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ABSTRACT 

 

In semiconductor physics, many properties or phenomena of materials can be 

brought to light through certain changes in the materials. Having a tool to define 

new material properties so as to highlight certain phenomena greatly increases the 

ability to understand that phenomena.  The generalized Monte Carlo tool allows 

the user to do that by keeping every parameter used to define a material, within 

the non-parabolic band approximation, a variable in the control of the user. A 

material is defined by defining its valleys, energies, valley effective masses and 

their directions. The types of scattering to be included can also be chosen. The 

non-parabolic band structure model is used. 

With the deployment of the generalized Monte Carlo tool onto 

www.nanoHUB.org the tool will be available to users around the world. This 

makes it a very useful educational tool that can be incorporated into curriculums. 

The tool is integrated with Rappture, to allow user-friendly access of the tool. The 

user can freely define a material in an easy systematic way without having to 

worry about the coding involved. The output results are automatically graphed 

and since the code incorporates an analytic band structure model, it is relatively 

fast.   

The versatility of the tool has been investigated and has produced results 

closely matching the experimental values for some common materials. The tool 

has been uploaded onto www.nanoHUB.org by integrating it with the Rappture 



iii 

 

interface. By using Rappture as the user interface, one can easily make changes to 

the current parameter sets to obtain even more accurate results.  
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CHAPTER 1. INTRODUCTION 

1.1. Introduction 

 Semiconductors have been the focal point of study for electrical transport 

from the 20
th

 century onwards. The main attraction towards these materials was 

the ability to change the conductivity of the semiconductor by introducing 

dopants and also by applying an electric field. Although the main use of 

semiconductor materials in devices started with the invention of the transistor, it 

was not the first device to use semiconductors. Metal rectifiers and detectors in 

radios called „Cat Whiskers‟, which were primitive forms of modern day Schottky 

diodes, were quite common in the beginning of the 20
th

 century [1].  The 

investigation of semiconductor materials could be said to have started with 

Russell Ohl of Bell Laboratories when he tried to grow pure crystals of these 

semiconductors and analyze their properties. These tests led to the realization of a 

diode structure to alter the electrical properties of a material. Building on the 

knowledge of how those diodes work, William Schockley, John Bardeen and 

Walter Brattain sandwiched two diodes together to create the first transistor in 

1947 at Bell Labs. Since then the number of different semiconductor materials has 

grown immensely to produce a variety of devices exploiting the individual, 

unique advantages of these materials. The experimental success of the 

semiconductor industry would not have been successful without the 

corresponding success in the understanding of the physical properties such as the 

electrical and optical properties of these devices. These properties were 
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investigated in detail in the 1950‟s itself [2], leading to the understanding of the 

energy band structures. From a greater understanding of band structures and other 

transport properties of these materials, the electrical properties of the devices 

created closely followed the theories proposed at that time.  

 

1.2. Need for High Field Study  

 The study of charge transport in semiconductors is of fundamental 

importance both from the point of view of the basic physics and for its 

applications to electrical devices [3]. As the need for electrical appliances grew 

the need for smaller and faster devices grew as well. As can be seen in Figure 1.1 

the number of transistors in a device grew at an amazing rate closely following 

Moore‟s law [4]. 

 

Figure 1.1 CPU Transistor counts (from www.intel.com) 
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This was made possible by the reduction in the size of the devices. Since the 

voltage applied across the devices did not reduce at the same rate, the field 

applied across the device increased. Soon after the invention of the transistor in 

1947 it was recognized that electric field strengths, so high so as to cause the 

devices to no longer obey Ohm‟s Law, were encountered in semiconductor 

samples [5-6]. As the requirement of having such high electric fields in 

commercial transistors became a possibility the need for new physics to tackle the 

working of these devices arose. The field of nonlinear transport which had been 

initiated by Landau and Kompanejez [7] entered a period of rapid development 

soon after the invention of the transistor and a number of researchers devoted 

their efforts to improving the scientific knowledge of this subject. The surge in 

research in this field gave way to the realization of new phenomena like the Gunn 

Effect [8] which then led to the invention of new devices like the transit-time 

device.   

 

1.3. Advantages of the Monte Carlo method 

 Analyzing charge transport at high electric fields in devices operated in 

the on-state is a difficult problem both from the mathematical and physical point 

of view. The Boltzmann equation which defines the transport phenomena for 

semi-classical cases is a complicated integro-differential equation. Analytic 

solutions of the Boltzmann equation can only be obtained for very few cases and 

are usually not applicable to real systems. In order to get an analytic result it is 
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necessary to use such drastic approximations that it can no longer be considered 

appropriate to describe real device operation. In 1966 Kurosawa proposed the 

Monte Carlo technique [9] and Budd proposed the iterative technique [10]. With 

these techniques it became clear that, with the use of modern computers, it would 

be possible to exactly solve the Boltzmann equation numerically for physical 

models of considerable complexity. These two techniques were then developed 

further by Price [11], Rees [12] and Fawcett [13]. The Monte Carlo method 

became the more popular technique because it is easier to use and has more 

physically interpretable results.   

 Low field properties of the semiconductor can be investigated using the 

relaxation time approximation (RTA) for the case when the relevant scattering 

processes are either elastic or isotropic. If that is not the case, then Rode‟s 

iterative procedure has to be used [14].  The Monte Carlo method which can be 

used for calculation of low-field and high-field properties of a semiconductor uses 

a different methodology. In fact, in the long-time limit the Monte Carlo method 

gives the solution of the Boltzmann Transport Equation (BTE). In the short-time 

limit, the Monte Carlo method gives the solution of the Prigogine equation. Monte 

Carlo techniques are statistical numerical methods, which are applied to the 

simulation of random processes. In fact the Monte Carlo method as a statistical 

numerical method was born well before its application to transport problems [15] 

and has been applied to a number of scientific fields [16-17]. In case of the charge 

transport however the solution of the Boltzmann transport equation is a direct 



 

5 

 

simulation of the dynamics of the carriers in the material. This means that while 

the simulation is being run, while the solution is being built up, any physical 

information can be easily extracted. Therefore, even though the result of the 

Monte Carlo simulation requires a correct physical interpretation, the method is a 

very useful tool to achieve real solutions. It permits the simulation of particular 

physical situations unattainable in experiments, or even investigation of 

nonexistent materials in order to emphasize special features of the phenomenon 

under study. This use of the Monte Carlo technique makes it similar to an 

experimental technique and can be compared with analytically formulated theory.  

 A brief overview of the different types of Monte Carlo methods used in 

device simulation and their implementation is discussed in Chapter 2. Also in 

Chapter 2, the common types of scattering processes and their corresponding 

scattering rates derived using the non-parabolic band structure are discussed. In 

Chapter 3, the generalized Monte Carlo method for any material and its 

implementation is discussed. Simulation results for some common materials like 

Silicon, Germanium and Gallium Arsenide obtained using the generalized Monte 

Carlo code and are compared with experimental data in Chapter 4. In Chapter 5, 

the rapture interface which enables the implementation of the code onto 

www.nanoHUB.org is discussed along with some details of its user interface. 

Conclusions derived from this research and future directions of research are given 

in Chapter 6.  
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CHAPTER 2. THE MONTE CARLO METHOD 

2.1. Introduction 

The purpose of device modeling is to be able to predict the electrical properties 

of materials and devices. This would then permit changing certain parameters to 

improve performance. To obtain these electrical properties, one needs to know the 

behavior of the particles in the devices, or more specifically in the materials used 

in those devices. The Boltzmann transport equation [18-19] ,  

   

  
              (     )  

  

  
      

(2.1) 

is used to obtain this behavior. It governs the carrier transport in materials under 

the semi-classical approximation. This equation is essentially a conservation of 

volumes in phase space. The left hand side of equation (2.1) consists of three 

terms, the first term describes the temporal variation of the distribution function, 

the second term describes the spatial variation of the distribution function which 

may arise due to temperature or concentration gradients, and finally the third term 

describes the effect on the distribution function due to applied fields (electric or 

magnetic). On the right hand side we have two terms, the first term describes the 

recombination and generation processes and the second term is the collision 

integral which describes the scattering processes. As can be seen the Boltzmann 

transport equation is a complicated integro-differential equation which if needs to 

be solved analytically, it requires many simplifying assumptions which may not 

hold in real devices as was mentioned earlier. 
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The Monte Carlo method is a stochastic method used to solve the 

Boltzmann transport equation. In order to develop this approach we first write the 

Boltzmann equation as in [18], 

 
(
 

  
    

 

  
    )  (     )

     (     )  ∫    (    ) (      ) 

(2.2) 

where 

 
   ∫    (    ) 

(2.3) 

is the total scattering rate out of state p for all scattering processes. This motion of 

the distribution function is described in six plus one-dimensional phase space, 

three in momentum, three in real space and one in time. It is therefore convenient 

to describe the motion of the distribution function along a trajectory in phase 

space. The variable along this trajectory is taken to be s and each coordinate can 

be parameterized as a function of this variable as 

     ( )            ( )        (2.4) 

and the partial derivatives are constrained by the relationships 

    

  
        

   

  
    

(2.5) 

Applying these changes to equation (2.2) we get  

   

  
     ∫    (    ) (  ) 

(2.6) 
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Equation (2.6) is a standard differential equation which can be solved using an 

integrating factor which gives 

 (   )   (   )    (∫     
 )

 

 

)

 ∫   ∫    (    )  (    )    ( ∫     
 

 

 

) 
 

 

 

 

(2.7) 

By a change of variables from   ( )     ( )     , the above equation becomes  

 (   )   (   )    (∫     
 )

 

 

)   

∫   ∫     (        )  (      )    ( ∫     
  

 
) 

 

 
  

 

(2.8) 

The above equation is the Chamber-Rees path integral [20] and is the form of the 

Botlzmann equation which can be iteratively solved. In order to make the above 

equation solvable a useful mathematical trick introduced by Rees [21] is used in 

which we make the complicated energy dependent function    into an energy 

independent term, thereby making the term inside the integral in equation (1.7) 

trivially solvable. This is done by introducing a scattering term called self-

scattering (   ). Self-scattering does not change the momentum or the energy of 

the particle and therefore does not change the physics of the particle. What this 

term does however is to convert the energy dependent function    into an energy 

independent term by defining  

    ss T O   p p  (2.9) 

Therefore equation (2.8) becomes  
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 *

0
( , ) ( ,0) ' ( , ' ) ( ' )T T

t
t sf t f e ds d W e s f e s e     p p p p p E p E  

(2.10) 

where 

 *( , ') ( , ') ( ') ( ')ssW W   p p p p p p p  (2.11) 

The first term of equation (2.10) is a transient term while the second term is the 

term which can be iteratively solved. If we look at the second term closely the 

first integral over     represents the scattering of the distribution function   out 

of state    to state (      ). The second integral represents the integration 

along the trajectory s and the exponential is just the probability that no scattering 

takes place during the time it moves a distance s. Thus if we look at how the 

electrons move physically it consists of a scattering event determined by the first 

integral and then there is a free-flight motion (no scattering) for a time interval ts. 

Rees showed that the time steps ts correlate to 1/ΓT.  This free-flight scatter 

sequence is the basis of every Monte-Carlo method used in device simulations. 

 The Monte Carlo method is mainly used in three different styles, the one-

particle Monte Carlo, the ensemble Monte Carlo and the self-consistent ensemble 

Monte Carlo.  In the one-particle Monte Carlo method a single carrier‟s motion is 

tracked for a certain period of time till the particle has reached steady state. This 

method is mostly useful to study bulk properties, like the steady state drift 

velocity as a function of field.   

In the ensemble Monte Carlo method a large ensemble of carriers are 

simulated at the same time. This method can be sped up using parallelization and 
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is useful for super-computation. This method is mostly useful for transient 

analysis as ensemble averages can be taken at certain time steps during the 

simulation. 

 In the self-consistent ensemble Monte Carlo method, the ensemble Monte 

Carlo method is coupled with a Poisson solver or also a Schrödinger solver and is 

the most suitable method for device simulations.  

 

2.2. Single Particle Monte Carlo Method 

            As was mentioned earlier there are free flight times (drift times) and then 

scatter sequences in the Monte Carlo method. If  [ ( )]   is the probability that 

an electron in state k suffers a collision during the time interval dt then the 

probability that an electron which has had a collision at time t=0 has not yet 

undergone another collision after time t is [22], 

      ∫  [ ( )]  
 
  

(2.12) 

Therefore, the probability  ( ) that the electron will suffer a collision during    

around   is, 

  ( )    [ ( )]  ∫  [ ( )]  
 
    (2.13) 

If    is the maximum of  [( ( )] in the region of k-space then, 

  ( )      
       (2.14) 

Using a random variable transformation and integrating equation (2.14) on both 

sides we obtain, 



 

11 

 

 
    

 

  
   ( ) 

(2.15) 

where r is a random number between 0 and 1. 

As can be seen the value of ti will have a higher probability of being a value 

around 1/ΓT and if we take a large number of particles the average ti will be 

around 1/ΓT, 

 
∫  

 

  
  ( )     

 

  

 

  
 

(2.16) 

The total scattering rate    is calculated by adding up all the scattering rates of 

individual types of scattering as well as the self-scattering rate which are all 

energy dependent.  

 
   ∑  ( )     ( )

 

   

 
(2.17) 

where n is the total number of scattering types considered for a particular material 

(e.g. acoustic phonon scattering, optical phonon scattering etc..) As you can see 

the value of    has no upper limit, only a lower limit. It obviously cannot be lower 

than ∑   ( ) 
   . But as ∑   ( ) 

    is energy dependent it is important that    be 

greater than ∑   (  )
 
    where    is the energy of the scattering table at which the 

cumulative scattering rate is the maximum. 

 Once the particle has drifted it is time to scatter it. The type of scattering 

to be used is chosen from the scattering tables. The usual method is to store the 
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scattering values for each type as a fraction of the total scattering rate   . The 

figure below better explains this method. 

 

Figure 2.1 Construction of scattering tables (left panel) and scattering tables 

renormalization (right panel) 

 

A random number (R) is chosen between 0 and 1 and if  

 

∑
  
  

   

 

   

∑
  
  

   

   

                                   

(2.18) 

Then scattering type j+1 is chosen. Here of course     . If self scattering is 

chosen we do nothing and move on. Once enough time has elapsed, the average 

carrier velocity is calculated using 

 
   

 

      
∑∫  ( )  

  

     

 
(2.19) 

This average is only valid as long as the distribution function is in steady state. 

This prevents the analysis of transient behavior like velocity overshoot effects, or 
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any other non-ergodic process. But using the single particle Monte Carlo method 

the steady state velocity, energy and other parameters can be calculated. 

 

2.3. Ensemble Monte Carlo Method  

 A different approach than what is described in the previous section is 

commonly used by most, and that is the ensemble Monte Carlo Method. Instead 

of following a single particle for hundreds of thousands of iterations, thousands of 

particles can be followed for a much lesser number of iterations. In this thesis the 

ensemble Monte Carlo method is adopted. The time coordinate of each electron 

must be maintained during the simulation.  

         The physical quantities such as velocity and energy are averaged over the 

whole ensemble at frequent time intervals so as to obtain the time evolution of 

these quantities. For example, 

 

  ( )  
 

 
∑  ( )              ( )  

 

 
∑  ( )

 

   

 

   

 

(2.20) 

where N is the number of particles in the ensemble and t  is one of the time 

intervals at which the ensemble averages are taken.  The general block diagram of 

an ensemble Monte Carlo code is shown in figure 2.2. In figure 2.2 the initial 

distribution of carriers is a Maxwellian distribution at the given temperature.   
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Figure 2.2 Block Diagram of the Ensemble Monte Carlo Code 

 The ensemble Monte Carlo method does not require steady state 

conditions to calculate the ensemble averages and therefore can be used to 

investigate transients in devices. The equation (2.21) and equation (2.22) 
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represents an estimate of the true velocity and energy which has a standard error 

of 
 

√ 
 where    is the variance that is estimated from [23], 

 

   
 

   
{
 

 
∑(  

 ( ))    ( )
 

 

   

} 

(2.21) 

and 

 

   
 

   
{
 

 
∑(  

 ( ))   ( ) 
 

   

} 

(2.22) 

for the velocity and energy calculations respectively. Typically the value of N is 

of the order of 10
4
 or 10

5
.  To obtain the time evolution of certain physical 

quantities the need to „freeze‟ the simulation comes up. The time steps ∆t at 

which the simulation is paused and the ensemble averages taken should not be 

much larger than the maximum frequency of scattering. If it is it will cause a 

coarsening of the time evolution and a loss of information. If the time step is too 

small then it will create noise in the output. Therefore a balance is needed for the 

time steps. One usually keeps it at a few femtoseconds. Therefore there are two 

different time scales used in this method, the free-flight duration time and the 

sampling time. The different time coordinates are shown in the figure below. 
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Figure 2.3 Free-Flight Scatter representation of the Monte Carlo Method 

In the above figure N is the total number of particles in the simulation while ts is 

the total simulation time and    is the free-flight duration time for the i
th

 particle. 

The simulation is paused and the ensemble averages are taken at every    as 

shown in figure 2.3.  
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2.4. Fermi’s Golden Rule 

 The scattering processes which interrupt the carrier free-flights are 

calculated quantum mechanically. The scattering event is treated by defining a 

scattering potential, which is calculated for each type of scattering process. Each 

of the different processes, or interactions leads to a different “matrix element” 

form in terms of its dependence on the initial wave vector, the final wave vector 

and their corresponding energies. The matrix element is given by, 

  (    )                 (2.23) 

For three dimensional cases the matrix element usually contains the momentum 

conservation condition which comes about due to the overlap of the normal Bloch 

functions of the electrons.  

 Solving the time-dependent Schrödinger equation using first-order 

perturbation theory leads to the equation for the scattering rate from a state   to k  

as, 

 
 (    )  

  

 
  (    )   (          ) 

(2.24) 

Equation (2.24) is called Fermi‟s Golden Rule, where   and    are the initial and 

final states of the carrier,    and     are the corresponding kinetic energies and 

    is the phonon energy and  (          ) describes the conservation of 

energy during the scattering process. The conservation of energy is only valid in 

the long-time limit, i.e. when the scattering events are infrequent. The top sign is 

for absorption and the bottom sign is for the phonon emission process. 
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 The total scattering rate out of a state defined by wave vector   and the 

energy    is obtained by summing over all    states in equation (2.24).  

 
 ( )  

  

 
∑  (    )   (          )

  

 
(2.25) 

In equation (2.25) the sum over all    states can be converted to an integral over 

   giving,  

 
 ( )  

 

(  ) 
∫   ∫       ∫  (    )   

 

 

 

 

  

 

 
(2.26) 

where   is the total volume of the crystal and  (    ) is given by equation 

(2.24). Equation (2.26) is used to calculate scattering rates as a function of energy.  

 

2.5. Non-Parabolic bands 

The equation mapping the energy of an electron above the valley minima to its 

wave vector k using the parabolic band approximation is, 

 
  

    

  
 

(2.27) 

This approximation is only valid for energies slightly greater than the energy of 

the valley minima. For Monte Carlo simulations in which high field transport is 

essential this approximation is not accurate enough. To improve accuracy we need 

a function that better maps the energy of an electron to its wave vector. A full 

band calculation will give us a more accurate mapping of energy and momentum 

of an electron but as it is not an analytic function it becomes hard to switch freely 

between the energy and momentum which is essential to do in a Monte-Carlo 
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simulation. Therefore, the full band simulations are very computer intensive. In 

order to use an analytic approach and still improve upon the accuracy the k.p 

method is used to obtain the non-parabolic equation [24], 

 
 (    )  

    

  
 

(2.28) 

 Here α is a term coming from the k.p method which depends on the material 

as, 

 
  

 

  
(  

  

  
) 

(2.29) 

where    is the energy difference between the conduction band and the valence 

band at the   point,     is the electron rest mass and    is the conductivity mass. 

The above equation is also an approximation valid as long as, 

     

  
     

(2.30) 

 For electron energies in which         ~    the above equation fails and a 

full band calculation is required to more accurately simulate transport in the 

material.  Assuming that the above assumptions are valid it is important to note 

the changes that the non-parabolic band approximation introduces. The density of 

states and the conductivity effective masses are given by, 

 
     (

   

   
)

  

                    (
  

  
)
  

 
(2.31) 

For parabolic bands both the masses turn out to be equal to m, but when non-

parabolic bands are used we get, 
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     (     )                  (     ) (2.32) 

 It is interesting to note that in this method as the electron gains more and more 

energy its effective mass increases. This means that the electron becomes 

„heavier‟ or reacts slower to the electric field as its energy increases. The change 

in density of states effective mass causes the scattering rates to get modified 

slightly as compared to the parabolic bands case. The rest of the chapter deals 

with the scattering rates commonly used and the formula used to calculate those 

rates assuming non-parabolic bands. 

 

2.6. Deformation Potential Scattering 

Electrons interacting with the vibrations in the crystal lattice give rise to 

deformation potential scattering. These vibrations stress the lattice producing an 

elastic strain. When neighboring atoms in a lattice oscillate in the same direction, 

they give rise to the acoustic branch in the phonon spectra, giving rise to acoustic 

phonon scattering. 

 When neighboring atoms oscillate in the opposite direction, they give rise 

to the optical branch of the phonon spectra, giving rise to non-polar optical 

phonon scattering. 

The essential concept due to Bardeen and Shockley [25] in calculating the 

deformation potentials is that, if the solid is subject to a strain that is a slowly 

varying function of position, there will be a change in the energy of the electronic 
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state that is proportional to the strain. Therefore the Hamiltonian due to the 

deformation potential electron-phonon interaction is, 

 
            

  

 
 

(2.33) 

where 
  

 
 is the strain caused due to the lattice vibrations and   is a deformation 

potential constant.   

 

2.6.1. Acoustic Phonon Scattering 

In order to calculate the scattering rate due to acoustic phonons the „matrix 

element‟ given by equation (2.23) needs to be calculated, which means the 

Hamiltonian for the electron phonon interaction needs to be calculated. This is 

given by equation (2.33). In case of acoustic phonons the volume dilation (
  

 
) is 

given by, 

   

 
    (   ) 

(2.34) 

where the operator for the lattice displacement vector  (   ), that appears in 

equation (2.34), is a function of time t  and position r, and is given by, 

 

 (   )  ∑(√
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 ]     

 

 

(2.35) 

where        is the phonon wave vector,   is the density,     is the phonon 

energy,   is the crystal volume,    is the unit polarization vector,    and   
  are 

the annihilation and creation of phonon operators.  
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 This gives the Hamiltonian for the interaction to be, 

                  (   ) (2.36) 

where     is the acoustic deformation potential constant which is an 

experimentally determined parameter within certain limits. The final „matrix 

element‟ squared given by equation (2.23) which will be used in equation (2.26) 

to calculate the scattering rate is, 
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(2.37) 

where    is the equilibrium number of phonon in a state   given by, 

 
   

 

 
   

     

 
(2.38) 

Equation (2.37) is further approximated to simplify the calculation. The first 

approximation assumes that the acoustic phonon energy is much lesser than the 

average energy of an electron at lattice temperature  . This means, 

         (2.39) 

The elastic approximation also leads to equation (2.38) becoming 

 
        

   

   
   

(2.40) 

This approximation is called the equipartition approximation and is obviously not 

valid at low temperatures. Applying this to equation (2.37) we get, 
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) (      ) 

(2.41) 
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 The second approximation is to assume that the dispersion relation of 

acoustic phonons is linear (Debye limit). This means that, 

        (2.42) 

where    is the velocity of sound in the crystal. 

This as can be seen in figure 2.9 is a reasonable approximation for low energies 

near the gamma point. This approximation further simplifies equation (2.41) to, 

 
  (    )   

   
    

     
 (      ) 

(2.43) 

This expression is then substituted into equation (2.24) and the scattering rate is 

calculated as a function of energy using the method given in section 2.4. The final 

expression of acoustic phonon scattering rate obtained using a non-parabolic band 

structure is, 

 
 ( )  (
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(  )   √ (    )

     
) (     ) 

(2.44) 

 

2.6.2. Non-Polar Optical Phonon Scattering 

To calculate the scattering rate due to non-polar optical phonons, a similar method 

to that used previously has to be employed. This means the Hamiltonian for the 

electron phonon interaction needs to be calculated. In the case of optical phonons 

the neighboring atoms oscillate in the opposite direction, thus directly affecting 

the size of the unit cell. Because of this, the volume dilation (
  

 
) is given by, 
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(2.45) 

This gives the Hamiltonian for the interaction to be, 

                (   ) (2.46) 

where     is the optical deformation potential constant which is an experimentally 

determined parameter within certain limits. The operator for the lattice 

displacement vector  (   ) is given by equation (2.35). The final „matrix 

element‟ squared given by equation (2.23) which will be used in equation (2.24) 

to calculate the scattering rate then becomes, 
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(2.47) 

where    is the number of phonon in a state   given by equation (2.38). 

An approximation used here to simply calculations is that       for optical 

phonons (Einstein model). This basically means that the optical phonons are 

dispersionless, this is a reasonable approximation when you look at figure 2.9. 

This approximation reduces equation (2.47) to,  
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(2.48) 

This expression is then substituted into equation (2.24) and the scattering rate is 

calculated as a function of energy using the method given in section 2.4. The final 

expression of optical phonon scattering rate (intervalley scattering) from valley   

to valley   obtained using a non-parabolic band structure is, 
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    is the deformation potential for transition from valley i to valley j,   is the 

density of the material and    is the number of final valleys to scatter into.  

 

Figure 2.4  The phonon dispersion relation in bulk silicon using the valence force 

field model 
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 For intervalley processes the interaction described by equation (2.46) is 

the zeroth order interaction. Ferry [26] considered the first order interaction 

process, for which the matrix element is, 
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(2.52) 

which gives the total scattering rate out of state k as, 
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(2.53) 

where  

 
 ( )  √  (     )(      )[ (    )    (     )] 

(2.54) 

 

2.7. Polar Optical Phonon Scattering  

In polar materials there is an atom with charge greater than four and an atom with 

charge less than four. This imbalance causes a net electronic charge transfer from 

the atom with greater charge to the atom with lesser charge. For covalent bonds in 

which the electrons are shared between different bonding orbitals there is only a 

fractional charge transfer given by the „effective charge‟,   . This small charge 

transfer leads to an effective dipole, which leads to a finite ionic contribution to 

the dielectric function.  

 The lattice vibrations of the crystal cause this dipole to oscillate creating a 

scattering potential. The electron-phonon interaction is described by the Fröhlich 

Hamiltonian which, including screening of electrons is given by [27], 
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(2.55) 

where    is the number of atoms in a unit cell. The effective charge    is given 

by, 

 
          

   
 (

 

  
 

 

 ( )
) 

(2.56) 

the reduced mass    is given by, 

 
   

    

     
 

(2.57) 

and, 

 

   √
  (   )

    
 

(2.58) 

The final „matrix element‟ squared given by equation (2.23) which will be 

used in equation (2.24) to calculate the scattering rate then becomes, 
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(2.59) 

Equation (2.55) was simplified by assuming that        in equation (2.52) for 

all optical phonons. This expression is then substituted into equation (2.24) and 

the scattering rate is calculated as a function of energy using the method given in 

section 2.4. The final expression of polar optical phonon scattering is, 
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(2.60) 

where  
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(2.61) 

 

 

2.8. Piezoelectric Scattering 

In polar materials the charge transfer between two atoms creates long-range 

macroscopic electric fields which interact with electrons to create a scattering 

potential. Due to the acoustic modes of phonons, the strain in the lattice changes 

the electric field and creates a new form of scattering called piezoelectric 

scattering. The Hamiltonian for this interaction is given by, 
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(2.62) 

This leads to the following expression for the matrix element squared for this 

scattering mechanism, 
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(2.63) 

Assuming the same approximations as those used in acoustic phonon scattering, 

namely equipartition approximation and linear dispersion of acoustic phonons we 

obtain the following relation for the matrix element squared, 
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(2.64) 

This expression is then substituted into equation (2.24) and the scattering rate 

is calculated as a function of energy using the method given in section 2.4. The 

final expression of piezoelectric scattering is, 
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(2.65) 

where    is the  velocity of sound in the material,     is the piezoelectric coupling 

constant and    is the high frequency dielectric constant.   is given by equation 

(2.58). 

 

2.9. Ionized Impurity Scattering 

Ionized impurity scattering occurs as the name suggests due to the deflection of 

an electron by a Coulomb potential due to ionized impurities. This is an elastic 

scattering process and is non-isotropic. The scattering rate due to ionized 

impurities obtained using the Brooks-Herring formula for non-parabolic bands is,  
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(2.66) 

  is the ionized impurity concentration. 

The above scattering rates have all been calculated from their respective matrix 

elements and the Fermi golden rule under the non-parabolic bands approximation. 

  

2.10. Final Angle after Scattering 

An important calculation required is to calculate the final angle after a 

scattering takes place. A scattering process is anything that changes the 

momentum of the electron. Certain processes are anisotropic by which we mean 

they preferably choose certain angles depending on the energy of the electron 

while others are isotropic which means they have equal probability to scatter the 

electron in any angle. A useful formula to calculate the final angles after 

scattering for a certain type of scattering process is [28] 
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and 
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In spherical coordinates all that is required to completely define the coordinates of 

the final momentum state is   , θ and ϕ.    is obtained based on the final energy 

after scattering by the formula, 
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(2.69) 

 while θ is determined by equation (2.68) and ϕ is determined by equation (2.67). 

 Here  (    ) is the matrix element squared for each scattering type. This 

is in the same form used in the Fermi‟s golden rule. As all scattering processes 

have matrix elements independent of ϕ equation (2.67) can be reduced to, 
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where r is a random number between 0 and 1.  

 

Final Angles for Isotropic Scattering Processes 

For isotropic scattering processes like acoustic phonon scattering, non-polar 

optical phonon scattering the matrix element is independent of θ. Therefore 

equation (2.68) can be reduced to, 
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where r is a random number between 0 and 1. 

 

Final Angles for Anisotropic Scattering Processes 

The non-isotropic scattering processes are ionized impurity scattering, polar 

optical scattering and piezoelectric scattering. Ionized impurity and piezoelectric 

scattering have the same relationship with θ so for both processes we can 

calculate the final angle using, 
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(2.72) 

where r is a random number between 0 and 1. 

For polar optical scattering the final angle is calculated using, 
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where r is a random number between 0 and 1.

 

 

 

 

 



 

33 

 

CHAPTER 3. THE GENERALIZED MONTE CARLO CODE 

 

3.1. Introduction 

          The purpose of the generalized Monte Carlo code is to give users the 

option of defining their own material or modifying the definition of an existing 

material. Technically any number of different materials can be simulated within 

the non-parabolic band approximation. This makes the code very versatile and 

necessitates a very general method of implementing the code which results in a 

large set of input parameters which in turn increases the complexity of the code. 

 

3.2. Input Parameters 

 In the generalized Monte Carlo code there is a wide range of input 

parameters. The input parameters are either loaded from a file or from the 

Rappture interface discussed in Chapter 5. In order to be able to define a material 

the user can input the number of valleys to be used in the simulation, the number 

of sub-valleys (equivalent valleys) within each valley, the direction of those sub-

valleys, the effective masses of electrons in those sub-valley directions and the 

energy difference between the bottom of the valleys. In addition to choosing 

deformation potential scattering (acoustic and optical), ionized impurity 

scattering, polar-optical phonon scattering and piezoelectric scattering the user 

can also specify whether the optical phonon scattering within a valley are  
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umklapp processes like it is needed in Silicon for the case of g-phonon intervalley 

scattering.    

 

Figure 3.1  Flow chart for the generalized Monte Carlo code               
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3.3. Creating Scattering Tables 

 The scattering table has to be created and stored separately for each valley 

as the scattering parameters depend on the effective mass of the electron which 

differs from valley to valley. Also some scattering processes might exist in one 

valley but not in the other for e.g. in Germanium f and g type scattering is 

considered in the X valley but not in the L valley. Therefore the number of 

scattering processes can also vary from one valley to another. The scattering 

tables are normalized to the maximum value of the total scattering rate within the 

energy range specified by the user which will be different for different valleys. 

 

3.4. Initializing Electrons 

 The electrons are initialized to a Maxwell distribution at the temperature 

T. The formulae used to initialize the electron‟s energy and momentum are, 
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          (    )                      

The electrons, whose number is defined by the user, are initially placed in the 

lowest energy valley which is also defined by the user and is equally distributed to 
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all the sub-valleys present in that valley. Here m is the drift (conductivity) 

effective mass used to make the bands isotropic. 

 

3.5. Carrier Free-Flights 

 In between scattering events the electron is drifted under the applied 

electric field. The equation describing the dispersion relation of the electron for a 

general sub-valley for non-parabolic bands is, 

 
 (    )  

    
 

   
 

    
 

   
 

    
 

   
 

(3.2) 

where          are the wave-vectors along the three mutually perpendicular 

directions that define the sub-valley and          are the effective masses of 

the electrons along those directions. 

Equation (3.2) represents the dispersion relation for an anisotropic band, which is 

the most general case. To calculate the drift velocity equations, equation (3.2) 

must first be converted to an isotropic dispersion relation by changing the wave-

vectors              to   
    

          where, 
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(3.3) 

here   is the conductivity effective mass used for all   
    

         . Substituting 

equation (3.3) into equation (3.2) we get, 
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(3.4) 



 

37 

 

The above equation now represents the dispersion relation of an electron for a 

spherical band with effective mass   in all directions. According to Newton‟s 

second law of motion - the rate of change of momentum is equal to the force 

applied to the electron giving, 

            

           

           

 

(3.5) 

where              are the electric field magnitudes along the mutually 

perpendicular directions that define the sub-valley.   is the drift time selected by 

equation (2.15). Substituting equation (3.5) into (3.6) we get, 
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(3.6) 

The electric field applied to the device is defined by the user before the simulation 

starts along the (x,y,z) coordinate system. In order to drift the electron according 

to equation (3.6) we need the electric field magnitudes along the three mutually 

perpendicular directions (1,2,3) which define the sub-valley in k-space. In general 

the coordinate system (1,2,3) is completely different from the (x,y,z) coordinate 

system. Therefore before every electron is drifted, the sub-valley in which the 
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electron currently exists is identified and the coordinate system is transformed 

from the (x,y,z)  system to the (1,2,3) system which defines that sub-valley in k-

space. The electric field acting on the electron is then given by,  
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(3.7) 

where the three mutually perpendicular directions that describe the sub-valley are 

[a1,b1,c1],  [a2,b2,c2] and [a3,b3,c3].  According to equation (3.6) we also need to 

have the wave vectors along the directions [a1,b1,c1],  [a2,b2,c2] and [a3,b3,c3]. This 

is obtained by doing another transformation which gives, 
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(3.8) 

The electron is then drifted according to equation (3.6) and the coordinates system 

is transformed back to the (x,y,z) coordinate system using, 
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(3.9) 

The energy of the electron is then calculated by using, 
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(3.10) 

where 
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(3.11) 

where   is the mass used in equation (3.3) to make the sub-valley spherically 

symmetric. Therefore whenever a change from energy to momentum or vice-

versa is required the mass   for that particular sub-valley must be used. In this 

code the mass   is always the „drift (conductivity) mass‟ of the sub-valley or, 

  

 
 

 

  
 

 

  
 

 

  
 

(3.12) 

where              are the effective masses of the electron along the three 

mutually perpendicular directions that define the sub-valley. 

 

3.6. Scattering the Electron 

 The scattering type is chosen by the method mentioned in the previous 

chapter. It would depend on the valley the electron is in at the time the scattering 



 

40 

 

takes place as the scattering tables are different for different valleys. Therefore it 

is necessary to keep track of which valley and which sub-valley the electron is in 

at all times. If the scattering type chosen is non-polar optical phonon scattering 

from valley 1 to valley 2 then the final sub-valley of the electron is randomly 

chosen from all the sub-valleys present in valley 2 as they are all at the same 

energy level and should therefore have equal probability of being scattered into. If 

there is non-polar optical phonon scattering within a valley then the final sub-

valley of the electron will depend on whether f and g type scattering occurs or not. 

If there isn‟t any f and g type scattering then the final sub-valley is randomly 

chosen from the remaining sub-valleys in that valley. If f and g type scattering is 

present and if the f-type scattering process is chosen then the final sub-valley is 

randomly chosen from all remaining sub-valleys in the valley which are not in the 

same axis as the present sub-valley. In the case of g-type scattering the final sub-

valley is the other sub-valley which lies on the same axis as the present sub-

valley. 

 

3.7. Calculating Ensemble Averages 

 At the end of every time step the ensemble averages are calculated. This 

involves calculating the average drift velocity of the electrons, the average energy 

of the electrons and the number of electrons present in each valley and sub-valley. 

The average energy is calculated using, 
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(3.13) 

where    is the energy of the i
th

 electron. The average energies within a sub-valley 

„j‟ in valley „i‟ is, 
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(3.14) 

where        is the energy of the k
th

 electron in the j
th

 sub-valley of the i
th

 valley 

and      is the number of electrons in the j
th

 sub-valley of the i
th

 valley. 

 

Calculation of drift velocity in many valley semiconductors 

 In most semiconductors in order to properly simulate high field transport it 

is necessary to consider more than 1 conduction band valley. To calculate the drift 

velocity along any direction the effective mass along that particular direction is 

required. This makes it a little complicated to calculate the average drift velocity 

as different valleys are orientated differently in k-space and we only have the 

effective mass values along specific directions within each sub-valley. For 

example, in GaAs a sub-valley of the L valley lies along the [111] direction. We 

know the effective masses along the transverse and longitudinal directions of the 

sub-valley but we do not know the effective mass along the [100] direction of that 

sub-valley. In order to calculate the drift velocity along the [100] direction we 

transform the coordinate system to a system along which we know the effective 

masses and then switch back to the original coordinate system. 
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 Assume the Monte-Carlo simulation is run on the x,y and z coordinate 

system where the x-direction is [100] , y-direction is [010] and z-direction is 

[001]. Each sub-valley can be completely described by three mutually 

perpendicular axes. Let the three mutually perpendicular directions that describe 

the sub-valley be [a1,b1,c1],  [a2,b2,c2] and [a3,b3,c3].  The electrons in the Monte-

Carlo simulation will be drifted according to the x,y and z coordinate system so 

there will be kx , the component of the wave vector along [100], ky , the 

component of the wave vector along [010] and kz , the component of the wave 

vector along [001]. Therefore the total wave vector of the electron can be written 

as, 

      ̂     ̂     ̂ (3.15) 

The drift velocity along [a1,b1,c1] under the non-parabolic band approximation is 

calculated using, 
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(3.16) 

where  ( ) is the electron dispersion relation for the electrons in the valley. 

Equation (3.16) is valid only for spherical valleys, therefore we have to convert 

the anisotropic valley to an isotropic valley by using the method described earlier. 

After making the valley isotropic the drift velocity is, 
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where  [      ] is the component of the wave vector along [a1,b1,c1] and  [      ] 

is the effective mass of the electron along [a1,b1,c1],   is the conductivity 

effective mass used to make the valley isotropic in equation (3.3) and   is the 

energy of the electron in that valley. Similarly the drift velocity along [a2,b2,c2] 

and [a3,b3,c3] is given by, 
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(3.18) 

Using a simple transformation of coordinates from x,y and z coordinate system to 

the  [a1,b1,c1], [a2,b2,c2] and [a3,b3,c3] coordinate system we get, 
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(3.19) 

 

 

The coordinates system is then transformed once again back to the x,y and z 

coordinate system to get the drift velocities along the x,y and z directions. 
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(3.20) 

As [a1,b1,c1], [a2,b2,c2] and [a3,b3,c3] are mutually perpendicular direction we 

have, 

                  

                 

                 

 

(3.21) 

For N electrons in the simulation the average drift velocity is then calculated as 
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(3.22) 

where      ,      and      are the drift velocities of the i
th

 electron in the x,y and z 

directions and will depend on the sub-valley the electron is in at the time of the 

calculation.  
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 Since it is a Monte Carlo simulation, there is always a certain amount of 

error in the final velocities even when steady state is reached. Therefore simply 

taking the last value of the steady state velocity is inaccurate. Similar conclusion 

holds for the average energies as well. Therefore an average is taken in the last „t‟ 

seconds of the simulation over all the quantities and it is this average over time „t‟ 

that is used to plot the velocity versus electric field plots to extract the mobility or 

the energy versus electric field plots. The amount of time „t‟ used to take the 

average is a user defined value. It is usually one or two picoseconds after steady 

state is reached. 
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CHAPTER 4. RESULTS 

 

The generalized Monte Carlo code was used to reproduce the characteristic results 

of certain materials to test its capability. There are a set of parameters for each 

material which are fitting parameters used to best fit the simulated data to the 

experimental data.  

 

4.1. Silicon 

 

Figure 4.1  Energy of electrons in eV versus time in seconds (left panel) Drift 

velocity the of electrons in m/s versus time in seconds (right panel) 

In figure 4.1 the usual plots of energy versus time and velocity versus time are 

shown. As can be seen steady state is achieved quite fast at around 2ps. In figure 

4.1 the saturation of the velocity with the increase in electric field can be seen 

with the last two values of electric field plotted. 
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Figure 4.2  Energy of the electrons versus the applied electric field. Experimental 

data is taken from [29]. 

 In figure 4.2 the velocity for different electric fields is plotted and 

compared with experimental data. As can be seen there is very good agreement 

between the experimental values and the values obtained from the simulation. 

 In figure 4.3 a similar plot is plotted between energy and electric field. In 

all these plots the electric field is applied in the [111] direction. As can be seen 

again there is a very good agreement between the experimental values and those 

obtained from the simulation. 
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Figure 4.3  Drift velocities of the electrons versus the applied electric field. 

Experimental data is taken from [29]. 

 

4.2. Germanium 

 

Figure 4.4  Drift velocity versus time for Germanium 
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The velocity of the electrons and the energy of the electrons are plotted against 

time in figure 4.4. In germanium the number of valleys chosen is 3, the L valley, 

Gamma valley and the X valley.  Due to this the simulation takes longer to reach 

steady state as there will be transfer of electrons between the valleys and a 

transfer of energy between the valleys. This can be seen when these curves are 

compared with those obtained with silicon which uses just 1 valley (the X valley) 

in the previous section. 

 

 

Figure 4.5 Population of Valleys versus time at 6kV/cm in Germanium 

In figure 4.5 the number of electrons in each valley is plotted versus time. As can 

be seen there are almost no electrons in the gamma valley as its effective mass is 

really small. This causes a low density of states causing a low probability of 

scattering into that valley.  
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Figure 4.6  Energy versus Applied electric field in Germanium.  Experimental 

data is taken from [30]. 

In figure 4.6 and figure 4.7 the energy of the electrons and the steady state drift 

velocity of the electrons are plotted against the applied electric field and 

compared with experimental values. As can be seen there is a good agreement 

between the experimental data and the simulated data. It is also possible to obtain 

even more accurate results by tweaking the fitting parameters further more. 
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Figure 4.7  Drift velocity versus applied electric field in Germanium. 

Experimental is data taken from [30]. 

4.3. Gallium Arsenide 

In figure 4.8 the drift velocity and the energy of the electrons are plotted against 

time. Just as is the case in germanium, in gallium arsenide there are 3 valleys. 

Therefore the simulation takes a longer time to reach steady state as can be seen 

in these two figures. In figure 4.9 and figure 4.10 the energy of the electrons and 

the steady state drift velocity of the electrons are plotted against the applied 

electric field and compared with experimental values. In figure 4.11 the fraction 

of electrons in the L valley is plotted against the applied electric field.  
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Figure 4.8 Energy versus time in Gallium Arsenide 

 

Figure 4.9 Drift velocity of electrons versus applied electric field. Experimental 

data is taken from [31]. 
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Figure 4.10 Energy of electrons in the gamma valley versus applied electric field. 

Experimental data is taken from [32]. 

 

Figure 4.11 Fraction of electrons in the L valley versus applied electric field. 

Experimental data is taken from [32]. 
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CHAPTER 5. THE RAPPTURE INTERFACE 

5.1. Introduction 

Rappture is a toolkit supporting rapid application infrastructure, making it 

quick and easy to develop powerful scientific applications. The Rappture toolkit 

provides the basic infrastructure for a large class of scientific applications, letting 

scientists focus on their core algorithm when developing new simulators [33]. The 

tools on www.nanoHUB.org were created using Rappture as the user interface 

making the code easily useable and accessible to most people. The same was done 

for the generalized bulk Monte Carlo tool.  

 

5.2. Input Parameter Structure 

 The material can have up to 4 different valleys with each having up to 12 

different sub-valleys (equivalent valleys). The Rappture interface is designed to 

facilitate the process of entering such a large number of inputs. Some parameters 

are not required for certain materials while others are. The tool also has the option 

of pre-loading a material‟s input parameters so that the user can run the 

simulation of a known material and examine the output. As can be seen in Figure 

(5.1), the user can choose the material from the drop down menu and the values 

will automatically load themselves. Additional materials can be easily added to 

the tool after the fitting parameters have been carefully selected to match 

experimental data. 
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Figure 5.1 Material Parameters 

 

The tool guides the user across the various parameters required before starting the 

actual simulation. Any electric field direction can be chosen. The other 

parameters that can be chosen are also listed. One can also speed up the 

simulation by reducing the maximum energy of the scattering table if a low field 

simulation is running, or by reducing the number of electrons simulated. As can 

be seen in Figure (5.2) there is also the option to choose multiple electric fields 
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each with its own simulation time to output velocity versus field/ energy versus 

field/ population versus field curves. The tool uses the previous electric field‟s 

simulation final carrier distribution as the starting distribution of the new electric 

field simulation. This means that the new simulation need not be run for a long 

time as it will reach steady state faster. This speeds up the total time of the 

simulation which is critical in Monte Carlo simulations.  

 

 

Figure 5.2  Simulation Parameters 
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Figure 5.3 Valley Parameters 

The valley parameters tab is shown in figure 5.3. The Valley Parameters tab 

allows the user to choose the number of valleys and the properties of those 

valleys. The number of valley tabs shown depends on the number of valleys 

chosen so as to not clutter the page with too much unnecessary information. The 

same is done with the number of sub-valley tabs below. There is also the option to 

choose whether the valley has f and g type scattering as in Silicon or not as in 
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GaAs. The lowest valley is given a minimum energy and the electrons are initially 

all placed in the lowest energy valley. 

 

 

Figure 5.4  Effective masses and Valley directions 

 

To further simplify the input process there are options to let the simulator 

calculate the transverse directions of the sub-valley so that users are not trying to 

calculate 3 mutually perpendicular directions. This is shown in figure 5.4. There 
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is also an option to apply the same mass pattern of the 1
st
 sub-valley to the other 

sub-valleys if they are all equivalent. Once these options are ticked the 

information boxes not required are automatically shaded out so as to not confuse 

the user. So only the parameters required are left open. The above snapshot shows 

the L valley description of GaAs.  

 

 

Figure 5.5  Scattering parameters 
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In this tab (shown in figure 5.5) the user can choose the scattering types, and the 

relevant parameters required are automatically shown. As in the previous tab the f 

and g type scattering was not included in Valley 1, all the boxes requiring that 

information in this valley is shaded out. In this way the user does not get 

overwhelmed by unnecessary information.  

 

Figure 5.6 Intervalley phonon parameters 

Shown in figure 5.6 is the case where only Zero-Order Intervalley Scattering was 

included and only the information that is required is shown. There is also an 
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option to allow all valley transitions to have the same phonon energy/deformation 

potential if needed.  There are further adjustments made to the input deck e.g. if f 

and g type scattering were included in valley 1 there is no need to specify a 

phonon energy (the independent f and g type phonon energies would have been 

asked in the previous tab) within the valley , so that option would have been 

shaded out and so on. 

 

  

Figure 5.7 Single simulation output of the tool 
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Figure 5.8 Multiple simulation outputs from the tool 

Figures 5.7 and 5.8 show the option to run multiple electric fields and observe the 

output of each electric field to see whether steady state has been achieved. They 

show the ease in which the user can see whether steady state has been reached or 

not. The error can also be judged from the outputs which would indicate that the 

number of electrons used in the simulation may be lacking. 
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

  

 This thesis is mainly directed towards creating a research tool and an 

educational tool. The tool gives the user the option and freedom to vary 

parameters within limits determined by experimental values of the measured 

coupling constants and effective masses. Also as this tool will be deployed on 

www.nanoHUB.org the reach of this tool will be extensive.  

 The tool uses a non-parabolic band approximation and incorporates most 

types of scattering rates. As of now it has deformation potential scattering 

(acoustic and optical), polar optical phonon scattering, piezoelectric scattering and 

ionized impurity scattering. Using non-parabolic bands makes the simulation as 

accurate as possible without considering a full band relation. Since it uses an 

analytical relation between energy and momentum of the electron the simulation 

time is low, making it more user friendly as an online tool.  

 The user interface created using the rapture libraries and an xml file can be 

easily modified to add changes to the tool. This makes updating the tool, which 

will undoubtedly be needed later, an easy task. Adding new materials to the tool 

with pre-defined values is also a simple task. The xml file is automatically created 

and saved every time the user runs the tool meaning that one just has to save the 

file which has the correct parameters as a new material. This file can then be 

loaded any time from the drop down menu to simulate that material. 
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 There are some improvements that can be added to this tool. As was 

mentioned earlier the tool can be easily updated with regard to adding new 

materials or changing the input interface. There is also a plan to add the scattering 

rates plots to the output so that the user can see which scattering types dominate 

and which do not. A possible but not necessary extension of the tool is 

incorporating a full band simulation instead of the non-parabolic band 

approximation that was used here. The two have advantages and disadvantages. 

The non-parabolic band model is definitely not accurate for very high applied 

fields. But the full band calculation, being an equilibrium calculation is also 

inaccurate in representing conduction bands, in particular those that lie high in 

energy. This limitation of the full band models is not always clearly stated in the 

literature and amongst the scientific community. Modeling of holes with a full-

band calculation is a must as holes are accurately represented with a full band 

structure. Thus adding hole transport with a full-band model is a possible 

extension of the tool.  
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