
Dynamics of Vortices in Numerically Simulated Turbulent Channel Flow

by

Praveen Kumar Parthasarathy

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2011 by the
Graduate Supervisory Committee:

Ronald Adrian, Chair

Huei-Ping Huang
Marcus Herrmann

ARIZONA STATE UNIVERSITY

August 2011

 i

ABSTRACT

The evolution of single hairpin vortices and multiple interacting hairpin vortices

are studied in direct numerical simulations of channel flow at Reτ=395. The

purpose of this study is to observe the effects of increased Reynolds number and

varying initial conditions on the growth of hairpins and the conditions under

which single hairpins autogenerate hairpin packets. The hairpin vortices are

believed to provide a unified picture of wall turbulence and play an important role

in the production of Reynolds shear stress which is directly related to turbulent

drag. The structures of the initial three-dimensional vortices are extracted from

the two-point spatial correlation of the fully turbulent direct numerical simulation

of the velocity field by linear stochastic estimation and embedded in a mean flow

having the profile of the fully turbulent flow. The Reynolds number of the

present simulation is more than twice that of the Reτ=180 flow from earlier

literature and the conditional events used to define the stochastically estimated

single vortex initial conditions include a number of new types of events such as

quasi-streamwise vorticity and Q4 events. The effects of parameters like strength,

asymmetry and position are evaluated and compared with existing results in the

literature. This study then attempts to answer questions concerning how vortex

mergers produce larger scale structures, a process that may contribute to the

growth of length scale with increasing distance from the wall in turbulent wall

flows. Multiple vortex interactions are studied in detail.

 ii

DEDICATION

To my mother and father.

 iii

ACKNOWLEDGMENTS

It gives me great pleasure to remember and thank all the people who have guided

me towards the successful completion of this scientific endeavor. Firstly, I would

like to sincerely thank Prof. Ronald J. Adrian for his guidance and support during

this work. Our discussions have inspired many a late night’s worth of work. I

also wish to thank Dr Marcus Hermann for his thoughts and ideas on this work.

Valuable inputs from Dr B.J. Balakumar and Dr Kyoungyoun Kim are

appreciated. The influence of Dr B.S.V Prasad Patnaik, Mr Ramachandran K.S,

Mr Sundaram, Mrs Shobha Raman and Mr Kothandaraman M. is gratefully

acknowledged with deep respect.

I would like to thank my parents Geetha and Parthasarathy and my brother

Prashanth for their love, affection and wisdom. Talking to them seemed to solve

many a problem. This work would not have been possible without them. I owe the

deepest gratitude to my cousins Jana, Jayanthy and Karthik. The many

conversations we have had were always a source of happiness and inspiration.

I had the pleasure of working with Jon Baltzer, Isaac Ziskin and Stefano

Discetti during my stay at our laboratory. Their hardwork and knowledge served

as a great source of motivation. I wish to thank Durella Donell for her timely help

with the administrative work.

I also would like to thank Dr Gil Speyer, Dr Scott Menor and the entire

high performance computing center for their assistance with running my

simulations in the university’s super computer.

 iv

Last but not the least, I wish to thank my friends who have always stood

by me during the highs and lows I have had. They have been a great source of

strength and encouragement throughout and our conversations had served as

starting points of many a train of thought.

 v

Table of Contents

 Page

LIST OF TABLES... vii

LIST OF FIGURES..viii

LIST OF SYMBOLS / NOMENCLATURE .. xi

Chapter 1... 1

INTRODUCTION .. 1

1.1.Channel flow model.. 3

1.1.1 Geometry.. 3

1.1.2 Governing Equations ... 4

1.2 Numerical Methods... 5

1.2.1 Temporal and Spatial Discretization.. 5

1.2.2. Boundary conditions ... 6

1.2.3. Solution procedure .. 7

1.2.4. Grid Independence study .. 7

Chapter 2... 11

METHODOLOGY ... 11

2.1 Turbulent mean properties .. 11

2.2 Correlation .. 16

2.3 Joint Probability Distribution functions.. 18

 vi

2.4 Linear Stochastic estimation ... 21

2.5 Vortex visualization .. 22

Chapter 3... 27

SINGLE VORTEX EVOLUTION... 27

3.1 Effect of strength... 28

3.2 Effect of y-normal position... 32

3.3 Effect of asymmetry.. 34

3.4 Evolution into a fully turbulent flow .. 38

Chapter 4... 42

MULTIPLE VORTEX INTERACTION.. 42

4.1 Streamwise interaction between 2 Q2 events ... 42

4.1.1 Interaction between 2 Q2 events having the same strength......................... 42

4.1.2 Interaction between 2 Q2 events having the different strengths:................. 43

4.2 Interaction between 3 Q2 events... 45

4.3 Spanwise growth of vortices... 47

4.4 Interaction between Q2 and Q4 events ... 49

4.5 Interaction between vortices at different y+ locations.................................... 50

4.6 Interaction between vortices in a staggered arrangement 52

Chapter 5... 54

 vii

CONCLUSIONS AND RECOMMENDATIONS ... 54

REFERENCES ... 57

APPENDIX A... 60

APPENDIX B ... 63

APPENDIX C ... 75

APPENDIX D... 97

APPENDIX E ... 103

 viii

LIST OF TABLES

Table Page

1.1 The threshold λci for the 3 different grids at various t+. λci is the complex eigen

value of the velocity gradient tensor and t+ is the non-dimensional time

computed from equation 1.2. .. 8

2.1 Quadrant IV events which maximize the product of Reynolds stress and

Probability of occurrence [Moin, Adrian and Kim (1987)]. um and vm denote

the maximum values of fluctuating u and v velocities; σu and σv denote the

variances in the u and v direction. .. 18

2.2 Quadrant II events which maximize the product of Reynolds stress and

Probability of occurrence [Moin, Adrian and Kim (1987)].......................... 18

2.3 Initial conditions used in this study for single vortex evolution. All

 computations were done at Reτ=395 for 128 x 129 x 128 grid…………… 23

 2.4 Initial conditions used in this study for vortex interactions. All computations

 were done at Reτ=395 for 128 x 129 x 128 grid……………………… … 25

3.1 The time (t+) taken for the vortex to disappear when a sub-critical strength is

used for computation. These computations were done at y+=46.6. x+ denotes

the non-dimensionalized streamwise spacing... 31

 ix

LIST OF FIGURES

Figure Page

1.1 The channel geometry. The x, y and z coordinates show the streamwise, wall-

normal and spanwise directions. The streamwise and spanwise directions are

respectively 2πh and πh long which is 2480.6 and 1240.9 in wall units. The 2

infinite parallel walls are spaced 2h apart (790 wall units). 4

1.2 The plot between the threshold λci and t+ for the 3 different grids. λci and t+ are

defined in equations 1.2 and 1.3 respectively and denote the complex eigen

value of the velocity gradient tensor and the non-dimensional time. 8

1.3 The evolved hairpin vortex structure at t+ = 250 for (a) 96 x 97 x 96 grid; (b)

128 x 129 x 128 grid; and (c) 256 x 257 x 256 grid. (b) and (c) are

qualitatively similar from the above figure. The initial condition is shown in

equation 1.4... 9

1.4 Plots of streamwise correlation vs the streamwise spacing. The correlation is

defined in equation 1.5. Ruu is the streamwise correlation at (Δx+,

y+=37.9,y’+=37.9, Δz+=0) and is non-dimensionalized with the correlation at

zero streamwise spacing (Δx+=0). These agree closely with the results of

Moser, Kim and Mansour’s (1999) computation on a finer grid

(256x257x256).. 10

2.1 The mean velocity profile for the channel flow plotted with the law of the wall.

The superscript + indicates a non-dimensional quantity scaled by the wall

 x

 Page

 variables; y+ = yu*/ ν is the viscous height of the channel where ν is the

kinematic viscosity and u* = (τw / ρ)1/2 is the wall shear velocity................ 11

2.2 Vertical profiles of the resolvable mean Reynolds shear stress
__

uv . Reτ=395.

The grid adopted is 128 x 129 x 128. The stress was validated with the

results of Moser, Kim and Mansour (1999) as shown in figure 2.4 a. 12

2.3 Plots of the root mean square components of velocity against the wall-normal

distance normalized with Reτ=395. Validation with the Reτ=395 result of

Moser, Kim and Mansour (1999) is shown in figure 2.4 b........................... 13

2.4 Validation of computations with the Reτ=395 results of Moser, Kim and

Mansour (1999) (a) The magnitude of reynolds stress obtained from the

Reynolds stress tensor as a function of the non-dimensionalized wall-normal

distance (y+) upto y+=395. (b) ___: urms, ___ : vrms, ___ : wrms. ° represents

Moser et al.’s results for a finer (256 x 257 x 256) grid. 14

2.5 Plots of (a) Skewness and (b) Flatness for the channel flow data. u’, v’ and w’

represent the velocity components in the streamwise, normal and spanwise

directions respectively. S(w’) and F(w’) are predominantly 0 and 3

respectively. .. 16

2.6 Plots of velocity correlations as a function of the normalized (a) streamwise

distance; Ruu, Rvv , Rww are computed at (Δx+, y+=11.8, y’+=11.8, Δz+=0) and

is non-dimensionalized by the correlation values at and (b) spanwise

distance. .. 17

 xi

 Page

2.7 Joint probability distributions at various y+ values (a) y+=11.8; (b) y+ = 46.6;

(c) y+= 66.6; (d) y+= 109; (e) y+ = 217; (f) y+ = 395..................................... 19

2.8 Plots of (a) y+ vs 4th quadrant angles (in degrees) and (b) y+ vs 2nd quadrant

angles (in degrees).The plots are validated with the results of Moin, Adrian

and Kim (1987). The 4th and 2nd quadrant angles were obtained from table

2.1 and 2.2 respectively. These angles make the maximum contribution to

the Reynolds stress tensor.The present computations were done at Reτ=395

and Moin et al’s results were at Reτ=180 ... 20

2.9 The angle of the Q2 vector as a function of distance from the wall obtained

from Kim, Moin and Moser (1987). Inset: Method of defining the Q2 event

(um,vm,0).. 21

2.10 List of figures showing initial vortex shapes. Mathematical representation

shown in table 2.3. .. 24

2.11 List of figures showing initial vortex shapes. Mathematical representation

shown in table 2.4. .. 26

3.1 Generation of secondary hairpin vortices depends on the strength of initial

vortical structures and location of the event vector used to extract the initial

vortical structure. (•) Case with new hairpins. (°) Case without new hairpins

[Kim, Sung and Adrian (2008)]. ... 29

3.2 Vortex evolution at t+=150 for different strengths (a)α=2; (b) α=2.5; (c) α=3;

(d) α=3.5. The initial velocity field specified was u=α(um,vm,0) where um and

 xii

 Page

 vm were obtained from the joint probability density function and were taken

to be (-1.6,1.4,0).. 30

3.3 A comparison between the lengths of the eddy (x+) at various t+ values........ 31

3.4 Evolution of the hairpin vortex at various values of y+; (a) y+ = 11.8; (b) y+ =

46.6; (c) y+ = 66.6; (d) y+ = 217; the initial vortex was located at the center

of the xz plane... 34

3.5 Effect of asymmetry on vortex evolution (a) β = 0.2; (b) β=0.4; (c) β=0.5; (d)

β=0.6; (e) β=0.8; α = 2.5 was used for all the computations. The initial field

specified was u=(-4,3.5,0) for all the cases considered. 36

3.6 Growth of a single vortex into a fully turbulent field. α = 2.5 was used for all

the computation. The initial field specified was u=(-4,3.5,0). (a) The

evolution at t+=400; (b) The evolution at t+=750; (c) The evolution at

t+=1000; (d) The evolution at t+=1250; (e) The evolution at t+=1500………40

3.7 Fully turbulent channel flow at t+=2000……………………………………..41

4.1 Evolution of 2 Q2 events initially separated by x+ = 100 units. α=2.5; β=0;

The initial condition was considered at the center of the xz plane and at

y+=46.6. (a) The initial vortex obtained from linear stochastic estimation. A

and B are Q2 events having the initial velocity vectors (-4,3.5,0) based on the

joint probability density function (b) The evolution structure at t+=150 (c)

The evolution structure at t+= 375. ... 43

4.2 The effect of varying the strength of the vortex. Strength is denoted by α

which was defined earlier in the study (chapter 3.1) The vortex A is stronger

 xiii

than vortex B. (a) αA=2.5; αB=2; β=0; Hence, the 1st event vector (vortex A)

is.. 44

4.3 The vortex B is stronger than vortex A. (a) The initial vortex at t+=0, αA=2;

αB=2.5; β=0; Hence, event vector for vortex A is (-3.2,2.8,0) and the event

vector for vortex B is (-4,3.5,0) (b) Evolution after t+= 150......................... 44

4.4 Evolution of 3 Q2 events initially separated by x+ = 100 units. α=2.5; β=0;

The initial condition was considered at the center of the xz plane and at

y+=46.6. (a) The initial vortex obtained from linear stochastic estimation (b)

The evolution structure at t+=150 (c) The evolution structure at t+= 375. 45

4.5 The effect of varying the strength of the vortices. (a) The initial vortex at t+=0.

αA=3; αB=2.5; αC=2, β=0; (b) Evolution after t+= 150 46

4.6 (a) The initial vortex at t+=0. αA=2; αB=2.5; αC=3, β=0; (b) Evolution after

t+= 150... 47

4.7 The vortex structure at t+=750 for a single Q2 event evolution at

(x+=0,y+=46.6, z+=0)... 47

4.8 Evolution of 2 spanwise vortices separated by z+=100 at (a) t+=25; t+= 225;

(b) t+=350; t+=500. Both vortices have strength α=2.5 and no inclination to

the z axis (β=0) ... 48

4.9 Evolution of a Q2 event and a Q4 event together. The vortices are initially

separated by x+ = 100 units. α=2.5; β=0; The initial condition was

considered at the center of the xz plane and at y+=46.6. (a) Q4-Q2

combination where A(i) represents the Q4 vortex (4,-3.5,0) at (x+=0,y+=46.6,

 xiv

z+=0) and A(ii) represents the Q2 vortex (-4,3.5,0) at (x+=100,y+=46.6,

z+=0); (b) Q2-Q4 combination where A(i) represents the Q2 vortex and A(ii)

represents the Q4 vortex. B represents the structure at t+=250 and C is the

structure at t+=500... 50

4.10 (a) 2 vortices separated by 100 x+ units at t+=0. Vortex A is at y+=46.6 and

vortex B is at y+=11.8; (b) the vortex structure at t+=50; (c) The vortex

structure at t+=50 when the vortex B is absent; .. 51

4.11 (a) Evolution of the single vortex at y+=46.6 and (b) the evolution of the dual

vortices at t+ = 400. The similarity in structure leads us to believe that vortex

B doesn’t have a major role to play in the evolution. 51

4.12 Evolution of 5 Q2 events placed in a staggered arrangement. The schematic

diagram of the arrangement is shown in figure 4.13.α=2.5; β=0; All the

initial vortices are at y+=46.6. (a) The evolution structure at t+=25 (b) The

evolution structure at t+=175 (c) The evolution structure at t+= 375 (d) The

evolution structure at t+=500………………………………………………..53

4.13 A schematic arrangement of staggered vortices in channel flow…………..54

 xv

LIST OF SYMBOLS

Symbol

Aik linear coefficients for stochastic estimation

h half-channel height

i unit imaginary number

j component index

k component index

kx streamwise wave number

ky wall-normal spectral mode number

kz spanwise wave number

l component index

Lx length of the computational box in the streamwise direction

Lz length of the computational box in the streamwise direction

p fluctuating pressure

rx distance between x and x’

Rjl two-point, second order spatial correlation tensor

Reτ Reynolds number based on wall friction velocity and half-channel

 height time

u fluctuating velocity component in the streamwise direction

U mean streamwise velocity

x streamwise position

y wall-normal position

 xvi

z spanwise position

Greek Symbols

γII the angle between the event vector and the negative streamwise

axis for quadrant II events

γIV the angle between the event vector and the negative streamwise

 axis for quadrant IV events

υ kinematic viscosity

ρ density

τw shear stress evaluated at the wall

Superscripts

+ denotes that the quantity is non-dimensionalized with viscous

 scales fluctuating quantity

Other Notation

<f> denotes ensemble average of the quantity f

 1

Chapter 1

INTRODUCTION

One of the most fundamental properties of wall turbulence is that the

length scale, defined in various ways increases with distance from the wall.

Starting with the mean spanwise spacing of low speed streaks at the wall, the

length scale grows slightly through the buffer layer and then grows linearly

throughout the logarithmic layer. This study attempts to answer the question on

whether the vortex mergers would produce self similar vortices or a new class of

structures. Channel flow was chosen since both experimental and theoretical

investigations of complex turbulence interactions near the wall can be carried out.

Various studies by Bandhopadhyay (1980) and Smith (1984) ascertain the

presence of vortex packets in the turbulent boundary layer. In this study, the

vortex packet is shown to evolve out of single and multiple hairpin vortices

generated through linear stochastic estimation. Hydrogen bubble and dye

visualization by Haidari and Smith (1994) and inviscid models by Smith et al.

(1991) attempted to address the natural formation of the vortex packets more

closely. Although processes like vortex stretching and tilting were described by

the inviscid models, a complete picture on vortex breakup and reconnection were

not considered. Zhou, Adrian and Balachandar (1996) and Zhou, Adrian,

Balachandar and Kendall (1999) performed direct numerical simulations in

channel flow at Reτ=180, and found that a single hairpin vortex is capable of

creating successive upstream hairpins, providing that the strength of the first

hairpin exceeds a critical value. This process, called ‘autogeneration’ leads to the

 2

formation of a packet of hairpins travelling together, with the first hairpin being

tallest and the last hairpin being shortest. The first hairpin generates a secondary

hairpin, the secondary generates a tertiary, and so on for succeeding generations.

If the initial hairpin is symmetric about a wall-normal plane through its middle,

the resulting packet is also symmetric. But, if there is asymmetry, the hairpins

assume the shape of a cane, and the packet structure tends to alternate from right-

handed to left-handed canes. If the initial hairpin contains noise, the

autogeneration leads to chaotic packets [Adrian (2007)]. Kim and Adrian (1999)

proposed that the organization of hairpin vortices into packets and the interactions

between these packets are characteristic features of wall turbulence that explain

many observations like the large amount of streamwise kinetic energy residing in

very long streamwise wavelengths. The formation of new streamwise vortices and

the characteristic angles of inclined hairpins were further explained by Adrian,

Meinhart and Tomkins (2000).

Hairpin vortex packets play an important role in the production of the

Reynolds shear stress, which is directly related to the turbulent drag.

Ganapathisubramani, Longmire and Marusic (2003) showed that about 25% of

the total production of Reynolds shear stress in the log layer of turbulent

boundary layers is attributed to vortex packets. In a hairpin packet, the total

turbulent Reynolds stress can be thought of as arising from the incoherent

component and the coherent component. The incoherent component is the sum of

the momentum transfers by each individual vortex and the coherent component is

the sum of the momentum transfers produced by vortex interactions. In addition

 3

to the experimental observation of hairpin packets in instantaneous flow fields

using particle image velocimetry (PIV), statistical evidence of hairpin packets has

been reported by Christensen and Adrian (2001) and Hambleton, Hutchins and

Marusic (2006). Zhou, Adrian and Balachandar (1996) used the direct Numerical

simulation of the Navier-stokes equation to study the evolution of a hairpin vortex

in a unidirectional mean flow obtained from the low-Reynolds number turbulent

channel flow of Kim, Moin and Moser (1987). Their approach is adopted in the

present study. The initial vortex structure without the presence of the other eddies

(i.e. in a clean turbulent mean flow environment) has made it possible to visualize

clearly the auto generation of new hairpin vortices.

1.1.Channel flow model

1.1.1 Geometry

The channel is composed of two infinite parallel walls, spaced a distance 2h

apart. The streamwise and spanwise directions are 2πh and πh respectively

(2480.6 and 1240.9 in wall units). The computation is carried out with 2113536

grid points (128 x 129 x 128, in x, y, z) for a Reynolds number of 395 based on

the wall shear velocity u*. The model assumes that the flow is periodic in the

plane of the walls. Thus, a finite sized section can be used to model the infinite

channel. The section used in this study is shown in Figure 1.1.

 4

Figure 1.1 The channel geometry. The x, y and z coordinates show the streamwise,
wall-normal and spanwise directions. The streamwise and spanwise directions are
respectively 2πh and πh long which is 2480.6 and 1240.9 in wall units. The 2
infinite parallel walls are spaced 2h apart (790 wall units).

With this computational domain, the grid spacing’s in the streamwise and

spanwise directions are respectively ∆x+ ≈ 19.37 and ∆z+ ≈ 9.69 in wall units.

Non-uniform meshes are used in the normal direction with yj = cosθj , for θj = (j-

1) π / (N - l) , j = 1,2, ..., N . Here N is the number of grid points in the y-

direction.

1.1.2 Governing Equations

The initial turbulent flow field is evolved in time by solving the Navier

Stokes equation along with the incompressibility condition. The equations used

are the same as used in the thesis by Kendall (1992). Written in non-dimensional

form, the equations can be represented as

0u v w

x y z

+ + +

∂ ∂ ∂
+ + =

∂ ∂ ∂

∼ ∼ ∼
∼ ∼ ∼ (1.1a)

 5

 (1.1b)

 (1.1c)

In the governing equations, the channel half-height h is used as the length

scale. Wall friction velocity u* = (υ(∂u/∂y)y=+h)1/2 is used as the velocity scale.

The characteristic pressure and time scales are ρu*2 and h/ u* respectively. This

scaling results in the non-dimensional parameter of Reynolds number based on

friction velocity, Reτ = u*h/υ.

1.2 Numerical Methods

1.2.1 Temporal and Spatial Discretization

Fourier expansions are used as part of the spectral collocation

methodology for the periodic directions and a Chebyshev expansion is used for

the non-periodic wall normal direction with Gauss-Lobatto points for spatial

discretization. A time-splitting technique was employed for the decoupling of the

pressure computations in the time advancement of the flow field. At each time

*

*

*

uu
u

vv
u
ww
u

+

+

+

=

=

=

∼∼

2 2 2

2 2 2

2 2 2

2 2 2

1
Re

1
Re

u u u v u w u p u u u

t x y z x x y z

v u v v v w v p v v v

t x y z y x y z

w u w v

t x

τ

τ

+ + + + + + + + + + +

+ + + ++ + + + + + +

+ ++ +

⎧ ⎫
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + = − + + +⎨ ⎬

⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭
⎧ ⎫

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪+ + + = − + + +⎨ ⎬
⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

∂ ∂ ∂
+ +

∂ ∂

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼ ∼ ∼

∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
∼ ∼

∼ ∼
2 2 2

2 2 2
1

Re
w w w p w w w

y z z x y zτ

+ ++ + + + +⎧ ⎫
∂ ∂ ∂ ∂ ∂⎪ ⎪+ = − + + +⎨ ⎬

⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭

∼ ∼
∼ ∼ ∼ ∼ ∼ ∼

 6

step, first an intermediate velocity field is computed with only the advection and

diffusion effects taken into account. This intermediate velocity field is not

divergence free. In the second step, an appropriate pressure is computed by

solving a Poisson equation for pressure, based on which a pressure correction is

applied to the intermediate velocity field to make it divergence free. Here, we

employ a third order Runge Kutta scheme for the advection term and an implicit

Crank Nicholson scheme for the diffusion term. The pressure effect is considered

to be fully implicit in order to guarantee zero divergence at the end of the full

timestep. The details of the numerical procedure used in this channel-flow

simulation are elaborated in Kendall (1992).

1.2.2. Boundary conditions

The periodic conditions in the streamwise and spanwise directions are

automatically satisfied by the use of fourier expansions. The no slip and the

incompressibility conditions cannot be satisfied simultaneously because the time

splitting scheme separates the momentum equation into two parts. In order to

minimize the slip, a proper choice of the intermediate boundary condition must be

made. The boundary condition for pressure is specified during the pressure-

poisson step. It can be shown that a self-consistent, pure Neumann condition will

allow slip velocity to be minimized.

 7

1.2.3. Solution procedure

The Helmholtz equations for the three components of velocity are solved

for each combination of horizontal Wave numbers to solve for the entire flow

field. The equations are listed in Kendall’s thesis (1992).

1.2.4. Grid Independence study

Grid refinement study was done for three different grids: 96x97x96, 128x129x128

(present grid) and 256x257x256. From figure 1.2, 128x129x128 grid is seen to be

optimum for this computation since there is not much difference in λci with the

256x257x256 grid. λci , referred to as the swirling strength is the complex eigen

value of the velocity gradient tensor (D = ∇u) and it is a good measure of the

vortex structure since it is frame independent and discriminates against shear

layers which have vorticity but no swirling motion [Chong, Perry and Cantwell

(1990), Chakraborty, Balachandar and Adrian (2006)]. t+ is the non-dimensional

time and is computed in equation 1.2. The change in time, dt is taken to be 1.25e-

04 and the number of iterations is typically 10,000 although the value was

increased for some computations to study the physics at a later time.

t+ = dt x Number of iterations
 (h/ u*) (1.2)

The swirling strength is obtained from the characteristic equation of the velocity

gradient tensor which is given by

λ3+Pλ2+Qλ+R=0 (1.3)

Where, P = -div u; Q= ½[P2-tr(DD)]; and R=-det(D)

 8

Table 1.1 The threshold λci for the 3 different grids at various t+. λci is the
complex eigen value of the velocity gradient tensor and t+ is the non-dimensional
time computed from equation 1.2.

t+

Maximum λci
(Grid: 96 x 97 x 96)

Maximum λci
(Grid: 128 x 129 x

128)

Maximum λci
(Grid: 256 x 257 x

256)
25 16.1136 60.6377 54.937
50 16.3566 65.3198 61.9359
100 18.5097 75.223 80.9264
150 21.9789 53.2664 55.0533
200 28.3971 54.1164 51.6953
250 26.3907 50.3841 50.4075
300 25.4552 51.8427 47.8462
350 25.7557 49.6056 48.9717
400 25.9998 43.6902 47.2204
450 25.747 39.759 44.3926
500 25.3215 33.3265 39.6914

0
10
20
30
40
50
60
70
80
90

0 100 200 300 400 500 600
t+

Th
re

sh
ol

d
λc

i

Grid: 96x97x96
Grid: 128x129x128
Grid:256x257x256

Figure 1.2 The plot between the threshold λci and t+ for the 3 different grids. λci
and t+ are defined in equations 1.2 and 1.3 respectively and denote the complex
eigen value of the velocity gradient tensor and the non-dimensional time.

The initial condition for figure 1.2 and 1.3 is defined as

u(x,t=0) = <u(x)|u’(ym
+=46.6) = 3(um,vm,0)> (1.4)

 9

(a)

(b)

(c)

Figure 1.3 The evolved hairpin vortex structure at t+ = 250 for (a) 96 x 97 x 96
grid; (b) 128 x 129 x 128 grid; and (c) 256 x 257 x 256 grid. (b) and (c) are
qualitatively similar from the above figure. The initial condition is shown in
equation 1.4.

 10

The 1D streamwise correlations plotted as a function of the non-dimensionalized

streamwise spacing (Δx+) further shows the adequacy of grid (figure 1.5).

Figure 1.4 Plots of streamwise correlation vs the streamwise spacing. The
correlation is defined in equation 1.5. Ruu is the streamwise correlation at
(Δx+, y+=37.9,y’+=37.9, Δz+=0) and is non-dimensionalized with the correlation at
zero streamwise spacing (Δx+=0). These agree closely with the results of Moser,
Kim and Mansour’s (1999) computation on a finer grid (256x257x256).

A detailed discussion of the properties of the initial velocity fields and the initial

structure extraction using linear stochastic estimation is given in chapter 2. In

chapter 3, the evolution of a single hairpin vortex in the channel flow is discussed

and the results are compared with literature. Multiple vortex interactions are

studied in chapter 4. Finally, in chapter 5, the conclusions obtained from this

research program are summarized and some recommendations for future work in

the area of conditional vortex dynamics are given.

 11

Chapter 2

METHODOLOGY

2.1 Turbulent mean properties

Figure 2.1 The mean velocity profile for the channel flow plotted with the law of
the wall. The superscript + indicates a non-dimensional quantity scaled by the
wall variables; y+ = yu*/ ν is the viscous height of the channel where ν is the
kinematic viscosity and u* = (τw / ρ)1/2 is the wall shear velocity.

Starting from the initial velocity field, the governing equations were integrated

forward in time until the numerical solutions reached statistically steady states.

The calculations were considered to be complete when the time-averaged

turbulence quantities became stationary. The profile of the mean velocity non-

dimensionalized by the wall-shear velocity is shown in figure 2.1. The collapse of

 12

the mean-velocity profiles corresponding to the upper and lower half of the

channel indicates the adequacy of the sample taken here for the average.

y+

R
ey

no
ld

ss
tre

ss

0 100 200 300 400 500 600 700
-1

-0.5

0

0.5

1

Figure 2.2 Vertical profiles of the resolvable mean Reynolds shear stress
__

uv .
Reτ=395. The grid adopted is 128 x 129 x 128. The stress was validated with the
results of Moser, Kim and Mansour (1999) as shown in figure 2.4 a.

The profile in figure 2.2 indicate that the average Reynolds shear-stress profile

has attained the equilibrium shape that balances the downstream mean pressure

gradient in the regions away from the walls. In the vicinity of the walls, the

viscous stresses are significant, and they, together with the total Reynolds stress,

balance the mean pressure gradient. The symmetry of the profile about the

channel centre line indicates that the total averaging time and statistical sample

are adequate. The other characteristic properties of the flow, like the root mean

square velocity were also plotted.

 13

Figure 2.3 Plots of the root mean square components of velocity against the wall-
normal distance normalized with Reτ=395. Validation with the Reτ=395 result of
Moser, Kim and Mansour (1999) is shown in figure 2.4 b

(a)

y/delta

u rm
s,

v rm
s,w

rm
s

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

urms
vrms
wrms

0

0.25

0.5

0.75

1

0 100 200 300 400

Reynolds stress
from computations

Reynolds stress
from Moser et al.
(1999)

__

uv

y+

 14

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

y+

ur
m

s,
v r

m
s,

w
rm

s

 (b)
Figure 2.4 Validation of computations with the Reτ=395 results of Moser, Kim
and Mansour (1999) (a) The magnitude of Reynolds stress obtained from the
Reynolds stress tensor as a function of the non-dimensionalized wall-normal
distance (y+) upto y+=395. (b) ___: urms, ___ : vrms, ___ : wrms. ° represents Moser
et al.’s results for a finer (256 x 257 x 256) grid.

Once again, the symmetry of the calculated turbulence intensities about the centre

line of the channel indicates that the total averaging time was sufficient for an

adequate statistical sample. 2nd order statistics like skewness and flatness which

are important parameters in a turbulent flow [Davidson (2007)] are defined as

 (2.1a)

 (i=1,2,3; no summation)

 (2.1b)

The flatness factors of all the velocity components reach their maxima at the wall.

This indicates that in the vicinity of the wall, the turbulence is highly intermittent.

Throughout an appreciable portion of the channel cross-section, F(w’) and S(w’)

__
4

2__
2

i

i

uF
u

=

__
3

3/ 2__
2

i

i

uS
u

=

 15

are approximately equal to three and zero respectively. These values correspond

to the flatness and skewness factors of a Gaussian distribution. Near the wall,

S(u’) is positive, whereas away from the wall it is negative. This indicates that

near the wall the large-amplitude u-fluctuations are primarily due to arrival of

high-speed fluid from regions away from the wall. On the other hand, away from

the wall the large-amplitude u-fluctuations are most probably associated with low-

speed fluid leaving the wall region. This is encouraging considering the

significant contribution of small-scale turbulence to these quantities and the

difficulties associated with their measurements.

 (a)

 16

 (b)
Figure 2.5 Plots of (a) Skewness and (b) Flatness for the channel flow data. u’, v’
and w’ represent the velocity components in the streamwise, normal and spanwise
directions respectively. S(w’) and F(w’) are predominantly 0 and 3 respectively.

2.2 Correlation

In order to perform a linear estimate of the velocity field given a set of velocity

conditions, the full two-point, second-order spatial correlation tensor, equation

(2.2) is needed. This tensor was calculated using equation 2.2.

Rjl(x,x’) = <uj(x) ul(x’)> (2.2)

 17

(a)

(b)
Figure 2.6 Plots of velocity correlations as a function of the normalized (a)
streamwise distance; (b) spanwise distance. Ruu, Rvv , Rww are computed at (Δx+,
y+=11.8, y’+=11.8, Δz+=0) and is non-dimensionalized by the correlation values at
Δx+=0.

These profiles show that, the longitudinal correlation in the streamwise direction

extends over much longer distances than do all other correlations. The slow decay

of Ruu with increasing x+ indicates that near the wall, the eddies are highly

 18

elongated in the streamwise direction. On the other hand, the profiles of figure 2.4

(b) shows that the spanwise extent of turbulence structures near the wall is much

smaller than for those away from the wall. It hence appears that, near the walls the

computed flow field consists of elongated streaky structures.

2.3 Joint Probability Distribution functions

The streamwise and wall normal velocity components of the event vector are

chosen based on their contribution to mean Reynolds shear stress. The events,

u(x,t=0), studied in this work are chosen such that the product of the simultaneous

Reynolds stress and the probability of occurrence of events are maximized[(Moin,

Adrian and Kim (1987)] Second (Q2) and fourth quadrant (Q4) events are studied.

Table 2.1 Quadrant IV events which maximize the product of Reynolds stress and
Probability of occurrence [Moin, Adrian and Kim (1987)]. um and vm denote the
maximum values of fluctuating u and v velocities; σu and σv denote the variances
in the u and v direction.

Q4 event
um/σu vm/σv umvm/σuσv Tan-1(umvm/σuσv) degrees y+
1.2 -0.8 -0.58 -33.67 11.8
1 -1 -0.78 -44.98 46.6

1.2 -1 -0.69 -39.78 66.6
1.2 -1.2 -0.78 -44.98 109
1 -1 -0.78 -44.98 217

0.8 -0.8 -0.78 -44.98 395

Table 2.2 Quadrant II events which maximize the product of Reynolds stress and
Probability of occurrence [Moin, Adrian and Kim (1987)]

Q2 event
um/σu vm/σv umvm/σuσv Tan-1(umvm/σuσv) degrees y+
-1.4 0.8 -0.51 -80.25 11.8
-1.6 1.4 -0.71 -91.63 46.6
-1.4 1.4 -0.78 -80.18 66.6
-1.4 1.2 -0.70 -80.18 109
-1.4 1.4 -0.78 -80.18 217
-1 1 -0.78 -57.27 395

 19

All the following plots are contour plots of <u’v’>*probability density function at

various values of y+.

 (a) (b)

 (d)
 (c)

 (e)
Figure 2.7 Joint probability distributions at various y+ values (a) y+=11.8; (b) y+ =
46.6; (c) y+= 66.6; (d) y+= 109; (e) y+ = 217; (f) y+ = 395

 20

0

50

100

150

200

250

300

350

400

450

-50 -40 -30 -20 -10 0
4th quadrant angle

y+

Computed arctan(Vm/Um)

Moin et al.(1987)

 (a)

0

50

100

150

200

250

300

350

400

450

-50 -40 -30 -20 -10 0
2nd quadrant angle

y+
,y

/h

Moser et. al (1987) vs y+

Computed arctan(Vm/Um) vs y+

Computed arctan(Vm/Um) vs y/h

 (b)
Figure 2.8 Plots of (a) y+ vs 4th quadrant angles (in degrees) and (b) y+ and y/h vs
2nd quadrant angles (in degrees).The plots are validated with the results of Moin,
Adrian and Kim (1987). The 4th and 2nd quadrant angles were obtained from table
2.1 and 2.2 respectively. These angles make the maximum contribution to the
Reynolds stress tensor. The present computations were done at Reτ=395 and Moin
et al’s results were at Reτ=180

 21

As is seen from figure 2.8, the profiles for Reτ=395 agree well with Reτ=180

[Moin, Adrian and Kim (1987). But there is deviation away from the wall.

(y+>100). The abrupt change in the flow angle which occurs in the buffer layer

indicates transition from streamwise oriented wall layer structures to hairpin

vortices characterizing the outer layer.

Figure 2.9 The angle of the Q2 vector as a function of distance from the wall
obtained from Kim, Moin and Moser (1987). Inset: Method of defining the Q2
event (um,vm,0)

2.4 Linear Stochastic estimation

Stochastic estimation is a simple procedure by which conditional averages are

approximated in terms of unconditional correlation functions (Moin, Adrian and

Kim). Linear stochastic estimation is accomplished by expressing the conditional

average as a linear function of its data and solving a set of linear algebraic

equations for the expansion coefficients. The initial condition consists of a

 22

conditional vortex or a set of conditional vortices superposed onto a turbulent

mean velocity profile. The conditional vortex is evaluated using Linear Stochastic

estimation. The estimation procedure is briefed in Zhou, Adrian, Balachandar and

Kendall (1999) and is described in detail in the appendix at the end of the current

study. The choice of a symmetric Q2 event vector results in a vortical structure

that resembles a near-wall quasi-streamwise vortex pair when the event is

specified close to the wall and resembles a hairpin vortex when the event is

specified sufficiently far away from the wall [Moin, Adrian and Kim (1987)]. The

linear estimate of the conditional average <u(x’,t)|u(x,t)> is calculated from

equation (2.3) where Ajk are the estimation coefficients. For each value of the

component j, the Ajk are determined by solving the 3x3 linear algebraic equations

shown in equation (2.4). The location in the homogenous directions, x and z, may

be selected arbitrarily and each estimate is evaluated for a given value of y as a

function of the distance r=x’-x.

uj(x’,t) = Ajk(x’,x) uk(x,t) (2.3)

Rkl(x,x’) Ajk(x,x’) = Rlj(x,x’) = Rlj(r,y) j,k,l = 1,2,3 (2.4)

By virtue of being extracted from the correlation tensor, the initial structure has

length scales, shape and vorticity consistent with eddies that occur in the fully

turbulent channel flow.

2.5 Vortex visualization

According to Zhou, Adrian and Balachandar (1996), a vortex usually refers to a

tube-like structure with persistent and coherent rotation about its spine. Robinson

 23

(1991) definition of a vortex explains the inadequacy of mathematical quantities

like helicity and vorticity to characterize a vortex. On the other hand, a number of

techniques for the identification of vortices have been proposed. Although a

variety of techniques have been used in the past, the method of Chong, Perry and

Cantwell (1990) is used in the current study due to the advantages which include

frame independence and the display of shear layers which have vorticity but no

swirling motion. The choice of λci for this study was made so that the various

vortical structures would be easily identifiable with minimal background noise,

eliminating sensitivity dependence.

Table 2.3 Initial conditions used in this study for single vortex evolution. All
computations were done at Reτ=395 for 128 x 129 x 128 grid.

Run X=(x+,y+,z+) u=(u,v,w) Movie location
folder

(on DVD)

Figure
number

1 (0,46.6,0) (-1.6,1.4,0) Strength=1 1a
2 (0,46.6,0) (-2,1.75,0) Strength=1.25 1b
3 (0,46.6,0) (-2.4,2.1,0) Strength=1.5 1c
4 (0,46.6,0) (-3.2,2.8,0) Strength=2 1d
5 (0,46.6,0) (-4,3.5,0) Strength=2.5 1e
6 (0,46.6,0) (-4.8,4.2,0) Strength=3 1f
7 (0,46.6,0) (-6.4,5.6,0) Strength=4 1g
8 (0,11.8,0) (-4,3.5,0) y+=11.8 2a
9 (0,66.6,0) (-4,3.5,0) y+=66.6 2b
10 (0,217,0) (-4,3.5,0) y+=217 2c
11 (0,395,0) (-4,3.5,0) y+=395 2d
12 (0,46.6,0) (4,-3.5,0) Q4 3a
13 (0,46.6,0) (-4,3.5,0) Beta=0.2 4a
14 (0,46.6,0) (-4,3.5,0) Beta=0.4 4b
15 (0,46.6,0) (-4,3.5,0) Beta=0.5 4c
16 (0,46.6,0) (-4,3.5,0) Beta=0.6 4d
17 (0,46.6,0) (-4,3.5,0) Beta=0.8 4e
18 (0,46.6,0) (-4,0,0) u00 5a
19 (0,46.6,0) (0,3.5,0) 0v0 5b

 24

1a

2a 3a
4a

5a

1b 2b

4b

5b

1c 2c

4c

1d
2d

4d

1e

4e

1f
1g

Figure 2.10 List of figures showing initial vortex shapes. Mathematical
representation shown in table 2.3.

 25

Table 2.4 Initial conditions used in this study for vortex interactions. All
computations were done at Reτ=395 for 128 x 129 x 128 grid.

Run X=(x,y,z) u=(u,v,w) Movie location
(on DVD)

Figure
number

1 (0,46.6,0)
(100,46.6,0)

(-4,3.5,0)
(-4,3.5,0)

Streamwise vortex
interaction

7a

2 (0,46.6,0)
(100,46.6,0)

(-4,3.5,0)
(-3.2,2.8,0)

Decreasing
strength

7b

3 (0,46.6,0)
(100,46.6,0)

(-4,3.5,0)
(-4,3.5,0)

Increasing strength

7c

4 (0,46.6,0)
(0,46.6,100)

(-4,3.5,0)
(-4,3.5,0)

Spanwise vortex
interaction

8a

5 (0,46.6,0)
(100,46.6,0)
(200,46.6,0)

(-4,3.5,0)
(-4,3.5,0)
(-4,3.5,0)

3 vortices/same

strength

9a

6 (0,46.6,0)
(100,46.6,0)
(200,46.6,0)

(-4.8,4.2,0)
(-4,3.5,0)

(-3.2,2.8,0)

3
vortices/decreasing

strength

9b

7 (0,46.6,0)
(100,46.6,0)
(200,46.6,0)

(-3.2,2.8,0)
(-4,3.5,0)

(-4.8,4.2,0)

3
vortices/increasing

strength

9c

8 (0,46.6,0)
(100,46.6,0)

(-4,3.5,0)
(-4,3.5,0)

21_11

10a

9 (0,46.6,0)
(100,46.6,0)

(-4,3.5,0)
(4,-3.5,0)

1Q2Q4

11a

10 (0,46.6,0)
(100,46.6,0)

(4,3.5,0)
(4,-3.5,0)

1Q4Q2

11b

11 (0,46.6,0)
(0,46.6,100)
(0,46.6,200)

(100,46.6,50)
(100,46.6,150)

(-4,3.5,0)
(-4,3.5,0)
(-4,3.5,0)
(-4,3.5,0)
(-4,3.5,0)

Staggered

12a

 26

7 a

7 b

7 c

8 a

9 a

9 b

9 c

10 a

11 a

11 b

12 a

Figure 2.11 List of figures showing initial vortex shapes. Mathematical
representation shown in table 2.4.

 27

Chapter 3

SINGLE VORTEX EVOLUTION

Zhou, Adrian, Balachandar and Kendall (1999) studied the evolution of a

symmetric pair of quasistreamwise vortical structures extracted from the two-

point correlation tensor of turbulent channel flow data by linear stochastic

estimation procedure. The initial structure evolves into a hairpin-like vortical

structure which can, in turn, generate streamwise vortices, thus providing a

mechanism for continual regeneration of new vortices.It is recognized that the

strength of the initial structure can play an important role, especially in the

nonlinear stages of the evolution. Therefore, the effect of strength on vortex

evolution is considered in section 3.1. Also, in the present study, the wall normal

location, y+ of the event vector will be varied from near the boundary to the

middle of the channel (section 3.2).The symmetric event vector is specified as u =

αum, v = αvm and w = 0, where the multiplicative factor α referred as ‘strength’ of

the initial structure, is varied from 1.0 to 3.5. Zhou et al.(1999) showed that

asymmetric initial vortices grow more rapidly than symmetric ones and hence are

likely to be the most common form found in natural wall turbulence. The effect of

asymmetry for various values of β is shown in section 3.3. Section 3.4 discusses

the evolution of a single vortex into a fully turbulent field.

 28

3.1 Effect of strength

Kim, Sung and Adrian (2008) examined the autogeneration process by which new

hairpin vortices are created from a sufficiently strong hairpin vortex, leading to

the formation of a hairpin packet. It is observed that while stronger initial vortices

result in the formation of a hairpin packet, weaker initial vortical structures, which

live long and maintain their integrity, do not participate in the autogeneration of

additional hairpins. Owing to the linear nature of the estimation procedure, the

entire velocity field of the initial structure scales linearly with α. As the strength

of the initial event vector α is changed, the initial structure always rolls-up into a

hairpin vortex, but its strength and accordingly its subsequent evolution differs.

The main effect is on the length of the resulting hairpin vortex along the

streamwise direction. The formation process of the primary hairpin vortex

remains the same qualitatively. Whereas the initial structure evolves into an Ω-

shaped primary vortex, irrespective of its initial strength α, and initial location y+,

the autogeneration of secondary and tertiary vortices is quite sensitive to the

amplitude. From the following figure, it appears that the threshold amplitude

reaches a minimum for an initial location y+ of around 30.

 29

Figure 3.1 Generation of secondary hairpin vortices depends on the strength of
initial vortical structures and location of the event vector used to extract the initial
vortical structure. (•) Case with new hairpins. (°) Case without new hairpins [Kim,
Sung and Adrian (2008)].

Computations were done to see if the downstream vortex affects the upstream

vortex in autogeneration. From figure 3.1, the threshold for auto-generation for

Reτ=180 is between 0.5 and 1, though there is no auto-generation evident at α=1

for Reτ=395. Auto-generation for Reτ=395 exists between α=1.25 and α=1.5.

Figure 3.2 shows the hairpin structure at t+=150 for various strengths.

(a)

 30

(b)

(c)

(d)

Figure 3.2 Vortex evolution at t+=150 for different strengths (a)α=2; (b) α=2.5;
(c) α=3; (d) α=3.5. The initial velocity field specified was u=α(um,vm,0) where um
and vm were obtained from the joint probability density function and were taken
to be (-1.6,1.4,0)

 31

Even though the growth of the vortices tends to be qualitatively similar for all

strengths greater than the threshold strength, the disturbances (or the tongue) in

the downstream side of the primary vortex are more pronounced as we increase

the strength. These disturbances can be considered as numerical errors and are

hence more visible as we increase the values of fluctuating u and v velocities.

Table 3.1 The time (t+) taken for the vortex to disappear when a sub-critical
strength is used for computation. These computations were done at y+=46.6. x+
denotes the non-dimensionalized streamwise spacing.

t+ x+ (strength = 1) x+ (strength = 1.25)x+ (strength = 1.5) x+ (strength = 3)

25 200 200 200 360
50 240 280 320 560

150 240 400 1280
175 120 360 2380
200 80 280
500 440
650 680
800 280
900

0

500

1000

1500

2000

2500

0 200 400 600 800 1000t+

x+

x+ (strength = 1)
x+(strength = 1.25)
x+(strength = 1.5)
x+(strength = 3)

Figure 3.3 A comparison between the lengths of the eddy (x+) at various t+ values.

 32

The hairpin vortex at alpha =1 disappears very quickly as can be seen from figure

3.3. Increasing the strength makes the length of the hairpin grow faster.

3.2 Effect of y-normal position

The choice of a symmetric Q2 event vector results in a vortical structure that

resembles a near-wall quasi-streamwise vortex pair when the event is specified

close to the wall and resembles a hairpin vortex when the event is specified

sufficiently far away from the wall [Moin, Adrian and Kim (1987)].

It can be observed that there exists a bridge of vorticity across the two streamwise

vortices at the point where the event vector is specified. The strength of the bridge

is weak when the event vector is close to the wall but is relatively stronger when

the event vector is farther away from the wall. The average inclination of the

initial structure decreases (or increases) as the y-location of the event vector is

lowered (or raised), but the spanwise separation at the upstream end remains at

about 100 viscous wall units approximately independent of y+ . This is consistent

with the accepted mean low-speed streak spacing of about 100 viscous wall units

in the near-wall region. The location of the spanwise bridge is slightly upstream

of the downstream tip of the quasi-streamwise vortices. In other words, the quasi-

streamwise vortices extend slightly beyond their spanwise bridge. The spanwise

bridge becomes stronger as the location of the event vector, y+ increases and the

initial structure resembles more closely a hairpin vortex.

The presence of an optimum distance from the wall for the initial structure can be

explained as followed. The optimum distance is a balance between self- and

 33

mutual-induced motion of the quasi-streamwise vortex legs which tends to lift-up

and curl back the vortices and the influence of mean shear which stretches along

the streamwise direction and intensifies the vortices. Very close to the wall,

viscous effects are also important. The enhanced viscous effects result in an

increase in the threshold amplitude for initial vortices starting very close to the

boundary. Away from the wall, the induced motion is determined by the strength

of the vortex structure and streamwise stretching by the mean shear. With

increasing distance from the wall, the mean shear rapidly reduces, thereby

decreasing the intensification of the initial vortex structure by stretching. Thus, an

initial hairpin vortex farther away from the boundary needs to be of sufficiently

higher strength to generate subsequent hairpin vortices.

(a)

(b)

 34

(c)

(d)

Figure 3.4 Evolution of the hairpin vortex at various values of y+; (a) y+ = 11.8;
(b) y+ = 46.6; (c) y+ = 66.6; (d) y+ = 217; the initial vortex was located at the
center of the xz plane.

3.3 Effect of asymmetry

The streamwise alignment of the hairpins is the result of the spanwise symmetric

nature of the initial vortex structure. Perfect symmetry however cannot be

expected and the hairpins are not usually observed to posses two counter-rotating

vortex legs of equal strength. The effect of asymmetry on the initial vortical

structure evolution and its development into a hairpin packet has been studied

here. Asymmetry was introduced in the initial vortical structure with an

asymmetric event in the stochastic estimation procedure. The magnitude of the

event vector was kept constant to maintain the initial vortex strength, while the

 35

spanwise component of the event vector was increased from zero at the expense

of the u and v components. As the β increases, the strength of the event vector is

still the same.

u = um(1-β2)1/2 (3.1)

v = vm(1-β2)1/2 (3.2)

w = β*(u2+ v2)1/2 (3.3)

where β is the asymmetry parameter which measures the strength of asymmetry.

For β = 0 there is no asymmetry and the initial vortex structure is the same as that

shown in figure 6(a).

(a)

 (b)

 36

 (c)

 (d)

 (e)

Figure 3.5 Effect of asymmetry on vortex evolution (a) β = 0.2; (b) β=0.4; (c)
β=0.5; (d) β=0.6; (e) β=0.8; α = 2.5 was used for all the computations. The initial
field specified was u=(-4,3.5,0) for all the cases considered.

 37

Vortical structure corresponding to an asymmetry parameter of β= 0.2 is initially

considered. The resulting initial structure has a pair of quasi-streamwise legs

connected by a weak spanwise bridge at the downstream end, but one of the

quasi-streamwise legs is much stronger, higher, and longer than the other. The

influence of asymmetry on the overall evolution of the hairpin structures remains

negligibly small though for β= 0.2. The initial structure has developed into a

primary hairpin followed by the generation of secondary and downstream hairpins.

The resulting hairpin packet is nearly symmetric and it closely resembles the

hairpin packet generated under symmetric initial conditions. Thus, the

mechanisms responsible for autogeneration of new hairpin vortices leading to the

formation of a hairpin packet remain largely unaffected by small asymmetry in

the initial development.

With sufficiently strong asymmetry in the initial event vector, the effects can be

distinguished in the initial structure as well as in the evolution. The effects of

β=0.4, 0.5, 0.6 and 0.8 are compared.

For t+=150 and beta=0.5, in addition to the primary hairpin, secondary and tertiary

hairpin-like structures can also be seen. The right-hand leg of the secondary

hairpin can be seen, while the other quasi-streamwise vortex leg is so weak that it

is not seen. On the other hand, in the case of the tertiary hairpin only the left-hand

quasi-streamwise leg is strong and visible. Therefore, the secondary and tertiary

hairpins resemble the asymmetric one-sided cane- or hook-like hairpin vortices

referred in literature. Robinson (1991) pointed out that the preferred arrangement

for hairpin vortices in a turbulent boundary layer is to be asymmetric and one-

 38

sided. These spanwise asymmetric one-sided hairpins are also known as `canes'

[Guezennec & Choi (1989)]. The present results suggest that experimentally

observed asymmetry is possibly due to the influence of local spanwise velocity.

These cane-like secondary and tertiary structures at t+ = 150 are clearly visible in

and can be compared with the corresponding symmetric case with initial event

vector of α = 2.5 specified at y+ =46.6. For the symmetric case, the streamwise

distance between the primary and secondary hairpins was found to be 340 viscous

units. In the asymmetric case the streamwise distance between the primary and

secondary and between the secondary and tertiary hairpin heads is about 220 and

165 viscous wall units, respectively. These streamwise separations compare better

with the experimental measurements of Meinhart, Adrian and Tomkins (1999)

who observed the spacing to be around 150 wall units. Furthermore, in the

asymmetric case the formation of tertiary hairpin is nearly complete by t+ = 150.

In the symmetric case the tertiary hairpin has not even begun to form by this time.

In general, it is observed that asymmetry aids in the formation of subsidiary

hairpins and the initial threshold amplitude for the formation of secondary and

tertiary hairpins is found to be lower with asymmetry. Under asymmetry, the new

hairpins form in rapid succession and their streamwise separation is smaller, and

hence better compare with the experiments.

3.4 Evolution into a fully turbulent flow

Computations were done to study the vortex evolution into a fully turbulent flow.

The linear stochastic estimate at y+=46.6 was used as the initial condition.

 39

(a)

(b)

(c)

 40

(d)

(e)

Figure 3.6 Growth of a single vortex into a fully turbulent field. α = 2.5 was used
for all the computation. The initial field specified was u=(-4,3.5,0). (a) The
evolution at t+=400; (b) The evolution at t+=750; (c) The evolution at t+=1000; (d)
The evolution at t+=1250; (e) The evolution at t+=1500.

The single vortex at y+=46.6 auto-generates into the structure in figure 3.6 (a) at

t+=400. These vortices then start growing spanwise apart from growing in height,

(figure 3.6 (b)) eventually leading to the complex feature in figure 3.6 (c). This

 41

repeated spanwise interaction and auto-generation results in the structure in figure

3.6 (e) where a chain of vortices on the top is evident. The flow ultimately

becomes fully turbulent and occupies the entire channel at around t+=2000 (figure

3.7).

Figure 3.7 Fully turbulent channel flow at t+=2000.

 42

Chapter 4

MULTIPLE VORTEX INTERACTION

Vortex interactions are important to study since they make understanding on a

turbulent field much easier. Since hairpins typically occur in packets,

understanding how certain distinct arrangements of vortices evolve helps

understand how the entire packet would evolve. In this study, the distinct

arrangements like 2 Q2 events, 3 Q2 events and combination of Q2 and Q4 events

are studied. Strength plays an important part in this study since the vortices might

gain or lose velocity during the process of evolution. Hence, variation of strength

for multiple vortex interaction is studied in detail.

4.1 Streamwise interaction between 2 Q2 events

4.1.1 Interaction between 2 Q2 events having the same strength

(a)

 43

(b)

(c)

Figure 4.1 Evolution of 2 Q2 events initially separated by x+ = 100 units. α=2.5;
β=0; The initial condition was considered at the center of the xz plane and at
y+=46.6. (a) The initial vortex obtained from linear stochastic estimation. A and B
are Q2 events having the initial velocity vectors (-4,3.5,0) based on the joint
probability density function (b) The evolution structure at t+=150 (c) The
evolution structure at t+= 375.

4.1.2 Interaction between 2 Q2 events having the different strengths:

Case I:

(a)

 44

(b)

Figure 4.1 The effect of varying the strength of the vortex. Strength is denoted by
α which was defined earlier in the study (chapter 3.1) The vortex A is stronger
than vortex B. (a) αA=2.5; αB=2; β=0; Hence, the 1st event vector (vortex A) is
(-4,3.5,0) and the vortex B event vector is (-3.2,2.8,0) (b) Evolution after t+= 150

Case II:

(a)

(b)

Figure 4.2 The vortex B is stronger than vortex A. (a) The initial vortex at t+=0,
αA=2; αB=2.5; β=0; Hence, event vector for vortex A is (-3.2,2.8,0) and the event
vector for vortex B is (-4,3.5,0) (b) Evolution after t+= 150

A stronger vortex moves slower than the weaker vortex and hence in case I

(figure 4.2), the vortices A and B are separated while they evolve. In case II

 45

(figure 4.3) though, vortex A catches up with vortex B and interacts with it earlier

than figure 4.2. This can explain the differences in structure at t+=150 (figures 4.2

(b) and 4.3 (b)). Due to the same reason, the vortex combination in figure 4.2 fills

up the length of the channel faster than the weaker-stronger case. It is difficult to

quantify the interaction processes due to the non-linearity of the problem.

4.2 Interaction between 3 Q2 events:

(a)

(b)

(c)

Figure 4.3 Evolution of 3 Q2 events initially separated by x+ = 100 units. α=2.5;
β=0; The initial condition was considered at the center of the xz plane and at
y+=46.6. (a) The initial vortex obtained from linear stochastic estimation (b) The
evolution structure at t+=150 (c) The evolution structure at t+= 375.

 46

Case I

(a)

(b)

Figure 4.4 The effect of varying the strength of the vortices. (a) The initial vortex
at t+=0. αA=3; αB=2.5; αC=2, β=0; (b) Evolution after t+= 150

Case II

(a)

 47

(b)

Figure 4.5(a) The initial vortex at t+=0. αA=2; αB=2.5; αC=3, β=0; (b) Evolution
after t+= 150

As explained in section 4.2, the stronger vortex moves slower than the weaker

vortex. The interaction can be explained better if the non-linearity in the problem

is mathematically modeled.

4.3 Spanwise growth of vortices

Figure 4.7 The vortex structure at t+=750 for a single Q2 event evolution at
(x+=0,y+=46.6, z+=0).

 48

From figure 4.7, it is evident that, as the vortex evolves, it not only generates

daughter vortices but also leads to spanwise vortices which interact with each

other in a complicated way. This necessitates the study of spanwise vortex

interaction.

(a)

(b)

Figure 4.8 Evolution of 2 spanwise vortices separated by z+=100 at (a) t+=25; t+=
225; (b) t+=350; t+=500. Both initial vortices have strength α=2.5 and no
inclination to the z axis (β=0).

 49

Lateral interaction between hairpins must be an important ingredient in the

spanwise scaling of the hairpin vortices as they grow along the streamwise and

wall-normal directions. As the packets expand in the spanwise direction they must

ultimately interact by vortex encounters. Encounters also occur due to larger,

faster packets running over smaller, slower packets. In lateral encounters, the

opposing vorticity in adjacent legs of two hypothetically identical hairpins could

annihilate them, resulting in a larger hairpin of the same height, but double the

width of the original hairpins. As hypothesized in Adrian, Balachandar and Liu

(2001), the merger between 2 spanwise vortices (‘A’ in figure 4.8 (a)) leads to a

larger vortex of the same height (‘B’ in figure 4.8 (a)). This large vortex auto-

generates resulting in asymmetric vortices inclined to the z axis (‘C’ and ‘D’ in

figure 4.8 (b)).

4.4 Interaction between Q2 and Q4 events
Case I

(a)

 50

Case II

(b)

Figure 4.9 Evolution of a Q2 event and a Q4 event together. The vortices are
initially separated by x+ = 100 units. α=2.5; β=0; The initial condition was
considered at the center of the xz plane and at y+=46.6. (a) Q2-Q4 combination
where A(i) represents the Q2 vortex and A(ii) represents the Q4 vortex. B
represents the structure at t+=250 and C is the structure at t+=500 (b) Q4-Q2
combination where A(i) represents the Q4 vortex (4,-3.5,0) at (x+=0,y+=46.6, z+=0,
t+=0) and A(ii) represents the Q2 vortex (-4,3.5,0) at (x+=100,y+=46.6, z+=0,
t+=0). B represents the structure at t+=250 and C is the structure at t+=500.

The initial condition in case I grows into a complex structure with the Q4 event

developing into 2 quasi-streamwise vortices and the Q2 event auto-generating into

daughter vortices although the interaction is non-linear. In case II however, the

Q4 vortex rapidly dissipates and a single Q2 hairpin vortex is formed at t+=250

and t+=500 (B and C in figure 4.8).

4.5 Interaction between vortices at different y+ locations

Computations were done with 1 vortex at y+=46.6 and the other at y+=11.8

separated by x+=100 units. The higher vortex consumes the lower one at a very

early time (t+=50) and the combination behaves similar to the single vortex

evolution (figure 4.11).

 51

(a)

(b)

(c)

Figure 4.10 (a) 2 vortices separated by 100 x+ units at t+=0. Vortex A is at y+=46.6
and vortex B is at y+=11.8; (b) the vortex structure at t+=50; (c) The vortex
structure at t+=50 when the vortex B is absent;

(a)

(b)

Figure 4.11 (a) Evolution of the single vortex at y+=46.6 and (b) the evolution of
the dual vortices at t+ = 400. The similarity in structure leads us to believe that
vortex B doesn’t have a major role to play in the evolution.

 52

4.6 Interaction between vortices in a staggered arrangement

(a)

(b)

(c)

 53

(d)

Figure 4.12 Evolution of 5 Q2 events placed in a staggered arrangement. The
schematic diagram of the arrangement is shown in figure 4.13.α=2.5; β=0; All the
initial vortices are at y+=46.6. (a) The evolution structure at t+=25 (b) The
evolution structure at t+=175 (c) The evolution structure at t+= 375 (d) The
evolution structure at t+=500.

Figure 4.13 A schematic arrangement of staggered vortices in channel flow

The vortices in figure 4.12 (a) grow asymmetrically (with inclination to the z axis)

till t+=175. The canes formed in figure 4.12 (b) then dissipate leading to the

vortex structure in figure 4.12 (d). After t+=175, there is no more cane formation.

 54

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

This study attempted to answer questions concerning how vortex mergers

produce larger scale structures, a process that may contribute to the growth of

length scale with increasing distance from the wall in turbulent wall flows. This

would aid in modeling the von Karman constant which is crucial in drag related

studies.

The dynamics of hairpin vortices in turbulent channel flow have been

studied using direct numerical simulation. The two-point spatial correlation of the

fully turbulent velocity field was initially studied in detail and compared to

existing literature. Linear stochastic estimation was then used to estimate the

structures of the initial three-dimensional vortices. The vortices were visualized

using the iso-surface of the imaginary part of the conjugated complex eigen

values of the local velocity gradient tensor (λci). The Reynolds number of the

present simulation is more than twice that of the Reτ=180 flow studied by Zhou et

al. (1999), and a number of new types of events such as quasi-streamwise

vorticity and Q4 events were studied in this work. The larger Reτ also made it

possible to simulate the evolution of the vortices over longer periods of time, and

correspondingly larger head heights.

The effect of asymmetry, y+ position and strength were evaluated for

single vortices. In order to study the complex non-linear interactions between

vortices, various parameters such as spanwise inclination and strength were varied.

 55

Grid independence study was performed to choose the optimum grid. The

following are the conclusions from this study.

1. Autogeneration is insensitive to Reτ, as results change little from Reτ=180

(Zhou et al. 1999) to Reτ=395. The forms of the eddies at Reτ=395 are

similar to those at Reτ=180, although there is no auto-generation evident

upto α=1.25. Hence, the auto-generation threshold is shifted from α=1 for

Reτ=180 to α=1.25 for Reτ=395.

2. Single vortex evolution: Just like the strength threshold for auto-

generation, there exists asymmetry threshold for cane formation. Canes

are not produced till β=0.4. For a symmetric evolution, the flow becomes

fully turbulent and occupies the entire channel around t+=2000.

3. Multiple vortex interaction

a. Larger Q2 overtakes smaller Q2

b. Smaller Q2 behind a larger Q2 just separates.

c. Q2 behind Q4 leads to auto-generation with the Q4 event

becoming 2 quasi-streamwise vortices at t+=500.

d. Q4 behind Q2 rapidly dissipates the Q4 vortex.

e. Lateral vortices merge in t+=100.

f. Staggered vortices merge in t+=175.

g. Two vortices, one at y+=46.6 and the other at y+=11.8, separated

by x+=100 evolve in a similar fashion to a single vortex at y+=46.6;

i.e. the vortex at a lower y+ value does not play a significant part in

the evolution.

 56

Future work would include specifying d(x,t) in addition to u(x,t) which would

lead to a more detailed picture. The full potential of stochastic estimation is

realized when all the components of the given data u(x,t) and possibly d(x,t) are

specified. Attempts also need to be made to separate the linear and non-linear

effects to simplify the problem. Higher Reynolds numbers and bigger domains (eg.

doubling the length of the channel) are recommended based on the computational

resources available.

 57

REFERENCES

Adrian, R.J., Meinhart, C.D., & Tomkins, C.D. 2000 Vortex organization in
the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1.

Bandyopadhyay, P. 1980 Large structure with a characteristic upstream interface
in turbulent boundary layers. Phys. Fluids 23, 2326-2327.

Chong, M. S., Perry, A. E. & Cantwell B. J. 1990 A general classification of
three-dimensional flow fields. Phys. Fluids A 2, 765-777.

Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex
packets in wall turbulence. J.Fluid Mech. 431, 433.

Davidson, P.A. 2007 Turbulence: An introduction for scientists and Engineers,
Oxford University Press.

Ganapathisubramani, B., Longmire, E.K., & Marusic, I. 2003 Characteristics of
vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35.

Guezennec, Y. G. & Choi, W. C. 1989 Stochastic estimation of coherent
structures in turbulent boundary layers. In Proc. Zoran P. Zaric Memorial
International Seminar on Near Wall Turbulence, May 1988 (ed. S. J. Kline & N.
H. Afgan), 420-436. Hemisphere.

Haidari, A. H. & Smith, C. R. 1994 The generation and regeneration of single
hairpin vortices. J. Fluid Mech. 277, 135-162.

Hambleton, W.T., Hutchins, N., & Marusic, I. 2006 Simultaneous orthogonal
plane particle image velocimetry measurements in a turbulent boundary layer.
J.Fluid Mech. 560, 53.

Kendall, T. M. 1992 Evolution of conditional eddies in channel flow. MS thesis,
University of Illinois, Urbana, Illinois.

 58

Kim, J., Moin, P & Moser R. D. 1987 Turbulent statistics in fully developed
channel flow at low Reynolds number. J. Fluid Mech. 177, 133-166.

Kim, K., Sung, H.J. & Adrian, R.J. 2008 Effects of background noise on
generating coherent packets of hairpin vortices, Phys. Fluids 20, 105107

Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys.
Fluids. 11, 417.

Meinhart, C. D., Adrian, R. J. & Tomkins, C. D. 2000 Vortex organization in the
outer region of a turbulent boundary layer, J. Fluid Mech, 424, 1-54

Moin, P., Adrian, R.J., & Kim J. 1987 Stochastic estimation of organized
structures in turbulent channel flow, Proceeding of the Sixth Symposium on
Turbulent Shear Flows, Toulouse, France, 16.09.0.

Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct Numerical simulation of
Turbulent channel flow upto Reτ=590, Phys. Fluids, 11,4 ,943-945.

Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Ann. Rev.
Fluid Mech. 23, 601-639.

Robinson, S. K., Kline, S. J. & Spalart, P. R. 1988 Statistical analysis of near-wall
structures in turbulent channel flow. In Proc. Zoran P. Zaric Memorial
International Seminar on Near Wall

Smith, C. R. 1984 A synthesized model of the near-wall behavior in turbulent
boundary layers. In Proc. Eighth Symp. on Turbulence (ed. G. K. Patterson & J. K.
Zakin). University of Missouri-Rolla. Dept. of Chem. Engr, Rolla, Missouri.

Smith, C. R., Walker, J. D.A., Haidari, A. H. & Sobrun, U. 1991 On the dynamics
of near-wall turbulence. Phil. Trans. R. Soc. Lond. A 336, 131-175.

Zhou, J., Adrian, R. J. & Balachandar, S. 1996 Autogeneration of near wall
vortical structure in channel flow. Phys. Fluids 8, 288-291.

 59

Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for
generating coherent packets of hairpin vortices in channel flow J. Fluid Mech
387,353-396

60

APPENDIX A

LINEAR STOCHASTIC ESTIMATION DERIVATION

61

Let g(x’) be any quantity associated with the turbulent flow, and let E1(x1), E2(x2),
E3(x3),…, EN(xN) be N random whose value assume specified event values at (possibly)
N different points. The conditionally averaged flow field is the averaged flow field given
that the specified events occur [Zhou et. al. (1999)]:

<g(x’)|E1(x1), E2(x2), E3(x3),…, EN(xN)> (A1)

It is the best estimate of the flow field in terms of the known event , in the mean square
sense.. To streamline the nottion, we often let E be the N dimensional event vector

E=[f1<E1(x1)< f1+d f1 and … and fN<EN(xN)< fN+dfN] (A2)

The linear stochastic estimate of a conditional average is found by expanding the
conditional average in a power series about the event E =0, and truncating the expansion
at some level,

<gi|E>=LilEl+NilmElEm+… (A3)

 The unknown coefficients L , N etc. are determined by requiring that the mean-square
error between the approximation and the conditional average be minimized.
In the case of linear estimation only the first term is retained and the minimization leads
to a set of linear algebraic equations for Lil,

<Em(xm)El(xm)> Lil = Em(xm) gi(x’)> (A4)

Where l=1,2,3,...,N and m=1,2,3...,N.We assume that the event and the estimated quantity
have zero mean in equations (A3) and (A4).

Equation (A4) can be written as
ALi = bi (A5)

Since the streamwise (x) and spanwise (z) directions are homogenous in the periodic
channel flow,

Aml = REmEl(xl-xm, ym, zl-zm) (A6)
and
bim = REmgl(x’-xm, ym,y’, z’-zm) (A7)

Li can be obtained from solving the matrix equation with N x N symmetric coefficient
matrix A. Finally, the linear stochastic estimation (LSE) of the conditional average is
<gi|E> ∼ Lil(x’;x1, x2,, xN)El(xl) (A8)

62

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

il

u u u u u u
L u u u u u u

u u u u u u

< >< >< >⎡ ⎤
⎢ ⎥= < >< >< >⎢ ⎥
⎢ ⎥< >< >< >⎣ ⎦

 (A9)

63

APPENDIX B

LINEAR STOCHASTIC ESTIMATION CODE

64

This code uses correlation functions to produce a conditional vortex using linear

stochastic estimation.

Grid:128 x 129 x 128;

Reτ=395;

Language: Fortran 95;

Machine it ran on: Saguaro (ASU high performance computing center);

Number of processors: 1;

Input parameters: u,v and w components of velocity, strength α, asymmetric factor β,

position y+;

Output parameters: up.dat, vp.dat, wp.dat (velocity fields in .dat format), l_ci.dat (λci

in .dat format)

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1
 common/domain/sx,sz
 common/para/re

 real*8 event(N_evn)
 real*8 AI(N_evn,N_evn)

 real*8 b(N_evn,nx,nyp,nz)
 real*8 CL(N_evn,nx,nyp,nz)
 character*8 dummy8
 character*45 dummy45

 re = 395.

 Pi = acos(-1.0)
 sx = 2. * pi
 sz = 1./1. * pi

 open(70,file=’lse.set’,status=’old’,action=’read’)
 read(70,102) dummy45
 write(*,102) dummy45
 read(70,100) dummy8,alpha
 write(*,100) dummy8,alpha
 read(70,100) dummy8,beta
 write(*,100) dummy8,beta
100 format(a8,e14.8)
101 format(a8,i5)

65

102 format(a45)

 call setup

c--- set event or condition variables and locations

 nv_evn(1) = 1 ! u’
 nv_evn(2) = 2 ! v’
 nv_evn(3) = 3 ! u’
c nv_evn(4) = 1 ! u’
c nv_evn(5) = 2
c nv_evn(6) = 3
c nv_evn(7) = 1
c nv_evn(8) = 2
c nv_evn(9) = 3
c nv_evn(10) = 1
c nv_evn(11) = 2
c nv_evn(12) = 3
c nv_evn(13) = 1
c nv_evn(14) = 2
c nv_evn(15) = 3

 event(:)= 0.0

 read(70,102) dummy45
 write(*,102) dummy45
 read(70,101) dummy8,j1
 write(*,101) dummy8,j1

c--- event variables are normalized by wall units

 do ll=1,N_evn
 read(70,103) dummy8,event(ll),(multi(ll,k),k=1,3)
 write(*,103) dummy8,event(ll),(multi(ll,k),k=1,3)
103 format(a8,e12.5,3i3)
 enddo

c--- for multi location event -> Read from lse.set file
c multi(ll,1) ! relative x location of ll-th event w.r.t 1st
event location
c multi(ll,2) ! relative y location of ll-th event w.r.t 1st
event location
c multi(ll,3) ! relative z location of ll-th event w.r.t 1st
event location
c---
c–impose asymmetry in z dir.
 Event(3) = beta*(event(1)**2 + event(2)**2)**0.5 ! w_m=
(u_m^2+v_m^2)^0.5
 event(1) = event(1)*(1.0-beta**2)**0.5
 event(2) = event(2)*(1.0-beta**2)**0.5

c--- multiply strength factor to event vector
 event = alpha*event

66

 do ll=1,N_evn
 write(*,104) ll,event(ll),(multi(ll,k),k=1,3)
104 format(i5,e12.5,3i3)
 enddo

c--- set the quantities which will be estimated by LSE

 nv_est(1) = 1 ! u’
 nv_est(2) = 2 ! v’
 nv_est(3) = 3 ! w’

c----

 call set_coef_AI(AI) ! AI = inverse of A

 do i_est = 1, N_est

 call read_b(b,i_est)
 call get_CL(CL,AI,b)
 call do_LSE(CL,event,i_est)

 enddo ! N_est

 call out_put(event)

 stop
 end

c----+--
 subroutine setup
 include ‘param.h’
 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz

 pi = acos(-1.0)

 do j=1,nyp
 y(j)=1.-cos(pi*real(j-1)/real(nyp-1))
 enddo

 dx = sx/real(nx)
 dz = sz/real(nz)

 return
 end

c----+--
 subroutine set_coef_AI(AI)

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1

 real*8 r(N_evn),x(N_evn)

67

 real*8 A(N_evn,N_evn)
 real*8 AI(N_evn,N_evn)
 real*8 test(N_evn,N_evn)

 character*50 filename
 real*8 E(N_evn,nx,nyp,nz)
 real*8 Em(N_evn),Eq(N_evn,N_evn)

 real*8 t(nx,nyp,nz)

 A(:,:) = 0.0
 AI(:,:)= 0.0

c---

 do m=1,N_evn
 do l=m,N_evn

 i_m = multi(m,1)
 j_m = j1 + multi(m,2)
 k_m = multi(m,3)
 i_l = multi(l,1)
 j_l = j1 + multi(l,2)
 k_l = multi(l,3)

 filename = ‘../03_corr/R_’
 nn=index(filename,’R’)
 write(unit=filename(nn+2:),fmt=’(bn,i2.2)’) nv_evn(m)
 write(unit=filename(nn+4:),fmt=’(bn,a1)’) ‘_’
 write(unit=filename(nn+5:),fmt=’(bn,i2.2)’) nv_evn(l)
 write(unit=filename(nn+7:),fmt=’(bn,a2)’) ‘Y_’
 write(unit=filename(nn+9:),fmt=’(bn,i3.3)’) j_m
 write(*,*) filename

 open(10,file=filename,form=’unformatted’)
 read(10) (((t(I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 A(m,l) = t(nx/2+i_l-i_m,j_l,nz/2+k_l-k_m)

 enddo
 enddo

c----

c--- A(m,l) should be symmetric.

 Do m=2,N_evn
 do l=1,m-1
 A(m,l)=A(l,m)
 enddo
 enddo

c--- calculate the inverse of A

68

 call FindInv(A, AI, N_evn, ErrorFlag)

c--- check inversion of A
 test = 0.0
 do j=1, N_evn
 do i=1, N_evn
 do m=1,N_evn
 test(I,j) = test(I,j) + A(I,m)*AI(m,j)
 enddo
 enddo
 enddo

 write(*,*) ‘check the inversion’
 do I = 1, N_evn
 write(*,*) (test(I,j),j=1,N_evn)
 enddo

c---

c do m=1,N_evn
c write(*,100) (A(m,l),l=1,N_evn)
c enddo
c write(*,*)
c do m=1,N_evn
c write(*,100) (AI(m,l),l=1,N_evn)
c enddo
c100 format(4(E12.5,x))

 return
 end

c----+--
 subroutine read_b(b,i_est)

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1

 real*8 t(N_evn,nx,nyp,nz)
 real*8 b(N_evn,nx,nyp,nz)

 character*50 filename

 do m = 1, N_evn

 j_m = j1 + multi(m,2)
c j_m = j1

 filename = ‘../03_corr/R_’
 nn=index(filename,’R’)
 write(unit=filename(nn+2:),fmt=’(bn,i2.2)’) nv_evn(m)
 write(unit=filename(nn+4:),fmt=’(bn,a1)’) ‘_’
 write(unit=filename(nn+5:),fmt=’(bn,i2.2)’) nv_est(i_est)
 write(unit=filename(nn+7:),fmt=’(bn,a2)’) ‘Y_’
 write(unit=filename(nn+9:),fmt=’(bn,i3.3)’) j_m
 write(*,*) filename

69

 open(10,file=filename,form=’unformatted’)
 read(10) (((t(m,I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 do j=1,nyp
 do k=1,nz
 do i=1,nx

 i_m = i – multi(m,1)
 k_m = k – multi(m,3)
 if (i_m.lt.1) i_m = i_m + nx
 if (k_m.lt.1) k_m = k_m + nz

 b(m,I,j,k) = t(m,i_m,j,k_m)

 enddo
 enddo
 enddo

 enddo

 return
 end

c----+--
 subroutine get_CL(CL,AI,b)

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1

 real*8 AI(N_evn,N_evn)

 real*8 b(N_evn,nx,nyp,nz)
 real*8 CL(N_evn,nx,nyp,nz)

 CL(:,:,:,:)= 0.0

 do l=1,N_evn
 do k=1,nz
 do j=1,nyp
 do i=1,nx
 do m=1,N_evn
 CL(l,i,j,k)=CL(l,i,j,k)+AI(l,m)*b(m,i,j,k)
 enddo
 enddo
 enddo
 enddo
 enddo

 return
 end

c----+--
 subroutine do_LSE(CL,event,i_est)

70

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1
 common/domain/sx,sz
 common/mesh/y(nyp),dx,dz

 real*8 event(N_evn)
 real*8 CL(N_evn,nx,nyp,nz)

 real*8 g(nx,nyp,nz) ! estimated quantity

 character*50 filename

 g(:,:,:) = 0.0

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 do l=1,N_evn
 g(I,j,k) = g(I,j,k) + CL(l,I,j,k)*event(l)
 enddo
 enddo
 enddo
 enddo

 filename = ‘output_LSE’
 nn=index(filename,’E’)
 write(unit=filename(nn+1:),fmt=’(bn,i1.1)’) i_est
 write(*,*) filename
 open(10,file=filename,status=’unknown’,form=’unformatted’)
 write(10) (((g(I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 return
 end

c----+--
 subroutine out_put(event)

 include ‘param.h’
 common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1
 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz
 common/para/re

 real*8 event(N_evn)

 real*8 g(N_est,nx,nyp,nz)
 ! -> usually N_est=1,2,3 denote u,v,w

 real*8 um(nyp)

 character*50 filename

 real*8 l_ci(nx,nyp,nz)

71

c--- read the estimated field from file

 g(:,:,:,:) = 0.0

 do i_est=1,N_est
 filename = ‘output_LSE’
 nn=index(filename,’E’)
 write(unit=filename(nn+1:),fmt=’(bn,i1.1)’) i_est
 write(*,*) filename
 open(10,file=filename,status=’unknown’,form=’unformatted’)
 read(10) (((g(i_est,I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 enddo

c--- read averaged statistics
 open(10,file=’../01_mean/output.dat’,status=’old’)
 do j=1,nyp
 read(10,200)
 & dummy,um(j),dummy,dummy,dummy,dummy,dummy,
 & dummy,dummy,dummy,dummy,dummy,dummy
 enddo
200 format(13(e12.5,x))
 close(10)

c--- total velocity

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 g(1,i,j,k) = g(1,i,j,k)+um(j)
 enddo
 enddo
 enddo

c--- write estimated velocity field

 open(10,file=’u.dat’,status=’unknown’,form=’unformatted’)
 write(10) (((g(1,I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 open(10,file=’v.dat’,status=’unknown’,form=’unformatted’)
 write(10) (((g(2,I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 open(10,file=’w.dat’,status=’unknown’,form=’unformatted’)
 write(10) (((g(3,I,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

c--- calculate lambda_ci

 call get_lambda_ci(g,l_ci)

 open(11,file=’l_ci.dat’,status=’unknown’)

72

 write(11,*) “variables=x,y,z,lci,u,v,w,uf”
 write(11,*)
 >’zone i=’,nx/3*2-nx/3+1,’, j=’,nyp,’,k=’,nz/3*2-nz/3+1,’,f=point’

 do k=nz/3,nz/3*2
 do j=1,nyp
 do i=nx/3,nx/3*2
 yy=y(j)*re
 xx=real(i-1)*dx*re
 zz=real(k-1)*dz*re
 write(11,102) xx,yy,zz,l_ci(I,j,k)
 > ,(g(m,I,j,k),m=1,3)
 > , g(1,i,j,k)-um(j)
102 format(8(e12.5,x))
 enddo
 enddo
 enddo
 close(11)

 return
 end

c----+--
 subroutine get_lambda_ci(g,l_ci)

 include ‘param.h’
 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz
 common/para/re

 real*8 g(3,nx,nyp,nz)
 !-> 1,2,3 denote u,v,w

 real*8 l_ci(nx,nyp,nz)

 real*8 d11(nx,nyp,nz),d12(nx,nyp,nz),d13(nx,nyp,nz)
 real*8 d21(nx,nyp,nz),d22(nx,nyp,nz),d23(nx,nyp,nz)
 real*8 d31(nx,nyp,nz),d32(nx,nyp,nz),d33(nx,nyp,nz)

 real*8 q1(nx,nyp,nz)
 real*8 q2(nx,nyp,nz)
 real*8 q3(nx,nyp,nz)

c--- d_ij = dq_i/dx_j

 call init_partial
 call fftw_ini

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 q1(I,j,k) = g(1,I,j,k)
 enddo
 enddo

73

 enddo

 call partial(1,q1,d11)
 call partial(2,q1,d12)
 call partial(3,q1,d13)

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 q2(I,j,k) = g(2,I,j,k)
 enddo
 enddo
 enddo

 call partial(1,q2,d21)
 call partial(2,q2,d22)
 call partial(3,q2,d23)

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 q3(I,j,k) = g(3,I,j,k)
 enddo
 enddo
 enddo

 call partial(1,q3,d31)
 call partial(2,q3,d32)
 call partial(3,q3,d33)

c--- calculating lambda_ci

 l_ci(:,:,:) = 0.0d0 ! l_ci

 do 1 j=1,nyp
 do 1 k=1,nz
 do 1 i=1,nx
 e11 = d11(i,j,k)
 e12 = d12(i,j,k)
 e13 = d13(i,j,k)
 e21 = d21(i,j,k)
 e22 = d22(i,j,k)
 e23 = d23(i,j,k)
 e31 = d31(i,j,k)
 e32 = d32(i,j,k)
 e33 = d33(i,j,k)
 p = - (e11 + e22 + e33)
 q = 0.5*(p**2 – (
 & +e11**2
 & +e22**2
 & +e33**2
 & +e12*e21*2.0
 & +e13*e31*2.0
 & +e23*e32*2.0

74

 &)
 &)
 r = -(- e13*e22*e31 + e12*e23*e31
 & + e13*e21*e32 – e11*e23*e32
 & - e12*e21*e33 + e11*e22*e33
 &)

 r0 = r + 2./27.*p**3 – 1./3.*p*q
 q0 = q – 1./3. *p**2
 dis = (r0/2.)**2 + (q0/3.)**3
 if (dis.gt.0.0) then
 reg1 = sqrt(dis)
 reg2 = reg1 – r0/2.0
 reg3 = reg1 + r0/2.0
 if (reg2 .gt. 0.0) then
 reg2 = reg2**(1./3.)
 else
 reg2 = -(-reg2)**(1./3.)
 endif
 if (reg3 .gt. 0.0) then
 reg3 = reg3**(1./3.)
 else
 reg3 = -(-reg3)**(1./3.)
 endif
 l_ci(I,j,k) = sqrt(3.)/2.0*(reg2 + reg3)
 else
 l_ci(I,j,k) = 0.0
 endif
 1 continue

 return
 end

75

APPENDIX C

NAVIER-STOKES SOLUTION

76

This code solves the incompressible, constant viscosity Navier-Stokes equation in a
channel flow geometry of height h and imposed pressure gradient dP/dx=1. The variables
in the code are all made non-dimensional by the wall friction velocity and the viscous
length scale, c.f. equations (1.1 a) and (1.1 b) in the text. The solution is performed by
Fourier spectral decomposition in the x- and z-directions, and Chebychev polynomials in
the y-direction. The grid is 128 x 129 x 128.

Input variable to the code are:

u.ini, v.ini, w.ini (the initial condition given by the LSE code)

Output variables are fluctuating u, v and w velocities and pressure for every “idmpfrq”
iterations (the u,v,w and p values are typically written every 500 iterations which is
equivalent to 25 time units).idmpfrq and the total number of timesteps are defined in the
APPENDIX D code.

The time step is given by dt=1.25e-04. It is set in APPENDIX D.

The code calls the initial condition from the folder ic_data (refer “set directory from
argument” in code below).

!c-- 07/22/06
!c irstrt is removed.
!c to preserve second-order temporal accuarcy between succesive runs,
!c the nonlinear terms are read from the file such as fu.ini,
fcxx.ini, etc.
!c time history of cij is added.

!c-- 07/31/07
!c write pressure is added
!c n+1 and n-1 step fields are written to calculate time-derivatives

!c-- 09/19/09
!c actual pressure is written instead of dt*p
!c not to write fu.ini, fcxx.ini, etc

!c-- 09/27/09
!c read n_ini, time for succesive calculation

!c-- 10/09/09
!c change dPdx linearly in time

!c-- 10/19/09
!c employing dump_data logical variable

!c===
==
 program main

77

 use parameters
 use new_derivatives
 use wave_numbers_stuf
 use general_stuf
 use fftw_routines
 use xyzfft
!c---
--
!c main program for turbulent channel flow
!c allowing to split 1 or 2 dimensions over the processors
!c data storage: us(nyp,kcomy) = us(nyp,nkz,kxh) etc
!c---
--
 implicit none
 include 'mpif.h'

 complex(8), dimension (1:nyp,1:kcomy) :: us, vs, ws
 complex(8), dimension (1:nyp,1:kcomy) :: u, v, w
 complex(8), dimension (1:nyp,1:kcomy) :: pressure
 complex(8), dimension (1:nyp,1:kcomy) :: temp1,temp2,temp3
 complex(8), dimension (1:nyp,1:kcomy) :: temp

!c--- non-linear term at (n) and (n-1) steps
 complex(8), dimension (1:nyp,1:kcomy) :: fnm, gnm, hnm
 complex(8), dimension (1:nyp,1:kcomy) :: fn, gn, hn
 common/block1/ fnm, gnm, hnm
 common/block5/ fn, gn, hn

!c--- boundary conditions
 complex(8), dimension (1:kcomy) :: bctop, bcbot, pbctop, pbcbot

!c--- influence matrix for helmholtz eq
 real(8), dimension (0:ny,1:kcomy) :: a, ag, ac
 real(8), dimension (1:kcomy) :: wn, wng, wnc
 real(8), dimension (1:ny) :: wd, wl, wr

!c--- the flow variables in physical space
 real(8), dimension (1:nx,1:kcomx) :: srxxp,srxyp,srxzp
 real(8), dimension (1:nx,1:kcomx) :: sryyp,sryzp,srzzp
 real(8), dimension (1:nx,1:kcomx) :: dxtp, dytp, dztp
 real(8), dimension (1:nx,1:kcomx) :: rxxp, rxyp, rxzp
 real(8), dimension (1:nx,1:kcomx) :: ryyp, ryzp, rzzp
 real(8), dimension (1:nx,1:kcomx) :: omxp, omyp, omzp
 real(8), dimension (1:nx,1:kcomx) :: up, vp, wp

 real(8) :: cfl_max, div_max, re_m, time

!c--- for cpu time measuring
 real(4) :: cpu_start, cpu_end, cpu_proc, cpu_sum, cpu_max

!c--- mpi related constant
 integer ierr, nprocmpi
 integer mynum
 common/cbpar2/ mynum

78

!c--- indicies and coefficients
 integer :: i, iy, izx, it, in, n_ini
 integer :: ibp, ib, error
 real(8) :: g, sg, sa, con_1, con_2

!c--- input and output file names
 character(len=70), dimension (1:99) :: namein, nameout

!c--- fene-p model
 complex(8), dimension (1:nyp,1:kcomy) :: cxx,cxy,cxz,cyy,cyz,czz
 complex(8), dimension (1:nyp,1:kcomy) :: c_fnxx, c_fnxy, c_fnxz
 complex(8), dimension (1:nyp,1:kcomy) :: c_fnyy, c_fnyz, c_fnzz
 complex(8), dimension (1:nyp,1:kcomy) :: c_fnmxx,c_fnmxy,c_fnmxz
 complex(8), dimension (1:nyp,1:kcomy) :: c_fnmyy,c_fnmyz,c_fnmzz

!c--- pressure gradient change
 integer :: time_region
 real(8) :: re_tau_time
 real(8) :: dpdx_time

 logical :: dump_data

!c--- directory input (JRB)
 character*30 :: dirarg
 integer :: iargc

!c---
--
!c mpi initializations
!c---
--
 if (nproc > 1) then
 call mpi_init(ierr)
 if (ierr /= 0) stop "init 1"
 call mpi_comm_rank(mpi_comm_world, mynum, ierr)
 if (ierr /= 0) stop "init 2"
 call mpi_comm_size(mpi_comm_world, nprocmpi, ierr)
 if (ierr /= 0) stop "init 3"
 if (nprocmpi /= nproc) stop 'error nproc'
 if (mod(nxh,nproc) /= 0) stop " invalid nproc: see nxh (1)
"
 if (mod(nz,nproc) /= 0) stop " invalid nproc: see nz "
 else
 mynum = 0
 endif

!c----------------------------
!c set directory from argument
!c--------------------------------
 if (iargc().ne.1) stop "must set argument: <program> <######>"
 call getarg(1,dirarg)
 folder_in="ic_data"//trim(dirarg)//"/"
 folder_out="/scratch/pkvraman/output"//trim(dirarg)//"/"

79

 write(*,*) "folder_in > ", trim(folder_in)
 write(*,*) "folder_out > ", trim(folder_out)

!c---
--
!c setup
!c---
--
 call setstuf
 if(.not.solve_fenep_model .and. beta /= 1.d0) stop "beta"

!c---
--
!c define the input/output arrays
!c---
--
 namein(1) = "u"
 namein(2) = "v"
 namein(3) = "w"
 namein(4) = "cxx"
 namein(5) = "cxy"
 namein(6) = "cxz"
 namein(7) = "cyy"
 namein(8) = "cyz"
 namein(9) = "czz"
 namein(10) = "p"

 namein(11) = "fu"
 namein(12) = "fv"
 namein(13) = "fw"
 namein(14) = "fcxx"
 namein(15) = "fcxy"
 namein(16) = "fcxz"
 namein(17) = "fcyy"
 namein(18) = "fcyz"
 namein(19) = "fczz"

 nameout = namein

 do i = 1, 19
 namein(i) = trim(folder_in)//trim(namein(i))//".ini"
 nameout(i) = trim(folder_out)//trim(nameout(i))//"."
 enddo

!c---
--
!c initialisations for fft routines
!c---
--
 call xyzfft_ini
 call ccosexp_trig

!c---
--
!c set up the boundary conditions at y = [-1, 1] for channel flow

80

!c always check for consistency the pressure bcs for the zero mode
!c (dp/dy(1)-dp/dy(-1))*dyde = v(1) - v(-1)
!c---
--
 bctop = dcmplx(0.0d0, 0.0d0)
 bcbot = dcmplx(0.0d0, 0.0d0)
 pbctop = dcmplx(0.0d0, 0.0d0)
 pbcbot = dcmplx(0.0d0, 0.0d0)

 n_ini = 0 ! if n_ini is not 0, the initial files for nonlinear
terms at (n-1) step are required.
 time = 0.0d0

!c--- for interactive job
!c read (*,*) n_ini
!c read (*,*) time
 n_ini=0
 time=0.0

 write(*,*) mynum, n_ini, time
!c---

!c---
--
!c read initial data
!c---
--

 call var_scatter(u, namein(1))
 call var_scatter(v, namein(2))
 call var_scatter(w, namein(3))
!c if (n_ini .ne. 0) then
!c call var_scatter(fnm, namein(11)) ! for
continuous calculation 07/21/06
!c call var_scatter(gnm, namein(12))
!c call var_scatter(hnm, namein(13))
!c endif

 if (solve_fenep_model) then
 call var_scatter(cxx, namein(4))
 call var_scatter(cxy, namein(5))
 call var_scatter(cxz, namein(6))
 call var_scatter(cyy, namein(7))
 call var_scatter(cyz, namein(8))
 call var_scatter(czz, namein(9))
!c if (n_ini .ne. 0) then
!c call var_scatter(c_fnmxx, namein(14))
!c call var_scatter(c_fnmxy, namein(15))
!c call var_scatter(c_fnmxz, namein(16))
!c call var_scatter(c_fnmyy, namein(17))
!c call var_scatter(c_fnmyz, namein(18))
!c call var_scatter(c_fnmzz, namein(19))
!c endif
 endif

81

!c---
--
!c initialize the influence matrix in initial.
!c---
--
 call initial(pressure, temp, &
 bctop, bcbot, a, ag, ac, wn, wng, wnc, wd, wl, wr,
pbctop, pbcbot)

!c--- write simulation parameters

 if (nproc > 1) call mpi_barrier(mpi_comm_world, ierr)
 if (mynum == 0) then
 write(*,*)
 write(*,*) '------------------------------------', &
 ' parameters ', &
 '------------------------------------'
 write(*,*) 're_tau = ', re_tau
 if (scale_by_pi) then
 write(*,*) 'len_x = ', xl * acos(-1.0)
 write(*,*) 'len_z = ', zl * acos(-1.0)
 else
 write(*,*) 'len_x = ', xl
 write(*,*) 'len_z = ', zl
 endif
 write(*,*) 'nx = ', nx
 write(*,*) 'ny = ', ny
 write(*,*) 'nz = ', nz
 write(*,*) 'dt = ', dt
 write(*,*) 'nproc = ', nproc
 if (solve_fenep_model) then
 write(*,*) 'we_tau = ', we_tau
 write(*,*) 'beta = ', beta
 write(*,*) 'l_max = ', lmax
 write(*,*) 'diffusivity = ', diffusivity
 endif
 write(*,*)
 write(*,*) '------------------------------------', &
 ' program starts ', &
 '------------------------------------'
 write(*,*)
 endif

!c+++
++
!c main time stepping loop
!c+++
++

 call cpu_time(cpu_start)

 do it = n_ini + 1, n_ini + nsteps

82

!c---

!c calculate the vorticity, strain-rate tensor and velocity in
physical domain.
!c---

 call vort1(u, v, w, omxp, omyp, omzp)
 call gadot(u, v, w,
srxxp ,srxyp ,srxzp ,sryyp ,sryzp ,srzzp)

 call xyzfftsp(u, up)
 call xyzfftsp(v, vp)
 call xyzfftsp(w, wp)

 call divergence(div_max, srxxp, sryyp, srzzp)
 call cfl_number(cfl_max, up, vp, wp)

 if (mynum == 0) call mean_reynolds_number(re_m, u, time)
 if (mynum == 0) call time_history(up, vp, wp, time)

 if (mynum == 0) then
 write(*,100) it-1, time, re_m, div_max, cfl_max
100 format(' step =',i7,2x,': t =',e15.9,2x,' re_m
=',e15.9,2x, &
 ' div =',e15.9,2x,' cfl =',e15.9)
 endif

 time = time + dt

!c---

!c adams-bashforth for it > 1
!c bacward euler for it = 1 and read the array of filled zero
!c---

!c if (it == 1) then
 if (it == n_ini + 1) then
 con_1 = dt
 con_2 = 0.d0

 fnm=0.d0; gnm=0.d0; hnm=0.d0
 c_fnmxx=0.d0; c_fnmxy=0.d0; c_fnmxz=0.d0
 c_fnmyy=0.d0; c_fnmyz=0.d0; c_fnmzz=0.d0
 else
 con_1 = + 1.5d0*dt
 con_2 = - 0.5d0*dt
 endif

!c--- store spectral coefficient u^(n) to us
 forall(izx=1:kcomy, iy=1:nyp)
 us(iy,izx) = u(iy,izx)
 vs(iy,izx) = v(iy,izx)
 ws(iy,izx) = w(iy,izx)
 endforall

83

!c---

!c polymer stress
!c---

 if (solve_fenep_model) then

 call get_polymer_stress (cxx, cyy, czz, & !
in: cij at n, out: cij at n+1
 cxy, cxz, cyz, &
 c_fnxx, c_fnyy, c_fnzz, & !
out: polymer stress at n+1
 c_fnxy, c_fnxz, c_fnyz, &
 c_fnmxx, c_fnmyy, c_fnmzz, & !
fij at n-1 in step 1 of fenep
 c_fnmxy, c_fnmxz, c_fnmyz, &
 omxp, omyp, omzp, &
 srxxp, sryyp, srzzp, &
 srxyp, srxzp, sryzp, &
 up, vp, wp, &
 con_1, con_2, &
 ac, wnc, wd, wl, wr, &
 time)

!c--- update the polymer stress contrinution

 sa = (1.d0-beta)*(dt/2.d0)/re_tau
 do i = 1, kcomy

 u(:,i) = u(:,i) + sa*(x_der_1(c_fnxx(:,i),i) &
 + y_der_1(c_fnxy(:,i)) &
 + z_der_1(c_fnxz(:,i),i))

 v(:,i) = v(:,i) + sa*(x_der_1(c_fnxy(:,i),i) &
 + y_der_1(c_fnyy(:,i)) &
 + z_der_1(c_fnyz(:,i),i))

 w(:,i) = w(:,i) + sa*(x_der_1(c_fnxz(:,i),i) &
 + y_der_1(c_fnyz(:,i)) &
 + z_der_1(c_fnzz(:,i),i))
 enddo

 endif

!c+++
++
!c stage 1
!c compute the nonlinear terms for the momentum equations.
!c this part calculates the nonlinear term in
!c the skew-symmetric form.
!c i.e, u.grad u = 1/2 (u.grad u + div (uu))
!c evaluate all terms at old time, including viscous term
!c+++
++

84

 do i = 1, kcomx

!c--- -(u.grad (u))/2 part

 dxtp(:,i) = -(up(:,i)* srxxp(:,i) &
 + vp(:,i)*(srxyp(:,i)-omzp(:,i)) &
 + wp(:,i)*(srxzp(:,i)+omyp(:,i)) &
)/4.0d0
 dytp(:,i) = -(vp(:,i)* sryyp(:,i) &
 + up(:,i)*(srxyp(:,i)+omzp(:,i)) &
 + wp(:,i)*(sryzp(:,i)-omxp(:,i)) &
)/4.0d0

 dztp(:,i) = -(wp(:,i)* srzzp(:,i) &
 + up(:,i)*(srxzp(:,i)-omyp(:,i)) &
 + vp(:,i)*(sryzp(:,i)+omxp(:,i)) &
)/4.0d0

!c--- -(div (uu))/2 part : gradient will be applied later

 rxxp(:,i) = -up(:,i)*up(:,i)/2.d0
 rxyp(:,i) = -up(:,i)*vp(:,i)/2.d0
 rxzp(:,i) = -up(:,i)*wp(:,i)/2.d0
 ryyp(:,i) = -vp(:,i)*vp(:,i)/2.d0
 ryzp(:,i) = -vp(:,i)*wp(:,i)/2.d0
 rzzp(:,i) = -wp(:,i)*wp(:,i)/2.d0

 enddo

 call xyzfftps(dxtp, fn)
 call xyzfftps(dytp, gn)
 call xyzfftps(dztp, hn)

 call xyzfftps(rxxp, c_fnxx)
 call xyzfftps(rxyp, c_fnxy)
 call xyzfftps(rxzp, c_fnxz)
 call xyzfftps(ryyp, c_fnyy)
 call xyzfftps(ryzp, c_fnyz)
 call xyzfftps(rzzp, c_fnzz)

 g = dt/(2*re_tau) * beta ! for newtonian fluid beta = 1.d0

 do i = 1, kcomy
 fn(:,i) = fn(:,i) + x_der_1(c_fnxx(:,i),i) +
y_der_1(c_fnxy(:,i)) + z_der_1(c_fnxz(:,i),i)
 gn(:,i) = gn(:,i) + x_der_1(c_fnxy(:,i),i) +
y_der_1(c_fnyy(:,i)) + z_der_1(c_fnyz(:,i),i)
 hn(:,i) = hn(:,i) + x_der_1(c_fnxz(:,i),i) +
y_der_1(c_fnyz(:,i)) + z_der_1(c_fnzz(:,i),i)

!c--- adams - bashforth integration
 u(:,i) = u(:,i) + con_1*fn(:,i) + con_2*fnm(:,i)
 v(:,i) = v(:,i) + con_1*gn(:,i) + con_2*gnm(:,i)
 w(:,i) = w(:,i) + con_1*hn(:,i) + con_2*hnm(:,i)

85

!c--- save the convection term for the next time-step in adams-
bashford
 fnm(:,i) = fn(:,i)
 gnm(:,i) = gn(:,i)
 hnm(:,i) = hn(:,i)

!c--- add viscous corrections to u(n), v(n), w(n)
 u(:,i)=u(:,i) +
g*(x_der_2(us(:,i),i)+y_der_1(y_der_1(us(:,i)))+z_der_2(us(:,i),i))
 v(:,i)=v(:,i) +
g*(x_der_2(vs(:,i),i)+y_der_1(y_der_1(vs(:,i)))+z_der_2(vs(:,i),i))
 w(:,i)=w(:,i) +
g*(x_der_2(ws(:,i),i)+y_der_1(y_der_1(ws(:,i)))+z_der_2(ws(:,i),i))

 enddo

!c+++
++
!c stage 2
!c the pressure step (n + 1/3 to n + 2/3)
!c+++
++

 call get_pressure (pressure, u, v, w, &
 pbctop, pbcbot, a, wn, wd, wl, wr, &
 bctop, bcbot, ag, wng)

!c--- update velocity at (n+2/3)
 forall(i = 1:kcomy)
 u(:,i) = u(:,i) - x_der_1(pressure(:,i),i)
 v(:,i) = v(:,i) - y_der_1(pressure(:,i))
 w(:,i) = w(:,i) - z_der_1(pressure(:,i),i)
 endforall

!c--- apply constant pressuregradient in x-direction
!c if (mynum==0) u(1,1) = u(1,1) + dt

!c--- pressure gradient change
 if (mynum==0) then

 time_region = 1
 if (time.ge.time_s .and. time.lt.time_f) time_region = 2
 if (time.ge.time_f) time_region = 3

 select case(time_region)
 case(1)
 dpdx_time = 1.0
 case(2)
 dpdx_time = ((re_tau_final/re_tau)**2 -
1.0)/(time_f-time_s)*(time-time_s)+1.0
 case(3)
 dpdx_time = (re_tau_final/re_tau)**2

86

 end select

 u(1,1) = u(1,1) + dt * dpdx_time

 endif

!c+++
++++++
!c stage 3
!c calculate velocities at (n + 1)
!c+++
++++++

!c--- u^(n+1)
 sg = -2.0d0*re_tau/dt/beta
 forall(i = 1:kcomy)
 temp(:,i) = sg * u(:,i)
 temp(nyp-3:nyp,i) = (0.d0,0.d0)
 endforall

 in = 0; g = 2.0d0*re_tau/dt/beta; ib = 0
 call solve(temp, u, & ! input/output
 g, dyde, in, & ! input
 bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl,
wr) ! input/output
!c--- v^(n+1)
 sg = -2.0d0*re_tau/dt/beta
 forall(i = 1:kcomy)
 temp(:,i) = sg * v(:,i)
 temp(nyp-3:nyp,i) = (0.d0,0.d0)
 endforall

 in = 0; g = 2.0d0*re_tau/dt/beta; ib = 0
 call solve(temp, v, & ! input/output
 g, dyde, in, & ! input
 bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl,
wr) ! input/output
!c--- w^(n+1)
 sg = -2.0d0*re_tau/dt/beta
 forall(i = 1:kcomy)
 temp(:,i) = sg * w(:,i)
 temp(nyp-3:nyp,i) = (0.d0,0.d0)
 endforall

 in = 0; g = 2.0d0*re_tau/dt/beta; ib = 0
 call solve(temp, w, & ! input/output
 g, dyde, in, & ! input
 bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl,
wr) ! input/output

!c---
--
!c output of data required for restart

87

!c---
--

 dump_data = .false.
 dump_data = ((mod(it,idmpfrq) == 0) .or. (it == nsteps +
n_ini))

 if (time.ge.time_s .and. time.le.time_f) then

 if (mod(int((time-time_s)/dt+0.5)*60, int((time_f-
time_s)/dt+0.5))==0 &
) dump_data = .true.

 endif

 if (dump_data &

! if (mod(it,idmpfrq) == 0 .or. it == nsteps + n_ini &
!c .or. mod(it-1,idmpfrq) == 0 .or. mod(it+1,idmpfrq) == 0 &
) then
 call dooutputs(u, nameout(1), it)
 call dooutputs(v, nameout(2), it)
 call dooutputs(w, nameout(3), it)
 call dooutputs(pressure/dt, nameout(10), it)

! call dooutputs(fnm, nameout(11), it)
! call dooutputs(gnm, nameout(12), it)
! call dooutputs(hnm, nameout(13), it)
 if (solve_fenep_model) then
 call dooutputs(cxx, nameout(4), it)
 call dooutputs(cxy, nameout(5), it)
 call dooutputs(cxz, nameout(6), it)
 call dooutputs(cyy, nameout(7), it)
 call dooutputs(cyz, nameout(8), it)
 call dooutputs(czz, nameout(9), it)

! call dooutputs(c_fnmxx, nameout(14), it)
! call dooutputs(c_fnmxy, nameout(15), it)
! call dooutputs(c_fnmxz, nameout(16), it)
! call dooutputs(c_fnmyy, nameout(17), it)
! call dooutputs(c_fnmyz, nameout(18), it)
! call dooutputs(c_fnmzz, nameout(19), it)
 endif
 endif

 enddo ! time-steps

!c--- cpu time for all processors
 call cpu_time(cpu_end)
 cpu_proc = cpu_end - cpu_start

 if (nproc > 1) then
 call mpi_reduce(cpu_proc, cpu_sum, 1, mpi_real, &
 mpi_sum, 0, mpi_comm_world, ierr)
 call mpi_reduce(cpu_proc, cpu_max, 1, mpi_real, &

88

 mpi_max, 0, mpi_comm_world, ierr)
 else
 cpu_sum = cpu_proc
 cpu_max = cpu_proc
 endif

 if (mynum == 0) then
 write(*,*)
 write(*,*) ' total cpu time over all processors =
',int(cpu_sum/60.+1),' mins'
 write(*,*) ' wall clock time =
',int(cpu_max/60.+1),' mins'
 write(*,*)
 endif

!c+++
++
!c end main loop
!c+++
++

 if (nproc > 1) then
 call mpi_barrier(mpi_comm_world, ierr)
 call mpi_finalize(ierr)
 endif

 end program main

!c===
=
 subroutine setstuf
 use parameters
 use wave_numbers_stuf
 use general_stuf

 implicit none

 integer mynum
 common/cbpar2/ mynum

 integer j, jstart, jz, k, keff, nxi, nyi, nzi
 real(8) wavzall(nz)
 real(8) alpha, bhta, rj, rn

!c---
--
!c calculate the resolvable wave nos. in x:
!c assumes length xl has been non-dimensionalized with the length
yhl.
!c---
--
 pi = 4.d0 * datan(1.d0)

 if (scale_by_pi) then

89

 alpha = 2.0d0/xl
 bhta = 2.0d0/zl
 else
 alpha = 2.0d0*pi/xl
 bhta = 2.0d0*pi/zl
 endif
!c---
--
!c each processor, in the spectral domain consists of data in
!c the form : complex a(nyp,kcomy) = a(nyp,nkz,kxh)
!c so for the x-derivative, between 1 and nxh/nproc wave numbers
!c are used per processor for nproc larger and smaller than
!c nxh respectively
!c for the z derivatives, between (nz*nxh)/nproc and nz wave numbers
!c are used per processor for nproc larger and smaller than
!c nxh respectively
!c---
--
 do k = 1, kxh
 keff = (mynum*nxh)/nproc + k - 1
 wavx(k) = dfloat(keff)*alpha
 cwavx(k) = dcmplx(0.0d0, 1.0d0)*wavx(k)
 wavx2(k) = -wavx(k)*wavx(k)
 enddo
!c---
--
!c first calculate all possible wavz
!c then select proper values for current processor mynum
!c distinguish nproc > nxh and nproc <= nxh
!c---
--
 do j = 1, max0(1,nz/2)
 wavzall(j) = dfloat(j-1)*bhta
 enddo
 do j = nz/2 + 1, nz
 wavzall(j) = dfloat(j-2*(nz/2)-1)*bhta
 enddo

 if (kxh == 1) then
 jz = mod(mynum,kproc_yz)
 jstart = jz * kcomy
 else
 jstart = 0
 endif

 do j = 1, nkz
 wavz(j) = wavzall(j+jstart)
 cwavz(j) = dcmplx(0.0d0, 1.0d0)*wavz(j)
 wavz2(j) = - wavz(j)*wavz(j)
 enddo

 end subroutine setstuf

!c===
==

90

 subroutine diverg(u, v, w, div)
!c---
--
!c this subroutine calculates fourier/chebyshev coeff of divergence
!c input and output are fourier/chebyshev coefficients.
!c---
--
 use parameters, only : nyp,kcomy
 use new_derivatives
 implicit none

 complex(8),intent(in), dimension (nyp,kcomy) :: u, v, w
 complex(8),intent(out), dimension (nyp,kcomy) :: div

 integer :: i

 forall(i = 1:kcomy)

div(:,i)=x_der_1(u(:,i),i)+y_der_1(v(:,i))+z_der_1(w(:,i),i)
 endforall

 end subroutine diverg

!c===
==
 subroutine vort1(ux, uy, uz, omxp, omyp, omzp)
!c---
--
!c calculate vorticity components and transformed to physical values
!c---
--
 use parameters
 use new_derivatives
 use xyzfft
 implicit none

 complex(8),intent(in), dimension (nyp,kcomy):: ux, uy, uz
 real(8) ,intent(out),dimension (nx,kcomx) :: omxp,omyp,omzp

 complex(8),dimension (nyp,kcomy) :: temp
 integer :: i

 forall(i = 1:kcomy)
 temp(:,i) = x_der_1(uy(:,i),i) - y_der_1(ux(:,i))
 endforall
 call xyzfftsp(temp, omzp)

 forall(i = 1:kcomy)
 temp(:,i) = y_der_1(uz(:,i)) - z_der_1(uy(:,i),i)
 endforall
 call xyzfftsp(temp, omxp)

 forall(i = 1:kcomy)
 temp(:,i) = z_der_1(ux(:,i),i) - x_der_1(uz(:,i),i)
 endforall

91

 call xyzfftsp(temp, omyp)

 end subroutine vort1

!c===
==
 subroutine gadot(ux,uy,uz,srxxp,srxyp,srxzp,sryyp,sryzp,srzzp)
!c---
--
!c calculate strain-rate tensors and transformed to physical values
!c (e.g.) srxyp = dux/dy + duy/dx
!c---
--
 use parameters
 use new_derivatives
 use xyzfft
 implicit none

 complex(8),intent(in),dimension(nyp,kcomy) :: ux, uy, uz
 real(8), intent(out),dimension(nx,kcomx) :: srxxp, srxyp, srxzp
&
 ,sryyp, sryzp, srzzp

 complex(8),dimension(nyp,kcomy) :: temp
 integer :: i

 forall(i = 1:kcomy)
 temp(:,i) = 2.d0*x_der_1(ux(:,i),i)
 endforall
 call xyzfftsp(temp,srxxp)

 forall(i = 1:kcomy)
 temp(:,i) = 2.d0*y_der_1(uy(:,i))
 endforall
 call xyzfftsp(temp,sryyp)

 forall(i = 1:kcomy)
 temp(:,i) = 2.d0*z_der_1(uz(:,i),i)
 endforall
 call xyzfftsp(temp,srzzp)

 forall(i = 1:kcomy)
 temp(:,i) = x_der_1(uy(:,i),i) + y_der_1(ux(:,i))
 endforall
 call xyzfftsp(temp,srxyp)

 forall(i = 1:kcomy)
 temp(:,i) = x_der_1(uz(:,i),i) + z_der_1(ux(:,i),i)
 endforall
 call xyzfftsp(temp,srxzp)

 forall(i = 1:kcomy)
 temp(:,i) = z_der_1(uy(:,i),i) + y_der_1(uz(:,i))
 endforall
 call xyzfftsp(temp,sryzp)

92

 end subroutine gadot

!c===
==
 subroutine var_scatter(varo, nameins)
 use parameters
 implicit none
 include 'mpif.h'

 complex(8) varo(nyp,kcomy)
 character(len=*), intent(in) :: nameins

 integer mynum
 common/cbpar2/ mynum

 complex(8), dimension (nyp,nz,nxh) :: vari
 integer i, icomy, ierr, j, k

 if (mynum == 0) then
 write(*,*) ' reading initial data : ', nameins

open(21,file=nameins,status="old",action="read",form='unformatted')
 read(21) (((vari(j,k,i),j=1,nyp),k=1,nz),i=1,nxh)
 close(21)
 endif

 if (nproc > 1) then
 call mpi_barrier(mpi_comm_world, ierr)
 call mpi_scatter(vari, kdata, mpi_double_complex, varo,
kdata, mpi_double_complex, &
 0, mpi_comm_world, ierr)
 elseif (nproc == 1) then
 do i = 1, nxh
 do k = 1, nz
 do j = 1, nyp
 icomy = k + (i-1)*nz
 varo(j,icomy) = vari(j,k,i)
 enddo
 enddo
 enddo
 endif

 end subroutine var_scatter

!c===
 subroutine dooutputs(qs, nameouts, it)
!c---
!c gather the data of the processors to processor 0 for output
!c and write in a file
!c---
 use parameters
 use general_stuf
 use xyzfft
 implicit none

93

 include 'mpif.h'

 complex(8),intent(in),dimension(nyp,kcomy) :: qs
 character(len=70),intent(in) :: nameouts
 character(len=70) :: filename

 integer mynum
 common/cbpar2/ mynum
 complex(8),dimension (nyp,nz,nxh) :: qsall
 integer :: i, icomy, ierr, j, k, it

 if (nproc > 1) then
 call mpi_barrier(mpi_comm_world, ierr)
 call mpi_gather(qs, kdata, mpi_double_complex, qsall,
kdata, mpi_double_complex, 0, &
 mpi_comm_world, ierr)
 elseif (nproc == 1) then
 do i = 1, nxh
 do k = 1, nz
 do j = 1, nyp
 icomy = k + (i-1)*nz
 qsall(j,k,i) = qs(j,icomy)
 enddo
 enddo
 enddo
 endif

 if (mynum == 0) then

 filename = nameouts
 i=index(filename,'.')
! write(unit=filename(i+1:),fmt='(bn,i5.5)') it
! write(unit=filename(i+1:),fmt='(bn,i6.6)') it
 write(unit=filename(i+1:),fmt='(bn,i7.7)') it
 write(*,*) 'writing file: ', filename

open(31,file=filename,status="unknown",action="write",form='unformatted
')
 write(31) (((qsall(j,k,i),j=1,nyp),k=1,nz),i=1,nxh)
 close(31)
 endif

 if (nproc > 1) call mpi_barrier(mpi_comm_world, ierr)

 end subroutine dooutputs

!c===
! subroutine mean_reynolds(spec, name, time)
 subroutine mean_reynolds_number(re_m, spec, time)
 use parameters
 use general_stuf
 implicit none

 complex(8), intent(in), dimension (nyp,kcomy) :: spec

94

! character(len=*), intent(in) :: name
 real(8) time

 real(8) :: re_m ! = u_m*(2h)/nu
 integer :: iy

 re_m = 0.d0
 do iy = 0, nyp-1, 2
 re_m = re_m + real(spec(iy+1,1),8)/dble(1-iy*iy)*2.0d0
 enddo
 re_m = re_m * re_tau

 open (10, file=trim(folder_out)//'time_hist_re_m.dat',
position="append", action="write")
 write(10,"(e15.9,x,e15.9)") time, re_m
 close(10,status="keep")

 end subroutine mean_reynolds_number

!c===
 subroutine cfl_number(cfl_max, up, vp, wp)
 use parameters
 use general_stuf
 implicit none
 include 'mpif.h'

 real(8), dimension (1:nx,1:kcomx) :: up, vp, wp

 real(8) :: cfl_max, cfl_max_proc, cfl_local
 real(8) :: delta_x, delta_z, delta_y

 integer i, j, k, icomx, ierr

 pi = 4.d0 * datan(1.d0)

 if (scale_by_pi) then
 delta_x = xl * pi / dble(nx)
 delta_z = zl * pi / dble(nz)
 else
 delta_x = xl / dble(nx)
 delta_z = zl / dble(nz)
 endif

 cfl_max_proc = 0.d0

 do icomx = 1, kcomx
 do i = 1, nx

 j = mod(icomx - 1, nyp) + 1

 delta_y = cos(dble(j-1)*pi/dble(ny)) &
 - cos(dble(j)*pi/dble(ny))

 cfl_local = abs(up(i,icomx))/delta_x &
 + abs(vp(i,icomx))/delta_y &

95

 + abs(wp(i,icomx))/delta_z
 if (cfl_local .gt. cfl_max_proc) cfl_max_proc =
cfl_local
 enddo
 enddo

 cfl_max_proc = cfl_max_proc * dt

 if (nproc > 1) then
 call mpi_reduce(cfl_max_proc, cfl_max, 1,
mpi_double_precision, &
 mpi_max, 0, mpi_comm_world, ierr)
 else
 cfl_max = cfl_max_proc
 endif

 end subroutine cfl_number

!c===
 subroutine time_history(up, vp, wp, time)
 use parameters
 use general_stuf
 implicit none

 real(8), dimension (1:nx,1:kcomx) :: up, vp, wp
 real(8) time
 integer :: i, j, k, icomx(4)

!c--- monitoring points
 i = 1
 k = 1 ! should be less than kz

 j = 2
 icomx(1) = (k - 1)*nyp + j

 j = 10
 icomx(2) = (k - 1)*nyp + j

 j = 30
 icomx(3) = (k - 1)*nyp + j

 j = 65
 icomx(4) = (k - 1)*nyp + j

 open (10, file=trim(folder_out)//'time_hist_u.dat',
position="append", action="write")
 write(10, 100) time, (up(i,icomx(k)),k=1,4)
 close(10, status="keep")

 open (10, file=trim(folder_out)//'time_hist_v.dat',
position="append", action="write")
 write(10, 100) time, (vp(i,icomx(k)),k=1,4)
 close(10, status="keep")

96

 open (10, file=trim(folder_out)//'time_hist_w.dat',
position="append", action="write")
 write(10, 100) time, (wp(i,icomx(k)),k=1,4)
 close(10, status="keep")

100 format(5(e15.9,x))

 end subroutine time_history

!c===
 subroutine divergence(div_max, srxxp, sryyp, srzzp)

 use parameters
 use general_stuf
 implicit none
 include 'mpif.h'

 real(8), dimension (1:nx,1:kcomx) :: srxxp,sryyp,srzzp
 real(8) :: div_max, div_max_proc, div_local
 integer :: i, icomx, ierr

 div_max_proc = 0.d0

 do icomx = 1, kcomx
 do i = 1, nx
 div_local = srxxp(i,icomx) + sryyp(i,icomx) +
srzzp(i,icomx)
 if (div_local .gt. div_max_proc) div_max_proc =
div_local
 enddo
 enddo

 div_max_proc = 0.5 * div_max_proc

 if (nproc > 1) then
 call mpi_reduce(div_max_proc, div_max, 1,
mpi_double_precision, &
 mpi_max, 0, mpi_comm_world, ierr)
 else
 div_max = div_max_proc
 endif

 end subroutine divergence

97

APPENDIX D

98

This code defines all the parameters used in APPENDIX C.

!==
 module parameters
!==

!--
-
! parameters for a specific problem
! nype array size in y-direction
! nproc number of processors, which has to fulfil
! 1) nxh * nz / nproc is integer
! 2) nxh / nproc is integer
! 3) nype / nproc is integer
! 4) nz / nproc is integer
!--
-

 integer, parameter :: nproc = 64 ! number of processors

 integer, parameter :: nx = 128 ! number of points in x-direction
 integer, parameter :: ny = 128 ! number of points in y-direction
 integer, parameter :: nz = 128 ! number of points in z-direction
 integer, parameter :: nxh = nx/2
 integer, parameter :: nyh = ny/2
 integer, parameter :: nyp = ny+1
! integer, parameter :: nyp_n = ny_n+1
 integer, parameter :: nype = nyp

!--
-
! derived parameters
! kcomx number of yz data per proc for x-array
! kcomy number of zx data per proc for y-array
! kcomz number of xy data per proc for z-array
! kdata number of data per proc
! kproc_yz number of procs for the yz communication
! = number of procs to store z-info for y-array
! kproc_zx number of procs for the yz communication = nproc /
kproc_zx
!--
-

 integer, parameter :: kcomx = (nz*nype)/nproc
 integer, parameter :: kcomy = (nz*nxh)/nproc
 integer, parameter :: kcomz = (nype*nxh)/nproc
 integer, parameter :: kdata = nyp*kcomy
 integer, parameter :: kproc_yz = 1+(nproc-1)/nxh
 integer, parameter :: kproc_zx = nxh

 integer, parameter :: kxh = 1 + (kcomy-1)/nz
 integer, parameter :: kz = nz / nproc
 integer, parameter :: nkz = kcomy/kxh

 end module parameters

99

!==
 module general_stuf
!==

! character*8 :: dirarg
! integer :: iargc
!
character(len=100),parameter::folder_in="ic_data"//trim(dirarg)//"/"
!
character(len=100),parameter::folder_out="/../scratch/output"//trim(dir
arg)//"/"
 character(len=100) :: folder_in
 character(len=100) :: folder_out
 real(8), parameter :: re_tau = 395.d0 ! friction reynolds
number
 integer, parameter :: nsteps = 10000 ! total time steps
 integer, parameter :: idmpfrq = 500 ! frequency to dump
restart files
 real(8), parameter :: dt = 1.25e-04 ! time step
forintegration

 real(8), parameter :: re_tau_final = 395.d0 ! re_tau will be
changed to this value
 real(8), parameter :: time_s = 1d8 ! re_tau will be
changed from this time
 real(8), parameter :: time_f = 1d8 + 10.0 ! re_tau change
will be terminated at this time

 logical, parameter :: scale_by_pi = .true. ! if true, acutal
xl = xl*pi
 real(8), parameter :: xl = 2.0d0 ! length in x -
periodic direction
 real(8), parameter :: zl = 1.0d0 ! length in z -
periodic direction
 real(8), parameter :: yhl = 2.0d0 ! length in
nonhomogeneous (y) direction

 real(8), parameter :: dyde = 2.0d0/yhl ! y-scaling factor

 real(8) :: pi

!--
--
! fenep model parameters
!--
--

 logical, parameter :: solve_fenep_model = .false. ! if false,
set beta to be 1.d0
 real(8), parameter :: we_tau = 25.00d0
 real(8), parameter :: beta = 1.00d0
 real(8), parameter :: lmax = 30.00d0 ! b=lmax**2

100

 real(8), parameter :: diffusivity = 0.02d0

 real(8), parameter :: we = we_tau / re_tau
 real(8), parameter :: diffusivity_factor = 2.d0 / dt /
diffusivity
 real(8), parameter :: lmax_square = lmax * lmax

 end module general_stuf

!c===
===
 module wave_numbers_stuf
!c===
===

 use parameters, only : nkz, kxh
 implicit none
 private
 public :: wavz, wavx, cwavz, cwavx, wavz2, wavx2

 real(8), dimension (nkz) :: wavz
 real(8), dimension (kxh) :: wavx

 complex(8), dimension (nkz) :: cwavz
 complex(8), dimension (kxh) :: cwavx

 real(8), dimension (nkz) :: wavz2
 real(8), dimension (kxh) :: wavx2

 end module wave_numbers_stuf

!c===
======
 module new_derivatives
!c===
======

 use parameters
 use wave_numbers_stuf

 implicit none
 private

 public :: x_der_1, x_der_2, y_der_1, z_der_1, z_der_2

 contains

!--

! fisrt and second derivatives in x-dir
! f and df are fourier/chebyshev coefficients.
!--

 complex(8) pure function x_der_1(f, icomy) result (df)

101

 implicit none

 integer, intent(in) :: icomy
 complex(8), intent(in), dimension (1:nyp) :: f
 dimension df(1:nyp)
 integer ix

 ix = (icomy - 1) / nz + 1

 df = cwavx(ix)*f

 end function x_der_1

 complex(8) pure function x_der_2(f, icomy) result
(ddf)
 implicit none

 integer, intent(in) :: icomy
 complex(8), intent(in), dimension (1:nyp) :: f
 dimension ddf(1:nyp)
 integer ix

 ix = (icomy - 1) / nz + 1

 ddf = wavx2(ix)*f

 end function x_der_2

!--

! df = df/dy (y = the chebyshev direction)
! f and df are fourier/chebyshev coefficients.
!--

 complex(8) pure function y_der_1(f) result (df)
 implicit none

 complex(8), intent(in), dimension (1:nyp) :: f
 dimension df(1:nyp)
 integer :: iy

 df(ny+1) = (0.0d0,0.0d0)
 df(ny) = dble(2*ny)*f(nyp)
 do iy = ny-1, 2, -1
 df(iy) = df(iy+2) + dble(2*iy)*f(iy+1)
 enddo
 df(1) = 0.5d0*df(3) + f(2)

 end function y_der_1

!--

! fisrt and second derivatives in z-dir

102

! f and df are fourier/chebyshev coefficients.
!--

 complex(8) pure function z_der_1(f, icomy) result
(df)
 implicit none

 integer, intent(in) :: icomy
 complex(8), intent(in), dimension (1:nyp) :: f
 dimension df(1:nyp)
 integer ix, iz

 iz = mod(icomy-1, nz) + 1
 ix = (icomy - 1) / nz + 1

 df = cwavz(iz)*f

 end function z_der_1

 complex(8) pure function z_der_2(f, icomy) result
(ddf)
 implicit none

 integer, intent(in) :: icomy
 complex(8), intent(in), dimension (1:nyp) :: f
 dimension ddf(1:nyp)

 integer ix, iz

 iz = mod(icomy-1, nz) + 1
 ix = (icomy - 1) / nz + 1

 ddf = wavz2(iz)*f

 end function z_der_2

 end module new_derivatives

103

APPENDIX E

VISUALIZATION CODE

104

This code calculates λci (complex eigen value of velocity gradient tensor) for visualizing

vortices. It also writes the output velocity files in a readable (tecplot) format.

Grid:128 x 129 x 128;

Reτ=395;

Language: Fortran 95;

Machine it ran on: Saguaro (ASU high performance computing center);

Number of processors: 1.

Input parameters: u, v, and w components of velocity, components of velocity gradient

tensor

Output parameters: λci for various t+.

c
c--- write relative value of lambda_ci to its maximum at each flow
field
c
 program channel_post

 include 'param.h'

 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz
 common/para/re
 common/nstep/n_start, n_final, n_skip

 ! directory input (JRB)
 character*30 :: curdir
 integer :: iargc

 if (iargc().ne.1) stop "must set argument: <program> <######>"
 call getarg(1,curdir)
 write(*,*) "current directory > ", trim(curdir)

c--- simulation parameters
 re = 395.
! re = 180.
! re = 110.

 pi = acos(-1.0)
! sx = 4.*pi !2.*pi !4.*pi !2.*pi ! 4.*pi
! sz = 4.*pi/3 !1.*pi !4.*pi/3 !1./1.*pi ! 1./1.*pi

105

 sx=2.*pi
 sz=1.*pi

c--

! read(*,*) n_start
! read(*,*) n_final
! read(*,*) n_skip

 n_start = 500 !0
 n_final = 10000 !5000 !1000
 n_skip = 500 !100 !50
c---
 call get_grid

 call calc_rci(curdir) ! calculate lambda_ci

 stop
 end

c--
 subroutine get_grid
 include 'param.h'
 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz
 common/para/re

 pi = acos(-1.0)
 do j=1,nyp
 y(j) = 1.0-cos(pi*real(j-1)/real(nyp-1))
 enddo

 dx = sx/real(nx)
 dz = sz/real(nz)

 return
 end

c--
 subroutine calc_rci(curdir)
 include 'param.h'

 common/mesh/y(nyp),dx,dz
 common/domain/sx,sz
 common/para/re
 common/nstep/n_start, n_final, n_skip
 character*50 filename
 character*30 :: curdir
 real*8 d11(nx,nyp,nz),d12(nx,nyp,nz),d13(nx,nyp,nz)
 real*8 d21(nx,nyp,nz),d22(nx,nyp,nz),d23(nx,nyp,nz)
 real*8 d31(nx,nyp,nz),d32(nx,nyp,nz),d33(nx,nyp,nz)
 real*8 q1(nx,nyp,nz)
 real*8 q2(nx,nyp,nz)
 real*8 q3(nx,nyp,nz)
 real*8 uf(nx,nyp,nz)

106

 real*8 e11,e12,e13,e21,e22,e23,e31,e32,e33
 real*8 p,q,r,q0,r0,dis,reg1,reg2,reg3
 real*8 p_max
 real*8 ramda_ci(nx,nyp,nz)
 real*8 r_ci_max
c
 real*8 q1_xz(nyp)
 real*8 q2_xz(nyp)

c TECPLOT STUFF
 integer i,j,k,imax,jmax,kmax
 integer debug,ier,itot
 integer tecini,tecdat,teczne,tecnod,tecfil,tecend
 integer visdouble,disdouble
 character*1 nulchar

 real*8 xt(nx,nyp,nz)
 real*8 yt(nx,nyp,nz)
 real*8 zt(nx,nyp,nz)

 nulchar = char(0)
 debug = 0
 visdouble = 0
 disdouble = 1
 imax = nx
 jmax = nyp
 kmax = nz

 do 90 k=1,nz
 do 90 j=1,nyp
 do 90 i=1,nx
c--- with Fortran 90 we can just fill the arrays...
 xt(i,j,k) = real(i-1)*dx*re
 yt(i,j,k) = y(j)*re
 zt(i,j,k) = real(k-nz/2)*dz*re
90 continue

c
 do ntime=n_start,n_final,n_skip
c
 call get_vel(q1,q2,q3,ntime,curdir)

c
c--- read dij
 call get_filename_dij(filename,ntime,1,1,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d11(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,1,2,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')

107

 read(10) (((d12(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,1,3,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d13(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,2,1,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d21(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,2,2,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d22(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,2,3,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d23(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,3,1,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d31(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,3,2,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d32(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)
 call get_filename_dij(filename,ntime,3,3,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((d33(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 ramda_ci(:,:,:) = 0.0d0 ! ramda_ci

 do 1 j=1,nyp
 do 1 k=1,nz
 do 1 i=1,nx
 e11 = d11(i,j,k)
 e12 = d12(i,j,k)
 e13 = d13(i,j,k)
 e21 = d21(i,j,k)
 e22 = d22(i,j,k)

108

 e23 = d23(i,j,k)
 e31 = d31(i,j,k)
 e32 = d32(i,j,k)
 e33 = d33(i,j,k)
 p = - (e11 + e22 + e33)
 q = 0.5*(p**2 - (
 & +e11**2
 & +e22**2
 & +e33**2
 & +e12*e21*2.0
 & +e13*e31*2.0
 & +e23*e32*2.0
 &)
 &)
 r = -(- e13*e22*e31 + e12*e23*e31
 & + e13*e21*e32 - e11*e23*e32
 & - e12*e21*e33 + e11*e22*e33
 &)
 if (abs(p).gt.p_max) then
 p_max = abs(p)
 endif
 r0 = r + 2./27.*p**3 - 1./3.*p*q
 q0 = q - 1./3. *p**2
 dis = (r0/2.)**2 + (q0/3.)**3
 if (dis.gt.0.0) then
 reg1 = sqrt(dis)
 reg2 = reg1 - r0/2.0
 reg3 = reg1 + r0/2.0
 if (reg2 .gt. 0.0) then
 reg2 = reg2**(1./3.)
 else
 reg2 = -(-reg2)**(1./3.)
 endif
 if (reg3 .gt. 0.0) then
 reg3 = reg3**(1./3.)
 else
 reg3 = -(-reg3)**(1./3.)
 endif
 ramda_ci(i,j,k) = sqrt(3.)/2.0*(reg2 + reg3)
 else
 ramda_ci(i,j,k) = 0.0
 endif
 1 continue
 write(*,*) 'maximum du_i/dx_i*h/u_tau =',p_max

c--- find the maximum r_ci

 r_ci_max = 0.0

 do k=1,nz
 do j=1,nyp
 do i=1,nx
 r_ci_max = amax1(r_ci_max,ramda_ci(i,j,k))
 enddo
 enddo

109

 enddo

c write(*,*) r_ci_max

! filename='rci'
! nn=index(filename,'i')
! write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime
! write(*,*) filename
! open(10,file=filename,status='unknown')
!c write(10,*) 'zone i=',nx,',j=',nyp/2+1
!c & ,',k=',nz/4*3-nz/4+1,',f=point'
!
! filename='rss'
! nn=index(filename,'s')
! write(unit=filename(nn+2:),fmt='(bn,i5.5)') ntime
! write(*,*) filename
! open(13,file=filename,status='unknown')
!c write(13,*) 'zone i=',nx,',j=',nyp/2+1
!c & ,',k=',nz/4*3-nz/4+1,',f=point'
!
! filename='xy'
! nn=index(filename,'y')
! write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime
! write(*,*) filename
! open(11,file=filename,status='unknown')
!c write(11,*) 'zone i=',nx,',j=',nyp/2+1
!c & ,',k=',1,',f=point'
!
! filename='xy_uf'
! nn=index(filename,'f')
! write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime
! write(*,*) filename
! open(12,file=filename,status='unknown')
!c write(12,*) 'zone i=',nx,',j=',nyp/2+1
!c & ,',k=',1,',f=point'

c--- calculate x-z mean of u and fpi

 q1_xz(:) = 0.0
 q2_xz(:) = 0.0
 do j = 1, nyp
 do k = 1, nz
 do i = 1, nx
 q1_xz(j) = q1_xz(j) + q1(i,j,k)/real(nx*nz)
 q2_xz(j) = q2_xz(j) + q2(i,j,k)/real(nx*nz)
 enddo
 enddo
 enddo

 do j = 1, nyp
 uf(:,j,:) = q1(:,j,:) - q1_xz(j)
 end do
c---

 do 2 k=nz/4,nz/4*3

110

 do 2 j=1,nyp/2+1
 do 2 i=1,nx
 rx=real(i-1)*dx*re
 rz=real(k-nz/2)*dz*re
 ry=y(j)*re

c write(10,100) rx,ry,rz,ramda_ci(i,j,k)
c write(13,100) rx,ry,rz,
c & (q1(i,j,k)-q1_xz(j))*(q2(i,j,k)-q2_xz(j))

 if(k .eq. nz/2) then
 rz2=real(nz/4-nz/2)*dz*re
c write(11,101) rx,ry,rz2
c & ,q1(i,j,k)- 0.8*q1_xz((nyp+1)/2) !-
0.8*20.157 ! substract 80% centerline velocity
c & ,q2(i,j,k)
c & ,q3(i,j,k)
c! & ,0.0

c write(12,100) rx,ry,rz2
c & ,q1(i,j,k)- q1_xz(j) ! substract xz mean
velocity
 endif

 2 continue

 100 format(4(e12.5,x))
 101 format(6(e12.5,x))
! close(10)
! close(11)
! close(12)
! close(13)

c--- TECPLOT output
 filename='./datatecplot/data'//trim(curdir)//'/chvfld@'
 nn=index(filename,'@')
 write(unit=filename(nn:),fmt='(bn,i5.5)') ntime
 write(*,*) trim(filename)
 filename = trim(filename)//'@'
 nn=index(filename,'@')

 ier = tecini('Velocity Field'//nulchar,
 & 'x,y,z,u,v,w,ufluc,dudx,dudy,dudz,dvdx,
 & dvdy,dvdz,dwdx,dwdy,dwdz,lambdaci'//nulchar,
 & filename(1:(nn-1))//'.plt'//nulchar,
 & '.'//nulchar,
 & debug,visdouble)

 !
 ! Write the zone header information.
 !
 ier = teczne('Velocity Field'//nulchar,
 & imax,jmax,kmax,
 & 'BLOCK'//nulchar,nulchar)

111

 !
 ! Write out the field data.
 !
 itot = imax*jmax*kmax
 ier = tecdat(itot,xt,disdouble)
 ier = tecdat(itot,yt,disdouble)
 ier = tecdat(itot,zt,disdouble)
 ier = tecdat(itot,q1,disdouble)
 ier = tecdat(itot,q2,disdouble)
 ier = tecdat(itot,q3,disdouble)
 ier = tecdat(itot,uf,disdouble)
 ier = tecdat(itot,d11,disdouble)
 ier = tecdat(itot,d12,disdouble)
 ier = tecdat(itot,d13,disdouble)
 ier = tecdat(itot,d21,disdouble)
 ier = tecdat(itot,d22,disdouble)
 ier = tecdat(itot,d23,disdouble)
 ier = tecdat(itot,d31,disdouble)
 ier = tecdat(itot,d32,disdouble)
 ier = tecdat(itot,d33,disdouble)

 ier = tecdat(itot,ramda_ci,disdouble)

 ier = tecend()

 enddo ! ntime

 return
 end

c--
 subroutine get_vel(u,v,w,ntime,curdir)
 include 'param.h'

 character*30 :: curdir

 real*8 u(nx,nyp,nz)
 real*8 v(nx,nyp,nz)
 real*8 w(nx,nyp,nz)

 character*50 filename

c--- read u

 call get_filename_disk5(filename,ntime,1,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((u(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

112

c--- read v

 call get_filename_disk5(filename,ntime,2,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((v(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

c--- read w

 call get_filename_disk5(filename,ntime,3,curdir)
 write(*,*) filename
 open(10,file=filename,status='old',form='unformatted'
 & ,action='read')
 read(10) (((w(i,j,k),i=1,nx),j=1,nyp),k=1,nz)
 close(10)

 return
 end

!c--
! subroutine get_filename_disk5(filename,ntime,nv)
!c nv=1 : u
!c 2 : v
!c 3 : w
!
! character*50 filename
!
! filename='../../../scratch/data_vel/'
! nn=index(filename,'/')
! if (nv.eq.1) write(unit=filename(nn+10:),fmt='(bn,a5)')
'u1.00'
! if (nv.eq.2) write(unit=filename(nn+10:),fmt='(bn,a5)')
'u2.00'
! if (nv.eq.3) write(unit=filename(nn+10:),fmt='(bn,a5)')
'u3.00'
! write(unit=filename(nn+15:),fmt='(bn,i5.5)') ntime
!
! return
! end

!c--
 subroutine get_filename_disk5(filename,iseq,nv,curdir)
!c nv=1 : u
!c 2 : v
!c 3 : w

 implicit none
 character*50 filename
 integer iseq, nv, nn
 character*30 curdir

 if (nv.le.4) then

113

 !filename='../data_vel/@'
 filename='../../../scratch/data_vel'//trim(curdir)//'/@' !
directory where DNS results are stored.
 nn=index(filename,'@')
 if (nv.eq.1) write(unit=filename(nn:),fmt='(bn,a3)') 'u1.'
 if (nv.eq.2) write(unit=filename(nn:),fmt='(bn,a3)') 'u2.'
 if (nv.eq.3) write(unit=filename(nn:),fmt='(bn,a3)') 'u3.'
 if (nv.eq.4) write(unit=filename(nn:),fmt='(bn,a3)') 'pp.'
 write(unit=filename(nn+3:),fmt='(bn,i7.7)') iseq
 endif

 return
 end

!c--
! subroutine get_filename_dij(filename,iseq,nv1,nv2)
!!c nv1=1 : u nv2 = x
!!c nv1=2 : v nv2 = y
!!c nv1=3 : w nv2 = z
! implicit none
! character*50 filename
! integer iseq, nv1,nv2,nn
! filename='../../../scratch/data_dij/d'
! nn=index(filename,'/')
! write(unit=filename(nn+11:),fmt='(bn,i1.1)') nv1
! write(unit=filename(nn+12:),fmt='(bn,i1.1)') nv2
! write(unit=filename(nn+13:),fmt='(bn,a1)') '.'
! write(unit=filename(nn+14:),fmt='(bn,i7.7)') iseq
! return
! end

!c--
 subroutine get_filename_dij(filename,iseq,nv1,nv2,curdir)
!c nv=1 : u
!c 2 : v
!c 3 : w

 implicit none
 character*50 filename
 integer iseq, nv1, nv2, nn
 character*30 curdir

 !if (nv.le.4) then
 !filename1='../data_dij/@'
 !filename2='../data_dij/@'
 !filename3='../data_dij/@'
 filename='../../../scratch/data_dij'//trim(curdir)//'/d@' !
directory where DNS results are stored.
 nn=index(filename,'@')

 write(unit=filename(nn:),fmt='(bn,i1.1)') nv1
 write(unit=filename(nn+1:),fmt='(bn,i1.1)') nv2
 write(unit=filename(nn+2:),fmt='(bn,a1)') '.'
 write(unit=filename(nn+3:),fmt='(bn,i7.7)') iseq

114

 !endif

 return
 end

	Chapter 1
	INTRODUCTION
	1.1.Channel flow model
	1.1.1 Geometry
	1.1.2 Governing Equations
	1.2 Numerical Methods
	1.2.1 Temporal and Spatial Discretization
	1.2.2. Boundary conditions
	1.2.3. Solution procedure
	1.2.4. Grid Independence study
	Chapter 2
	METHODOLOGY
	2.1 Turbulent mean properties
	2.2 Correlation
	2.3 Joint Probability Distribution functions
	2.4 Linear Stochastic estimation
	2.5 Vortex visualization
	Chapter 3
	SINGLE VORTEX EVOLUTION
	3.1 Effect of strength
	3.2 Effect of y-normal position
	3.3 Effect of asymmetry
	3.4 Evolution into a fully turbulent flow
	Chapter 4
	MULTIPLE VORTEX INTERACTION
	4.1 Streamwise interaction between 2 Q2 events
	4.1.1 Interaction between 2 Q2 events having the same strength
	4.1.2 Interaction between 2 Q2 events having the different strengths:
	4.3 Spanwise growth of vortices
	4.4 Interaction between Q2 and Q4 events
	4.5 Interaction between vortices at different y+ locations
	4.6 Interaction between vortices in a staggered arrangement
	Chapter 5
	CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

