, Weibull distribution was used. Reliability curves and failure rates of 

the three cable samples are calculated and respective plots was shown. 

When IEEE 1222 standard is used to test ADSS cables random scattering 

of water droplets was observed. In order to avoid the presence of random scatter-

ing of water droplets S. Kucuksari et. al in [12] proposed a new method to test 

ADSS cables. ASTM D2303 standard was proposed to test the cable samples. 

Three samples were selected and tested using the two methods. A comparison be-

tween the results has been shown and it was observed that both the methods pro-

vided similar results. But, the time taken by the cable to fail was increased in the 

ASTM D2303 method. In addition, ASTM D2303 did not include the current lim-

iting RC circuit. In order to improve these parameters a new method by including 

the inclined plane and the RC current limiting circuit to ASTM D2303 method is 

proposed to test ADSS cables. 

Dry band arcing near armor rod tips was experimentally studied in [13]. 

Mechanical support to ADSS cable is provided by armor rods at the tower struc-

ture. J.D. Shikoski and G. Karady in [13] conducted electric field calculation near 

the armor rods. The authors varied the length of termination of the armor rods and 

obtained the electrical field distribution. Experimental testing was conducted on 

ADSS cable samples for different values of current limiting resistance and capaci-

tance. The voltage and current values of the arc developed were monitored. In the 

experimental setup, the armor rod assembly was simulated by using brass rod ar-
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rangement. High voltage was applied across the brass rods and another electrode, 

which was grounded. The dry band voltage and current needed for the arcing and 

the time when the dry band arcing begun and also the ending time were recorded 

for different current limiting resistance and capacitance. The dry band starting 

voltage, starting current, ending voltage and ending current were shown. The ef-

fect of variation of current limiting resistance and capacitance on dry band volt-

age, arc current, time duration of the arc, starting time and ending time of the arc 

were presented. Statistical data of the above mentioned parameters for different 

current limiting resistances and capacitances were experimentally found.  

In [14], several mitigation devices to control dry band arcing in ADSS ca-

bles is proposed. C. N. Carter suggests methods that could make the arcs less sta-

ble. From theoretical and experimental work the potential available for dry band 

arcing is observed to be from 15 to 30 kV. It was put forward that there is a 

threshold value of earth leakage current below which damaging arcs will not oc-

cur. A typical value of this threshold is believed to be 0.5 mA. Data has been col-

lected from two ADSS cable installations in UK which show that leakage current 

exceeds 5 mA during very bad weather conditions. Methods proposed in [14] to 

mitigate dry band arcing in ADSS cable are use of hydrophobic materials to re-

duce leakage currents, spark gaps, confining arcs to an arc resistant plaque, use of 

rain shield and altering the electrical coupling at the fittings. The use of any miti-

gation method from the above, if proven to be effective can significantly extend 

the cables life. 
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Experimental results reported in [15] suggest that when an arc is com-

pressed the severity of the arc can be increased, which leads to cable failure con-

siderably earlier than expected from the dry band arc model. Arc compression 

here indicates the reduction in length of the arc due to movement of water drop-

lets towards each other. S. M. Rowland and F. Easthope in [15], talk about the 

effects of using a salt fog and also about the effects of using continuous spray. 

The experiments were carried out in samples which were kept horizontal and 

samples which were inclined by a slope. The importance of the source impedance 

in the failure of the cable has also been shown by varying the source impedance in 

the experiments. The cable samples with higher source impedances tend to fail 

earlier than the ones with lower source impedance. From the visual observations 

made during the experiments, the authors explain the behavior followed by the arc 

and a phenomenon called arc compression is introduced. Authors suggest that the 

arc will be compressed in length, when there is movement of water droplets on 

the surface of the cable. The sample tested in the laboratory failed earlier when 

there is an arc compression when compared with samples which failed due to con-

tinual erosion by stable dry band arcs. 

A new test method that represents quasi-environmental conditions experi-

enced by fiber-optic cables strung along high-voltage transmission line is intro-

duced in [16]. The study of the effect of current limiting impedances representing 

heavy and light pollution levels was also presented. The effect of open circuit 

voltage and short circuit current on failure of the cable was introduced. The test 

setup used for testing ADSS cables was explained. Five test samples were simul-
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taneously tested in this setup. Aluminum foils are used as electrodes and the ends 

of the samples are sealed to avoid moisture ingress. The cables are tested for 

heavy and light pollution levels with resistances of 5 MΩ and 43 MΩ and capaci-

tances of 600 pF and 66.7 pF respectively. Short circuit current is measured by 

varying the applied voltage levels. The cycles needed by cables to fail were re-

corded. A test cycle is considered to have two minutes of water spraying and thir-

teen minutes of drying. The area and depth of damage were observed from the 

samples. It was found that the area of damage in the cable is inversely propor-

tional to the number of cycles taken by the samples to fail. If the cables fail very 

fast, dry band arcing would happen over a large area instead of focusing to one 

certain place. The average area damage and the average depth damage for the ca-

ble samples were presented.   

An alternative solution for dry band arcing was presented in [17], which 

has had extensive trials. The solution is based on a rod of controlled resistance 

Figure. 7 Schematic of the rod installation [17] 
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known as the arc arrest system. This has been deployed at Chile, where sheath 

damage has occurred six months after the ADSS cable was originally installed. 

The cables have a polyethylene sheath and were supplied by a number of multina-

tional manufacturers with a similar design, all employing aramid yarn as strength 

member. In majority of the cases, the sheath damage was due to relatively severe 

dry-band arcing near the towers. Damages have caused the aramid yarn to break 

and the tubes containing the optical fibers have been exposed. The damage on the 

cable has been graded according to the radial depth of the puncture in cable 

sheath. At their closest, the lines are 600 m from the ocean, and are mostly 1 to 2 

km from the coast for long stretches and, here remedial work was required imme-

diately. The resistivity of the contaminants on the ADSS cable at such locations 

was crudely measured to be approximately 500 kΩ/m. Potential between 7kV and 

11 kV were predicted to be available on the cable layer. The ADSS cables were 

not installed in the optimum position to reduce induced currents. The rod prevents 

high fields from being built up over the ADSS cable region on which it sits, thus 

preventing dry band arcs occurring in that region of cable closest to the tower and 

also the current diminishes away from the tower. Trials have been made, currents 

were monitored on the system and compared to those predicted by a software 

model. In this case, only a very high resistance rod would be able to prevent cur-

rent at its tip from being too high. The arc arrest system did not show any new 

damage. Even though few of the rods showed no new damage, it was not com-

pletely effective. Past installation experience showed that the sheath of the rod 
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ages. This is also created dry band arcing. The authors suggest that the arc arrest 

system was on the borderline of acceptability for high reliability.  

B. Simulation work on dry band arcing 

In [18], a software package named CDEGS is used to model the electrical 

environment of an ADSS cable. The ADSS cable under test had been taken out of 

service after 15 years and was installed along 132 kV transmission lines of span 

314 meters. The voltage gradient and the leakage current along the surface of the 

ADSS cable were investigated. Relationship between modeled environment and 

the hydrophobicity of the cable sheath affected by this environment was analyzed. 

Prediction of leakage current magnitude was correlated with reductions in contact 

angle within a span. Due to the different clamping technologies used at tension 

towers and at suspension towers and also due to the differential sag between 

ADSS cable and the conductors, there is a change in the position of an ADSS ca-

ble relative to the phase conductors in between the two towers’ span. The induced 

voltage on the ADSS cable at the tension tower end, suspension tower end and at 

the mid span was calculated and is found out to be 0.23 kV, 3.94 kV and 0.22 kV. 

Current magnitude was also calculated. Asymmetry in current magnitudes with 

respect to mid span could be observed from the results. Varying the relative posi-

tion of the ADSS cable was responsible for this asymmetrical nature of the leak-

age current. Contact angle measurement, a measure used to identify the hydro-

phobicity of a material surface was calculated for the cable samples. Three cable 

samples were used and they are cable from service, UV aged cable and salt fog 
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aged cable. The contact angle measurements are correlated with the leakage cur-

rent and an inverse relationship between the two was identified.  

A numerical algorithm to analyze the equivalent circuit formed due to the 

capacitive coupling and to predict dry band arcing in fiber optic cables was pre-

sented in [19]. The sag for ADSS cable and the conductors are calculated consid-

ering a line sag of 2 % and a fiber optic cable sag of 0.2%. The entire span is di-

vided into many sections. The capacitive coupling and the resistive pollution layer 

is considered to be distributed along this span. Maxwell potential coefficient was 

used to calculate the capacitance values. A Thévenin equivalent circuit was used 

to replace the three phase voltages and capacitances to simplify the calculation. 

Nodal equations were used to write a generalized formulation to calculate the 

voltage and current in each section. Heavy, medium and light pollution levels are 

considered with resistance values of 105 ohms/meter, 106 ohms/meter and 107 

ohms/meter respectively. ABC and ACB phase sequences were considered in the 

calculation method. The authors mention that an open circuit voltage above 7 kV 

and low currents in the range of 0.5 mA to 1 mA is needed for steady arcing and 

to produce most damage. The authors also suggest that the results from this algo-

rithm could be compared with these known values and thus a prediction of dry 

band arcing could be made from the comparison.  

In [20], the electric field distribution along the cable surface is found using 

a commercially available software package known as COULOMB. Electric field 

distribution along the cable is responsible for initializing the arc. The simulation 

results are used to compare the electric field distribution on the samples by vary-
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ing the thickness of the water film, shape of the water film and length of the dry 

band. The criteria for the arc to extend along the electrolyte surface are discussed. 

From the results, it was shown that the breakdown of the dry band must occur first 

at the edge, and then extend to the whole dry band. Initialization of dry band arc-

ing is due to surface flash over. The thinner the water layer on the cable surface, 

the higher the electric field along the dry band. It is concluded that arcing is estab-

lished through the cascaded breakdown of dry band and drying of the water layer 

by the arcs could be a dominant factor to force the arc to extend along the cable.  

S. M. Rowland et. al in [21] suggest that aging of ADSS cable occur in 

two phases. First, a hydrophobic sheath gradually becomes hydrophilic over sev-

eral years of low-current surface discharges and UV radiation. Second, dry-band 

arcing occurs occasionally throughout the cables’ remaining life, gradually de-

grading its surface through tracking or erosion. A commercial package known as 

CDEGS is used and in particular the sub package HIFREQ is used to calculate 

current distributions for networks of overhead conductors and metallic grids. 

From the current distributions, electric field and scalar potentials at in-air and in-

soil field observation points are calculated. The result obtained from the model is 

compared with the results shown in literature published by others. Calculations 

for three different values of differential sag were provided. The results are similar 

to the models provided by others. The effect of the presence of the tower on the 

current and field calculation is obtained from the model. The presence of the 

tower only affects the current at a distance up to 5 to 6 m from the tower. The ef-

fect is significantly more pronounced with a reduction in peak current at the tow-
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ers of approximately 30%. Voltage gradients are not affected by the tower in ei-

ther case. The voltage gradient is considerably reduced for the more conductive 

cable compared to the very resistive case. The space potential varies from less 

than 10% to a value slightly greater than 20%. It has been shown that at higher 

and more realistic cable resistivity, the tower can make a significant difference to 

the current to ground. This is primarily because the distance over which current is 

gathered is small in the high resistance case and also the length affected by the 

tower capacitance is of more importance. The model shown in [21] is consistent 

with published models of other researchers. 

III.  SUMMARY OF LITERATURE REVIEW 

A summary of the literature review and past research work is presented 

below 

• Models to predict the current and voltage distribution on the ADSS 

cable layer has been proposed. 

• Prediction of dry band arcing based on current and voltage distribution 

on models has been proposed.  

• Implementation of ASTM 2303 – Inclined plane test which is used to 

test insulators has been suggested to test ADSS cables. 

• Aging of cable sheath has been related to the leakage current flow on 

the surface of ADSS cable. 

• Methods like using an insulator to support the armor rods at towers 

and wrap the surface of ADSS cable near the armor rods with semi-

conducting tape has been proposed to mitigate dry band arcing. 
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Figure. 8 shows capacitive coupling formed between the transmission line 

and the ADSS cable as explained in the literature. The resistance between each 

capacitive coupling is indicated by the resistor and this corresponds to the pollu-

tion on the outer layer of the cable sheath.  ADSS cables are rated by the maxi-

mum space potential that the outer sheath can withstand without damage. Refer-

ence [22] suggests that it is not the efficient way to rate a cable on the space po-

tential. It will be serving without considering the pollution in the environment, 

voltage and current distribution. The cable should be rated according to the volt-

age and current that the cable can withstand. But, this does not take into account 

the heat developed during the development of the arc. A more appropriate predic-

tion of the effect of dry band arcing would be to identify the power developed 

 

Figure. 8 Capacitive coupling between overhead lines and ADSS cable 
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during the arcing period and rate the cables according to the power needed to 

damage the cable. Table. 1 shows some of the ADSS cable failures that are re-

ported throughout the world.  

Table. 1 Reported ADSS cable failure [22] 

Location Voltage level (kV) 

Cairns, Australia 132 

Cape Town, South Africa 132 

Gaza Strip 132 

Dungeness, UK 132 

Fawley, UK 132 

Gaza Strip 161 

Dungeness, UK 275 

Fawley, UK 275 

Hunterson, Scotland 400 

Southern Florida, US 500 

 

IV.  AIM OF PRESENT WORK 

In this thesis, a method to calculate the power generated during the develop-

ment of an arc is calculated from experiments and from the results obtained, an 

approach to rate the cable has been proposed. The dielectric fittings and spiral vi-

bration dampers are installed near the armor rods where the presence of electrical 

discharge and leakage current is more. Cable sheath damage at the dielectric fit-

tings has been reported. An investigation of this phenomenon is conducted in this 

report and a conclusion based on the results from the experiments is presented. 
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Chapter 3 

Available methods to rate ADSS cable 

I. INTRODUCTION 

Typical methods followed by the utilities when installing ADSS fiber op-

tic cables in the transmission towers are explained in this chapter. The procedure 

for calculating space potential around the transmission line, voltage distribution 

and current distribution on ADSS cable are shown. A method to classify the rank-

ing of ADSS fiber optic cables using the power developed to damage the cable 

surface is proposed. 

II.  SPACE POTENTIAL AROUND THE TOWERS 

Before a utility installs ADSS cable in its transmission grid, space poten-

tial calculations around the mid span would be performed. This is advised by the 

cable manufacturer to identify potential problems. Most of the cable manufactur-

ers rate their cables according to this space potential.  A typical space potential 

contour around the mid span is given in Figure. 9. The cable manufacturer pre-

scribes a certain maximum space potential limit at which the cable could operate 

without failure. The cable should be installed at the tower structure where the 

available space potential does not exceed the space potential limit prescribed by 

the manufacturer. According to Institute of Electrical and Electronics Engineers 

(IEEE) 1222 standard, an ADSS cable with a PE sheath can be used at positions 

where the space potential is not more than 12 kV and cables with anti-tracking 

sheath could be used at positions where the potential is anywhere between 12 kV 

to 25 kV [28]. The manufacturer of the cable samples used in the experiments has 
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cables available in the above mentioned range. The ADSS cable used in the ex-

periments are rated for 25 kV. Cables with a rating of 12 kV is also available for 

installation from the manufacturer. In the tower structure shown in Figure. 9, at 

certain places the space potential goes below 25 kV. If a cable which is rated for a 

space potential of around 25 kV is installed at these places below 25 kV, dry band 

arcing on ADSS cable is minimum. But, if the cable is installed around places 

where the space potential is above 25 kV, then the outer dielectric cable sheath 

can be damaged due to increased dry band arcing activity. Variation in the phas-

ing and the sag of conductors and ADSS cables can heavily influence the space 

potential. To have a better understanding of the above mentioned effects, the 

space potential around the transmission line for most of the possible phasing and 

space potential around the mid span of the transmission line are performed. Space 

potential calculation around a typical transmission line is presented in the up-

coming section.  

 
Figure. 9 Space potential around a transmission line mid span [1] 
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Table. 2 show the co-ordinates of a six phase transmission line and a prob-

able ADSS cable location is (0 m, 21.65m). The following calculation is per-

formed to find the space potential at the location of the ADSS cable. 

Space potential due to lines 0 to 3 is  

2 2

2 2
0

( - ) ( - )
* ln( )

2* * ( - ) ( - 0)

k f k fk
k

k f k

x x y yQ
Vspace

x x yπ ε

+
=

+
  

(1) 

Space potential due to lines 4 to 6 is 

2 2

2 2
0

( - ) ( - )
* ln( )

2 * * ( - ) ( - 0)

k f k fk
k

k f k

x x y yQ
Vspace

x x yπ ε

+
=

+   

(2) 

Where  

k = 1,2,…..,6 

 
            (a)         (b) 

Figure. 10 Models showing ADSS cable and Phase conductor position 

(Model I-(a) and Model II-(b)) 
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Vspacek = Space potential due to line k  

xk , yk = x and y co-ordinates of lines 1,2,…..,6 

xf, yf =  x and y co-ordinate of the ADSS cable 

Qk = Charge due to k th line 

ε0 = Permittivity of free space 

Magnitude of the space potential on the surface of the ADSS cable is 

k
k

Vspace Vspace= ∑
      

(3) 

 = 15.373 + j.16.882 kV 

22.8 kVVspace =        (4) 

The above mentioned method could be used to make a contour plot of the 

space potential around transmission lines and such a plot is shown in Figure. 9. 

III.  VOLTAGE AND CURRENT DISTRIBUTION ON THE SURFACE OF THE ADSS CA-

BLE 

A distributed capacitive coupling exists along the span between the phase 

conductors to the ADSS cable and ADSS cable to the ground [3]. Pollution that 

settles on the surface of the ADSS cable forms a distributed resistance along the 

entire span. Figure. 11 show two section of a three phase double circuit line with 

resistance in series between them. The admittance Yra represents the resistance of 

the pollution layer. Yxca, Yxcb and Yxcc represent the capacitive admittance formed 

between phase and ADSS cable, phase B and conductor cable, phase C and con-

ductor cable. Yxcg represent the capacitive admittance between ADSS cable and 



29 

 

ground. The phase conductors could be replaced by voltage sources whose values 

are given by (4). 

2
ln ln ln

2
1 ln 1 ln 1 ln

.1, . , .

.1, . , .

a b c

a b c

Vs V Vs V a Vs V a

Vs V Vs V a Vs V a

= = =

= = =

     

  
   (5) 

Vln = Line to neutral voltage 

a = 1∠ 120° 

Figure. 12 shows the equivalent of Figure. 11 when the phases are re-

placed with voltage sources. In order to simplify the circuit, the Thévenin equiva-

lent for Figure. 12 is calculated and is shown in Figure. 13. The six voltage 

sources are replaced with their Thévenin equivalent VsN. The capacitive coupling 

between phase conductors and the ADSS cable and from the ADSS cable to the 

ground is replaced with a Thévenin equivalent admittance YxN. The Thévenin 

equivalent voltage source and Thévenin equivalent admittance are shown in (5) 

and (6) respectively. In Figure. 12, the admittance Yra due to the pollution is not 

shown, but it exists between every unit section (Figure. 13).  

 Figure. 11 Circuit showing two equivalent sections 



30 

 

2 2

ln aN bN cN aN bN cN

N

N

V Yxc +a Yxc +aYxc +Yxc +a Yxc +aYxc

Yx
Vs =

  

   
(6) 

Where 

NN THYx = j.ω.C         (7) 

N N N N N N N N
TH a b c a1 b1 c1 g

C = C + C + C + C + C + C + C     (8) 

YxcaN, YxcbN, YxccN = Capacitive admittance formed between phase and 

ADSS cable, phase B and ADSS cable, phase C and ADSS cable at section N 

CxN = Capacitance between phase x and cable at section N 

CgN = Capacitance between ground and cable at section N 

 

Figure. 12 Equivalent circuit with voltage sources from (6) 

 

Figure. 13  Thévenin equivalent circuit 
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The equivalent circuit considered is grounded near the towers (Figure. 14). 

In Figure. 14, the entire length of the span is divided into N sections to provide a 

better understanding of the nodal equations used. In Figure. 14, the entire span is 

divided into five sections. The equivalent circuit shown in Figure. 14 is consid-

ered to be distributed along the span. The admittance value of each section will be 

the same if sag is not considered for calculating the value of capacitance. For the 

calculations presented here, sag is taken into account and each segment has a dif-

ferent admittance value.  

A. Equations for voltage distribution 

A generalized equation could be obtained from the nodal equations for the 

circuit shown in Figure. 14. Equations (8), (9) and (10) represents the nodal equa-

tion at node one, two and three respectively.  

0 0 0 0 1 0
-V Yra + (Vs - V ).Yx + (V - V ).Yra = 0.      (9) 

0 1 1 1 1 2 1(V - V ).Yra + (Vs -V ).Yx + (V -V ).Yra = 0    (10) 

1 2 1 1 1 2 1(V - V ).Yra + (Vs -V ).Yx + (V - V ).Yra = 0   (11) 

Figure. 14 Equivalent circuit for the entire length of the line 
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Where  

Yra = Admittance due to the section resistance 

VN = Voltage at node N 

By rearranging (9), (10) and (11), a generalized equation can be obtained. 

Equation (12) is a generalized equation for calculating the voltage at every node. 

The current flowing in every section for Figure. 14 can be calculated from (15). 

By using (12) and (15) voltage and current distribution characteristics can be cal-

culated. 

N

N sec

N N+1 N

V =
Varia                        If  N = N

Varia +V .Varib   Otherwise
   (12) 

Where  

.

N

N

=

N

N-1
N

Varib

Yra
                          If  N = 1

Yx +2.Yra

Yra

Yx +2.Yra
  Otherwise

Yra
1-Varib

Yx +2.Yra

  (13) 

N N -1

N
N

N

N
N

N N

N-1
N

Varia = Varia

Yx
Vs                  If  N = 1

Yx +2 Yra

Yx Yra
Vs

Yx +2 Yra Yx +2 Yra
 Otherwise

Yra
1-Varib

Yx +2 Yra

⋅
⋅

⋅ + ⋅
⋅ ⋅

⋅
⋅

 (14) 

VN = Voltage at node N 

N N+1 NI = (V -V ).Yra       (15) 
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IV.  OPEN CIRCUIT VOLTAGE AND SHORT CIRCUIT CURRENT 

From the Thévenin equivalent admittance of the entire span shown in Fig-

ure. 14 and from the short circuit current, the open circuit voltage can be calcu-

lated using (16). 

SC
OC

Thev

I
V =

Y
        (16) 

Where 

SC 0I = I         (17) 

Thevenin equivalent admittancethY =  

Using the above voltage and current values, the power available in the sys-

tem for the dry band arc could be calculated. Equation (18) is used to calculate the 

power available in the system. 

      Real(V )OC SCPower available in the system I= ⋅    (18) 

 

Figure. 15 Thévenin equivalent of the span  
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V. MODELS AND PARAMETERS CONSIDERED FOR CALCULATION 

B. Models  

The voltage and current distribution on the surface of ADSS cable for a 

three phase double circuit line and a three phase single circuit line is shown in this 

section. The tower geometry for the two models used for the calculation is given 

in Table. 2 and Table. 3. Figure. 10 shows the tower geometry of the models used 

and the ADSS cable is considered to be at the position marked by a plus symbol.  

A. Effect of sag 

The height of the conductor is assumed to be a hyperbolic cosine function 

along the span [4]. The sag of phase conductors is generally greater than the sag 

of the fiber-optic cable. In order to calculate the voltage and current distribution, 

sag of 2% for the phase conductors and sag of 0.2% for the ADSS cables were 

Table. 3 Tower geometry for double circuit line used in voltage and 

current distribution calculations (model I) 

ADSS cable (m) Phase conductors(m) 

(X0,Y0) (X1,Y1) (X2,Y2) (X3,Y3) (X4,Y4) (X5,Y5) (X6,Y6) 

(0,21.65) (-5.3, 

17.25) 

(-4.95, 

23.85) 

(-4.95, 

30.45) 

(5.3, 

17.25) 

(4.95, 

23.85) 

(4.95, 

30.45) 

Table. 4 Tower geometry for single circuit line used in voltage and cur-

rent distribution calculations (model II) 

ADSS cable (m) Phase conductors(m) 

X0  Y0 
 X1 

 Y1 
 X2 

 Y2 
 X3 

 Y3 
 

0 30.48 -11.88 37.18 0 37.18 11.88 37.18 
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considered .In model II, towards the middle of span, the distance between the 

phase conductors and the ADSS cable is reduced.  The sag details of model II 

could be observed from Figure. 16. This will affect the capacitive coupling be-

tween the phase conductors and ADSS cable. 

B. Effect of pollution 

The outer sheath of the ADSS cable is not conductive when they are in-

stalled. The outer layer of the cable is made up of dielectric materials and their 

resistances are in the order of 1012 Ω/m. Depending on the pollution of environ-

ment surrounding the cable, a conductive layer is formed on the cable. Increased 

pollution can increase the severity of dry band arcing, which eventually leads to 
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Figure. 16 Models showing ADSS cable and Phase conductor sag 

Table. 5 Resistance values for different levels of pollution  

Pollution level Layer resistance Ω/m 

Low 107 

Medium 106 

Heavy 105 
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the failure of ADSS cables earlier than expected. Pollution is considered to be one 

of the prime factors that causes dry band arcing. Pollution typically includes salt 

content settled on the surface of the cable. Typical pollution resistances used for 

calculations are given in Table. 4 

C. Voltage and current distribution 

The voltage distribution for models I and II is shown in Figure. 17 and 

Figure. 18 respectively. Both the models were considered to have their line to 

neutral voltage of 220 kV. In spite of the fact that both models are considered to 

be working at the same voltage level, the distribution is different for both the 

models. The tower geometry plays a key role in the distribution of voltage. The 

voltage distribution is symmetric with respect to the middle of the span. The volt-

age level increases from a low value near the towers to a maximum near the mid-

dle span. The voltage distribution is observed to be at maximum for light and me-

dium pollution levels and reaches a minimum for low pollution level. For model I, 

maximum voltage is observed near the tower for low and medium pollution. The 

maximum voltage for model II is observed at the middle span. It is observed from 

previous experience and through experiments that voltage levels greater than 10 

kV are required to produce sustained arcing [5]. From Figure. 17 and Figure. 18, 

it is clear that there is high probability for dry band arcing, as the voltage and cur-

rent distribution are higher than needed to initiate dry band arcing [5]. 

The current distribution for models I and II are shown in Figure. 19 and 

Figure. 20 respectively. The current distributions indicate that maximum current 

is observed near the towers. Even though the available voltage is sufficient to 
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strike an arc across a dry band, there is a need for sufficient amount of current 

flow to maintain the arc. The pattern of current distribution on the layer of the 

ADSS cable suggests that among the three pollution levels, the least amount of 

current was observed for light pollution level. The probability of arcing at low 

pollution levels is less due to the lack of available current to sustain the arc. As 

the pollution level increases the conductivity of the outer layer increases. Due to 

the increased conductivity, the current flow increases as the pollution level in-

creases and reaches maximum for heavy pollution. The current flow is symmetric 

along the mid span. To sustain a dry band arc, current flow of 0.5 mA and higher 

is needed [5]. The risk of dry band arcing is near the towers rather than at the mid 

span because of the increased leakage current flow near the tower. Using the cal-

culation method explained earlier, the open circuit voltage and short circuit cur-

rent for three pollution levels are calculated and is shown in Table. 5. 
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Figure. 17 Voltage distribution for model I 
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Figure. 18 Voltage distribution for model II 
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Figure. 19 Current distribution for model I 

 

Figure. 20 Current distribution for model II 
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VI.  CURRENT AND VOLTAGE DISTRIBUTION TREND 

Variation in tower geometry varies the voltage distribution trend, but it 

does not vary the distribution trend of current distribution. This could be observed 

from the voltage and current distribution plots presented. The current distribution 

for both the models increases from a maximum near the tower to a minimum at 

the middle of the span. However, the trend followed by the voltage distribution is 

different from that of model II. From the results obtained from the above men-

tioned method, it is clear that the level of pollution influences the current distribu-

tion. In both the models regardless of the tower geometry, current increases with 

increase in pollution level. From the distribution calculations, one can identify the 

voltage and current available to create dry band arcs on the surface of ADSS ca-

ble. References [19], [23] and [25] talks about voltage and current distribution on 

Table. 6 Open circuit voltage, short circuit current and power in the system 

Model I 

Pollution level Open circuit voltage  Short circuit current  Power 

Low (107 
Ω/m) -0.221+j.30.114 kV -0.345+j 0.366 mA 10.94 W 

Medium (106 
Ω/m) -7.69+j 32.062 kV -1.511+j 0.952 mA 18.91 W 

High (105 
Ω/m) -22.657+j 21.097 kV -5.575-j 0.028 mA 126.90 W 

Model II 

Pollution level Open circuit voltage  Short circuit current  Power 

Low (107 
Ω/m) -9.158 + j 18.169 kV -0.303+j 0.112 mA 0.735 W 

Medium (106 Ω/m) -8.75 +j 21.811 kV -1.106 +j 0.491mA 1.043 W 

High (105 Ω/m) -21.051 +j 19.148 kV -4.959- j 0.076 mA 105.837 W 
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the surface of ADSS cable for different configuration. 

In spite of these calculations and proper placement, the cables tend to fail 

after a certain number of years due to aging and due to the inaccuracy of predict-

ing dry band arcing. In this chapter, a slightly modified experimental setup and 

the results of the experimental setup indicating the power developed during the 

arcing is shown. 

VII.  PROPOSED CALCULATION METHODOLOGY 

For all the experiments performed, the samples were prepared from the 

same model. Figure. 21 show the electrical circuit used for measuring the power 

drop across the arc in testing ADSS cables. The output from the high voltage end 

of the transformer is connected to a potential transformer. The output from the 

low voltage end of the potential transformer is connected to a LABVIEW meas-

urement system. The LABVIEW system used has a sampling rate of 10k samples 

per second. A high voltage resistor of resistance 400MOhm and a capacitor of ca-

pacitance 650pF are connected in between the high voltage electrode and the out-

put from high voltage output of the transformer. This is indicated by the resistor 

R1 and R2 is 1kOhm resistor across which the leakage current was measured. 

Two different circuits were used in the experiment. One with a 650pF capacitor in 

the circuit and the second without the capacitor. The power drop across the arc is 

given by (21) and (24) respectively. 

(a) Power drop across the arc for the circuit with the capacitor 

     (19) 
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 (20) 

 (21) 

Where 

 Vin = supply voltage  

 I = leakage current 

 R1, R2 = Resistors 

(b) Power drop across the arc for the circuit without the capacitor 

  (22) 

  (23) 

 (24) 

The arc discharge causes damage to the outer layer of the ADSS cable. 

The damage caused is thermal in nature. This experimental setup could be used to 

measure the power drop across the arc and to rate the cable accordingly. Figure. 

22, Figure. 23, Figure. 26 and Figure. 27 indicate the supply voltage, leakage cur-

rent observed for both the circuits. Figure. 24, Figure. 25, Figure. 27 and Figure. 

28 indicate the calculated voltage across the arc and power calculated using (21) 

and (24). Figure. 25 and Figure. 28 are used to calculate the energy needed by the 

arc to deteriorate ADSS cable surface.  

                
Figure. 21 Circuit used to calculate the power drop across the arc 
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Figure. 22 Supply Voltage for the circuit with capacitor 
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Figure. 23 Leakage current flowing in the circuit with capacitor 
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Figure. 24 Voltage across the arc for the circuit with capacitor 
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Figure. 25 Power drop across the arc for the circuit with capacitor 
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Figure. 26 Source voltage for the circuit without capacitor 
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Figure. 27 Leakage current flowing in the circuit without the capacitor 
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VIII.   CLASSIFICATION OF ADSS CABLE RANKING  

 The recorded experimental data are used to calculate the power de-

veloped during the dry band arcing. (20) and (23) are used to calculate the power 

values. Supply voltage, leakage current, voltage across the arc and power across 

the arc for the experiments performed with and without the capacitor are shown 

from Figure. 22 to Figure. 29. Table. 6 shows the power available in the system to 

create dry band arcing. Table. 7 and Table. 8 indicate the power developed during 

the deterioration of the cable surface.Table. 8 is used for the evaluation, as Table. 
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Figure. 28 Voltage across the arc for the circuit without capacitor 
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Figure. 29 Power drop across the arc for the circuit without capacitor 
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8 corresponds to the experiments carried out with an RC bank and this is a good 

model which is more analogous to the capacitive coupling in the field. Experi-

mental results when evaluated against the results from Table. 5 indicate that the 

power in the system for low and medium pollution is less than the power observed 

during the experiments for surface deterioration. This indicates the cable will sur-

vive at low and medium pollution in both the models. But, the power in the sys-

tem for high pollution level is higher when compared to the power observed dur-

ing the experiments for surface deterioration. The cable will not survive high pol-

lution in both the models as the power available in the system is more than what it 

is needed to deteriorate the surface of ADSS cable sheath. 

Table. 7 Energy developed in the arc for circuit with capacitor – (a) 

Cycle Energy (in Joules per cycle) Power (W) 

1 0.1473 6.2006 

2 0.1635 16.3420 

3 0.1643 18.7296 

4 0.2 26.065 

5 0.0879 26.4343 

6 0.0729 27.4379 

7 0.0735 25.6385 

8 0.0589 16.166 

9 0.0495 21.5225 

10 0.0486 19.6565 

Average  20.41  
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Table. 8 Energy and power developed in the arc for circuit without capaci-

tor – (b) 

Cycle Energy (in Joules per cycle) Power (W) 

1 0.1768 14.4664 

2 0.168 14.5975 

3 0.1463 12.2043 

4 0.1255 12.6366 

5 0.101 10.5059 

6 0.1596 12.0043 

7 0.0979 7.2922 

8 0.1496 12.7765 

9 0.1047 10.0883 

Average  11.84 
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Chapter 4 

Experimental study on dry band arcing 

I. INTRODUCTION 

The experimental setup used to study dry band arcing is explained in detail 

in this chapter. Reasoning of the experimental setup and the methodology used to 

conduct the experiment are justified by comparing the methodology with dry band 

arcs occurring in the field. Sample preparation and the samples used for the tests 

are presented. Finally, the chapter is concluded with the failed samples showing 

damage due to arcing. 

II.  EXPERIMENTAL SETUP 

A. Equivalent circuit representation of transmission lines and ADSS cable 

As mentioned earlier, the outer cable sheath of ADSS cables when manu-

factured is hydrophobic in nature and is arc resistant. The ADSS cable is coupled 

to the conductors, earth wire and the ground by distributed capacitance throughout 

the entire span of the transmission line. Pollution that settles on the non-

conductive layer of the ADSS cable can be considered as resistances between the 

distributed capacitance. This resistance varies with the amount of pollution depos-

ited on the cable layer. Figure. 30 show the capacitive coupling that exists be-

tween the transmission line and ADSS cable. The above mentioned phenomenon 

was reviewed in detail in chapter 2 and chapter 3. 

There will be a leakage current flowing on the resistive layer due to the 

capacitive coupling between transmission lines and the cable. This leakage cur-

rent along with ultra violet radiation and pollution aids in early aging of cable 
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Pollution Resistance ( Mohms) Capacitance (pF) 

105 4.2 650 

105.7 5.8 457 

106 13.1 200 

sheath and makes the cable sheath less hydrophobic. When the cable is hydropho-

bic and resists moisture on the layer, dry band is never prominent. At places like 

Phoenix, where the presence of moisture is very less, dry band arcing is not 

prominent. But, occurrence of dry band will increase in the presence of moisture 

and as the cable gets more hydrophilic and less hydrophobic. Studies have been 

conducted on ADSS cables which were working in highly polluted environment 

and in places with such pollution level, their outer layer showed resistance of very 

low value. 

Typical space potential available for arcing is around 15 to 25 kV, which 

was shown in chapter 2 and chapter 3. This voltage level depends on various fac-

tors like the working voltage level of the transmission line, pollution available in 

the environment, relative sag between cable and transmission line. Figure. 30 

Figure. 30 Capacitive coupling for a three phase single circuit line 
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Table. 9 Typical Resistance and capacitance values used in experiments 
setup 
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show the three phases A, B, C and the capacitive coupling between the phases and 

the cable. Ra in Figure. 30 indicates the conductive moist pollution layer that set-

tles down on the outer cable sheath. Table. 9 shows typical values of Ra consid-

ered for different pollution levels.  

The experimental setup used in testing has an RC impedance to simulate 

the effect of pollution during cable tests. Figure. 31 shows the experimental setup 

used for testing ADSS cables. An RC circuit is connected in between the high 

voltage electrode and high voltage supply. The high voltage electrode is con-

nected to one end of the sample and the other end of the sample is connected to 

the ground through a series resistor. The leakage current flowing through the test 

circuit is measured from the voltage across the 100 ohm series resistor. For all the 

experimental work carried out in this thesis, cables from the same manufacturer 

and same model were used. 

Figure. 31 Experimental setup used in testing ADSS cables 
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B. Mechanism of dry band arcing 

The mechanism of dry band arcing under field conditions are explained 

here to provide a correlation between the methodology used in the experimental 

setup and dry band arcing in the field. Dry band arcs typically start to occur when 

the accumulated pollution layer on the outer cable sheath gets moist. When the 

cable sheath accumulates moisture on its outer layer, the high resistive pollution 

layer becomes conductive and leakage current starts flowing through the layer. As 

long as this leakage current flow is uninterrupted, arcing does not occur. As long 

as moisture is available and provides a conductive path for the flow of leakage 

current, dry bands will not be formed. The moisture is available because of the 

presence of rain and dew in the environment. When rain stops, the moisture will 

dry either due to the heat from the sun or due to heat developed during the leakage 

current flow. The leakage current flow on the surface of the cable produces a 

Joules heating effect and begins to dry the cable out [26].This is correlated using 

the experiment in the upcoming section. 

When the cable layer dries up due to the leakage current flow, dry bands 

will be formed on the cable’s outer sheath. If the available voltage across this dry 

band is high enough, arcs will be formed [3]. This is explained in Figure. 32. The 

cable layer will be damaged when the nature of the arc is stable. The aim of the 

experiment is to simulate this environment in the lab. The following two factors 

should be satisfied by the experimental methodology 

o a moist conductive layer  

o formation of dry bands on the surface of cable 
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C. Simulation of dry band arcing using the experimental setup 

The experiments are conducted in such a way that they simulate the real 

environment needed to start dry band arcs. This is also explained in Figure. 34. 

The cable samples are tested at a starting base value of 5 kV. Water is sprinkled 

over the cable samples between the electrodes as shown in Figure. 31. Water used 

for the experiments has salinity of 1% in it. This is used to simulate the conduc-

tive moist layer. To facilitate an even distribution of water droplets over the cable 

surface, the water is sprinkled for about two minutes. The next important feature 

that was considered in the experiment was to simulate a way to dry the conductive 

layer. At the earlier stages of testing, comparatively low voltage was supplied 

across the electrodes and the leakage current flowing on the ADSS cable layer 

was very less. It will take a long time for the cable layer to dry at earlier low volt-

age levels when compared to a higher voltage level. On the other hand, during the 

beginning of the experiment, the hydrophobicity of the cable layer will be high 

and the water droplets will move down and eventually fall off the cable layer due 

to gravitational force. The time allowed to dry is made sure that it is not too long 

and also not short and is selected as thirteen minutes for the experiments carried 

out. The entire cycle will take fifteen minutes combining a two minute wetting 

period with thirteen minutes drying period.  

Figure. 32 Formation of dry band arcing 
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The samples tested using the setup will have a voltage of 5 kV applied at 

the beginning. If the sample survives the first cycle of fifteen minutes without any 

damage to the outer sheath, the voltage applied will be incremented by 5 kV and 

the sample will be tested for another cycle. The experiment will be continued on 

the cable sample with an increments of 5kV till the cable sample fails. A timer is 

used to start and stop the pump supplying the misting devices. Figure. 33 shows 

the timer used in the experimental setup. The copper sheets in the timer will turn 

on the pump when it touches the switch and when the copper sheets are not touch-

ing the switch the pump will be turned off. Figure. 34 (a) shows a cable sample 

being testes using the setup. Figure. 34 (b) shows the presence of conductive wa-

terlayer on the surface layer. When the sample is allowed to dry, that is, when the 

pump supplying the misting devices is turned off, the moist layer dries due to the 

leakage current flow. As shown in Figure. 34 dry bands will be formed unevenly 

and the dry band formed is similar to the ones observed in the field and the ap-

plied voltage will be distributed across this dry band. Arcs were formed across 

these dry bands and this is shown in pictures from Figure. 34 (c) to Figure. 34 (f). 

The heat developed due to the dry band arc destroyed the outer cable sheath. 

 

Figure. 33 Timer showing copper sheets 
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(a)  

(b)  

(c)  

(d)  

(e)   

(f)  

Figure. 34 Working of the experimental setup 
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D. Sample preparation 

The same setup and methodology is used to compare the effect of dampers 

on dry band arcing and also for the experiments carried out to calculate the power 

developed during dry band arc. Table. 9 show the typical RC values used in the 

experiments. For the experiments conducted, high pollution is considered, resis-

tors of equivalent resistance 4.2 Mohm and capacitors of equivalent capacitance 

650 pF were used for the RC bank.  

When the cable is used for testing without the damper, the cable is cut into 

samples of 18 inches in length and the ends of the cable are sealed to prevent 

moisture from entering the fiber inside the cable. Aluminum electrodes are used 

and a distance of six inches is kept between the aluminum electrodes. The same 

electrodes setup is used when the dampers alone are tested. But, when the cable in 

the presence of damper is tested, the cable is strung between the cage ends and the 

damper is installed over it. Aluminum electrodes are placed over both the damper 

and cable and are shown in Figure. 34.  

E. Performance of the samples 

The performance of the samples when tested in the setup as mentioned 

above is given in Table. 10, Table. 12 and Table. 11. It could be observed that the 

cable sample in the absence of damper withstood four cycles and failed during the 

fifth cycle. When damper is installed over the cable, the sample withstood two 

cycles and failed in the third cycle. This is due to the fact that ADSS cable sample 

when tested in the absence of damper aged at a slower rate than the damper sam-

ple and ADSS cable with damper on it. The hydrophobicity of the cable was re-
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duced at a slower rate than the damper sample and ADSS cable sample with 

damper on it.  The failed samples are shown in Figure. 35, Figure. 37 and Figure. 

36. The leakage current measurements made on the samples are shown in the next 

chapter with their corresponding hydrophobicity. 

 

 

 

Table. 12 Performance of cable sample when damper is installed 

Table. 10 Performance of cable sample 

Table. 11 Performance of damper 

Applied voltage  Status of the cable sample 

5 kV Undamaged 

10 kV Undamaged 

15 kV Undamaged 

20kV Undamaged 

25 kV Damaged 

 

 
Applied voltage  Status of cable and damper 

5 kV Undamaged 

10 kV Undamaged 

15 kV Damaged 

 

 
Applied voltage  Status of damper sample 

5 kV Undamaged 

10 kV Undamaged 

15 kV Damaged 
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Figure. 35 Cable sample showing damaged outer sheath 

Figure. 37 Damper sample showing damage in the outer sheath  

Figure. 36 Sample showing damage on the outer layer when damper is installed 
over the cable 
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Chapter 5 

Hydrophobic nature and leakage current flow on the samples 

I. INTRODUCTION 

This chapter is divided into two sections, the first talks about the hydro-

phobic nature of the sample and the second talks about the leakage current flow 

on the surface of the samples during experiments. Also, the importance of contact 

angle on hydrophobicity of the samples and the contact angle for the fresh sam-

ples and the samples after the experiments is presented. Finally, a comparison is 

made between the leakage current on surface of the samples.  

II.  GUIDELINES FOR HYDROPHOBICITY CLASS 

Dielectrics and electrical insulation society (DEIS), a society of the insti-

tute of electrical and electronics engineers (IEEE) has a dedicated standard IEEE 

1523 – IEEE guide for the application, maintenance and evaluation of room tem-

perature vulcanizing (RTV) silicone rubber coatings for outdoor ceramic insula-

tors [27]. In this standard, a hydrophobicity classification guide has been in-

cluded. In this guide, composite insulators and coated insulators are classified into 

Contact angle Small  Large 

Wettability Good Bad 

Adhesiveness Good Bad 

Hydrophobic nature Bad Good 

Hydrophilic nature Bad Bad 

 

Table. 13 Contact angle and its relation with other physical parameters 
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seven classes of hydrophobicity. Class HC 1 indicates that the hydrophobicity of 

the insulator sample is highly hydrophobic in nature and the class specification 

extends to HC 7, where HC 7 indicates a completely hydrophilic surface. Figure. 

38 show the seven classes.   

III.  CONTACT ANGLE – A MEASURE OF HYDROPHOBICITY 

When a liquid or vapor interface meets a solid surface, the angle formed 

between the solid surface and the tangent line to the upper surface at the end point 

is called contact angle.  This contact angle could be a measure of adhesion, wet-

tability and also the hydrophobicity of a surface. Table. 13 shows the relationship 

of contact angle with the above mentioned physical parameters. It could be in-

ferred from the table that contact angle could be a measure of hydrophobicity or 

 

Figure. 38 Hydrophobicity classes of outdoor insulators 
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hydrophilicity of a material. Figure. 39 (a) and (b) shows the contact angles at the 

surface of a hydrophobic and hydrophilic material. 

IV.  CONTACT ANGLES FOR DIFFERENT SURFACES 

The hydrophobicity of the insulating material can be measured by the con-

tact angle between the surface of the water droplet and the insulating material sur-

face. Figure. 39 (a) shows the contact angle for a hydrophobic material and it is 

near 90 degrees. Figure. 39 (b) shows the contact angle for a hydrophilic material 

and it is between 20 to 40 degrees. When the damper ages and also when pollu-

tion settles on the surface of the cable, the hydrophobicity of the damper varies 

and the contact angle will change.  

V. CONTACT ANGLE ON THE SURFACE OF THE SAMPLES 

Figure. 41 (a) and (b) show the contact angle of the water droplet on the 

damper sample and cable sample. It could be observed that the samples are not 

perfectly hydrophobic material. Figure. 40 (a) and (b) show the damper sample 

and cable sample after the sample were failed. It could be observed that the sam-

ple surfaces are less hydrophobic now. The contact angle has decreased from 

what it was when the samples were tested. 

 
(a)         (b) 

Figure. 39 Contact angles of hydrophobic and hydrophilic surfaces 
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VI.  EXPERIMENTAL SETUP AND METHODOLOGY FOR TESTING DAMPER 

The experimental setup explained in chapter 4 is used to test the dampers. 

The methodology is the same to have uniformity in the tests. A fresh sample of 

SVD is used for testing. The electrodes are kept six inches apart in the middle of 

the sample. The voltage applied starts from 5 kV and it increases in increments of 

five till the damper burns. The water solution used has 1% salinity. Table I shows 

the observations made during the tests. 

VII.  EXPERIMENTS ON DAMPER 

The samples used here are spiral vibration dampers made for ADSS ca-

bles. The voltage applied is increased from 5 kV till there is burning on the cable 

surface. Figure. 42, Figure. 43 and Figure. 44 show the surface of the damper at 

different voltage levels. Figure. 42 show that when 5 kV was applied the surface 

of the damper was hydrophobic. Voltage applied was kept at 5 kV for fifteen 

 
(a)                                            (b) 

 

(a)            (b) 

Figure. 41 Fresh samples of damper and cable 

Figure. 40 Contact angles of failed samples 
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minutes and then the voltage level was increased to 10 kV. Figure. 43 show the 

surface of the damper at 10 kV.  

It could be observed that the damper is less hydrophobic at the voltage 

Figure. 43 Surface of the damper when 10 kV is applied 

 

Figure. 42 Surface of the damper at 5 kV with water droplets on the surface 

 
Figure. 44 Surface of the damper when 15 kV is applied 
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level of 10 kV. After fifteen minutes of operation at 10 kV the voltage was in-

creased to 15 kV. Figure. 44 show the surface of the cable at 15 kV. The surface 

is hydrophilic at this voltage level. A continuous water filament could be ob-

served on the surface of the damper. Eventually the cable started burning at the 

voltage level of 15 kV. The aim behind the tests on the dampers was to explain 

the importance of hydrophobicity of the damper in dry band arcing when it is in-

stalled over the cable. Figure. 42 show water on the damper when the samples 

were new and when they were tested for 5 kV. The water droplets on the damper 

is similar to Figure. 39 where the contact angle is near 90 degree. Figure. 43shows 

the damper sample when the damper was tested with 10 kV. It could be seen that 

the hydrophobicity is reduced.  

VIII.  LEAKAGE CURRENT FLOW ON THE SURFACE OF THE SAMPLES 

Leakage current flow on the surface of the samples was recorded using the 

series resistor in the experimental circuit. Leakage current was measured when-

ever there is a presence of visual dry band arcing. Figure. 46 and Figure. 47 show 

the leakage current flow on the surface of ADSS cable sample and the cable sam-

ple with damper on it. Table II shows the maximum and minimum leakage current 

that was observed during the experiment. 

Figure. 42, Figure. 43, and Figure. 44 showed the hydrophobicity of the 

samples at 5, 10 and 15 kV. This indicates that the number of cycles required by 

the damper to fail is less compared to the cable sample without damper, which 

took five cycles to fail. Leakage current details are given in Figure. 46 and Figure. 

47. This indicates that the aging time of the damper and the ADSS cable differ. 
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Due to this, when the damper was installed over the cable and tested, the sample 

failed after three cycles at 15 kV.  If the damper and the ADSS cable tested were 

to be installed together the cable will fail earlier than expected and also the 

damper will derate the cable. The cable sample in the absence of damper used for 

testing failed at 25 kV, which indicates that the cable will withstand 15 and 20 kV 

of applied voltage. But, the damper when installed over the cable derated the ca-

ble to 15 kV. Moreover, it could be observed from the table that the presence of 

damper increased the leakage current flow in the surface of the sample. When the 

damper is installed for an applied voltage of 15 kV the maximum observed leak-

age current flow is 0.8 mA which is a 100 percent increase. Figure. 45 show the 

arc which damaged the cable. The red mark in Figure 45 (b) shows that the pres-

ence of water droplet remaining undamaged. And also Figure. 45 show the differ-

ence in hydrophobicity between the damper and cable. The reduced hydrophobic-

ity kept the water droplet in between the damper and cable and this created an arc 

and damaged the cable surface. The length of the arc which damaged the cable is 

around 0.7 inches in length.  

 
Figure. 45 Samples showing damage on the damper 
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Figure. 46 Leakage current on the surface of ADSS cable 

Figure. 47 Leakage current on the surface of damper and cable setup 
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IX.  SUMMARY  

 The criterion that was considered to say that the samples failed is a 

stable dry band arc which visibly burns the cable and it should change from a sta-

ble arc to a stable flame. The damper surface age very quickly when compared to 

the ADSS cable. The surface of the damper should be made with good hydropho-

bic material and with one which has a very long aging time. If this damper is used 

with an ADSS cable which has a better hydrophobic properties and longer aging 

time, the damper will reduce the characteristics of the cable properties. This can 

reduce the aging time of the cable. Moreover, even if the cable was rated for 25 

kV, because the damper burns at 15 kV the cable will also burn at 15 kV. The 

above tested sample, if installed along a cable which was rated at 25 kV and in-

stalled at a field of 20 kV will create dry band arcing and damage the cable even 

though the cable was rated at 25 kV. 

Applied voltage ADSS cable sample 

mA 

Cable and damper 

sample mA 

 Min Max Min Max 

5 kV 0.05 0.12 0 0.8 

10 kV 0.18 0.24 0.2 0.3 

15 kV 0.2 0.38 0.39 0.82 

20 kV 0.28 0.49 - - 

25 kV 0.18 0.52 - - 

 

Table. 14 Leakage current flow on the surface of samples 
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The selection criteria of damper should not only be limited to outer diame-

ter of the cable, span between the towers but also the electrical performance of 

both damper and the cable. It is suggested by the manufacturers that moving 

dampers to the middle of the span will reduce dry band arcing on dampers as the 

magnitude of leakage current is less. But, this might affect the damping properties 

of spiral vibration dampers. A proper decision would be to test the dampers and 

rate them according to their electrical performance and install them on cables 

which have similar electrical properties. 
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Chapter 7 

Computer simulation of ADSS cable and damper 

I. INTRODUCTION 

In the previous chapter, effect of damper on ADSS cable is shown by 

comparing the leakage current flow on the surface of the ADSS cable and a con-

clusion based on the hydrophobicity of the samples is presented. In this chapter, 

electric field on the surface of the ADSS cable is simulated. A comparison be-

tween the surface electric field for different samples is shown.  

II.  DETAILS OF SIMULATION MODELS 

Software packages based on finite element, finite difference, boundary 

element and charge simulation methods are commercially available for electric 

field simulation. For the work presented in this chapter, a software package based 

on boundary element analysis method called as COULOMB is used. The samples 

that are used in the experiments and some of the characteristics of the experiment 

are modeled in the simulation. The electric field distribution in between the elec-

trodes is of interest here.   

A. Basic models used for simulation 

The models used in the COULOMB simulation are the following  

i. ADSS cable sample without damper and water strip  

ii.  ADSS cable sample with damper but without water strip 

iii.  ADSS cable sample with damper but without water strip 

iv. ADSS cable sample with damper and water strip 
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B. Description of the models 

The following details of the ADSS cable were included in the models used  

i. Central strength member 

ii.  Optical fiber 

iii.  Outer dielectric sheath 

iv. Aluminum electrodes and 

v. Dielectric damper 

Some of the materials used to manufacture the cable were not provided in 

the software materials library. For materials that were not available in the soft-

ware, their corresponding relative permittivity was used to model them in the 

simulation. Details of the materials used in the simulation are given in Table. 15.  

C. Dimensions of the samples used 

Table. 15 Relative permittivity of the materials used 

 Material used Permittivity 

Buffers and fillers polybutyleneterapthalate 2.45 

Center strength member Reinforced plastic 3.7 

Outer sheath Polyethylene 2.25 

Electrodes Aluminum 1 

Damper Polyvinylchloride 4.5 

Water strip Water 80.2 
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The dimensions of the samples used in the experimental testing were used 

as the base for the COULOMB models. COULOMB model has ADSS cable of 

length 9 inches. The electrodes are of length 1.5 inches. The electrodes are spaced 

at a distance of six inches. The water strip used in the models is of length 2.5 

inches. The presence of water strip simulates the situation when the surface of the 

samples becomes less hydrophobic. The specifications of the models are shown in 

Table. 16. and are the generic details of the COULOMB samples used throughout 

Table. 16 Specification of the sample 

 Radius in inches 

Buffers and fillers 0.0118124 

Center strength member 0.09845 

Outer sheath Inner radius 0.3399 

Outer sheath outer radius 0.4384 

Cable electrode inner radius 0.4484 

Cable electrode outer radius 0.4583 

Damper radius 0.3837 

Water strip inner radius (over the damper) 0.3937 

Water strip outer radius (over the damper) 0.4219 

Damper electrode inner radius 0.3864 

Damper electrode outer radius 0.3964 

Water strip inner radius (over the cable) 0.448425 

Water strip outer radius (over the cable) 0.476665 
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this study. The models used in the simulation are made close to the samples used 

in the experiment. 

III.  ELECTRIC FIELD SIMULATION ON THE SURFACE OF THE MODELS 

A. Case I – Cable model without damper without water strip 

The model without water strip could be called as a dry model because this 

represents the ADSS cable without any conductive moist pollution on its layer. 

Electric field on the surface of this when compared with model which has water 

strip over it provides a good understanding of the phenomenon. Figure. 48 shows 

the model used in COULOMB simulation. It shows the fiber optics inside the ca-

ble, a central strength member and an outer dielectric sheath. The tubes at two 

ends of the model represent the aluminum electrodes. It could be observed from 

the surface electric field plot that near the electrodes the electric field distribution 

is higher, which increases the possibility of breakdown of air near the electrodes. 

Towards the ground, electric field distribution reduces to a very low value and 

there is a small spike near the ground electrodes.  

 
Figure. 48 COULOMB model for case I 
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Figure. 49 Electric field on the surface of the cable for model I 
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Figure. 50 Electric field for Model I between 4 and 7 inches from high volt-

age electrode 
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B. Case II – Cable model in the absence of damper, with water strip 

In this model, a water strip is placed over the cable outer sheath. The water 

strip starts at 4.5 inches and ends at 7 inches from high voltage electrode end of 

the sample. The specifications and details of the materials used in the sample are 

given in Table. 15 and Table. 16. It could be observed that at 4.5 inches where the 

water strip begins there is a small increase in the electric field and also at 7 inches 

where the water strip ends. This model is used to compare the effect of water strip 

present over the damper on the electric field distribution. 

 
Figure. 51 COULOMB model for case II 

          

 
Figure. 52Electric field on the surface of the cable for model II 
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C. Case III – Cable model with damper, in the absence of water strip 

Figure. 54 shows the COULOMB model used to simulate the case with 

damper over the cable and in the absence of water strip. The damper is placed 

above the cable at a distance of 4.5 inches from the high voltage electrode till the 

end at 9 inches. COULOMB generates an error when two surfaces overlap, the 

surfaces of the models shown in the simulation does not touch each other. Due to 

this, another grounding electrode is placed over the damper.  Poly vinyl chloride 

(PVC) is the material used to simulate the damper. Electric field on the surface of 

the cable did not change much from case I. The presence of damper did not make 

any difference in the electric field under dry conditions. 
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Figure. 53 Electric field for Model II between 4 and 7 inches 

from high voltage electrode 

 

Figure. 54 Coulomb model for case III 
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Figure. 55 Electric field on the surface of the cable for model III 
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Figure. 56 Electric field for Model III between 4 and 7 inches from high volt-

age electrode 
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IV.  CABLE MODEL IN THE PRESENCE OF DAMPER AND WATER STRIP 

Figure. 57 shows the model used to simulate case IV in COULOMB. A 

water strip is added to the damper layer. The thickness of the water strip is main-

tained to be the same. But, the volume occupied by the water strip will be less 

than the water strip that was placed over the ADSS cable surface in case II. This 

is due to the fact that the diameter of the damper is lesser than that of the ADSS 

cable. Figure. 58 show the electric field on the surface of the ADSS cable for case 

IV. The plot shows that there is an increase in the electric field at the edges of wa-

ter strip that is at 4.5 inches and at 7 inches from the high voltage electrode end. 

The maximum when 25 kV was applied to the electrodes is around 10 kV/inch.  

V. SUMMARY OF THE SIMULATIONS 

The plots show the effect of damper and the effect of water strip on the 

electric field distribution on the surface of the cable sample. To stress the effect of 

water strip over the damper on electric field distribution zoomed in view of the 

two extreme cases, that is case I and case IV is shown in Figure. 50 and Figure. 

59. At 25 kV, the model without damper and water strip had electric field of 1.5 

kV/inch. But, the model with both damper and water strip shows that the electric 

field was around 9.5 kV/inch for an applied voltage of 25 kV. It could be shown 

 
Figure. 57 COULOMB model for case IV 



76 

 

by comparing Figure. 56 with Figure. 59 that it is the presence of water strip on 

the damper which creates this increase in electric field. The presence of water 

strip reflects that the surface tends to keep more water on it, which indicates the 

reduced hydrophobic nature of the surface and indicates that the damper surface is 

partially wettable. If the surface of the damper is at the same level of hydropho-

bicity as the ADSS cable, the cable will not damage prematurely. Hampton’s cri-

terion states that the arc will extend over the adjacent moisture, if the field ex-

ceeds that in the arc [29]. The plots shown above indicate that the electric field 

distribution on the surface of the cable when the damper installed is five times 

 
Figure. 58 Electric field on the surface of the cable for model IV 
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more than a cable without damper. This increase extends the arc from the cable 

surface to the water droplet in between the damper and cable. 

 

 

 

 

 

 

 

 

4 4.5 5 5.5 6 6.5 7 7.5
0

2000

4000

6000

8000

10000

Distance (in inches)

E
le

ct
ric

 f
ie

ld
 (

V
/in

ch
)

Electric field distribution on the surface of cable (Model IV)

 

 

5 kV
10 kV
15 kV
20 kV
25 kV

Figure. 59 Electric field for Model IV between 4 and 7 inches from high 
voltage electrode 
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Chapter 8 

Conclusion and Future work 

I. CONCLUSION 

A. Ranking ADSS cables using the power needed to damage the dielectric 

layer 

Experiments were conducted on ADSS fiber optic cable samples using 

two different circuits. The first circuit has a resistor-capacitor bank and the second 

circuit has only the resistors. These two circuits simulate the pollution existing in 

the field conditions. The results suggest that the samples tested in the circuit with 

the RC bank needed more power than the samples that were tested with only a 

resistor bank. 

A novel methodology of classifying the ADSS cable with the power 

needed to damage the outer dielectric surface of ADSS cable was proposed. Two 

model systems were presented. Open circuit voltage and short circuit current 

available in the system for three different pollution levels were calculated. The 

power available in the system was calculated from the open circuit voltage and 

short circuit current results.  

The experimental results were then used to predict the performance of the 

cables in the field by analyzing these results with the experimental measurements. 

For both the models, at the high pollution level, the results suggest that the power 

was sufficient to deteriorate the cable surface. But, at the low and medium pollu-

tion levels, the available power was less than the power needed to deteriorate the 

cable surface. 



79 

 

B. Effect of damper on dry band arcing: 

 A novel experimental methodology to test the effect of the damper on dry 

band arcing was introduced. Samples were tested using this methodology. The 

results indicate that the cable sample failed earlier at an applied voltage of 15 kV 

when compared with the sample without a damper over it. Visual observation of 

the tests discloses that the hydrophobicity of the samples was reduced at the time 

of failure. This reduction caused water zones to be formed in between the cable 

and damper surface and formed a conductive path for the leakage current. An in-

creased leakage current flow was observed on the surface of the cable sample 

with damper over it.  

 The samples were modeled in commercially available software to observe 

the electric field distribution. Four models were used for the simulations. The 

electric field simulations indicate that the electric field was high near the edge of 

the water strip. In the presence of a water strip, the electric field distribution on 

the surface increased by a factor of three.  

II.  CONTRIBUTIONS 

i. A new methodology to classify the ranking of ADSS cable using the 

power needed to deteriorate the outer dielectric cable surface was pro-

posed. 

ii.  The effect of spiral vibration damper on dry band arcing of ADSS cable 

was studied. 
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III.  FUTURE WORK 

Insulators with semi-conducting layer are gaining interest in the industry. 

Spiral vibration damper manufacturers have made dampers with such semi-

conducting layers on them to avoid dry band arcing between the damper and ca-

bles. A study on such a damper could provide interesting results. Not only could 

the results be useful for the performance of ADSS cables, but also for insulators 

which uses such a technology. 

IV.  PUBLICATION  

[1] K. Prabakar, G. Karady, “Experimental investigation of dry band arcing on 

ADSS cables when spiral vibration dampers are installed,” in Electrical insulation 
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APPENDIX A 

CALCULATION FOR POWER AVAILABLE IN THE SYSTEM 
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I. INTRODUCTION 

This appendix provides the MathCAD® code needed to calculate the 

power available in the system to create dry band arcing. A model calculation for 

both the models is presented.  

II.  MATHCAD® CALCULATIONS 

      Calculation for Model I

Constants: 

ε1 8.8541878171010
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Sag of cable and conductors [22]: 
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Figure. 60 Sag of transmission line and ADSS cable 
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Figure. 61Voltage distribution on the surface of ADSS cable 
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Figure. 62 Sag of transmission line and ADSS cable 
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Figure. 63 Voltage distribution 
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Figure. 64 Current distribution 

Open circuit voltage and short circuit current 
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