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ABSTRACT  
   

The evolution of single hairpin vortices and multiple interacting hairpin vortices 

are studied in direct numerical simulations of channel flow at Reτ=395. The 

purpose of this study is to observe the effects of increased Reynolds number and 

varying initial conditions on the growth of hairpins and the conditions under 

which single hairpins autogenerate hairpin packets. The hairpin vortices are 

believed to provide a unified picture of wall turbulence and play an important role 

in the production of Reynolds shear stress which is directly related to turbulent 

drag. The structures of the initial three-dimensional vortices are extracted from 

the two-point spatial correlation of the fully turbulent direct numerical simulation 

of the velocity field by linear stochastic estimation and embedded in a mean flow 

having the profile of the fully turbulent flow.  The Reynolds number of the 

present simulation is more than twice that of the Reτ=180 flow from earlier 

literature and the conditional events used to define the stochastically estimated 

single vortex initial conditions include a number of new types of events such as 

quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, 

asymmetry and position are evaluated and compared with existing results in the 

literature. This study then attempts to answer questions concerning how vortex 

mergers produce larger scale structures, a process that may contribute to the 

growth of length scale with increasing distance from the wall in turbulent wall 

flows. Multiple vortex interactions are studied in detail. 
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Chapter 1 

INTRODUCTION 
 

One of the most fundamental properties of wall turbulence is that the 

length scale, defined in various ways increases with distance from the wall. 

Starting with the mean spanwise spacing of low speed streaks at the wall, the 

length scale grows slightly through the buffer layer and then grows linearly 

throughout the logarithmic layer. This study attempts to answer the question on 

whether the vortex mergers would produce self similar vortices or a new class of 

structures. Channel flow was chosen since both experimental and theoretical 

investigations of complex turbulence interactions near the wall can be carried out. 

Various studies by Bandhopadhyay (1980) and Smith (1984) ascertain the 

presence of vortex packets in the turbulent boundary layer. In this study, the 

vortex packet is shown to evolve out of single and multiple hairpin vortices 

generated through linear stochastic estimation. Hydrogen bubble and dye 

visualization by Haidari and Smith (1994) and inviscid models by Smith et al. 

(1991) attempted to address the natural formation of the vortex packets more 

closely. Although processes like vortex stretching and tilting were described by 

the inviscid models, a complete picture on vortex breakup and reconnection were 

not considered. Zhou, Adrian and Balachandar (1996) and Zhou, Adrian, 

Balachandar and Kendall (1999) performed direct numerical simulations in 

channel flow at Reτ=180, and found that a single hairpin vortex is capable of 

creating successive upstream hairpins, providing that the strength of the first 

hairpin exceeds a critical value. This process, called  ‘autogeneration’ leads to the 
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formation of a packet of hairpins travelling together, with the first hairpin being 

tallest and the last hairpin being shortest. The first hairpin generates a secondary 

hairpin, the secondary generates a tertiary, and so on for succeeding generations. 

If the initial hairpin is symmetric about a wall-normal plane through its middle, 

the resulting packet is also symmetric. But, if there is asymmetry, the hairpins 

assume the shape of a cane, and the packet structure tends to alternate from right-

handed to left-handed canes. If the initial hairpin contains noise, the 

autogeneration leads to chaotic packets [Adrian (2007)]. Kim and Adrian (1999) 

proposed that the organization of hairpin vortices into packets and the interactions 

between these packets are characteristic features of wall turbulence that explain 

many observations like the large amount of streamwise kinetic energy residing in 

very long streamwise wavelengths. The formation of new streamwise vortices and 

the characteristic angles of inclined hairpins were further explained by Adrian, 

Meinhart and Tomkins (2000).  

Hairpin vortex packets play an important role in the production of the 

Reynolds shear stress, which is directly related to the turbulent drag. 

Ganapathisubramani, Longmire and Marusic (2003) showed that about 25% of 

the total production of Reynolds shear stress in the log layer of turbulent 

boundary layers is attributed to vortex packets. In a hairpin packet, the total 

turbulent Reynolds stress can be thought of as arising from the incoherent 

component and the coherent component. The incoherent component is the sum of 

the momentum transfers by each individual vortex and the coherent component is 

the sum of the momentum transfers produced by vortex interactions. In addition 
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to the experimental observation of hairpin packets in instantaneous flow fields 

using particle image velocimetry (PIV), statistical evidence of hairpin packets has 

been reported by Christensen and Adrian (2001) and Hambleton, Hutchins and 

Marusic (2006). Zhou, Adrian and Balachandar (1996) used the direct Numerical 

simulation of the Navier-stokes equation to study the evolution of a hairpin vortex 

in a unidirectional mean flow obtained from the low-Reynolds number turbulent 

channel flow of Kim, Moin and Moser (1987). Their approach is adopted in the 

present study. The initial vortex structure without the presence of the other eddies 

(i.e. in a clean turbulent mean flow environment) has made it possible to visualize 

clearly the auto generation of new hairpin vortices. 

1.1.Channel flow model 

1.1.1 Geometry 
 

The channel is composed of two infinite parallel walls, spaced a distance 2h 

apart. The streamwise and spanwise directions are 2πh and πh respectively 

(2480.6 and 1240.9 in wall units). The computation is carried out with 2113536 

grid points (128 x 129 x 128, in x, y, z) for a Reynolds number of 395 based on 

the wall shear velocity u*. The model assumes that the flow is periodic in the 

plane of the walls. Thus, a finite sized section can be used to model the infinite 

channel. The section used in this study is shown in Figure 1.1.  
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Figure 1.1 The channel geometry. The x, y and z coordinates show the streamwise, 
wall-normal and spanwise directions. The streamwise and spanwise directions are 
respectively 2πh and πh long which is 2480.6 and 1240.9 in wall units. The 2 
infinite parallel walls are spaced 2h apart (790 wall units). 
 

With this computational domain, the grid spacing’s in the streamwise and 

spanwise directions are respectively ∆x+ ≈ 19.37 and ∆z+ ≈ 9.69 in wall units. 

Non-uniform meshes are used in the normal direction with yj = cosθj , for θj = ( j-

1 ) π / ( N - l ) , j = 1,2, ..., N . Here N is the number of grid points in the y-

direction.  

1.1.2 Governing Equations 
 

The initial turbulent flow field is evolved in time by solving the Navier 

Stokes equation along with the incompressibility condition. The equations used 

are the same as used in the thesis by Kendall (1992). Written in non-dimensional 

form, the equations can be represented as  

0u v w

x y z

+ + +

∂ ∂ ∂
+ + =

∂ ∂ ∂

∼ ∼ ∼
∼ ∼ ∼                                                                                   (1.1a) 
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  (1.1b) 
 
 

 
 
 
 
                                                                                                            
                                                                                                     (1.1c) 
  

 
In the governing equations, the channel half-height h is used as the length 

scale. Wall friction velocity u* = (υ(∂u/∂y)y=+h)1/2  is used as the velocity scale. 

The characteristic pressure and time scales are ρu*2 and h/ u* respectively. This 

scaling results in the non-dimensional parameter of Reynolds number based on 

friction velocity, Reτ = u*h/υ.  

1.2 Numerical Methods 

1.2.1 Temporal and Spatial Discretization 
 

Fourier expansions are used as part of the spectral collocation 

methodology for the periodic directions and a Chebyshev expansion is used for 

the non-periodic wall normal direction with Gauss-Lobatto points for spatial 

discretization.  A time-splitting technique was employed for the decoupling of the 

pressure computations in the time advancement of the flow field. At each time 
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step, first an intermediate velocity field is computed with only the advection and 

diffusion effects taken into account. This intermediate velocity field is not 

divergence free. In the second step, an appropriate pressure is computed by 

solving a Poisson equation for pressure, based on which a pressure correction is 

applied to the intermediate velocity field to make it divergence free. Here, we 

employ a third order Runge Kutta scheme for the advection term and an implicit 

Crank Nicholson scheme for the diffusion term. The pressure effect is considered 

to be fully implicit in order to guarantee zero divergence at the end of the full 

timestep. The details of the numerical procedure used in this channel-flow 

simulation are elaborated in Kendall (1992). 

 

1.2.2. Boundary conditions 
 

The periodic conditions in the streamwise and spanwise directions are 

automatically satisfied by the use of fourier expansions. The no slip and the 

incompressibility conditions cannot be satisfied simultaneously because the time 

splitting scheme separates the momentum equation into two parts. In order to 

minimize the slip, a proper choice of the intermediate boundary condition must be 

made. The boundary condition for pressure is specified during the pressure-

poisson step. It can be shown that a self-consistent, pure Neumann condition will 

allow slip velocity to be minimized. 
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1.2.3. Solution procedure 
 

The Helmholtz equations for the three components of velocity are solved 

for each combination of horizontal Wave numbers to solve for the entire flow 

field. The equations are listed in Kendall’s thesis (1992). 

1.2.4. Grid Independence study 
 
Grid refinement study was done for three different grids: 96x97x96, 128x129x128 

(present grid) and 256x257x256. From figure 1.2, 128x129x128 grid is seen to be 

optimum for this computation since there is not much difference in λci with the 

256x257x256 grid. λci , referred to as the swirling strength is the complex eigen 

value of the velocity gradient tensor (D = ∇u) and it is a good measure of the 

vortex structure since it is frame independent and discriminates against shear 

layers which have vorticity but no swirling motion [Chong, Perry and Cantwell 

(1990), Chakraborty, Balachandar and Adrian (2006)]. t+ is the non-dimensional 

time and is computed in equation 1.2. The change in time, dt is taken to be 1.25e-

04 and the number of iterations is typically 10,000 although the value was 

increased for some computations to study the physics at a later time. 

t+ = dt x Number of iterations 
             (h/ u*)                                                                                             (1.2) 

The swirling strength is obtained from the characteristic equation of the velocity 

gradient tensor which is given by 

λ3+Pλ2+Qλ+R=0                                                                                                (1.3) 

Where, P = -div u; Q= ½[P2-tr(DD)]; and R=-det(D) 
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Table 1.1 The threshold λci for the 3 different grids at various t+. λci is the 
complex eigen value of the velocity gradient tensor and t+ is the non-dimensional 
time computed from equation 1.2. 

t+ 
 

Maximum λci 
(Grid: 96 x 97 x 96) 

Maximum λci 
(Grid: 128 x 129 x 

128) 

Maximum λci 
(Grid: 256 x 257 x 

256) 
25 16.1136 60.6377 54.937 
50 16.3566 65.3198 61.9359 
100 18.5097 75.223 80.9264 
150 21.9789 53.2664 55.0533 
200 28.3971 54.1164 51.6953 
250 26.3907 50.3841 50.4075 
300 25.4552 51.8427 47.8462 
350 25.7557 49.6056 48.9717 
400 25.9998 43.6902 47.2204 
450 25.747 39.759 44.3926 
500 25.3215 33.3265 39.6914 
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Figure 1.2 The plot between the threshold λci and t+ for the 3 different grids. λci 
and t+ are defined in equations 1.2 and 1.3 respectively and denote the complex 
eigen value of the velocity gradient tensor and the non-dimensional time.  
 
The initial condition for figure 1.2 and 1.3 is defined as 

u(x,t=0) = <u(x)|u’(ym
+=46.6) = 3(um,vm,0)>                                                     (1.4) 
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(a) 

 

(b) 

 

(c) 

Figure 1.3 The evolved hairpin vortex structure at t+ = 250 for (a) 96 x 97 x 96 
grid; (b) 128 x 129 x 128 grid; and (c) 256 x 257 x 256 grid. (b) and (c) are 
qualitatively similar from the above figure. The initial condition is shown in 
equation 1.4. 
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The 1D streamwise correlations plotted as a function of the non-dimensionalized 

streamwise spacing (Δx+) further shows the adequacy of grid (figure 1.5).  

 
Figure 1.4 Plots of streamwise correlation vs the streamwise spacing. The 
correlation is defined in equation 1.5. Ruu is the streamwise correlation at        
(Δx+, y+=37.9,y’+=37.9, Δz+=0) and is non-dimensionalized with the correlation at 
zero streamwise spacing (Δx+=0). These agree closely with the results of Moser, 
Kim and Mansour’s (1999) computation on a finer grid (256x257x256). 
 
 
A detailed discussion of the properties of the initial velocity fields and the initial 

structure extraction using linear stochastic estimation is given in chapter 2. In 

chapter 3, the evolution of a single hairpin vortex in the channel flow is discussed 

and the results are compared with literature. Multiple vortex interactions are 

studied in chapter 4. Finally, in chapter 5, the conclusions obtained from this 

research program are summarized and some recommendations for future work in 

the area of conditional vortex dynamics are given. 
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Chapter 2 

METHODOLOGY 

2.1 Turbulent mean properties 

 
Figure 2.1 The mean velocity profile for the channel flow plotted with the law of 
the wall. The superscript + indicates a non-dimensional quantity scaled by the 
wall variables; y+ = yu*/ ν is the viscous height of the channel where ν is the 
kinematic viscosity and u* = (τw / ρ )1/2 is the wall shear velocity. 
 
 
Starting from the initial velocity field, the governing equations were integrated 

forward in time until the numerical solutions reached statistically steady states. 

The calculations were considered to be complete when the time-averaged 

turbulence quantities became stationary. The profile of the mean velocity non-

dimensionalized by the wall-shear velocity is shown in figure 2.1. The collapse of 
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the mean-velocity profiles corresponding to the upper and lower half of the 

channel indicates the adequacy of the sample taken here for the average. 
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Figure 2.2 Vertical profiles of the resolvable mean Reynolds shear stress 
__

uv . 
Reτ=395. The grid adopted is 128 x 129 x 128. The stress was validated with the 
results of Moser, Kim and Mansour (1999) as shown in figure 2.4 a.  
 
 
The profile in figure 2.2 indicate that the average Reynolds shear-stress profile 

has attained the equilibrium shape that balances the downstream mean pressure 

gradient in the regions away from the walls. In the vicinity of the walls, the 

viscous stresses are significant, and they, together with the total Reynolds stress, 

balance the mean pressure gradient. The symmetry of the profile about the 

channel centre line indicates that the total averaging time and statistical sample 

are adequate. The other characteristic properties of the flow, like the root mean 

square velocity were also plotted. 
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Figure 2.3 Plots of the root mean square components of velocity against the wall-
normal distance normalized with Reτ=395. Validation with the Reτ=395 result of 
Moser, Kim and Mansour (1999) is shown in figure 2.4 b 
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                                                                      (b) 
Figure 2.4 Validation of computations with the Reτ=395 results of Moser, Kim 
and Mansour (1999) (a) The magnitude of Reynolds stress obtained from the 
Reynolds stress tensor as a function of the non-dimensionalized wall-normal 
distance (y+) upto y+=395. (b) ___: urms, ___ : vrms, ___ : wrms. ° represents Moser 
et al.’s results for a finer (256 x 257 x 256) grid. 
 
 
Once again, the symmetry of the calculated turbulence intensities about the centre 

line of the channel indicates that the total averaging time was sufficient for an 

adequate statistical sample. 2nd order statistics like skewness and flatness which 

are important parameters in a turbulent flow [Davidson (2007)] are defined as  

        

             (2.1a) 

 (i=1,2,3; no summation)     

                  (2.1b) 

 
The flatness factors of all the velocity components reach their maxima at the wall. 

This indicates that in the vicinity of the wall, the turbulence is highly intermittent. 

Throughout an appreciable portion of the channel cross-section, F(w’) and S(w’) 
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are approximately equal to three and zero respectively. These values correspond 

to the flatness and skewness factors of a Gaussian distribution. Near the wall, 

S(u’) is positive, whereas away from the wall it is negative. This indicates that 

near the wall the large-amplitude u-fluctuations are primarily due to arrival of 

high-speed fluid from regions away from the wall. On the other hand, away from 

the wall the large-amplitude u-fluctuations are most probably associated with low-

speed fluid leaving the wall region. This is encouraging considering the 

significant contribution of small-scale turbulence to these quantities and the 

difficulties associated with their measurements. 

 

 

 

 

 

 

 

                                     
 
 
 
 
 
                                                                  (a) 
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                                                              (b)      
Figure 2.5 Plots of (a) Skewness and (b) Flatness for the channel flow data. u’, v’ 
and w’ represent the velocity components in the streamwise, normal and spanwise 
directions respectively. S(w’) and F(w’) are predominantly 0 and 3 respectively. 

2.2 Correlation 
 
In order to perform a linear estimate of the velocity field given a set of velocity 

conditions, the full two-point, second-order spatial correlation tensor, equation 

(2.2) is needed. This tensor was calculated using equation 2.2. 

Rjl(x,x’) = <uj(x) ul(x’)>                                        (2.2) 
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(a) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 2.6   Plots of velocity correlations as a function of the normalized (a) 
streamwise distance; (b) spanwise distance. Ruu, Rvv , Rww are computed at (Δx+, 
y+=11.8, y’+=11.8, Δz+=0) and is non-dimensionalized by the correlation values at 
Δx+=0. 
 
 
These profiles show that, the longitudinal correlation in the streamwise direction 

extends over much longer distances than do all other correlations. The slow decay 

of Ruu with increasing x+ indicates that near the wall, the eddies are highly 



  18 

elongated in the streamwise direction. On the other hand, the profiles of figure 2.4 

(b) shows that the spanwise extent of turbulence structures near the wall is much 

smaller than for those away from the wall. It hence appears that, near the walls the 

computed flow field consists of elongated streaky structures. 

2.3 Joint Probability Distribution functions 
 
The streamwise and wall normal velocity components of the event vector are 

chosen based on their contribution to mean Reynolds shear stress. The events, 

u(x,t=0), studied in this work are chosen such that the product of the simultaneous 

Reynolds stress and the probability of occurrence of events are maximized[(Moin, 

Adrian and Kim (1987)] Second (Q2) and fourth quadrant (Q4) events are studied.  

Table 2.1 Quadrant IV events which maximize the product of Reynolds stress and 
Probability of occurrence [Moin, Adrian and Kim (1987)]. um and vm denote the 
maximum values of fluctuating u and v velocities; σu and σv denote the variances 
in the u and v direction. 

Q4 event 
um/σu vm/σv umvm/σuσv Tan-1(umvm/σuσv) degrees y+ 
1.2 -0.8 -0.58 -33.67 11.8 
1 -1 -0.78 -44.98 46.6 

1.2 -1 -0.69 -39.78 66.6 
1.2 -1.2 -0.78 -44.98 109 
1 -1 -0.78 -44.98 217 

0.8 -0.8 -0.78 -44.98 395 
 
Table 2.2 Quadrant II events which maximize the product of Reynolds stress and 
Probability of occurrence [Moin, Adrian and Kim (1987)] 

Q2 event 
um/σu vm/σv umvm/σuσv Tan-1(umvm/σuσv) degrees y+ 
-1.4 0.8 -0.51 -80.25 11.8 
-1.6 1.4 -0.71 -91.63 46.6 
-1.4 1.4 -0.78 -80.18 66.6 
-1.4 1.2 -0.70 -80.18 109 
-1.4 1.4 -0.78 -80.18 217 
-1 1 -0.78 -57.27 395 
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All the following plots are contour plots of <u’v’>*probability density function at 

various values of y+.  

 

                                (a)                                                                (b) 

                             (d) 
       (c)                                                                                               

 
 
 
 
 
 
 
 
 
 
 
 

                                  (e) 
Figure 2.7 Joint probability distributions at various y+ values (a) y+=11.8; (b) y+ = 
46.6; (c) y+= 66.6; (d) y+= 109; (e) y+ = 217; (f) y+ = 395 
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 (b) 
Figure 2.8  Plots of (a) y+ vs 4th quadrant angles (in degrees) and (b) y+ and y/h vs 
2nd quadrant angles (in degrees).The plots are validated with the results of Moin, 
Adrian and Kim (1987). The 4th and 2nd quadrant angles were obtained from table 
2.1 and 2.2 respectively. These angles make the maximum contribution to the 
Reynolds stress tensor. The present computations were done at Reτ=395 and Moin 
et al’s results were at Reτ=180 
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As is seen from figure 2.8, the profiles for Reτ=395 agree well with Reτ=180 

[Moin, Adrian and Kim (1987). But there is deviation away from the wall. 

(y+>100).  The abrupt change in the flow angle which occurs in the buffer layer 

indicates transition from streamwise oriented wall layer structures to hairpin 

vortices characterizing the outer layer.  

 
 

 
Figure 2.9 The angle of the Q2 vector as a function of distance from the wall 
obtained from Kim, Moin and Moser (1987). Inset: Method of defining the Q2 
event (um,vm,0) 
 

2.4 Linear Stochastic estimation 
 
Stochastic estimation is a simple procedure by which conditional averages are 

approximated in terms of unconditional correlation functions (Moin, Adrian and 

Kim). Linear stochastic estimation is accomplished by expressing the conditional 

average as a linear function of its data and solving a set of linear algebraic 

equations for the expansion coefficients. The initial condition consists of a 
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conditional vortex or a set of conditional vortices superposed onto a turbulent 

mean velocity profile. The conditional vortex is evaluated using Linear Stochastic 

estimation. The estimation procedure is briefed in Zhou, Adrian, Balachandar and 

Kendall (1999) and is described in detail in the appendix at the end of the current 

study. The choice of a symmetric Q2 event vector results in a vortical structure 

that resembles a near-wall quasi-streamwise vortex pair when the event is 

specified close to the wall and resembles a hairpin vortex when the event is 

specified sufficiently far away from the wall [Moin, Adrian and Kim (1987)]. The 

linear estimate of the conditional average <u(x’,t)|u(x,t)> is calculated from 

equation (2.3) where Ajk are the estimation coefficients. For each value of the 

component j, the Ajk are determined by solving the 3x3 linear algebraic equations 

shown in equation (2.4). The location in the homogenous directions, x and z, may 

be selected arbitrarily and each estimate is evaluated for a given value of y as a 

function of the distance r=x’-x. 

uj(x’,t) = Ajk(x’,x) uk(x,t)           (2.3) 

Rkl(x,x’) Ajk(x,x’) = Rlj(x,x’) = Rlj(r,y)             j,k,l = 1,2,3                               (2.4) 

By virtue of being extracted from the correlation tensor, the initial structure has 

length scales, shape and vorticity consistent with eddies that occur in the fully 

turbulent channel flow. 

2.5 Vortex visualization 
 
According to Zhou, Adrian and Balachandar (1996), a vortex usually refers to a 

tube-like structure with persistent and coherent rotation about its spine.  Robinson 
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(1991) definition of a vortex explains the inadequacy of mathematical quantities 

like helicity and vorticity to characterize a vortex. On the other hand, a number of 

techniques for the identification of vortices have been proposed. Although a 

variety of techniques have been used in the past, the method of Chong, Perry and 

Cantwell (1990) is used in the current study due to the advantages which include 

frame independence and the display of shear layers which have vorticity but no 

swirling motion. The choice of λci for this study was made so that the various 

vortical structures would be easily identifiable with minimal background noise, 

eliminating sensitivity dependence.  

Table 2.3 Initial conditions used in this study for single vortex evolution. All 
computations were done at Reτ=395 for 128 x 129 x 128 grid. 

 

Run X=(x+,y+,z+) u=(u,v,w) Movie location 
folder 

(on DVD) 

Figure 
number 

1 (0,46.6,0) (-1.6,1.4,0) Strength=1 1a 
2 (0,46.6,0) (-2,1.75,0) Strength=1.25 1b 
3 (0,46.6,0) (-2.4,2.1,0) Strength=1.5 1c 
4 (0,46.6,0) (-3.2,2.8,0) Strength=2 1d 
5 (0,46.6,0) (-4,3.5,0) Strength=2.5 1e 
6 (0,46.6,0) (-4.8,4.2,0) Strength=3 1f 
7 (0,46.6,0) (-6.4,5.6,0) Strength=4 1g 
8 (0,11.8,0) (-4,3.5,0) y+=11.8 2a 
9 (0,66.6,0) (-4,3.5,0) y+=66.6 2b 
10 (0,217,0) (-4,3.5,0) y+=217 2c 
11 (0,395,0) (-4,3.5,0) y+=395 2d 
12 (0,46.6,0) (4,-3.5,0) Q4 3a 
13 (0,46.6,0) (-4,3.5,0) Beta=0.2 4a 
14 (0,46.6,0) (-4,3.5,0) Beta=0.4 4b 
15 (0,46.6,0) (-4,3.5,0) Beta=0.5 4c 
16 (0,46.6,0) (-4,3.5,0) Beta=0.6 4d 
17 (0,46.6,0) (-4,3.5,0) Beta=0.8 4e 
18 (0,46.6,0) (-4,0,0) u00 5a 
19 (0,46.6,0) (0,3.5,0) 0v0 5b 
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Figure 2.10 List of figures showing initial vortex shapes. Mathematical 
representation shown in table 2.3. 
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Table 2.4 Initial conditions used in this study for vortex interactions. All 
computations were done at Reτ=395 for 128 x 129 x 128 grid. 
 

 

 

 

 

Run X=(x,y,z) u=(u,v,w) Movie location  
(on DVD) 

Figure 
number 

1 (0,46.6,0) 
(100,46.6,0) 

(-4,3.5,0) 
(-4,3.5,0) 

Streamwise vortex 
interaction 

 
7a 

2 (0,46.6,0) 
(100,46.6,0) 

(-4,3.5,0) 
(-3.2,2.8,0) 

Decreasing 
strength 

 
7b 

3 (0,46.6,0) 
(100,46.6,0) 

(-4,3.5,0) 
(-4,3.5,0) 

 
Increasing strength

 
7c 

4 (0,46.6,0) 
(0,46.6,100) 

(-4,3.5,0) 
(-4,3.5,0) 

Spanwise vortex 
interaction 

 
8a 

5 (0,46.6,0) 
(100,46.6,0) 
(200,46.6,0) 

(-4,3.5,0) 
(-4,3.5,0) 
(-4,3.5,0) 

 
3 vortices/same 

strength 

 
9a 

6 (0,46.6,0) 
(100,46.6,0) 
(200,46.6,0) 

(-4.8,4.2,0) 
(-4,3.5,0) 

(-3.2,2.8,0) 

3 
vortices/decreasing 

strength 

 
9b 

7 (0,46.6,0) 
(100,46.6,0) 
(200,46.6,0) 

(-3.2,2.8,0) 
(-4,3.5,0) 

(-4.8,4.2,0) 

3 
vortices/increasing 

strength 

 
9c 

8 (0,46.6,0) 
(100,46.6,0) 

(-4,3.5,0) 
(-4,3.5,0) 

 
21_11 

 
10a 

9 (0,46.6,0) 
(100,46.6,0) 

(-4,3.5,0) 
(4,-3.5,0) 

 
1Q2Q4 

 
11a 

10 (0,46.6,0) 
(100,46.6,0) 

(4,3.5,0) 
(4,-3.5,0) 

 
1Q4Q2 

 
11b 

11 (0,46.6,0) 
(0,46.6,100) 
(0,46.6,200) 

(100,46.6,50) 
(100,46.6,150) 

(-4,3.5,0) 
(-4,3.5,0) 
(-4,3.5,0) 
(-4,3.5,0) 
(-4,3.5,0) 

 
 

Staggered 

 
 

12a 
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Figure 2.11 List of figures showing initial vortex shapes. Mathematical 
representation shown in table 2.4. 
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Chapter 3 

SINGLE VORTEX EVOLUTION 
 
Zhou, Adrian, Balachandar and Kendall (1999) studied the evolution of a 

symmetric pair of quasistreamwise vortical structures extracted from the two-

point correlation tensor of turbulent channel flow data by linear stochastic 

estimation procedure. The initial structure evolves into a hairpin-like vortical 

structure which can, in turn, generate streamwise vortices, thus providing a 

mechanism for continual regeneration of new vortices.It is recognized that the 

strength of the initial structure can play an important role, especially in the 

nonlinear stages of the evolution. Therefore, the effect of strength on vortex 

evolution is considered in section 3.1. Also, in the present study, the wall normal 

location, y+ of the event vector will be varied from near the boundary to the 

middle of the channel (section 3.2).The symmetric event vector is specified as u = 

αum, v = αvm and w = 0, where the multiplicative factor α referred as ‘strength’ of 

the initial structure, is varied from 1.0 to 3.5. Zhou et al.(1999) showed that 

asymmetric initial vortices grow more rapidly than symmetric ones and hence are 

likely to be the most common form found in natural wall turbulence. The effect of 

asymmetry for various values of β is shown in section 3.3. Section 3.4 discusses 

the evolution of a single vortex into a fully turbulent field. 
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3.1 Effect of strength 
 

Kim, Sung and Adrian (2008) examined the autogeneration process by which new 

hairpin vortices are created from a sufficiently strong hairpin vortex, leading to 

the formation of a hairpin packet. It is observed that while stronger initial vortices 

result in the formation of a hairpin packet, weaker initial vortical structures, which 

live long and maintain their integrity, do not participate in the autogeneration of 

additional hairpins. Owing to the linear nature of the estimation procedure, the 

entire velocity field of the initial structure scales linearly with α.  As the strength 

of the initial event vector α is changed, the initial structure always rolls-up into a 

hairpin vortex, but its strength and accordingly its subsequent evolution differs. 

The main effect is on the length of the resulting hairpin vortex along the 

streamwise direction. The formation process of the primary hairpin vortex 

remains the same qualitatively. Whereas the initial structure evolves into an Ω-

shaped primary vortex, irrespective of its initial strength α, and initial location y+, 

the autogeneration of secondary and tertiary vortices is quite sensitive to the 

amplitude. From the following figure, it appears that the threshold amplitude 

reaches a minimum for an initial location y+ of around 30. 
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Figure 3.1 Generation of secondary hairpin vortices depends on the strength of 
initial vortical structures and location of the event vector used to extract the initial 
vortical structure. (•) Case with new hairpins. (°) Case without new hairpins [Kim, 
Sung and Adrian (2008)]. 
 
Computations were done to see if the downstream vortex affects the upstream 

vortex in autogeneration. From figure 3.1, the threshold for auto-generation for 

Reτ=180 is between 0.5 and 1, though there is no auto-generation evident at α=1 

for Reτ=395. Auto-generation for Reτ=395 exists between α=1.25 and α=1.5. 

Figure 3.2 shows the hairpin structure at t+=150 for various strengths. 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 3.2 Vortex evolution at t+=150 for different strengths (a)α=2; (b) α=2.5; 
(c) α=3; (d) α=3.5. The initial velocity field specified was u=α(um,vm,0) where um 
and vm were obtained from the joint probability density function and were taken 
to be (-1.6,1.4,0) 
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Even though the growth of the vortices tends to be qualitatively similar for all 

strengths greater than the threshold strength, the disturbances (or the tongue) in 

the downstream side of the primary vortex are more pronounced as we increase 

the strength. These disturbances can be considered as numerical errors and are 

hence more visible as we increase the values of fluctuating u and v velocities. 

Table 3.1 The time (t+) taken for the vortex to disappear when a sub-critical 
strength is used for computation. These computations were done at y+=46.6. x+ 
denotes the non-dimensionalized streamwise spacing. 
 
t+ x+ (strength = 1) x+ (strength = 1.25)x+ (strength = 1.5) x+ (strength = 3)

25 200 200 200 360
50 240 280 320 560

150 240 400 1280
175 120 360 2380
200 80 280
500 440
650 680
800 280
900
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Figure 3.3 A comparison between the lengths of the eddy (x+) at various t+ values. 
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The hairpin vortex at alpha =1 disappears very quickly as can be seen from figure 

3.3. Increasing the strength makes the length of the hairpin grow faster.  

3.2 Effect of y-normal position 
 
The choice of a symmetric Q2 event vector results in a vortical structure that 

resembles a near-wall quasi-streamwise vortex pair when the event is specified 

close to the wall and resembles a hairpin vortex when the event is specified 

sufficiently far away from the wall [Moin, Adrian and Kim (1987)]. 

It can be observed that there exists a bridge of vorticity across the two streamwise 

vortices at the point where the event vector is specified. The strength of the bridge 

is weak when the event vector is close to the wall but is relatively stronger when 

the event vector is farther away from the wall. The average inclination of the 

initial structure decreases (or increases) as the y-location of the event vector is 

lowered (or raised), but the spanwise separation at the upstream end remains at 

about 100 viscous wall units approximately independent of y+ . This is consistent 

with the accepted mean low-speed streak spacing of about 100 viscous wall units 

in the near-wall region. The location of the spanwise bridge is slightly upstream 

of the downstream tip of the quasi-streamwise vortices. In other words, the quasi-

streamwise vortices extend slightly beyond their spanwise bridge. The spanwise 

bridge becomes stronger as the location of the event vector, y+ increases and the 

initial structure resembles more closely a hairpin vortex. 

The presence of an optimum distance from the wall for the initial structure can be 

explained as followed. The optimum distance is a balance between self- and 
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mutual-induced motion of the quasi-streamwise vortex legs which tends to lift-up 

and curl back the vortices and the influence of mean shear which stretches along 

the streamwise direction and intensifies the vortices. Very close to the wall, 

viscous effects are also important. The enhanced viscous effects result in an 

increase in the threshold amplitude for initial vortices starting very close to the 

boundary. Away from the wall, the induced motion is determined by the strength 

of the vortex structure and streamwise stretching by the mean shear. With 

increasing distance from the wall, the mean shear rapidly reduces, thereby 

decreasing the intensification of the initial vortex structure by stretching. Thus, an 

initial hairpin vortex farther away from the boundary needs to be of sufficiently 

higher strength to generate subsequent hairpin vortices.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
Figure 3.4 Evolution of the hairpin vortex at various values of y+; (a) y+ = 11.8; 
(b) y+ = 46.6; (c) y+ = 66.6; (d) y+ = 217; the initial vortex was located at the 
center of the xz plane. 
 

3.3 Effect of asymmetry 
 
The streamwise alignment of the hairpins is the result of the spanwise symmetric 

nature of the initial vortex structure. Perfect symmetry however cannot be 

expected and the hairpins are not usually observed to posses two counter-rotating 

vortex legs of equal strength. The effect of asymmetry on the initial vortical 

structure evolution and its development into a hairpin packet has been studied 

here. Asymmetry was introduced in the initial vortical structure with an 

asymmetric event in the stochastic estimation procedure. The magnitude of the 

event vector was kept constant to maintain the initial vortex strength, while the 
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spanwise component of the event vector was increased from zero at the expense 

of the u and v components. As the β increases, the strength of the event vector is 

still the same. 

u = um(1-β2)1/2         (3.1) 

v = vm(1-β2)1/2                    (3.2) 

w = β*(u2+ v2)1/2                                                                                             (3.3) 

where β is the asymmetry parameter which measures the strength of asymmetry. 

For β = 0 there is no asymmetry and the initial vortex structure is the same as that 

shown in figure 6(a).  

 
(a) 

                                                                          
                                                                       (b) 
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                                                                        (c) 

 
                                                                        (d) 

 
                                                                        (e) 
 
Figure 3.5 Effect of asymmetry on vortex evolution (a) β = 0.2; (b) β=0.4; (c) 
β=0.5; (d) β=0.6; (e) β=0.8; α = 2.5 was used for all the computations. The initial 
field specified was u=(-4,3.5,0) for all the cases considered. 
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Vortical structure corresponding to an asymmetry parameter of β= 0.2 is initially 

considered. The resulting initial structure has a pair of quasi-streamwise legs 

connected by a weak spanwise bridge at the downstream end, but one of the 

quasi-streamwise legs is much stronger, higher, and longer than the other. The 

influence of asymmetry on the overall evolution of the hairpin structures remains 

negligibly small though for β= 0.2. The initial structure has developed into a 

primary hairpin followed by the generation of secondary and downstream hairpins. 

The resulting hairpin packet is nearly symmetric and it closely resembles the 

hairpin packet generated under symmetric initial conditions. Thus, the 

mechanisms responsible for autogeneration of new hairpin vortices leading to the 

formation of a hairpin packet remain largely unaffected by small asymmetry in 

the initial development. 

With sufficiently strong asymmetry in the initial event vector, the effects can be 

distinguished in the initial structure as well as in the evolution. The effects of 

β=0.4, 0.5, 0.6 and 0.8 are compared. 

For t+=150 and beta=0.5, in addition to the primary hairpin, secondary and tertiary 

hairpin-like structures can also be seen. The right-hand leg of the secondary 

hairpin can be seen, while the other quasi-streamwise vortex leg is so weak that it 

is not seen. On the other hand, in the case of the tertiary hairpin only the left-hand 

quasi-streamwise leg is strong and visible. Therefore, the secondary and tertiary 

hairpins resemble the asymmetric one-sided cane- or hook-like hairpin vortices 

referred in literature. Robinson (1991) pointed out that the preferred arrangement 

for hairpin vortices in a turbulent boundary layer is to be asymmetric and one-
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sided. These spanwise asymmetric one-sided hairpins are also known as `canes' 

[Guezennec & Choi (1989)]. The present results suggest that experimentally 

observed asymmetry is possibly due to the influence of local spanwise velocity.  

These cane-like secondary and tertiary structures at t+ = 150 are clearly visible in 

and can be compared with the corresponding symmetric case with initial event 

vector of α = 2.5 specified at y+ =46.6.  For the symmetric case, the streamwise 

distance between the primary and secondary hairpins was found to be 340 viscous 

units. In the asymmetric case the streamwise distance between the primary and 

secondary and between the secondary and tertiary hairpin heads is about 220 and 

165 viscous wall units, respectively. These streamwise separations compare better 

with the experimental measurements of Meinhart, Adrian and Tomkins (1999) 

who observed the spacing to be around 150 wall units. Furthermore, in the 

asymmetric case the formation of tertiary hairpin is nearly complete by t+ = 150. 

In the symmetric case the tertiary hairpin has not even begun to form by this time. 

In general, it is observed that asymmetry aids in the formation of subsidiary 

hairpins and the initial threshold amplitude for the formation of secondary and 

tertiary hairpins is found to be lower with asymmetry. Under asymmetry, the new 

hairpins form in rapid succession and their streamwise separation is smaller, and 

hence better compare with the experiments. 

3.4 Evolution into a fully turbulent flow 
 

Computations were done to study the vortex evolution into a fully turbulent flow. 

The linear stochastic estimate at y+=46.6 was used as the initial condition.   
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(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
Figure 3.6 Growth of a single vortex into a fully turbulent field. α = 2.5 was used 
for all the computation. The initial field specified was u=(-4,3.5,0). (a) The 
evolution at t+=400; (b) The evolution at t+=750; (c) The evolution at t+=1000; (d) 
The evolution at t+=1250; (e) The evolution at t+=1500. 
 

The single vortex at y+=46.6 auto-generates into the structure in figure 3.6 (a) at 

t+=400. These vortices then start growing spanwise apart from growing in height, 

(figure 3.6 (b)) eventually leading to the complex feature in figure 3.6 (c). This 
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repeated spanwise interaction and auto-generation results in the structure in figure 

3.6 (e) where a chain of vortices on the top is evident. The flow ultimately 

becomes fully turbulent and occupies the entire channel at around t+=2000 (figure 

3.7). 

 

Figure 3.7 Fully turbulent channel flow at t+=2000. 
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Chapter 4 

MULTIPLE VORTEX INTERACTION 
 
Vortex interactions are important to study since they make understanding on a 

turbulent field much easier. Since hairpins typically occur in packets, 

understanding how certain distinct arrangements of vortices evolve helps 

understand how the entire packet would evolve. In this study, the distinct 

arrangements like 2 Q2 events, 3 Q2 events and combination of Q2 and Q4 events 

are studied. Strength plays an important part in this study since the vortices might 

gain or lose velocity during the process of evolution. Hence, variation of strength 

for multiple vortex interaction is studied in detail.  

4.1 Streamwise interaction between 2 Q2 events 
 

4.1.1 Interaction between 2 Q2 events having the same strength 
 

 
(a) 
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(b) 

 
(c) 

Figure 4.1 Evolution of 2 Q2 events initially separated by x+ = 100 units. α=2.5; 
β=0; The initial condition was considered at the center of the xz plane and at 
y+=46.6. (a) The initial vortex obtained from linear stochastic estimation. A and B 
are Q2 events having the initial velocity vectors (-4,3.5,0) based on the joint 
probability density function (b) The evolution structure at t+=150 (c) The 
evolution structure at t+= 375. 
  

4.1.2 Interaction between 2 Q2 events having the different strengths: 
 

Case I: 

 
(a) 
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(b) 

Figure 4.1 The effect of varying the strength of the vortex. Strength is denoted by 
α which was defined earlier in the study (chapter 3.1) The vortex A is stronger 
than vortex B. (a) αA=2.5; αB=2; β=0; Hence, the 1st event vector (vortex A) is   
(-4,3.5,0) and  the vortex B event vector is (-3.2,2.8,0) (b) Evolution after t+= 150 

Case II: 

 
(a) 

 

 
(b) 

Figure 4.2 The vortex B is stronger than vortex A. (a) The initial vortex at t+=0, 
αA=2; αB=2.5; β=0; Hence, event vector for vortex A is (-3.2,2.8,0) and the event 
vector for vortex B is (-4,3.5,0) (b) Evolution after t+= 150 
 
 
A stronger vortex moves slower than the weaker vortex and hence in case I 

(figure 4.2), the vortices A and B are separated while they evolve. In case II 
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(figure 4.3) though, vortex A catches up with vortex B and interacts with it earlier 

than figure 4.2. This can explain the differences in structure at t+=150 (figures 4.2 

(b) and 4.3 (b)). Due to the same reason, the vortex combination in figure 4.2 fills 

up the length of the channel faster than the weaker-stronger case. It is difficult to 

quantify the interaction processes due to the non-linearity of the problem. 

 
4.2 Interaction between 3 Q2 events: 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.3 Evolution of 3 Q2 events initially separated by x+ = 100 units. α=2.5; 
β=0; The initial condition was considered at the center of the xz plane and at 
y+=46.6. (a) The initial vortex obtained from linear stochastic estimation (b) The 
evolution structure at t+=150 (c) The evolution structure at t+= 375. 
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Case I 

 
(a) 

 

 
(b) 

Figure 4.4 The effect of varying the strength of the vortices. (a) The initial vortex 
at t+=0. αA=3; αB=2.5; αC=2, β=0; (b) Evolution after t+= 150 
 

Case II 

 
(a) 
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(b) 

Figure 4.5(a) The initial vortex at t+=0. αA=2; αB=2.5; αC=3, β=0; (b) Evolution 
after t+= 150 
 
As explained in section 4.2, the stronger vortex moves slower than the weaker 

vortex. The interaction can be explained better if the non-linearity in the problem 

is mathematically modeled. 

4.3 Spanwise growth of vortices 
 
 

 

 

 

 

 

 

 

 

 

Figure 4.7 The vortex structure at t+=750 for a single Q2 event evolution at 
(x+=0,y+=46.6, z+=0).  
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From figure 4.7, it is evident that, as the vortex evolves, it not only generates 

daughter vortices but also leads to spanwise vortices which interact with each 

other in a complicated way. This necessitates the study of spanwise vortex 

interaction. 

 

 

(a) 

 

(b) 

Figure 4.8 Evolution of 2 spanwise vortices separated by z+=100 at (a) t+=25; t+= 
225; (b) t+=350; t+=500. Both initial vortices have strength α=2.5 and no 
inclination to the z axis (β=0). 
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Lateral interaction between hairpins must be an important ingredient in the 

spanwise scaling of the hairpin vortices as they grow along the streamwise and 

wall-normal directions. As the packets expand in the spanwise direction they must 

ultimately interact by vortex encounters. Encounters also occur due to larger, 

faster packets running over smaller, slower packets. In lateral encounters, the 

opposing vorticity in adjacent legs of two hypothetically identical hairpins could 

annihilate them, resulting in a larger hairpin of the same height, but double the 

width of the original hairpins. As hypothesized in Adrian, Balachandar and Liu 

(2001), the merger between 2 spanwise vortices (‘A’ in figure 4.8 (a))  leads to a 

larger vortex of the same height (‘B’ in figure 4.8 (a)). This large vortex auto-

generates resulting in asymmetric vortices inclined to the z axis (‘C’ and ‘D’ in 

figure 4.8 (b)). 

4.4 Interaction between Q2 and Q4 events 
Case I 

 
(a) 
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Case II 

 
(b) 

Figure 4.9 Evolution of a Q2 event and a Q4 event together. The vortices are 
initially separated by x+ = 100 units. α=2.5; β=0; The initial condition was 
considered at the center of the xz plane and at y+=46.6. (a) Q2-Q4 combination 
where A(i) represents the Q2 vortex and A(ii) represents the Q4 vortex. B 
represents the structure at t+=250 and C is the structure at t+=500 (b) Q4-Q2 
combination where A(i) represents the Q4 vortex (4,-3.5,0) at (x+=0,y+=46.6, z+=0, 
t+=0)  and A(ii) represents the Q2 vortex (-4,3.5,0) at (x+=100,y+=46.6, z+=0, 
t+=0). B represents the structure at t+=250 and C is the structure at t+=500. 
 
The initial condition in case I grows into a complex structure with the Q4 event 

developing into 2 quasi-streamwise vortices and the Q2 event auto-generating into 

daughter vortices although the interaction is non-linear. In case II however, the 

Q4 vortex rapidly dissipates and a single Q2 hairpin vortex is formed at t+=250 

and t+=500 (B and C in figure 4.8). 

4.5 Interaction between vortices at different y+ locations 
 

Computations were done with 1 vortex at y+=46.6 and the other at y+=11.8 

separated by x+=100 units. The higher vortex consumes the lower one at a very 

early time (t+=50) and the combination behaves similar to the single vortex 

evolution (figure 4.11).  
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(a)

 
(b)

 
(c) 

Figure 4.10 (a) 2 vortices separated by 100 x+ units at t+=0. Vortex A is at y+=46.6 
and vortex B is at y+=11.8; (b) the vortex structure at t+=50; (c) The vortex 
structure at t+=50 when the vortex B is absent; 

 
(a) 

 
(b) 

Figure 4.11 (a) Evolution of the single vortex at y+=46.6 and (b) the evolution of 
the dual vortices at  t+ = 400. The similarity in structure leads us to believe that 
vortex B doesn’t have a major role to play in the evolution. 
 



  52 

4.6 Interaction between vortices in a staggered arrangement 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 4.12 Evolution of 5 Q2 events placed in a staggered arrangement. The 
schematic diagram of the arrangement is shown in figure 4.13.α=2.5; β=0; All the 
initial vortices are at y+=46.6. (a) The evolution structure at t+=25 (b) The 
evolution structure at t+=175 (c) The evolution structure at t+= 375 (d) The 
evolution structure at t+=500. 
 

 
Figure 4.13 A schematic arrangement of staggered vortices in channel flow 
 

The vortices in figure 4.12 (a) grow asymmetrically (with inclination to the z axis) 

till t+=175. The canes formed in figure 4.12 (b) then dissipate leading to the 

vortex structure in figure 4.12 (d). After t+=175, there is no more cane formation. 

 

 

 



  54 

Chapter 5 
 

CONCLUSIONS AND RECOMMENDATIONS      
 

This study attempted to answer questions concerning how vortex mergers 

produce larger scale structures, a process that may contribute to the growth of 

length scale with increasing distance from the wall in turbulent wall flows. This 

would aid in modeling the von Karman constant which is crucial in drag related 

studies. 

The dynamics of hairpin vortices in turbulent channel flow have been 

studied using direct numerical simulation. The two-point spatial correlation of the 

fully turbulent velocity field was initially studied in detail and compared to 

existing literature. Linear stochastic estimation was then used to estimate the 

structures of the initial three-dimensional vortices. The vortices were visualized 

using the iso-surface of the imaginary part of the conjugated complex eigen 

values of the local velocity gradient tensor (λci). The Reynolds number of the 

present simulation is more than twice that of the Reτ=180 flow studied by Zhou et 

al. (1999), and a number of new types of events such as quasi-streamwise 

vorticity and Q4 events were studied in this work. The larger Reτ also made it 

possible to simulate the evolution of the vortices over longer periods of time, and 

correspondingly larger head heights. 

The effect of asymmetry, y+ position and strength were evaluated for 

single vortices. In order to study the complex non-linear interactions between 

vortices, various parameters such as spanwise inclination and strength were varied.  
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Grid independence study was performed to choose the optimum grid. The 

following are the conclusions from this study. 

1. Autogeneration is insensitive to Reτ, as results change little from Reτ=180 

(Zhou et al. 1999) to Reτ=395. The forms of the eddies at Reτ=395 are 

similar to those at Reτ=180, although there is no auto-generation evident 

upto α=1.25. Hence, the auto-generation threshold is shifted from α=1 for 

Reτ=180 to α=1.25 for Reτ=395. 

2. Single vortex evolution: Just like the strength threshold for auto-

generation, there exists asymmetry threshold for cane formation. Canes 

are not produced till β=0.4. For a symmetric evolution, the flow becomes 

fully turbulent and occupies the entire channel around t+=2000. 

3. Multiple vortex interaction 

a. Larger Q2 overtakes smaller Q2 

b. Smaller Q2 behind a larger Q2 just separates. 

c. Q2 behind Q4 leads to auto-generation with the Q4 event 

becoming 2 quasi-streamwise vortices at t+=500. 

d. Q4 behind Q2 rapidly dissipates the Q4 vortex. 

e. Lateral vortices merge in t+=100. 

f. Staggered vortices merge in t+=175. 

g. Two vortices, one at y+=46.6 and the other at y+=11.8, separated 

by x+=100 evolve in a similar fashion to a single vortex at y+=46.6; 

i.e. the vortex at a lower y+ value does not play a significant part in 

the evolution. 
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Future work would include specifying d(x,t) in addition to u(x,t) which would 

lead to a more detailed picture. The full potential of stochastic estimation is 

realized when all the components of the given data u(x,t) and possibly d(x,t) are 

specified. Attempts also need to be made to separate the linear and non-linear 

effects to simplify the problem. Higher Reynolds numbers and bigger domains (eg. 

doubling the length of the channel) are recommended based on the computational 

resources available. 
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APPENDIX A 

LINEAR STOCHASTIC ESTIMATION DERIVATION 
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Let g(x’) be any quantity associated with the turbulent flow, and let E1(x1), E2(x2), 
E3(x3),…, EN(xN) be N random whose value assume specified event values at (possibly) 
N different points. The conditionally averaged flow field is the averaged flow field given 
that the specified events occur [Zhou et. al. (1999)]: 
 
<g(x’)|E1(x1), E2(x2), E3(x3),…, EN(xN)>                                                           (A1) 
 
It is the best estimate of the flow field in terms of the known event , in the mean square 
sense.. To streamline the nottion, we often let E be the N dimensional event vector 
 
E=[ f1<E1(x1)< f1+d f1 and … and fN<EN(xN)< fN+dfN]                                     (A2) 
 
The linear stochastic estimate of a conditional average is found by expanding the 
conditional average in a power series about the event E =0, and truncating the expansion 
at some level, 
 
<gi|E>=LilEl+NilmElEm+…                                                                                 (A3) 
 
 The unknown coefficients L , N  etc. are determined by requiring that the mean-square 
error between the approximation and the conditional average be minimized. 
In the case of linear estimation only the first term is retained and the minimization leads 
to a set of linear algebraic equations for Lil, 
 
<Em(xm)El(xm)> Lil = Em(xm) gi(x’)>          (A4) 
 
Where l=1,2,3,...,N and m=1,2,3...,N.We assume that the event and the estimated quantity 
have zero mean in equations (A3) and (A4). 
 
Equation (A4) can be written as 
ALi = bi                    (A5) 
 
Since the streamwise (x) and spanwise (z) directions are homogenous in the periodic 
channel flow, 
 
Aml = REmEl(xl-xm, ym, zl-zm)           (A6) 
and 
bim = REmgl(x’-xm, ym,y’, z’-zm)          (A7) 
 
Li can be obtained from solving the matrix equation with N x N symmetric coefficient 
matrix A. Finally, the linear stochastic estimation (LSE) of the conditional average is  
<gi|E> ∼ Lil(x’;x1, x2, ...., xN)El(xl)          (A8) 
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                                                                     (A9) 
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APPENDIX B 

LINEAR STOCHASTIC ESTIMATION CODE 
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This code uses correlation functions to produce a conditional vortex using linear 

stochastic estimation.  

Grid:128 x 129 x 128; 

Reτ=395; 

Language: Fortran 95; 

Machine it ran on: Saguaro (ASU high performance computing center); 

Number of processors: 1; 

Input parameters: u,v and w components of velocity, strength α, asymmetric factor β, 

position y+; 

Output parameters: up.dat, vp.dat, wp.dat (velocity fields in .dat format), l_ci.dat (λci 

in .dat format)  

      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
      common/domain/sx,sz 
      common/para/re 
 
      real*8 event(N_evn) 
      real*8 AI(N_evn,N_evn) 
 
      real*8 b(N_evn,nx,nyp,nz) 
      real*8 CL(N_evn,nx,nyp,nz) 
      character*8 dummy8 
      character*45 dummy45 
 
      re =  395. 
 
      Pi = acos(-1.0) 
      sx = 2. * pi 
      sz = 1./1. * pi 
 
      open(70,file=’lse.set’,status=’old’,action=’read’) 
      read(70,102) dummy45 
      write(*,102) dummy45 
      read(70,100) dummy8,alpha 
      write(*,100) dummy8,alpha 
      read(70,100) dummy8,beta 
      write(*,100) dummy8,beta 
100   format(a8,e14.8) 
101   format(a8,i5) 
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102   format(a45) 
 
 
      call setup 
 
c---  set event or condition variables and locations 
 
      nv_evn(1) = 1   ! u’ 
      nv_evn(2) = 2   ! v’ 
      nv_evn(3) = 3   ! u’ 
c      nv_evn(4) = 1   ! u’ 
c      nv_evn(5) = 2 
c      nv_evn(6) = 3 
c      nv_evn(7) = 1 
c     nv_evn(8) = 2 
c      nv_evn(9) = 3 
c      nv_evn(10) = 1 
c      nv_evn(11) = 2 
c      nv_evn(12) = 3 
c      nv_evn(13) = 1 
c      nv_evn(14) = 2 
c      nv_evn(15) = 3 
 
      event(:)= 0.0 
 
      read(70,102) dummy45 
      write(*,102) dummy45 
      read(70,101) dummy8,j1 
      write(*,101) dummy8,j1 
 
c---  event variables are normalized by wall units 
 
      do ll=1,N_evn 
         read(70,103) dummy8,event(ll),(multi(ll,k),k=1,3) 
         write(*,103) dummy8,event(ll),(multi(ll,k),k=1,3) 
103      format(a8,e12.5,3i3) 
      enddo 
 
c--- for multi location event  -> Read from lse.set file 
c         multi(ll,1)   ! relative x location of ll-th event w.r.t 1st 
event location  
c         multi(ll,2)   ! relative y location of ll-th event w.r.t 1st 
event location      
c         multi(ll,3)   ! relative z location of ll-th event w.r.t 1st 
event location       
c--- 
c–impose asymmetry in z dir. 
      Event(3) = beta*(event(1)**2 + event(2)**2)**0.5  ! w_m= 
(u_m^2+v_m^2)^0.5 
      event(1) = event(1)*(1.0-beta**2)**0.5 
      event(2) = event(2)*(1.0-beta**2)**0.5 
 
c--- multiply strength factor to event vector 
      event = alpha*event 
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      do ll=1,N_evn 
         write(*,104) ll,event(ll),(multi(ll,k),k=1,3) 
104      format(i5,e12.5,3i3) 
      enddo 
 
 
c---  set the quantities which will be estimated by LSE 
 
      nv_est(1) = 1 ! u’ 
      nv_est(2) = 2 ! v’ 
      nv_est(3) = 3 ! w’ 
 
c---- 
 
      call set_coef_AI(AI)  ! AI = inverse of A 
  
      do i_est = 1, N_est 
 
         call read_b(b,i_est) 
         call get_CL(CL,AI,b) 
         call do_LSE(CL,event,i_est) 
 
      enddo  ! N_est 
 
      call out_put(event) 
 
 
      stop 
      end 
 
c----+-------------------------------------------------------- 
      subroutine setup 
      include ‘param.h’ 
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
 
      pi = acos(-1.0) 
 
      do j=1,nyp 
         y(j)=1.-cos(pi*real(j-1)/real(nyp-1)) 
      enddo 
 
      dx = sx/real(nx)  
      dz = sz/real(nz)  
 
      return 
      end 
 
c----+-------------------------------------------------------- 
      subroutine set_coef_AI(AI) 
 
      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
 
      real*8 r(N_evn),x(N_evn) 
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      real*8 A(N_evn,N_evn) 
      real*8 AI(N_evn,N_evn) 
      real*8  test(N_evn,N_evn) 
 
      character*50 filename 
      real*8 E(N_evn,nx,nyp,nz) 
      real*8 Em(N_evn),Eq(N_evn,N_evn) 
 
      real*8 t(nx,nyp,nz) 
 
      A(:,:)  = 0.0 
      AI(:,:)= 0.0 
 
c---  
 
      do m=1,N_evn 
         do l=m,N_evn 
 
         i_m = multi(m,1) 
         j_m = j1 + multi(m,2) 
         k_m = multi(m,3) 
         i_l = multi(l,1) 
         j_l = j1 + multi(l,2) 
         k_l = multi(l,3) 
 
         filename = ‘../03_corr/R_’ 
         nn=index(filename,’R’) 
         write(unit=filename(nn+2:),fmt=’(bn,i2.2)’) nv_evn(m) 
         write(unit=filename(nn+4:),fmt=’(bn,a1)’)   ‘_’ 
         write(unit=filename(nn+5:),fmt=’(bn,i2.2)’) nv_evn(l) 
         write(unit=filename(nn+7:),fmt=’(bn,a2)’)   ‘Y_’ 
         write(unit=filename(nn+9:),fmt=’(bn,i3.3)’) j_m 
         write(*,*) filename 
 
         open(10,file=filename,form=’unformatted’) 
         read(10) (((t(I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
         close(10) 
 
         A(m,l) = t(nx/2+i_l-i_m,j_l,nz/2+k_l-k_m) 
 
         enddo 
      enddo 
 
c---- 
 
c---  A(m,l) should be symmetric. 
 
      Do m=2,N_evn 
         do l=1,m-1 
            A(m,l)=A(l,m) 
         enddo 
      enddo 
 
c---  calculate the inverse of A 
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      call FindInv(A, AI, N_evn, ErrorFlag) 
 
c--- check inversion of A 
      test = 0.0 
      do j=1, N_evn 
      do i=1, N_evn 
         do m=1,N_evn 
            test(I,j) = test(I,j) + A(I,m)*AI(m,j) 
         enddo 
      enddo 
      enddo 
 
         write(*,*) ‘check the inversion’ 
      do I = 1, N_evn 
         write(*,*) (test(I,j),j=1,N_evn) 
      enddo 
 
c--- 
 
c      do m=1,N_evn 
c         write(*,100) (A(m,l),l=1,N_evn) 
c      enddo 
c         write(*,*) 
c      do m=1,N_evn 
c         write(*,100) (AI(m,l),l=1,N_evn) 
c      enddo 
c100   format(4(E12.5,x)) 
 
      return 
      end 
  
c----+-------------------------------------------------------- 
      subroutine read_b(b,i_est) 
 
      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
 
      real*8 t(N_evn,nx,nyp,nz) 
      real*8 b(N_evn,nx,nyp,nz) 
  
      character*50 filename 
  
      do m = 1, N_evn 
 
        j_m = j1 + multi(m,2) 
c         j_m = j1          
 
         filename = ‘../03_corr/R_’ 
         nn=index(filename,’R’) 
         write(unit=filename(nn+2:),fmt=’(bn,i2.2)’) nv_evn(m) 
         write(unit=filename(nn+4:),fmt=’(bn,a1)’)   ‘_’ 
         write(unit=filename(nn+5:),fmt=’(bn,i2.2)’) nv_est(i_est) 
         write(unit=filename(nn+7:),fmt=’(bn,a2)’)   ‘Y_’ 
         write(unit=filename(nn+9:),fmt=’(bn,i3.3)’) j_m 
         write(*,*) filename 
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         open(10,file=filename,form=’unformatted’) 
         read(10) (((t(m,I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
         close(10) 
 
         do j=1,nyp 
            do k=1,nz 
            do i=1,nx 
 
               i_m = i – multi(m,1) 
               k_m = k – multi(m,3) 
               if (i_m.lt.1) i_m = i_m + nx 
               if (k_m.lt.1) k_m = k_m + nz 
 
               b(m,I,j,k) = t(m,i_m,j,k_m) 
 
            enddo   
            enddo   
         enddo 
 
      enddo 
 
      return 
      end 
 
c----+-------------------------------------------------------- 
      subroutine get_CL(CL,AI,b) 
 
      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
 
      real*8 AI(N_evn,N_evn) 
 
      real*8 b(N_evn,nx,nyp,nz) 
      real*8 CL(N_evn,nx,nyp,nz) 
 
      CL(:,:,:,:)= 0.0 
 
      do l=1,N_evn     
         do k=1,nz 
         do j=1,nyp 
         do i=1,nx 
            do m=1,N_evn     
               CL(l,i,j,k)=CL(l,i,j,k)+AI(l,m)*b(m,i,j,k) 
            enddo 
         enddo 
         enddo 
         enddo 
      enddo 
 
      return 
      end 
 
c----+-------------------------------------------------------- 
      subroutine do_LSE(CL,event,i_est) 
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      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
      common/domain/sx,sz 
      common/mesh/y(nyp),dx,dz 
 
      real*8 event(N_evn) 
      real*8 CL(N_evn,nx,nyp,nz) 
 
      real*8 g(nx,nyp,nz) ! estimated quantity 
 
      character*50 filename 
 
      g(:,:,:) = 0.0 
 
      do k=1,nz 
      do j=1,nyp 
      do i=1,nx 
         do l=1,N_evn 
            g(I,j,k) = g(I,j,k) + CL(l,I,j,k)*event(l) 
         enddo 
      enddo 
      enddo 
      enddo 
 
      filename = ‘output_LSE’ 
      nn=index(filename,’E’) 
      write(unit=filename(nn+1:),fmt=’(bn,i1.1)’) i_est 
      write(*,*) filename 
      open(10,file=filename,status=’unknown’,form=’unformatted’) 
      write(10) (((g(I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
      close(10) 
 
      return 
      end 
 
c----+-------------------------------------------------------- 
      subroutine out_put(event) 
 
      include ‘param.h’ 
      common/LSE/nv_evn(N_evn),nv_est(N_est),multi(N_evn,3),j1 
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
      common/para/re 
 
      real*8 event(N_evn) 
 
      real*8 g(N_est,nx,nyp,nz) 
               ! -> usually N_est=1,2,3 denote u,v,w 
 
      real*8 um(nyp)  
 
      character*50 filename 
 
      real*8 l_ci(nx,nyp,nz) 
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c---  read the estimated field from file 
 
      g(:,:,:,:) = 0.0 
 
      do i_est=1,N_est 
         filename = ‘output_LSE’ 
         nn=index(filename,’E’) 
         write(unit=filename(nn+1:),fmt=’(bn,i1.1)’) i_est 
         write(*,*) filename 
         open(10,file=filename,status=’unknown’,form=’unformatted’) 
         read(10) (((g(i_est,I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
         close(10) 
      enddo 
 
c---  read averaged statistics 
      open(10,file=’../01_mean/output.dat’,status=’old’) 
      do j=1,nyp 
         read(10,200) 
     &   dummy,um(j),dummy,dummy,dummy,dummy,dummy, 
     &   dummy,dummy,dummy,dummy,dummy,dummy 
      enddo 
200   format(13(e12.5,x)) 
      close(10) 
 
 
c--- total velocity 
 
      do k=1,nz 
      do j=1,nyp 
      do i=1,nx 
         g(1,i,j,k) = g(1,i,j,k)+um(j)  
      enddo 
      enddo 
      enddo 
 
c--- write estimated velocity field 
  
      open(10,file=’u.dat’,status=’unknown’,form=’unformatted’) 
      write(10) (((g(1,I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
      close(10) 
 
      open(10,file=’v.dat’,status=’unknown’,form=’unformatted’) 
      write(10) (((g(2,I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
      close(10) 
 
      open(10,file=’w.dat’,status=’unknown’,form=’unformatted’) 
      write(10) (((g(3,I,j,k),i=1,nx),j=1,nyp),k=1,nz) 
      close(10) 
 
c---  calculate lambda_ci 
 
      call get_lambda_ci(g,l_ci) 
 
      open(11,file=’l_ci.dat’,status=’unknown’) 
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      write(11,*) “variables=x,y,z,lci,u,v,w,uf” 
      write(11,*)  
     >’zone i=’,nx/3*2-nx/3+1,’, j=’,nyp,’,k=’,nz/3*2-nz/3+1,’,f=point’ 
 
      do k=nz/3,nz/3*2  
      do j=1,nyp 
      do i=nx/3,nx/3*2 
         yy=y(j)*re 
         xx=real(i-1)*dx*re  
         zz=real(k-1)*dz*re  
         write(11,102) xx,yy,zz,l_ci(I,j,k) 
     >                ,(g(m,I,j,k),m=1,3) 
     >                , g(1,i,j,k)-um(j) 
102      format(8(e12.5,x)) 
      enddo 
      enddo 
      enddo 
      close(11) 
 
      return 
      end 
 
 
c----+-------------------------------------------------------- 
      subroutine get_lambda_ci(g,l_ci) 
 
      include ‘param.h’ 
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
      common/para/re 
 
      real*8 g(3,nx,nyp,nz) 
               !-> 1,2,3 denote u,v,w 
 
      real*8 l_ci(nx,nyp,nz) 
 
      real*8 d11(nx,nyp,nz),d12(nx,nyp,nz),d13(nx,nyp,nz) 
      real*8 d21(nx,nyp,nz),d22(nx,nyp,nz),d23(nx,nyp,nz) 
      real*8 d31(nx,nyp,nz),d32(nx,nyp,nz),d33(nx,nyp,nz) 
 
      real*8 q1(nx,nyp,nz) 
      real*8 q2(nx,nyp,nz) 
      real*8 q3(nx,nyp,nz) 
 
c--- d_ij = dq_i/dx_j 
 
      call init_partial 
      call fftw_ini 
 
      do k=1,nz 
      do j=1,nyp 
      do i=1,nx 
         q1(I,j,k) = g(1,I,j,k) 
      enddo 
      enddo 
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      enddo 
 
      call partial(1,q1,d11) 
      call partial(2,q1,d12) 
      call partial(3,q1,d13) 
 
      do k=1,nz 
      do j=1,nyp 
      do i=1,nx 
         q2(I,j,k) = g(2,I,j,k) 
      enddo 
      enddo 
      enddo 
 
      call partial(1,q2,d21) 
      call partial(2,q2,d22) 
      call partial(3,q2,d23) 
 
      do k=1,nz 
      do j=1,nyp 
      do i=1,nx 
         q3(I,j,k) = g(3,I,j,k) 
      enddo 
      enddo 
      enddo 
 
      call partial(1,q3,d31) 
      call partial(2,q3,d32)    
      call partial(3,q3,d33) 
 
 
c---  calculating lambda_ci 
 
      l_ci(:,:,:) = 0.0d0 ! l_ci 
 
      do 1 j=1,nyp 
      do 1 k=1,nz 
      do 1 i=1,nx 
         e11 = d11(i,j,k) 
         e12 = d12(i,j,k) 
         e13 = d13(i,j,k) 
         e21 = d21(i,j,k) 
         e22 = d22(i,j,k) 
         e23 = d23(i,j,k) 
         e31 = d31(i,j,k) 
         e32 = d32(i,j,k) 
         e33 = d33(i,j,k) 
         p = - (e11 + e22 + e33) 
         q = 0.5*(p**2 – ( 
     &                  +e11**2 
     &                  +e22**2 
     &                  +e33**2 
     &                  +e12*e21*2.0 
     &                  +e13*e31*2.0 
     &                  +e23*e32*2.0 
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     &                   ) 
     &            ) 
         r = -( - e13*e22*e31 + e12*e23*e31 
     &          + e13*e21*e32 – e11*e23*e32 
     &          - e12*e21*e33 + e11*e22*e33 
     &         ) 
 
         r0 = r + 2./27.*p**3 – 1./3.*p*q 
         q0 = q – 1./3. *p**2 
         dis = (r0/2.)**2 + (q0/3.)**3 
         if (dis.gt.0.0) then 
            reg1 = sqrt(dis) 
            reg2 = reg1 – r0/2.0 
            reg3 = reg1 + r0/2.0 
            if (reg2 .gt. 0.0) then 
                reg2 = reg2**(1./3.) 
            else 
                reg2 = -(-reg2)**(1./3.) 
            endif 
            if (reg3 .gt. 0.0) then 
                reg3 = reg3**(1./3.) 
            else 
                reg3 = -(-reg3)**(1./3.) 
            endif 
            l_ci(I,j,k) = sqrt(3.)/2.0*(reg2 + reg3) 
         else 
            l_ci(I,j,k) = 0.0 
         endif 
 1    continue 
 
      return 
      end 
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APPENDIX C 

NAVIER-STOKES SOLUTION 
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This code solves the incompressible, constant viscosity Navier-Stokes equation in a 
channel flow geometry of height h and imposed pressure gradient dP/dx=1. The variables 
in the code are all made non-dimensional by the wall friction velocity and the viscous 
length scale, c.f. equations (1.1 a) and (1.1 b) in the text. The solution is performed by 
Fourier spectral decomposition in the x- and z-directions, and Chebychev polynomials in 
the y-direction. The grid is 128 x 129 x 128. 
 
Input variable to the code are: 
 
u.ini, v.ini, w.ini (the initial condition given by the LSE code) 
 
Output variables are fluctuating u, v and w velocities and pressure for every “idmpfrq” 
iterations (the u,v,w and p values are typically written every 500 iterations which is 
equivalent to 25 time units ).idmpfrq and the total number of timesteps are defined in the 
APPENDIX D code. 
 
The time step is given by dt=1.25e-04. It is set in APPENDIX D. 
 
The code calls the initial condition from the folder ic_data (refer “set directory from 
argument” in code below). 
 
 
!c--  07/22/06  
!c    irstrt is removed.  
!c    to preserve second-order temporal accuarcy between succesive runs, 
!c    the nonlinear terms are read from the file such as fu.ini, 
fcxx.ini, etc.  
!c    time history of cij is added. 
 
!c--  07/31/07 
!c    write pressure is added 
!c    n+1 and n-1 step fields are written to calculate time-derivatives 
 
!c-- 09/19/09 
!c   actual pressure is written instead of dt*p 
!c   not to write fu.ini, fcxx.ini, etc 
 
!c-- 09/27/09 
!c   read n_ini, time for succesive calculation 
 
!c-- 10/09/09 
!c   change dPdx linearly in time 
 
!c-- 10/19/09 
!c   employing dump_data logical variable 
 
 
!c=====================================================================
== 
      program main 
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      use parameters 
      use new_derivatives 
      use wave_numbers_stuf 
      use general_stuf 
      use fftw_routines 
      use xyzfft 
!c---------------------------------------------------------------------
-- 
!c    main program  for turbulent channel flow 
!c    allowing to split 1 or 2 dimensions over the processors 
!c    data storage: us(nyp,kcomy) = us(nyp,nkz,kxh) etc 
!c---------------------------------------------------------------------
-- 
      implicit none 
      include 'mpif.h' 
 
      complex(8), dimension (1:nyp,1:kcomy) :: us, vs, ws 
      complex(8), dimension (1:nyp,1:kcomy) :: u, v, w 
      complex(8), dimension (1:nyp,1:kcomy) :: pressure 
      complex(8), dimension (1:nyp,1:kcomy) :: temp1,temp2,temp3 
      complex(8), dimension (1:nyp,1:kcomy) :: temp 
 
!c--- non-linear term at (n) and (n-1) steps 
      complex(8), dimension (1:nyp,1:kcomy) :: fnm, gnm, hnm 
      complex(8), dimension (1:nyp,1:kcomy) :: fn, gn, hn 
      common/block1/ fnm, gnm, hnm 
      common/block5/ fn, gn, hn 
 
!c--- boundary conditions 
      complex(8), dimension (1:kcomy) :: bctop, bcbot, pbctop, pbcbot 
 
!c--- influence matrix for helmholtz eq 
      real(8), dimension (0:ny,1:kcomy) :: a, ag, ac 
      real(8), dimension (1:kcomy) ::  wn, wng, wnc 
      real(8), dimension (1:ny) ::  wd, wl, wr 
 
!c--- the flow variables in physical space 
      real(8), dimension (1:nx,1:kcomx) :: srxxp,srxyp,srxzp 
      real(8), dimension (1:nx,1:kcomx) :: sryyp,sryzp,srzzp 
      real(8), dimension (1:nx,1:kcomx) :: dxtp, dytp, dztp 
      real(8), dimension (1:nx,1:kcomx) :: rxxp, rxyp, rxzp 
      real(8), dimension (1:nx,1:kcomx) :: ryyp, ryzp, rzzp 
      real(8), dimension (1:nx,1:kcomx) :: omxp, omyp, omzp 
      real(8), dimension (1:nx,1:kcomx) :: up, vp, wp 
 
      real(8) :: cfl_max, div_max, re_m, time 
 
!c--- for cpu time measuring  
      real(4) :: cpu_start, cpu_end, cpu_proc, cpu_sum, cpu_max 
 
!c--- mpi related constant 
      integer ierr, nprocmpi 
      integer mynum 
      common/cbpar2/ mynum 
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!c--- indicies and coefficients 
      integer :: i, iy, izx, it, in, n_ini 
      integer :: ibp, ib, error 
      real(8) :: g, sg, sa, con_1, con_2 
 
!c--- input and output file names 
      character(len=70), dimension (1:99) :: namein, nameout 
 
!c--- fene-p model 
      complex(8), dimension (1:nyp,1:kcomy) :: cxx,cxy,cxz,cyy,cyz,czz 
      complex(8), dimension (1:nyp,1:kcomy) :: c_fnxx, c_fnxy, c_fnxz 
      complex(8), dimension (1:nyp,1:kcomy) :: c_fnyy, c_fnyz, c_fnzz 
      complex(8), dimension (1:nyp,1:kcomy) :: c_fnmxx,c_fnmxy,c_fnmxz 
      complex(8), dimension (1:nyp,1:kcomy) :: c_fnmyy,c_fnmyz,c_fnmzz 
 
!c--- pressure gradient change 
      integer :: time_region 
      real(8) :: re_tau_time 
      real(8) :: dpdx_time 
 
      logical :: dump_data 
 
!c--- directory input (JRB) 
      character*30 :: dirarg 
      integer :: iargc 
 
 
!c---------------------------------------------------------------------
-- 
!c    mpi initializations 
!c---------------------------------------------------------------------
-- 
      if ( nproc > 1 ) then 
           call mpi_init( ierr ) 
           if ( ierr /= 0 ) stop "init 1" 
           call mpi_comm_rank( mpi_comm_world, mynum, ierr ) 
           if ( ierr /= 0 ) stop "init 2" 
           call mpi_comm_size( mpi_comm_world, nprocmpi, ierr ) 
           if ( ierr /= 0 ) stop "init 3" 
           if ( nprocmpi /= nproc ) stop 'error nproc' 
           if ( mod(nxh,nproc) /= 0 ) stop " invalid nproc: see nxh (1) 
" 
           if ( mod(nz,nproc)  /= 0 ) stop " invalid nproc: see nz " 
      else 
           mynum = 0 
      endif 
 
!c----------------------------  
!c     set directory from argument 
!c-------------------------------- 
      if (iargc().ne.1) stop "must set argument: <program> <######>" 
      call getarg(1,dirarg) 
      folder_in="ic_data"//trim(dirarg)//"/" 
      folder_out="/scratch/pkvraman/output"//trim(dirarg)//"/" 
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      write(*,*) "folder_in  > ", trim(folder_in) 
      write(*,*) "folder_out > ", trim(folder_out) 
 
!c---------------------------------------------------------------------
-- 
!c    setup 
!c---------------------------------------------------------------------
-- 
      call setstuf 
      if( .not.solve_fenep_model .and. beta /= 1.d0 ) stop "beta" 
 
!c---------------------------------------------------------------------
-- 
!c    define the input/output arrays 
!c---------------------------------------------------------------------
-- 
      namein(1) = "u" 
      namein(2) = "v" 
      namein(3) = "w" 
      namein(4) = "cxx" 
      namein(5) = "cxy" 
      namein(6) = "cxz" 
      namein(7) = "cyy" 
      namein(8) = "cyz" 
      namein(9) = "czz" 
      namein(10) = "p" 
 
      namein(11) = "fu" 
      namein(12) = "fv" 
      namein(13) = "fw" 
      namein(14) = "fcxx" 
      namein(15) = "fcxy" 
      namein(16) = "fcxz" 
      namein(17) = "fcyy" 
      namein(18) = "fcyz" 
      namein(19) = "fczz" 
  
      nameout = namein 
 
      do i = 1, 19 
         namein(i)  = trim(folder_in )//trim(namein(i) )//".ini" 
         nameout(i) = trim(folder_out)//trim(nameout(i))//"." 
      enddo 
 
!c---------------------------------------------------------------------
-- 
!c    initialisations for fft routines 
!c---------------------------------------------------------------------
-- 
      call xyzfft_ini 
      call ccosexp_trig 
 
!c---------------------------------------------------------------------
-- 
!c    set up the boundary conditions at y = [-1, 1] for channel flow 
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!c    always check for consistency the pressure bcs for the zero mode 
!c    (dp/dy(1)-dp/dy(-1))*dyde = v(1) - v(-1) 
!c---------------------------------------------------------------------
-- 
      bctop  = dcmplx(0.0d0, 0.0d0) 
      bcbot  = dcmplx(0.0d0, 0.0d0) 
      pbctop = dcmplx(0.0d0, 0.0d0) 
      pbcbot = dcmplx(0.0d0, 0.0d0) 
 
      n_ini = 0    ! if n_ini is not 0, the initial files for nonlinear 
terms at (n-1) step are required.  
      time = 0.0d0 
 
!c--- for interactive job  
!c    read (*,*) n_ini 
!c    read (*,*) time 
      n_ini=0 
      time=0.0 
 
      write(*,*) mynum, n_ini, time 
!c--- 
 
!c---------------------------------------------------------------------
-- 
!c    read initial data 
!c---------------------------------------------------------------------
-- 
 
                call var_scatter( u, namein(1) ) 
                call var_scatter( v, namein(2) ) 
                call var_scatter( w, namein(3) ) 
!c           if ( n_ini .ne. 0 ) then 
!c                call var_scatter( fnm, namein(11) )   ! for 
continuous calculation  07/21/06 
!c                call var_scatter( gnm, namein(12) ) 
!c                call var_scatter( hnm, namein(13) ) 
!c           endif 
 
           if ( solve_fenep_model ) then 
                call var_scatter( cxx, namein(4) ) 
                call var_scatter( cxy, namein(5) ) 
                call var_scatter( cxz, namein(6) ) 
                call var_scatter( cyy, namein(7) ) 
                call var_scatter( cyz, namein(8) ) 
                call var_scatter( czz, namein(9) ) 
!c           if ( n_ini .ne. 0 ) then      
!c                call var_scatter( c_fnmxx, namein(14) ) 
!c                call var_scatter( c_fnmxy, namein(15) ) 
!c                call var_scatter( c_fnmxz, namein(16) ) 
!c                call var_scatter( c_fnmyy, namein(17) ) 
!c                call var_scatter( c_fnmyz, namein(18) ) 
!c                call var_scatter( c_fnmzz, namein(19) ) 
!c           endif 
           endif 
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!c---------------------------------------------------------------------
-- 
!c    initialize the influence matrix in initial. 
!c---------------------------------------------------------------------
-- 
      call initial( pressure, temp, & 
                    bctop, bcbot, a, ag, ac, wn, wng, wnc, wd, wl, wr, 
pbctop, pbcbot) 
 
!c--- write simulation parameters 
     
      if ( nproc >  1 ) call mpi_barrier( mpi_comm_world, ierr ) 
      if ( mynum == 0 ) then 
           write(*,*) 
           write(*,*) '------------------------------------', & 
                      ' parameters ',                     & 
                      '------------------------------------' 
           write(*,*) 're_tau = ', re_tau  
           if ( scale_by_pi ) then  
                write(*,*) 'len_x = ', xl * acos(-1.0) 
                write(*,*) 'len_z = ', zl * acos(-1.0) 
           else 
                write(*,*) 'len_x = ', xl  
                write(*,*) 'len_z = ', zl  
           endif 
           write(*,*) 'nx = ', nx 
           write(*,*) 'ny = ', ny 
           write(*,*) 'nz = ', nz 
           write(*,*) 'dt = ', dt 
           write(*,*) 'nproc = ', nproc 
           if ( solve_fenep_model ) then 
                write(*,*) 'we_tau = ', we_tau 
                write(*,*) 'beta   = ', beta 
                write(*,*) 'l_max  = ', lmax 
                write(*,*) 'diffusivity = ', diffusivity 
           endif  
           write(*,*) 
           write(*,*) '------------------------------------', & 
                      ' program starts ',                     & 
                      '------------------------------------' 
           write(*,*) 
      endif 
 
 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
!c    main time stepping loop 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
 
      call cpu_time( cpu_start ) 
 
      do it = n_ini + 1, n_ini + nsteps 
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!c---------------------------------------------------------------------
--- 
!c    calculate the vorticity, strain-rate tensor and velocity in 
physical domain. 
!c---------------------------------------------------------------------
--- 
         call vort1( u, v, w, omxp, omyp, omzp ) 
         call gadot( u, v, w, 
srxxp ,srxyp ,srxzp ,sryyp ,sryzp ,srzzp ) 
 
         call xyzfftsp( u, up ) 
         call xyzfftsp( v, vp ) 
         call xyzfftsp( w, wp ) 
 
         call divergence( div_max, srxxp, sryyp, srzzp )  
         call cfl_number( cfl_max, up, vp, wp )  
 
         if ( mynum == 0 ) call mean_reynolds_number( re_m, u, time ) 
         if ( mynum == 0 ) call time_history( up, vp, wp, time ) 
 
         if ( mynum == 0 ) then 
              write(*,100) it-1, time, re_m, div_max, cfl_max  
100           format(' step =',i7,2x,':  t =',e15.9,2x,' re_m 
=',e15.9,2x, & 
                     ' div =',e15.9,2x,' cfl =',e15.9) 
         endif 
 
         time = time + dt 
 
!c---------------------------------------------------------------------
--- 
!c    adams-bashforth  for it > 1 
!c    bacward euler    for it = 1 and read the array of filled zero 
!c---------------------------------------------------------------------
--- 
!c         if ( it == 1 ) then 
         if ( it == n_ini + 1 ) then 
              con_1 = dt 
              con_2 = 0.d0 
 
              fnm=0.d0; gnm=0.d0; hnm=0.d0 
              c_fnmxx=0.d0; c_fnmxy=0.d0; c_fnmxz=0.d0 
              c_fnmyy=0.d0; c_fnmyz=0.d0; c_fnmzz=0.d0 
         else 
              con_1 = + 1.5d0*dt 
              con_2 = - 0.5d0*dt 
         endif 
 
!c--- store spectral coefficient u^(n) to us  
         forall( izx=1:kcomy, iy=1:nyp ) 
                 us(iy,izx) = u(iy,izx) 
                 vs(iy,izx) = v(iy,izx) 
                 ws(iy,izx) = w(iy,izx) 
         endforall 
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!c---------------------------------------------------------------------
--- 
!c    polymer stress 
!c---------------------------------------------------------------------
--- 
         if ( solve_fenep_model ) then 
 
              call get_polymer_stress ( cxx, cyy, czz,             & ! 
in: cij at n, out: cij at n+1 
                                        cxy, cxz, cyz,             &  
                                        c_fnxx, c_fnyy, c_fnzz,    & ! 
out: polymer stress at n+1 
                                        c_fnxy, c_fnxz, c_fnyz,    &  
                                        c_fnmxx, c_fnmyy, c_fnmzz, & ! 
fij at n-1 in step 1 of fenep 
                                        c_fnmxy, c_fnmxz, c_fnmyz, &  
                                        omxp, omyp, omzp,          & 
                                        srxxp, sryyp, srzzp,       & 
                                        srxyp, srxzp, sryzp,       & 
                                        up, vp, wp,                & 
                                        con_1, con_2,              & 
                                        ac, wnc, wd, wl, wr,       & 
                                        time ) 
 
!c--- update the polymer stress contrinution 
 
              sa = (1.d0-beta)*(dt/2.d0)/re_tau 
              do i = 1, kcomy 
 
                 u(:,i) = u(:,i) + sa*(  x_der_1(c_fnxx(:,i),i)  & 
                                       + y_der_1(c_fnxy(:,i))    & 
                                       + z_der_1(c_fnxz(:,i),i)) 
 
                 v(:,i) = v(:,i) + sa*(  x_der_1(c_fnxy(:,i),i)  & 
                                       + y_der_1(c_fnyy(:,i))    & 
                                       + z_der_1(c_fnyz(:,i),i))   
 
                 w(:,i) = w(:,i) + sa*(  x_der_1(c_fnxz(:,i),i)  & 
                                       + y_der_1(c_fnyz(:,i))    & 
                                       + z_der_1(c_fnzz(:,i),i)) 
              enddo 
 
         endif 
 
 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
!c    stage 1 
!c    compute the nonlinear terms for the momentum equations. 
!c    this part calculates the nonlinear term in 
!c    the skew-symmetric form. 
!c    i.e, u.grad u = 1/2 ( u.grad u + div (uu) ) 
!c    evaluate all terms at old time, including viscous term 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
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         do i = 1, kcomx 
 
!c--- -( u.grad (u))/2 part 
 
            dxtp(:,i) = -(   up(:,i)* srxxp(:,i)             & 
                           + vp(:,i)*(srxyp(:,i)-omzp(:,i))  & 
                           + wp(:,i)*(srxzp(:,i)+omyp(:,i))  & 
                         )/4.0d0 
            dytp(:,i) = -(   vp(:,i)* sryyp(:,i)             & 
                           + up(:,i)*(srxyp(:,i)+omzp(:,i))  & 
                           + wp(:,i)*(sryzp(:,i)-omxp(:,i))  & 
                         )/4.0d0 
 
            dztp(:,i) = -(   wp(:,i)* srzzp(:,i)             & 
                           + up(:,i)*(srxzp(:,i)-omyp(:,i))  & 
                           + vp(:,i)*(sryzp(:,i)+omxp(:,i))  & 
                         )/4.0d0 
 
!c--- -(div (uu))/2 part : gradient will be applied later 
 
            rxxp(:,i) = -up(:,i)*up(:,i)/2.d0 
            rxyp(:,i) = -up(:,i)*vp(:,i)/2.d0 
            rxzp(:,i) = -up(:,i)*wp(:,i)/2.d0 
            ryyp(:,i) = -vp(:,i)*vp(:,i)/2.d0 
            ryzp(:,i) = -vp(:,i)*wp(:,i)/2.d0 
            rzzp(:,i) = -wp(:,i)*wp(:,i)/2.d0 
 
         enddo 
 
         call xyzfftps( dxtp, fn ) 
         call xyzfftps( dytp, gn ) 
         call xyzfftps( dztp, hn ) 
 
         call xyzfftps( rxxp, c_fnxx ) 
         call xyzfftps( rxyp, c_fnxy ) 
         call xyzfftps( rxzp, c_fnxz ) 
         call xyzfftps( ryyp, c_fnyy ) 
         call xyzfftps( ryzp, c_fnyz ) 
         call xyzfftps( rzzp, c_fnzz ) 
 
         g = dt/(2*re_tau) * beta ! for newtonian fluid beta = 1.d0 
 
         do i = 1, kcomy 
            fn(:,i) = fn(:,i) + x_der_1(c_fnxx(:,i),i) + 
y_der_1(c_fnxy(:,i)) + z_der_1(c_fnxz(:,i),i) 
            gn(:,i) = gn(:,i) + x_der_1(c_fnxy(:,i),i) + 
y_der_1(c_fnyy(:,i)) + z_der_1(c_fnyz(:,i),i) 
            hn(:,i) = hn(:,i) + x_der_1(c_fnxz(:,i),i) + 
y_der_1(c_fnyz(:,i)) + z_der_1(c_fnzz(:,i),i) 
 
!c--- adams - bashforth integration 
            u(:,i) = u(:,i) + con_1*fn(:,i) + con_2*fnm(:,i) 
            v(:,i) = v(:,i) + con_1*gn(:,i) + con_2*gnm(:,i) 
            w(:,i) = w(:,i) + con_1*hn(:,i) + con_2*hnm(:,i) 
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!c--- save the convection term  for the next time-step in adams-
bashford 
            fnm(:,i) = fn(:,i) 
            gnm(:,i) = gn(:,i) 
            hnm(:,i) = hn(:,i) 
 
!c--- add viscous corrections to u(n), v(n), w(n) 
            u(:,i)=u(:,i) + 
g*(x_der_2(us(:,i),i)+y_der_1(y_der_1(us(:,i)))+z_der_2(us(:,i),i)) 
            v(:,i)=v(:,i) + 
g*(x_der_2(vs(:,i),i)+y_der_1(y_der_1(vs(:,i)))+z_der_2(vs(:,i),i)) 
            w(:,i)=w(:,i) + 
g*(x_der_2(ws(:,i),i)+y_der_1(y_der_1(ws(:,i)))+z_der_2(ws(:,i),i)) 
 
         enddo 
 
 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
!c    stage 2 
!c    the pressure step  (n + 1/3   to   n + 2/3) 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
 
         call get_pressure ( pressure, u, v, w,                 & 
                             pbctop, pbcbot, a, wn, wd, wl, wr, & 
                             bctop, bcbot, ag, wng  ) 
 
!c--- update velocity at (n+2/3) 
         forall( i = 1:kcomy ) 
                 u(:,i) = u(:,i) - x_der_1( pressure(:,i),i ) 
                 v(:,i) = v(:,i) - y_der_1( pressure(:,i)   ) 
                 w(:,i) = w(:,i) - z_der_1( pressure(:,i),i ) 
         endforall 
 
!c--- apply constant pressuregradient in x-direction 
!c         if ( mynum==0 ) u(1,1) = u(1,1) + dt 
 
 
!c--- pressure gradient change 
         if ( mynum==0 ) then 
 
             time_region = 1 
             if (time.ge.time_s .and. time.lt.time_f) time_region = 2 
             if (time.ge.time_f ) time_region = 3 
 
             select case(time_region)  
               case(1) 
                   dpdx_time = 1.0 
               case(2) 
                   dpdx_time = ((re_tau_final/re_tau)**2 - 
1.0)/(time_f-time_s)*(time-time_s)+1.0 
               case(3) 
                   dpdx_time = (re_tau_final/re_tau)**2 
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             end select 
 
             u(1,1) = u(1,1) + dt * dpdx_time 
 
         endif 
 
 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++ 
!c    stage 3 
!c    calculate velocities at (n + 1) 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++ 
 
!c--- u^(n+1) 
         sg = -2.0d0*re_tau/dt/beta 
         forall( i = 1:kcomy ) 
                 temp(:,i)         = sg * u(:,i) 
                 temp(nyp-3:nyp,i) = (0.d0,0.d0) 
         endforall 
 
         in = 0;  g  = 2.0d0*re_tau/dt/beta;  ib = 0 
         call solve( temp, u,        &             ! input/output 
                     g, dyde, in,    &             ! input 
                     bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl, 
wr )  ! input/output 
!c--- v^(n+1) 
         sg = -2.0d0*re_tau/dt/beta 
         forall( i = 1:kcomy ) 
                 temp(:,i)         = sg * v(:,i) 
                 temp(nyp-3:nyp,i) = (0.d0,0.d0) 
         endforall 
 
         in = 0;  g  = 2.0d0*re_tau/dt/beta;  ib = 0 
         call solve( temp, v,        &             ! input/output 
                     g, dyde, in,    &             ! input 
                     bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl, 
wr )  ! input/output 
!c--- w^(n+1) 
         sg = -2.0d0*re_tau/dt/beta 
         forall( i = 1:kcomy ) 
                 temp(:,i)         = sg * w(:,i) 
                 temp(nyp-3:nyp,i) = (0.d0,0.d0) 
         endforall 
 
         in = 0;  g  = 2.0d0*re_tau/dt/beta;  ib = 0 
         call solve( temp, w,        &             ! input/output 
                     g, dyde, in,    &             ! input 
                     bctop, bcbot,ib,wavz, wavx, ag, wng, wd, wl, 
wr )  ! input/output 
 
!c---------------------------------------------------------------------
-- 
!c    output of data required for restart 
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!c---------------------------------------------------------------------
-- 
 
         dump_data = .false.  
         dump_data = ((mod(it,idmpfrq) == 0) .or. (it == nsteps + 
n_ini)) 
 
         if (time.ge.time_s .and. time.le.time_f) then 
 
            if ( mod( int((time-time_s)/dt+0.5)*60, int((time_f-
time_s)/dt+0.5) )==0  & 
               ) dump_data  = .true. 
 
         endif 
 
         if ( dump_data  & 
 
!         if ( mod(it,idmpfrq) == 0 .or. it == nsteps + n_ini   & 
!c         .or. mod(it-1,idmpfrq) == 0 .or. mod(it+1,idmpfrq) == 0   & 
             ) then 
                   call dooutputs( u,   nameout(1), it ) 
                   call dooutputs( v,   nameout(2), it ) 
                   call dooutputs( w,   nameout(3), it ) 
                   call dooutputs( pressure/dt, nameout(10), it ) 
 
!                   call dooutputs( fnm,   nameout(11), it ) 
!                   call dooutputs( gnm,   nameout(12), it ) 
!                   call dooutputs( hnm,   nameout(13), it ) 
              if ( solve_fenep_model ) then 
                   call dooutputs( cxx, nameout(4), it ) 
                   call dooutputs( cxy, nameout(5), it ) 
                   call dooutputs( cxz, nameout(6), it ) 
                   call dooutputs( cyy, nameout(7), it ) 
                   call dooutputs( cyz, nameout(8), it ) 
                   call dooutputs( czz, nameout(9), it ) 
 
!                   call dooutputs( c_fnmxx, nameout(14), it ) 
!                   call dooutputs( c_fnmxy, nameout(15), it ) 
!                   call dooutputs( c_fnmxz, nameout(16), it ) 
!                   call dooutputs( c_fnmyy, nameout(17), it ) 
!                   call dooutputs( c_fnmyz, nameout(18), it ) 
!                   call dooutputs( c_fnmzz, nameout(19), it ) 
              endif 
         endif 
 
      enddo  ! time-steps 
 
!c--- cpu time for all processors  
      call cpu_time( cpu_end ) 
      cpu_proc = cpu_end - cpu_start 
 
      if ( nproc > 1 ) then 
           call mpi_reduce( cpu_proc, cpu_sum, 1, mpi_real, & 
                            mpi_sum, 0, mpi_comm_world, ierr) 
           call mpi_reduce( cpu_proc, cpu_max, 1, mpi_real, & 
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                            mpi_max, 0, mpi_comm_world, ierr) 
      else 
           cpu_sum = cpu_proc 
           cpu_max = cpu_proc 
      endif 
 
      if ( mynum == 0 ) then 
           write(*,*) 
           write(*,*) ' total cpu time over all processors = 
',int(cpu_sum/60.+1),' mins'  
           write(*,*) ' wall clock time                    = 
',int(cpu_max/60.+1),' mins'  
           write(*,*) 
      endif 
 
 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
!c    end main loop 
!c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ 
 
      if ( nproc > 1 ) then 
           call mpi_barrier( mpi_comm_world, ierr ) 
           call mpi_finalize( ierr ) 
      endif 
 
      end program main 
 
!c=====================================================================
= 
      subroutine setstuf 
      use parameters 
      use wave_numbers_stuf 
      use general_stuf 
 
      implicit none 
 
      integer mynum 
      common/cbpar2/ mynum 
 
      integer j, jstart, jz, k, keff, nxi, nyi, nzi 
      real(8) wavzall(nz) 
      real(8) alpha, bhta, rj, rn 
 
!c---------------------------------------------------------------------
-- 
!c    calculate the resolvable wave nos. in x: 
!c    assumes length xl has been non-dimensionalized with the length 
yhl. 
!c---------------------------------------------------------------------
-- 
      pi = 4.d0 * datan(1.d0) 
 
      if ( scale_by_pi ) then 
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           alpha = 2.0d0/xl 
           bhta  = 2.0d0/zl 
      else 
           alpha = 2.0d0*pi/xl 
           bhta  = 2.0d0*pi/zl 
      endif 
!c---------------------------------------------------------------------
-- 
!c    each processor, in the spectral domain consists of data in 
!c    the form : complex a(nyp,kcomy) = a(nyp,nkz,kxh) 
!c    so for the x-derivative, between 1 and nxh/nproc wave numbers 
!c    are used per processor for nproc larger and smaller than 
!c    nxh respectively 
!c    for the z derivatives, between (nz*nxh)/nproc and nz wave numbers 
!c    are used per processor for nproc larger and smaller than 
!c    nxh respectively 
!c---------------------------------------------------------------------
-- 
      do k = 1, kxh 
         keff     = (mynum*nxh)/nproc + k - 1 
         wavx(k)  = dfloat(keff)*alpha 
         cwavx(k) = dcmplx(0.0d0, 1.0d0)*wavx(k) 
         wavx2(k) = -wavx(k)*wavx(k) 
      enddo 
!c---------------------------------------------------------------------
-- 
!c    first calculate all possible wavz 
!c    then select proper values for current processor mynum 
!c    distinguish nproc > nxh and nproc <= nxh 
!c---------------------------------------------------------------------
-- 
      do j = 1, max0(1,nz/2) 
         wavzall(j) = dfloat(j-1)*bhta 
      enddo 
      do j = nz/2 + 1, nz 
         wavzall(j) = dfloat(j-2*(nz/2)-1)*bhta 
      enddo 
 
      if ( kxh == 1 ) then 
           jz = mod(mynum,kproc_yz) 
           jstart = jz * kcomy 
      else 
           jstart = 0 
      endif 
 
      do j = 1, nkz 
         wavz(j)  = wavzall(j+jstart) 
         cwavz(j) = dcmplx(0.0d0, 1.0d0)*wavz(j) 
         wavz2(j) = - wavz(j)*wavz(j) 
      enddo 
 
      end subroutine setstuf 
 
!c=====================================================================
== 
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      subroutine diverg( u, v, w, div ) 
!c---------------------------------------------------------------------
-- 
!c    this subroutine calculates fourier/chebyshev coeff of divergence 
!c    input and output are fourier/chebyshev coefficients. 
!c---------------------------------------------------------------------
-- 
      use parameters, only : nyp,kcomy 
      use new_derivatives 
      implicit none 
 
      complex(8),intent(in),  dimension (nyp,kcomy) :: u, v, w 
      complex(8),intent(out), dimension (nyp,kcomy) :: div 
 
      integer :: i 
 
      forall( i = 1:kcomy ) 
              
div(:,i)=x_der_1(u(:,i),i)+y_der_1(v(:,i))+z_der_1(w(:,i),i) 
      endforall 
 
      end subroutine diverg 
 
!c=====================================================================
== 
      subroutine vort1( ux, uy, uz, omxp, omyp, omzp ) 
!c---------------------------------------------------------------------
-- 
!c    calculate vorticity components and transformed to physical values 
!c---------------------------------------------------------------------
-- 
      use parameters 
      use new_derivatives 
      use xyzfft 
      implicit none 
 
      complex(8),intent(in), dimension (nyp,kcomy):: ux, uy, uz 
      real(8)   ,intent(out),dimension (nx,kcomx) :: omxp,omyp,omzp 
 
      complex(8),dimension (nyp,kcomy) :: temp 
      integer :: i 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = x_der_1(uy(:,i),i) - y_der_1(ux(:,i)) 
      endforall 
      call xyzfftsp(temp, omzp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = y_der_1(uz(:,i)) - z_der_1(uy(:,i),i) 
      endforall 
      call xyzfftsp(temp, omxp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = z_der_1(ux(:,i),i) - x_der_1(uz(:,i),i) 
      endforall 
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      call xyzfftsp(temp, omyp) 
 
      end subroutine vort1 
 
!c=====================================================================
== 
      subroutine gadot(ux,uy,uz,srxxp,srxyp,srxzp,sryyp,sryzp,srzzp) 
!c---------------------------------------------------------------------
-- 
!c    calculate strain-rate tensors and transformed to physical values 
!c    (e.g.) srxyp =  dux/dy + duy/dx 
!c---------------------------------------------------------------------
-- 
      use parameters 
      use new_derivatives 
      use xyzfft 
      implicit none 
 
      complex(8),intent(in),dimension(nyp,kcomy) :: ux, uy, uz 
      real(8),  intent(out),dimension(nx,kcomx)  :: srxxp, srxyp, srxzp 
& 
                                                   ,sryyp, sryzp, srzzp 
 
      complex(8),dimension(nyp,kcomy)     :: temp 
      integer :: i 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = 2.d0*x_der_1(ux(:,i),i) 
      endforall 
      call xyzfftsp(temp,srxxp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = 2.d0*y_der_1(uy(:,i)) 
      endforall 
      call xyzfftsp(temp,sryyp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = 2.d0*z_der_1(uz(:,i),i) 
      endforall 
      call xyzfftsp(temp,srzzp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = x_der_1(uy(:,i),i) + y_der_1(ux(:,i)) 
      endforall 
      call xyzfftsp(temp,srxyp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = x_der_1(uz(:,i),i) + z_der_1(ux(:,i),i) 
      endforall 
      call xyzfftsp(temp,srxzp) 
 
      forall( i = 1:kcomy ) 
              temp(:,i) = z_der_1(uy(:,i),i) + y_der_1(uz(:,i)) 
      endforall 
      call xyzfftsp(temp,sryzp) 
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      end subroutine gadot 
 
!c=====================================================================
== 
      subroutine var_scatter( varo, nameins ) 
      use parameters 
      implicit none 
      include 'mpif.h' 
 
      complex(8) varo(nyp,kcomy) 
      character(len=*), intent(in) :: nameins 
 
      integer mynum 
      common/cbpar2/ mynum 
 
      complex(8), dimension (nyp,nz,nxh) :: vari 
      integer i, icomy, ierr, j, k 
 
      if ( mynum == 0 ) then 
           write(*,*) ' reading initial data : ', nameins 
           
open(21,file=nameins,status="old",action="read",form='unformatted') 
           read(21) (((vari(j,k,i),j=1,nyp),k=1,nz),i=1,nxh) 
           close(21) 
      endif 
 
          if ( nproc > 1 ) then 
               call mpi_barrier( mpi_comm_world, ierr ) 
               call mpi_scatter( vari, kdata, mpi_double_complex, varo, 
kdata, mpi_double_complex, & 
                                 0, mpi_comm_world, ierr ) 
      elseif ( nproc == 1 ) then 
               do i = 1, nxh 
               do k = 1, nz 
               do j = 1, nyp 
                  icomy = k + (i-1)*nz 
                  varo(j,icomy) = vari(j,k,i) 
               enddo 
               enddo 
               enddo 
      endif 
 
      end subroutine var_scatter 
 
!c===================================================================== 
      subroutine dooutputs( qs, nameouts, it ) 
!c--------------------------------------------------------------------- 
!c    gather the data of the processors to processor 0 for output 
!c    and write in a file 
!c--------------------------------------------------------------------- 
      use parameters 
      use general_stuf 
      use xyzfft 
      implicit none 
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      include 'mpif.h' 
 
      complex(8),intent(in),dimension(nyp,kcomy) :: qs 
      character(len=70),intent(in) :: nameouts 
      character(len=70)            :: filename 
 
      integer mynum 
      common/cbpar2/ mynum 
      complex(8),dimension (nyp,nz,nxh) :: qsall 
      integer :: i, icomy, ierr, j, k, it 
 
          if ( nproc > 1 ) then 
               call mpi_barrier( mpi_comm_world, ierr ) 
               call mpi_gather( qs, kdata, mpi_double_complex, qsall, 
kdata, mpi_double_complex, 0, & 
                                mpi_comm_world, ierr ) 
      elseif ( nproc == 1 ) then 
               do i = 1, nxh 
               do k = 1, nz 
               do j = 1, nyp 
                  icomy = k + (i-1)*nz 
                  qsall(j,k,i) = qs(j,icomy) 
               enddo 
               enddo 
               enddo 
      endif 
 
      if ( mynum == 0 ) then 
 
           filename = nameouts 
           i=index(filename,'.')  
!           write(unit=filename(i+1:),fmt='(bn,i5.5)') it 
!           write(unit=filename(i+1:),fmt='(bn,i6.6)') it 
           write(unit=filename(i+1:),fmt='(bn,i7.7)') it 
           write(*,*) 'writing file: ', filename 
 
           
open(31,file=filename,status="unknown",action="write",form='unformatted
') 
           write(31) (((qsall(j,k,i),j=1,nyp),k=1,nz),i=1,nxh) 
           close(31) 
      endif 
 
      if ( nproc > 1 ) call mpi_barrier( mpi_comm_world, ierr ) 
 
      end subroutine dooutputs 
 
!c===================================================================== 
!      subroutine mean_reynolds( spec, name, time ) 
      subroutine mean_reynolds_number( re_m, spec, time ) 
      use parameters 
      use general_stuf 
      implicit none 
 
      complex(8), intent(in), dimension (nyp,kcomy) :: spec 
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!      character(len=*), intent(in) :: name 
      real(8)  time 
 
      real(8)  :: re_m  ! = u_m*(2h)/nu 
      integer :: iy 
 
         re_m = 0.d0 
      do iy = 0, nyp-1, 2 
         re_m = re_m + real(spec(iy+1,1),8)/dble(1-iy*iy)*2.0d0 
      enddo 
         re_m = re_m * re_tau 
 
      open (10, file=trim(folder_out)//'time_hist_re_m.dat', 
position="append", action="write") 
      write(10,"(e15.9,x,e15.9)") time, re_m 
      close(10,status="keep") 
 
      end subroutine mean_reynolds_number 
 
!c===================================================================== 
      subroutine cfl_number( cfl_max, up, vp, wp )  
      use parameters 
      use general_stuf 
      implicit none 
      include 'mpif.h' 
 
      real(8), dimension (1:nx,1:kcomx) :: up, vp, wp 
 
      real(8) :: cfl_max, cfl_max_proc, cfl_local 
      real(8) :: delta_x, delta_z, delta_y  
 
      integer i, j, k, icomx, ierr 
 
      pi = 4.d0 * datan(1.d0) 
 
      if ( scale_by_pi ) then 
           delta_x = xl * pi / dble(nx) 
           delta_z = zl * pi / dble(nz) 
      else 
           delta_x = xl / dble(nx) 
           delta_z = zl / dble(nz) 
      endif 
 
      cfl_max_proc = 0.d0 
 
      do icomx = 1, kcomx 
         do i = 1, nx 
 
            j = mod( icomx - 1, nyp) + 1 
 
            delta_y =  cos(dble(j-1)*pi/dble(ny)) & 
                     - cos(dble(j  )*pi/dble(ny))   
 
            cfl_local =  abs(up(i,icomx))/delta_x  & 
                       + abs(vp(i,icomx))/delta_y  & 
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                       + abs(wp(i,icomx))/delta_z 
            if ( cfl_local .gt. cfl_max_proc )  cfl_max_proc = 
cfl_local 
         enddo 
      enddo 
 
      cfl_max_proc = cfl_max_proc * dt 
 
      if ( nproc > 1 ) then 
           call mpi_reduce( cfl_max_proc, cfl_max, 1, 
mpi_double_precision, & 
                            mpi_max, 0, mpi_comm_world, ierr) 
      else 
           cfl_max = cfl_max_proc 
      endif 
  
      end subroutine cfl_number 
 
!c===================================================================== 
      subroutine time_history( up, vp, wp, time ) 
      use parameters 
      use general_stuf 
      implicit none 
 
      real(8), dimension (1:nx,1:kcomx) :: up, vp, wp 
      real(8) time 
      integer :: i, j, k, icomx(4) 
 
!c--- monitoring points  
      i = 1  
      k = 1   ! should be less than kz 
 
      j = 2 
      icomx(1) = (k - 1)*nyp + j 
 
      j = 10 
      icomx(2) = (k - 1)*nyp + j 
 
      j = 30 
      icomx(3) = (k - 1)*nyp + j 
 
      j = 65 
      icomx(4) = (k - 1)*nyp + j 
 
      open (10, file=trim(folder_out)//'time_hist_u.dat', 
position="append", action="write") 
      write(10, 100) time, (up(i,icomx(k)),k=1,4) 
      close(10, status="keep") 
 
      open (10, file=trim(folder_out)//'time_hist_v.dat', 
position="append", action="write") 
      write(10, 100) time, (vp(i,icomx(k)),k=1,4) 
      close(10, status="keep") 
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      open (10, file=trim(folder_out)//'time_hist_w.dat', 
position="append", action="write") 
      write(10, 100) time, (wp(i,icomx(k)),k=1,4) 
      close(10, status="keep") 
 
100   format(5(e15.9,x)) 
 
      end subroutine time_history 
 
!c===================================================================== 
      subroutine divergence( div_max, srxxp, sryyp, srzzp )  
 
      use parameters 
      use general_stuf 
      implicit none 
      include 'mpif.h' 
 
      real(8), dimension (1:nx,1:kcomx) :: srxxp,sryyp,srzzp 
      real(8) :: div_max, div_max_proc, div_local 
      integer :: i, icomx, ierr 
 
      div_max_proc = 0.d0 
 
      do icomx = 1, kcomx 
         do i = 1, nx 
            div_local = srxxp(i,icomx) + sryyp(i,icomx) + 
srzzp(i,icomx) 
            if ( div_local .gt. div_max_proc )  div_max_proc = 
div_local 
         enddo 
      enddo 
 
      div_max_proc = 0.5 * div_max_proc 
 
      if ( nproc > 1 ) then 
           call mpi_reduce( div_max_proc, div_max, 1, 
mpi_double_precision, & 
                            mpi_max, 0, mpi_comm_world, ierr) 
      else 
           div_max = div_max_proc 
      endif 
  
      end subroutine divergence 
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This code defines all the parameters used in APPENDIX C.  
 
!====================================================================== 
      module parameters 
!====================================================================== 
 
!----------------------------------------------------------------------
- 
!     parameters for a specific problem 
!     nype    array size in y-direction 
!     nproc   number of processors, which has to fulfil 
!             1) nxh * nz / nproc is integer 
!             2) nxh / nproc is integer 
!             3) nype / nproc is integer 
!             4) nz / nproc is integer 
!----------------------------------------------------------------------
- 
 
      integer, parameter :: nproc = 64    ! number of processors 
 
      integer, parameter :: nx = 128  ! number of points in x-direction 
      integer, parameter :: ny = 128 ! number of points in y-direction 
      integer, parameter :: nz = 128 ! number of points in z-direction 
      integer, parameter :: nxh = nx/2 
      integer, parameter :: nyh = ny/2 
      integer, parameter :: nyp = ny+1 
!      integer, parameter :: nyp_n = ny_n+1 
      integer, parameter :: nype = nyp 
 
!----------------------------------------------------------------------
- 
!     derived parameters 
!     kcomx      number of yz data per proc for x-array 
!     kcomy      number of zx data per proc for y-array 
!     kcomz      number of xy data per proc for z-array 
!     kdata      number of data per proc 
!     kproc_yz   number of procs for the yz communication 
!              = number of procs to store z-info for y-array 
!     kproc_zx   number of procs for the yz communication = nproc / 
kproc_zx 
!----------------------------------------------------------------------
- 
 
      integer, parameter :: kcomx    = (nz*nype)/nproc 
      integer, parameter :: kcomy    = (nz*nxh)/nproc 
      integer, parameter :: kcomz    = (nype*nxh)/nproc 
      integer, parameter :: kdata    = nyp*kcomy 
      integer, parameter :: kproc_yz = 1+(nproc-1)/nxh 
      integer, parameter :: kproc_zx = nxh 
 
      integer, parameter :: kxh = 1 + (kcomy-1)/nz 
      integer, parameter :: kz  = nz / nproc 
      integer, parameter :: nkz = kcomy/kxh 
 
      end module parameters 
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!====================================================================== 
      module general_stuf 
!====================================================================== 
 
       
!       character*8 :: dirarg 
!       integer :: iargc 
!       
character(len=100),parameter::folder_in="ic_data"//trim(dirarg)//"/" 
!       
character(len=100),parameter::folder_out="/../scratch/output"//trim(dir
arg)//"/" 
      character(len=100) :: folder_in 
      character(len=100) :: folder_out 
      real(8), parameter :: re_tau = 395.d0         ! friction reynolds 
number 
      integer, parameter :: nsteps =  10000        ! total time steps 
      integer, parameter :: idmpfrq =  500        ! frequency to dump 
restart files 
      real(8), parameter :: dt = 1.25e-04            ! time step 
forintegration 
 
      real(8), parameter :: re_tau_final = 395.d0  ! re_tau will be 
changed to this value  
      real(8), parameter :: time_s = 1d8          ! re_tau will be 
changed from this time  
      real(8), parameter :: time_f = 1d8 + 10.0     ! re_tau change 
will be terminated at this time  
 
      logical, parameter :: scale_by_pi = .true.    ! if true, acutal 
xl = xl*pi 
      real(8), parameter :: xl   = 2.0d0            ! length in x - 
periodic direction 
      real(8), parameter :: zl   = 1.0d0            ! length in z - 
periodic direction 
      real(8), parameter :: yhl  = 2.0d0            ! length in 
nonhomogeneous (y) direction 
 
      real(8), parameter :: dyde = 2.0d0/yhl        ! y-scaling factor 
 
      real(8) :: pi 
 
!----------------------------------------------------------------------
-- 
!     fenep model parameters 
!----------------------------------------------------------------------
-- 
 
      logical, parameter :: solve_fenep_model = .false.   ! if false, 
set beta to be 1.d0 
      real(8), parameter :: we_tau      =   25.00d0 
      real(8), parameter :: beta        =    1.00d0 
      real(8), parameter :: lmax        =    30.00d0 !  b=lmax**2 



100 

      real(8), parameter :: diffusivity =     0.02d0 
 
      real(8), parameter :: we                 = we_tau / re_tau 
      real(8), parameter :: diffusivity_factor = 2.d0 / dt / 
diffusivity 
      real(8), parameter :: lmax_square        = lmax * lmax 
      
      end module general_stuf 
 
!c=====================================================================
=== 
      module wave_numbers_stuf 
!c=====================================================================
=== 
 
      use parameters, only : nkz, kxh 
      implicit none 
      private 
      public :: wavz, wavx, cwavz, cwavx, wavz2, wavx2 
 
      real(8),    dimension (nkz) :: wavz 
      real(8),    dimension (kxh) :: wavx 
 
      complex(8), dimension (nkz) :: cwavz 
      complex(8), dimension (kxh) :: cwavx 
 
      real(8),    dimension (nkz) :: wavz2 
      real(8),    dimension (kxh) :: wavx2 
 
      end module wave_numbers_stuf 
 
!c=====================================================================
====== 
      module new_derivatives 
!c=====================================================================
====== 
 
      use parameters 
      use wave_numbers_stuf 
 
      implicit none 
      private 
 
      public :: x_der_1, x_der_2, y_der_1, z_der_1, z_der_2 
 
      contains 
 
!----------------------------------------------------------------------
-------- 
!              fisrt and second derivatives in x-dir 
!              f and df are fourier/chebyshev coefficients. 
!----------------------------------------------------------------------
-------- 
 
               complex(8) pure function x_der_1( f, icomy ) result (df) 
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               implicit none 
 
               integer,    intent(in) :: icomy 
               complex(8), intent(in), dimension (1:nyp) :: f 
               dimension df(1:nyp) 
               integer ix 
 
               ix = ( icomy - 1 ) / nz + 1 
 
               df = cwavx(ix)*f 
 
               end function x_der_1 
 
               complex(8) pure function x_der_2( f, icomy ) result 
( ddf ) 
               implicit none 
 
               integer, intent(in) :: icomy 
               complex(8), intent(in), dimension (1:nyp) :: f 
               dimension ddf(1:nyp) 
               integer ix 
 
               ix = (icomy - 1 ) / nz + 1 
 
               ddf = wavx2(ix)*f 
 
               end function x_der_2 
 
 
!----------------------------------------------------------------------
-------- 
!               df = df/dy   (y = the chebyshev direction) 
!               f and df are fourier/chebyshev coefficients. 
!----------------------------------------------------------------------
-------- 
 
               complex(8) pure function y_der_1( f ) result ( df ) 
               implicit none 
 
               complex(8), intent(in),  dimension (1:nyp) :: f 
               dimension df(1:nyp) 
               integer :: iy 
 
                  df(ny+1) = (0.0d0,0.0d0) 
                  df(ny)   = dble(2*ny)*f(nyp) 
               do iy = ny-1, 2, -1 
                  df(iy) = df(iy+2) + dble(2*iy)*f(iy+1) 
               enddo 
                  df(1) = 0.5d0*df(3) + f(2) 
 
               end function y_der_1 
 
!----------------------------------------------------------------------
-------- 
!              fisrt and second derivatives in z-dir 
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!              f and df are fourier/chebyshev coefficients. 
!----------------------------------------------------------------------
-------- 
 
               complex(8) pure function z_der_1( f, icomy ) result 
( df ) 
               implicit none 
 
               integer, intent(in) :: icomy 
               complex(8), intent(in), dimension (1:nyp) :: f 
               dimension df(1:nyp) 
               integer ix, iz 
 
               iz = mod(icomy-1, nz) + 1 
               ix = ( icomy - 1 ) / nz + 1 
 
               df = cwavz(iz)*f 
 
               end function z_der_1 
 
               complex(8) pure function z_der_2( f, icomy ) result 
( ddf ) 
               implicit none 
 
               integer, intent(in) :: icomy 
               complex(8), intent(in), dimension (1:nyp) :: f 
               dimension ddf(1:nyp) 
 
               integer ix, iz 
 
               iz = mod(icomy-1, nz) + 1 
               ix = ( icomy - 1 ) / nz + 1 
 
               ddf = wavz2(iz)*f 
 
               end function z_der_2 
 
      end module new_derivatives 
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APPENDIX E 

VISUALIZATION CODE 
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This code calculates λci (complex eigen value of velocity gradient tensor) for visualizing 

vortices. It also writes the output velocity files in a readable (tecplot) format. 

Grid:128 x 129 x 128; 

Reτ=395; 

Language: Fortran 95; 

Machine it ran on: Saguaro (ASU high performance computing center); 

Number of processors: 1.  

Input parameters: u, v, and w components of velocity, components of velocity gradient 

tensor 

Output parameters: λci for various t+. 

 
c 
c---  write relative value of lambda_ci to its maximum at each flow 
field 
c 
      program channel_post 
 
      include 'param.h' 
  
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
      common/para/re 
      common/nstep/n_start, n_final, n_skip 
 
      ! directory input (JRB) 
      character*30 :: curdir 
      integer :: iargc 
 
      if (iargc().ne.1) stop "must set argument: <program> <######>" 
      call getarg(1,curdir) 
      write(*,*) "current directory > ", trim(curdir) 
 
c---  simulation parameters 
      re =  395. 
!      re =  180. 
!      re = 110. 
 
      pi = acos(-1.0) 
!     sx =  4.*pi    !2.*pi !4.*pi    !2.*pi        ! 4.*pi 
!     sz =  4.*pi/3  !1.*pi !4.*pi/3  !1./1.*pi     ! 1./1.*pi 
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      sx=2.*pi 
      sz=1.*pi 
 
c-------------------------------------------- 
 
!      read(*,*) n_start 
!      read(*,*) n_final 
!      read(*,*) n_skip 
 
      n_start = 500 !0   
      n_final = 10000 !5000   !1000   
      n_skip  = 500 !100 !50   
c--------------------------------------------- 
      call get_grid 
 
      call calc_rci(curdir)  ! calculate lambda_ci 
 
      stop 
      end 
 
c------------------------------------------------------------------ 
      subroutine get_grid 
      include 'param.h' 
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
      common/para/re 
 
      pi = acos(-1.0) 
      do j=1,nyp 
         y(j) = 1.0-cos(pi*real(j-1)/real(nyp-1)) 
      enddo 
 
      dx = sx/real(nx) 
      dz = sz/real(nz) 
 
      return 
      end 
 
c------------------------------------------------------------------ 
      subroutine calc_rci(curdir) 
      include 'param.h' 
 
      common/mesh/y(nyp),dx,dz 
      common/domain/sx,sz 
      common/para/re 
      common/nstep/n_start, n_final, n_skip 
      character*50 filename 
      character*30 :: curdir 
      real*8 d11(nx,nyp,nz),d12(nx,nyp,nz),d13(nx,nyp,nz) 
      real*8 d21(nx,nyp,nz),d22(nx,nyp,nz),d23(nx,nyp,nz) 
      real*8 d31(nx,nyp,nz),d32(nx,nyp,nz),d33(nx,nyp,nz) 
      real*8 q1(nx,nyp,nz) 
      real*8 q2(nx,nyp,nz) 
      real*8 q3(nx,nyp,nz) 
      real*8 uf(nx,nyp,nz) 
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      real*8 e11,e12,e13,e21,e22,e23,e31,e32,e33 
      real*8 p,q,r,q0,r0,dis,reg1,reg2,reg3 
      real*8 p_max 
      real*8 ramda_ci(nx,nyp,nz) 
      real*8 r_ci_max 
c 
      real*8 q1_xz(nyp) 
      real*8 q2_xz(nyp) 
 
c     TECPLOT STUFF 
      integer  i,j,k,imax,jmax,kmax 
      integer  debug,ier,itot 
      integer  tecini,tecdat,teczne,tecnod,tecfil,tecend 
      integer  visdouble,disdouble 
      character*1 nulchar 
 
      real*8 xt(nx,nyp,nz) 
      real*8 yt(nx,nyp,nz) 
      real*8 zt(nx,nyp,nz) 
 
      nulchar = char(0) 
      debug   = 0 
      visdouble = 0 
      disdouble = 1 
      imax = nx 
      jmax = nyp 
      kmax = nz 
 
 
        do 90 k=1,nz 
        do 90 j=1,nyp 
        do 90 i=1,nx 
c---  with Fortran 90 we can just fill the arrays... 
        xt(i,j,k) = real(i-1)*dx*re 
        yt(i,j,k) = y(j)*re 
        zt(i,j,k) = real(k-nz/2)*dz*re 
90      continue 
 
c 
      do ntime=n_start,n_final,n_skip 
c 
         call get_vel(q1,q2,q3,ntime,curdir) 
 
c 
c--- read dij 
        call get_filename_dij(filename,ntime,1,1,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d11(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,1,2,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
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        read(10) (((d12(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,1,3,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d13(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,2,1,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d21(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,2,2,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d22(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,2,3,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d23(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,3,1,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d31(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,3,2,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d32(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
        call get_filename_dij(filename,ntime,3,3,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((d33(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
 
      ramda_ci(:,:,:) = 0.0d0 ! ramda_ci 
 
      do 1 j=1,nyp 
      do 1 k=1,nz 
      do 1 i=1,nx 
         e11 = d11(i,j,k) 
         e12 = d12(i,j,k) 
         e13 = d13(i,j,k) 
         e21 = d21(i,j,k) 
         e22 = d22(i,j,k) 
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         e23 = d23(i,j,k) 
         e31 = d31(i,j,k) 
         e32 = d32(i,j,k) 
         e33 = d33(i,j,k) 
         p = - (e11 + e22 + e33) 
         q = 0.5*(p**2 - ( 
     &                  +e11**2 
     &                  +e22**2 
     &                  +e33**2 
     &                  +e12*e21*2.0 
     &                  +e13*e31*2.0 
     &                  +e23*e32*2.0 
     &                   ) 
     &            ) 
         r = -( - e13*e22*e31 + e12*e23*e31 
     &          + e13*e21*e32 - e11*e23*e32 
     &          - e12*e21*e33 + e11*e22*e33 
     &         ) 
         if (abs(p).gt.p_max) then 
             p_max = abs(p) 
         endif 
         r0 = r + 2./27.*p**3 - 1./3.*p*q 
         q0 = q - 1./3. *p**2 
         dis = (r0/2.)**2 + (q0/3.)**3 
         if (dis.gt.0.0) then 
            reg1 = sqrt(dis) 
            reg2 = reg1 - r0/2.0 
            reg3 = reg1 + r0/2.0 
            if (reg2 .gt. 0.0) then 
                reg2 = reg2**(1./3.) 
            else 
                reg2 = -(-reg2)**(1./3.) 
            endif 
            if (reg3 .gt. 0.0) then 
                reg3 = reg3**(1./3.) 
            else 
                reg3 = -(-reg3)**(1./3.) 
            endif 
            ramda_ci(i,j,k) = sqrt(3.)/2.0*(reg2 + reg3) 
         else 
            ramda_ci(i,j,k) = 0.0 
         endif 
 1    continue 
      write(*,*) 'maximum du_i/dx_i*h/u_tau =',p_max 
 
c---  find the maximum r_ci 
 
        r_ci_max = 0.0  
 
        do k=1,nz 
        do j=1,nyp 
        do i=1,nx 
           r_ci_max = amax1(r_ci_max,ramda_ci(i,j,k)) 
        enddo 
        enddo 
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        enddo 
         
c        write(*,*) r_ci_max        
 
!        filename='rci' 
!        nn=index(filename,'i') 
!        write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime 
!        write(*,*) filename 
!        open(10,file=filename,status='unknown') 
!c        write(10,*) 'zone i=',nx,',j=',nyp/2+1 
!c     &             ,',k=',nz/4*3-nz/4+1,',f=point'  
! 
!        filename='rss' 
!        nn=index(filename,'s') 
!        write(unit=filename(nn+2:),fmt='(bn,i5.5)') ntime 
!        write(*,*) filename 
!        open(13,file=filename,status='unknown') 
!c        write(13,*) 'zone i=',nx,',j=',nyp/2+1 
!c     &             ,',k=',nz/4*3-nz/4+1,',f=point'  
! 
!        filename='xy' 
!        nn=index(filename,'y') 
!        write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime 
!        write(*,*) filename 
!        open(11,file=filename,status='unknown') 
!c        write(11,*) 'zone i=',nx,',j=',nyp/2+1 
!c     &             ,',k=',1,',f=point'  
! 
!        filename='xy_uf' 
!        nn=index(filename,'f') 
!        write(unit=filename(nn+1:),fmt='(bn,i5.5)') ntime 
!        write(*,*) filename 
!        open(12,file=filename,status='unknown') 
!c        write(12,*) 'zone i=',nx,',j=',nyp/2+1 
!c     &             ,',k=',1,',f=point'  
 
c---  calculate x-z mean of u and fpi 
 
            q1_xz(:) = 0.0 
            q2_xz(:) = 0.0 
      do j = 1, nyp 
         do k = 1, nz 
         do i = 1, nx 
            q1_xz(j) = q1_xz(j) + q1(i,j,k)/real(nx*nz) 
            q2_xz(j) = q2_xz(j) + q2(i,j,k)/real(nx*nz) 
         enddo 
         enddo 
      enddo 
 
      do j = 1, nyp 
         uf(:,j,:) = q1(:,j,:) - q1_xz(j) 
      end do 
c--- 
    
        do 2 k=nz/4,nz/4*3 
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        do 2 j=1,nyp/2+1 
        do 2 i=1,nx 
           rx=real(i-1)*dx*re         
           rz=real(k-nz/2)*dz*re         
           ry=y(j)*re  
 
c           write(10,100) rx,ry,rz,ramda_ci(i,j,k) 
c           write(13,100) rx,ry,rz, 
c     &          (q1(i,j,k)-q1_xz(j))*(q2(i,j,k)-q2_xz(j)) 
 
           if( k .eq. nz/2 )  then  
               rz2=real(nz/4-nz/2)*dz*re         
c               write(11,101) rx,ry,rz2 
c     &                      ,q1(i,j,k)- 0.8*q1_xz((nyp+1)/2)    !-
0.8*20.157  ! substract 80% centerline velocity 
c     &                      ,q2(i,j,k) 
c     &                      ,q3(i,j,k) 
c!     &                      ,0.0 
 
c               write(12,100) rx,ry,rz2 
c     &                      ,q1(i,j,k)- q1_xz(j) ! substract xz mean 
velocity 
           endif 
 
 2      continue 
 
 100       format(4(e12.5,x)) 
 101       format(6(e12.5,x)) 
!        close(10)  
!        close(11)  
!        close(12)  
!        close(13)  
         
c---  TECPLOT output 
        filename='./datatecplot/data'//trim(curdir)//'/chvfld@' 
        nn=index(filename,'@') 
        write(unit=filename(nn:),fmt='(bn,i5.5)') ntime 
        write(*,*) trim(filename) 
        filename = trim(filename)//'@' 
        nn=index(filename,'@') 
 
      ier = tecini('Velocity Field'//nulchar, 
     &             'x,y,z,u,v,w,ufluc,dudx,dudy,dudz,dvdx, 
     &             dvdy,dvdz,dwdx,dwdy,dwdz,lambdaci'//nulchar, 
     &             filename(1:(nn-1))//'.plt'//nulchar, 
     &             '.'//nulchar, 
     &             debug,visdouble) 
 
 
      ! 
      ! Write the zone header information. 
      ! 
      ier = teczne('Velocity Field'//nulchar, 
     &             imax,jmax,kmax, 
     &             'BLOCK'//nulchar,nulchar) 
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      ! 
      ! Write out the field data. 
      ! 
      itot = imax*jmax*kmax 
      ier = tecdat(itot,xt,disdouble) 
      ier = tecdat(itot,yt,disdouble) 
      ier = tecdat(itot,zt,disdouble) 
      ier = tecdat(itot,q1,disdouble) 
      ier = tecdat(itot,q2,disdouble) 
      ier = tecdat(itot,q3,disdouble) 
      ier = tecdat(itot,uf,disdouble) 
      ier = tecdat(itot,d11,disdouble) 
      ier = tecdat(itot,d12,disdouble) 
      ier = tecdat(itot,d13,disdouble) 
      ier = tecdat(itot,d21,disdouble) 
      ier = tecdat(itot,d22,disdouble) 
      ier = tecdat(itot,d23,disdouble) 
      ier = tecdat(itot,d31,disdouble) 
      ier = tecdat(itot,d32,disdouble) 
      ier = tecdat(itot,d33,disdouble) 
 
      ier = tecdat(itot,ramda_ci,disdouble) 
 
      ier = tecend() 
 
      enddo ! ntime 
 
 
 
      return  
      end 
 
c------------------------------------------------------------------ 
        subroutine get_vel(u,v,w,ntime,curdir) 
        include 'param.h' 
 
      character*30 :: curdir 
 
        real*8 u(nx,nyp,nz) 
        real*8 v(nx,nyp,nz) 
        real*8 w(nx,nyp,nz) 
 
        character*50 filename 
 
 
c---  read u 
 
        call get_filename_disk5(filename,ntime,1,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((u(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
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c---  read v 
 
        call get_filename_disk5(filename,ntime,2,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((v(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
 
c---  read w 
 
        call get_filename_disk5(filename,ntime,3,curdir) 
        write(*,*) filename 
        open(10,file=filename,status='old',form='unformatted' 
     &         ,action='read') 
        read(10) (((w(i,j,k),i=1,nx),j=1,nyp),k=1,nz) 
        close(10) 
 
 
        return 
        end 
 
!c------------------------------------------------------------------ 
!        subroutine get_filename_disk5(filename,ntime,nv) 
!c       nv=1 : u 
!c          2 : v 
!c          3 : w 
! 
!        character*50 filename 
! 
!        filename='../../../scratch/data_vel/' 
!        nn=index(filename,'/') 
!        if (nv.eq.1) write(unit=filename(nn+10:),fmt='(bn,a5)') 
'u1.00' 
!        if (nv.eq.2) write(unit=filename(nn+10:),fmt='(bn,a5)') 
'u2.00' 
!        if (nv.eq.3) write(unit=filename(nn+10:),fmt='(bn,a5)') 
'u3.00' 
!        write(unit=filename(nn+15:),fmt='(bn,i5.5)') ntime 
! 
!        return 
!        end 
 
!c------------------------------------------------------------------ 
      subroutine get_filename_disk5(filename,iseq,nv,curdir) 
!c       nv=1 : u 
!c          2 : v 
!c          3 : w 
 
      implicit none 
      character*50 filename 
      integer iseq, nv, nn 
      character*30 curdir 
 
      if (nv.le.4) then 
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      !filename='../data_vel/@' 
      filename='../../../scratch/data_vel'//trim(curdir)//'/@'  ! 
directory where DNS results are stored. 
      nn=index(filename,'@') 
      if (nv.eq.1) write(unit=filename(nn:),fmt='(bn,a3)') 'u1.' 
      if (nv.eq.2) write(unit=filename(nn:),fmt='(bn,a3)') 'u2.' 
      if (nv.eq.3) write(unit=filename(nn:),fmt='(bn,a3)') 'u3.' 
      if (nv.eq.4) write(unit=filename(nn:),fmt='(bn,a3)') 'pp.' 
      write(unit=filename(nn+3:),fmt='(bn,i7.7)') iseq 
      endif 
 
        return 
        end 
 
!c------------------------------------------------------------------ 
!      subroutine get_filename_dij(filename,iseq,nv1,nv2) 
!!c       nv1=1 : u  nv2 = x 
!!c       nv1=2 : v  nv2 = y 
!!c       nv1=3 : w  nv2 = z 
!      implicit none 
!      character*50 filename 
!      integer iseq, nv1,nv2,nn 
!      filename='../../../scratch/data_dij/d' 
!      nn=index(filename,'/') 
!      write(unit=filename(nn+11:),fmt='(bn,i1.1)') nv1 
!      write(unit=filename(nn+12:),fmt='(bn,i1.1)') nv2 
!      write(unit=filename(nn+13:),fmt='(bn,a1)') '.' 
!      write(unit=filename(nn+14:),fmt='(bn,i7.7)') iseq 
!      return 
!      end 
 
!c------------------------------------------------------------------ 
      subroutine get_filename_dij(filename,iseq,nv1,nv2,curdir) 
!c       nv=1 : u 
!c          2 : v 
!c          3 : w 
 
      implicit none 
      character*50 filename 
      integer iseq, nv1, nv2, nn 
      character*30 curdir 
 
      !if (nv.le.4) then 
      !filename1='../data_dij/@' 
      !filename2='../data_dij/@' 
      !filename3='../data_dij/@' 
      filename='../../../scratch/data_dij'//trim(curdir)//'/d@'  ! 
directory where DNS results are stored. 
      nn=index(filename,'@') 
 
      write(unit=filename(nn:),fmt='(bn,i1.1)') nv1 
      write(unit=filename(nn+1:),fmt='(bn,i1.1)') nv2 
      write(unit=filename(nn+2:),fmt='(bn,a1)') '.' 
      write(unit=filename(nn+3:),fmt='(bn,i7.7)') iseq 
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      !endif 
 
      return 
      end 
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