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ABSTRACT  
   

 Damage assessment and residual useful life estimation (RULE) are essential 

for aerospace, civil and naval structures. Structural Health Monitoring (SHM) 

attempts to automate the process of damage detection and identification. 

Multiscale modeling is a key element in SHM. It not only provides important 

information on the physics of failure, such as damage initiation and growth, the 

output can be used as “virtual sensing” data for detection and prognosis. The 

current research is part of an ongoing multidisciplinary effort to develop an 

integrated SHM framework for metallic aerospace components. 

 In this thesis a multiscale model has been developed by bridging the relevant 

length scales, micro, meso and macro (or structural scale). Micro structural 

representations obtained from material characterization studies are used to define 

the length scales and to capture the size and orientation of the grains at the micro 

level. A microvoid model accounting for size and crystal orientation effects is 

developed first. Parametric studies are conducted to estimate material parameters 

used in this constitutive model. Numerical and experimental simulations are 

performed to investigate the effects of Representative Volume Element (RVE) 

size, defect area fraction and distribution. A multiscale damage criterion 

accounting for crystal orientation effect is developed next. This criterion is 

applied for fatigue crack initial stage prediction. A damage evolution rule based 

on strain energy density is modified to incorporate crystal plasticity at the 

microscale (local). A damage tensor is derived using optimization theory to 

characterize the local damage state. The micro scale damage information is passed 
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from local to grain level, bridging microscale and mesoscale, in the form of a 

damage vector via averaging techniques. Finally, the damage evolution rule for a 

meso RVE, which contains several grains, is calculated by modifying the 

Kreisselmeier-Steinhauser (KS) function, which is used in multiobjective 

optimization applications, to obtain lower and upper bounds of damage envelopes. 

The weighted averaging method is also used to obtain the corresponding damage 

evolution direction for the meso RVE. A critical damage value is derived to 

complete the damage criterion for fatigue life prediction in Aluminum 2024 test 

articles. A wave propagation model is incorporated with the damage model to 

detect changes in sensing signals due to plastic deformation and damage growth. 
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Chapter 1 

Introduction 

1.1 Motivation 

 Damage detection and condition monitoring of aerospace vehicles with a view 

to improve safety and reliability have always been associated with significant 

labor and economic costs. Past investigations have consistently relied on 

empirical models, non-destructive evaluation (NDE) techniques, and 

observations, rather than acquiring a fundamental understanding of structural 

health monitoring concepts [1, 2]. Over the last few years, however, Structural 

Health Monitoring (SHM), has emerged as an exciting new field of 

multidisciplinary investigations, with academic conferences and scientific 

journals that are devoted today exclusively to SHM [3-7] issues. 

 While the use of SHM technologies is becoming increasingly common, there 

is a need to develop a comprehensive framework for damage identification 

strategies that successfully address the structural reliability and sustainability of 

critical components. The applications include aerospace, civil, and mechanical 

infrastructure. An integrated framework that includes modeling, sensing, 

detection, and information management (Fig. 1.1) is currently being developed by 

Chattopadhyay and her research group [8]. As shown in Fig. 1.1, the sensing 

portion of SHM involves selection of sensor and their optimal placement, damage 

detection methodologies, data acquisition and signal processing approaches. The 

goal of this element in SHM is to detect the smallest possible damage in a 

structure. Although considerable research has been conducted on developing 
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different sensing techniques [9-12], existing sensors pose considerable limitation 

on the size of detectable damage. This problem can be overcome by a modeling-

based virtual sensing technique. Results from a multiscale modeling technique 

which is capable of tracking damage initiation at the microscale and providing 

damage information at the macroscale, can be used in conjunction with data from 

physical sensors, resulting in a hybrid data base for damage detection. The 

decision making component can use the hybrid data base to isolate, quantify and 

classify damage.  Finally, the information can be fed to the prognosis module for 

predicting damage evolution and most importantly to estimate the residual useful 

life of a system.  

 In this thesis, effort has been dedicated to develop a physics-based multiscale 

modeling approach and associated damage criterion for the estimation of damage 

initiation and propagation which is essential to diagnosis and prognosis. Important 

issues regarding different length and time scales, anisotropic behavior at 

microscale due to crystal orientation effect, and grain size effect are addressed in 

this research. Background of relevant research is discussed in the following 

sections. 
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Figure 1.1 Integrated Structural Health Monitoring Framework 

 

1.2 Multiscale Modeling 

 Cyclic loading is one of the common loading conditions for aerospace 

vehicles [13]. The associated phenomenon of fatigue inherently involves multiple 

scales due to the presence of microcracks (initiation and growth at microscale) or 

inclusions which can lead to structural damage and subsequent failure. Therefore, 

it is necessary to develop a scale-dependent, physics-based model for accurate 

simulation in order to understand material performance/degradation in various 

operational environments and to ultimately assess the survivability of aerospace 

vehicles. This scale associated modeling approach, referred as multiscale 

modeling, must address important features at different scales, including multiple 

spatial and/or temporal scales. A review of multiscale modeling techniques 
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addressing the different elements such as mechanics, mathematics, physics, 

numerical methods, and material science can be found in Ref. 14. 

 A significant amount of research has been conducted on multiscale modeling 

[15-21]. For instance, the hierarchical approach based on the bottom-up 

description of the material structure has proved to be successful in a wide range of 

applications [16-19]. Unit representative cells are identified based on a multi-

scale decomposition of the material microstructure. A single macroscopic 

constitutive relation is built hierarchically from one scale to another using cell-

averaging technique. Microstructure parameters are included as variables in the 

resulting relation. An alternative approach to the homogenization is provided by 

the global–local analysis [20, 21]. In this approach, the material response at a 

point is calculated simultaneously with the global simulation by performing a cell 

model. The key advantage of this method is that a homogenized constitutive 

relation is not needed, and therefore, no empirical determination of material 

constants is required. However, this class of method does not start from material 

characterization. The microstructures used in such approaches are generated by 

Voronoi diagram which neglects the real grain size and shape effects. In addition, 

microvoids are arbitrarily introduced in the structure. Thus, the damage initiation 

is not considered in those models. 

 In this thesis, multiscale modeling approach is developed by addressing a 

material constitutive relations and damage evolution model at relevant length 

scales. The research starts from the material characterization to incorporate 

microstructural accurate information. The effects of grain orientation and size on 
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the material mechanical response at microscale and the grain distribution effect on 

the damage evolution are studied in detail. The developed framework is capable 

of predicting damage initiation and growth, including the failure of representative 

volume element (RVE) at meso scale. 

 

1.3 Damage Model 

 Structures under cyclic loading often exhibit fatigue damage and subsequent 

failure. An early description of fatigue damage can be found in the work of Ewing 

and Humfrey [22]. They found that repeated alterations of stress in metals showed 

up in the form of slip-lines on crystals that were very similar in appearance to 

those that occurred in simple tension tests. Further loading resulted in appearance 

of additional slip-lines. After many cycles, the slip-lines changed into 

comparatively wide bands and continued to broaden as the number of cycles 

increased. Cracks occurred along broadened slip-bands from crystal and soon 

coalesced to form a long continuous crack across the surface of the specimen. 

Once the long crack developed, it took a few more cycles of loading to cause 

fatigue fracture. Therefore, it can be concluded that fatigue damage is a result of 

material structural change at the microscale. Thus, a comprehensive fatigue 

damage model should include important microscale features of the material, such 

as grain orientations, and reflect changes of those features at macroscale. In 

addition, engineering structural components are usually subjected to varying loads 

of different amplitudes and frequencies along different directions. This will give 
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rise to biaxial or multiaxial stress state and a prediction of fatigue life should 

consider such loading condition for reliable assessment. 

 Considerable research efforts have been devoted to developing methodology 

for modeling fatigue damage [23]. Many researchers have dedicated efforts to 

developing fatigue criteria over the years. A comprehensive overview on fatigue 

criteria is found in [24]. In general, fatigue criteria can be categorized roughly 

according to the physical quantity upon which the criteria are based. Depending 

on different fatigue damage mechanisms, fatigue criteria are developed as based 

on stress, energy, and fracture mechanics. In earlier research, stress or plastic 

strain amplitudes were adopted for fatigue life prediction. For example, Gough et 

al. [25, 26] proposed empirical relationships that reduce to shear stress for ductile 

materials and principal stress for brittle materials. Since fatigue damage is found 

to be primarily driven by plastic strain energy, this parameter was believed to be a 

rational parameter for fatigue damage evaluation. However, most early attempts 

of fatigue model development based primarily on the energy concept without 

considering loading history related parameters seem unsatisfactory [24]. 

Modifications are also needed to apply those models for complex loading 

conditions such as multiaxial loading, and non-proportional loading.  

 The work presented in this thesis is focused on developing a multiscale fatigue 

damage criterion incorporated with single crystal plasticity. This criterion can be 

classified as energy based since the damage parameter is directly related to the 

plastic strain energy density. Two important aspects are addressed in this 

criterion: i) relating damage to the material microstructure features; ii) applicable 



  7 

to multiaxial loading without modification. The derivation of the multiscale 

fatigue damage criterion and some applications of this damage model for different 

structural components and load conditions are presented in the chapter 4. 

 

1.4 Objectives of the Work 

 The present work aims at the following objectives:  

1) Implement a single crystal plasticity theory at microlevel, and modify a 

user defined material subroutine (UMAT) to incorporate kinematic and 

isotropic hardening into this model.  

2) Develop a size-dependent void model. 

3) Determine key material parameters via a parametric study. 

4) Investigate effects of representative volume element (RVE) size and 

defect area fraction and distribution on material properties via numerical 

simulations.  

5) Incorporate a fatigue damage criterion for single crystal plasticity and 

develop damage tensor at the microscale based on the energy density 

concept. The formulation of damage tensor involves selecting the optimal 

set of equations, relating damage parameter to damage tensor. 

6) Develop a damage vector at mesoscale, which indicates the amount of 

damage and direction of damage evolution simultaneously using weighted 

averaging techniques and the Kreisselmeier-Steinhauser function.  



  8 

7) Perform damage analysis using multiscale modeling and develop 

multiscale damage criterion in lug joints under uniaxial loading and in 

cruciform sample under biaxial loading. 

8) Incorporate the multiscale damage model in a wave propagation model for 

virtual sensing. 

 

1.5 Outline of the Thesis 

 The thesis is structured as follows. Six chapters are presented. 

 Chapter 2 provides an introduction to single crystal plasticity theory. The 

main governing equations are presented. A nonlinear kinematic hardening rule of 

the Armstrong-Frederick type and isotropic hardening is added to the single 

crystal plasticity theory. Then the forward gradient time integration scheme and 

incremental formulation are provided followed by the UMAT algorithm. 

Procedures to construct the 2D microstructure from Electron Backscattering 

Diffraction (EBSD) scans are discussed. Details of the parametric studies 

conducted to find the key material parameters are presented.   

 Chapter 3 presents the development of a void model accounting for the size 

and orientation effects. Different shapes of microvoids are studied by applying the 

size-dependent void model. Results from a simulation study conducted to 

investigate the effects of RVE size and defect area fraction and distribution on 

material performance is also presented.   

 Chapter 4 starts with an introduction of a comprehensive fatigue damage 

criterion that can be applied for multiaxial and nonproportional loading. For 
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computational efficiency, the damage criterion is modified incorporating single 

crystal plasticity. Damage parameters within the 12 slip systems are calculated at 

each integration point and are used to construct a damage tensor at the microscale. 

Average and optimization techniques, used to bring the key damage parameters 

from microscale to mesoscale, are discussed. Details of derivation for the 

mesoscale damage parameter from the microscale are presented. Applications of 

the damage criterion in lug joint and cruciform sample under different load 

conditions are shown at the end of this chapter.  

 Chapter 5 presents the virtual sensing technique by incorporating the wave 

propagation model with the multiscale model. The determinations of maximum 

element size and time increment are presented in this chapter. Preliminary results 

on some initial investigation of sensing signal change due to microstructure under 

different load conditions are also presented.  

 Chapter 6 summarizes the work reported in this thesis and the innovative 

contributions made in this research in multiscale damage modeling and finite 

element based virtual sensing technique are highlighted. Ideas for future work are 

discussed at the end of the chapter. 
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Chapter 2 

Constitutive Model 

2.1 Introduction 

 One of the most important concerns for crystalline materials is to incorporate 

microstructure, crystallinitiy, and micromechanics into the continuum description 

of finite strain plasticity.  The subject has led to the development of a sound 

physical and mathematical foundation where the work of Taylor [27, 28] is 

considered a significant contribution. Taylor discovered that crystal dislocation 

provided a clear atomistic interpretation of the slip process and strain hardening, 

demonstrating that micromechanics could be incorporated into a macroscopic 

analysis of plastic flow. Hill, Rice, Asaro, and Bassani [29-35] extended this 

theory by demonstrating that crystal plasticity did, in fact, incorporate important 

micromechanical features of plastic flow into macroscopic analysis.  

 

2.2 Single crystal plasticity 

 The single crystal plasticity theory is used to capture crystallographic 

orientation effects not considered by classical isotropic models of metal plasticity. 

The kinematic theory for single crystal deformation presented here follows the 

pioneering work of Taylor [28] and its precise mathematical theory developed by 

Hill, Hill and Rice, and Asaro [29-34]. It starts from the deformation gradient 

𝐅 = 𝜕𝐱/𝜕𝐗, where the deformation gradient is decomposed into elastic and 

plastic components (shown in Fig. 2.1) under the standard multiplicative 
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decomposition assumption. Equation (2.1) shows the formula to decompose the 

deformation gradient. 

 

 

Figure 2.1 Multiplicative decomposition of deformation gradient 

 𝐅 = 𝐅𝐞 ∙ 𝐅𝐩 (2.1)  

where 𝐅𝐩denotes plastic deformation of the material in an intermediate 

configuration in which the lattice orientation and spacing remain the same as in 

the reference configuration. 𝐅𝐞denotes the elastic component of the deformation 

gradient, which includes stretching and rotation of the lattice. The velocity 

gradient, 𝐋 = ∂𝐯/ ∂𝐱, in the current configuration is related to the deformation 

gradient by:  

 𝐋 = �̇�𝐅−𝟏 = 𝐋𝐞 + 𝐋𝐩 (2.2)  

where 𝐋𝐞 = �̇�𝐞𝐅𝐞−𝟏 and 𝐋𝐩 = 𝐅𝐞�̇�𝐩𝐅𝐩−𝟏𝐅𝐞−𝟏 represent the elastic and plastic 

components of the velocity gradient, respectively. 

Initial configuration Final configuration 

Intermediate configuration 
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 Assuming that the inelastic deformation of a single crystal arises solely from 

the crystalline slip, the plastic velocity gradient can be rewritten in terms of the 

resolved slip rate �̇�(𝛼), the slip direction 𝐬(𝛂) , and the normal 𝐦(𝛂) to the slip 

plane as below: 

 𝐋𝐩 = ��̇�(𝛼)𝐬(𝛂)⨂𝐦(𝛂)

𝛼

 (2.3)  

where 𝛂 denotes the 𝛂 th slip system. The resolved shear stress, which plays a 

vital role in promoting slip, has been derived from the Cauchy stress tensor and is 

given by: 

 𝜏(𝛂) = 𝛔: (𝐬(𝛂)⨂𝐦(𝛂))𝐬𝐲𝐦 (2.4)  

It is important to note that the slip direction and the vector normal to the slip plane 

used in Eqn (2.4) are defined for the deformed configuration, but not for the 

reference configuration. The slip direction and normal vector for the deformed 

configuration can be expressed in terms of the reference configuration as follows:  

 𝐬(𝛂) = 𝐅𝐞𝐬𝟎(𝛂) and 𝐦(𝛂) = 𝐦𝟎
(𝛂)𝐅𝐞−𝟏 (2.5)  

 The velocity gradient in the current state can be decomposed into the 

symmetric rate of stretching tensor D and the antisymmetric spin tensor Ω as 

follows: 

 𝐋 = 𝐃 + 𝛀 (2.6)  

Furthermore, the stretching and spin tensor can be decomposed into lattice part 

and plastic part, respectively: 

 𝐃 = 𝐃𝑙 + 𝐃𝑝 and 𝛀 = 𝛀𝑙 + 𝛀𝑝 (2.7)  

Satisfying:  
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 𝐃𝑙 + 𝛀𝑙 = �̇�𝐞 ∙ 𝐅𝐞−𝟏 

 𝐃𝑝 + 𝛀𝑝 = ��̇�(𝛼)𝐬(𝛂)⨂𝐦(𝛂)

𝛼

 
(2.8)  

Following Hill and Rice’s work, the stretching tensor and the Jaumann rate of 

Cauchy stress 𝝈� have the following relation: 

 𝝈� + 𝝈(𝐈:𝐃𝑙) = 𝐋:𝐃𝑙 (2.9)  

 A power-law is used in the flow rule to calculate the slip increments, as 

follows [36, 37]:  

 �̇�(𝛼) = 𝛾0̇
(𝛼) �

𝜏(𝛂) − 𝜒(𝛂)

𝑔(𝛂) �
𝑛

𝑠𝑖𝑔𝑛(𝜏(𝛂) − 𝜒(𝛂)) (2.10)  

where 𝛾0̇
(𝛼) is the reference strain rate on slip system 𝛂, n is the strain rate 

exponent, 𝑔(𝛂)and 𝜒(𝛂) represent the isotropic and kinematic hardening, 

respectively. The hardening law for 𝑔(𝛂) and 𝜒(𝛂) are presented below:    

 �̇�(𝛂) = �ℎ𝛼𝛽
𝛽

�̇�𝛽 (2.11)  

 �̇�(𝛂) = 𝑏�̇�(𝛼) − 𝑟𝜒(𝛂)��̇�(𝛼)� (2.12)  

where ℎ𝛼𝛽 = �
ℎ(𝛾) = ℎ0 𝐬𝐞𝐜𝐡𝟐 �

ℎ0𝛾
𝜏𝑠−𝜏0

� , 𝛼 = 𝛽

𝑞ℎ(𝛾), 𝛼 ≠ 𝛽
� are called self and latent 

hardening moduli, respectively. b, r, and q are material constants, ℎ0 is the initial 

hardening modulus, 𝜏𝑠 is the stage I stress, and 𝜏0 is the yield stress. The 

cumulative shear strain on all slip systems can be obtained by: 

 𝛾 = ����̇�(𝛼)�
𝑡

0𝛼

𝑑𝑡 (2.13)  
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The details of hardening for crystalline materials can be found in the work of 

Asaro [33, 34, 38]. 

2.3 Time integration scheme & incremental formulation 

 Huang’s implementation of the single crystal plasticity theory using the user-

material subroutine (UMAT) [39], has been used in this research. This procedure 

is summarized in this section. The tangent modulus method for rate dependent 

solid developed by Peirce, Shih, and Needleman [40] is implemented in the 

UMAT. The linear interpolation within a time increment ∆t is as follows: 

 ∆𝛾(𝛂) = ∆𝑡[(1 − 𝜃)�̇�𝑡
(𝛼) + 𝜃�̇�𝑡+∆𝑡

(𝛼)] (2.14)  

The parameter 𝜃 , ranging from 0 to 1, controls the interpolation scheme. When 

𝜃 = 0, the Eqn. (2.14) returns to the simple Euler time integration scheme. When 

𝜃 = 1, it becomes fully implicit integration scheme. A value of 𝜃 = 0.5 is chosen 

for all simulations in this research following the recommendation from Peirce’s 

work [40].  

 The resolved shear stress increment ∆𝝉(𝛂) can be obtained from Eqn. (2.4), 

(2.7), (2.8) and the elastic constitutive law (Eqn. (2.9)): 

 ∆𝜏(𝛂) = �𝐶𝑖𝑗𝑘𝑙𝜇𝑘𝑙
(𝛼) + 𝜔𝑖𝑘

(𝛼)𝜎𝑗𝑘 + 𝜔𝑗𝑘
(𝛼)𝜎𝑖𝑘� ∙ �∆𝜀𝑖𝑗 −�𝜇𝑖𝑗

(𝛽)∆𝛾(𝛽)

𝛽

� (2.15)  

where C is the elastic stiffness tensor, µ is the Schmid factor and ω is a tensor 

related to the spin tensor Ω. These can be expressed in terms of the slip direction 

and normal of each slip system as follows: 
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 𝜇𝑖𝑗
(𝛼) =

1
2
�𝑠𝑖

(𝛼)𝑚𝑗
(𝛼) + 𝑠𝑗

(𝛼)𝑚𝑖
(𝛼)� (2.16)  

 𝜔𝑖𝑗
(𝛼) =

1
2
�𝑠𝑖

(𝛼)𝑚𝑗
(𝛼) − 𝑠𝑗

(𝛼)𝑚𝑖
(𝛼)� (2.17)  

The increments of current hardening function ∆𝑔(𝛂) are derived from Eqn. (2.11): 

 ∆𝑔(𝛂) = �ℎ𝛼𝛽∆𝛾(𝛽)

𝛽

 (2.18)  

In general, the slip rate �̇�(𝜶) is a function of the resolved shear stress 𝜏(𝛂) and the 

current strength 𝑔(𝛂), which yields: 

 �̇�𝑡+∆𝑡
(𝛼) = �̇�𝑡

(𝛼) +
𝜕�̇�(𝛼)

𝜕𝝉(α) ∆𝝉
(α) +

𝜕�̇�(𝛼)

𝜕𝑔(𝛂) ∆𝑔
(𝛂) (2.19)  

Thus Eqn. 2.14 becomes: 

 ∆𝛾(𝛼) = ∆𝑡[�̇�𝑡
(𝛼) + 𝜃

𝜕�̇�(𝛼)

𝜕𝝉(𝛂) ∆𝝉
(𝛂) + 𝜃

𝜕�̇�(𝛼)

𝜕𝑔(𝛂) ∆𝑔
(𝛂)] (2.20)  

Therefore the linear solution of ∆𝛾(𝛂) can be obtained by substituting the 

incremental relations (Eqn. 2.15 & Eqn. 2.18) into Eqn. (2.20). By using Eqn. 

(2.10), the nonlinear function of ∆𝛾(𝛂) can be obtained as: 

 

∆𝛾(𝛼) − (1 − 𝜃)∆𝑡�̇�𝑡
(𝛼)

− 𝜃∆𝑡�̇�0
(𝛼) �

𝜏𝑡
(𝛼) + ∆𝜏(𝛼) − 𝜒𝑡

(𝛼) − ∆𝜒(𝛼)

𝑔𝑡
(𝛼) + ∆𝑔(𝛼)

�
𝑛

𝑠𝑖𝑔𝑛�𝜏𝑡+∆𝑡
(𝛼) − 𝜒𝑡+∆𝑡

(𝛼) �

= 0 

(2.21)  

where ∆𝜒(𝛼) can be calculated through Eqn. (2.12). This nonlinear equation of 

∆𝛾(𝛂) is solved using a Newton-Rhapson iterative method, and the linear solution 

obtained from Eqn. (2.20) is taken as an initial estimation. The details can be 
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found in Huang’s work [39]. The main difference between Huang’s work and the 

work in this dissertation is that the power-law used  here includes the kinematic 

term reflected in the backstresses.  

 

2.4 User-defined material subroutine 

 ABAQUS is a widely used commercial finite element program. It provides an 

interface where users can write a subroutine to define their own constitutive 

model. This user-defined material subroutine referred to as UMAT will provide 

the material Jacobian matrix, 𝝏∆𝝈/𝝏∆𝜺 to update the stresses and the solution 

dependent state variables values at the end of the increment, once it is called by 

ABAQUS [41]. 

 Figure 2.2 shows the flowchart of the UMAT subroutine based on single 

crystal plasticity. 

 

Figure 2.2 Flowchart of UMAT 

UMAT--- main subroutine 
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ROTATION---orientation of local cubic system in global system 

 CROSS---cross product of two vectors 

SLIPSYS---generating all slip systems 

 LINE---[mmm] type of slip systems 

 LINE1---[0mn] type of slip systems 

GSLPINIT---initial values of current strain hardening functions in all slip systems 

 GSLP0---user-supplied functional subroutine for the initial value in each 

system 

STRAINRATE---shear strain-rates in all slip systems 

 F---user-supplied functional subroutines for the shear strain-rate in each 

system 

 DFDX---user-supplied functional subroutine for the derivative of function F 

LATENTHARDEN---hardening matrix, i.e. self- and latent-hardening in all slip 

systems 

 HSELF---user-supplied functional subroutine for the self-hardening modulus 

 HLATNT---user-supplied functional subroutine for the latent-hardening 

modulus 
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 In order to verify the constitutive model for fatigue analysis, a copper bar has 

been analyzed in ABAQUS using the UMAT code based on Huang’s work [39], 

using the same material properties listed in 

2.5 Numerical Results 

Table 2.1.  

Table 2.1 Material properties used in copper FCC structure 

Elastic moduli C11 C=168.4GPa 12 C=121.4GPa 44  =75.4GPa 
Material 

constants in 
power law 

n=10 1
0 sec001.0 −=γ   

Material 
constants in 
hardening  

MPah 5.5410 =  MPas 5.109=τ  MPa8.600 =τ  q=1.0 

 
 The bottom and left edges of the foremost surface coincide with the crystal [-

101] and [010] directions, respectively, and the loading direction is parallel to 

[101] (Fig. 2.3). Since copper consists of FCC crystal structures, there are well-

defined families of slip planes and slip directions, i.e., {111} <110>. A single 

FCC crystal will contain 12 slip systems, comprised of four slip planes each with 

three slip directions. Figure 2.4 shows the cyclic load condition (displacement 

control), and Fig. 2.5 shows the stress-strain response using single crystal 

plasticity theory. Two important aspects, cyclic hardening and saturation, are 

clearly exhibited in Fig. 2.5. The accumulated shear strain, which is directly 

related to the micro-damage, has also been investigated. Figure 2.6 demonstrates 

that accumulated shear strain increases with the number of cycles. This is an 

important parameter for fatigue damage studies and will be used in the fatigue 

damage criterion section to calculate the fatigue damage parameter. 
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 The single crystal plasticity theory applied at the micro level can now be 

implemented at the meso level. The material used in this research is Al2024. 

Relevant material parameters are shown in Table 2.2. The material hardening 

constants used in Asaro’s hardening model are adopted from Ref. 34 (shown in 

Table 2). In the mesoscale model, the original structure contained 547 grains, 

which is sufficient to be a representative volume element (RVE). Each grain has a 

single crystal structure. To ensure computation efficiency, the original structure 

was reduced to a structure with 64 grains by combining smaller grains with larger 

or similar ones. Smaller grains were chosen using a heuristic approach based on 

the relative size and orientation of nearby grains; this ensures that no significant 

effects are excluded. The approach used in this model for fatigue simulation at the 

meso scale is generalized in the following three steps.  

Table 2.2 Material properties for Al2024 

Elastic moduli 
(GPa) 

D1111 D=112 1122 D=59.5 2222 D=114 1133=59 
D2233 D=57.5 3333 D=114 1112 D=1.67 2212=-0.574 
D3312 D=-1.09 1212 D=26.7 1113 D=1.25 2213=-0.125 
D3313 D= -1.12 1213 D=-1.92 1313 D= 26.2 1123=-1.92 
D2223 D=1.86 3323 D=0.068 1223 D=-0.125 1323= -1.09 

D2323=24.7 
Material 

constants in 
power law 

n=10 1
0 sec001.0 −=γ    

Material 
constants in self 

and latent 
hardening  

00 9.8 τ=h  08.1 ττ =s  MPa760 =τ  q=1.0 
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Figure 2.3 Crystal orientation and 
loading direction 

 

Figure 2.4 Cyclic loading condition 

 

 

 

Figure 2.5 Stress-strain response Figure 2.6 Accumulated shear 
strain 

  
 The process begins when Electron Backscattering Diffraction (EBSD) scans 

(Fig. 2.7) are used to determine the crystal orientations in terms of three Euler 

angles ( 321 ,, θθθ ). The following rotation matrix relates the Euler angles to the 

crystal axes of each grain, which are parallel to the global axes. 
















−++−
−−+

)cos(                                           )sin()cos(                                             )sin()sin(
)sin()sin(    )sin()cos()sin()cos()cos(   )sin()sin()cos()cos()(cos
)sin()cos(    )sin()sin()cos()cos()cos(      )sin()cos()cos()sin()cos(

22332

213113231231

213132132113

θθθθθ
θθθθθθθθθθθθ
θθθθθθθθθθθθ

    (2.22) 

The rows of the matrix are unit vectors describing the crystallographic axes 

parallel to the global XYZ axes; therefore, this is the rotation matrix from local 

axes to global axes.  

Cyclic loading
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 The next step uses the software package OOF (Object-Oriented Finite), a 

finite element analysis tool available through National Institute of Standards and 

Technology (NIST), is used to create and mesh the meso scale structure from the 

EBSD scan (Fig. 2.8). Grains are represented by various colors and each grain has 

the same material properties, but different crystal orientations. 

 
 
 
 
 
 
 
 
 
 

Figure 2.7 EBSD Scan Figure 2.8 Finite Element model 

 
The procedure to use OOF for meshing is: 

1. Load a EBSD scan in microstructure page (shown in Fig. 2.9) 

 

 

 

 

Figure 2.9 Load image in OOF  

Grains 
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2. In the graphics window, group each grain by pixel selection as shown 

in Fig. 2.10 

 

Figure 2.10 Pixel selection to group grains 

 
3. In the Skeleton page, an initial skeleton can be generated. The mesh 

can be refined by adjusting the value of threshold and alpha. Using the 

Snap Nodes option and setting the proper value for threshold and 

alpha, nodes can be fixed at boundaries. Also,  interface pixels can be 

chosen between grains to refine the mesh. 

 The commercial FEA software ABAQUS and the previously developed 

UMAT are used to obtain stress distributions and stress-strain responses for 

individual grains, as shown in Fig. 2.11.  The specimen is tested under cyclic 

displacement control by applying displacement at the right edge of the meso-scale 

structure.  In Fig. 2.11 (a), the cool-colored grains (green and cooler) are still 

under elastic deformation while the warm-colored grains (yellow and red) 

experience plastic deformation. This indicates that the material has an anisotropic, 
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heterogeneous response at the grain level due to different crystal orientations and 

grain shapes. The stress-strain response of two adjacent grains is presented in Fig. 

2.11 (b). From the plots, the indicated adjacent grains exhibit different material 

behaviors. The red grain has higher stress, but lower strain compared to the other 

one. This provides evidence that the model used in this research is able to capture 

the orientation effects on material behavior at the grain level. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11 (a) Mises stress distribution, (b) Stress-strain response in different 
grains 

 

2.6 Parametric study 

 As mentioned in section 2.5, the simulation results show that under similar 

loading conditions, the material exhibits an anisotropic behavior at the grain level 

due to different crystal orientations (Fig. 2.11). The result shows a distinct 

difference in material behavior between the two adjacent grains.  

 At larger length scales, however, where the anisotropic material behavior is 

eliminated due to a large number of randomly oriented grains, a homogenous 

material behavior can be observed at the macroscale. A simple tension test was 

 

High stressed grain

Low stressed grain

(b) (a) 
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conducted on a standard dogbone sample to obtain the global stress-strain curve at 

the macroscale (shown in Fig. 2.12).  

 

Figure 2.12 Stress-strain curve for simple tension test 

 
The purpose of the parametric study is to determine values of the material 

parameters used in crystal plasticity. The procedure allows the material to exhibit 

anisotropic behavior at the microscale due to crystalline orientations, and 

maintain the overall material behavior at larger scales in accordance with the 

isotropic macroscale material behavior from the experimental tests. This 

parametric study for evaluating the three material parameters associated with 

Asaro’s hardening rule (Eqn. (2.23)) in single crystal plasticity ensures that 

overall stress-strain response from a RVE containing a sufficient number of grains 

matches the test data. 
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where h0 is initial hardening modulus, τs is stage I stress and τ0 is initial strength. 

h0 controls the slope of stress-strain curves at the plastic region and τ0 controls the 

yield point. A total of 15 analyses have been conducted for the parametric study 

to determine the three parameters as: h0=5MPa, τs=375MPa, and τ0

Figure 2.13

=146MPa. 

 shows an RVE that contains 167 grains and Figure 2.14 shows four 

simulation curves where h0 and τs are fixed and only τ0 

 

is varied.  

Figure 2.13 RVE containing 167 grains for parametric study 

 

 

Figure 2.14 Parametric study reevaluating parameters used in Asaro’s hardening 
rule 
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In cyclic loading, an essential factor is kinematic hardening. In order to determine 

the material parameters (b & r) used in the Armstrong- Frederick hardening type 

(Eqn. 2.12), a cyclic loading test and parametric study were conducted. Figure 

2.15 shows the stress-strain curve under cyclic loading. 

 

Figure 2.15 Stress-strain curve for cyclic loading test 

When the compression response is compared with the tension response (shown in 

Fig. 2.16), it is clear that initial backstresses are present due to the manufacturing 

rolling process. 

 

Figure 2.16 Comparison between compression and tension 
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Figure 2.17 Deformation of the sample 

 
In order to simplify the problem, an assumption is made that the deformation 

along X direction shown in Fig. 2.17 can be neglected. The Y direction is along 

the rolling direction and the X-Y plane is parallel to the surface of the sample. 

Using an incompressive assumption: 

 𝜀�̇�𝑥 + 𝜀�̇�𝑦 + 𝜀�̇�𝑧 = 0 (2.24)  

By applying the zero deformation along X direction, it gives: 

 𝜀�̇�𝑦 ≈ −𝜀�̇�𝑧 (2.25)  

The backstress components, thus, can be derived as: 

 � 𝜒𝑋 ≈ 0.0
𝜒𝑍 ≈ −𝜒𝑌

� (2.26)  

For crystal plasticity, the backstress needs to be resolved along different slip 

systems through Eqn. 2.27: 

 𝜒(𝛼) = 𝝌 ∙ 𝝁 (2.27)  

where χ and µ are the backstress tensor and Schmid factor tensor in the Cartesian 

coordinate system. The initial backstress component is also calculated from Fig. 

2.16. 

 
 

X 

Z 

Y 

Before deformation After deformation 
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  �

𝜎𝑇𝑒𝑛𝑠𝑖𝑜𝑛 = 375𝑀𝑃𝑎
𝜎𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = −312𝑀𝑃𝑎

𝜒𝑌 =
𝜎𝑇𝑒𝑛𝑠𝑖𝑜𝑛 + 𝜎𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

2
= 31.5𝑀𝑃𝑎

� (2.28)  

The simulation results from the parametric study are compared to the 

experimental data in order to determine the material parameters, as shown in Fig. 

2.18. From the parametric study, one conclusion can be obtained that the 

influence of initial backstress on the cyclic loading stress-strain response is much 

higher than the material parameters b and r in Eqn 2.12. Therefore, the values of 

material parameters b=350 and r=1 are chosen for Al 2024. 

 

Figure 2.18 Parametric study for cyclic loading 

 

2.7 Concluding Remarks 

 Single crystal plasticity was used to account for the orientation and size effect 

of each grain at the micro level. The results show that the model can capture local 

anisotropic material behavior at grain level. In order to make the global stress-
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strain curve match the experimental results, a parametric study was conducted and 

fitted to the experimental data under simple tension loading conditions. A 

parametric study for cyclic loading conditions was also conducted to determine 

the key material parameters used in the Armstrong- Frederick hardening rule. 

Initial backstress due to manufacturing process is determined through 

experiments. 
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Chapter 3 

Size-Dependent Void Model 

3.1 Introduction 

 Failure of engineering structures as a result of fracture can lead to catastrophic 

outcomes. Fracture is caused by damage due to microvoid nucleation, growth, and 

coalescence in ductile materials. The physical characteristics of structures, such as 

fracture toughness and stress intensity factor can be easily measured via 

experiments; however other factors,  such as incipient damage and damage 

evolution, are often more difficult to assess. Therefore, physically-based 

theoretical modeling is necessary to complement the experimental research in 

damage diagnosis and prognosis. Currently, significant research efforts are 

underway in developing experimental and theoretical methods for damage 

monitoring, design of early warning systems, and evaluation of the remaining life 

of engineering structures for the prevention and/or prediction of failure. Health 

and condition monitoring techniques, for instance, involve damage detection and 

quantification that can be used to take preventive measures before failure occurs 

[42, 43]. 

 The field of damage mechanics, historically, has offered many theories, some 

rooted in a phenomenological framework and others based on the concept of 

microvoid growth. Over the last three decades, numerous theoretical models have 

emerged that study dominant failure mechanisms in ductile materials. Rice and 

Tracey [44] investigated the growth of a single void in an infinite matrix and 

established that the void growth rate increases exponentially with the hydrostatic 
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stress, σkk,

 However, the void models developed by Tvergaard and Gurson lacked two 

important factors impacting material damage, namely the effect of size and of 

crystal orientation.  Numerous microscale experiments have shown that materials 

exhibit strong size effect when the characteristic length is down to microscale [45-

57]. Although there have been some attempts to include the size effect in the 

damage mechanics theory, they are still based on a phenomenological strain 

gradient plasticity theory. Recent experimental investigations [58, 59] and 

numerical studies on microvoids [60-66] have shown that void growth in ductile 

materials depends heavily on void size. Micron- and submicron-sized voids tend 

to grow slower than larger voids under the same stress level. Without intrinsic 

material lengths, the classical plasticity theories cannot account for the void size 

effect. Liu et al. [66] investigated the void size effect on the void growth rate 

based on the Taylor dislocation model [27, 28], which involves an intrinsic 

material length. For large voids, the void growth rate agrees well with the Rice-

Tracey model [44] and displays no size effect. However, for small voids, the void 

growth rate scales with the square of hydrostatic stress, (σ

 imposed on the solid. Gurson [45] adopted a unit-cell model of a single 

void in a finite matrix, where the volume ratio of the void to the unit cell gives the 

void volume fraction f. In this work, Gurson established a yield criterion that 

depends not only on the von Mises effective stress (as in classical plasticity), but 

also on the hydrostatic stress and void volume fraction f. Tvergaard [46] modified 

the Gurson model to obtain a better agreement with the finite element analyses of 

void growth, as well as to account for the effect of plastic work hardening. 

kk /σy)2, rather than the 
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exponential dependence in the Rice-Tracey model. Here σy  is the tensile yield 

stress, and σkk

 A few experiments have also shown that similar materials with different 

crystal orientation, exhibit different behaviors, such as fracture toughness [69, 

70]. There are many void models for damage: some consider the void shape 

effect, while others consider the void size effect. But there exists no void model to 

date that takes into consideration the orientation effect. In order to incorporate the 

size and crystal orientation effects to the damage mechanics theory, a new 

mechanism-based damage mechanics theory has been developed and is presented 

in this chapter. 

 is the first stress invariant. Wen et al. [67, 68] used a similar 

approach to extend the Gurson model to solids with cylindrical microvoids and 

spherical microvoids. These models show size-dependency, but the crystal 

orientation effect has still not been considered. 

 A constitutive law that accounts for crystal orientation and microvoid size 

effects is derived. Microvoid growth is determined by specific crystal orientation, 

as well as microvoid and grain size. The approach adopted here stands in direct 

contrast to the phenomenological methods employed in existing theories. This 

new theory is derived by means of the Taylor dislocation model and the recently 

developed strain gradient crystal plasticity. Given these specific characteristics, 

the new mechanics-based damage mechanics theory is different from existing 

theories. The results of the theory clearly show an axisymmetric loading leading 

to unsymmetric deformation due to crystal orientation. This deformation pattern, 

however, cannot be explained by existing damage mechanics theories since they 
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do not incorporate crystal orientation information. Simulation studies based on a 

single crystal plasticity theory are also conducted through finite element analysis 

(FEA) to investigate void area fraction effect, crack length effect, and 

representative volume element (RVE) size effect. 

 

3.2 Taylor Dislocation Model 

 The Taylor dislocation model [27, 28, 71] gives the shear flow stress τ in 

terms of the dislocation density by 

 𝝉 = 𝜶𝝁𝒃�𝝆 = 𝜶𝝁𝒃�𝝆𝒔 + 𝝆𝑮 (3.1) 

where µ is the shear modulus; b is the Burgers vector; and α is an empirical 

material constant (value around 0.3) [27, 28, 72]. The dislocation density ρ 

consists of two parts, namely the density of statistically stored dislocations ρs and 

the density of geometrically necessary dislocations ρG, where the former is 

determined from the relation between stress σ and plastic strain ε in uniaxial 

tension, 𝛼𝜇𝑏�𝜌𝑠 = 𝜎𝑟𝑒𝑓𝑓(𝜀)/𝑀, and the latter is related to the gradient of plastic 

deformation by 𝜌𝐺 = �̅�𝜂/𝑏 [73-75]. Here σref is a reference stress (e.g., yield 

stress σY); M is the Taylor coefficient; 𝑀 = √3 for an isotropic solid and 𝑀 =

3.06 for a face-centered-cubic (FCC) crystal [76-78]; �̅� is the Nye factor to 

account for the effect of discrete slip systems on the distribution of geometrically 

necessary dislocations, and it is chosen to be 1.9 for FCC crystals [79]; and 

𝜂 = 1/2�𝜂𝑖𝑗𝑘𝜂𝑖𝑗𝑘 is the effective strain gradient and 𝜂𝑖𝑗𝑘 = 𝑢𝑘,𝑖𝑗 is the strain 

gradient tensor. 
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 The Taylor dislocation model, which has been used to develop strain gradient 

plasticity theory [73-75], is successfully explained in many micro-scale 

experiments and phenomena [57, 80-82]. In the foregoing strain gradient theories, 

the constitutive law does not depend on crystal orientation.  

 Han et al. [83, 84] recently developed a mechanism-based strain gradient 

crystal plasticity (MSG) theory and related 𝜌𝑠𝛼 to the slip resistance function 𝑔𝛼 

for α-th slip system by 𝜌𝑠𝛼 = ( 𝑔𝛼

𝛼𝜇𝑏
)2 and 𝜌𝐺𝛼 to the effective density of 

geometrically necessary dislocations 𝜂𝐺𝛼 by𝜌𝐺𝛼 = 𝜂𝐺𝛼/𝑏. The effective density of 

geometrically necessary dislocations 𝜂𝐺𝛼 is given by 

 𝜼𝑮𝜶 = �𝒎𝜶 × �(𝒔𝜶𝜷𝛁𝜸𝜷 × 𝒎𝜷)
𝜷

� (3.2) 

where ‖ ‖ denotes the norm, 𝛾𝛼 is the plastic shear, 𝒔 and 𝒎 are the slip 

direction and slip plane normal, respectively, |𝒔𝜶| = |𝒎𝜶| = 1 and 𝒔𝜶 ∙ 𝒎𝜶 = 0, 

𝒔𝜶𝜷 = 𝒔𝜶 ∙ 𝒔𝜷, and the plastic shear 𝛾𝛼 is related to the macroscopic strain via 

Eqn. (3.3).  

 𝜺 = �𝛾𝜶
𝜶

(𝒔𝜶⨂𝒎𝜶)𝒔𝒚𝒎 (3.3) 

 Adding the density of statistically stored dislocations ρs and the density of 

geometrically necessary dislocations ρG

 

 in Eqn. (3.1) leads to shear stress: 

𝝉𝜶 = 𝒈𝟎�(𝒈𝜶/𝒈𝟎)𝟐 + 𝒍𝜼𝑮𝜶 (3.4) 

where 𝒈𝟎 denotes a reference slip resistance and l is an intrinsic length scale 

associated with strain gradient as 
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 𝒍 =
𝜶𝟐𝝁𝟐𝒃
𝒈𝟎𝟐

 (3.5) 

Typically, b is around one tenth of a nanometer and 𝝁/𝒈𝟎 ≈ 100, and the intrinsic 

length scale l is estimated to be on the order of a micron, similar to the MSG 

theory [73, 74, 80, 85]. Thus the flow stress can be expressed as 

 𝝈𝒇𝒍𝒐𝒘 = 𝑴𝝉 = 𝑴𝒈𝟎��(𝒈𝜶/𝒈𝟎)𝟐
𝜶

+ 𝒍�𝜼𝑮𝜶
𝜶

 (3.6) 

 The Taylor dislocation model will also be used in the development of the 

proposed mechanism-based damage mechanics. However, unlike the MSG theory 

developed by Gao et al. [73] and Huang et al. [74], this new theory will determine 

the effective strain gradient with respect to specific crystal orientations and the 

damage mechanism of microvoid growth. 

 

3.3 Damage Model Accounting for Size and Orientation Effects 

 Nucleation, growth, and coalescence of microvoids are common damage 

mechanisms for ductile materials. The developed theory uses the microvoid 

growth rate as the damage index. Unlike existing damage mechanics theories [45] 

that do not account for the effect of orientation on microvoid growth rate, the 

damage index is directly determined from strain gradient crystal plasticity [83, 84] 

and specific crystal orientation in current work. A general procedure is introduced 

in this section and some results, based on a specific example, are presented. 

 For a microvoid in an infinite medium and subject to the remote strain field, 

𝜀𝑖𝑗∞, the strain field in the solid depends on the remote strain field and the 



  36 

geometry of the microvoid (e.g., the microvoid growth rate D and size and shape 

of the microvoid). Therefore orientation imaging microscope (OIM) is used to 

identify the crystal texture and the activated slip systems (sα and mα

 

) for the solid. 

According to Eqn. (3.3), the plastic shear 𝛾𝛼 can be calculated in terms of the 

remote strain fields and the microvoid growth rate D for each activated slip 

system obtained from OIM. Thus both the slip resistance 𝒈𝜶 and the effective 

strain gradient 𝜼𝜶 can be determined depending on the crystal orientation and 

microvoid growth rate D. Then the flow stress 𝝈𝒇𝒍𝒐𝒘 is given by Eqn. (3.6). Once 

again, the flow stress depends on the microvoid growth rate D, i.e.,  

𝝈𝒇𝒍𝒐𝒘 = 𝑴𝝉 = 𝑴𝒈𝟎�(𝒈𝑻𝒐𝒕𝒂𝒍(𝑫)/𝒈𝟎)𝟐 + 𝒍�𝜼𝑮𝜶
𝜶

(𝑫) (3.7) 

 A power-law viscoplastic-limit model is adopted to link the plastic strain rate 

𝜀̇𝑝 and the flow stress 𝝈𝒇𝒍𝒐𝒘 (Eqn. 3.7) by  

 �̇�𝒑 = �̇�(
𝝈𝒆
𝝈𝒇𝒍𝒐𝒘

)𝒏 (3.8) 

where 𝜀̇ = �2
3𝜀�̇�𝑗
′ 𝜀�̇�𝑗′ , and 𝜀�̇�𝑗′ = 𝜀�̇�𝑗 −

1
3
𝜀�̇�𝑘𝛿𝑖𝑗 is the deviatoric strain rate; 𝜎𝑒 =

�3
2𝜎𝑖𝑗

′ 𝜎𝑖𝑗′  is the von Misses effective stress; n is a rate-sensitivity exponent, which 

usually takes a large value ( 20≥ ). Finally, a mechanism-based damage mechanics 

theory is developed based on the flow stress that depends on crystal orientation 

and microvoid growth rate D. The constitutive law is in the framework of J2 flow 

theory and is given by substituting Eqn. 3.7 into Eqn. 3.8 and substituting Eqn. 

3.8 into J2 flow theory constitutive relation: 
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�̇�𝒊𝒋 = 𝑲�̇�𝒌𝒌𝜹𝒊𝒋 + 𝟐𝝁��̇�𝒊𝒋′

−
𝟑�̇�
𝟐𝝈𝒆

[
𝝈𝒆

𝑴𝒈𝟎�(𝒈𝑻𝒐𝒕𝒂𝒍(𝑫)/𝒈𝟎)𝟐 + 𝒍∑ 𝜼𝑮𝜶𝜶 (𝑫)
]𝒏𝝈𝒊𝒋′ � 

(3.9) 

 This mechanism-based damage mechanics theory incorporates the crystal 

texture, activated slip systems, microvoid growth rate, and the size effect into the 

constitutive law. Although further simulation and experimental verification need 

to be conducted, this damage mechanism theory paves the way to study the 

damage of ductile materials from the fundamental mechanisms. 

 

3.3.1 Continuum Model with Cylindrical Microvoid 

 Some results on the development of the constitutive law based on the growth 

of cylindrical microvoids are presented in this section. In the results, a microvoid 

is assumed to have been nucleated. For a cylindrical microvoid of initial radius r0 

in an infinite medium and subject to remote equi-biaxial tension, 𝜀11∞ = 𝜀22∞ = 𝜀∞. 

Under the assumption of proportional deformation and ignoring the elastic 

deformation (i.e., the solid is incompressible), the non-vanishing displacement 

field is 𝑢𝑟 = 𝑟0
𝑟
𝑢0 = 𝜀𝐷𝑟02/𝑟, where (𝑟,𝜃, 𝑧) are the cylindrical coordinates, u0 is 

the displacement on the microvoid surface, 𝜀 = �2𝜀𝑖𝑗∞𝜀𝑖𝑗∞/3 = 2𝜀∞/√3 is the 

effective strain in the remote field, and 𝐷 = 𝑢0
𝜀𝑟0

= �̇�/2𝜀̇𝑉 is the void growth rate 

under proportional deformation. The non-vanishing strains (also the plastic strain) 

are given by 



  38 

 𝜺𝒓𝒓 = −𝜺𝜽𝜽 = −𝜺𝑫
𝒓𝟎𝟐

𝒓𝟐
 (3.10) 

 In this analysis, two activated slip systems 𝒔𝟏 = 𝒆𝒓(𝝎),𝒎𝟏 = 𝒆𝜽(𝝎), 𝒔𝟐 =

𝒆𝒓 �𝝎 + 𝟐𝝅
𝟑
� ,𝒎𝟐 = 𝒆𝜽 �𝝎 + 𝟐𝝅

𝟑
�, are considered, where ω is the polar angle, i.e., 

the orientation of the first slip system as shown in Fig. 3.1. According to Eqn. 

(3.3), the plastic shear 𝛾𝛼 for each slip system can be determined and the effective 

strain gradient 𝜼𝑮𝜶 on a slip system α can then be obtained from Eqn. (3.2), 

 

𝜼𝑮𝟏 =
𝟒
√𝟑

𝜺∞𝑫
𝒓𝟎𝟐

𝒓𝟑
�𝐬𝐢𝐧 �𝟑𝜽 − 𝟑𝝎 +

𝝅
𝟑
�� 

 𝜼𝑮𝟐 =
𝟒
√𝟑

𝜺∞𝑫
𝒓𝟎𝟐

𝒓𝟑
�𝐬𝐢𝐧(𝟑𝜽 − 𝟑𝝎 −

𝝅
𝟑

)� 

(3.11) 

where θ is a polar angle of a material point in the solid. The uniqueness of this 

approach is the fact that in addition to depending on ω (orientation of a slip 

system), the effective strain gradient also varies with polar angle θ, which is 

different from the mechanism-based strain gradient plasticity theory [74], where 

the effective strain gradient does not depend on polar angle for cylindrical 

microvoid growth. This is because in the developed theory the equi-biaxial 

tension in the remote field may not lead to symmetric dislocation slip systems for 

arbitrary crystal texture, and thus the symmetric loading may not produce 

symmetric deformation, while the mechanism-based strain gradient plasticity 

theory smears out the information for crystal orientation via homogenization. A 

similar unsymmetrical deformation mode due to symmetric loading was also 

observed in Nemat-Nasser, et al. [86] and numerically verified by Solanki, et al. 

[70]. 
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 By using linear strain hardening in slip resistance, 𝑔𝛼 = 𝑔0 + 4𝑟02𝑐ℎ𝜀∞𝐷/

𝑟2[�cos 2 �𝜃 − 𝜔 − 2𝜋
3
��+ |cos 2(𝜃 − 𝜔)|], the flow stress is then obtained by 

Eqn. (3.7), where the effective strain gradient is given in Eqn. (3.11). It is obvious 

that the flow stress depends on microvoid growth rate D, the orientation of the 

slip system via ω, and the intrinsic length scale l. Among these factors, the size 

effect has been well addressed [74, 87-89]. 

 

Figure 3.1 Cylindrical microvoid with two slip systems 

 
 In order to address the influence of microvoid growth rate D and the 

orientation of slip system on the flow stress, the Taylor coefficient 𝑀 = 3.06 is 

chosen for FCC crystal,𝑐ℎ/𝑔0 = 0.2 [84], 𝜃 = 2𝜋/3, 𝜀∞ = 0.1, 𝑟0/𝑟 = 0.5, 

𝑙/𝑟0 = 1. The flow stress is calculated for several values of D and ω. It should be 

pointed out that a value for the microvoid growth rate D is arbitrarily given in the 

simulation, though it depends on remote field and microvoid size. Figure 3.2 

shows the flow stress 𝜎𝑓𝑙𝑜𝑤/𝑔0 with respect to various values of microvoid 

growth rate D for given 𝜔 = 𝜋/4 and 𝜔 = 𝜋/3, and Fig. 3.3 gives the flow stress 

for various values of slip system orientation for D = 20 and 30. It is obvious that 

both microvoid growth rate, D, and slip system orientation, ω, have very strong 

cylindrical 
microvoid 

 
 

 2π/3 
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effects on the flow stress. Therefore, it is critical to include the crystal orientation 

information in the constitutive law and the proposed mechanism-based damage 

mechanics can capture this crystal orientation dependence. This important 

orientation dependence cannot be studied within the existing framework of 

damage mechanics. 

 

Figure 3.2 Dimensionless flow stress vs microvoid growth rate D 

 

 

Figure 3.3 Dimensionless flow stress vs slip system orientation 
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3.3.2 Continuum Model with Spherical Microvoid 

 For a spherical void in an infinite medium subjected to remote spherical 

symmetric tension, ε∞. Assume the material is incompressible. The displacement 

in the radial direction is:𝑢𝑅 = 𝑅02

𝑅2
𝑢0, where u0 is the displacement on the void 

surface, R0

Fig. 3.4

 and R are the void radius and radial coordinate, respectively. The non-

vanishing strain in the spherical coordinates (R,θ,ф) and the strain are:𝜀𝑅𝑅 =

−2𝜀𝜃𝜃 = −2𝜀𝜙𝜙 = −2 𝑅02

𝑅3
𝑢0, 𝜀 = 2𝑅02

𝑅3
𝑢0 = 𝜀∞. The void growth rate under 

proportional deformation is also defined as:𝐷 = 𝑢0
𝜀𝑅0

= �̇�
3�̇�𝑉

. So the non-vanishing 

strain in terms of the effective strain and void growth rate can be obtained as 

follows: 𝜀𝑅𝑅 = −2𝜀𝜃𝜃 = −2𝜀𝜙𝜙 = −2𝜀𝐷 𝑅03

𝑅3
. Three activated slip systems are 

considered ( ): {𝒔�𝟏 = [𝐜𝐨𝐬𝝎, 𝐬𝐢𝐧𝝎 ,𝟎]𝑻,𝒎� 𝟏 = [−𝐬𝐢𝐧𝝎 , 𝐜𝐨𝐬𝝎 ,𝟎]𝑻}, 

{𝒔�𝟐 = [−𝐜𝐨𝐬𝝎, 𝐬𝐢𝐧𝝎 ,𝟎]𝑻,𝒎� 𝟐 = [−𝐬𝐢𝐧𝝎 ,−𝐜𝐨𝐬𝝎 ,𝟎]𝑻}, 

{𝒔�𝟑 = [𝟎,𝟎,𝟏]𝑻,𝒎� 𝟑 = [𝐜𝐨𝐬𝝋 , 𝐬𝐢𝐧𝝋,𝟎]𝑻}. 

 By using coordinate transformation and Eqn. (3.3), the resolved shear in each 

slip system is calculated as follows: 

                           

⎩
⎪
⎨

⎪
⎧𝛾1 = 𝜀𝐷 𝑅03

𝑅3
( 𝐵
cos2𝜔

− 𝐴
sin2𝜔

)

𝛾2 = 𝜀𝐷 𝑅03

𝑅3
( 𝐵
cos2𝜔

+ 𝐴
sin2𝜔

)

𝛾3 = −3𝜀𝐷 𝑅03

𝑅3
sin2𝜙 cos𝜃

cos𝜑

�                                        (3.12) 

where �𝐴 = sin2 𝜃 + sin2 𝜙 cos2 𝜃 − 2 cos2 𝜃 cos2 𝜙
𝐵 = −3 cos 𝜃 sin𝜃 cos2 𝜙

�, θ and ϕ are angles of a 

material point in the solid in spherical coordinates, and φ is the angle between the 
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normal to the third slip plane and x1

𝑔𝑇𝑜𝑡𝑎𝑙 = 𝑔0 + 𝑐ℎ(|𝛾1| + |𝛾2| + |𝛾3|) = 𝑔0 + 𝑐ℎ𝜀𝐷
𝑅03

𝑅3
[� 𝐵
cos2𝜔

− 𝐴
sin2𝜔

� +

� 𝐵
cos2𝜔

+ 𝐴
sin2𝜔

� + 3 �sin2𝜙 cos𝜃
cos𝜑

�]                                                                   (3.13) 

 axis in the Cartesian coordinate system. The 

effective strain gradient on a slip system can then be obtained from Eqn. (3.2). By 

substituting the linear relation of slip resistance, the total resistance is given by 

 Using Eqn. (3.7), the flow stress accounting for size effect and orientation 

effect is obtained. 

 

Figure 3.4 Three activated slip systems 

 
For illustrating the size effect and orientation effect, 𝑀 = 3.06, 𝑐ℎ/𝑔0 = 0.2, 

𝜀∞ = 0.1, 𝑟0/𝑟 = 0.5, and 𝑙/𝑟0 = 1 are chosen. 
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Figure 3.5 The flow stress vs microvoid growth rate D 
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Figure 3.6 The flow stress vs spherical coordinate θ 
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Figure 3.7 The flow stress vs spherical coordinate ф 

 
Figure 3.5, 3.6, and 3.7 show that the flow stress depends strongly on microvoid 

size and  orientation, a conclusion that can also be made from the cylindrical void 

analysis. Thus, the developed constitutive law is critical to the study of size and 

orientation effects in damage mechanics. 

 

3.4 Simulation Studies 

 In the simulation studies, the effect of micro voids/micro cracks and RVE size 

on material stiffness is investigated. The single crystal plasticity theory is used to 

describe the material behavior in these studies. Microvoids or cracks are 

artificially induced in a simple structure. As shown in Fig. 3.8, nine microvoids 

(circled) are induced in the structure. Static loading is applied along the right 

edge.  The comparison of the stress-strain curves along the loading direction is 

presented in Fig. 3.9, where the blue curve represents the undamaged structure 

and the purple curve represents the structure with the cracks (shown in Fig. 3.8).  
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 The slopes of the elastic component in the two stress-strain curves shown in 

Fig. 3.9 are calculated where the stiffness drops by about 0.87% compared to the 

undamaged structure. Note that this reduction, although very small, represents a 

condition where the area ratio between micro cracks and the structure is only 

0.2%. This can imply that the crack may cause a significant reduction in material 

stiffness as the area ratio increases. In addition, a small reduction in stress of 

0.97% is observed in the structure with the cracks when the total strain reaches a 

value of 0.9%.  

 To further verify that the reduction is meaningful (and not caused by 

numerical noise), a second example is considered.  A comparison is made of 

material behavior between an undamaged microstructure and the same 

microstructure with a single void inside.  This time, the area fraction of the void is 

1.59%. Figure 3.10 and 3.11 show the undamaged structure and the 

microstructure with a void, respectively. The comparison of the stress-strain 

response for the two microstructures is shown in Fig. 3.12. The stiffness decreases 

by 1.60% in the structure with the void compared to the undamaged structure. The 

maximum numerical error caused by the linear fitting is 0.28%, which means that 

the reduction cannot be caused by data fitting. The result also shows that in a 

microstructure with cracks, the defects as well as crystal orientations affect the 

stress distribution. This conclusion is also supported by comparing the differences 

of stress distributions shown in Fig. 3.10 and 3.11. The crystal orientations cause 

variations in the material behavior of each grain. Meanwhile, the micro crack 

causes stress concentrations at the crack tip (shown in the zoomed-in image in 
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Fig. 3.11). Such phenomena will help in understanding how cracks initiate at the 

microstructure and propagate through the length scales to the meso and macro 

levels. 

 The two examples presented here, however, are not comparable since they are 

based on different undamaged structures. In order to investigate the effect of 

micro voids distribution and to confirm that the existence of micro voids in the 

microstructure do cause material stiffness degradation, more simulations are 

conducted based on one structure. The results are shown in Table 3.1. 

Corresponding structures for simulation case 1 to case 5 in Table 3.1 are 

presented in Fig. 3.13. For case 2 and case 4, the shape and location of the single 

voids are approximately the same. The same condition is used for case 3 and case 

5.  Case 2 and case 3 used the same void area fraction. Similarly, case 4 and case 

5 have been created under the same void area fraction. Two points can be 

concluded from the results shown in Table 3.1. First, it is clear that under the 

same area fraction, the single crack is more harmful than distributed micro voids 

due to more degradation on elastic stiffness. Second, the more void area fraction 

the structure has, the more is the elastic stiffness degradation. 

Table 3.1 Comparison of elastic stiffness for different damaged structures 

Simulation Micro void type Void area fraction Elastic Stiffness 
(GPa) 

Case 1 No void 0% 80.06 
Case 2 Single void 0.901% 77.30 
Case 3 Multiple voids 0.901% 77.50 
Case 4 Single void 1.271% 76.24 
Case 5 Multiple voids 1.271% 76.34 
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Figure 3.8 Mises stress distribution 
 

Figure 3.9 Comparison of stress-strain 
curve 

 

Figure 3.10 Undamaged structure 

Figure 3.11 Structure with void 
 

Microcracks 
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Figure 3.12 Comparison of stress-strain curve 

  
Case 1 

 
Case 2 Case 3 

 

 
 

 
Case 4 Case 5 

Figure 3.13 Healthy structure (Case1) and different damaged structures (Case2-5) 

 
 The effect of crack length on elastic stiffness is also investigated via 

numerical simulations.  Cracks are induced at the same location of the structure 

with the same width but different length, as shown in Fig. 3.14. The elastic 

stiffness reductions for different crack lengths are listed in the Table 3.2.  

           

  

 

           

 

 

 

           Undamaged  structure 

           Damaged structure 
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Figure 3.14 Crack length effect on material degradation 

The elastic stiffness reduction rate accelerates incrementally with the crack length 

and it fits well into a quadratic curve as shown in Fig. 3.14. 

Table 3.2 Elastic stiffness reduction for different crack lengths 

 

No. Dimensionless Reduction 
of Elastic Stiffness (%) 

Normalized Crack Length (Crack 
Length/RVE Width*100 %) 

1 0.5302703753 st 6.801460042 

2 1.859585398 nd 12.66675878 

3 3.869942982 rd 17.85035079 

4 5.725240138 th 21.30345804 

 

 A convergence study on the RVE size was also conducted. Figure 3.15 shows 

that elastic stiffness changes with RVE size. All RVE sizes are normalized by the 

original RVE size, which is about 1194μm*951μm. As shown in Fig. 3.15, the 

elastic stiffness converges towards the original RVE elastic stiffness, which 
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means that the original RVE size adequately represents the general material 

behavior at macro scale. 

 

Figure 3.15 Elastic stiffness vs. RVE size 

3.5 Summary 

 A size-dependent void model is developed considering crystal orientation 

effects. This void model is applied to different shapes of voids with certain 

activated slip systems. Strong dependence of flow stress on microvoid growth rate 

and slip system orientations is reflected in the simulation result. The effects of 

RVE size, defect area fraction and distribution on the material elastic stiffness are 

observed through simulation studies. A convergence study is used to determine 

the RVE size. Results from the crack length study shows that the crack 

propagation will accelerate material degradation in a quadratic manner. The 

results show that a single microvoid is more critical than distributed microvoids 

with the same area fraction. 
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Chapter 4 

Single Crystal-Based Damage Model 

4.1 Introduction 

 Better understanding of metal fatigue mechanisms have been achieved due to 

the development of digital image processing techniques. Fatigue damage models 

have progressively improved as a consequence [90-93]. Different stages of fatigue 

have been suggested based on an understanding of fatigue life. From experimental 

observations, for instance, fatigue cracks are known to usually start at the surface 

of a structural component. The cracks originate from shear cracks on 

crystallographic slip planes while gradually increasing approximately 

perpendicular to the external applied load. This two-stage fatigue life was first 

concluded by P.J.E. Forsyth [94]. Further investigation by Schijve [95] led to the 

division of fatigue phenomenon into four stages: crack nucleation, microcrack 

growth, macrocrack growth, and failure. Shang et al. [96] suggested similar 

divisions based on five stages: early cyclic formation and damage, microcrack 

nucleation, short crack propagation, macrocrack propagation, and final fracture. 

Miller [97, 98] introduced three types of cracks based on different mechanisms at 

different length scales. These are microstructurally small cracks, physically small 

cracks, and long cracks. Ritchie [99] proposed a slight change in classification of 

small cracks from Miller’s definition and provided corresponding length scales 

for the different cracks: microstructurally small cracks of critical microstructural 

dimensions (grain size), physically small cracks (less than 1mm), mechanically 

small cracks (several mm) and chemically small cracks (10 mm).  
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 In this chapter, a multiscale fatigue damage criterion, which is capable of 

predicting crack growth and propagation direction simultaneously, is presented. 

The first stage of fatigue life, which is dominated by shear crystallographic slip 

planes, is investigated using numerical simulation. In the damage model, relevant 

lengths are chosen based on the crack categories defined by Ritchie [99]. The 

characteristic crack length for critical damage is based on average grain size. The 

meso RVE is chosen as a 1 mm × 1 mm square according to the physically small 

crack size. The methodology for the fatigue damage estimation consists of two 

major parts. The stress-strain distribution is calculated based on the multiscale 

model. Then the multiscale fatigue damage criterion is used to estimate the failure 

of a meso RVE, as well as potential crack directions in the RVE based on the 

stress-strain distribution.  

 

4.2 Constitutive Model  

 A single crystal plasticity theory offers several advantages over other 

techniques and is used in this research to describe the material behavior in the 

hotspot of an aluminum structure. The detailed introduction of single crystal 

plasticity is presented in chapter 2. 

 For the numerical simulation, a widely used commercial finite element 

software ABAQUS [41] is used, and a user-defined material subroutine (UMAT) 

that implements single crystal plasticity is developed based on Huang’s work 

[39]. All the slip systems are treated as potentially active. Since negative �̇�(𝛼) is 

allowed, slip system (𝐬(𝛂),𝐦(𝛂)) and slip system (−𝐬(𝛂),𝐦(𝛂)) are considered as 
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one slip system. The same rule is applied when calculating the damage parameters 

within each slip system. The results in chapter 2 and Refs. 100 

 

indicate that the 

modified UMAT code is able to capture fatigue hardening and saturation. The 

most important feature of the model is that single crystal plasticity has the 

capability to capture local material anisotropic behavior due to different grain 

orientations.  

4.3 Multiscale Damage Criterion 

4.3.1 Damage Criterion for Crystalline Material 

 Jiang et al. [101-103] have shown that their fatigue damage criterion is 

capable of multiaxial and non-proportional loading. The advantages of this model 

consist not only the practicability in different loading conditions but also the 

capability of capturing changing loading directions [102]. However, in this model, 

accumulated fatigue damage is calculated along all directions in three-

dimensional (3D) space. The critical material plane is determined by checking the 

plane in which the maximum accumulated fatigue damage reaches a critical value 

and the direction of crack propagation is along the critical material plane. Thus, it 

makes this method computationally expensive to implement in 3D. Furthermore, 

this model is applied at macroscale and cannot be directly used for damage 

prediction at microscale.  

 In this chapter, the Jiang’s model is incorporated to single crystal plasticity 

based on the fact that fatigue cracks in metals tend to nucleate and propagate 

initially along slip planes. Accumulated fatigue damage is calculated only among 
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potential active slip systems rather than along all directions in 3D space. The 

corresponding criteria are rewritten as

 

: 

𝑑𝐷(𝛼) =< 𝜎𝑚𝑟
𝜎0

− 1 >𝑚 (1 +
𝜎𝑛(𝛼)

𝜎𝑓
)𝑑𝑌(𝛼) (4.1) 

 𝑑𝑌(𝛼) = 𝛿𝜎𝑛(𝛼)(𝑑𝜀𝑝)(𝛼) +
1 − 𝛿

2
𝜎𝑠(𝛼)(𝑑𝛾𝑝)(𝛼) (4.2) 

where m and 𝛿 are material constants. It should be noted that the direction of the 

maximum material plane is a unit vector along the critical plane rather than a 

normal vector to the plane. This will be further clarified in the results section. In 

this chapter, all the simulations are focused on face centered cubic (FCC) crystal 

structures, such as copper and aluminum. A single FCC crystal has 12 slip 

systems, comprised of four slip planes, each with three slip directions. 

Preliminary results showing the damage parameter evolution of a single grain of 

aluminum inside the meso RVE for 12 potential active slip systems under uniaxial 

cyclic loading is presented here.  

 Cyclic loading is applied at the right edge of the mesoscale structure (shown 

in Fig. 4.1). Figure 4.2 shows the accumulative shear strain in each slip system in 

the element where the maximum damage is obtained. The fatigue damage 

evolution at different slip systems in the same element is presented in Fig. 4.3. 

The flat part of the curve indicates the unloading portion of a cycle. When these 

two figures are compared, a unique slip system (slip system 5) is prevalent with 

respect to the others, and this is considered as the dominant slip system. Slip 

system 5 is the maximum shear strain plane. It also has the highest damage value, 
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which agrees with the findings of Lemaitre [104]. Figure 4.2 and 4.3 indicate that 

the slip plane for maximum shear strain is the same for maximum damage 

parameters. However, this behavior is not exhibited by other slip planes due to the 

influence of normal stress on damage parameter. Table 4.1 lists the normal and 

slip direction of slip system 5. The Z coordinate of normal is very small compared 

to the X and Y coordinates. This means the slip plane lies almost in the X-Y 

plane. The X-Y plane projection of normal is shown in Fig. 4.4. It shows that the 

critical slip plane is approximately 45o

 

 to the loading direction. 

Figure 4.1 Finite Element model 
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Figure 4.2 Accumulative shear strain in 12 slip systems 

 
Figure 4.3 Fatigue damage evolution in 12 slip systems 

 
Table 4.1 Normal and slip direction of the critical slip system 

 
 Normal to the slip plane Slip direction in the slip 

plane 
X coordinate -0.713215 -0.662362 

  Y coordinate  -0.693905 0.620869 
Z coordinate 0.0991835 -0.41925 
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Figure 4.4 X-Y plane projection of the normal 

 
4.3.2 Microscale Damage Tensor 

 As mentioned earlier, a single FCC crystal will contain 12 slip systems, 

comprised of four slip planes each with three slip directions. By using Eqn. (4.1 

and 4.2), the damage parameter 𝑫(𝜷) for each slip system can be calculated.

 

 In 

order to incorporate all the damage information from 12 slip systems, a damage 

tensor is developed to indicate the damage status at a certain point. From the Eqn. 

(4.1), the damage parameters in 12 slip systems are in a strain energy density 

form. Therefore, it is reasonable to assume the damage tensor is a symmetric 

tensor. On the other hand, the required damage tensor should reflect the direction 

effect for different slip systems. Thus, the relation between the damage tensor 

increment and the damage parameter increment in each slip system is developed 

as follows: 

𝐝𝐃𝐤 = 𝐧𝐤𝐝𝐃𝐬𝐤, k=1 to 12 (4.3) 

A symmetric tensor has six components. The first attempt to derive the unique 

damage tensor from the 12 equations failed; therefore, another attempt was made 
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using optimization to derive the damage tensor. The objective function in 

increment form is shown below: 

 𝐄𝟐 = �[𝐄𝐫𝐫𝐨𝐫𝐤]𝟐
𝟏𝟐

𝒌=𝟏

;  𝐄𝐫𝐫𝐨𝐫𝐤 = 𝐝𝐃𝐤 − 𝐧𝐤𝐝𝐃𝐬𝐤 (4.4) 

where k denotes the number of slip system; n and s denote the normal and slip 

direction for each slip system, respectively. 

 

Minimization of the objective function yields: 

𝛛𝐄𝟐

𝛛𝐃
= � �𝟐𝐧𝐦𝐤 𝐝𝐃𝐦𝐥𝐬𝐥𝐤𝐧𝐢𝐤𝐬𝐣𝐤 − 𝟐𝐝𝐃𝐤𝐧𝐢𝐤𝐬𝐣𝐤�

𝟏𝟐

𝐤=𝟏

= 𝟐� �𝐧𝐦𝐤 𝐝𝐃𝐦𝐥𝐬𝐥𝐤𝐧𝐢𝐤𝐬𝐣𝐤
𝟏𝟐

𝐤=𝟏

− 𝐝𝐃𝐤𝐧𝐢𝐤𝐬𝐣𝐤� = 𝟎 

(4.5) 

By expanding Eqn. (4.5): 

 A + B + C + D + E + F = � 𝐧𝐢𝐤𝐬𝐣𝐤𝐝𝐃𝐤
𝟏𝟐

𝒌=𝟏
 (4.6) 

where A = �∑ 𝐧𝐢𝐤𝐬𝐣𝐤𝐧𝟏𝐤𝐬𝟏𝐤𝟏𝟐
𝒌=𝟏 �𝐝𝐃𝟏𝟏, B = �∑ 𝐧𝐢𝐤𝐬𝐣𝐤(𝐧𝟏𝐤𝐬𝟐𝐤𝟏𝟐

𝒌=𝟏 + 𝐧𝟐𝐤𝐬𝟏𝐤)�𝐝𝐃𝟏𝟐 

    C = �� 𝐧𝐢𝐤𝐬𝐣𝐤�𝐧𝟏𝐤𝐬𝟑𝐤 + 𝐧𝟑𝐤𝐬𝟏𝐤�
𝟏𝟐

𝒌=𝟏
� 𝐝𝐃𝟏𝟑, D = �� 𝐧𝐢𝐤𝐬𝐣𝐤𝐧𝟐𝐤𝐬𝟐𝐤

𝟏𝟐

𝒌=𝟏
� 𝐝𝐃𝟐𝟐 

            E = �∑ 𝐧𝐢𝐤𝐬𝐣𝐤(𝐧𝟐𝐤𝐬𝟑𝐤 + 𝐧𝟑𝐤𝐬𝟐𝐤)𝟏𝟐
𝒌=𝟏 �𝐝𝐃𝟐𝟑, F = �∑ 𝐧𝐢𝐤𝐬𝐣𝐤𝐧𝟑𝐤𝐬𝟑𝐤𝟏𝟐

𝒌=𝟏 �𝐝𝐃𝟑𝟑; 

With the constraint that the slip normal is perpendicular to the slip direction, 

i.e. nisi = 0, the linear equations shown in Eqn. (4.6) reduce to only five 

independent equations. To determine the six components of the damage tensor, an 
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additional equation is required. The additional equation comes from the constraint 

that the sum of the error for each slip system obtained from Eqn. (4.4) should be 

zero. It gives: 

 

�� n1ks1k
12

𝑘=1
� 𝐝D11 + �� (n1ks2k

12

𝑘=1
+ n2ks1k)� 𝐝D12

+ �� (n1ks3k + n3ks1k)
12

𝑘=1
� 𝐝D13

+ �� n2ks2k
12

𝑘=1
� 𝐝D22

+ �� (n2ks3k +
12

𝑘=1
n3ks2k)� 𝐝D23

+ �� n3ks3k
12

𝑘=1
� 𝐝D33 = � dDk

12

𝑘=1
 

(4.7) 

This procedure yields a damage tensor capable of predicting damage growth rate 

and direction of damage evolution simultaneously by computing the maximum 

eigenvalue and the corresponding eigenvector.  

 A simulation for a simple test case is illustrated in Fig. 4.5. All the material 

properties for Al 2024 used in the model are represented in Chapter 2 (Table 4.2). 

The results are slightly counterintuitive. At some points, the maximum eigenvalue 

becomes negative, which has no physical meaning. Consequently, the damage 

tensor is decomposed into a deviatoric part and a hydrostatic part. Since damage 

is driven by plasticity and the damage tensor is developed to reflect the slip effect, 

the deviatoric part of the damage tensor should also contain the necessary 

information. The maximum eigenvalue and the corresponding eigenvector of the 
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deviatoric part appear to provide reasonable results in the context of damage 

accumulation. 

 

Figure 4.5 Simulation for simple tension on a pre-cracked single crystal plate. (a) 
Mesh of the plate; (b) Mises stress distribution in the plate; (c) Enlarged area at 
the crack tip. 

 
 The corresponding eigenvectors shown in Table 4.2 for element A, which is in 

front of the crack tip, are very close to the experimental results. Table 4.2 shows 

that the damage accumulates almost in the X-Y plane for most of the time and 

slowly changes direction from approximately [1 0 0] to [0.756 -5.38 0.00831]. 

This direction almost lies in the X-Y plane and in the slip plane, whose normal is 

[0.577 0.816 0] as shown in Table 4.3. It should be noted that all the directions 

presented in Table 4.3 are based on a global Cartesian coordinate system. By 

checking element B, which lies at the right side of the crack tip, the direction of 

the corresponding eigenvector and the one on the LHS are symmetric with respect 

to the [110] direction. This is in accordance with experimental results observed in 

Refs. 105 and 106 (shown in Fig. 4.6), with the two potential slip planes being 

[0.577 0.816 0] and [0.577 -0.816 0].  
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Table 4.2 Eigenvector corresponding to the maximum eigenvalue of deviatoric 
part 

Time(s) X Y Z 
7.95E-02 9.20E-01 -1.47E-01 2.22E-01 
9.95E-02 8.68E-01 -1.73E-01 3.69E-01 
1.10E-01 8.71E-01 -1.88E-01 3.58E-01 
1.30E-01 8.27E-01 -3.70E-01 3.63E-01 

⋮ ⋮ ⋮ ⋮ 
2.30E-01 7.94E-01 -5.10E-01 2.75E-01 
2.60E-01 7.59E-01 -4.90E-01 3.27E-01 
2.70E-01 7.49E-01 -5.37E-01 -6.77E-03 
2.80E-01 7.56E-01 -5.38E-01 8.31E-03 

 

 

 
Figure 4.6 SEM micrograph showing the slip prior to the crack tip [106] 

 
Table 4.3 Twelve slip systems 

Normal to slip plane slip directions 
0.577,0,0.816 0.707,0.5,-0.5 

 -0.707,0.5,0.5 
 0,-1,0 

0.577,-0.816,0 0.707,0.5,0.5 
 0,0,1 
 0.707,0.5,-0.5 

0.577,0.816,0 0.707,-0.5,0.5 
 0,0,1 
 -0.707,0.5,0.5 

-0.577,0,0.816 0.707,-0.5,0.5 
 0.707,0.5,0.5 
 0,-1,0 
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4.3.3 Mesoscale Damage Vector 

 Damage is believed driven by plastic deformation. Thus, in this chapter, the 

coupling between damage and elasticity is not considered. The principal idea of 

this approach is to develop a multiscale concept and formulate a damage index for 

an RVE based on current stress-strain distribution, which can represent the 

damage status of the RVE considering some of the microstructure features. 

Therefore, several optimization methods and averaging techniques are used to 

select the critical local damage information and transfer it to a global damage 

variable. For this purpose, a 

Kreisselmeier-Steinhauser (KS) Function 

Kreisselmeier-Steinhauser (KS) function based 

approach is used to account for the contribution from all grains to the total 

damage accumulation at mesoscale. The KS function-based approach makes the 

current multiscale model a statistical model rather than a progressive damage 

model. It incorporates the criteria that allow contribution

Fig. 4.7

 from the more critical 

grains to be reflected in the damage calculation. Traditionally, KS function is used 

in optimization applications involving multiple objective functions and/or 

constraints [107]. From a mathematical point of view, the KS function represents 

an envelope function (for a set of functions), as shown in  and defined as: 

 𝑲𝑺[𝒈𝒊(𝒙)] = −
𝟏
𝝆
𝐥𝐧[�𝒆−𝝆𝒉𝒊(𝒙)

𝒊

] (4.8) 

where 𝝆 is a parameter that determines the proximity of the KS function to the 

boundary of the multiple objective functions 𝒉𝒊(𝒙). In this work, the multiple 

objective functions (𝒉𝒊(𝒙)) are the damage growths of all the grains in a meso 
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RVE as functions of the time. When 𝝆 is positive, the KS function is close to the 

lower bound of 𝒉𝒊(𝒙), and when 𝝆 is negative, the KS function is close to the 

upper bound of 𝒉𝒊(𝒙). However, Eqn. (4.8) cannot be used directly in this 

application due to the nature of the exponential term. The modified KS function 

form is derived as: 

 

𝐊𝐒[𝒉𝒊(𝒙)]

=

⎩
⎪
⎨

⎪
⎧𝐌𝐚𝐱�𝒉𝒊(𝒙)� +

𝟏
𝝆
𝐥𝐧[�𝒆𝝆(𝒉𝒊(𝒙)−𝐌𝐚𝐱�𝒉𝒊(𝒙)�]

𝒊

], 𝐮𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝

𝐌𝐢𝐧�𝒉𝒊(𝒙)� −
𝟏
𝝆
𝐥𝐧[�𝒆−𝝆(𝒉𝒊(𝒙)−𝐌𝐢𝐧�𝒉𝒊(𝒙)�]

𝒊

], 𝐥𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝
� 

(4.9) 

where the max and min terms represent the gains with the highest and the lowest 

damage parameter, respectively. 

 

Figure 4.7 KS function [107] 

 

 As mentioned in section 4.1, a 1 mm×1 mm square is chosen as a meso RVE 

(

Damage Parameter and Direction at the Mesoscale 

Fig. 4.1) based on Ritchie’s length definition of a physically small crack [99]. 
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The procedure to create meso RVE mesh comprises two steps. First, an Electron 

Backscattering Diffraction (EBSD) scan is used to acquire the microstructure of 

the material including grain orientations, grain shapes, and sizes. Second, a 

software package OOF (Object-Oriented Finite element analysis from NIST) is 

used to graphically assign the material properties to a microstructure image for 

meshing. It should be pointed out that all the meso RVEs are generated directly 

from the EBSD scans of the material so that all the grain information used in the 

FE simulation is maintained similar to a real microstructure. Grain size and shape 

can affect the stress-strain distribution in the RVE, and consequently can impact 

damage prediction to some extent. However, grain size and shape effects are not 

explicitly considered in the constitutive model. Traditional single crystal plasticity 

is used to describe the material behavior at the hotspot area of the structural 

components. Stress/strain gradient effect, which takes account of the size effect in 

the constitutive model such as the mechanism based strain gradient crystal 

plasticity (MSG-CP) or other strain gradient theory, is not considered here. In 

order to get the damage parameter and direction at the mesoscale, each grain in 

the meso RVE (Fig. 4.1) is treated as a single unit. The output of each grain is a 

damage vector 𝐷��⃗  obtained by using an averaging technique. Three simple steps 

are carried out to calculate the damage vector in each grain. First, the deviatoric 

part of the damage tensor is calculated for each element within a grain. Next, the 

deviatoric damage tensors of all the elements in the grain are averaged to get a 

single averaged damage tensor in which each component of the damage tensor 

comes from the mean value of the corresponding components of all the elements’ 
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deviatoric damage tensor. Finally, the damage vector of each grain is calculated 

where the magnitude of the damage vector, D, is set equal to the maximum 

eigenvalue of the averaged damage tensor. The direction of the damage vector is 

defined by the corresponding eigenvector. 

 The magnitude of the damage vector, D, in each grain is a function of time. 

The upper and lower bound for D of all the grains within a meso RVE can be 

obtained by applying the KS function. The damage index for the meso RVE can 

be defined as: 

 𝐷𝒎𝒆𝒔𝒐 = (𝜽𝑲𝑺𝒖 + (𝟏 − 𝜽)𝑲𝑺𝒍)/𝐷𝑐 (4.10) 

where 𝜽 is related to the critical damage value defined in Eqn. (4.11), total grain 

damage, and the total number of grains within a meso RVE. Physically, this 

parameter measures the number of grains that reaches the critical damage value, 

𝐷𝒄 . The critical damage value is also used to determine crack initiation in the 

meso RVE. The damage direction in the meso RVE can be obtained by 

normalizing the sum of all damage vectors for all grains. For prediction of fatigue 

crack initiation, the criteria should be related to the local damage parameter, i.e., 

the damage parameter D of each grain. When the maximum damage parameter of 

each grain within a meso RVE reaches the critical damage threshold, the 

corresponding number of fatigue cycles is treated as fatigue crack initiation and 

the corresponding grain with the maximum damage parameter is regarded as the 

crack initiation location. Moreover, the goal of using a damage index for meso 

RVE, 𝐷𝒎𝒆𝒔𝒐, is to determine the failure of the RVE by checking whether 𝐷𝒎𝒆𝒔𝒐 
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reaches one or not. In this work, for convenience of experimental validation, the 

failure crack length of the meso RVE is taken as 1mm considering the size of the 

meso RVE and the resolution of the digital image acquisition system used in the 

experiments. The meso RVE size is about 1mm×1mm and only the failure of the 

meso RVE is validated considering our current experimental capabilities. 

 

4.3.4 Critical Damage Value for Crack Nucleation 

 For aluminum, the surface energy density [108] ω that corresponds to the 

energy variation per unit area due to the creation of surface at room temperature is 

865.18 (MJ/m2

 

). In order to initiate a crack, the minimum energy required should 

be 2×865.18×l×t, where 2 indicates that there are two free surfaces for a crack.  

Parameters l and t are the characteristic length and width of the crack surface, 

respectively. In the simulation, l is chosen to be the average grain size obtained 

from an EBSD scan. In order to determine the critical damage value, an 

assumption is made that the cumulative damage due to plastic deformation in the 

meso RVE should be greater than the minimum energy for creating two free 

surfaces of a crack. The width of the meso RVE is chosen to be the same as the 

crack width so that the critical damage value is only a function of the average 

grain size l, the meso RVE size A and the surface energy density ω. The critical 

damage value is represented as follows: 

𝐷𝒄 = 2×ω×𝑙
A  

(4.11) 
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4.4 Results & Validation 

4.4.1 Lug Joint Fatigue Tests 

The lug joint is one of several ‘hotspots’ in aerospace structures that 

experience fatigue damage. Fatigue tests were performed on lug joint samples 

prepared from an Al 2024 T351 plate. An Instron 1331 hydraulic load frame was 

used to apply load to the samples. Figure 4.8 shows the experimental setup of the 

test. A digital image acquisition system was used to collect pictures from a 

Charge-Couple Device (CCD) camera to monitor potential locations of crack 

initiation and measuring crack length. A cyclic loading of 490 N (110 lbs) to 4900 

N (1100 lbs) with a frequency of 20 Hz in sinusoidal waveform was applied to the 

lug joint sample through the bottom clevis. From images taken from the digital 

image acquisition system, a crack length vs. a number of cycles curve can be 

plotted. The number of cycles to get a 1mm crack in the sample can then be 

interpolated from this curve. Table 4.4 shows the number of cycles to obtain a 

1mm crack for different lug specimens. The experiment results for 1 mm crack 

will be compared with the estimations of the 1 mm×1 mm meso RVE failure from 

the simulations. The images can also be measured to get the initial crack direction 

on the lug joint specimen, and subsequently compared with the potential crack 

directions obtained from the simulations. 

Table 4.4 No. of cycles for 1mm crack in Lug joint fatigue tests 

Lug Joint Specimens No. of cycles to obtain 1mm crack 
Sample 1 213k 
Sample 2 220k 
Sample 3 223k 
Sample 4 125k 
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(a)     (b)     

Figure 4.8 Lab setup for fatigue tests of structural components with digital image 
acquisition system monitoring the crack length; A-Lug joint sample, B-Hydraulic 
Frame, C-CCD camera, D-Digital Image Acquisition system 

 
4.4.2 Lug Joint Numerical Simulations 

 For computational efficiency, a two-scale mesh is used in the multiscale 

analysis of complex structural components such as a lug joint. Preliminary stress 

analysis has been conducted by applying homogeneous elasto-plastic material 

model to identify the hotspot of the structural component in ABAQUS. The meso 

RVE mesh generated using the software OOF has been used at the hotspot of the 

lug joint. A detailed description of this procedure is presented in chapter 2. The 

rest of the lug joint is described as a homogenous material. The constitutive 

relation of this homogeneous material was obtained by homogenizing the meso 

RVE stress-strain response. First, a force was applied at the right edge of the meso 

RVE where plane stress elements were used. The UMAT based on single crystal 

plasticity has been used to describe material behavior for each grain within the 

meso RVE. Then, the displacement of each node at the edge was calculated. The 

corresponding homogenized meso RVE stress-strain response can be plotted 

A 

B 

C 

D 
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based on the applied load and the displacement of each node. This curve was used 

to perform the plane stress simulations [100]. The two-scale mesh was generated 

using the commercial software Altair Hypermesh. Figure 4.9 shows the two-scale 

mesh of the lug joint. For this work, all the simulations were carried out in 2D. 

Three nodes and four nodes plane stress elements (CPS3 and CPS4) are used for 

the FE simulations of the lug joint to investigate the surface of the specimen. 

Symmetric boundary conditions were used for simulation so that only half of the 

lug joint was analyzed in ABAQUS. The same cyclic loading condition which 

was used during the fatigue test, that is, 490 N (110 lbs) to 4900 N (1100 lbs) with 

a frequency of 20 Hz in sinusoidal waveform applied at the pin hole of the lug is 

used in simulation. Figure 4.10 shows the von Mises stress distribution in the lug 

joint under simple tension with the enlarged hotspot area showing the non-

uniform distribution due to different grain orientations. 

               

Figure 4.9 Finite element mesh of lug joint 

 
 The previously described damage tensor was implemented in the UMAT and 

a data processing code was also developed in Matlab. Damage evolution for all 
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grains in the meso RVE is plotted in Fig. 4.11 for 20 cycles. Figure 4.11 shows 

that after 10 cycles, the damage evolution in each grain becomes stable, which 

provides a basis for using a linear fit to extrapolate the damage evolution in 

individual grains. It should be noted that, the focus of this work was to propose a 

new methodology for fatigue damage prediction taking into consideration 

microstructure features. Therefore, all simulations conducted and presented here 

are under constant cyclic loading. Thus, the damage evolution in each grain 

becomes almost linear after 10 cycles. For random loading conditions, future 

work will address building a relationship between the applied load and the 

damage growth in individual grains. Figure 4.12 (a) shows the damage parameter 

of all the grains within the RVE at time, t=1.2667s, and Fig. 4.12 (b) presents the 

enlarged area of the RVE and highlights the crack initiation area where the 

damage parameter was maximum. This critical grain is labeled as grain no. 9, 

shown in Fig. 4.12 (a). The results confirm that the critical grain in the RVE is 

located close to the free surface at the shoulder of the lug joint. 

     

Figure 4.10 Mises stress distribution of lug joint 
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 (a) (b)  

Figure 4.11 (a) Damage evolution in each grain for 20 cycles, (b) An example 
shows that damage grows linearly after 10 cycles in each individual grain 

 

(a)

 

(b)                                              

Figure 4.12 (a) Damage distribution in RVE for all grains, (b) Location of critical 
grain 
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 A Matlab program was developed for post-processing of finite element 

results. Figure 4.13 shows the microstructure and the grain size distribution of the 

meso RVE used. Figure 4.14 presents the normalized damage parameter for the 

meso RVE versus the number of cycles. The simulation data fit a quadratic 

polynomial well, which is intuitive given that as more grains reach the critical 

damage value, the accumulation of damage in the meso RVE accelerates. The 

estimated number of cycles until failure in the meso RVE, i.e., when the 

normalized damage index of the meso RVE reaches an unit value, is 208Kcycles. 

The result of the simulation matches well with the experimental results of samples 

1-3 shown in Table 4.5. The corresponding eigenvector, an indicator of the 

potential damage direction, is calculated by the weighted average method from all 

the grains. A histogram showing the frequency of damage occurrence along a 

particular direction is presented in Fig. 4.15 (a). The figure indicates that the 

directions of maximum damage in the RVE, obtained from simulation, are 

approximately -30°and 52 °. The experimental crack directions from lug joint 

fatigue tests are shown in Fig. 4.15 (b). Comparing the simulation results with the 

experimental data, one of the potential damage directions (-30°) obtained from the 

simulation matches the experiments well. Further simulations were conducted to 

verify the model and consider uncertainty of the meso RVE shown in Fig. 4.16. 

The same lug joint with only one meso RVE located at the shoulder was used. 

The meso RVEs, however, contain different oriented grains and different number 

of grains. As mentioned before, all meso RVE sizes are approximated to 
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1mm×1mm. The average grain size and estimated failure of meso RVEs are 

shown in Table 4.5. 

 

 

Figure 4.13 Microstructure and grain size distribution of the meso RVE 

 

 

Figure 4.14 Normalized damage index for meso RVE vs. No. of cycles 

 

Grain Size Average: 208.591μm 
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(a)  

(b)        

Figure 4.15 (a). Histogram of damage direction in RVE; (b). Cracking directions 
from fatigue tests 

 

 

Figure 4.16 Finite element meshes of different lug joints 

 
 It can be observed that the estimation of RVE failure in simulation 5 is close 

to the fatigue test results obtained in sample 4. Variability in the simulation results 
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indicates that the fewer number of cycles required in sample 4 to obtain a 1mm 

crack could be due to different oriented grains.  

 The five simulations suggested that grain orientation will affect the estimation 

of RVE failure. The common feature in all five simulations is the fact that the 

RVEs used in the simulations are generated from the scans taken from the same 

Al alloy plate. However, those scans are not directly taken from the lug joint 

samples, which results in the variability of the input data for the model. To 

prevent this variability, an RVE which is directly scanned from the lug joint 

shoulder is created (shown in Fig. 4.17). The procedure involves obtaining four 

scans from both shoulders of the lug joint on both sides and conducting a fatigue 

test on the same lug joint sample to determine which scan should be used in the 

validation simulation. For this fatigue test, the loading was changed from 150 lbs 

to 1500 lbs. Because of the high loading condition and high frequency, the 

number of cycles to obtain a 1 mm crack in the lug joint was not recorded. The 

lowest number of cycles recorded was 33k cycles to initiate a 1.5 mm crack 

(shown in Fig. 4.18). 

Table 4.5 Average grain size and estimation of failure for different meso RVEs 

 
Lug Joint 

Simulations 
Simulation 

1 
Simulation 

2 
Simulation 

3 
Simulation 

4 
Simulation 

5 
Average 
grain size 

(μm) 
208.591 191.866 190.266 242.684 191.082 

Estimate 
failure of 

RVE 
(K cycles) 

208 184 298 177 116 
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(a)                                 (b)  

Figure 4.17 (a). EBSD scan directly from the shoulder of lug joint sample; (b). 
Finite element meshes created from OOF 

 

 

Figure 4.18 Crack reaches 1.5 mm 

 
The simulation result of RVE failure is found to be 12.4 k cycles. Considering the 

number of cycles required for short crack propagation up to 1.5 mm that can be 

obtained experimentally, the author believes the simulation result is acceptable. 

The direction of crack propagation at the early stage of fatigue test is around -53° 

with respect to the horizontal direction, as shown in Fig. 4.18. The histogram of 

the simulation for potential crack direction is presented in Fig. 4.19. Results show 

two major potential crack direction bands. One is from approximately -58° to -43° 

and the other is from 60° to 85°. The experiment result shows the crack 
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propagated along one of the potential crack direction ranges obtained from the 

simulation, indicating that the model can predict potential crack directions. 

 

Figure 4.19 Histogram for potential crack direction 

 
4.4.3 Cruciform Fatigue Tests 

 In this section, the energy-based damage model is applied for multiaxial 

loading. The simulation results are verified through experiments conducted using 

the biaxial torsion MTS test frame. A cruciform specimen is designed for biaxial 

loading. The dimensions of the cruciform specimen are shown in Fig. 4.20. Initial 

stress analysis on the cruciform specimen under equibiaxial loading is first 

conducted in ABAQUS to obtain an insight into the high stress concentration 

zones. Only one quarter of the specimen is analyzed due to symmetry of the 

specimen and the equibiaxial loading condition (Fig. 4.20). Figure 4.21 shows a 

perfect uniform 2D stress distribution in the gage area of the cruciform specimen. 

This makes it hard to initiate crack at the gage area. In order to make the 

specimen conducive to crack initiation, a quarter-inch diameter hole was made at 

the center of the gage area, shown in Fig. 4.22. A fatigue test on the cruciform 
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specimen with a hole at the center was conducted. It was found that crack 

initiation still takes considerable time to appear. Therefore, a 1 mm notch at the 

hole along a 45 degree angle with respect to the vertical direction was made to 

accelerate crack initiation as shown in Fig. 4.23. Image mesh software OOF (from 

NIST) is used to generate refined mesh from the EBSD scan in the high stress 

concentration zone at the tip of the notch. Single crystal plasticity theory 

Fig. 4.24

is 

adopted to capture grain size and orientation effects of Al 2024 in the refined 

mesh area. Subsequently, a two-length scale mesh for cruciform specimen is 

generated, as shown in  via a powerful mesh software called Hypermesh. 

This two-length scale mesh combines two parts Part A, the high stress 

concentration area, i.e. the tip of the notch, and Part B, the remaining area of the 

cruciform sample. Single crystal plasticity is used to describe the material 

behavior at Part A, while the average stress-strain response of the meso RVE, 

which is obtained from around 1mm×1mm EBSD scan, is used to describe the 

rest of the homogenized area of the cruciform sample. The multiscale fatigue 

damage criterion is applied to the cruciform simulation.  

 In order to take into account the effect of individual grain sizes, the weight 

factor 𝜽 in Eqn. (4.10) is modified in this section. The original weight factor 

measures the number of grains that reach the critical damage value and is simply 

calculated as:  

 𝜽 =
𝒏
𝑵

 (4.12) 



  79 

where n is the number of grains that reaches the critical damage value, and N is 

the total number of grains within the RVE. Considering individual grain sizes, 

Eqn. (4.10) is modified as follows: 

 𝜽 =
𝒂
𝑨

 (4.13) 

It should be noted that Eqn. (4.12) and Eqn. (4.13) are identical when all the 

grains in the meso RVE are the same size. 

   

 

Figure 4.20 Detail dimensions of the cruciform specimen 

 

 

Figure 4.21 a) A quarter part of the cruciform specimen b) Mises stress 
distribution in the cruciform quarter part under equibiaxial loading 

Unit: inch 
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Figure 4.22 Cruciform specimen with a hole at the center for fatigue test 

 

 

Figure 4.23 Cruciform specimen with a 45o notch at the center hole for fatigue 
test 

(a)  
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(b)                (c)  

Figure 4.24 (a) Two length scale mesh of cruciform specimen; (b) Enlarged image 
of mesh at the hole; (c) Enlarged image of mesh at the tip of the notch (including 
3 refined meshes from 3 EBSD scan; different colors represent different grains) 

 
 

4.4.4 Experiment Setup & Fatigue Tests 

 The biaxial torsion MTS machine shown in Fig. 4.25 was used for biaxial 

loading. Digital image acquisition system was used to collect pictures from a 

CCD camera for monitoring potential locations of crack initiation and measuring 

crack length. A cyclic equibiaxial loading of 480 lbs to 4800 lbs with a frequency 

of 20 Hz in sinusoidal waveform was applied to the cruciform sample along 

horizontal and vertical directions, respectively. 

 It took 30K cycles to get a 1mm crack at tip of the notch and 143K cycles to 

get the gage area ruptured as shown in Fig. 4.26 & 4.27, respectively. 
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Figure 4.25 Experiment setup 

   

Figure 4.26 Crack propagation in cruciform sample; second image shows a 1mm 
crack start from notch tip 

 

Figure 4.27 Fatigue experiment 
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Three more fatigue tests were conducted under the same load condition to check 

the variability. The initial crack directions from the four fatigue tests are 

presented in Fig. 4.28. The number of cycles needed to get 1mm crack that 

corresponds to the dimension of the meso RVE and the initial crack direction are 

measured carefully and listed in Table 4.6. 

(1)    (2)   

(3)    (4)  

Figure 4.28 Initial crack directions in four fatigue tests 

 

X 
Y 
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Table 4.6 Fatigue tests to 1mm crack 

 
Sample No. 1 2 3 4 

No. of cycles 
to 

1 mm crack 
(Kcycles) 

30 25.5 31.5 31.5 

Initial crack 
direction 48° 62° 47° 47° 

 

4.4.5 Cruciform Simulation Results  

 Two major steps were conducted to predict the failure of the meso RVE. First 

step was to calculate stress and strain distribution in the cruciform sample for 20 

cyclic loading. Second step was to apply the fatigue damage criterion to estimate 

the failure of meso RVE and the direction of the crack based on the stress-strain 

distribution obtained from the first step. Stress analysis was performed in 

ABAQUS with a user-defined material subroutine (UMAT), which can 

implement single crystal plasticity for the refined mesh area using the two-length 

scale mesh generated in Hypermesh. The same equibiaxial load condition as used 

in fatigue test, i.e., 480 lbs to 4800 lbs with a frequency 20 Hz was applied to the 

cruciform model in the numerical simulation. The Mises stress distribution around 

the notch is shown in Fig. 4.29 (a) and (b). The two images are taken at the same 

time to show where the refined mesh is located (Fig. 4.29 (a)) and to provide a 

clear visual representation of the Mises stress distribution around the notch tip 

without mesh (Fig. 4.29 (b)). Figure 4.29 (b) shows clearly that only a small area 

around the notch tip experienced plastic deformation while the rest of the 

cruciform experienced only about 30% of yield stress during first 20 cycles. Since 
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fatigue damage is mainly caused by plastic deformation, the stress distribution 

demonstrated suggests that the limited high stress concentration zone around 

notch tip is a major part of the contribution to crack initiation and short crack 

growth. It also justifies the adoption of the two-length scale mesh with separated 

material constitutive models. After stress and strain are calculated in the 

cruciform sample, the fatigue damage criterion is applied for calculating the 

damage index of meso RVE for the RVE failure estimation and for crack 

direction prediction. As shown in Fig. 4.29 (a), the refined mesh area consists of 

three square meso RVEs formed as an L-shaped mirror image. Damage 

parameters are calculated only within the meso RVE, which is directly connected 

to the notch tip regarding the stress distribution around the tip. 

 
Figure 4.29 (a) Refined mesh located in front of notch tip; (b) Mises stress 
distribution around the notch tip 

 
 Figure 4.30 shows the damage parameter evolution in all the grains of the 

meso RVE. Figure 4.30 shows an important observation, namely the damage 

evolution in each grain becomes stable after 10 cycles (around 0.73s in time); 

thereafter, damage increment of individual grain during one cycle almost remains 

the same. Using a linear fit to extrapolate the damage evolution for each grain 
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seems feasible. Following this approach and using the modified equation for 

weight 𝜽 (see Eqn. (4.13)), the damage index for meso RVE is calculated and 

shown in Fig. 4.31. The failure of meso RVE is defined as when damage index 

reaches 1. The estimated failure of meso RVE from numerical simulation is about 

29.5K cycles as shown in Fig. 4.31, which is close to the experimental result of 

30K cycles. In section 4.4.2, the damage index growth of meso RVE for the lug 

joint under uniaxial loading is presented, which fits well into a quadratic 

polynomial. Unlike the damage index growth in the lug joint sample, the damage 

index in the cruciform specimen grows approximately linearly. Comparing the 

stress field within the high stress concentration zone in the lug joint sample and 

cruciform sample explains the difference in damage index growth. High stress is 

scattered more uniformly in the lug joint sample than in the cruciform sample. 

Therefore, more grains in the meso RVE reach the critical damage value and 

contribute to the damage index of meso RVE in the lug joint sample. As more 

grains reach the critical damage value, the accumulation of damage in meso RVE 

is accelerated. Conversely, only several grains reach the critical damage value 

before the failure of meso RVE in the cruciform case. This makes the damage 

index of meso RVE depend on those grains for the most part of the RVE failure’s 

life. Since the damage parameter is extrapolated linearly for each grain, the 

damage index of meso RVE will grow linearly if only a few grains contribute to 

the damage evolution of meso RVE.  

 The same procedure described in section 4.3.4 is applied to predict the most 

potential cracking directions in meso RVE. The result for the potential crack 
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directions of the first simulation is shown in Fig. 4.32. Figure 4.32 shows that 

within the life span of the RVE, there are three directions, i.e., -50°, 47°, and 72° 

that accumulate the most damage. These three directions also represent the most 

potential crack directions in meso RVE. The crack direction at the tip of the notch 

is accurately measured using the digital image from the fatigue test (Fig. 4.33). 

This shows that the crack direction at the beginning of the crack is 48° with 

respect to positive X-axis, which is close to one of the predicted potential crack 

directions. 

 Four more simulations were conducted to investigate the multiscale fatigue 

model and the uncertainty of the meso RVE through the same procedures. All 

simulations were performed on the same cruciform sample with the same load 

condition. The locations for the meso RVE and the RVE size were the same 

whereas different meso RVEs were used at the tip of the notch. The meso RVEs 

have similar material properties, but with different oriented grains and different 

number of grains. The estimated failure of the meso RVE and the potential crack 

directions for each simulation are listed in Table 4.7. It should be noted that the 

number of cycles to failure in simulation 3 & 4 are much higher than the other 

three simulations. This might be caused by the difference of the grain orientation 

distribution. It should be mentioned that all the meso RVE scans are taken from 

the same Al 2024 plate, which was used to make the cruciform samples. 

However, the scans are not directly taken from the exact area at the tip of the 

notch in the cruciform samples. Thus, strictly speaking, each meso RVE cannot 

represent the exact grain orientation distribution at the notch tip of the cruciform 
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samples used in fatigue tests. This is the reason why some of the simulation 

results are much different from the experimental data. It is noteworthy that once 

RVE failure estimation matches the test, the estimated crack direction is also 

close to the corresponding fatigue test. For example, comparing the fatigue tests 

from Table 4.6, simulation 1 gives the closest estimation of RVE failure to fatigue 

test 1. Meanwhile, the potential crack directions from simulation 1 also provide a 

close approximation to the test result. It was believed that the meso RVE used in 

simulation 1 is close to the real microstructure at the notch tip of the cruciform 

sample 1. Another example is from simulation 5 when compared to fatigue test 2. 

The failure of the RVE predicted from simulation 5 is close to the test 2. 

Simulation 5 provides an angle of 68° for potential crack direction, which is close 

enough to the test result of 62°. Although results from simulations 3 & 4 do not 

correspond exactly to the experimental data, the author believes that this may be 

true if the microstructure at the notch tip of a cruciform sample is close to the 

meso RVE used in simulation 3 & 4. In particular, simulation 4 provides only one 

crack direction of 84°. This means that the damage accumulates only along that 

direction during its life span. This direction also reflects the grain orientation 

distribution in the RVE, which indicates that slip planes of most grains in the 

RVE are oriented along this direction. The 84° direction is far away from the 

notch direction, which makes the damage accumulation along the direction 

difficult. This may explain why it takes much longer time to get the RVE failure. 
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Figure 4.30 Damage evolution in each grain for 20 cycles 

 

 

Figure 4.31 Damage index growth of meso RVE 
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Figure 4.32 Potential crack direction obtained from simulation 

 

 

Figure 4.33 Crack direction from fatigue test 

Table 4.7 Simulation results about failure of meso RVE 

 
Simulation No. 1 2 3 4 5 
No. of cycles to 

Failure 
(Kcycles) 

29.5 19 70 236 26 

Potential crack 
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4.5 Concluding Remarks 

 A multiscale damage criterion is developed considering grain orientation and 

size effects. Numerical simulations are conducted for lug joint and cruciform 

samples. The results show that the developed damage criterion is able to provide 

accurate prediction of the RVE failure as well as potential cracking directions in 

complex structural components under different load conditions. The simulation 

results of different RVEs indicate that structural failure has a strong dependence 

on the material microstructures. 
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Chapter 5 

Virtual Sensing 

5.1 Introduction 

 Research in structural health monitoring (SHM) has been focused, for the 

most part, at the structural or component level where repair and maintenance 

decisions are made using data obtained from sensors and macroscale models 

[105-111]. However, defects, such as cracks, initiate at the smaller length scales 

before manifesting at the macroscale, which constitutes a crucial factor in ultimate 

structural failure. Physics-based multiscale modeling can be used for predicting 

nucleation and growth of defects that track the evolution of the microstructure and 

forecast structural failure. These models also provide useful information for 

identifying the presence of micro cracks, which are the precursors to macro level 

damage. However, for the models to be effective, they must incorporate 

mechanisms to quantify and propagate important damage related parameters 

across the relevant length scales while considering major uncertainties, such as 

grain orientation and size at the microscale. Development of efficient multiscale 

modeling techniques will eliminate the need to test every conceivable damage 

scenario for every system. This will result in improved state estimation and robust 

prognosis procedures capable of assessing system performance under a broad 

range of future loading conditions. The importance of incorporating multiscale 

models in an SHM framework has gained recognition in recent years [100, 112-

114]. An integrated framework for structural health monitoring (SHM) and 
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damage prognosis of metallic aerospace components is currently being developed 

by Chattopadhyay et al. [115]. 

 The detection of incipient damage in metallic structures has been a challenge 

for decades. The guided wave-based damage detection techniques that are 

currently available focus on the detection of millimeter to centimeter level cracks 

[116-119]. The detection of incipient damage, however, such as plastic zones due 

to fatigue loading is still in its infancy. Incipient damage induces subtle changes 

in the measured guided wave signals, and these changes are often disregarded as 

noise. By modeling the interaction of a Lamb wave with incipient damage in a 

noise free environment allows for the evaluation of the perturbation of sensor 

signals due to previously undetectable damage. This information can then be used 

to extract detailed damage information to improve detection performance.  

 In this chapter, the multiscale damage model discussed in the chapter 4 is 

combined with a wave propagation model to capture the effect of the damage 

precursor on the guided wave. The integrated multiscale model is used to simulate 

sensor signals, referred to as virtual sensing, in aluminum plates. The proposed 

virtual sensing concept developed in this work offers a number of advantages: i)  

provide information on micro crack nucleation; ii) extract information from 

regions on the structure that are not easily accessible for placing physical sensors, 

and iii) optimize the sensor locations and thereby reduce the number of physical 

sensors. An Al 6071 plate with a 1mm notch, provided for damage initiation and 

propagation, is used as the test article for numerical simulation and experimental 

validation. 



  94 

5.2 Physics-based Multiscale Model 

 The crystal plasticity based multiscale damage criterion was developed and 

presented in the chapter 4. The evolution of damage is determined through 

identification of the crystallographic plane at which the maximum accumulated 

fatigue damage reaches a critical value. The direction of crack propagation is 

expected to be in the direction of the critical material plane. The results show that 

the damage criterion can predict the damage growth, as well as the cracking 

directions. In fact, the damage criterion can also provide local damage 

information versus global damage information. The damage distribution within 

the hotspot of structural components is calculated. Figure 5.1 shows the local 

damage information at six selected locations. The bar chart in Fig. 5.1 (b) shows 

the damage in six locations at four different times. At location 1, the damage 

parameter is very high at all times, which indicates a very high probability of 

crack initiation at location 1 when compared to location 3. In addition, damage 

accumulation at location 2 is much faster than the other five locations, which 

suggests that the crack is likely to occur at location 1 and propagate towards 

location 2. This damage information helps us to investigate damage growth and 

identify weak points in the structure component. It also aids in the design of 

sensor placement.  
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 (a) (b)  

Figure 5.1 (a) Six selected locations around notch tip in a structure; (b) Damage 
information of the six locations at four different times 

 
5.3 Virtual Sensing  

5.3.1 Finite Element Model 

 Structural fatigue life is typically divided into two major sensing domains: 

undetectable region and detectable region. In the undetectable region, damage 

initiates and propagates at the microscale and cannot be detected using off-the-

shelf sensors. In this approach, the multiscale model is used to investigate fatigue 

life in the undetectable region, thereby enhancing the sensitivity of damage 

detection and state awareness. The sensor data is simulated using FE models 

accounting for piezoelectrical-mechanical coupling.  This concept is referred to as 

virtual sensing in this study. A three dimensional FE model is created with the 

commercial FE software ABAQUS/Standard [41] for an Al 6061 plate with 304.8 

mm in length, 152.4 mm in width and 6.35 mm in thickness. A 150 kHz 

excitation frequency is used in this study. One approach to model guided wave 

propagation in plate-like structures is to solve the governing wave equations with 

the appropriate boundary conditions; however, for complicated geometries the 
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complexity of the problem increases and hence computational techniques are used 

for analysis. 

 The ABAQUS model of the plate with sensor/actuator architecture is shown 

in Fig. 5.2. The maximum element size is determined by the wave length 

following Eqn. (5.8):  

                               𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 ≤ 𝐿
𝑁                                       (5.8) 

where L denotes the wavelength and N can be chosen from 6 to 10 as 

recommended [121]. The FE mesh and displacement boundary condition is shown 

in Fig. 5.3. The plate with sensors/actuator is modeled as an assembly of three 

different parts, i.e., Al plate, piezoelectric transducer (PZT), and the adhesive 

layer. The material properties and the piezoelectric properties are listed in Table 

5.1 [122]. Tie constraints are used to the surfaces between the plate/adhesive layer 

and the adhesive layer/PZT to simulate perfect bonding. Equation constraints are 

also used to ensure that the top and bottom surfaces of the PZTs have separate 

uniform electrical potential. The plate is initially modeled as an isotropic, 

homogeneous material, and continuum three-dimensional wedge elements (C3D6) 

are used for meshing. Piezoelectric transducers are defined as orthotropic 

materials and are meshed with continuum three-dimensional piezoelectric 

elements (C3D6E). The adhesive layer, which acts as the bonding between the 

piezoelectric transducers and the plate, is modeled as an isotropic, homogenous 

material, and continuum three dimensional wedge elements (C3D6) are used for 

meshing. An implicit dynamic scheme is used for the ABAQUS/Standard 

analysis. Since the implicit dynamic analysis is unconditionally stable, there is no 
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limit on the size of the time increment. Only accuracy governs the time increment 

in ABAQUS/Standard. However, in order to capture the small change on the PZT 

sensing signal due to the smallest element change, the time increment is 

determined to be less than the time required for the wave traveling through the 

smallest element. Overall, 36724 elements are used to model the plate. 

Considering the large number of elements and the small time increment, 

displacement  at every ten steps and the electrical potential in the top surfaces of 

PZT1 and PZT2 (Fig. 5.2) are used to reduce the ABAQUS output database (odb) 

file. 

      

Figure 5.2 Finite element model of the Al 6061 plate with surface mounted 
piezoelectric sensors; Adhesive layer is also modeled. 

PZT2 

PZT1 
Piezoelectric sensor 

Adhesive layer 
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(a)  

(b)                                         

Figure 5.3 (a) Finite element mesh and (b) boundary condition used for the 
analysis 

 
Table 5.1 Material properties of Al 6061, adhesive layer & piezoelectric 
sensors/actuator [122] 

 
Elastic Properties 

 Young’s Modulus (Pa) Density (kg/m3) 

Al 6061 6.89E+10 2780 

Layer 2.15E+09 1600 
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Piezoelectric Sensors/Actuator (PZT APC 850) 

Elastic Properties 

Elastic Moduli (Pa) Poisson's ratios Shear Moduli (Pa) 

E1 6.30E+10 n12 0.301 G12 2.35E+10 

E2 6.30E+10 n13 0.532 G13 2.30E+10 

E3 5.40E+10 n23 0.532 G23 2.30E+10 

Density (Kg/m^3) 7.50E+03    

Piezoelectric Properties (m/Volt) 

d1 11 0 d2 11 0 d3 11 -1.75E-10 

d1 22 0 d2 22 0 d3 22 -1.75E-10 

d1 33 0 d2 33 0 d3 33 4.00E-10 

d1 12 0 d2 12 0 d3 12 0 

d1 13 5.90E-10 d2 13 0 d3 13 0 

d1 23 0 d2 23 5.90E-10 d3 23 0 

 

Dielectric (Farad/m) 

D11 1.51E-08 D22 1.51E-08 D33 1.30E-08 

      

5.3.2 Experiment Setup 

 An experiment was conducted using an aluminum plate to validate the 

proposed integrated multiscale damage/ wave propagation model. The dimension 

of the aluminum plate made of Al 6061 alloy is shown in Fig. 5.4. Two surface 

bonded PSI-5A4E type lead zirconate titanate (PZT) wafer transducers (diameter: 
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0.25″ and thickness: 0.04″) were used as actuators and sensors (Fig. 5.4). The data 

acquisition system used consisted of an arbitrary waveform generator (AWG), an 

8-channel high-speed signal digitizer (DIG) and 16-channel multiplexer (Fig. 5.5). 

Using the 14-bit AWG, a tone-burst signal with a 10 peak-to-peak voltage was 

generated and used as an actuation signal. In the experiments, a 4.5 cycle tone-

burst signal with the center frequency of 150 kHz was used as an input signal to 

generate only the fundamental modes, S0 and A0

 

. The responses were measured 

by the PZTs used as sensors. The voltage outputs from sensing PZTs were 

measured by the DIG. The sampling rate of the DIG was set to 20 MS/sec. In 

order to improve the signal-to-noise ratio, the signals were measured 100 times 

and averaged. 

 

Figure 5.4 Dimensions of a plate 
made of Al 6061 in inches 

Figure 5.5 Data acquisition system 

±
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5.4 Results  

 Figure 5.6 shows the comparison between the experimental data and the lamb 

wave signal from the plate under no loading (referred to as the healthy plate) 

obtained using the FE without an RVE. Each signal contains three distinct wave 

groups. The first group is composed of direct S0 mode and reflected S0 mode 

from the upper boundary of the plate. The combination of direct A0 and reflected 

S0

Figure 5.7

 from the left and right boundaries are shown in the second group. The third 

group includes multiple reflections from the boundaries.  shows the 

propagation of lamb waves in the plate at three different times. Figure 5.7 (a) 

captures the arrival of the first wave group (direct S0 and S0

Fig. 5.7

 reflection from the 

top), and  (b) and Fig. 5.7 (c) show the other two aforementioned wave 

groups, respectively. While the amplitudes of both signals are in the same order, a 

time shift is observed between both signals. The possible causes of the 

discrepancy in the signals are imperfect bonding conditions and improper 

installation of the PZT sensors in the experiment. Temperature effects can also 

lead to time shift. It must be noted that the developed 3-D multiscale model does 

not account for temperature effect at this time.  

 Figure 5.8 shows the simulation results obtained from the plate modeled with 

and without the microscale RVE. As seen from this figure, the incorporation of 

the RVE in the FE modeling does not cause an obvious change on the sensing 

signal. This is expected as in the absence of loading, the microscale constitutive 

relations used in the RVE do not impact the elastic plate properties. Figure 5.9 

shows noticeable change in signals obtained from the simulation after the 
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loading/unloading process is applied to the model. After subtracting the healthy 

signal (under no loading, as in Fig. 5.8) from the damage case signal, the 

attenuation of S0

 

 reflection from the upper plate boundary is observed. This is 

equivalent to amplitude increase in the S0 reflection from the upper boundary. 

The formation of a plastic zone affects the material properties by reducing density 

due to residual strain. Therefore, the plastic zone formed around the notch 

interacts with propagating waves in a different manner compared to the aluminum 

in pristine condition, resulting in an increase in reflection. However, the presence 

of mode conversion due to a plastic zone is not observed in the damage case. This 

is because the RVE used in the current model is uniform over the thickness. The 

results can be improved by using a full 3-D RVE in the analysis.  

Figure 5.6 Comparison between simulated sensing signal with experiment data on 
healthy samples 
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(a)  

(b)  

(c)  

Figure 5.7 Propagation of Lamb waves in plate at three different times (Unit: m) 

 

Figure 5.8 Comparison between sensing signals with/without RVE 
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(a)  

 (b)  

Figure 5.9 (a) Sensing signal comparison between loading/unloading case and 
healthy sample (b) Enlarged subtraction 

 
 Figure 5.10 shows the comparison between sensing signals in the plate after 

10 cyclic loadings and the healthy sample. Additional change in the sensing signal 

is observed compared to just one cyclic loading case. 
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(a) 

 

(b) 

Figure 5.10 (a) Sensing signal comparison between 10 cyclic loading case and 
healthy sample (b) Enlarged subtraction 

 
5.5 Concluding Remarks 

 The finite element based wave propagation model is incorporated into the 

multiscale model to characterize the effect of plastic zone and damage in metallic 

structures. The results indicate that the wave model can capture a slight change in 
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sensing signal due to plastic deformation and the accumulative damage in the 

plastic zone provided by the multiscale model. As the plastic zone increases, the 

change in the sensing signals between the healthy plate (no loading) and the plate 

subject to cyclic loading is more pronounced. Future work will include 

investigation of wave interaction due to material degradation from damage 

obtained from the multiscale model. Advanced algorithms for feature extraction 

from the sensor signals will be implemented for efficient damage detection.  
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Chapter 6 

Summary and Future Directions 

6.1 Summary 

The focus of the research work presented in this dissertation is on the 

development of multiscale modeling for SHM. The goal is to develop a 

multiscale damage model accounting for microstructural features and provide 

data for information management and prognosis. The model developed has 

been tested on metallic specimens typically used in existing aerospace 

platforms. A size-dependent void model is also developed as a separate work 

for porous materials. Different effects including RVE size, defect area and 

distribution effects on material properties are investigated through numerical 

simulations. 

 The conclusions from different sections are summarized as follows: 

1. A systematic methodology for multiscale stress analysis starting from 

material characterization is developed. Orientation and grain shape/size 

effects are considered through single crystal plasticity at the microscale 

level. A kinematic hardening law is added to the single crystal plasticity 

theory, which is important for fatigue analysis. A corresponding Fortran 

code is compiled with the UMAT subroutine developed by Huang [39]. 

The results show that the multiscale model is able to capture local 

anisotropic material behavior at grain level due to different grain 

orientations. Parametric study for determination of material parameters 

used in the Asaro’s hardening rule [34] is performed. Three key 
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parameters are reevaluated by matching the simulation result to simple 

tension experimental results. Initial backstress caused by the 

manufacturing process is determined through experimentation. A second 

parametric study is carried out to correlate the kinematic hardening 

parameters with experimental data. 

2. A microvoid model accounting for size and crystal orientation effects is 

developed. Applications of the size-dependent microvoid model are 

investigated for different shapes of voids under speicific activated slip 

systems. The results show that the flow stress strongly depends on 

microvoid growth rate and slip system orientations. Simulation studies are 

conducted to investigate the effects of RVE size and defect area fraction 

and distribution on the material elastic stiffness. The results indicate that 

as the RVE size increases, the elastic stiffness will converge. This 

convergence study provides one of the explanations for determination of 

current RVE size used in the research work. The results from the crack 

length effect study shows that crack propagation will accelerate material 

degradation in a quadratic manner. A comparison between the single 

microvoid and distributed multiple microvoids reveals that single 

microvoid is more harmful than distributed microvoids with the same area 

fraction. 

3. A multiscale damage criterion that captures damage initiation at the 

microscale has been developed. This criterion focuses on the crack 

initiation in fatigue life. Experimental observation of a fatigue test on a lug 
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joint shows that fatigue life is significant prior to crack initiation as 

detected using available sensors and SHM techniques. Once the initiation 

occurs, crack growth rate is very high. It is evident therefore that damage 

initiation is very important for estimating structural fatigue life. Different 

techniques such as average methods and optimization approaches are used 

to construct the final damage index. Fatigue life up to a physically small 

crack (1 mm) is estimated from the damage model. The results show that 

the estimation of RVE failure at the lug joint hotspot under cyclic loading 

obtained from the multiscale damage criterion matches the number of 

cycles needed to get a 1 mm crack in the structural component from the 

experiment. In addition, the damage criterion has the capability to provide 

the potential directions for crack growth. Simulations for RVE failure 

estimation in the cruciform sample are performed by applying the damage 

model. Results indicate that the developed multiscale damage model is 

capable of providing accurate damage estimation and potential cracking 

directions for multiaxial loading condition.  

4. The multiscale damage model is applied at structural hotspots to capture 

plastic zone and damage. Piezoelectric transducers and bonding layers are 

modeled in ABAQUS, and the 4.5 cycle excitation is used for the actuator. 

Wave propagation is simulated based on finite element analysis. The 

results show that plastic deformation and the accumulative damage in the 

plastic zone provided by the multiscale model will result in a change of 

sensing signals, and this change will increase as the plastic zone increases. 
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6.2 Innovative Nature of the Research  

 In this thesis, unique contributions are being made to multiscale damage 

modeling and virtual sensing techniques. They can be summarized as follows: 

1. Multiscale modeling techniques start from real material characterization 

where all grain information, including grain size, shape, and orientations 

are obtained from the EBSD technique via Scanning Electron Microscope 

(SEM). Global stress-strain responses from the model are correlated with 

experimental data in both monotonic loading and cyclic loading. 

2. A systematic procedure to create a two-length scale mesh associated with 

different constitutive models is developed using OOF to specify properties 

from microstructural images and by using Hypermesh to embed 

microstructural mesh into the structural component. 

3. An energy based multiscale damage criterion is developed to incorporate 

crystal plasticity. Damage parameters are identified at every length scale. 

The associated damage variables are reduced from a damage tensor at 

microscale to a scalar at mesoscale. The developed criterion is able to 

provide local damage information as well as global damage information. It 

can also predict potential cracking directions simultaneously. The local 

damage information can be used to predict damage initiation and the 

global damage information is helpful to predict the RVE failure and 

cracking directions. 

4. A size-dependent void is developed that takes account size effect and 

orientation effect. The orientation parameters and an intrinsic length are 
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introduced in the constitutive model. RVE size, defect area fraction, and 

distribution effects are studied through virtual experimental simulations, 

which help to better understand material degradation caused by defects. 

5. A finite element based virtual sensing technique is developed. Multiscale 

modeling is used to provide damage information for the virtual sensing. 

The advantages of the virtual sensing technique are 1) it is noise-free, 

which makes it more sensitive; 2) it is easily repeatable; and 3) it costs less 

than other methods. 

6.3 Future Directions 

 The following directions can be undertaken as a continuation of this research: 

1. In order to implement online SHM and prognosis, the computational 

efficiency of the multiscale modeling needs to be enhanced. Improved 

algrithms for the crystal plasticity theory should be developed to reduce 

UMAT subrountine computational time. 

2. A statistical microstructure builder is neccersary to reduce the sample 

scans of the material in engineering applications. The objective for the 

microstructure builder will be forcused on solving the problem on how to 

statistically generate a representative microstructure based on a few 

material sample scans. 

3. Element deletion is required to be implemented for progressive damage 

simulations. The function of element deletion is to automatically perform 

the task of deleting elements when the damage index of the element meets 

certain criterion. This can be implemented via a user-defined element 
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(UEL) subroutine that interfaces with the commercial FE software 

ABAQUS. 

4. Better sensing signal processing techniques should be developed. For 

small damage or plastic zone, the change in simulated sensing signals is 

very small. Most current signal processing techniques cannot extract 

useful features from the signals. Thus, signal processing techniques 

suitable for small damage or plastic zone are an imperative. 

5. Formulas that directly relate the damage index obtained from the 

multiscale damage model to the material properties should be derived. 

This can be used in virtual sensing simulation to simulate the wave 

propagation relating to the material degradation caused by damage. 

6. Other effects such as thermal effect can be included in the multiscale 

damage model to expand its application field. For example, thermal effect 

is crucial in naval structures. Therefore, the extended multiscale damage 

model can be used for damage prediction in those structures. 
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