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ABSTRACT 

 

 The long wavelength infrared region (LWIR) and mid wavelength 

infrared region (MWIR) are of great interest as detection in this region offers a 

wide range of real time applications. Optoelectronic devices operating in the 

LWIR and MWIR region offer potential applications such as; optical gas 

sensing, free-space optical communications, infrared counter-measures, 

biomedical and thermal imaging etc. HgCdTe is a prominent narrow bandgap 

material that operates in the LWIR region. The focus of this research work is 

to simulate and analyze the characteristics of a Hg1-xCdxTe photodetector. To 

achieve this, the tool „OPTODET‟ has been developed, where various device 

parameters can be varied and the resultant output can be analyzed. By the 

study of output characteristics in response to various changes in device 

parameters will allow users to understand the considerations that must be 

made in order to reach the optimum working point of an infrared detector.  

 The tool which has been developed is a 1-D drift diffusion based 

simulator which solves the 1-D Poisson equation to determine potentials and 

utilizes the results of the 1-D electron and hole continuity equations to 

determine current. Parameters such as absorption co-efficient, quantum 

efficiency, dark current, noise, Transit time and detectivity can be simulated. 

All major recombination mechanisms such as SRH, Radiative and Auger 

recombination have been considered. Effects of band to band tunnelling have 

also been considered to correctly model the dark current characteristics.   
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INTRODUCTION 

1.1. Introduction  

 Semiconductors had been utilized in electronic devices for some time 

even before the invention of the transistor. They were commonly used as 

detectors in radios, which was also referred to as the „cat‟s whiskers‟ [1] 

device. This device was developed by Jagdish Chandra Bose, G.W Pickard 

and others. It could perhaps be the first true semiconductor device. The „cat‟s 

whisker‟ is a perfect example of a Shottky Diode.  At the time it was 

discovered that it was quite an unreliable device whose working could be 

described as „mysterious‟ at best. Since those early days our understanding of 

the operation of semiconductors devices has changed tremendously. 

 The true investigation of semiconductor devices only began in the 20
th

 

century, and the progress that has been made in the last century is nothing 

short of astounding. In the early days, researchers at Bell labs conducted a 

rigorous analysis of semiconductor behavior. The understanding of the basics 

of the PN diode led to the development of the PNP contact transistor. This 

device was the brainchild of two experimentalists and one theoretician, John 

Bardeen, Walter Houser Brattain and William Bradford Shockley. They 

developed the first transistor in 1947, and they eventually won the Noble Prize 

for this inaugural feat. William Shockley also further developed a special 

„sandwich‟ structure which is now known as a bipolar junction transistor 

(BJT). 

 Since the turn of the century, various branches of science have begun 

to merge to realize their complete potential. This holds true for 
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semiconductors as well. The field of optics and semiconductor optoelectronics 

have come together to form many novel devices.  

 It is important to note that light and its properties have been known for 

a long time. But only recently have the knowledge of the light spectrum and 

the knowledge of semiconductor physics merged. Albert Einstein won the 

Noble Prize in 1921 for explaining the Photoelectric effect. Many modern 

devices are based on this concept, that light incident on a particular material is 

capable of providing energy to electrons. The Planck – Einstein equation tells 

us that  

 
hc

E


  (1.1) 

Where E is the energy of the incident photon, and lambda is the wavelength of 

the incident radiation. This tells us that radiation of shorter wavelength will 

have higher energy. This concept plays a major role in the operation of many 

semiconductor optoelectronic devices.  

 

1.2. Optical Devices   

 A device that interacts with light by producing, measuring or 

manipulating light is said to be an optoelectronic device. The study of such 

devices and their behavior contributes to the field of Optoelectronics. These 

devices have various applications in various fields like medicine, sensing, 

imaging, security and many military applications as well.  

 Many silicon based detectors offer the ability to detect the entire 

visible spectrum of light. With Si and Ge based devices detection of the 

beginning of the infrared spectrum is possible, also known as the short 
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wavelength infrared region (SWIR). The primary interest of this research will 

be in the infrared spectrum of light. In that context infrared detectors are of 

enormous interest as the practical realization of optoelectronic devices 

operating in the 2-10  m wavelength range offers potential applications in a 

variety of areas including optical gas sensing, environmental monitoring, free-

space optical communications, infrared counter measures, clean energy 

generation, biomedical and thermal imaging. The mid-infrared region contains 

the fingerprint absorption bands for various pollutant and toxic gases. 

Operating in the MWIR (mid wavelength infrared region, 3-5  m) enables 

free-space optical communication and thermal imaging applications in both 

civil and military situations. However, devices operating in the infrared region 

hitherto have not been able to reach their complete potential due to various 

challenges. II-VI materials have been utilized for this purpose. To operate in 

the LWIR (long wavelength infrared region, 8-14  m), II-VI materials have 

been used but the immature fabrication techniques and incomplete 

understanding of their physical properties have stymied progress in this 

direction. The light spectrum is shown in Fig.1.1  

 

1.3. II-VI Materials 

 II-VI materials have drawn a lot of interest over the years, as they have 

the capability to behave as a wide bandgap (1.5 eV – 3.5 eV) material as well 

as a narrow bandgap (0 eV – 1.5 eV) material. Wide bandgap materials 

include Zinc Selenide (ZnSe), Zinc Telluride (ZnTe), Cadmium Zinc Telluride 

(CdZnTe), Zinc Sulphide (ZnS) etc, whereas the narrow bandgap materials 
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include Mercury Cadmium Telluride (HgCdTe) and Mercury Zinc Telluride 

(HgZnTe). 

 

Fig.1.1: The Spectrum of light  

 Fig.1.2 shows us a grouping of materials with similar lattice constants. 

It is also clear that HgTe/CdTe are well matched material systems [2]. In the 

context a HgCdTe device, alloys of CdTe such as CdZnTe is used for epitaxial 

growth in molecular beam epitaxy.  

    The narrow bandgap materials have distinctive properties that can be 

utilized in novel device structures. Also, modern epitaxial techniques and the 

growing interest in nano structures have provided novel areas of application 

that utilize some of the unique properties of these materials. The materials 

with narrow bandgap can detect the entire visible spectrum of light as well as 

infrared radiation. The small effective mass in these materials make them ideal 

candidates to study quantum confinement.  
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Fig.1.2: The Energy Bandgap as a function of the Lattice Constant for some 

relevant narrow bandgap materials. [T.C McGill et al.] 

 

1.4. Types of Photodetectors 

1.4.1. Photoresistors 

 A photoresistor is a device whose resistance decreases as the intensity 

of incident light increases. This device is also known as a Light Dependent 

Resistor (LDR). LDR‟s can be intrinsic or extrinsic; the difference between 

them being that the extrinsic device has impurities (dopants) present in them. 

When light of a particular energy falls on the device it can excite an electron 

from the valence band into the conduction band. This electron is now free to 

conduct electricity, thus lowering the resistance. In the early days 

photoresistors were made of Cadmium Sulphide (CdS) as they were 

economical to produce.  
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 Different types of Photodetectors are used for different applications. 

CdS can be found in many consumer items such as alarm clock radios, camera 

light meters and street lights, etc. Lead Sulphide (PbS) and Indium 

Antimonide (InSb) photodetectors are used for detection in the mid-infrared 

spectral region. 

 

1.4.2. PN Diode  

 In this section we will analyze the PN diode and it characteristics from 

the viewpoint of being an optical device. Consider a light source that is 

illuminating the PN diode. If the energy of the photons is greater than the band 

gap of the material, generation of electron hole pairs (EHP‟s) will take place. 

This generation process will occur throughout the whole structure including 

the depletion region of the pn junction. The depletion region of a pn junction 

is can be given as function of doping. 

 

Depletion width W =  
                   

     
  ; where      is the built in 

potential,    is the p-type doping,    is the n-type doping, q is the 

fundamental charge,  is the permittivity of free space and    is the relative 

permittivity. 

For   >>  ; 

 
2 s bi

D

K V
W

qN


  (1.2) 

  

Equation 1.2 suggests that the depletion width is dominated by the light 
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doping. As the depletion region harbors most of the generation, it is essential 

that one maximizes the area of the space charge region.  

 Another important factor that must be taken into consideration is the 

internal electric field. As the incident radiation creates EHP‟s in the depletion 

region, the internal electric field must be high enough so that it can separate 

them. Otherwise they would just recombine within the space charge region 

and even though there was a generation event we would register zero 

photocurrent. Therefore even if every incident photon were to cause a 

„generation event‟ (100% quantum efficiency), none of the generated electrons 

or holes would make it to the external contact. A higher doping for the p and n 

side would lead to higher internal electric field but would reduce the space 

charge region.   

 

Fig.1.3 (a):Energy Band Diagram, Conduction band, Valence band and Fermi 

Level vs. Distance.   
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Fig.1.3 (b): Electron and Hole densities vs. distance. 

 

Fig.1.3(c): Electric Field vs. Distance. 

All the results displayed in Fig.1.3(a), (b), (c) and 1.4 are for a Hg1-xCdxTe 

device with x=0.225 at 78 K. NA=2   10
16

 cm
-3

, ND=10
15

 cm
-3

. 
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 Operating the pn junction in reverse bias would lead to an increase in 

the space charge region as well as an increase in the electric field. This mode 

of operation is known as the photoconductive mode. This mode of operational 

also leads to a reduction of the junction capacitance, which leads to smaller 

RC constant. This leads to a faster response time as  

  =    ; where   is the time constant 

However, the photoconductive mode does exhibit more distinct noise 

characteristics.   

 

Fig 1.4: Reverse Bias Electric Field vs. Distance. 

 

 If we compare the reverse bias electric field in Fig.1.4, in which the 

device is under a reverse bias on -0.5 V to the electric field in Fig.1.3 (c), we 

observe that the field in the space charge region has increased. This is the 

internal electric field which helps separate the EHP‟s.  

 Operating in the photoconductive mode, does dramatically reduce 

transit times and the junction capacitance, but this method is more susceptible 
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to noise. As we have discussed earlier, to maximize the generation of electron 

hole pairs, we must increase the photosensitive area. An innovative way to 

achieve this is by inserting an intrinsic region between the p and n doped 

sides. We will discuss this device structure in the next section. 

 

1.4.3. PIN Diode  

 Jun-ichi Nischizawa is credited for the invention of the PIN diode in 

1950. This structure includes an ideal intrinsic layer sandwiched between the p 

and n doped side. The large intrinsic layer is completely depleted under 

reverse bias conditions which maximizes the photosensitive area where 

incident radiation can cause generation. In the previous pn structure, the high 

   and    doping would reduce the space charge region, but in a PIN 

structure, one can dope the p and n sides heavily. The intrinsic region remains 

depleted even with high doping on either sides as proven by the simulations.

 Fig.1.5 (a), (b) and (c) shows the energy band diagram, carrier 

concentrations and electric field respectively of a p-i-n device, where NA=1016 

cm
-3

, ND=10
16

 cm
-3

 and the length of the intrinsic region is 6 µm. In a PIN 

structure the high doping doesn‟t affect the area of the space charge region; 

therefore one can simultaneously have a large photosensitive area as well as 

large electric fields which will help separate the generated EHP‟s. The PIN 

structure does offer a lot of advantages; the large depletion region reduces the 

junction capacitance which reduces the RC time constant. However the transit 

time does increase as the time taken to leave the intrinsic region and reach the 

contact will increase. Also due the size of the diode it takes longer to shut it 

„off‟. 
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Fig.1.5 (a): Electric Field vs. Distance.

 

Fig.1.5 (b): Electron and Hole densities vs. distance. 

 The PIN structure does have many applications as RF and Microwave 

switches but we will limit ourselves to discussing its operation as a detector.  

As a detector it is used in the photoconductive mode, and the noise is 

distinctly lower in a p-i-n as opposed to a pn device. It exhibits very low 
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leakage currents. For silicon based PIN diode, leakage currents of the order of 

       A/    were obtained through simulations. 

 

Fig.1.5 (c): Electric Field vs. Distance. 

 From the results represented in Fig.1.6 we observe that the Junction 

capacitance is a decreasing function of the reverse bias voltage and that the 

reverse bias leakage current       A/    [3]. A reduction in capacitance 

will reduce the time constant but the transit time will still be heavily 

dependent on the space charge region area.   

                            Fig 1.6 (a)                                                      Fig 1.6(b) 
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In Fig 1.6:(a) we can see the Junction capacitance as function of reverse bias 

voltage, and (b) shows the leakage current as a function of reverse bias voltage 

[C.C Bueno et al.]  

 Many novel materials are used in the PIN configuration to function as 

a detector. An InGaAs PIN diode has been used for infrared detection in [4]. 

 

Fig 1.7: Temperature dependant dark current comparison between InGaAs and 

Ge pin Photodetector [Mizumoto et al.] 

 

1.4.4 Avalanche Photodetector 

 An avalanche Photodetector is a device which utilizes impact 

ionization to induce carrier multiplication. As electrons enter the photodiode, 

they generate electron hole pairs if the Energy of the incident photon is greater 

than the bandgap of the material. An avalanche device is usually operated 

under heavy reverse bias so that a high field exists within the device. The 

electrons generated in the depletion region move towards the n-type side and 

the holes drift towards the p-type side. At a particular level of electric field the 
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generated electron will have sufficient energy to collide with the lattice atoms 

and ionize them thus creating more carriers. This process repeats rapidly 

increasing the number of carriers. This phenomenon is referred to as 

„Avalanche Photocurrent’. 

 

Fig.1.8: Visualization of the Avalanche process 

 The Avalanche Photodiode (APD) depends quite heavily on the 

quantum efficiency of the device. Also, the incident photons generate the 

primary carriers which cause avalanche multiplication. The current generated 

by an APD will have a multiplication factor as the numbers of carriers are 

multiplied under reverse bias. This factor M is given by 

                   M = 
          

 
 

               
 
   

 
 

   [Wasim Hussain et al.]                                                          

                                                                                                                     (1.3) 

Where   is the ionization rate for electrons and   is the ionization rate for 

holes.  

EFn

EC 

EV 

EF

p

Expanded view of the
depletion region

Avalanche mechanism:

Generation of the excess electron-hole 

pairs is due to impact ionization.
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 An APD is very sensitive device; therefore while considering an 

avalanche photodiode, one must consider the noise it might generate. The shot 

noise in a APD is more than a standard photodiode, as the „multiplication‟ will 

add statistical fluctuations to the noise calculations.   

 The response of an APD depends on the same factors as those of a 

standard photodiode. A thick space charge region leads to a low RC time 

constant. But the area of the structure will increase the transit time of the 

carriers, therefore a tradeoff usually has to be made in order to find the 

optimal working point of the device. APD is a high gain device as avalanche 

multiplication can be obtained at relatively low reverse bias voltages which 

also make it more controllable. The gain increases almost linearly with the 

reverse bias voltage. While this is partly true, at relatively low bias, after a 

particular voltage this property is no longer exhibited. At certain reverse bias 

voltage the gain starts dropping as a voltage drop develops across the device 

due to the series resistance.  

 The Avalanche Photodetector is often used for high bit rate, long haul 

fiber optic communications, etc., due to it high internal gain. Since the 

avalanche multiplication plays such a pivotal role in determining the gain, 

noise characteristics, optimizing the region where multiplication takes place 

will result in a more efficient device. Sub micron scaling of the multiplication 

has resulted in lower noise and a higher gain bandwidth product. Another 

novel way of optimizing the device is to obtain a novel multiplication region 

through „Impact Ionization Engineering’. This technique utilizes 

heterojunctions to achieve greater localization of impact ionization when 

compared to spatially uniform structures [6]. 
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BASIC PHOTODETECTOR PARAMETERS 

 

2.1. Introduction 

 The study of infrared detectors started in the 20
th

 century. Detection in 

the infrared region has gained a lot of attention in recent decades due the 

numerous potential applications. The long wavelength infrared region (LWIR) 

and mid wavelength infrared region (MWIR) are of great interest as detection 

in this region offers a wide range of real time applications. Optoelectronic 

devices operating in the LWIR and MWIR region offer potential applications 

such as; optical gas sensing, free-space optical communications, infrared 

counter-measures, biomedical and thermal imaging etc. Tremendous progress 

has been made in the last decade in the field of infrared detection [7] but there 

are several challenges that still impede complete utilization of the potential 

offered by the infrared spectrum [8]. Progress in the Infrared detector 

technology to a large extent depends on the development of semiconductor 

infrared (IR) detectors. Semiconductor detectors are usually included in the 

class of photon detectors. Photon detectors can offer greater sensitivity and 

response times, but great care must be taken in designing the device [9]. 

 

Fig 2.1: The timeline of the development of infrared detectors 
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 To tap into the infrared spectrum many narrow bandgap materials have 

been investigated. Although the first widely used narrow-gap materials were 

lead salts during the 1950‟s, infrared detectors were built using single element 

cooled PbS and PbSe photoconductive detectors. In 1959, research by Lawson 

et al. [10] triggered the development of variable bandgap HgxCd1-xTe alloys 

providing an unprecedented degree of freedom on IR detector design. The 

fundamental properties of narrow bandgap semiconductors such as, high 

optical absorption, high electron mobility, fast response times and their 

compatibility for bandgap engineering make these materials the ideal choice 

for infrared detectors.  

 However, there are several obstacles in creating a high performance 

HgCdTe Photodetector. Fabrication of the material with the required purity in 

itself presents a unique challenge. Growth techniques such as liquid phase 

epitaxy (LPE) and molecular beam epitaxy (MBE) have been extensively 

researched to produce high purity HgCdTe. But despite major advances made 

in the past decades in these methods, various bulk growth techniques are still 

employed. 

 A major drawback of HgCdTe infrared detectors that operate in the 

long wavelength region (LWIR) is that they must be cooled down to very low 

temperatures to obtain high performance. Majority of the HgCdTe detectors 

must be operated at liquid nitrogen temperatures to obtain background limited 

performance (BLIP). Significant amount of research has been directed towards 

reducing the dark current of the device and trying to increase the device 

operating temperature, as operating at very low temperatures has a tremendous 

effect in increasing the operating cost.  
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 In this chapter we will discuss some basic photodetector parameters 

that must be fine tuned so that the performance can be optimized. Quantum 

Efficiency, Responsivity, Response Times and Detectivity are some of the 

parameters that we will be discussing.  

 We also take a deeper look at the physics that takes place within the 

device which affect these parameters. 

 

2.2. Quantum Efficiency: 

 Quantum efficiency (QE) is a very important parameter for 

photosensitive devices. It is a term that expresses the number of electron hole 

pairs (EHP) that are generated for every incident photon. The generated EHP‟s 

which recombine at the contacts can be viewed as a simple picture of the 

radiation being detected. QE is often measured over a range of different 

wavelengths to characterize a device's efficiency at each photon energy. High 

quantum efficiency in a photosensitive device is imperative for obtaining high 

performance. 

 Quantum Efficiency depends on various factors and these are 

discussed below. 

 Photosensitive Area: The illumination is usually incident on a part of the 

device which is photosensitive. If the incident radiation is greater than the 

bandgap of the material, the energy of the radiation will be able to excite 

electrons into the conduction band, hence generating a electron hole pair. A 

larger photosensitive area would lead to larger number of EHP‟s in the region, 

which leads to a higher quantum efficiency. The photosensitive area of a 
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device is usually the space charge region and the absorber region (lower doped 

region) of a device as show in Fig.2.2. 

 

Fig 2.2: A p
+
-n

 
structure with front illumination 

 In Fig.2.2 we have a p
+
-n

 
structure where the p

+
 region is degenerately 

doped and the n region which is the lower doped absorber side. Due to the 

high doping in HgCdTe photodetector, the space charge region is quite small. 

When EHP‟s are generated in the space charge region, the inherent electric 

filed that is present in the space charge region will separate the electrons and 

holes, while the EHP‟s generated in the quasi neutral region will diffuse to the 

contacts. Most photodiodes are designed so that most of the radiation is 

absorbed on one side of the junction. In Fig.2.24, this is the n-side of the 

junction. In theory, this could be achieved by making the p
+
-region very thin 

or by using a heterojunction in which the p-region is in the wide bandgap 

configuration so that the incident radiation can reach the junction without 

being absorbed. The thickness of the illuminated junction (p
+
-n in fig 2.2) 

must be small so that the radiation is not lost due to absorption by free carriers. 

   

 Minority carrier diffusion Length: Consider figure 2.3. In this figure, the n-

type region is the lower doped absorber region of thickness „d‟. If the back 

contact lies several minority carrier diffusion lengths „Lp‟ (Hole diffusion 
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length in the n-type region), the quantum efficiency is then given by equation 

2.1.(a). 

 

Fig 2.3: Schematic representation of p-n junction photodiode. 

 

Therefore for d > Lp : 

 

( )
(1 )

1 ( )

p

p

L
R

L

 


 

 
   

  
 (2.1 a) 

where R is the Fresnel Coefficient. The Fresnel coefficient describes the 

reflection of light at the surface,   is the absorption coefficient. However, if 

the back contact is less than a diffusion length away from the junction, the 

quantum efficiency is given by equation 2.1.(b). 

 

                               
  (1 ) 1 expR d                           (2.1 b) 

where d is the thickness of the n-type region in fig 2.3. 

In fig 2.4 we can see the quantum efficiency of a device with d < Lp. The 

thickness of the n side is 10 microns. Fig 2.5 shows the comparison of 

Quantum efficiency of a device with d < Lp (d = 10 microns) and d > Lp (d = 

20 microns).  For both the figures p
+
 region was 0.8 microns with doping = 2 x 

10
17

 cm
-3

 and the n side doping was 10
15

 cm
-3

. 
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Fig 2.4: Quantum Efficiency vs. Wavelength, for d < Lp 

 

Fig 2.5: Quantum Efficiency vs. Wavelength, for d < Lp and d > Lp. 
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We can see that for d > Lp the quantum efficiency reduces. This is due to the 

recombination of the generated EHP‟s in the bulk region of the low doped 

region. 

Three regions contribute to the photodiode quantum efficiency, the two quasi 

neutral regions and the space charge region [11].  

 

The n-side quantum efficiency is given by: 
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 (2.2) 

where             ,    is the surface recombination velocity,    is the hole 

diffusion length and xn is the n-side quasi neutral region [see Fig.2.4]. 

 

The p-side quantum efficiency is given by: 
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 (2.3) 
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The depletion region quantum efficiency is given by: 

 

     (1 ) exp expDR n nR x x W           (2.4) 

 

 

Fig 2.6: Depletion region QE for HgxCd1-xTe with x=0.225 at 78 K 

 

 In the equations 2.2, 2.3, 2.4 there is dependence of the quantum 

efficiency on the surface recombination velocity, but for all discussions in this 

thesis we will assume that the surface recombination velocity is 0. Therefore 

the aforementioned equations will reduce in complexity.   

  

2.3. Response Times and Responsivity 

2.3.1. Transit Time 

 As mentioned in previous sections, to design a high performance 

photodetector the interplay of various parameters has to be taken into 

consideration. To obtain the optimum values of all relevant parameters various 
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trade-offs need to made. There is considerable interest in fast response and 

high frequency photodetectors. This has been mostly due to LWIR 

applications at 10.6 µm for lidar systems and applications for optical fiber 

communications.  

 The frequency response of a photodiode is determined predominantly 

by three response parameters. Firstly by the time of carrier diffusion to the 

junction depletion region, secondly by   ; the transit time of the carrier drift 

across the depletion region, and thirdly by    ; the RC time constant 

associated with circuit parameters including the junction capacitance C and the 

parallel combination of diode resistance and external load. 

 Fast response photodetectors are usually designed so that the 

absorption occurs in the p-type region. This ensures that most of the 

photocurrent is carried by electrons. Due to the low effective mass of electrons 

they generally exhibit a higher mobility.  

  The model used to calculate carrier drift time in the tool „OPTODET‟ 

(which we will discuss in subsequent sections) is as follows. All discussions in 

this thesis are based on 1-D simulations. The entire device domain is divided 

into many node points as shown in Fig.2.7. 

 

Fig 2.7: 1-D node point visualization of the device. 
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  Let us consider the case of a p-n junction. As we described earlier, an 

electric field will exist in the space charge region as shown in Fig.2.8. From 

the knowledge of the mobility (   and the electric field ( ) at each node point, 

and the knowledge of the distance between successive node points, the carrier 

drift time between successive node points is calculated using the given 

formula: 

 
avg

d



  (2.5) 

where d is the distance between successive node points and      is the average 

electric field between successive node points. By considering an average 

electric field we incorporate the influence of the space charge region electric 

fields even when the carrier is drifting in the quasi-neutral regions. We 

calculate   for each node point from point „a‟ to point „b‟ in fig 2.7. The 

average of all the calculated     gives us the carrier drift time. It is obvious 

that when the junction is placed very close to the contact the transit times will 

be considerably lower compared to a device where the junction lies deep 

within the device. Thus, we can conclude that the transit time is primarily a 

function of the doping of the device and the bias applied. The doping of the 

device also determines the equilibrium space charge electric field and the 

length of the space charge region itself. A change in these parameters will 

result in a fluctuation of the transit time. 
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Fig 2.8: Electric Field vs. Distance in a p-n HgxCd1-xTe photodetector with 

x=0.225. 

2.3.2. RC Time Constant 

  In practical scenarios, the most serious limitation in the operation of 

photodetectors arises from the RC time constant. The resistance capacitance 

product represents the RC time constant, which is the time required for the 

capacitor to charge up to 63% of its steady state value. However there are 

various components of capacitance and resistance that we must consider while 

calculating the time constant. In terms of the capacitance we must consider 

depletion capacitance and diffusion capacitance [12] which are in parallel, as 

shown in Fig.2.9. 

 

Fig 2.9: CDepletion and CDiffusion are in parallel. 
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Depletion capacitance is given by the expression: 

 

1/2

2

2

2

s
depl bi

q N kT F
C V V

q m




   
     

  
 (2.6) 

Diffusion capacitance is given by the expression: 
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diff p
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AqD p V
C

L V V


 
  

 
 (2.7) 

Two important components of the resistance that have to be considered are the 

diode resistance and the load resistance. 

2.3.3. Responsivity 

  An important figure of merit for photodetectors in the responsivity of 

the detector. It can be defined as the ratio of the photocurrent to the incident 

optical power. The expression for the responsivity of a photodetector is given 

by equation 2.8.                       

                                                 ( / )
q

R A W
hc


                                    (2.8) 

where   is the quantum efficiency, q is the fundamental unit of charge, h is the 

planc‟s constant, c is the speed of light and   is the wavelength of the radiation 

in microns. Therefore, for a given quantum efficiency, the responsivity 

increases linearly with wavelength.  

 

2.4. Noise in Photodetectors 

  Any LWIR detector suffers from the problem of noise. This is one of 

the major concerns that affect the detectors performance. Thus, it becomes 

imperative to operate the detector at lower temperatures to reduce noise. 

However, by using this approach, one increases the operating cost.  
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  The noise generated by a detector, operating under reverse bias, is a 

combination of shot noise, and Johnson noise. Shot noise occurs in optical 

detectors due to thermal noise mechanisms. The fluctuations in the velocities 

of free carriers due to their random motion and due to randomness in the rates 

of thermal generation and recombination jointly give rise to shot noise. The 

expression for shot noise is given by equation 2.9. 

 2s dI qI B  (2.9) 

where    is the dark current and B is the Bandwidth. 

  The Johnson noise contribution is provided by the shunt resistance of 

the device, series resistance and the load resistance at zero bias. The Johnson 

noise is given by: 

 

1/2
4

J

kTB
I

R

 
  
 

                            (2.10) 

 In Fig 2.9 we can see the Shot Noise and Johnson Noise variation with 

temperature. The amount of shot noise also depends on the reverse bias 

voltage applied .In an ideal photodiode one can assume that the current will be 

diffusion limited, but in real life, especially for narrow bandgap materials, 

there are several other mechanisms which are heavily involved in determining 

the dark current vs. voltage characteristics. Apart from diffusion current in the 

quasi neutral regions and generation-recombination current in the depletion 

region, there are other mechanisms that are significant as well. This will be 

discussed in greater detail in chapter 3 and chapter 4. 
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Fig 2.10: Noise Current vs. Temperature. 

2.5. Detectivity 

  Detectivity is one of the prime figures of merit against which the 

performance of a detector is judged. The detectivity is given by the 

expression:                                   

 

2

* 24
2 OPT

n q kT
D q P

hc RA






 
  

 
 (2.11a) 

where   is the wavelength,   is the quantum efficiency,      is the incident 

optical power density and R is the effective dynamic resistance. 

 
0

1 1 1

eff LR R R
   (2.11b) 

where R0 is the zero bias dynamic resistance and RL is the load resistance.  

As we know to majority of the infrared detectors must be operated at liquid 

nitrogen temperatures to obtain background limited performance (BLIP). In 

relation to equation 2.11a, two important cases must be outlined. 

 For background-limited performance: 
   

   
 <<         
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 Thermal noise limited performance: 
   

   
 >>          

For an ideal photodiode the performance can be maximized by maximizing the 

quantum efficiency and minimizing the reverse saturation current. A higher 

    product too will lead to higher detectivity. By now we have established 

that the leakage current that exists in a LWIR photodetector reduces the 

detectivity. There are a few design strategies that can be used to reduce the 

leakage current. They will be discussed in chapter 4. 
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NUMERICAL MODELING OF PHOTODETECTORS 

 

3.1. Introduction 

  As the semiconductor technology continues to evolve, numerical 

modelling of semiconductor devices becomes an indispensible tool for the 

prediction of the electrical characteristics of the device. This thesis deals with 

the development of the tool „OPTODET‟. This tool has been developed to 

investigate and explain the device characteristics of HgCdTe Photodetectors at 

low temperatures. OPTODET is a 1-D drift-diffusion simulator. Complete 

Fermi-Dirac statistics have been implemented to contend with cases with 

degenerate doping. The devices that the tool simulates are all abrupt junction 

devices, in other words the doping in all regions is uniform. All simulations 

assume parabolic shaped bands. In this chapter we will take a closer look at 

the numerical methods which are used to solve Poisson‟s equation and the 

current continuity equations.  

  A drift diffusion simulator utilizes solutions of the Poisson‟s equation 

and the current continuity equations to determine the current flowing through 

the device. 

 

3.2. Poisson’s Equation – Discretization and Implementation 

  In order to solve for the potentials within the device one has to solve 

the Poisson‟s equation which is given by the expression: 

 
2. ( )D A

e
p n N N



        (3.1) 

where   is the spatially varying potential, e is the fundamental charge,   is the 

permittivity, p and n are the electron and hole densities and ND
+
 and   

 are the 
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ionized impurities. Since we consider complete Fermi-Dirac statistics n and p 

are given by the following expressions: 

 1/2
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E E
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 
  
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 (3.2a) 

 1/2
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E E
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 
 (3.2b) 

 

where NC and NV are the effective conduction and valence band density of 

states. EF is the Fermi energy, EC is the conduction band energy, EV is the 

valence band energy, k is the Boltzmann‟s constant and T is the temperature. 

The implementation of the f1/2 integral will be discussed in greater detail in 

subsequent sections.   

The effective conduction and valence band density of states is give by 

expression: 

 

                                          
    

   

  
                                    (3.3a) 

                                         
    

   

  
                                          (3.3b) 

 

  The solution of equation 3.1 using a computer program would require 

finite difference discretization so that the equation under analysis can be 

transformed in to a matrix equation. Then the equation can be solved using a 

numerical method such as the Successive over relaxation method (SOR) or the 

LU decomposition technique. In subsequent sections both techniques will be 

explained as both techniques have been implemented in OPTODET. 
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3.2.1  Normalization of the Poisson Equation 

  Under equilibrium conditions n and p are given by equation 3.2a and 

3.b. Now consider the 1-D Poisson equation given by equation 3.4. 

 

2

2
( )D A

d e
p n N N

dx





       (3.4) 

Let n and p be defined by the equations 3.5a and 3.5b 
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Assuming    , applying  1xe      and substituting this in the RHS 

and using  d a iN N n C  , one arrives at 
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 (3.6) 

Now, let the new value of  be denoted as new and the present value of   be 

denoted as old . Substituting new old    , we get                  
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                                                                                                           (3.7) 

 

Rewriting in terms of p and n we get, 

                    
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                                                                                                                                      (3.8) 

Now normalize ix with DL , and i  with TV , where LD is the intrinsic Debye 

length. This leads to 

     
2

2

new
new oldd

p n p n C p n
dx


          

                                                                                                                  (3.9) 

This is the normalized form of the Poisson equation.  

 

3.2.2  Finite difference representation  

  Equation 3.9, though normalized is still in a differential form. The next 

step is to apply a finite difference approximation scheme to this equation. By 

applying the central difference formula, we get equation 3.10. 
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                                                                                                         (3.10) 

  where „i‟ represents the grid point, „n’ represents the iteration number 

and   is the normalized grid spacing. The finite difference Discretization of 

the 1D Poisson‟s equation leads to tridiagonal square input matrix (of the 

potential in the Poisson‟s equation). That is, the Poisson equation can now be 

represented as, 

           

                                                                                                             (3.11) 

  Where F is the forcing function (which is essentially the RHS of 

Equation 3.11). The solution of the matrix equation is explained in the 

following section. We have utilized two numerical methods to solve equation 
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3.11, namely the successive over relaxation method and the LU decomposition 

method. 

3.3. LU Decomposition method  

  A square matrix equation as in Equation 3.11, can be solved by 

breaking the tridiagonal square matrix  
 
into lower triangular and upper 

triangular matrices, say    ,L U matrices, if the matrix is non-singular (in this 

case if there exists an inverse for the square matrix    such that   
1

1


  

[Weisstein]. Also an invertible matrix admits LU Decomposition if and only if 

all its leading diagonal principal minors are non-zero. The factorization is 

unique if we require that the diagonal of L (or U) consists of ones. Both these 

conditions are satisfied in the discretized Poisson‟s equation Matrix 

representation. 

Thus, one can write, 

     L U                                    (3.12) 

Here    ,L U  are the lower and upper triangular square matrices (of the same 

size), meaning that L has only zeros above the diagonal, and U has zeros 

below the diagonal. Thus Equation (3.12) transforms into, 

         L U F     (3.13) 

The solution for    can be found by expressing  

     V U   (3.14) 

Equation (3.14) changes into, 
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L V F

L V F
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 
 (3.15) 

Thus  V  has to be first solved, following which    can be solved from 

Equation (3.15). In order to do this, the   ,L U  matrices have to be computed. 

This is accomplished in the following manner, 

First, the coefficient matrix of the Poisson‟s equation is expressed as,  
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                                                                                                               (3.16) 

In the above matrix equation, the coefficients from Equation (3.10) form 

tridiagonal matrix which is decomposed into lower and upper triangular 

matrices. 

To get the values of ,  , one could express the elements , ,k k kg c e  in terms of

,   so that a general expression can be obtained for ,  . Thus from 

Equation (3.16) one has,  

 
1 1
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1g

g
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 
 (3.17) 

Then based on this value of 1 , the   values are found from, 
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Where 0 k n  , and n is the order of the matrix (in this case the number of 

mesh points) 

Continuing the same gives, 
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This gives us the entire  L and U  matrices. To solve Equation (3.15), 

rewrite the matrices as, 
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 (3.20) 

 

 By forward substitution similar to the above procedure, 

 
1 1

1 1

1f v

v f

 

 
 (3.21) 

 

 

Then based on this value of 1v , one can obtain the entire  V  from, 
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Where 2,3,....i n  

Then, to solve for   , one has to solve Equation (3.14). Rewriting the 

equation in its matrix form gives, 
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 (3.23) 

 

By backward substitution similar to the above procedure, 
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 (3.24) 

Then based on this value of n , one can obtain the entire    from,  
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 (3.25) 

Thus we have solved for   at each node point using this method 
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3.4. Successive Over Relaxation Method 

  We know that the finite difference approximation of the Poisson‟s 

equation is that mentioned in equation 3.10. Before we analyze the SOR 

method we must understand that every device has boundary conditions. There 

are three types of Boundary conditions: 

Neumann: This a boundary condition on the derivative of the potential. This 

condition is applied at all imaginary boundaries of the device. 

Dirichlet: This a boundary condition on the potential. This condition is applied 

at all node points in a device where the potential must be fixed (for example, 

contacts). 

Mixed boundary condition: This is a mixture of Dirichlet and Neumann 

boundary conditions. 

  While applying boundary conditions on a particular structure, the 

device must have at least one node point where Dirichlet conditions have been 

enforced. The Dirichlet condition represents a connection to the real world. In 

other words, external voltage/bias will be applied at the node points where 

Dirichlet conditions have been enforced.   

  Consider the 1-D device in Fig 3.1. The figure indicates that there are 

two Dirichlet condition on the front and back end node points of the device 

which represent contacts. Neumann conditions are enforced in the middle. 

 

Fig 3.1: Representation of Dirichlet and Neumann conditions on the node 

points of a device 
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Equation 3.10 can be viewed as  

                                                                                                                      

                                                                                                       (3.26) 

where the „A‟ matrix is the coefficient matrix, which in simple terms 

represents the effect that the surrounding node points have on „i
th

’ node point 

and   is the electrostatic potential at each node point. Consider Fig.3.2. The 

front and back end node points are Dirichlet contacts and the node points in 

the middle are internal nodes. 

 

Fig 3.2: A hypothetical device with 6 node points. 
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 2 2 2

1 2 1
, ,i i i i ia b n p c    

  
                 

                                                                                                               (3.28) 

 

 Now let us describe the SOR method. The SOR method, is an 

extension of the Gauss-Seidel method. Both methods are iterative methods. 
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Iterative (or relaxation) methods start with an approximation (initial guess) 

which is successively improved by the repeated application (i.e. the 

“iteration”) of the same algorithm, until a sufficient accuracy is obtained. In 

this way, the original approximation is “relaxed” toward the exact solution 

which is numerically more stable. Error analysis and convergence rate are two 

crucial aspects of the theory of iterative methods. We can define the residual 

as: 

 
i ir f Av    (3.29) 

where v
i
 is a sequence of approximations of x in Ax=f. The error between can 

be calculated as: 

 
i ie x v   (3.30) 

According to the Gauss-Seidel method the expansion of Ax=f is given by: 
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     (3.31) 

By a simple modification of Gauss-Seidel‟s method it is often possible to 

improve the rate of convergence. By following the definition of a residual in 

equation 3.29, the Gauss-Seidel formula can be re-written as: 

 
1 1(1 ) ( )k k k

i i i ij j ij j

j i j iii

x x b a x a x
a


 

 

       (3.32) 

Here,   is the relaxation parameter. When  =1, equation 3.32 will be reduced 

to equation 3.31. The relaxation parameter can be used to under damp or over 

damp the results. Successive over relaxation (SOR) leads to a surprisingly 

higher convergence than the Gauss-Seidel method. 
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3.5. Electron and Hole continuity Equation 

  The discretization of the continuity equation in conservation form 

requires the determination of the currents on the mid-points of mesh lines 

connecting neighboring grid nodes. Since the solutions are accessible only on 

the grid nodes, interpolation schemes are needed to determine the currents for 

consistency with Poisson‟s equation, it is common to assume that the potential 

varies linearly between two neighboring nodes. This is equivalent to assume a 

constant field along the mesh lines, and the field at the mid-point is obtained 

by centered finite differences of the potential values. In order to evaluate the 

current, it is also necessary to estimate the carrier density at the mid-points. 

The simplest approximation which comes to mind is to also assume a linear 

variation of the carrier density, by taking the arithmetic average between two 

neighboring nodes. This simple approach is only acceptable for very small 

potential variation between the nodes, and indeed is exact only if the field 

between two nodes is zero, which implies the same exact carrier density on the 

two points. 

 In order to illustrate this, let‟s consider a 1-D mesh where we want to 

discretize the electron current density: 

 ( )n n n

d dn
J q n qD

dx dx


    (3.33) 

Here, the field is explicitly expressed by the derivative of the potential. The 

discretization on the mid-point of the mesh line between nodes xi and xi+1 is 

give by: 

 1 1
1/2 1/2

i i i i
i n i n

n n
J q n qD

x x

 
  

 

 
  

 
 (3.34) 
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In the simple approach indicated above, the carrier density is expressed as: 

 
1

1/2
2

i i
i

n n
n 




  (3.35) 

In equation 3.34, the assumed linearity of the potential between meshes, is 

implied by the use of the centered differences to express the field on the mid-

point. We can now rewrite equation 3.34 including the approximation in 

equation 3.35 as: 

 1
1/2 1[ ] [ ]
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n i i n
i i i
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 (3.36) 

 1 ,
2

n i i nD
a q b q

x x

   
 

 
 (3.37) 

 

If we assume a condition where Jn = 0 (equilibrium) and a>>b (negligible 

diffusion), it is easy to see that positivity of the carrier density is not 

guaranteed, since the solution oscillates as ni+1      . Also, it can be shown 

that for stability we need to have 1i   >
2kT

q
, which requires very small 

mesh spacing. 

  The approach by Scharfetter and Gummel [13] has provided an optimal 

solution to this problem, although the mathematical properties of the proposed 

scheme have been fully recognized much later. They demonstrated that by 

allowing the electron density to follow an exponential variation between mesh 

points, errors due to discretization can be avoided. 
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Consider the 1-D electron current continuity equation under steady-state 

conditions: 

 
1

. nJ G
q
   (3.38) 

which, by using the half point difference expansion based on the centered 

difference scheme gives: 
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where,  
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Equation 3.40 can also be written as: 
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Writing the electric field in terms of potential we will obtain: 

 
1 1/2

1/2

1
n

i i i

n

T i

Jdn
n

dx V qD

  




 


 (3.42) 

Equation can interpreted as the following: 
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Equation 3.43 will lead to: 
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Using Laplace transformation and the conditions 1 1( ) ; ( )i i i in n n n     , 

we get: 

 1( ) [1 ( )] ( )i in n g n g      (3.45) 

where,  
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 (3.46) 

where g    is also known as the growth function. 

Therefore, the electron current can now be given by: 
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where B is the Bernoulli function. This function is defined equation 3.52. 

Similarly: 
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Therefore the final finite discretized system of equations for electrons and 

holes can be written as follows: 
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                                                                                                                    (3.49)
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                                                                                                                     (3.50)  

To speed up the computations, it is advantageous that the Bernoulli functions 

are evaluated using a set of predetermined values, i.e. approximations. This 

will eliminate the problem of overflows and underflows. Also the Sharfetter-

Gummel scheme produced positive definite matrices and does not lead to 

coefficient matrices that have complex eigen values. Thus, even the SOR 

method can be used to solve this system of equations. All the half point values 

for the diffusion co-efficient and carrier mobilities can be obtained by linear 

interpolation. 

                        1 1/2
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2 2

i i i i
i i

D D
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 
                            (3.51) 

The following is a useful scheme for the Bernoulli function: 

    

 

   

 

 

                                                                                                                    (3.52) 

3.6. Generation-Recombination Mechanisms 

          Non-equilibrium conditions prevail when the device is under the 

influence of an external voltage. In such situations there are various 

B(x) = -x, x x1 
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                     , x4 x<x5 
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generation/recombination events that take place which determine the 

characteristics of the device. In semiconductor physics the terms 

Recombination and generation can be defined as: 

Recombination: A process in which an electron and hole are destroyed. 

Generation: A process in which an electron and a hole are generated.    

In this section we will discuss SRH, Radiative and Auger mechanisms. 

3.2.2  Shockley-Read-Hall Recombination 

  Every semiconductor has trap levels that occur in the energy bandgap. 

These intermediate levels can be defect induced or impurity induced. These 

trap levels function as „recombination-generation‟ centers (r-g centers). In 

many semiconductors recombination/generation often occurs through these 

centers and is known as SRH recombination events. In indirect bandgap 

materials such as silicon, the SRH process is more dominant when compared 

to HgxCd1-xTe which in comparison is a direct bandgap material. The 

recombination and generation that occur through r-g centers are characterized 

by a set of emission and capture processes. This is illustrated by fig 3.3. 

 

Fig 3.3: All permutations of emission and capture events. (Courtesy Dr. 

Schroder) 
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  The capture events are represented by cn (electron capture) and cp (hole 

capture). The emission events are represented by en (electron emission) and ep 

(hole emission). Situation (a) and (c) represent a recombination event. In (a), 

an electron falls from the conduction band into a trap filled with a hole to 

recombine with a hole, whereas in (b) a hole rises into a trap filled with an 

electron to recombine. (b) and (d) represent emission processes. In (b) a trap 

filled with an electron releases the electron into the conduction band, which 

can be interpreted as a generation event. Event (d) can be interpreted in two 

ways. It can either be looked upon as a hole being released in to the valence 

band or an electron being captured from the valence band, which is indirectly 

the generation of a hole. 

The conventional SRH net recombination rate is given by: 
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t i t i
p i n i
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E E E E
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kT kT
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  
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 (3.53) 

where , Et is the trap level, Ei is the intrinsic energy level and   and    are the 

electron and hole lifetimes. These lifetimes are heavily dependent on the 

concentration of the trap centers. The SRH lifetimes are given by: 

 
1 1

;n p

n th T p th TV N V N
 

 
   (3.54) 

where     is the capture cross section for electron and holes respectively, Vth 

is the thermal velocity and NT is the trap concentration. Vth is also said to be 

average speed due to “Brownian-Like” motion or random motion at a given 

temperature [14]. Vth is given by the following equation: 
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  The         values do depend heavily upon the purity of the growth 

technique. Work done in relation to SRH lifetimes in Hg1-xCdxTe in Ref [15] 

is provides certain values of trap concentrations. 

  It is a well known fact that in the presence of strong electric fields, 

tunneling of electrons can make a significant contribution to carrier transport 

in a p-n junction. Band to band tunneling as well as trap assisted tunneling can 

become dominant factors that determine the current. Tunnelling not only 

adversely affects the leakage currents but it can also lead to an anomalously 

high non-ideal currents under forward bias. In the context of a highly doped 

narrow bandgap semiconductor like HgxCd1-xTe, tunnelling can play a pivotal 

role due to the large electric fields that will be generated in the space charge 

region. Moreover, in a highly doped junction the tunnelling distances are 

short, making the effect quite significant. The emission of electrons and holes 

can also be enhanced by phonon assisted transitions [16]. Instead of thermal 

emission over the entire trap depth (which is the only possibility in the 

absence of an electric field), carriers can also be emitted by thermal excitation 

over only a part of the trap depth and followed by tunnelling through the rest 

of the potential barrier.  

  Trap assisted tunnelling can be implemented by adding a term to the 

SRH recombination term as done in [17]. The SRH equation with trap assisted 

tunnelling is given by: 
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                                                                                                                    (3.56) 

In equation 3.56, two new terms, namely    and    are introduced. They are 

the field effect functions. In cases of weak electric fields       , equation 

3.56 reduces to the conventional SRH recombination term.  

The expression for     is given by the following expression: 
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Kn,p is given by equation (3.59) 
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    and    are given by the following expression:  
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 (3.60) 

 

where Ec(x) and Ev(x) are the spatially varying conduction and valence band 

energies. Ecn and Evp are the equilibrium values of the conduction and valence 

band energies.  

 Analytical expressions for the integral in equation 3.58 are given as 

follows. 
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where F is the local electric field and    is given by: 
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                                                                                                              (3.62a) 

Here tn,p is given by: 
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 (3.62b) 

In equation 3.62b   = 0.61685, al = 0.3480242, a2 = -0.0948798, and a3 = 

0.7478556. 

 

 

3.2.3  Radiative Recombination 

  This is a band to band type of recombination which involves the direct 

annihilation of a conduction band electron with a valence band hole. The 

electron falls from an allowed conduction band state in to a vacant valence 

band state. The excess energy produced is usually released in the form of a 
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photon. This mechanism is more prominent in a direct bandgap material. 

Radiative recombination is given by the expression: 

 
2( )Radiative iR B pn n   (3.63) 

B is given by the expression in equation 3.64. 
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                                                                                                                    (3.64) 

As Hg1-xCdxTe is a direct bandgap semiconductor, we may expect Radiative 

recombination to play quite a prominent role. However, that is not true. For 

narrow bandgap HgxCd1-xTe with x=0.225, Radiative recombination does not 

dominate across all temperature ranges. In fact, SRH mechanism remains 

more prominent than Radiative in narrow bangap materials. However, in wide 

bandgap HgCdTe with x=0.31, Radiative recombination remains prominent at 

all temperatures [18]. 

3.2.4  Auger Recombination 

  Auger Recombination mechanisms is one of the dominat mechanisms 

in narrow bandgap HgCdTe. Auger generation typically dominates the dark 

current at elevated temperatures, where the low doped absorber layer becomes 

intrinsic and the carrier concentration is higher than the doping level. Standard 

p–n junction photodiodes therefore become very noisy when operated near 

room temperature. This is the prime reason why HgCdTe photodiodes are 

operated near liquid nitrogen temperatures, even though operating at such low 
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temperatures increases the operating cost tremendously. Different designs are 

often implemented to suppress Auger generation. 

  There are reportedly many types of Auger mechanisms that occur in 

HgCdTe, but the only ones of consequence are Auger-1 and Auger-7 

mechanisms. Auger-1 (   ) is the dominant mechanism in n-type HgCdTe. In 

this mechanism an excited electron in the conduction band recombines with a 

hole in the valence band and the loss in energy is transferred to a second 

conduction band electron. Auger-7(   ) mechanism is predominant in p-type 

HgCdTe. The energy in this case is transferred to an electron in the light hole 

band. The lifetimes for Auger-1 and Auger-7 are given by the following 

expressions. 
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The intrinsic Auger lifetime is given by the expression: 

 

 

18 2 1/2

3/2
*

2

1 2

0

3.8 10 (1 ) (1 ) (1 2 )
exp

(1 )

gi

A

e

g

E

kTm kT
F F

m E

   




     
  

    
    

   

  

(3.65c) 

where  
*

*

e

h

m

m
  .        is the overlap integral which usually lies between 0.1 to 

0.3 and me
*
and mh

*
 are the effective electron and hole masses.  



54 
 

The recombination-generation term for Auger mechanisms is given by 

equation 3.66. 

                           
2 2 2 2( ) ( )Auger n i p iR C pn nn C np pn                       (3.66) 

Cn and Cp are the Auger coefficients. They are given by the following 

expression which can also be found in Ref [19]. In Fig 3.4 we show two 

curves of Auger lifetimes plotted vs. 1000/T for different doping densities. We 

notice that, as the temperature increases, the lifetime increases but after we 

reach room temperatures, the lifetime sharply decreases. 

3.2.5  Optical Generation 

  When a radiation is incident upon a device, EHP‟s are generation if the 

radiation has sufficient energy to excite electrons from the valence band into 

the conduction band. If the radiation does not have sufficient energy, the 

device will be transparent to the radiation. The generation EHP‟s are  

 

Fig 3.4: Auger Lifetimes vs. 1000/T for different doping densities. 

 

represented by generation term. This generation term depends heavily on the 

kind of absorption that occurs in the device. All materials have a unique 
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absorption spectrum related to them. The generation term is given by the 

expression: 

                            
 

 
(1 )

( ) exp
OPTa R P

G x a x
Ah







                          (3.67) 

As is evident from the above expression, radiations with different wavelengths 

will result in different amounts of generation throughout the device. The 

generation for each wavelength is calculated at every node point in the device 

except at the contacts. This term is then added to the generation recombination 

term alongside all the recombination mechanisms discussed earlier. 

3.7. Optical Absorption Model 

 The absorption coefficient is characterized by the intrinsic Kane 

Region which is valid for energies above the conduction band edge and the 

Urbach model [20] which describes the absorption coefficient for energies 

below the conduction band edge. It is well known that the Kane region 

represents optical transitions of electrons from the valence band to the 

conduction band; in other words the Kane region is due to direct band to band 

transitions. It is also well known that absorption takes place for radiation 

which have energies lesser than the band gap and this type of absorption is 

described by the Urbach tail. This happens due to a number of different 

interactions such as, electron-phonon, electron-impurity and electron 

interactions with intermediate trap states which are generated by defects in the 

material. Both regions have been investigated thoroughly and large amounts of 

empirical data already exist [21].  
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 According to the Urbach model (valid below the conduction band edge) 

the absorption coefficient obeys an exponential law whereas for the Kane 

region a square root law relates   and energy (E). Therefore: 

For the Kane region: 
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gE E
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 (3.68) 

For the Urbach region: 

 

                                                                                                                               

 (3.69) 

The absorption coefficient also plays a pivotal role in determining the 

Quantum Efficiency which will be discussed in the next chapter. In Fig 3.5 we 

can see the Absorption coefficient for different mole concentrations 

(x=0.225,0.3,0.4) vs. energy. 

 

Fig 3.5: Absorption Coefficient vs. Energy for             for x=0.225, 0.3 

and 0.4. 
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3.8. Flowchart of the simulation program 

 This section describes the simulation methodology adopted by the tool 

„OPTODET‟. Fig 3.5 is a flowchart of the simulation program. „OPTODET‟ is 

a drift diffusion based simulator. There are two sections that the tool is divided 

into. One section focuses on the I-V characteristics (dark current, dynamic 

resistance, etc.) whereas the other section calculates the optical solutions.  The 

optical based solutions include results such as Quantum Efficiency, 

Responsivity, Detectivity, Absorption Coefficient etc. While the I-V 

characteristics section can calculate current under the influence of 

illumination, it considers the total generation by the given spectrum. The 

optical solutions section will calculate current for every individual 

wavelength. 

 As this tool is also supposed to serve an educational purpose, great 

flexibility has been provided in terms varying the mesh size, voltage 

increments and specific models the user would like to use. By providing this 

functionality the user can observe the effect of every phenomenon singularly. 

For example, the user can selectively switch “off” the tunneling effect and see 

the dark current characteristics without the effects of tunneling. Similarly, the 

user can select between SRH, Radiative and Auger recombination 

mechanisms. Observing the results in this way will lead to a better 

understanding of which mechanisms dominant under different conditions. .  
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Fig 3.6 (a): Flowchart of simulation program. 
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Fig 3.6 (b): continuation of flow chart. 
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Fig 3.6 (c): continuation of flowchart. 
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Fig 3.6 (d):  Continuation of flow chart. 
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MODELING OF HgCdTe PHOTODETECTORS 

 Among the narrow band-gap semiconductors, Hg1-xCdx Te has taken a 

leading role as a source material for intrinsic infrared detectors. The two 

compositions which are specifically of use are x-0.2 and x-0.3, which 

correspond to the two atmospheric spectral windows of 8-12 and 3-5 µm. 

HgCdTe is a direct bandgap semiconductor with a zinc blende structure. As 

already mentioned in previous sections, the material properties of Hg1-xCdxTe 

are very sensitive to the mole concentration x and temperature. There are 

several properties that make mercury cadmium telluride an attractive choice as 

an optical detector in the infrared region. We will elaborate on these properties 

below. 

 

4.1.  Material Properties 

4.1.1 Intrinsic Carrier Concentration 

The intrinsic carrier concentration is given by: 

 

 

  

                                                                                                                      (4.1) 

  Where ‘x‟ is the cadmium mole fraction, T is the temperature and Eg is 

the bandgap. As we can see the intrinsic carrier concentration (ni) does depend 

on the mole fraction as well as the temperature. This equation is valid for x   

0.7 and 50K   T  300K .In Fig.4.1 we can see the dependence of ni on 
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temperature at x=0.225 and Fig.4.2 depicts the relation between ni and the 

mole concentration at T=78 K.  

 

Fig 4.1: Intrinsic Carrier Concentration vs. Temperature. 

 

Fig 4.2: Intrinsic Carrier Concentration vs. Cadmium Mole Fraction (x). 

Fig.4.3 shows the variation of intrinsic carrier concentration with change in 

mole fraction at different temperatures. 
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Fig 4.3: Intrinsic Carrier Concentration vs. Mole fraction at 78 K, 100 K, 150 

K, 250 K and 300 K. 

We can clearly see that at lower temperatures the intrinsic carrier 

concentration seems to be more sensitive to change in the cadmium 

concentration. 

4.1.2 Bandgap 

The expression for the bandgap is given by: 

              

                                                                              (4.2) 

where, „ x’ is the cadmium mole fraction and T is the temperature. It is a well 

known fact that the bandgap of HgCdTe can be tuned by changing the mole 

fraction. The temperature too plays a role in changing the bandgap. The fact 

that the bandgap can be changed allows us to access the narrow bandgap 

properties and the wide bandgap properties that the material can offer. Fig.4.4 

shows how the bangap varies will the mole fraction. 
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Fig 4.4: Bandgap vs. Mole Fraction at 78 K. 

Equation 4.2 is valid for 0   x   0.6 and 4.2K   T   300 K [22]. Fig.4.5 

shows the variation of the bandgap with temperature at a certain mole fraction. 

The bandgap increases with the increase in temperature. This fact becomes 

significant when we analyze the behaviour of the device at different 

temperatures.

 

Fig 4.5: Bandgap vs. Temperature at x=0.225. 
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4.1.2 Effective Masses 

The electron effective mass is given by: 
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where, Eg is the bandgap. The hole mass   
  is given as 0.55mo. HgCdTe is 

characterized by very low electron effective mass when compared to the hole 

effective mass. This in many ways shapes the way the device behaves. Since 

the electron mass is so low, the electrons also tend to have a very high 

mobility when compared to the holes. This property can be used to make a 

high performance detector. Detectors are designed in such a way that the 

electrons carry the majority of the current. This also results in better transit 

times. 

4.1.4 Mobility 

The expression for mobility is : 
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 (4.4) 

Where x is the mole fraction and T is the temperature. The hole mobility is 

usually given by: 

 
100

e
h


   (4.5) 

 HgCdTe has very high electron mobility. There are various scattering 

mechanisms that would affect the mobility as we increase temperature but that 

will not be discussed in this thesis. In HgCdTe the theoretically calculated 

mobility is usually greater than the experimental value at low temperature. It is 
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because sufficient information is not represented for theoretical calculation 

especially concerning impurity level, compensation, and impurity iconicity 

[23]. 

4.1.5 Permittivity  

The expression for permittivity is given by: 

 
220.5 15.5 5.7HgCdTe x x     (4.6) 

 

4.2. Simulation Characteristics 

In this section we will discuss the simulated results. 

4.2.1 I-V Characteristics 

  In an Ideal diode, we can say that the photodiode current is limited by 

diffusion. But in a narrow bandgap pn junction such as Hg1-xCdxTe this is 

usually not the case. Several additional mechanisms play significant roles in 

determining the dark current characteristics of the photodiode. The dark 

current is the cumulative current contributed by three regions: the bulk, the 

space charge region and the surface [24]. 

 Thermally generated current in the bulk and depletion region: 

i) Diffusion current in the bulk and p and n regions. 

ii) Generation – Recombination current in the depletion region. 

iii) Band to Band tunnelling. 

iv) Trap assisted tunnelling. 

v) Anomalous Avalanche current. 

vi) Ohmic Leakage across the depletion region. 
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 Surface leakage current: 

i) Surface generation current from surface states. 

ii) Generation current in a field induced surface depletion region. 

iii) Tunnelling induced near the surface. 

iv) Ohmic or non-Ohmic shunt leakage. 

v)  Avalanche Multiplication in a field-induced surface region. 

While all these mechanisms may not take place together, all these mechanisms 

become significant if the conditions are appropriate. In this thesis work we 

have not incorporated the effects of surface leakage current. 

  In an ideal diode which is diffusion limited we know that after a 

certain reverse voltage the reverse current is independent of the voltage. But in 

a HgCdTe device several other mechanisms become relevant at low 

temperatures. The main one that we have considered is tunnelling. The tool 

„OPTODET‟ has implemented both trap assisted tunnelling (discussed in 

chapter 3), and band to band tunnelling. In fig 4.6 we can see the diffusion 

region and tunnelling dominated regions of the dark current. 

  We have added a tunneling model based on the WKB approximation 

[25]. For a 1-D case, the generation term due to tunneling is given by: 
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Tunneling probability strongly depends on the shape of the potential barrier. 

Also, usual direct tunneling calculations assume constant effective mass over 
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the potential barrier. Expression (4.7) was obtained for a parabolic 

 

Fig 4.6: Dark Current Characteristics with Diffusion Region and Tunneling 

region. 

barrier [see Ref 25]. While the advantage offered by the WKB expression in 

equation 4.7 is that can easily be integrated into the generation term of the 

continuity equation. The disadvantage however is that while this model serves 

the purpose during low field conditions, but when the device is under very 

large bias, the WKB expression will give erroneous results. 

  Fig.4.7 shows the dark current characteristics for 3 different 

temperatures. We can clearly see that the I-V curve at 100 K looks more like 

the current characteristics of a diffusion limited diode. This behavior occurs at 

higher temperatures due to the increase in bandgap, and therefore, tunneling is 

not as relevant. Similarly we notice that at lower temperatures, the tunneling 

dominated part of the curve occurs at a lower bias as the bandgap is lesser at 

those temperatures. 
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Fig 4.7: Dark Current Characteristics for Hg1-xCdxTe with x=0.225.  p
+
-n 

junction with Na = 2 10
16

 cm
-3

 and Nd = 10
15

 cm
-3

. 

In Fig.4.8 we can see the dark current characteristics with and without the 

tunneling model. 

 

Fig 4.8:Dark current with and without the tunneling models. 
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Another point to note is that, direct tunneling is critically dependent on the 

electric field; this however, is not the case with trap assisted tunneling. The 

different role played by the two types of holes should be noted. Since the 

tunneling rate of carriers is inversely proportional to the exponent of their 

mass, the tunneling probability of heavy holes is much smaller than light 

holes. But since the density of states of the heavy holes is more, the heavy 

holes dominate the thermal transitions. Trap assisted tunneling increases 

exponentially with decreasing effective mass, thus the light holes dominate 

that transition. The density of recombination centers and their position in the 

bandgap is also a significant factor that determines the trap assisted tunneling. 

The maximum tunneling probability arises for mid gap states [26]. 

4.2.2 Dynamic Resistance 

 The dynamic resistance is the incremental resistance that is measured. 

It is given by the expression: 
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 (4.8) 

This is an important parameter as it plays a major part in determining various 

other parameters such as detectivity and responsivity. The dynamic resistance 

also determines the R0A product. R0 being the zero bias resistance. The 

dynamic resistance for the same parameters as those from Fig.4.7 is shown in 

Fig.4.9. For x=0.225 at 78 K we obtained R0A = 15     . This value can 

even be extracted from the Fig.4.9 at  
  

  
    at V=0. A larger R0A value will 

lead to a higher detectivity. At 60-70 K the R0A values                 . 
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Fig 4.9: Dynamic resistance vs Reverse Voltage 

4.3. NEP 

  The principal issue usually facing the system designer is whether the 

system will have sufficient sensitivity to detect the optical signal which is of 

interest. One figure of merit that answers that question is Detectivity. We have 

already defined detectivity in chapetr 2. Another way of looking at detectivity 

is given by the following expression: 

 
* A f

D
NEP


  (4.9) 

where „A‟ is the area in cm
2
,    is the bandwidth in Hertz and NEP is the 

noise equivalent power.   

  The initial concept is to define the noise equivalent power as the 

optical power which will yield a signal to noise ratio of 1. This is then 

the limit of what can be detected. But with this definition the noise equivalent 

power can only be given at a specific bandwidth (Δf enters in the expression of 



73 
 

S/N).NEP is also defined the minimum detectable power per square root of 

bandwidth. Therefore now the NEP can be given by the expression: 

 
*

A f
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D


  (4.10) 

For a 10 micron p
+
-n device for x=0.225, the bandwidth is a few terahertz, the 

detectivity   10
11

 Jones. The NEP obtained is   10
-8

-10
-9

. The units of NEP 

are 
W

Hz
.  

4.4. Detectivity 

  In chapter 2 we introduced and outlined the concept of detectivity. We 

also mentioned the conditions for background limited performance. In 

Fig.4.10 the detectivity for a LWIR Hg1-xCdxTe with x=0.225 is shown. On 

analysis of an ideal diffusion limited photodiode, we notice that the 

performance can be enhanced by optimizing the quantum efficiency and 

minimizing the reverse saturation current Is. The saturation current for 

minority carriers can be give by equation 4.11. In this case the minority 

carriers are electrons on the p-side. 
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 (4.11) 

It‟s possible to minimize the leakage current from the side that does not 

contribute to the photo signal. If the doping or the bangap of the inactive side 

of the junction can be increases that in theory would reduce the leakage. If we 

place the back contact several diffusion lengths away such that d>>Le, then we 

would obtain: 
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As the back contact is brought closer to the junction the current can either 

increase or decrease depending on the surface recombination velocity greater 

than the diffusion velocity De/Le. The performance of the device is strongly 

dependent on the properties of the back contact. Therefore the back contact is 

usually placed several diffusion lengths away from the junction or the contact 

itself is passivated or designed in such a way the surface recombination is low. 

For all our purposes we have considered surface recombination velocity at the 

front and back contact both to be zero.   

 

Fig 4.10: Detectivity vs. Wavelength. 
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Fig 4.11: Detectivity vs. Wavelength at various temperatures. 

 Fig 4.11 shows us the various curves of detectivity vs wavelength of 

incident radiation at various temperatures. It is expected that the peak 

operating wave length will reduce as the bandgap increases with temperature, 

but it is also interesting to note how the magnitude of detectivity drops as 

temperature increases due to higher currents. 

4.5. Carrier Freezeout 

  LWIR photodetectors are operated at liquid nitrogen temperatures to 

obtain the desired performance, this inevitable leads to partial ionization of the 

impurities or in other words „carrier freezeout‟. This not only reduces the 

carrier concentrations but has an effect on the lifetimes as well [27]. Fig.4.11 

shows the p/Na and n/Nd where p Na
+
 and n Nd

+
 at equilibrium. In Fig.4.12 

we see p/ni and n/ni. The information in these graphs give us a good idea about 
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the extent of carrier freezeout that takes place and the temperatures at which 

the device becomes intrinsic. 

 

Fig 4.12: p/Na and n/Nd vs. temperature. 

  In Fig.4.11 we see that at lower temperatures, the carrier 

concentrations are nowhere near the doping concentrations. The incomplete 

ionization of the dopants can also play an important factor in reducing the 

scattering at lower temperatures and thus increasing the mobility. 

 

Fig 4.13: n,p/ni vs. Temperature. 
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We can see in Fig.4.12 that the ratio remains way below 1 for temperatures 

below 100 K signifying freezeout whereas n,p/ni near unity at room 

temperature signifying that the device is becoming intrinsic. 
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CONCLUSIONS AND FUTURE WORK 

 

  This thesis discusses the creation and implementation of a HgCdTe 

photodetector device simulator named „OPTODET‟. This simulator is also 

meant to be an educational tool, which will be deployed on nanohub.org. 

„OPTODET‟ will give enable users to explore the characteristics of a HgCdTe 

photodetector by giving them the freedom to vary various device parameters. 

All simulations were done using MATLAB software provided by Mathworks 

Inc.  

  The primary aim of this thesis is to simulate key characteristics that 

determine the performance of a HgCdTe detector operating in the LWIR 

region. While modelling the dark current characteristics the importance of 

tunnelling through traps and band to band tunnelling has been realized. 

Complete Fermi-Dirac statistics have been implemented to accurately 

calculate electron and hole densities for degenerate and non-degenerate cases. 

Numerical methods such as LU decomposition and SOR method have been 

implemented to solve 1-D Poisson‟s equation. The SOR method was used for 

obtaining solutions at low temperatures (below 60K) as the LU method did not 

converge at those temperatures due to high oscillating error. As we know that 

the mole fraction in Hg1-xCdxTe can be varied to attain a desired bandgap. The 

tool discussed in this thesis is designed to operate for 0.2   x   0.6 and T > 50 

K. Even though the tool would be able to provide results below T < 50 K, the 

rate of convergence is slow at lower temperatures, therefore, leading to larger 

simulation times.  
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  The lack of mature fabrication process still inhibits and undermines the 

progress of HgCdTe photodetectors. Historically the crystal growth of 

HgCdTe has been a major problem mainly because a relatively high Hg 

pressure is present during growth, which makes it difficult to control the 

stoichiometry and composition of the grown material.  

 

 

Fig.5.1: Evolution of HgCdTe crystal growth technology from 1958 to the 

present. 

  Fig.6.1 shows the evolution of fabrication techniques of HgCdTe. For 

the past decade considerable research has been directed towards epitaxial 

growth of HgCdTe. The epitaxial techniques offer, in comparison with bulk 

growth techniques, the possibility of growing large area epilayers and 

sophisticated device structures with good lateral homogeneity and abrupt and 

complex composition and doping profiles, which can be configured to 

improve the performance of the photodetectors. The growth is performed at 

low temperatures, which makes it possible to reduce the native defects density 
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[28]. Methods such as liquid phase epitaxy (LPE) and molecular beam epitaxy 

(MBE) have gained maturity in the past few years. 

  But in terms of detection of radiation in the infrared spectrum, HgCdTe 

is still a prominent material. Though the lack of a mature fabrication process 

coupled with the expensive operating cost that is incurred due to device 

operation at liquid nitrogen temperatures has prompted researchers to look for 

alternate materials for the purpose of infrared detection. InAs/Ga1−xInxSb has 

been proposed for IR detector applications in the 8–14μm region [29]. Among 

different types of quantum well IR photodetectors (QWIPs) technology of the 

GaAs/AlGaAs multiple quantum well detectors is the most mature. The QWIP 

technology is relatively new and has been developed very quickly in the last 

decade [30-32] with LWIR imaging performance comparable to state-of-the-

art of HgCdTe. 

  There are certain improvements that can be made to „OPTODET‟ tool 

which can make a more complete and comprehensive educational tool. In the 

current version of this tool, we consider all regions of this device to have 

uniform cadmium concentration. This can be changed to include more novel 

device structures such as an  / /n p 
, where   is a lightly doped absorber 

layer and n and p
are heavily doped wide gap n and p regions. The n    

and p    when under reverse bias cause extraction of minority carriers in 

the lightly doped absorber layer ( ). This will allow the flow of majority 

carriers out of the device while blocking the minority carriers.  

  Extending the ability of the tool to simulate heterojunction HgCdTe 

extraction diodes will be a great help in studying Auger suppressed diodes. A 

typical HgCdTe extraction diode has a wide gap n
+
 layer, a lightly doped p 
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layer and another wide gap  p
+
 layer. The n-p interface is essentially an 

extraction junction for minority electrons, the p region is the extraction zone 

and the p-p interface is a non-recombining (excluding) contact for electrons. 

Auger Suppression (Auger-1 in n type HgCdTe and Auger-7 in p type 

HgCdTe) is extremely necessary as it is the dominant mechanism when we 

increase the device operating temperature. The suppression of this mechanism 

will play a significant role in achieving BLIP performance at higher 

temperatures. 
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