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ABSTRACT  

   

This thesis focuses on the continued extension, validation, and application 

of combined thermal-structural reduced order models for nonlinear geometric 

problems. The first part of the thesis focuses on the determination of the 

temperature distribution and structural response induced by an oscillating flux on 

the top surface of a flat panel. This flux is introduced here as a simplified 

representation of the thermal effects of an oscillating shock on a panel of a 

supersonic/hypersonic vehicle. Accordingly, a random acoustic excitation is also 

considered to act on the panel and the level of the thermo-acoustic excitation is 

assumed to be large enough to induce a nonlinear geometric response of the panel. 

Both temperature distribution and structural response are determined using 

recently proposed reduced order models and a complete one way, thermal-

structural, coupling is enforced. A steady-state analysis of the thermal problem is 

first carried out that is then utilized in the structural reduced order model 

governing equations with and without the acoustic excitation. A detailed 

validation of the reduced order models is carried out by comparison with a few 

full finite element (Nastran) computations. The computational expedience of the 

reduced order models allows a detailed parametric study of the response as a 

function of the frequency of the oscillating flux. The nature of the corresponding 

structural ROM equations is seen to be of a Mathieu-type with Duffing 

nonlinearity (originating from the nonlinear geometric effects) with external 

harmonic excitation (associated with the thermal moments terms on the panel). A 

dominant resonance is observed and explained. 
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The second part of the thesis is focused on extending the formulation of 

the combined thermal-structural reduced order modeling method to include 

temperature dependent structural properties, more specifically of the elasticity 

tensor and the coefficient of thermal expansion. These properties were assumed to 

vary linearly with local temperature and it was found that the linear stiffness 

coefficients and the “thermal moment” terms then are cubic functions of the 

temperature generalized coordinates while the quadratic and cubic stiffness 

coefficients were only linear functions of these coordinates. A first validation of 

this reduced order modeling strategy was successfully carried out.
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CHAPTER 1 - INTRODUCTION 

Notwithstanding the significant body of research existing in the literature, 

the accurate, computationally efficient prediction of the dynamic response of 

hypersonic aircraft panels remains an important and challenging problem. Its 

complexity stems from (1) the severity of the loading (acoustic, thermal, 

aerodynamic) that induces large, geometrically nonlinear motions of the structure, 

and (2) the multi-disciplinary, structural - thermal - aerodynamic,  coupling 

present. 

In recent years, the adoption of reduced order models for the prediction of 

the structural response [1-13] has emerged as the option of choice to avoid the 

computational burden associated with full finite element computations while 

maintaining accuracy. In addition to this notable advantage, reduced order models 

have also been found to be much more straightforward to couple with each other 

than the corresponding full order models. This coupling has been demonstrated in 

particular between structural and aerodynamic computations [e.g. see 14,15] but 

also between structural response and temperature distribution [16,17]. These 

strong features of reduced order models allow the consideration and study of 

interaction problems that, while possible with full order models, are 

computationally very extensive. 
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Figure 1. Model problem for the analysis of the thermal effects of 

an oscillating shock. 

One such problem, considered here in detail, is the effects that shock 

oscillations have on the response of the panels on which they are attached. In 

addition to the fluctuations in pressure and aerodynamic forces, the oscillation of 

the shock is also expected to induce a similar oscillation of the heat flux, the 

effect of which is poorly understood. Accordingly, it is desired here to address 

this problem within the context of thermal and structural ROMs, see [16,17], 

including in particular a parametric study with respect to the frequency of the flux 

oscillations. This problem is investigated here on a beam model (see Fig. 1) of a 

panel which is clamped at both ends and is subjected to the combined effect of (i) 

a distribution of heat flux that is localized at one point of the beam with that point 

oscillating along the beam at a constant frequency Ω and (ii) an impinging 

acoustic wave. 

Furthermore, due to the extreme heating conditions of hypersonic vehicles 

(temperatures over 3,000 °F are to be expected [18]), some of the material 

properties will change throughout the flight envelope. In order for reduced order 

models to truly capture the response of these vehicle panels it is necessary to 
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model the properties of the panel material as they change with temperature. 

Accordingly, one objective of this research is to extend the thermal-structural 

reduced order modeling strategy to include the variations with temperature, 

assumed linear, of the elasticity tensor and the coefficient of thermal expansion. 

The linearity assumption appears well supported over a notable temperature range 

by experimental data suggesting that the Young’s modulus and coefficient of 

thermal expansion do vary linearly while the Poisson’s ratio appears 

approximately independent of temperature.
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CHAPTER 2 – REDUCED ORDER MODEL FORMULATION 

2.1 Thermal and Structural Governing Equations 

 As described in the previous section, a primary objective of the present 

investigation was the extension of the combined thermal-structural reduced order 

modeling approach to include the variations of the structural properties, most 

notably the elasticity tensor and the coefficient of thermal expansion, with 

temperature. This section which details the derivation of this extension is based 

on the approach formulated in [16,17]. 

 It is desired here to represent both temperature and displacement fields in 

a “modal expansion” form, i.e. as 

     






1

)(
,

n

n
n XTttXT                                                (1) 

for the temperature, and 

     



M

n

n
ini XUtqtXu

1

)(
,                                                 (2) 

for the displacement. In these equations, the functions 
)(m

iU  and 
)(m

T  are 

specified functions of the position vector X in the undeformed configuration, 

chosen to satisfy the necessary boundary conditions. 

 To obtain a set of (nonlinear) ordinary differential equations governing the 

evolution of the generalized coordinates  tqn  and  tn , it is first necessary to 

derive the governing field equations for the displacements  tXui ,  and 
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temperature  tXT ,  in the undeformed configuration. Following references [19-

21], one obtains (see also [7,16,17]) 

  iijkij
k

ubSF
X

0
0

0 



 for 0X                                    (3) 

where S  denotes the second Piola-Kirchhoff stress tensor, 0  is the density in 

the reference configuration, and 0
b  is the vector of body forces, all of which are 

assumed to depend on the coordinates iX  of the undeformed configuration in 

which the structure occupies the domain 0 . Further, in Eq. (3), the deformation 

gradient tensor F  is defined by its components ijF  as 

j

i
ij

j

i
ij

X

u

X

x
F









                                                        (4) 

where ij  denotes the Kronecker symbol and the displacement vector is 

Xxu  , x being the position vector in the deformed configuration. 

 The heat conduction equation on the domain 0  can be written as 






















j
ij

i X

T
k

X
T 0

0 S                                                           (5) 

where S  denotes the specific entropy and 
0

k  denotes the conductivity tensor 

pulled back to the undeformed configuration according to 

  T
FkFFk



10

det                                                (6) 

where k  is the conductivity tensor in the deformed configuration. 
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 To complete the formulation of the problem, it is necessary to define the 

material constitutive relations which stem from the Helmholtz free energy (per 

unit mass) F  defined as 

SEF T                                                              (7) 

where E  denotes the elastic energy. Specifically, one has 

ij

Tij

S
E





















F
0    and     S

F














ijET
                                                  (8),(9) 

where E  denotes the Green strain tensor, i.e. 

 ijkjkiij FFE 
2

1
.                                                                                        (10) 

 Key in the present effort is the form of the Helmholtz free energy which is 

assumed to represent the material. The Duhamel-Neumann form of the Helmholtz 

free energy [19] is traditionally assumed, especially when the temperature 

variations of the elastic properties are neglected. Specifically, it is postulated that 

   000 ,
2

1
TTfETTCEEC ijklijklklijijkl  F                               (11) 

where C  denotes the fourth order elasticity tensor,   the second order tensor of 

thermal expansion, 0T  is the reference temperature, and [19] 

 






















 1ln,

000
000

T

T

T

T

T

T
TCTTf v                                  (12) 

in which vC  is the specific heat per unit mass measured in the state of constant 

strain. 

 The stress-strain relation is then obtained from Eq. (8) as 
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  00 TTEC
E

S klklijkl

Tij
ij 




















F
                               (13)  

whether the material properties (i.e. ijklC  and ij ) depend on temperature or not. 

 The governing equation for the heat convection is then obtained by 

combining Eq. (5) and (9). Specifically, gives the rate of change of the entropy as 

T
T

E
TE

ij
ij


2

22











FF
S .                                                         (14) 

or, assuming vC  to be constant 

   

  TE
T

ETT
T

EE
T

C

T

EE
T

C
TT

TT
T

T

C
EC

ij
ij

ij
ij

klij
ijkl

ijkl
ijklijv

ijklijkl













































































2
2

11

11

02

2

2

2

0

0
00

S

.        (15) 

Note that this complex expression reduces to the first two terms, appearing in 

[16,17], when the elasticity tensor and coefficient of thermal expansion are 

independent of temperature. Combining Eqs (5) and (15) yields finally the desired 

heat conduction equation 

G
t

E
T

X

T
k

Xt

T
C

ij
ij

j
ij

i
v 
































 0

0                                           (16) 

where G denotes a series of terms involving the derivatives of ijklC  and ij . 

Specifically, 
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 

  TE
T

ETT
T

EE
T

C

t

E
E

T

C
TT

T
G

ij
ij

ij
ij

klij
ijkl

ij
kl

ijklij



























































2
2

1
02

2

2

2

0

        (17) 

The terms lumped in G can be considered as an additional latency effect, beside 

the first term on the right-hand-side of Eq. (16), as they all involve the strain. 

They differ from the classical term (the first term on the right-hand-side of Eq. 

(16)) by their dependence on the variations of the structural properties with 

temperature. 

 The derivation of the governing equations for the generalized coordinates 

 tqn  and  tn  is then achieved by introducing Eqs (1) and (2) in Eqs (3), (4), 

(10), (13), (16) and (17) and proceeding with a Galerkin approach. This process 

leads to the differential equations    

 

l
th

ilipljijlpljijl

lj
th

ijljijjijjij

FFqqqKqqK

qKqKqDqM





)()3()2(

)()1(

                                             (18)

  

and 

 jijilj
st

ijljijjij RPqKKB   )(~
.                                                        (19) 

Considering in particular the structural reduced order model, note that the 

coefficients 
)1(

ijK , 
)2(

ijl
K , and 

)3(
ijlp

K   are given as [16]  













0

)()(
)1( Xd

X

U
C

X

U
K

p

n
l

iklp
k

m
i

mn                                                                     (20) 
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 )2()2()2()2( ˆˆˆ
2

1
npmpmnmnpmnp KKKK                                                                       (21) 

















0

)()()(
)2(ˆ Xd

X

U

X

U
C

X

U
K

l

p
r

k

n
r

ijkl
j

m
i

mnp                                                        (22) 





















0

)()()()(
)3(

2

1
Xd

X

U

X

U
C

X

U

X

U
K

w

p
r

l

n
r

jklw
k

s
i

j

m
i

msnp .                                     (23)  

Clearly, these coefficients implicitly depend on the temperature distribution since 

they are linearly dependent on the tensor ijklC . Proceeding similarly with the 

parameters  
)(th

ijl
K  and 

)(th
il

F , defined as 














0

)(
)()(

)( XdTC
X

U

X

U
K p

lrkjlr
j

n
i

k

m
ith

mnp                                                       (24) 










0

)(
)(

)( XdTC
X

U
F n

lpiklp
k

m
ith

mn                                                                    (25)  

demonstrates that they are also temperature distribution dependent since they 

involve the product ijklC kl . These findings notably complicate the reduced 

order modeling formulation as they imply that new coefficients would have to be 

recomputed at every time step if the temperature distribution changes with time. 

This difficulty can be bypassed by assuming a polynomial dependence of ijklC  

and ij  on the temperature. For example, assuming this dependence being linear, 

one has 

TCCC
ijklijklijkl

)1()0(
                          (26) 
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and 

Tijijij
)1()0(

 .                                                         (27)  

When propagating the temperature dependence through the terms in Eqs (20) and 

(24), it becomes more convenient to combine the expressions of 
)1(

ijK and 
)(

,
th
lij

K in 

order to determine a single expression for the linear stiffness coefficient’s 

dependence on temperature. Following the substitution of Eqs (26) and (27) into 

Eqs (20)-(25) demonstrates that the coefficients, 
)2(

ijl
K , and 

)3(
ijlp

K  would be linear 

in the thermal generalized coordinates i , while 
)1(

ijK  and 
)(th

iF  would be cubic 

in these variables, as   

nmllmnijmllmijllijijij KKKKK 
)1(
,

)1(
,

)1(
,

)1(
0,

)1(
                              (28) 

rrijlijlijl
KKK 

)2(
,

)2(
0,

)2(
                                                                   (29) 

llmsnpmsnpmsnp KKK 
)3(

,
)3(

0,
)3(                                                                             (30) 

srl
th
lrsirl

th
lril

th
li

th
i FFFF 

)(
,

)(
,

)(
,

)(
.                                          (31) 

where 













0

)(
)0(

)(

0, Xd
X

U
C

X

U
K

p

n
l

iklp
k

m
i

mn                                                                   (32) 

XdT
X

U
C

X

U
TC

X

U

X

U
K r

p

n
l

iklp
K

m
ir

lp
o

iklp
i

n
j

K

m
j

rmn 


































0

)(
)(

)1(
)(

)()0()(
)()(

,    (33) 
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 












0

)()()0()1()()()1()0(
)()(

, XdTTCTTC
X

U

X

U
K sr

lpiklp
sr

lpiklp
i

n
j

K

m
j

rsmn           (34) 














0

)()()()1()1(
)()(

, XdTTTC
X

U

X

U
K gsr

lpiklp
i

n
j

k

m
j

rsgmn                                  (35) 

 npmpmnmnpmnp KKKK ˆˆˆ
2

1
                                                                      (36) 

















0

)()(
)0(ˆ Xd

X

U

X

U
C

X

U
K

l

p
r

k

n
r

ijkl
j

m
i

mnp                                                           (37) 

 gnpmgpmngmnpgmnp KKKK ,,,,
ˆˆˆ

2

1
                                                         (38) 

















0

)()(
)()1(

)(

,
ˆ Xd

X

U

X

U
TC

X

U
K

l

p
r

k

n
rg

ijkl
j

m
i

gmnp                                              (39) 





















0

)()(
)0(

)()(

2

1
Xd

X

U

X

U
C

X

U

X

U
K

w

p
r

l

n
r

jklw
k

s
i

j

m
i

msnp                                       (40) 





















0

)()(
)()1(

)()(

,
2

1
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U
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X
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X
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w
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l

n
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jklw
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s
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gmsnp                            (41) 










0

)()0()0(
)(

, XdTC
X

U
F n

lriklr
k

m
i

nm                                                                 (42) 

 








0

)()()0()1()1()0(
)(

, XdTTCC
X

U
F gn

lriklrlriklr
k

m
i

ngm                                     (43) 










0

)()()()1()1(
)(

,
XdTTTC

X

U
F hgn

lriklr
k

m
i

nghm
                                              (44) 
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In Eq. (19), ijB  and ijK
~

 are the elements of the capacitance and 

conductance matrices of the reduced order model and 
)(st

ijl
K  is a linear latency 

term, dual of 
)(th

ijl
K . Further, the term iP  denotes the source term associated with 

the boundary conditions and the external flux while ijR  involves latency and 

change of geometry effects [16]. 
)(st

ijl
K  and ijR

 
are the terms in the heat 

conduction equation that are dependent on the temperature distribution. They also 

represent the feedback effect of the structural deformations on the temperature 

distribution. This effect is generally recognized as small for small to medium 

deformations and thus 
)(st

ijl
K  and ijR

 
will be neglected in the present analysis. 

Their dependence on the temperature distribution is thus not analyzed further. 

 

2.2 Basis Selection 

The integral expressions for all coefficients, see Eqs (20)-(25) for Eq. (18), 

demonstrate, as expected, their dependence on the selection of the basis functions 

)(m
iU  and )(i

T  which represents a key step in the formulation of the reduced 

order modeling strategy. Following the discussions of [7,8,16], the former were 

selected as the linear modes of the structure that would appear significantly in the 

linear response appended of an ensemble of “dual modes” that are obtained as 

specific nonlinear static solutions (see [7] for an extended presentation and 

validation in isothermal conditions). An enrichment of this structural basis by one 
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or several problem-specific functions may also be warranted, e.g. see the first 

validation case. Note that this basis is temperature independent, i.e. evaluated for 

a specific temperature distribution. 

The thermal basis functions,  XT
m)(

 used in the steady validation cases 

[16,17] will be adopted again in the present study. They were constructed as the 

product of a function of the through thickness coordinate z by a function of the 

remaining two coordinates (= pX ). That is, 

      p
m

p
m

t
m

XTzTXT )()()(
 .                                                                  (45) 

The function  zT
m

t
)(

 was selected as the temperature distribution 

satisfying the 1-D steady heat conduction equation through the thickness. Further, 

two sets of  functions  p
m

p XT )(  were combined to represent the inplane 

variation of temperature. The first group of functions,  p
m
BCp

XT
)(

,
, were selected, 

e.g. as linear functions,  to homogenize the boundary conditions on temperature. 

To this set were added the functions  p
m
eigp XT
)(

,  which were computed as the 

eigenvectors of the linear finite element approximation of the time-dependent heat 

conduction problem on the top and bottom surfaces, i.e. spanned by pX . 
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2.3 Identification of the Parameters of the Structural Reduced Order Model 

2.3.1 No Temperature Present 

While Eqs (32)-(44) provide exact expressions for the coefficients of the 

structural reduced order model, they are not in a form that is convenient for 

evaluation from a finite element model in which only discretized values of the 

modes are available. This observation has led, as in prior investigation, to the 

consideration of indirect methods for the estimation of the coefficients from a 

series of static finite element computations. In the absence of temperature 

variations, the STEP identification strategy of the coefficients 
)1(

ijK ,
)2(

ijl
K , and 

)3(
ijlp

K   as initially proposed by Muravyov and Rizzi [22] and modified by [7] has 

often been utilized. In fact, it is also the basis for the identification approach used 

in [16] in the presence of temperature and thus is first reviewed here before 

addressing the identification of the stiffness coefficients in Eq. (18). 

The essential idea behind the STEP approach is to impose a series of 

specified displacement fields to the structure and to determine the forces required 

to achieve these displacements. Then, from these data, all the above parameters 

are determined by solving linear algebraic equations.  

The first step in the approach is to estimate the parameters 
)1(

ijK ,
)2(

ijjK , 

and 
)3(

ijjjK , for each value of j. As it can be seen from Eq. (18) a displacement field 

proportional to a single basis function, i.e. 

    3,2,1
)()(

 rXUqXu
j

i
r
j

r
i                                                                    (46) 
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for each value of j in turn results. Then, the values 
)(r

jq  are constant scaling 

factors that are such that the displacements produced are large enough to induce 

significant geometric nonlinear effects. From trial and error with different values 

of 
)(r

jq  it was determined that a good choice of these values is such that the 

resulting displacement field is of approximately between one tenth and one 

thickness of the structure. With this in mind, Eq. (18) reduces to 

3,2,1
)(3)()3(2)()2()()1(

 rFqKqKqK
r

i
r
jijjj

r
jijj

r
jij                                      (47) 

where the force terms 
)(r

iF  are computed from the traction predicted in each case 

by a finite element analysis (e.g., MSC.Nastran). Then, these relations represent a 

set of 3 equations in which the only unknowns are the 3 parameters 
)1(

ijK ,
)2(

ijjK , 

and 
)3(

ijjjK , which appear linearly. 

The second step of the identification procedure is the estimation of the 

parameters ,,
)3()2(

ijllijl
KK  and 

)3(
ijjl

K  for jl  . These parameters appear in the 

model through the generalized coordinates jq  and lq . Therefore, they can be 

determined following a similar procedure as in the first step but with the 

imposition of displacements that are of the form

      3,2,1
)()()()()(

 rXUqXUqXu
l

i
r

l
j

i
r
j

r
i .                                         (48) 

Finally, the third and last step of the identification procedure is the 

determination of the parameters 
)3(

ijlp
K  for j, l, and p all different. In this case, the 
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displacement field needed in order to determine the parameters of interest is of the 

following form. 

       XUqXUqXUqXu
p

ip
l

il
j

iji
)()()(

                                                  (49) 

Lastly, the remaining parameters of the model of Eq. (18), i.e. the modal 

masses ijM , damping coefficients ijD , and modal forces iF  are determined from 

the finite element model of the structure as follows 

)()( j
FE

Ti
ij UMUM                                                                                         (50) 

)()( j
FE

Ti
ij UDUD                                                                                           (51) 

FE
Ti

i FUF
)(

                                                                                                    (52)    

)()()( th
FE

Tith
il

FUF                                                                                               (53) 

where ,,
FEFE

DM  and FEF  are the global mass matrix, damping matrix, and 

forces applied to the full finite element model. Further, 
)(th

FE
F  is the force induced 

by each temperature variation of the form 
)(

1
m

T . 

Note finally, that the modal forces    will in general be affected by the 

“pull back” operation. However, this issue was not addressed here because the 

displacements of the beams and panels considered in this investigation did not 

exceed a few thicknesses. 
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2.3.2 Present Model 

 In order to determine the temperature dependent terms given in Eqs (28)-

(31), a method similar to the one specified above will be used. A series of 

temperature fields, which will result from combinations of thermal modes, will be 

imposed on the system, and the desired stiffness and force terms will be acquired 

using the methodology specified above. A system of linear equations will result in 

which the temperature dependent parameters of Eqs (28)-(31) will be solved for. 

 In all these equations, the terms with a subscript of 0 denote parameters 

that are not connected to the thermal generalized coordinates. These terms are 

found using the method described in Section 2.3.1, in which a uniform 

temperature field of 0° C is enforced on the structure, with the elasticity tensor 

being independent of temperature and the coefficient of thermal expansion being 

equal to zero. 

 As seen in Eqs (29)-(30) the cubic and quadratic stiffness terms depend 

linearly on temperature, due to the presence of the elasticity tensor. Looking 

specifically at the quadratic stiffness, Eq. (29) can be rearranged as follows: 

  rrijlijlijl
KKK 

)2(
,

)2(
0,

)2(
                                                                                    (54) 

In order to determine the value of 
)2(
,rijl

K , temperature fields proportional to each 

thermal mode as  

   XTXT
r

r
)(

                                                                                               (55) 

are imposed on the structure, with the elasticity tensor varying with temperature. 
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With each temperature field applied, the method described in the previous section 

was applied in order to find 
)2(

ijl
K . Since r  is a known scalar value, the only 

unknown left is 
)2(
,rijl

K , which is directly solved for. In the same way, the terms 

that define the cubic stiffness coefficient, 
)3(
,rijlp

K ,can be found. 

 The linear stiffness coefficients and thermal moment terms have a cubic 

dependence on temperature. Further, they can be rearranged to have the same 

form as specified in Eq. (47) but with the thermal generalized coordinates j  as 

opposed to their structural counterparts jq , e.g. 

  nmllmnijmllmijllijijij KKKKK 
)1(
,

)1(
,

)1(
,

)1(
0,

)1(
  .                                    (56)

 

Based on the similarity between Eqs (47) and (56), temperature fields will now be 

applied as the displacement fields were applied in the previous section. Thus, the 

first step is to estimate the parameters 
)1(
,lij

K , 
)1(
,llij

K , and 
)1(
,lllij

K . Applying a 

temperature field proportional to a single thermal basis function, i.e.  

    3,2,1
)()()(

 rXTXT
lr

l
r

                                                                   (57) 

for each value of l in turn results in 

  llllllijllllijllijijij KKKKK 
)1(
,

)1(
,

)1(
,

)1(
0,

)1(
                                              (58) 

As each temperature field is applied to the system, which has both the elasticity 

tensor and the coefficient of thermal expansion varying linearly with temperature, 

the method described in 2.3.1 is again applied in order to determine 
)1(

ijK . Since 
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l  is a known scalar, what results is a system of 3 linear equations in which there 

are 3 unknowns, 
)1(
,lij

K , 
)1(
,llij

K , and 
)1(
,lllij

K . 

 The next step is the estimation of the parameters 
)1(
,lrij

K , 
)1(
,lrrij

K , and 

)1(
,llrij

K , for rl  , which appear in the model through the generalized coordinates 

r  and l . These parameters can be found following a similar procedure as the 

first step but with the application of the temperature fields that are of the form 

      3,2,1
)()()()()(

 pXTXTXT
rp

r
lp

l
p

.                                        (59) 

The third and last step involves the determination of the parameters 
)3(

,lrsij
K , for l, 

r, and s all different. The temperature field imposed on the system in order to find 

this parameter is of the following form. 

       XTXTXTXT
s

s
r

r
l

l
)()()(

                                                       (60) 

The temperature dependent parameters of Eq. (31), which describes the thermal 

moment term, can be found in the same manner. 
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CHAPTER 3 – REDUCED ORDER MODEL VALIDATION 

The first purpose of the current investigation is to create a thermal 

structural reduced order model that accurately predicts the motion of a beam when 

subjected to an oscillating heat source and acoustic loading. This model does not 

incorporate temperature dependent material properties, which means that the 

coefficients identified by Eqs (18) and (19) will be used and that these same 

equations will be used for the computation of the generalized coordinates. Before 

addressing the oscillating flux problem, it was desired to first validate the thermal 

and structural reduced order models, both separately and jointly, and this step was 

accomplished on the steady problem corresponding to the flux centered on the 

beam, i.e. 2/0 La  , Ω= 0, and δ = 0, see Fig. 1 and Table 1. Further, the width 

Δ of the triangular heat flux was selected as 0.2*L. Finally, the peak heat flux was 

selected so that the peak temperature on the upper surface of the beam would be 

10C while the bottom surface was maintained at 0C. A no flux boundary 

condition was enforced through the thickness at the ends of the beam and a zero 

temperature at the ends of the top of the panel. The beam was assumed to be 

isotropic with properties given in Table 1 and was modeled by finite elements 

using 40 CBEAM elements in MSC.Nastran. 

Table 1.  Clamped-Clamped Beam Properties 

Beam Length (L) 0.2286 m 

Cross-section Width (w) 0.0127 m 

Cross-section Thickness (h) 7.88 10
-4

 m 
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Density 2700 kg/m
3
 

Young’s Modulus 73,000 MPa 

Shear Modulus 27,730 MPa 

Coeff. Thermal Expansion 2.5 10
-5

 /°C 

Mesh (CBEAM) 40 

 

3.1 Thermal Reduced Order Model    

The validation of the thermal reduced order model was considered first. 

While the centered steady flux will lead to a symmetric temperature distribution, 

its oscillating counterpart will not and thus both symmetric and antisymmetric 

modes were selected. No boundary condition mode was introduced here given the 

zero temperature boundary condition at the ends of the beam. Further, 10 

eigenvectors of the capacitance-conductance generalized eigenvalue problem 

associated with the 1-D heat conduction on the top surface were considered for 

the basis. As reviewed above, a linear variation of the temperature through 

thickness was assumed throughout the length of the beam. 

Then, shown in Fig. 2 is a comparison of the temperature distribution 

computed from Nastran with the one predicted with the 10-mode thermal ROM 

with a centered, steady heat flux. Figure 3 similarly shows the temperature 

distribution predicted by Nastran and the 10-mode thermal ROM with a heat flux 

that is offset to the left by 0.075 beam length, which is the furthest from center 

that the heat flux will be in a given cycle. 
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Figure 2. Temperature distribution on top of the beam induced by 

the localized steady heat flux. Nastran and reduced order model 

steady computations. 

 
Figure 3. Temperature distribution on top of the beam induced by 

the localized steady heat flux, offset to the left by 0.075 beam 

length. Nastran and ROM steady computations. 
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The matching is very good although the capturing of the sharp peak is not as 

accurate. This very localized difference was however found not to induce any 

noticeable change in structural deflections as will be observed below. 

Accordingly, no further effort was undertaken to improve the matching of the 

temperature fields at the peak. 

 

3.2 Structural Reduced Order Model 

The structural reduced order modeling was addressed next. A key aspect 

in obtaining such a model with good predictive capabilities is the selection of the 

basis to represent the motions. In this regard, note that the temperature 

distribution of Fig. 2 is not uniform. Thus, a displacement field with both 

transverse and inplane components is induced through (i) the thermal expansion 

of part of the beam, and (ii) the compressive effect of the reactions at the clamps. 

Accordingly, a full field representation approach was adopted here in which both 

transverse and inplane motions are modeled.   Specifically, following 

[3,4,7,8,13,16,17] the transverse motions will be represented using the 

corresponding linear modes. The first 7 (4 symmetric and 3 antisymmetric) were 

selected here based on the frequency range of the acoustic excitation discussed 

below. Further, 7 dual modes (those with mode 1 dominant, see [7]) were 

employed for the inplane deformations that are induced by the large transverse 

deflections. In addition to these deflections, the inplane basis functions must 

represent well the existing thermal displacements. Since the dual modes are 
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highly focused on representing the transverse-inplane nonlinear coupling, it has 

sometimes been necessary (e.g. [16,17]), although not always (e.g. [8]), to enrich 

the inplane basis to account for the effect of other loadings (e.g. thermal). Such an 

enrichment was found necessary here but no simple, representative thermal 

loading scenario (as in [16,17]) could be successfully devised. Accordingly, the 7-

dual mode basis was enriched with the first three inplane linear modes leading to 

a 17-mode structural model, with 7 transverse and 10 inplane modes. 
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Figure 4. Displacements, (a) transverse, (b) inplane, induced by the 

localized steady heat flux. ROM and Nastran nonlinear predictions. 

Shown in Fig. 4 are the static displacement fields obtained with the 

reduced order models (both thermal and structural) and full Nastran analyses 

(both thermal and structural as well) for the centered, steady heat flux. Shown in 

Fig. 5 are the displacement fields obtained by the reduced order models and 

Nastran, but with a heat flux that is offset to the left by 0.075 beam length.  
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Figure 5. Displacements, (a) transverse, (b) inplane, induced by the 

localized steady heat flux, offset by 0.075 beam length to the left. 

ROM and Nastran nonlinear predictions. 

The excellent matching obtained supports the appropriateness of the basis. 

Shown in Fig. 6 is a similar comparison but for a heat flux 20 times smaller, 

leading to a peak temperature of only 0.5C for which the peak transverse 

response is 0.02 thickness. Note in Fig. 6 that both linear and nonlinear analyses 
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were performed with Nastran and that they differ, albeit only slightly, even for 

that very small displacement level. This finding may be surprising as it would 

usually be assumed that the linear theory would be applicable for such small 

deflections. It is believed that the difference results in fact from the presence of a 

strong inplane component of the motion which affects nonlinearly the transverse 

deflections, in the same way an inplane load would. 
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Figure 6. Displacements, (a) transverse, (b) inplane, induced by the 

localized steady heat flux divided by 20. ROM and Nastran linear 

and nonlinear predictions. 

The final validation of the structural reduced order model focused on its 

prediction of the dynamic response to an acoustic excitation, modeled here as a 
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occurs at 145dB in both transverse and inplane spectra due to nonlinearity and 

peak merging. In the latter, note the significant increase of the response level at 

the middle of the beam. In fact, the response of the beam to that acoustic 

excitation and the thermal loading, both symmetric, is no longer symmetric, as it 

was at the lower excitation levels, SPL=110dB and 130dB, note the 

computationally zero magnitude of the spectra of the inplane displacement on 

Figs 7(a) and (b). The symmetry breaking at 145dB is only sporadic and was also 

confirmed from the difference between the transverse responses at the quarter and 

three-quarter points. In all cases, it is seen that the reduced order models lead to 

an excellent match of the Nastran predictions. 
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Figure 7. Power spectral density of the transverse (T3) and inplane 

(T1) deflections at the beam mid point. ROM and Nastran 

nonlinear predictions. Steady, symmetric heat flux and acoustic 

excitation of (a) SPL =110dB, (b) SPL =130dB, (c) SPL =145dB. 
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Figure 8. Power spectral density of the transverse (T3) and inplane 

(T1) deflections at the beam quarter point. ROM and Nastran 

nonlinear predictions. Steady, symmetric heat flux and acoustic 

excitation of (a) SPL =110dB, (b) SPL =130dB, (c) SPL =145dB. 
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Figure 9. Power spectral density of the transverse (T3) and inplane 

(T1) deflections at the beam mid point. ROM and Nastran 

nonlinear predictions. Steady, offset heat flux and acoustic 

excitation of (a) SPL =110dB, (b) SPL =130dB, (c) SPL =145dB. 
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Figure 10. Power spectral density of the transverse (T3) and 

inplane (T1) deflections at the beam quarter point. ROM and 

Nastran nonlinear predictions. Steady, offset heat flux and acoustic 

excitation of (a) SPL =110dB, (b) SPL =130dB, (c) SPL =145dB. 
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CHAPTER 4 – OSCILLATING FLUX 

4.1 Thermal Problem: Linear Through Thickness Temperature Distribution 

Having validated the thermal and structural reduced order models to the 

steady heat flux case, it is now desired to proceed with the oscillation flux study. 

The amplitude of this oscillation, or δ (see Fig. 1), was selected as 7.5% of the 

beam length. 

The first task in this effort is the determination of the steady state 

temperature field induced by the oscillating heat flux. In this regard, note that this 

flux is indeed periodic with period 2π/Ω and thus can be represented as a Fourier 

series at every point of the top of the beam, i.e. 

   






1
0

sinˆcos

n
nn

tnqtnqqtq                                                            (61) 

where the Fourier coefficients 
0

q , 
n

q , and 
n

q̂  can be evaluated by integration 

over a period length of the flux profile of Fig. 1 times sine and cosine functions of 

nΩt. Further, since the heat conduction equation is linear, it can be argued that the 

steady state temperatures at the entire set of grid points is of the form           

   






1
0 sinˆcos

n
nn tnTtnTTtT .                                                         (62) 

 A similar representation of the thermal ROM generalized coordinates 

vector  t  of components  tj  can also be expected, i.e. 

   






1
0 sinˆcos

n
nn tntnt .                                                           (63) 
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The temperature vectors 0T , nT , and nT̂  can be obtained by introducing Eqs 

(61) and (62) in the heat conduction equation (in the finite element model) 

 tqTK
dt

Td
B                                                                                            (64) 

which leads to the relations 

00 qTK                                                                                             (65) 

and 

 
nnn qTnBTK  ˆ                                                                               (66) 

 
nnn qTKTnB ˆˆ                                                                                (67) 

These relations permit the direct evaluation of 0T , nT , and nT̂ , i.e. of the 

temperature representation, in terms of the flux specification.  

 A first approach to obtain the steady state representation of the thermal 

generalized coordinates  tj  of Eq. (19) is thus to proceed with the solution of 

Eqs (64)-(67) and then project the distribution of Eq. (62) on Eq. (1) to obtain the 

coefficients of Eq. (64). An alternate approach is to apply a procedure similar to 

Eqs (65)-(67) to the thermal ROM governing equations, Eq. (19), to obtain the 

steady state representation of each of the temperature generalized coordinates 

 tj , i.e. Eq. (63). The first approach was adopted in this thesis. 

Shown in Fig. 11 is a comparison of the temperature distribution on top of 

the beam obtained through a time marching of the conduction problem in Nastran 

and the corresponding Fourier series approximation with 40 harmonics for a 1Hz 

oscillation of the flux (Ω = 2π). Clearly, the agreement is excellent. To 
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complement this comparison, shown in Figs 12 and 13 are the time histories of 

the temperature at the middle of the beam and at a node near the furthest left 

excursion of the heat flux distribution for 1 and 80Hz oscillations. Again, the 

matching is excellent justifying the Fourier series representation. 

Also shown on Figs 11-13 are the temperatures predicted by projecting the 

40 harmonics series on the thermal basis. It is seen from these results that the 

matching is very good at the 1Hz oscillation frequency but degrades slightly as 

that frequency is increased to 80Hz. This finding suggests that the thermal basis 

should be increased somewhat as the frequency of the oscillations is increased. 

The effects of these differences on the structural response will be seen to be much 

reduced. Note finally that the variation of the temperature with time is 

significantly smaller at 80Hz than at 1Hz. 
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Figure 11. Temperature distribution on the beam top surface; 

oscillating heat flux, Ω = 2π(1Hz). Shown at the beginning, 

quarter, and middle of the period. Nastran, Fourier series, and 

ROM computations. 

 

Figure 12. Time history of temperature at the beam middle and at a 

node near the furthest left excursion of the flux, Ω= 2π (1Hz). 

Nastran, Fourier series, and ROM computations. 
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Figure 13. Time history of temperature at the beam middle and at a 

node near the furthest left excursion of the flux, Ω = 160π (80Hz). 

Nastran, Fourier series, and ROM computations. 
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80Hz. Note that the nonlinear structural response was found to be periodic and 

thus only 1 period is shown. 

In Figs 14-16 and all ensuing ones, the Nastran responses shown were 

obtained with a linear temperature through thickness (the only option allowed for 

CBEAM elements), as opposed to the full temperature profile obtained in the 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

Position in Cycle (radians)

T
e
m

p
e
ra

tu
re

 (
d

e
g

 C
)

 

 

Nastran, node mid

Nastran, node left

Fourier, node mid

Fourier, node left

ROM, node mid

ROM,node left



  41 

thermal computations. This linear distribution was obtained by retaining from the 

full solution the temperature at the top and bottom surfaces of the panel. The 

ROM temperature distribution was also linear through thickness per Eq. (45) but 

represented a linear best fit of the nonlinear temperature profile. This dissimilarity 

led to a slight difference in the temperature distribution of the Nastran and ROM 

structural computations which is felt more significantly at higher oscillating 

frequencies. To provide an additional basis for comparison, a best fit linear 

through thickness temperature distribution was also imposed in the 80Hz response 

Nastran computations, see Fig. 16. A slight but definite difference between both 

Nastran results can be observed. 
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Figure 14. Time history of (a) transverse and (b) inplane 

deflections at the beam middle and at a node near the furthest left 

excursion of the flux, Ω = 2π(1Hz). Nastran and ROM 

computations.  
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Figure 15. Time history of (a) transverse and (b) inplane 

deflections at the beam middle and at a node near the furthest left 

excursion of the flux, Ω = 80π (40Hz). Nastran and ROM 

computations. 
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Figure 16. Time history of (a) transverse and (b) inplane 

deflections at the beam middle and at a node near the furthest left 

excursion of the flux, Ω = 160π(80Hz). Nastran and ROM 

computations. Also shown Nastran response with best fit linear 

temperature. 
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From Fig. 16, i.e. at the 80Hz flux oscillation frequency, a very small 

amplitude of the transverse motions at the middle of the beam is observed but 

much larger displacements occur at the left edge of the flux. The beam thus seems 

to vibrate in an antisymmetric manner around a near constant symmetric 

deformation. 

It should further be observed that the dominant frequency in these time 

histories is not all the same. For example, the inplane motions exhibit a basic 

frequency of Ω while the transverse deflection of the middle point is periodic with 

frequency equal to 2Ω. The explanation of this behavior lies in the nature of the 

thermal and structural modes which are symmetric (both) for the odd numbered 

modes while the even ones are antisymmetric. Further, the coupling, both through 

the temperature dependent term of the linear stiffness matrix and the thermal 

moment term, occurs by even and odd pairs. That is, the symmetric structural 

modes are only directly excited through the symmetric thermal modes and vice 

versa. Note next that the symmetric thermal generalized variables will be identical 

when the flux reaches symmetric positions with respect to the middle, i.e. every 

1/2 cycle. Thus, the symmetric part of the temperature distribution (and 

accordingly of the structural response) has a period twice of the heat flux as 

observed in Figs 14-16. 

At a node near the furthest excursion of the heat flux, i.e. at 0.3*L, the first 

antisymmetric mode is near its peak and thus affects strongly the response. Thus, 

the response there includes all harmonics of Ω at the contrary of the beam middle 

where only the even harmonics are observed. The above discussion would suggest 
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that the odd and even (symmetric and antisymmetric) motions are uncoupled in 

the present case. This is not so, as the symmetric transverse motions induce 

antisymmetric inplane displacements and thus a nonlinear coupling does exist. 

 

4.2.1 Parametric Study of Oscillation Frequency 

The above discussion holds in the particular case selected here of a heat 

flux oscillating around the middle of the beam, i.e. 2/0 La  . In the more general 

case, all responses would exhibit components of frequencies nΩ, n = 1, 2, ..., of 

varying magnitudes. Then, the prototypical governing equation for a particular 

structural generalized coordinate would be 

 
  tnFtFqK

qKqtnKKqcq

th

th





sin

sin

0
)(

0
3)3(

)2()2(
0

)1()1(
                                                     (68) 

assuming that the dominant thermal generalized coordinate τ exhibits a frequency 

nΩ, i.e.   tnt  sin0 . Equation (68) is a nonlinear Mathieu equation 

externally excited by the second term on the right-hand-side. Then, relying on 

classical analyses (e.g. see [23]) it is expected that resonances would occur in the 

linear case at the frequencies    nmK 2/)1(  where m = 1, 2, ... with, in 

particular, m = 1 being the primary resonance for the parametric excitation and m 

= 2 leading to resonance with the right-hand-side term. 

To clarify the possibility of resonances in the case considered here, the 17-

mode structural 10-mode thermal reduced order model was used with oscillating 

flux frequency in the range of 16-110Hz which would provide several possible 
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resonances with the dominant transverse mode of linear frequency equal to 

79.6Hz. For each oscillation frequency Ω, the Fourier coefficients (40 harmonics) 

of the temperature distribution were obtained and projected on the thermal ROM 

to obtain the steady state time evolution of the thermal generalized coordinates. 

Then, the structural ROM was marched in time with these coordinates until a 

periodic solution was reached, which occurred in all cases observed. Then, the 

peak transverse displacement on the beam was recorded. 

The results of this parametric study are presented in Fig. 17 which shows 

the largest response on the beam and at the middle as a function of the oscillation 

frequency Ω.  

 

Figure 17. Maximum transverse deflection achieved on the beam 

and at the beam middle as a function of the flux oscillation 

frequency Ω as determined from the ROM and Nastran 

computations. 
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It is seen that the largest response occurs near 41Hz and corresponds to n = 2 

(since the first mode is excited at twice the oscillation frequency, see discussion 

above) and m = 2, i.e. for the resonance induced by the right-hand-side term. A 

much smaller peak also occurs near 80Hz which could be associated with the 

primary parametric resonance (m = 1, n = 2) or with resonance with the right-

hand-side term induced by the first harmonic (m = 2, n = 1) or a combination of 

both effects. Note further that the peak of the response occurs at the middle of the 

beam for frequencies below the resonance (40.9Hz) but is achieved very close 

from that midpoint for frequencies above 40.9Hz. This finding suggests a slight 

compounding effect of the antisymmetric modes, see above discussion of Fig. 

16(a). 

 

4.2.2 Validation With Acoustic Loading 

The next component of the current investigation focused on the response 

of the beam to the combined oscillating flux and acoustic excitation. In this 

context, shown in Figs 18 and 19 are the spectra of the transverse and inplane 

displacements at the beam middle and quarter points, obtained at an oscillation 

frequency of 20Hz and a sound pressure level of 130dB. A comparison of these 

results with those obtained in the steady flux case, see Figs 7 through 10, 

demonstrates that the structural response is modified primarily in the low 

frequency part and most notably inplane as opposed to transverse. 
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Figure 18. Power spectral density of the transverse (T3) and 

inplane (T1) deflections at the beam middle. ROM and Nastran 

nonlinear predictions. Oscillating heat flux, Ω=40π (20Hz), and 

acoustic excitation of SPL =130dB. 

 

Figure 19. Power spectral density of the transverse (T3) and 
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Nastran nonlinear. Oscillating heat flux, Ω=40π (20Hz), and 

acoustic excitation of SPL =130dB. 

The above computations were also repeated at 40Hz near the 40.9Hz 

resonance, see Figs 20 and 21. A comparison of Figs 18-19 and 20-21 confirms 

that the largest differences are indeed observed in the inplane displacements and 

most specifically in the low frequency range, although the magnitude of the 

200Hz peak in the transverse spectrum is significantly higher in the 40Hz case. 

 

Figure 20. Power spectral density of the transverse (T3) and 

inplane (T1) deflections at the beam middle. ROM and Nastran 

nonlinear. Oscillating heat flux, Ω=80π (40Hz), and acoustic 

excitation of SPL =130dB. 
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Figure 21. Power spectral density of the transverse (T3) and 

inplane (T1) deflections at the beam quarter point. ROM and 

Nastran nonlinear. Oscillating heat flux, Ω=80π (40Hz), and 

acoustic excitation of SPL =130dB. 

4.3 Improved Validation Efforts 

 The comparison of Nastran results of Fig. 16 obtained with two different 

linear approximations of the through thickness temperature distribution suggest 

that the nonlinearity of this distribution affects the structural response. It was 
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nonlinearity and the effects it has on the structural response.  

 

4.3.1 Thermal Problem: Linear and Cubic Through Thickness Distribution 

 In order to improve the thermal basis, the linear through thickness modes 

were combined with both quadratic and cubic through thickness modes and were 

tested in order to see which would be most beneficial to include. Figures 22 and 

0 200 400 600 800 1000 1200
10

-22

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

Frequency (Hz)

P
o
w

e
r-

d
is

p
2
/H

z

 

 

Nastran T3

ROM T3

Nastran T1

ROM T1



  52 

23 show the capturing of the true through thickness temperature profile for an 

oscillating frequency of 80 Hz by linear, linear with quadratic, and linear with 

cubic through thickness modes at particular locations along the beam and times in 

the cycle. Specifically, Fig. 22 shows the through thickness temperature profile 

near the furthest right edge of the heat flux when the heat flux is positioned at its 

furthest right point. Figure 23 similarly shows the through thickness temperature 

profile but near the furthest left edge of the heat flux when the heat flux is 

positioned at the beam center. In both of these plots, it is seen that the linear 

approximation of the through thickness temperature distribution is not good but 

that the inclusion of a cubic through thickness dependence leads to a close fit of 

the finite element results, better so than a quadratic term. 

 
Figure 22. Linear, quadratic and cubic through thickness modes 

capturing the true temperature near the right edge of the heat flux 

when the heat flux is at its furthest right position. 
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Figure 23. Linear, quadratic and cubic through thickness modes 

capturing the true temperature near the left edge of the heat flux as 

the heat flux is passing over the center of the beam. 

 The eigenvectors of the capacitance-conductance generalized eigenvalue 

problem associated with the 1-D heat conduction problem on the top surface of 

the beam, i.e.  p
m
eigp XT
)(

, , were multiplied by the linear and cubic through 

thickness functions in order to form potential basis vectors. It was decided that the 

first eight eigenvectors with linear through thickness properties and the first eight 

eigenvectors with cubic through thickness properties would be selected as the 

thermal basis. Additionally, the 13
th

 and 15
th

 eigenvectors with linear through 

thickness properties were also selected, as these enabled the model to better 

capture the peak temperatures. Figures 24 and 25 show this 18 mode thermal 

model capturing the temperature profile on the top of the beam when the heat 

0 1 2 3 4 5 6 7

x 10
-4

0

0.5

1

1.5

Through Thickness Position (m)

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

 

 

True Temperature

Linear

Linear + Quadratic

Linear + Cubic



  54 

source is oscillating at 1 Hz and 80 Hz, respectively. The matching is significantly 

improved over the 10 mode thermal model results of Figs 12 and 13. In regards to 

this assessment, it should be noted that the results of Figs 12 and 13 were obtained 

with a projection of the temperature field onto the thermal ROM basis, while Figs 

24 and 25 represent the full thermal ROM, i.e. the generalized coordinates were 

found from a time marching of Eq. (19), without structural deformations, until 

steady state was reached. 

 

Figure 24. Time history of temperature at the beam middle and at a 

node near the furthest left excursion of the flux, Ω = 2π (1Hz). 

Nastran, and 18 mode thermal ROM computations. 
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Figure 25. Time history of temperature at the beam middle and at a 

node near the furthest left excursion of the flux, Ω = 160π (80Hz). 

Nastran, and 18 mode thermal ROM computations. 
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 Unfortunately, this Nastran computation is not possible within the 

structural model adopted as the CBEAM element only supports a linear 

temperature distribution. Thus, the best possible validation of the structural ROM 

with Nastran is on a common linear through thickness temperature distribution. 

Figure 16 falls slightly short of providing this comparison as the best fit linear 

temperature does not exactly match the one used in the 10 mode thermal ROM. 

 To perform the desired comparison, the Nastran computations were 

repeated once more with the linear temperature distribution predicted from the 

thermal ROM. Then, shown in Figs 26-27 are comparisons of the transverse and 

inplane deflections at beam middle and at a node near the furthest left excursion 

of the heat flux obtained at oscillation frequencies of 40Hz and 80Hz. The results 

have improved significantly from Figs 15-16, although the most significant 

differences still occur near resonant frequencies. 
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Figure 26. Time history of (a) transverse and (b) inplane 

deflections at the beam middle and at a node near the furthest left 

excursion of the flux, Ω = 80π (40Hz). Nastran and ROM 

computations. 
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Figure 27. Time history of (a) transverse and (b) inplane 

deflections at the beam middle and at a node near the furthest left 

excursion of the flux, Ω = 160π(80Hz). Nastran and ROM 

computations. 

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

Position in Cycle (Radians)

In
-p

la
n
e
 D

is
p
la

c
e
m

e
n
t 

(B
e
a
m

 T
h
ic

k
n
e
s
s
e
s
)

 

 

Nastran, mid

Nastran, left

ROM, mid

ROM, left

(b) 



  59 

CHAPTER 5 –TEMPERATURE DEPENDENT STRUCTURAL PROPERTIES 

ROM VALIDATION 

 The final focus of this thesis was on performing a first validation of the 

reduced order modeling with temperature dependent material properties. The 

beam of properties specified by Table 1 at zero temperature was considered again 

for reduced order modeling and validation with full Nastran computations. In 

keeping with the first validation of the methodology, the temperature on the beam 

was assumed to be constant throughout. For such a situation, only 1 thermal mode 

is necessary and the structural ROM of [16] with 4 transverse modes, 4 dual 

modes is appropriate. 

 To validate the model, it was first desired (case 1) that the coefficients of 

thermal expansion  alone change with temperature, with   held constant (as 

well as the Poisson’s ratio  since this parameter appears to vary only very little 

with temperature). In the second case, the Young’s modulus E was allowed to 

vary with temperature while  was held constant, and, finally (case 3), both 

properties were set to change with temperature. Since the purpose of this 

investigation was to validate the reduced order modeling approach, the values of 

the linear coefficients  )1(  and )1(E of 

TEEE )1()0(                           (69) 

and 

T)1()0(                                                           (70)  
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were selected to observe changes in the structural response, not to model a 

particular material, see Table 2 for specific properties for each of the 3 cases. 

Table 2. Temperature Dependent Properties Specified 

Case )0(E  (Pa) 
)1(E  (Pa/°C) 

)0(  (1/°C) 
)1(  (1/°C)

2 

1 7.3  10
10 

0.0 2.5  10
-5

 5.0  10
-7

 

2 7.3  10
10

 3.0  10
8 

2.5  10
-5

 0.0 

3 7.3  10
10 

3.0  10
8
 2.5  10

-5
 5.0  10

-7
 

 

In all cases a uniform temperature of 10 degrees Celsius was applied to the beam. 

Figure 28 shows the transverse and inplane response for the first case and for both 

temperature dependent (labeled “temp”) and temperature independent models. 

The reduced order model matches very well the Nastran predictions. 
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Figure 28. Displacements, (a) transverse, (b) inplane, for Case 1 

induced by the uniform temperature field. ROM and Nastran 

results for both temperature dependent and independent properties. 

The corresponding results for the second case, in which the Young’s modulus 
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thermal moment terms are all proportional to the Young’s modulus at 10C which 
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independent of the Young’s modulus. 
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comparison of responses predicted by the ROM with those obtained from Nastran 

is again excellent. 

 The excellent matching between Nastran and ROM results obtained in all 

3 cases provides the desired first validation of the reduced order modeling 

procedure with temperature dependent properties. 
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Figure 29. Displacements, (a) transverse, (b) inplane, for Case 2 

induced by the uniform temperature field. ROM and Nastran 

results for both temperature dependent and independent properties. 
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Figure 30. Displacements, (a) transverse, (b) inplane, for Case 3 

induced by the uniform temperature field. ROM and Nastran 

results for both temperature dependent and independent properties. 
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CHAPTER 6 – SUMMARY 

The focus of this investigation was on the continued validation, 

application, and extension of thermal-structural reduced order modeling for 

nonlinear geometric structures subjected to thermal and mechanical loads. 

First investigated was the unsteady temperature distribution and structural 

response induced by an oscillating flux on the top surface of a flat panel as a 

simple model of the thermal effects induced by an oscillating shock. This problem 

represents also an excellent platform for the continued validation of a combined 

structural-thermal reduced order modeling technique recently proposed. 

In this regard, it was observed that a 10-mode thermal and 17-mode 

structural model led to structural responses and temperature distributions on the 

panel surface that match well to very well those obtained with full Nastran 

computations.  Nevertheless, the through thickness temperature distribution was 

found to exhibit a definite nonlinearity not captured by the 10-mode thermal 

ROM basis but well represented by an extended, 18-mode basis including not 

only linear but also cubic dependence of the through thickness coordinate z. 

A parametric study of the effects of the oscillation frequency of the heat 

flux has demonstrated the potential existence of multiple resonances with only 

one notably observed in the present investigation. These resonances arise first 

from the near coincidence of a linear natural frequency with a harmonic of the 

oscillating flux frequency. However, it was recognized that the temperature 

variations also affect the linear stiffness properties of the structural reduced order 

model leading to possible Mathieu-like parametric resonances which were not 
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found to be significant in the example considered. An increase by 50% of the 

peak structural response was observed at the sharp resonance occurring at half of 

the first natural frequency of the panel. 

Finally, the combined effects of an oscillating or steady flux and a strong 

acoustic excitation were also investigated. In this context, it was observed that the 

differences in the power spectra of the displacements in the steady and oscillating 

flux cases were primarily in the low frequency regime typical of the oscillating 

flux and were most significant when analyzing the inplane motions as compared 

to their transverse counterparts. 

The last part of the present investigation focused on the development and 

first validation of an extended structural reduced order modeling approach in 

which the linear variations with local temperature of the structural properties, i.e. 

elasticity tensor and coefficient of thermal expansion, are accounted for. The form 

of the corresponding combined thermal-structural ROM was first determined. 

Next, an indirect strategy was developed for the evaluation of the unknown 

coefficients of the model from nonlinear static finite element computations. 

Finally, a simple validation example was treated for which an excellent matching 

of reduced order model and full Nastran predictions was observed. 
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