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ABSTRACT  
   

Systemic lupus erytematosus (SLE) is an autoimmune disease where the 

immune system is reactive to self antigens resulting in manifestations like 

glomerulonephritis and arthritis.  The immune system also affects the central 

nervous system (known as CNS-SLE) leading to neuropsychiatric manifestations 

such as depression, cognitive impairment, psychosis and seizures.  A subset of 

pathogenic brain-reactive autoantibodies (BRAA) is hypothesized to bind to 

integral membrane brain proteins, affecting their function, leading to CNS-SLE.  I 

have tested this BRAA hypothesis, using our lupus-mouse model the MRL/lpr 

mice, and have found it to be a reasonable explanation for some of the 

manifestations of CNS-SLE.  Even when the MRL/lpr had a reduced autoimmune 

phenotype, their low BRAA sera levels correlated with CNS involvement.  The 

correlation existed between BRAA levels to integral membrane protein and 

depressive-like behavior.  These results were the first to show a correlation 

between behavioral changes and BRAA levels from brain membrane antigen as 

oppose to cultured neuronal cells.   

More accurate means of predicting and diagnosing lupus and CNS-SLE is 

necessary.  Using microarray technology I was able to determine peptide sets that 

could be predictive and diagnostic of lupus and each specific CNS manifestation.  

To knowledge no test currently exists that can effectively diagnose lupus and 

distinguish between each CNS manifestations.  Using the peptide sets, I was able 

to determine possible natural protein biomarkers for each set as well as for five 
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monoclonal BRAA from one MRL/lpr.  These biomarkers can provide specific 

targets for therapy depending on the manifestation.   

It was necessary to investigate how these BRAA enter the brain.  I 

hypothesized that substance P plays a role in altering the blood-brain barrier 

(BBB) allowing these BRAA to enter and affect brain function, when bound to its 

neurokinin-1 receptor (NK-1R).  Western blotting results revealed an increase in 

the levels of NK-1R in the brain of the MRL/lpr compared to the MRL/mp.  

These MRL/lpr with increased levels of both NK-1R and BRAA displayed CNS 

dysfunction.  Together, these results demonstrate that NK-1R may play a role in 

CNS manifestations.   

Overall, the research conducted here, add to the role that BRAA are 

playing in CNS-lupus. 
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Chapter 1 

INTRODUCTION 

THE IMMUNE SYSTEM 

 The immune system is important in helping us fight foreign antigens such 

as viruses and bacteria.  Therefore it is important for our immune system to be 

functioning properly in our battle with different illnesses.  There are two types of 

immunity that we have; these include innate immunity and adaptive immunity 

(Abbas and Lichtman, 2003).  The innate immune system responds to microbes.  

Components of this system include the complement proteins, the skin, cytokines, 

phagocytic and natural killer cells (Abbas and Lichtman, 2003).  This system does 

not recognize specific details of their target antigen, but are important for the 

initial immune response.   

The second type of immunity is the adaptive immune system.  This system 

is quite specific in the antigen that it recognizes and can produce a much stronger 

response, but it takes a little longer to get started.  Components of this system 

include the lymphocytes and the antibodies that are produced.  There are two 

types of adaptive immunity; humoral and cell-mediated immunity (Abbas and 

Lichtman, 2003).  In humoral immunity, antibodies are produced by B cells and 

these antibodies circulate throughout the body and target viruses and bacteria for 

elimination.  Cell-mediated immunity on the other hand, involves the use of T 

cells to help eliminate cells that have become infected.  

The adaptive immune system once activated has another important feature, 

viz., it produces memory cells.  These memory cells are important because they 
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allow an individual to respond to an infection much faster the second time if the 

antigen that is presented is the same as the antigen that it recognized previously.   

Therefore, the proper functioning of both the innate and adaptive immune systems 

is important in fighting infections throughout the body.   

I have barely touched on the complexity of the immune system by the 

brief description above, since that is not my focus here.  It is, however, important 

to understand that any disruption to function of the immune system can be 

detrimental to the health of an individual.  This is what occurs in the case of 

autoimmune disease, where the body is attacking itself.  We have chosen to study 

the autoimmune disease systemic lupus erythematosus (SLE; or ―lupus‖) in our 

lab and this disease will be the focus of all the research being described.  Since 

the immune system is so complicated in its function, it can be noted that trying to 

understand the mechanisms that are occurring during disruption as in the case of 

an autoimmune disease is very difficult and complex.  
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SYSTEMIC LUPUS ERYTHEMATOSUS 

 There can be instances where the immune system does not function 

properly, leading to disorders in the body.  Such cases can result in the 

development of autoimmune diseases, such as systemic lupus erythematosus, 

multiple sclerosis and arthritis (Blatt and Glick, 1999; Ballok et al., 2004a; Arabo 

et al., 2005; Williams et al., 2010).   The immune system no longer functions 

solely to protect the body from harmful and foreign antigens, but begins to attack 

and affect the body as if it itself is foreign.   

In SLE, the immune system affects and damages many organs of the body 

including the skin, liver, kidneys, spleen and central nervous system (the system 

of interest to us) (Sakic et al., 2005).  The body produces autoantibodies to many 

different tissues that either cause damage to the tissue or affects the functions of 

the organs.  Sometimes these autoantibodies are present as immune complexes (a 

complex between an antibody and antigen) and they get lodged in the kidneys as 

the blood is being filtered (Blatt and Glick, 1999; Bagavant et al., 2011).  This 

will therefore lead to an immune reaction in the kidneys involving the 

complement cascade leading to damage in that area and affecting the function of 

the kidneys (Abbas and Lichtman, 2003).  One way to tell that damage has 

occurred to the kidneys is the presence of proteins in the urine, since normally 

proteins are not found in the urine except for when there is damage to the kidneys 

(Blatt and Glick, 1999).  This damage is known as glomerulonephritis (Blatt and 

Glick, 1999).  The joints of some of these individuals are also affected leading to 

arthritis (Gao et al., 2009). 
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The presence of autoantibodies is not solely responsible for the damage 

being done as lupus progresses.  There can be other factors that contribute to the 

damage such as cytokines since they may affect many areas of the body resulting 

in changes in normal functioning of those regions (Mondal et al., 2008; Calvani et 

al., 2005; Ballok et al., 2003).  It has been suggested that when the neuropeptide 

substance P is stimulated by cytokines, it increases the permeability of the blood-

brain barrier (BBB), which normally allows the brain to be an immune privileged 

site (Annunziata et al., 2002).  This opening up of the BBB can cause the 

autoantibodies and other factors to enter the brain resulting in neuropsychiatric 

manifestations through alteration of normal brain function (Annunziata et al., 

2002; Kowal et al., 2004).  Neuropsychiatric manifestations of lupus is thought to 

be the result of the immune system affecting the brain and will be discussed 

below since we are mainly interested in the neuropsychiatric manifestations of 

lupus (CNS-SLE) (Williams et al., 2010).  The complement system is also 

thought to play a role in the progression of lupus since mice lacking complement 

factor B have a lower level of immunoglobulin in the brain compared to mice that 

have complement factor B (Alexander et al., 2007).  These mice that lack the 

complement factor B also displayed normal behavior in the open field test that 

looks at exploratory behavior.  Therefore, the presence of complement seems to 

have an effect on behavioral performance of the lupus mice, indicating its role in 

CNS dysfunction.  However, even though cytokines and other factors may 

contribute to disease progression in autoimmune disease, we are more interested 

in understanding the role of autoantibodies in causing SLE and CNS-SLE. 
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The etiology of lupus is currently unknown (Ma et al., 2006).  There are 

some factors that are believed to help contribute to the development of lupus.  

These include environmental factors, such as microorganisms and the sun, 

genetics and drugs (Gordon et al., 2010).  The sun is believed to play a role since 

UV light can cause damage to the DNA of an individual‘s cell and this damaged 

DNA may lead to the production of autoantibodies to body tissue (Gordon et al., 

2010; Blatt and Glick, 1999).  Secondly, the genetic makeup of an individual can 

help contribute to the development of lupus since mutations in certain genes like 

the major histocompatibility complex (MHC), which is important in the 

presentation of antigens to T cells, if not functioning properly, will affect antigen 

presentation (Blatt and Glick, 1999).  However since the etiology of lupus is 

unknown, more studies are crucial to discovering information to help in the 

prevention and treatment of lupus.  

 In the general population of individuals affected by lupus, the vast 

majority of these individuals tend to be women (Kiss et al., 2002).  The exact 

reason is unknown but it has been hypothesized that hormones may be involved.  

Some researchers have found that in one of the mouse models of lupus, there was 

reduced levels of testosterone along with signs of autoimmunity and so the 

presence of high levels of testosterone may actually help with ameliorating the 

effects of lupus (Sakic et al., 1998).  It has also been found that specific subtypes 

of estrogen receptor may be responsible for the continual development of 

autoimmune diseases (Li and McMurray, 2007).  More research is necessary to 
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further solidify the importance of hormones in the development and progression 

of lupus. 

 Overall, even though there are many researchers trying to understand what 

is occurring in lupus patients, a lot of information is still missing to understand 

what causes the development of lupus, what proteins/ molecules are affected in 

the body and why out of the affected general population the vast majority are 

women.  Our laboratory has undertaken the goal of trying to understand the 

proteins and molecules being affected in the brain by attempting to determine the 

target proteins of the autoantibodies detected in lupus patients.  That is, we 

believe that if we can discover some of the molecules that are affected, we may be 

able to comprehend why certain neuropsychiatric manifestations are present in 

lupus.  More importantly, in the future, these molecules may provide useful 

targets (biomarkers) for the prevention and treatment of lupus.      
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ANIMAL MODEL OF SYSTEMIC LUPUS ERYTHEMATOSUS 

In order to study lupus, there are several different mouse strains that are 

available including the NZB/W, BXSB and the MRL/lpr mice (Ballok, 2007; 

Burnett et al., 2004; Han et al., 2002; Sakic et al., 2005; Williams et al., 2010). 

We have chosen to use the MRL/lpr mice as our model of lupus because they start 

to develop lupus at about 2 months of age and about 4 months of age they have 

fully developed the disease (Williams et al., 2010).  At about 6 months of age 

these MRL/lpr mice have 50% mortality, so progression of the disease is quite 

rapid (Williams et al., 2010).  Also, the MRL/lpr mice have manifestations that 

are similar to humans including renal damage (glumerulonephritis), skin rashes 

and damage to the central nervous system, therefore making them a better mod el 

for comparison to human SLE (Sakic et al., 1992, 2005; Williams et al., 2010).  

The MRL/lpr mice develop this autoimmune disease partly due to the presence of 

the lpr gene.  The lpr gene is a mutation of the fas gene which is very important in 

apoptosis.  Because the fas gene is mutated, this means that the B cells that are 

producing the autoantibodies cannot undergo apoptosis and therefore are kept 

alive and keep producing these autoantibodies (Gao et al., 2009).  This is also the 

reason that these MRL/lpr mice have such an enlarged spleen.   

In previous studies conducted in our lab, we have detected high levels of 

anti-DNA autoantibodies in these MRL/lpr mice at 4 months versus 1.5 months of 

age, which is an indicator of disease progression in these mice (Williams et al., 

2010).  High levels of anti-DNA autoantibodies have also been detected in 

patients with lupus (Yung and Chan, 2008).  We have also observed enlarged 
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spleens in our 4 month MRL/lpr, another indicator of disease progression 

(Williams et al., 2010).  When we conducted our battery of behavioral tests to 

look at neurological deficits in these mice, altered behavior was observed in the 

forced swim test and the sucrose preference test, displaying a dysfunction in the 

central nervous system.  The forced swim test has been used for testing 

antidepressants and so may be an animal model of depressive- like behavior, while 

the sucrose preference test may be an animal model of anhedonia (Ballok et al., 

2003; Gao et al., 2009; Porsolt et al., 1977; Sakic et al., 1992, 2005; Williams et 

al., 2010).  These dysfunctions are similar to the experiences of lupus patients 

with central nervous system involvement, allowing us to use these mice as a 

model to understand behavioral dysfunctions in humans.  All of the examples 

listed above demonstrate why using the MRL/lpr mice as a model of human SLE 

in our studies is appropriate.    

We also include two control strains of mice in our studies.  The firs t strain 

is the MRL/mp mice.  The MRL/mp are almost genetically identical to the 

MRL/lpr (Sidor et al., 2005; Stanojcic et al., 2009; Williams et al., 2010).  This 

becomes very important when we are trying to understand what is causing the 

progression of lupus in these mice, since we want to ensure that it is not the 

normal genetics of the mice that is causing the observations being made but rather 

the disease itself that is responsible for the changes.  The MRL/mp mice will 

eventually develop lupus because they have the same background as the MRL/lpr 

mice, but will develop lupus at a much later stage in life.  Therefore, since we are 

interested in testing the MRL/lpr mice at 4 months of age (when they have lupus) 
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and the MRL/mp will not have any of the manifestations of lupus at that time, but 

are almost genetically identical to the MRL/lpr, then they are a good control for 

genetics (Sidor et al., 2005; Stanojcic et al., 2009; Williams et al., 2010).  The 

MRL/mp mice have 50% mortality at about 12 months of age.   

It is interesting to note that other researchers have found that these MRL 

mice may have regenerative capacities since when performing ear punches of the 

MRL mice full closure of the holes were observed (Clark et al., 1998).  It is not 

believed that this ability is related to the fas gene mutation since the MRL/mp 

have this regenerative capacity, but they do not have the fas gene mutation (Clark 

et al., 1998).  It may therefore be important to explore the relationship between 

this capacity and autoimmune diseases and determine if this capacity plays any 

role in the development of these diseases.       

 The second control strain of mice that we use in our studies is C3H/HeJ 

mice.  The reason that we chose to use these mice is that we want to show that the 

normal aging process is not the reason for the different manifestations that are 

being observed.  Since the C3H/HeJ mice will not develop lupus in its lifetime, it 

should not display any of the manifestations associated with lupus (Trune et al., 

2007).  Therefore by including this strain throughout our studies, we are able to 

show that as time progresses and our lupus-prone mice becomes more and more 

sick and we start seeing different manifestations, but not in C3H/HeJ whatsoever 

at each time point, we then know that the manifestations that we are observing are 

not the result of normal aging. 
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 Overall, the use of the MRL/lpr mice in our studies should prove to be a 

good model of lupus.  Using the MRL/mp and C3H/HeJ mice as our control 

strains, should also strengthen the findings in our studies since the absence of 

these manifestations in our control groups should help to show that the findings 

are as a result of the progression of lupus in our MRL/lpr mice.  
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CENTRAL NERVOUS SYSTEM – SYSTEMIC LUPUS ERYTHEMATOSUS 

(NEUROPSYCHIATRIC LUPUS) 

 One of the organ systems affected during lupus is the central nervous 

system.  The immune system affecting the central nervous system is believed to 

be the reason for the development of the many different neuropsychiatric 

manifestations observed, including psychoses, seizures, depression and cognitive 

impairment (Gao et al., 2009; Ma et al., 2006; Sidor et al., 2005; Stanojcic et al., 

2009; Sakic et al., 1992, 2005; Williams et al., 2010).  This can occur in about 

31% to 70% of lupus patients (Tin et al., 2005).  However, exactly what occurs in 

the brain to cause these manifestations is currently unknown.  Since there are 

many autoantibodies present during lupus, our lab hypothesizes that there are a 

subset of brain-reactive autoantibodies (BRAA) that react to the integral 

membrane proteins on the surface of the cells in the brain, thereby affecting the 

function of these structures leading to neuropsychiatric manifestations (Hoffman 

and Madsen, 1990; Hoffman et al., 1978, 1987; Narendran and Hoffman, 1989; 

Khin and Hoffman, 1993; Zameer and Hoffman, 2001, 2004; Williams et al., 

2010).  We titled these BRAA as pathogenic since not all BRAA are pathogenic 

due to the presence of autoantibodies in the sera of normal mice in low 

concentrations (Hoffman et al., 1987; unpublished data).  There are other 

mechanisms that may be responsible for the development of these 

neuropsychiatric manifestations, but we are interested in the role these BRAA are 

playing.  We have detected these BRAA in our animal model of lupus and have 

correlated the presence of these BRAA to different neuropsychiatric 
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manifestations (Williams et al., 2010).  Exactly which receptors are affected in the 

brain and the pathway being undertaken to cause the different neuropsychiatric 

manifestations is currently unknown, however our data suggests that these BRAA 

are involved.  Therefore, one of the main goals throughout my research was to 

look at what role these BRAA are playing by understanding what proteins they 

are affecting in the brain. 

 As mentioned, anywhere from 31% to 70% of lupus patients can have 

neuropsychiatric manifestations (Tin et al., 2005).  Affective disorders such as 

depression have been found to affect about 40% of lupus patients with 

neuropsychiatric manifestations (Gao et al., 2009).  In a number of studies, a large 

number of lupus patients with NPSLE had cognitive impairments (Stojanovich et 

al., 2007).  Cognitive impairments can affect areas such as verbal learning and 

memory and attention/mental flexibility.  It was also found that lupus patients 

with CNS-SLE displayed impairments in verbal and memory tests.  High levels of 

anti-cardiolipin antibodies (cardiolipin is present in the inner mitochondrial 

membrane) have been hypothesized to play a role in causing these cognitive 

impairments.   

Since we have hypothesized that BRAA play a role in causing these 

neuropsychiatric manifestations, in order to correlate the presence of these BRAA 

to the different neuropsychiatric manifestations, we used a battery of behavioral 

tests to observe these neuropsychiatric manifestations in the mice.  There are 

many different tests available that can be used to look at how behavior is affected 

during the presence of lupus and below I will describe two of the tests that we 
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chose to use.  The two tests include the forced swim test and the sucrose 

preference test, both of which are tests of affect (Ballok et al., 2003; Maric et al., 

2001; Sakic et al., 2005; Williams et al., 2010).   

The sucrose preference test looks at emotional dysfunction and may be a 

proposed model of anhedonia (the lack of the desire to seek out something that is 

pleasurable) (Sakic et al., 1996a; Sakic et al., 1997; Ballok et al., 2003).  Mice 

normally like sucrose solution and therefore if given a syringe containing sucrose 

solution in their cages, they will more than likely seek out that solution and 

consume it.  If the mice display anhedonic behavior, they will refuse to consume 

large amounts of the sucrose solution, not because they do not like sucrose, but 

because they do not have the desire to seek out the sucrose.  In our control mice, 

we have observed more sucrose consumption on average compared to our 

MRL/lpr mice (Williams et al., 2010).  This demonstrated that there is altered 

behavior in this test for the MRL/lpr.  The reason that we also believe this 

behavior is indeed being observed and not due to joint pathology is that in the 

beam walk test the MRL/lpr are able to move across the beam to the larger 

platform (unpublished data).  Also, since during the test there is a training and a 

testing phase, the lupus-prone mice had sufficient time to know that the solution is 

present. 

The second test of affect is the forced swim test (Williams et al., 2010; 

Sakic et al., 1994a).  This test has been used in other studies to test the effects of 

anti-depressants and may be a model of depressive- like behavior (Porsolt et al., 

1977).  Depression is one of the neuropsychiatric manifestations observed in 
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lupus patients and therefore using a behavior test that helps to explore this 

emotional dysfunction in our mice may help us to understand more of what is 

taking place to cause depression in humans (Williams et al., 2010).  Again, 

knowing this information can help to provide targets for treatment and possibly 

prevention of this manifestation.  The forced swim test has been used by many 

researchers including us, and we have found consistent results with this test in our 

lupus mouse model (Sakic et al., 2005; Williams et al., 2010).  Our MRL/lpr mice 

have consistently displayed altered behavior compared to our controls in this test 

(Williams et al., 2010; unpublished data).  The way that we measure this altered 

behavior is by recording float time in a swimming pool. 

So, by using the tests above we can try to understand some of the CNS 

manifestations of lupus, however, we need to understand what proteins/molecules 

are affected in the brain and the areas of the brain that these proteins are located.  

For the two behavioral tests mentioned above, we expect once more research is 

done, it will be discovered that limbic structures are affected in lupus patients 

with depression or other emotional dysfunction since these structures are known 

to be involved with emotion as well as structures important in learning and 

memory since this deficits is observed in MRL/lpr mice (Ballok et al., 2004b).  

One of our future goals to confirm the autoantibody hypothesis is to use the 

BRAA that we isolate (and have correlated with specific behaviors) and inject 

them into control mice (e.g., MRL/mp) and see if we can replicate the behavior.  

If the behavior is replicated, this is the strongest test showing that specific BRAA 

was responsible for the CNS manifestation observed.  



  15 

 We hypothesized that these autoantibodies are partly responsible for the 

neuropsychiatric manifestations of lupus, by interacting with different cell surface 

proteins and altering their function.  Therefore the BRAA will need to interact 

with brain proteins in order to cause some of the neuropsychiatric manifestations.  

But, how does the BRAA interact with the brain proteins with the presence of a 

blood-brain barrier (BBB)?  A recent study was able to detect an anti-DNA 

autoantibody that cross-reacts with the NMDA receptor (Kowal et al., 2004).  

NMDA receptors are important for learning and memory and brain function 

across synapses, therefore if we have an antibody that can bind to these receptor, 

it may definitely alter normal functioning in the brain.  These researchers found 

that if the blood-brain barrier is altered pharmacologically, allowing the anti-

NMDA receptor antibody to enter, the mice displayed cognitive impairment 

(Kowal et al., 2004).  Therefore this suggests that if in lupus patients, the barrier 

is allowed to be compromised and BRAA do enter, this may cause 

neuropsychiatric manifestations.  Our lab has previously detected IgG in the 

brains of lupus-prone mice using immunohistochemistry as well as B and T cells 

(Zameer and Hoffman, 2001, 2004).  This means that the IgG was able to pass 

through the BBB when it was somehow altered by an unknown process.  Since we 

hypothesized that this barrier is altered through the help of the vasodilator 

substance P, we also looked at the expression level of the neurokinin-1 receptor, 

which is the receptor that substance P binds to, in the brain. 

Other researchers have shown data to support the hypothesis that 

substance P is altering the BBB permeability (Annunziata et al., 2002).  
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Researchers found that two cytokines, tumor necrosis factor – alpha (TNF-α) and 

interferon-gamma (INF-γ), stimulated the release of substance P leading to the 

further alterations in the levels of different proteins (such ICAM-1 and MHC class 

I) and also causing an increase in the permeability of the BBB.  This research 

suggests that cytokines along with substance P may be playing a role in causing 

an alteration of the BBB allowing the BRAA to enter and bind to their target 

antigens.  We therefore hypothesize that substance P plays a role in CNS 

dysfunction and predict that there will be an increase in the levels of neurokinin-1 

receptor since we infer that you will need an increase in this receptor in order for 

substance P to mediate its effects.  Our initial findings so far support our 

hypothesis and prediction. 

There are of course other possible ways that the barrier is a ltered during 

such a heightened immune state.  However, the open barrier allows for the 

permeability of proteins that would normally not be allowed through, such as 

antibodies.  Therefore our BRAA can enter through the open barrier, bind to the 

antigens that it recognized and cause various neuropsychiatric manifestations 

(Zameer and Hoffman, 2001).  An alternative is that leukocytes are able to enter 

the barrier through the increased permeability and produce BRAA inside the brain 

(Zameer and Hoffman, 2004).        

 Overall, current research seems to suggest that BRAA are playing a role in 

causing these neuropsychiatric manifestations of lupus, but more work is needed 

to identify the targets of these BRAA.  In this research project we tested multiple 

hypotheses.  First we attempted to learn more about the targets of these BRAA 
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(pathogenic BRAA hypothesis) using different technologies.  We tested the 

BRAA hypothesis in our first study, demonstrating further evidence for the 

correlation between the presence of BRAA and CNS dysfunction (Williams et al., 

2010).  Secondly, we hypothesize that since these autoantibodies are playing a 

role in lupus and CNS lupus, by detecting their presence early on before any 

disease manifestations, we should be able to predict if someone will get lupus or a 

specific CNS manifestation.  Our data so far has shown this to be possible.  We 

were also able to diagnose lupus and specific CNS manifestations.  One of the key 

features of this second study was being able to predict and diagnose a specific 

CNS manifestation.  To our knowledge no one has done this before.  Our 

microarray chip will allow for a more accurate prediction and diagnosis of lupus 

and CNS lupus.  Therefore in the second and third studies we tested what we 

called the predictive and diagnostic hypotheses (each of which will be discussed 

below).  Lastly, we looked at the expression levels of NK-1R since we 

hypothesize that they play a role in causing CNS dysfunction through alteration of 

the BBB.  Our initial results show that NK-1R levels are altered adding further 

support for its role in CNS dysfunction.  All of this research should add more 

information to understand the role of autoantibodies in lupus and CNS lupus.  
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OVERVIEW OF RESEARCH PROJECT 

 Our main goal throughout this research project was to better understand 

how CNS manifestations in SLE occur, including an attempt to get closer to 

identifying the targets of the BRAA that are detected in lupus.  The reason for the 

importance of the characterization of these BRAA is because our lab hypothesizes 

that there is a subset of BRAA that are responsible for some of the 

neuropsychiatric manifestations seen in lupus through binding to the integral 

membrane proteins on the surface of brain cells (Hoffman and Madsen, 1990; 

Narendran and Hoffman, 1989; Khin and Hoffman, 1993; Zameer and Hoffman, 

2001, 2004; Williams et al., 2010).  Few researchers have been able to identify the 

targets of these BRAA and therefore being able to characterize these BRAA 

would be essential to understanding what is causing these neuropsychiatric 

manifestations.  One set of researchers identified one of the BRAA targets as 

dynamin-1, which may be important for synaptic vesicle endocytosis (Lawrence 

et al., 2007).  A second researcher identified another brain target as the NMDA 

receptor (Kowal et al., 2004).  However, we expect that there will be many more 

targets in the brain and therefore more work is needed to identify these targets. 

 To begin, below will be a summary of what will be discussed in the next 

few chapters.  We used the MRL/lpr mice as our model of lupus in many studies.  

We use this model because previous research has shown them to have similar 

manifestations to humans and their disease state is accelerated compared to other 

autoimmune mice (Sakic et al., 1994b, 1996b; Ballok et al., 2003; Williams et al., 

2010).  However, a few years ago, we observed the MRL/lpr mice were not 
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performing similar to previous cohorts so we did a comparison of two groups of 

MRL/lpr from two different time points.  We found that the MRL/lpr from the 

more recent cohort (second cohort) had a decrease in disease activity suggesting 

that the MRL/lpr mice were losing their autoimmune phenotype (Williams et al., 

2010).  Next, when correlating behavioral deficits to immunological measures, we 

found more correlations for the first cohort of MRL/lpr (Williams et al., 2010).  

These results kept demonstrating that the MRL/lpr mice were not as sick as in 

previous years.  However, even with a reduced autoimmune phenotype we were 

able to detect a correlation between BRAA and altered behavior, for which 

possible molecular weights of brain targets as well as binding locations in the 

brain were identified.  It is important to note that our BRAA were reactive to 

integral membrane proteins from brain tissue which is a novelty of this study 

since other researchers used Neuro-2A cells (Williams et al., 2010).  This first 

study showed more support for the BRAA hypothesis and the results have been 

published in the Journal of Neuroimmunology. 

 In the second segment of our research we decided to use microarray 

technology to identify some of the targets of these BRAA as well as to provide a 

better diagnostic tool for lupus and CNS lupus.  Current tests to accurately 

determine if someone has lupus is not available since lupus can look like so many 

other diseases and that is why it is called ―the great imitator‖ (Liu and Ahearn, 

2009).  Measurements are taken to determine the levels of autoantibodies such as 

anti-nuclear antibodies for diagnosis, however our lab used a microarray chip 

containing random peptides of known sequence and based on the binding pattern 
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we were able to predict and diagnose lupus and of even more importance, specific 

CNS manifestations caused by lupus in our mouse model (Liu and Ahearn, 2009).  

In our first microarray study, we were able to identify peptides that could 

distinguish between deficits on the forced swim test and sucrose preference test as 

well as diagnose lupus.  This is where we tested the diagnostic antibody 

hypothesis which states that there are different autoantibodies present during 

lupus and we can diagnose if someone has lupus or any of its CNS manifestations 

by the presence of these autoantibodies.  The results in the first study were 

obtained from one set of mice, so we ran another study to determine which of the 

peptides may indeed be diagnostic peptides of lupus and each specific CNS 

manifestations.  The predictive antibody hypothesis, which states that there are 

certain autoantibodies present early, even before any of the signs of lupus and its 

CNS manifestations and if we can detect these autoantibodies we can predict if 

someone is going to get lupus or a specific CNS manifestation, was tested here as 

well.  Based upon commonality across both studies, we discovered 18 peptides 

that may be predictive of lupus, 58 peptides that are diagnostic peptides of lupus, 

39 peptides that are diagnostic of altered behavior in the forced swim test and 

possible predictive peptides of altered behavior in the forced swim test. 

 This type of diagnostic technology is currently not available and the 

success of our tests would be very useful in providing better care to lupus patients 

since we will not only be able to tell that a patient has neuropsychiatric lupus, but 

specifically which neuropsychiatric manifestation is due to the autoimmune 

processes.  Once we identified predictive and diagnostic peptides of lupus and 
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specific CNS manifestations, we took the peptide sequences of these peptides of 

interest and using an alignment program, we identified possible targets of these 

BRAA that corresponded to each data set.  Also, using one mouse from the 

second study, MRL/lpr #2, we created five monoclonal.  We then used microarray 

technique and Western blotting to best determine the possible identity of these 

BRAA targets.  The identification of these proteins will provide much needed 

biomarkers for lupus and specific CNS manifestations and also targets for 

therapy. 

One important feature of using our random microarray chip to predict and 

diagnose lupus and its CNS manifestations is the cost.  Since our chip can be used 

and have been used in other studies to try and diagnose other diseases, this makes 

the use of our chip inexpensive since no specialized chip is needed specifically for 

lupus (Boltz et al., 2009; Morales Betanzos et al., 2009; unpublished data). 

Lastly, we hypothesized that substance P plays a role in causing some the 

CNS dysfunction in lupus through alteration of the BBB when bound to its NK-

1R (Annunziata et al., 2002).  So in the final study of this dissertation we looked 

at the levels of NK-1R in the brains of our 4 month MRL/lpr in comparison to the 

4 month MRL/mp.  Our 4 month MRL/lpr with high disease activity, increased 

BRAA levels and increased NK-1R levels all displayed behavioral dysfunction as 

compared to the controls.  The reason for this may be that if the NK-1R is indeed 

responsible for assisting in opening up the BBB and all of the mice had increased 

levels of NK-1R, then the high levels of BRAA that is present in their sera would 

be able to enter the brain and bind to its target antigen.  These initial results help 
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to support the BRAA hypothesis, but also suggest a possible brain protein that 

may be affecting the BBB.  

My research has added more information on the role that BRAA are 

playing in causing some of the neuropsychiatric manifestations of lupus.  We 

tested the BRAA hypothesis and found this hypothesis to be a reasonable 

explanation for some of the CNS manifestations of lupus.  We also identified the 

molecular weights of some of the potential BRAA targets that may be responsible 

for the deficits on the forced swim test as well as possible binding sites in the 

brain (Williams et al., 2010).  In the future, as we continue to identify the names 

of the BRAA targets responsible for this altered behavior, we now have data on 

what the molecular weights of those targets could be.  Also, based on the different 

proteins that have been found by other researchers to be affected during CNS 

lupus, we can relate this information back to the molecular weights we 

discovered.  We have also used microarray technology to more accurately predict 

and diagnose lupus and specific neuropsychiatric manifestations, which is 

currently not possible for individuals with lupus.  The accurate diagnosis of each 

specific CNS manifestation in our mouse model of lupus is a novelty of this 

study.  This technology has also allowed us to provide the names of brain targets, 

which is highly needed since currently more biomarkers for lupus and CNS lupus 

are necessary (Liu and Ahearn, 2009).  Lastly, we were able to put forth, for the 

first time, support that NK-1R levels are altered in mice displaying CNS 

manifestations which may play a role in allowing the pathogenic BRAA from our 

BRAA hypothesis to enter the brain and cause CNS dysfunction.  Overall, we 
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have provided data on pathogenic, predictive and diagnostic autoantibodies in 

lupus and CNS-lupus and the use of these autoantibodies as future biomarkers and 

target for therapy. 
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Chapter 2 

CIRCULATING BRAIN-REACTIVE AUTOANTIBODIES AND 

BEHAVIORAL DEFICITS IN THE MRL MODEL OF CNS LUPUS 

ABSTRACT 

 

Brain reactive autoantibodies (BRAA) are hypothesized to play a role in 

the neuropsychiatric manifestations that accompany systemic lupus erythematosus 

(SLE).  The present study tests the proposed relationship between circulating 

BRAA and behavioral deficits in lupus-prone MRL/lpr mice.  Two age-matched 

cohorts born at different times were used to test the relationship in the context of 

altered disease severity.  Significant correlations between autoimmunity and 

behavior were detected in both cohorts.  These results are the first to report 

correlations between behavior and autoantibodies to integral membrane proteins 

of brain, supporting the hypothesis that BRAA contribute to the behavioral 

dysfunction seen in lupus. 
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INTRODUCTION 

Almost seventy years ago, the German physician Lechman-Facius 

proposed the link between autoimmunity and mental illness.  He observed that 

immunoglobulin/protein in sera and cerebrospinal fluid from psychiatric patients 

may react with neuronal antigens (Lehmann-Facius, 1939).  The above notion did 

not attract significant attention until the 60's, when Fessel and Solomon published 

a series of reports on ―macroglobulins‖ or ―anti-brain factors‖ in psychotic 

patients (Fessel, 1962a, 1962b, 1962c; Fessel and Hirata-Hibi, 1963; Solomon et. 

al., 1966, 1969).  Although recent work supports the hypothesis that brain-

reactive autoantibodies (BRAA) play a role in the pathogenesis of some forms of 

mental illness, further evidence is required to establish the cause-effect 

relationship (Ganguli et al., 1993; Tanaka et al., 2003; Schott, Schaefer et al., 

2003; Margutti et al., 2006). 

One of the conditions with well-documented BRAA involvement is 

neuropsychiatric lupus (NP-SLE or CNS-SLE), an autoimmune disorder which 

affects both the central and peripheral nervous systems (Carr et al., 1978; 

Hoffman and Sakic, 2009).  It was in this context that the autoantibody hypothesis 

received strong impetus from the findings that sera from lupus patients and 

autoimmune mice contain autoantibodies reactive with brain tissue (Martin and 

Martin, 1975; Bluestein and Zvaifler, 1976) and isolated neurons (Hoffman et al., 

1978a,b; Harbeck et al., 1978).  This hypothesis was refined by distinguishing 

non-pathogenic from pathogenic BRAA, or a sub-set that could induce 

neuropsychiatric manifestations (Narendran and Hoffman, 1989; Hoffman and 
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Madsen, 1990).  Subsequently, NP-SLE has been found to be frequently 

accompanied by increased levels of serum autoantibodies [reviewed in (Hanly, 

2005)], which cross-react with diverse brain-specific and systemic antigens 

(Zandman-Goddard et al., 2007). 

Given that the blood-brain barrier (BBB) is compromised in SLE, it is still 

unclear whether autoantibodies passively diffuse from peripheral blood and/or 

become synthesized intrathecally [reviewed in (Hoffman and Harbeck, 1989; 

Abbott et al., 2003)].  The importance of a breached BBB in BRAA pathogenicity 

has been recently confirmed in animal models. In particular, active immunization 

with the NR2 antigens of the NMDA receptor (Kowal et al., 2004), or passive 

infusion of serum with reactivity to the NMDA receptor and DNA (Kowal et al., 

2006) led to learning deficits when barrier permeability was increased by 

systemic administration of lipopolysaccharide.  Compared to this antigen- induced, 

acute model of CNS-SLE, the inbred strain of MRL/MpJ-Faslpr/J (MRL-lpr) mice 

develops systemic autoimmune disease spontaneously.  Although they show 

~50% mortality between 5 and 6 months of age [reviewed in (Theofilopoulos, 

1992)], serological changes, such as increased levels of IL-6, can be detected even 

at 3 weeks (Tang et al., 1991).  Similar to SLE, the murine form of SLE has a 

progressive and chronic time-course, which is accompanied by a constellation of 

behavioral deficits, operationally labeled ―autoimmunity-associated behavioral 

syndrome‖, or AABS (Sakic et al., 1997a,b).  At the onset of autoimmunity the 

deficits are most consistently noted in tasks reflective of emotional reactivity and 

affective behavior (Szechtman et al., 1997), while at advanced stages of lupus-like 
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disease learning/memory deficits may emerge (Sakic et al., 1992; Hess et al., 

1993).  Autoimmunity- induced compromise of the BBB is evidenced in 

autoimmune mice by immunoglobulin binding in brain (Zameer and Hoffman, 

2001), expression of cell adhesion molecules (Zameer and Hoffman, 2003), and 

infiltration of lymphoid cells into the choroid plexus (Zameer and Hoffman, 2004; 

Ma et al., 2006; James et al., 2006).  Moreover, behavioral deficits and infiltration 

of immunocytes into the brain tissue coincide with markers of neuronal 

degeneration and brain atrophy (Sakic et al., 1998, 2000; Ballok et al., 2003a,b, 

2004).   

An earlier study, in which serum antibodies to Neuro-2A cells were 

measured, revealed that MRL-lpr mice with serum BRAA differ in behavioral 

performance from BRAA-negative cagemates (Sakic et al., 1993a).  In particular, 

they moved slowly in a novel environment, groomed less, and showed increased 

thigmotaxis in comparison to mice that had no detectable levels of BRAA in their 

serum.  The relevance for CNS involvement was tentative, however, because the 

Neuro-2A cell line is derived from peripheral nerves and surface antigens do not 

fully match the antigen profile on CNS neurons (Hoffman et al., 1988).  In this 

study, we use a preparation of transmembrane proteins from normal mouse brain.  

We correlate indices of systemic autoimmunity, brain atrophy, and behavioral 

deficits in two cohorts of MRL-lpr mice that differ in disease severity.  The 

selection of the transmembrane fraction is based on the evidence that a large set of 

serum BRAA from several autoimmune strains (including the MRL-lpr strain) are 

directed against integral membrane proteins extracted from brain homogenates 
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(Narendran and Hoffman, 1989; Hoffman and Madsen, 1990).  In addition, using 

Western blotting to brain homogenates and immunohistochemistry to brain 

sections we further test the reactivity of BRAA to CNS tissue.  Behavioral 

measures known to reliably detect aberrant performance in diseased MRL-lpr 

mice were selected (Sakic et al., 1994a, 1996). 

Over the past several years, however, the immunological phenotype of the 

MRL-lpr substrain changed to the point that autoimmune manifestations became 

mild and their life span significantly extended.  This unexpected phenomenon 

(http://jaxmice.jax.org/strain/006825.html) led to the re-coding of stock #485 to 

stock #6825, and re-development of the original MRL-lpr population (available 

from The Jackson Laboratory from fall 2007).  This loss of phenotype was also 

noted at the behavioral level, prompting a comprehensive re-analysis of the MRL-

lpr model using a large cohort of diseased animals (Sakic et al., 2005a,b).  

Multivariate analysis of immunological, neuropathological, and behavioral data 

revealed that approximately 30% of MRL-lpr mice (born between 1998 and 2000) 

show severe brain damage and behavioral dysfunction, however serum BRAA 

levels were not measured in this study and the current experiment is addressing 

the correlation between BRAA and brain atrophy/behavior.  Therefore, as a 

secondary focus we also examined the relationship between BRAA and aberrant 

behavior in the context of declining immunological phenotype.  We presently 

employ MRL/lpr cohorts that were produced over two subsequent years, and 

tested at these two points in time.  The overall expectation was that regardless of 

diminishing autoimmune profile, increased production of serum BRAA would be 

http://jaxmice.jax.org/strain/006825.html
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associated with impaired behavioral performance in measures of overall activity, 

motivated behavior, and/or emotional reactivity.  There have been no previous 

reports of a decline in behavioral dysfunction in an autoimmune substrain in 

parallel with a decline in autoimmune phenotype.  The comparisons between 

these two cohorts provided us with a rare opportunity to test the causal 

relationship between peripheral autoimmunity and CNS involvement.  
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MATERIALS AND METHODS  

ANIMALS   

Compared to the congenic MRL/MpJ sub-strain, MRL-lpr mice (both 

male and female) develop an accelerated form of lupus- like disease, with ~50% 

mortality occurring between 5 and 6 months of age [reviewed in (Theofilopoulos, 

1992)].  Serological changes (e.g. increased production of IL-6) can be detected 

as early as 3 weeks of age (Tang et al., 1991), followed shortly by an excessive 

production of autoantibodies and infiltration of leukocytes into the choroid plexus 

(Vogelweid et al., 1991; Ma et al., 2006). 

To examine whether the autoimmune phenotype indeed diminished over 

time, the immune markers were compared at equivalent ages, between fourteen 3-

5 month-old, male MRL/lpr mice (first cohort, N = 14, born in 2004) and forty 3-

5 month-old, male MRL/lpr mice (second cohort, N = 40, born in 2005).  For 

correlations between variables (primarily behavior and immunologic) all animals, 

from 5 to 34 weeks, were used in the first cohort (N = 30).  Differences in 

numbers (N) between the figures was due to not being able to use some animals in 

the correlations or comparisons, e.g., because not all the data were available for 

specific animals in a group.  The cohorts were maintained under comparable 

housing conditions and tested with the same apparatus one year apart.  The 3 – 5 

month time frame was chosen because CNS involvement and behavioral deficits 

can be readily detected, but potentially confounding clinical manifestations (e.g. 

dermatitis, lymphadenopathy, arthritis) are not present yet.  
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Mice were housed 4-5 per cage, and kept under standard laboratory 

conditions (light period from 8 A.M. - 8 P.M., room temperature ~22oC, humidity 

~62%, regular rodent chaw, and tap water ad libitum, bedding changed every 3 - 4 

days).  After acclimation and habituation, they underwent behavioral testing over 

3 weeks.  During the behavioral testing the animals were housed individually.  

The sequence of behavioral tests matched the order they are described below.  

One test was given daily, with no overlapping.  

Brains from a 2 and a 4 month-old female C3H/HeJ mice were used for 

immunohistochemistry and Western Blotting, respectively.  Sera from three 4 

month-old female C3H/HeJ mice were also used as negative controls in the 

immunohistochemistry.  The C3H strain has no autoimmunity and is a 12% 

background strain for the MRL mice.  We could not use MRL brain, since we 

have previously reported that both MRL strains have in situ bound Ig (Zameer 

and Hoffman, 2001), while C3H had none, and this could interfere with testing for 

serum BRAA binding to brain.  The CNS antigens from C3H were expected to be 

comparable to the antigens in the MRL strains, but free of pre-bound BRAA.   

 

BEHAVIORAL TESTING 

 The specific behavioral tests selected were based on our previous research 

(Sakic et al., 1993a,b, 1996, 1997a,b, 2005a,b), which has reliably shown 

differences between MRL/lpr mice and controls.  Most of the behavioral tests are 

related to affective disorders, which have been reported in CNS-SLE patients. 
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SPONTANEOUS NOCTURNAL ACTIVITY  

Spontaneous ambulation was assessed by computerized activity monitors 

(AccuScan Instruments, Columbus, Ohio) from 6 P.M. – 8 A.M.  During the 

testing period mice were taken out of home cages (4-5 mice housed per cage) and 

returned 14 h later.  The testing room was equipped with ten activity chambers 

(40×40×35cm) with ventilated lids.  The chambers were interfaced with a PC 

computer running VersaMax software from the same manufacturer.  Total 

distance traveled, moving time, and ambulatory speed were assessed in 30-min 

intervals.  These assessments were designed as a basic test of motor activity, 

which can be used to assess the effects of disease on motor functioning, as well as 

to supplement information on the tests of affective behavior.  ―Lights on‖ 

reflected cumulative measures from 6 P.M. – 8 P.M., while ―lights off‖ reflected 

cumulative score from 8 P.M. – 8 A.M.  During the 14-h testing mice did not have 

access to food and water. 

 

SUCROSE PREFERENCE TEST   

Reduced sucrose intake in a preference paradigm is proposed to measure 

sensitivity to reward and model anhedonia (Willner et al., 1992).  More extensive 

analysis of the dose-dependent performance, post- ingestive factors, and taste 

responsiveness has been reported in our previous studies (Sakic et al., 1996, 

1997a,b).  Based on an established methodology (Ballok et al., 2003a,b), mice 

were trained to drink 3 ml of a 4% sucrose solution from a graduated syringe 

fastened to the cage lid with a 2.5‖ paper clip.  They had 24-h access to sucrose 
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over three days (the training period), and free access to food and water.  Training 

and testing was performed after the activity monitoring, but before the forced 

swim test.  The criterion for training was that the mouse empties the syringe at 

least once before testing.  All of the mice met this criterion.  The solution was 

then removed for 24-h to allow sugars to clear from their circulation.  A 1-h 

sucrose preference test (between the times 20:30-21:30h) was given over four 

subsequent nights.  Each night syringes were filled with one of four sucrose 

solutions, presented in ascending order (i.e., 1, 2, 4, or 8%).  The volume ingested 

over three trials (a trial being the 1 hour period) was used as an index of 

responsiveness to palatable stimulation.  

 

FORCED SWIM TEST  

Increased immobility of rodents in a no-escape situation was proposed to 

reflect a state of lower "mood", which can be reduced by antidepressants and 

electroconvulsive shock (Porsolt et al., 1977).  It is a good complement, in testing 

affective behavior, to the sucrose preference test.  Presently, a mouse was gently 

lowered into a circular pool filled with 25°C water and allowed to swim for 

10min (Sakic et al., 1994a).  The time spent in floating was measured by 

EthoVision XT video tracking software (Noldus, NL).  Floating was defined 

when swimming speed was less than 5 cm/s. 
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TISSUE COLLECTION AND INDICES OF AUTOIMMUNE DISEASE 

Mice were anesthetized with an intraperitoneal injection of Somnotol 

(65mg/kg) and body weight was measured on a digital scale (Sartorius 2024 MP, 

VWR, Scientific Canada Ltd.).  Blood samples were collected by cutting the vena 

cava and exsanguinating (approximately 1 ml) within 10-15 seconds using a 

needle-free syringe, then left to coagulate for 1 h at 4oC, and centrifuged for 3min 

at 7000rpm.  Serum was separated from blood clots, aliquoted and plastic vials 

(containing 100 μl of serum/mouse) shipped on dry ice by over-night courier 

service for further analysis.  Blood vessels were flushed with intracardial 

phosphate buffered saline (~40ml), brain was extracted within 2min, and weighed 

on an analytical scale (AB54-S, Mettler Toledo, Switzerland).  Reliable signs of 

systemic autoimmune disease in MRL-lpr mice are splenomegaly and high serum 

levels of autoantibodies.  Therefore, wet spleen weight was measured on an 

analytical scale immediately upon extraction.  Serum levels of anti-DNA 

antibodies were measured by ELISA, as described below.  

 

INTEGRAL MEMBRANE PROTEIN PREPARATION  

The protocol used for the extraction of the integral membrane proteins 

used in the ELISA and Western blotting techniques was previously described by 

(Narendran and Hoffman, 1988).  Briefly, the integral membrane proteins were 

suspended in phosphate buffer saline (PBS), if being used for ELISA, or 1.0M 

Tris (pH 6.8) if being used for Western blotting.  The concentration of the integral 

membrane proteins used for the ELISA was determined using the BCA Assay Kit 
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(Pierce, USA) and the Bradford Test (Sigma-Aldrich, USA) when doing Western 

Blots. 

 

ELISA FOR ANTI-DNA AND BRAA  

The procedure for determining anti-dsDNA and BRAA levels were 

performed using previously described protocols (Aotsuka et al., 1979; Crimando 

and Hoffman, 1995; Zameer and Hoffman, 2003) and only brief descriptions, plus 

differences from the norm, are given here.  To test anti-dsDNA antibody levels 

poly-L-lysine (Sigma, USA) was used to coat the 96-well plates.  The odd wells 

of the plates were incubated with 10 μg/ml of calf-thymus DNA (Sigma, USA; 

purified for dsDNA), while the even wells received only PBS (paired control 

wells).  One hundred μg/ml of poly-L-glutamate (Sigma, USA) dissolved in PBS 

was added to the plates and thereafter PBS containing 5% bovine serum albumin 

(BSA) (Sigma, USA).  The plates were incubated with serial dilutions of mouse 

sera and then incubated with the secondary antibody goat anti-mouse IgG 

antibody conjugated with peroxidase (Caltag, USA) diluted at 1/1000 in PBS.  

Lastly citrate buffer containing 2,2‘-azino-bis(3ethylbenzthiazoline) sulfonic acid 

and hydrogen peroxide was added for 30 minutes and incubated at 37oC.  The 

plates were then read at 405nm on a microplate reader.  The data was corrected 

for background binding by subtracting the optical density (OD) values for the 

paired control wells from the OD values for the wells containing the calf- thymus 

DNA, which is known as the S-value.  The S-value was used for the statistical 

analysis.  Due to correcting for background binding, S-values were allowed to be 
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negative because occasionally the binding in the control well was greater, likely 

due to high levels of immunoglobulins in the mouse serum.  This helps deal with 

a lot of the variability that occurs in autoimmune mice.  Since this calculation was 

performed on all samples, the binding intensity in individual samples was relative 

to each other. 

S-values were also calculated in the same way for the serum BRAA.  We 

used 10 μg/ml of integral membrane proteins from a brain homogenate of healthy 

C3H/HeJ mice.  The plates were treated with 5% BSA to reduce background 

reactivity and serial dilutions of the mouse sera were added to the wells.  The 

secondary antibody, goat anti-mouse IgG antibody conjugated with peroxidase 

(Caltag, USA) was diluted at 1/1000 in PBS.  The plates were read at a 

wavelength of 405 nm on a microplate reader.  

 

IMMUNOBLOT ANALYSIS   

We further tested the serum samples from the mice using immunoblotting 

techniques we have previously described (Narendran and Hoffman, 1989; 

Hoffman and Madsen, 1990) to determine the apparent molecular weight of 

antigens to which BRAA are binding.  Briefly, a polyacrylamide gel was prepared 

using a 12% resolving gel layer and a 4% stacking gel layer.  The stacking gel 

was then loaded with 0.668 μg/μ l of integral membrane proteins from a 4 month 

C3H/HeJ mouse.  The gel was then transferred to nitrocellulose paper (BioRad 

Laboratories, CA) and then cut into strips and incubated with blocking solution 

containing TBS, 0.1% Tween-20, 5% albumen, and 1% casein (Sigma).  Serum 
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samples from the mice were diluted and added to the strip of nitrocellulose paper 

overnight.  The secondary antibody, goat anti-mouse IgG antibody conjugated 

with peroxidase (Caltag, USA), was diluted at 1/5000 and   the blots were then 

incubated with a detection solution from a Chemiluminescence Kit (Roche, USA).  

The blots were exposed to the X-ray film (Kodak, New York) for 1, 5, and 10 

minutes and then processed.  The molecular weight (MW) of the bands was 

determined from the graph with known MW markers and the distance that a given 

band traveled.  Some strips were incubated with anti-mouse NK-1R antibody 

(Zymed, USA) as a positive control.   

 

IMMUNOHISTOCHEMISTRY  

Based on previous techniques of ours (Hoffman et al., 1978a,b; Zameer 

and Hoffman, 2001), brains from 2 month-old C3H/HeJ mice were blocked by 

cutting the entire brain into 3 blocks at an angle of 68° from the table top and 

freezing in Tissue Tek OCT Compound (Sakura, USA) using dry ice and 2-

methyl butane.  These were then cut on a cryostat into 8 μm sections and heat-

fixed onto a microscope slide and acetone-fixed.  Subsequently, the slides were 

immersed in 50oC citrate buffer containing 1.92g/l of citric acid at a pH=6.0 to 

better expose the epitopes for antibody binding on the brain sections.  A 1.5% 

blocking solution containing PBS and BSA was added to the sections and mouse 

sera at a 1/10 dilution was then added overnight at 4oC.  After washing, the 

secondary antibody, FITC-conjugated goat anti-mouse IgG (Caltag, USA), which 

had been treated with rabbit liver powder (in order to prevent non-specific binding 
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of the secondary antibody to mouse tissue), was added to the brain section at a 

1/10 dilution.  A 1/10 dilution of propidium iodide (to stain the DNA in the cells) 

to Fluoroguard (to prevent fading of the fluorescence being detected) was added 

to the sections.  Negative controls included slides without primary (i.e., sera) or 

secondary antibody (controlling for auto-fluorescence), as well as slides without 

primary antibody but having the secondary antibody (as a control for non-specific, 

secondary antibody binding).  Pictures of the cortex and the hippocampus were 

taken at 100x objective magnification.  The brain sections were analyzed using 

confocal microscopy, using the Keck Lab facilities at Arizona State University.  

 

STATISTICAL ANALYSIS  

The Student‘s T-test was used for all simple comparisons between cohorts 

(Fig. 1).  Correlations (Tables 1 and 2, and Fig. 2A, B and C) between the 

immunological (BRAA, anti-DNA and spleen weight) and neurobehavioral 

variables (forced swim test, 4% sucrose consumption, activity measures with 

lights on and off, for distance travelled, movement time and speed, plus the brain 

weight) were also done for both cohorts. More specifically, linear relationships 

between scale variables were analyzed by partial correlation, with age and/or 

body weight as controlling factors, for the first cohort and bivariate correlations 

for the second cohort.  Given that the direction of relationships was known a 

priori, one-tailed significance was used in the overall analysis.  Fig. 1 shows 

mean values ± SEM.  Significant differences of p ≤ 0.05, p < 0.01 and p < 0.001 
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are indicated by *, **, and ***, respectively, in the figures.  All computations 

were performed using the SPSS 15 statistical package.  
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RESULTS 

LOSS OF AUTOIMMUNE PHENOTYPE 

As expected, males from the first cohort had bigger spleens (t52=4.238, 

p<0.01, Fig. 1A) and higher levels of (a 1:400 dilution for both cohorts) anti-

DNA antibodies (t49=10.012, p<0.001, Fig. 1B) than animals from the second 

cohort.  Similarly, serum BRAA levels (done at closely comparable dilutions of 

1:25 in the first cohort and 1:20 in the second cohort) were higher in mice from 

the first cohort (t50=8.881, p<0.001, Fig. 1C).  These results are consistent with 

the expectation that the autoimmune phenotype of the MRL/lpr substrain 

diminished over two years.  

THE RELATIONSHIP BETWEEN IMMUNE MEASURES, BRAIN 

SIZE, AND BEHAVIOR 

 
FIRST COHORT 

 

The same tests and correlations were performed on both cohorts, only 

those correlations which were significant are shown in the Tables 1 and 2.  It 

should be noted that there are 8 significant correlations to behavior in the first 

cohort and only 5 in the second cohort, consistent with the reduced autoimmune 

phenotype.  Significant relationships obtained by partial correlations for the first 

cohort are shown in Table 1.  Consistent with the hypothesis that BRAA play a 

role in the etiology of behavioral dysfunction, increased serum BRAA levels 

(1:20 dilution) were associated with impaired 4% sucrose consumption, (r29=-

0.348, p=0.041; Figure 2A) and reduced speed during spontaneous nocturnal 



  46 

ambulation (r29=-0.399, p=0.022).  The latter result is consistent with our earlier 

report, in which serum levels of antibodies to the Neuro-2A cell line correlated 

with low ambulatory speed and increased anxiety-related behaviors (Sakic et al., 

1993a). 

 As one may expect, increasing levels of anti-DNA autoantibodies (a 

serological marker of disease activity) were associated with increasing BRAA 

levels (r29=0.550, p=0.002).  More importantly, increased anti-DNA autoantibody 

levels correlated with shorter distances traveled at night (r24=-0.388, p=0.025), as 

well as with shorter movement times (r30=-0.366, p=0.033).  As observed in our 

previous studies (Sakic et al., 2005a,b; Ma et al., 2006; Ballok et al., 2006), mice 

with bigger spleens had lower brain weights (r30=-0.699, p<0.001).  Conversely, 

increased brain weight positively correlated with distance traveled (r30=0.469, 

p=0.008), movement time at night (r30=0.461, p=0.009), and volume of 4% 

sucrose solution consumed (r30=0.430, p=0.014).  Splenomegaly was associated 

with reduced consumption of 4% sucrose (r30=-0.352, p=0.039). 

 

SECOND COHORT  

Since the direction of relationships has been established previously, a one-

tailed test of significance was accepted in the bivariate correlation analysis 

(selected data summarized in Table 2).  Increased floating time in the forced swim 

test was associated with higher BRAA levels, tested at a dilution of 1:80 

(r38=0.463, p=0.002; Table 2 and Fig. 2B).  Similar to the first data set, BRAA 

(1:80) levels correlated with splenomegaly (r38=0.504, p=0.001) and anti-DNA 
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autoantibody levels (r37=0.358, p=0.015), indicating a correlation to disease 

activity. 

 Anti-DNA autoantibody levels and splenomegaly correlated positively 

(r37=0.633, p<0.001), further supporting the relationship between serological 

markers and organ pathology in lupus- like disease.  Increased consumption of 4% 

sucrose (r37=-0.324, p=0.025; Fig. 2C) correlated negatively with increased levels 

of anti-DNA autoantibodies, suggesting an impaired motivated response in mice 

with severe systemic autoimmunity.  Further support for this notion came from 

the negative correlations between spleen weight and 4% sucrose consumption 

(r38=-0.330, p=0.022), and the positive correlation between splenomegaly and 

floating time (r38=0.308, p= 0.03).  Lastly, brain weight correlated positively with 

increased 4% sucrose consumption (r38=0.274 p=0.048), suggesting that mice 

with brain atrophy due to autoimmunity were also poor responders to a palatable 

stimulation. 

 

WESTERN BLOT ANALYSIS   

To characterize BRAA on the basis of molecular weight of the antigen 

bound, we used the remaining sera for the Western blot analysis.  Those mice 

showing the greatest immobility in the forced swim test and the highest BRAA 

levels was used in the initial analysis.  Fig. 3 illustrates BRAA banding patterns 

(and their approximate molecular weights) in these mice (samples 1, 17 and 25).  

For the mice that showed low BRAA levels and low float times (far left, Fig. 2B), 

three out of the five samples (i.e. #12, #18, and #33) had no bands.  Bands were, 
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however, detected in sample #3 (Fig. 3D) and sample #14, suggesting that 

sensitivity and specificity of Western blotting and ELISA were different.  

 Bands were detected as listed in Table 3.  No bands were detected in 

sample numbers 2, 6, 8-10, 12, 18-24, 26, 29, 30, 32-35, 38, and 39.  Samples 11, 

15, 27, 28, 31, 36, and 40 were not tested due to an insufficient amount of sera.  

As previously reported (Narendran and Hoffman, 1989), there was a diversity of 

antigens bound by the BRAA. 

 

IMMUNOHISTOCHEMISTRY 

Immunohistochemistry was also performed using sera from eight MRL/lpr 

(the three samples with high float times and five samples with low float times in 

Fig. 2B) and three non-autoimmune C3H/HeJ mice, our normal age-matched 

control strain.  Red propidium iodide (PI) staining (of DNA) was used to show 

cells, while the antibodies were detected using a green fluorescein isothiocyanate 

(FITC) stain, as described in the Materials and methods.  In Fig. 4, all the figures 

on the right correspond to dual staining using both PI and FITC and all the figures 

on the left are showing staining with FITC only.  No binding was seen in any of 

the controls where no primary (sera) or secondary (anti- Ig) was added, or where 

secondary antibody was added only, or in the C3H serum samples tested (Fig. 4C 

and 4D).  Binding to brain sections was observed in all of the eight MRL/lpr 

samples, not distinguishing between mice with high or low BRAA levels (as 

determined by ELISA).  Moderate binding to the hippocampus and the cortex 

(Fig. 4A,B) was seen in serum from mouse #1, who has shown excessive floating, 
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high ELISA BRAA levels, and BRAA positivity on Western blots.  Fig. 4E and F 

shows moderate binding to the cortex for sample #33, however binding was also 

seen in the hippocampus for this animal (data not shown).  Fig. 4G and H shows 

moderate binding in the hippocampus for sample #18.  These mice (sample #33 

and #18) showed low floating time, low BRAA levels and were negative for brain 

antigens on Western blotting.  These results clearly show that there are 

autoantibody to brain in the sera of the MRL/lpr mice, but also suggest that the 

levels of BRAA detected in the sera by ELISA, or immunoblotting and the 

intensity of their binding to the brain (as determined by immunofluorescence) do 

not necessarily correspond with one another.  The sample from mouse #12 (data 

not shown) further illustrated this lack of correspondence because in comparison 

to sample #1 (Fig. 4A and B), a stronger binding to the hippocampal region and 

throughout the brain was observed, even though this mouse had low BRAA 

levels, low float time and was negative by Western blotting.  

What is interesting, however, is that mice #1, #12 and #33, even though 

they vary in float times, show low sucrose consumption, often considered to 

reflect a dysfunctional reward circuitry.  This suggests that the 

immunohistochemistry is more sensitive in the detection of functionally important 

BRAA, likely because targeted brain antigens are not denatured as much as they 

are in ELISA and Western blotting.  It is important to keep in mind that any of 

these methods for detecting BRAA can be valid and detect different 

autoantibodies, but will not necessarily correspond to one another.  
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Table 4 shows a comparison of data from the 8 MRL/lpr mice (from the 

second cohort) used for immunohistochemistry.  The first 3 animals have high 

BRAA levels as determined by ELISA and also showed banding by the Western 

blot.  These mice all showed abnormally high float times, indicative of 

depressive-like behavior.  The other 5 mice had low ELISA BRAA levels, but 

were positive by immunohistochemistry.  Some showed Western blot bands, 

while others did not.  All had anhedonia as determined by the relatively low 

sucrose consumption. 
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Fig. 1.  Differences in spleen weight, anti-DNA autoantibody and BRAA levels 

between the first (N = 14) and second cohorts (N = 40) confirmed a production 

year-dependent decline in autoimmune phenotype.  The mean +/- 2 standard 

errors of the mean are shown.  The serum dilutions shown were at 1:400 for the 

anti-DNA autoantibodies, and 1:25 for the first cohort and 1:20 for the second 

cohort BRAA.  There were statistically significant differences between the groups 

(** p = 0.01, *** p = 0.001). 
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Fig. 2A.  Negative correlation between performance in the sucrose test and serum 

BRAA levels (1:25 dilution), suggesting that decreased 4% sucrose consumption 

is associated with high levels of serum BRAA (r29=-0.348, p=0.041).  This figure 

shows data from the mice in the first cohort.  
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Fig. 2B.  Positive correlation between performance in the forced swim test and 

serum BRAA levels (1:80 dilution), suggesting that increased immobility is 

associated with high levels of serum BRAA (r38=0.463, p=0.002).  This figure 

shows data from the mice in the second cohort.  Solid symbols denote mice whose 

sera were used for Western blotting and immunohistochemistry.  
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Fig. 2C.  Negative correlation between performance in the sucrose test and serum 

anti-DNA antibody levels (1:400 dilution), suggesting that decreased 4% sucrose 

consumption is associated with high levels of serum anti-DNA antibodies (r37= -

0.324, p=0.025).  This figure shows data from the mice in the second cohort.  

Solid symbols denote mice whose sera were used for Western blotting and 

immunohistochemistry. 
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Fig. 3.  Representative Western blots of MRL-lpr sera (A-D), corresponding to 

high or moderate float time animals 1, 17, 25 and low float time animal 3 (see 

Fig. 2B, from the second cohort), reactive with integral membrane proteins from 

brain of a non-autoimmune mouse.  Different brain antigens were detected and 

their number or specificity did not match serum BRAA levels measured by 

ELISA.  (Also see Table 4.)  
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Table 3. Molecular weights of Western blot bands (second cohort) 
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Fig. 4.   
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Fig. 4.  Representative images showing binding between serum BRAA and brain 

sections from healthy C3H/HeJ mice by immunohistochemistry.  The green 

fluorescence (FITC) shows antibody - antigen binding, while the red color shows 

propidium iodide (PI) staining of the cell nucleus which allows for easier 

identification of brain structures.  Dual staining with PI and FITC is shown in 

figures B, D, F and H, i.e., all the figures on the right.  A, C, E and G show the 

BRAA green fluorescence only, using FITC, i.e., all the figures on the left.  (A) 

Hippocampus and cortex showing only green fluorescence after exposure to 

serum from MRL-lpr mouse #1. (B) Hippocampus and cortex showing both green 

and red fluorescence after exposure to serum from MRL-lpr mouse #1.  The 

combination staining appears as yellowish/green.  (C) Lack of binding in the 

hippocampus and cortex using a serum from a non-autoimmune C3H/HeJ mouse 

with green fluorencence only.  No staining indicates no BRAA binding. (D) Red 

and green fluorescence showing binding in the hippocampus and cortex using a 

serum from a non-autoimmune C3H/HeJ mouse.  Only the red PI staining 

appears, indicating lack of BRAA binding.  (E) Green fluorescence in the cortex 

only, obtained with serum from MRL-lpr mouse #33.  (F) Green and red 

fluorescence in the cortex only, obtained with serum from MRL-lpr mouse #33.  

(G) Green fluorescence in the hippocampus only, obtained with the serum sample 

from MRL-lpr mouse #18.  (H) Green and red fluorescence in the hippocampus 

only, obtained with the serum sample from MRL-lpr mouse #18.  Abbreviations: 

CA, hippocampal regions; AuD, secondary auditory cortex, dorsal area; V2L, 

secondary visual cortex, lateral part.  
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DISCUSSION 
 

Our previous studies have shown that behavioral changes and disease-

dependent overproduction of BRAA occur in parallel in the MRL/lpr substrain 

(Hoffman and Madsen, 1990; Zameer et al., 2001; Sakic et al., 1994b, 2005a,b).  

The levels of circulating BRAA peak around 3 months of age (Hoffman et al., 

1987) with parallel deficits in spatial learning and memory (Sakic et al., 1993b).  

In addition, circulating autoantibodies to neuroblastoma cells were associated 

with changes in locomotor activity in a novel environment, short grooming 

episodes, and enhanced thigmotaxis (Sakic et al., 1993a).  A neuroblastoma cell 

line does not, however, reflect the antigenic spectrum of a normal mouse brain.  

In addition, paradigms reflective of motivated behavior were not employed in 

these early behavioral studies.  For the first time, the present study shows a 

consistent set of correlations between circulating BRAA to native brain antigens 

(as confirmed by Western blot and immunofluorescence) in the context of 

autoimmune phenotype (both declining and natural).  As such, it provides further 

evidence of the importance of naturally occurring, peripheral BRAA in the 

etiology of structural and functional CNS damage during lupus-like disease.   

It was found, over a ten year period, that there was a declining 

autoimmune phenotype in MRL/lpr mice 

(http://jaxmice.jax.org/strain/006825.html) produced in The Jackson Laboratories.  

This phenomenon of unknown etiology allowed us to test the hypothesis that 

behavioral abnormalities could occur even in weak autoimmune disease and 

correlate with BRAA.  The present study confirms the declining phenotype and 

http://jaxmice.jax.org/strain/006825.html
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extends this by showing a cohort-dependent decrease in splenomegaly, serum 

autoantibody levels, and their declining association with behavioral deficits.  

Nevertheless, associations were found in both cohorts (with mild and more severe 

autoimmune disease), supporting the hypothesis that circulating BRAA alter 

behavior, even with fading autoimmunity.  The fact that there were fewer 

correlations between behavior and immunological parameters in the second 

cohort is consistent with our expectation, due to declining autoimmune phenotype 

in this cohort.  We would also expect differences in correlations between the two 

cohorts, as were seen, due to the differences in autoimmune phenotype.  Although 

these correlations suggest a link between BRAA and behavioral alterations, they 

do not prove a causal connection.  Other researchers have supplemented this by 

using passive or active BRAA transfer to specific antigens (Kowal et al., 2004; 

Lawrence et al., 2007; Mondal et al., 2008).  Given the diversity of behavioral 

manifestations in NP-SLE and AABS, as well as the results of our current study, 

it is expected that a variety of BRAA account for deficits in different domains of 

behavior. 

In the first cohort high BRAA levels were associated with low sucrose 

consumption and low ambulatory speed.  In addition, high anti-DNA 

autoantibody levels were a predictor of attenuated locomotor activity.  Finally, 

splenomegaly was a predictor of reduced sucrose consumption and increased 

immobility.  It should also be noted that speed, distanced traveled, and movement 

time reflect the same aspect of behavior, viz., reduced locomotor activity.  

Correlations between BRAA and ambulatory speed, and anti-DNA and 
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ambulation time and distance, may reflect an overlapping of autoantibody action.  

Taken together, these correlations suggest that more severe lupus- like disease is 

associated with the emergence of behavioral dysfunction, largely in the domain of 

locomotion and ―affect‖.  They also suggest that autoimmune factors different 

from BRAA (e.g., cytokines, immune complexes, complement components, 

vascular pathology) affect behavior.  The relationship between brain weight and 

sucrose consumption/movement suggests that the reduction in brain mass affects 

behavioral performance of autoimmune animals.  The negative correlation 

between brain and spleen mass further supports the possibility that brain growth is 

retarded during progression of lupus- like disease (Sakic et al., 2005a,b; Ma et al., 

2006; Ballok et al., 2006).  The second cohort confirmed the relationship between 

BRAA and behavior, but likely due to the declining autoimmune phenotype, 

fewer correlations were observed.  Although the relationships were not identical 

to the pattern seen in the first cohort, they were consistent with the notion that 

circulating BRAA alter emotional reactivity by inducing functional deficits in the 

limbic system (Sakic et al., 1994a).  Taken together, the above results suggest that 

the emergence of lupus- like manifestations is associated with brain atrophy and 

impaired exploration/motivated behavior in MRL/lpr mice.  Importantly, although 

circulating BRAA may account for specific changes in behavior, they seem not to 

be related to the structural brain damage.  

To confirm the presence of BRAA in these mice, we used Western 

blotting and immunohistochemistry, in addition to ELISA.  When Western blot 

data are considered, antigen-specific bands were expected in three mice with high 
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serum BRAA levels (as determined by ELISA) and high float times.  Although 

bands were detected in these animals, no bands were common, precluding 

inference on a unique, antigen-specific pathogenic BRAA.  As would be 

expected, in three mice showing an absence of BRAA by ELISA and low float 

times, no bands were seen.  There were, however, bands seen in two other such 

mice, suggesting, as we have previously predicted, that non-pathogenic BRAA 

can exist.  With respect to immunohistochemistry of brain, all MRL/lpr sera 

showed different levels of fluorescence in the hippocampus and the cortex.  The 

binding to the hippocampus is consistent with the notion that areas involved in 

emotional reactivity are affected, as evidenced by deficits in the forced swim and 

the sucrose preference tests.  

In order for serum BRAA to mediate their effects, they must gain access to 

the brain.  Increased BBB permeability was first shown in experimental models of 

immune complex disease (Harbeck et al., 1979; Hoffman et al., 1983), a 

pathogenic mechanism of lupus.  Several lines of evidence suggest a breached 

blood-brain barrier in diseased MRL-/lpr mice.  Perivascular leakage of IgG 

(Vogelweid et al., 1991), immunoglobulins bound to the MRL/lpr brain (Zameer 

and Hoffman, 2001) and increased levels of IgG in the CSF (Sidor et al., 2005) 

point to IgG diffusion via a more permeable blood-brain barrier.  These 

observations are consistent with recent studies showing increased local expression 

of cell adhesion molecules and entry of immunocytes (Zameer and Hoffman, 

2003, 2004; Ma et al., 2006; James et al., 2006).  Therefore it is reasonable to 

assume that the principal pathogenic mechanisms include entrapment of 
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circulating leukocytes by cell adhesion molecules on endothelial cells, increased 

permeability of the BBB, and BRAA diffusion and/or intrathecal synthesis before 

they bind to brain tissue. 

Except for a few monoclonal antibodies we have produced (Khin and 

Hoffman, 1993; Crimando et al., 1995) there have been limited attempts to 

systematically characterize the BRAA in autoimmune mice.  The specificity of 

these antibodies is for the most part not known, nor where they bind in brain (e.g., 

what cell types bear the reactive antigens).  Nonetheless, there are new attempts to 

characterize BRAA in SLE patients (Zandman-Goddard et al., 2007).  One study 

(Gitlits et al., 2001) has gone in this direction, identifying synapsin I as a 

reasonable candidate autoantigen for mediating CNS manifestations.  In addition, 

Kowal et al. (2004) have focused on the cross-reactivity between anti-DNA 

autoantibodies and the NMDA receptor, providing evidence for their role in 

neurobehavioral changes.  Similarly, using the autoimmune NZM strain, 

Lawrence and colleagues produced a monoclonal autoantibody that was directed 

against mouse dynamin-1 (Lawrence et al., 2007; Mondal et al., 2008).  More 

importantly, when the antibody was injected intravenously into non-autoimmune 

Balb/C mice, they developed behavioral manifestations similar to those seen in 

the NZM mice.  Nonetheless, there are likely many more BRAA involved in 

neuropsychiatric manifestations, which have not been identified.  

One of the weaknesses of our present study is in not knowing the identity 

of the bands in the Western blots.  We focused on the relationship between overall 

BRAA and behavior.  If we measured levels of specific BRAA (such as anti-NR2, 



  67 

anti-ribosomal P, anti-cardiolipin, or others not identified), then we would be in a 

better position to find more significant correlations.  In the future, we plan to 

develop studies that will do this, by identifying the molecules to which the BRAA 

bind and correlating them to behavior.  

Our study also points to the possibility that BRAA binding is not the sole 

mechanism by which CNS dysfunction is induced.  For example, much of the 

neurologic involvement in SLE patients has been attributed to vascular lesions 

(Bluestein et al., 1981; West, 1996).  It is also well known that cytokines can 

affect brain function (Dunn, 1988; Bindoni et al., 1988; Bartholomew and 

Hoffman, 1993; Zalcman et al., 1994; Kim et al., 1998), as can immune complex 

disease (Hoffman et al., 1978a,b, 1998), which may be mediated by other soluble 

components, such as complement (Hoffman et al., 1982; Schupf and Williams, 

1987).  Along this line, it has been shown that complement can mediate apoptosis 

in the brains of MRL/lpr mice (Alexander et al., 2007).  Therefore, it is likely that 

multiple mechanisms, including BRAA, mediate behavioral deficits in SLE-like 

disease. 

In conclusion, dissimilar immune status between two cohorts produced in 

different years confirms fading autoimmune phenotype (which has since been 

corrected) in the MRL/lpr substrain.  Despite this phenomenon of unknown 

origin, the relationship between serum BRAA to surface neuronal antigens and 

behavioral dysfunction is detectable.  This study is the first to identify BRAA to 

naturally occurring integral membrane proteins of murine brain and correlate 

them to behaviors in autoimmune mice.  Although the presence of BRAA did not 



  68 

account for the entire constellation of behavioral deficits, the obtained results are 

consistent with the notion that a subset (rather than the entire class) of circulating 

BRAA is pathogenic.  As such, they further support the hypothesis that peripheral 

BRAA enter the brain, bind to integral membrane proteins, and contribute to 

emergence of behavioral dysfunction in lupus- like disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  69 

REFERENCE LIST 
 

Abbott, N.J., Mendonca, L.L., Dolman, D.E., 2003. The blood-brain barrier in 
systemic lupus erythematosus. Lupus 12, 908-915. 

 
 
Alexander, J.J., Jacob, A., Vezina, P., Sekine, H., Gilkeson, G.S., Quigg, R.J., 

2007. Absence of functional alternative complement pathway alleviates 
lupus cerebritis. Eur. J. Immunol. 37, 1691-1701. 

 
Aotsuka, S., Okawa, M., Ikebe, K., Yokohari, R., 1979. Measurement of anti-

double stranded DNA antibodies in major immunoglobulin classes. J. 

Immunol. Methods 28, 149-162. 
   

Ballok, D.A., Millward, J.M., Sakic, B., 2003a. Neurodegeneration in 
autoimmune MRL-lpr mice as revealed by Fluoro Jade B staining. Brain 
Res. 964, 200-210. 

 
Ballok, D.A., Szechtman, H., Sakic, B., 2003b. Taste responsiveness and diet 

preference in autoimmune MRL mice. Behav. Brain Res. 140, 119-130. 
 
Ballok, D.A., Woulfe, J., Sur, M., Cyr.M., Sakic, B., 2004. Hippocampal damage 

in mouse and human forms of systemic autoimmune disease. 
Hippocampus 14, 649-661. 

 
Ballok, D.A., Ma, X., Denburg, J.A., Arsenault, L., Sakic, B., 2006. Ibuprofen 

fails to prevent brain pathology in a model of neuropsychiatric lupus. J. 

Rheumatol. 33, 2199-2213. 
 

Bartholomew, S.A., Hoffman, S.A., 1993. Effects of peripheral cytokine 
injections on multiple unit activity in the anterior hypothalamic area of the 
mouse. Brain Behav. Immun. 7, 301-316. 

 
Bindoni, M., Perciavalle, V., Berretta, S., Belluardo, N., Diamantstein, T., 1988. 

Interleukin-2 modifies the bioelectric activity of some neurosecretory 
nuclei in the rat hypothalamus. Brain Res. 462, 10-14. 

 

Bluestein, H.G., Zvaifler, N.J., 1976. Brain-reactive lymphocytotoxic antibodies 
in the serum of patients with systemic lupus erythematosus. J. Clin. Invest. 

57, 509-516. 
 
Bluestein, H.G., Williams, G.W., Steinberg, A.D., 1981. Cerebrospinal fluid 

antibodies to neuronal cells: association with neuropsychiatric 
manifestations of systemic lupus erythematosus. Am. J. Med. 70, 240-246. 

 



  70 

Carr, R.I., Shucard, D.W., Hoffman, S.A., Hoffman, A.W., Bardana, E.J., 
Harbeck, R.J., 1978. Neuropsychiatric involvement in systemic lupus 

erythematosus. Birth Defects Orig. Artic. Ser. 14, 209-235. 
 

Crimando, J., Hoffman, S.A., 1995. Characterization of murine brain- reactive 
monoclonal IgG autoantibodies. Brain Behav. Immun. 9, 165-181. 

 

Dunn, A.J., 1988. Systemic interleukin-1 administration stimulates hypothalamic 
norepinephrine metabolism parallelling the increased plasma 

corticosterone. Life Sci. 43, 429-435. 
 
Fessel, W.J., 1962a. Autoimmunity and mental illness. A preliminary report. 

Arch. Gen. Psychiatry 6, 320-323. 
 

Fessel, W.J., 1962b. Macroglobin elevations in functional mental illness. Nature 
193, 1005. 

 

Fessel, W.J., 1962c. Blood proteins in functional psychoses. A review of the 
literature and unifying hypothesis. Arch. Gen. Psychiatry 6, 132-148. 

 
Fessel, W.J., Hirata-Hibi, M., 1963. Abnormal leucocytes in schizophrenia. Arch. 

Gen. Psychiatry 106, 601-613. 

 
Ganguli, R., Brar, J.S., Chengappa, K.N., Yang, Z.W., Nimgaonkar, V.L., Rabin, 

B.S., 1993. Autoimmunity in schizophrenia: a review of recent findings. 
Ann. Med. 25, 489-496. 

 

Gitlits, V.M., Sentry, J.W., Matthew, M.L., Smith, A.I., Toh, B.H., 2001. 
Synapsin I identified as a novel brain-specific autoantigen. The Journal of 

Investigative Medicine 49, 283. 
 
Hanly, J.G., 2005. Neuropsychiatric lupus. Rheum. Dis. Clin. North Am. 31, 273-

98, vi. 
 

Harbeck, R.J., Hoffman, A.A., Hoffman, S.A., Shucard, D.W., Carr, R.I., 1978. A 
naturally occurring antibody in New Zealand mice cytotoxic to dissociated 
cerebellar cells. Clin. Exp. Immunol. 31, 313-320. 

 
Harbeck, R.J., Hoffman, A.A., Hoffman, S.A., Shucard, D.W., 1979. 

Cerebrospinal fluid and the choroid plexus during acute immune complex 
disease. Clin. Immunol. Immunopathol. 13, 413-425. 

 

Hess, D.C., Taormina, M., Thompson, J., Sethi, K.D., Diamond, B., Rao, R., 
Feldman, D.S., 1993. Cognitive and neurologic deficits in the MRL/lpr 

mouse: a clinicopathologic study. J. Rheumatol. 20, 610-617. 



  71 

Hoffman, S.A., Harbeck, R.J., 1989. CNS Lupus and the Blood-Brain Barrier. In: 
Neuwelt, E.A. (Ed.), Implications of the Blood-Brain Barrier and Its 

Manipulation Plenum Medical Book Co., New York-London, pp. 469-
494. 

 
Hoffman, S.A., Madsen, C.S., 1990. Brain specific autoantibodies in murine 

models of systemic lupus erythematosus. J. Neuroimmunol. 30, 229-237. 

 
Hoffman, S.A., Sakic, B., 2009. The Neuroimmunological Basis of Behavior and 

Mental Disorders. In: Siegel, A and Zalcman, S. S. (Eds.) Ref Type: Serial 
(Book,Monograph).  Springer, New York, NY pp. 341-381. 
 

Hoffman, S.A., Hoffman, A.A., Shucard, D.W., Harbeck, R.J., 1978a. Antibodies 
to dissociated cerebellar cells in New Zealand mice as demonstrated by 

immunofluorescence. Brain Res. 142, 477-486. 
 
Hoffman, S.A., Shucard, D.W., Harbeck, R.J., Hoffman, A.A., 1978b. Chronic 

immune complex disease: behavioral and immunological correlates. J. 
Neuropathol. Exp. Neurol. 37, 426-436. 

 
Hoffman, S.A., Shucard, D.W., Brodie, H.A., Reifenrath, C., Harbeck, R.J., 1982. 

Suppression of water intake by immune complex formation in the 

hypothalamus. Implications for systemic lupus erythematosus. J. 
Neuroimmunol. 2, 167-176. 

 
Hoffman, S.A., Arbogast, D.N., Day, T.T., Shucard, D.W., Harbeck, R.J., 1983. 

Permeability of the blood cerebrospinal fluid barrier during acute immune 

complex disease. J. Immunol. 130, 1695-1698. 
 

Hoffman, S.A., Arbogast, D.N., Ford, P.M., Shucard, D.W., Harbeck, R.J., 1987. 
Brain-reactive autoantibody levels in the sera of ageing autoimmune mice. 
Clin. Exp. Immunol. 70, 74-83. 

 
Hoffman, S.A., Ford, P., Kubo, R., 1988. Characterization of cell surface antigens 

on the adrenergic neuroblastoma clone A2(1). Brain Res. 452, 358-366. 
 
Hoffman, S.A., Shucard, D.W., Harbeck, R.J., 1998. The immune system can 

affect learning: chronic immune complex disease in a rat model. J. 
Neuroimmunol. 86, 163-170. 

 
James, W.G., Hutchinson, P., Bullard, D.C., Hickey, M.J., 2006. Cerebral 

leucocyte infiltration in lupus-prone MRL/MpJ-fas lpr mice--roles of 

intercellular adhesion molecule-1 and P-selectin. Clin. Exp. Immunol. 
144, 299-308. 

 



  72 

Khin, N.A., Hoffman, S.A., 1993. Brain reactive monoclonal auto-antibodies: 
production and characterization. J. Neuroimmunol. 44, 137-148. 

 
Kim, Y.K., Lee, M.S., Suh, K.Y., 1998. Decreased interleukin-2 production in 

Korean schizophrenic patients. Biol. Psychiatry 43, 701-704. 
 
Kowal, C., DeGiorgio, L.A., Nakaoka, T., Hetherington, H., Huerta, P.T., 

Diamond, B., Volpe, B.T., 2004. Cognition and immunity; antibody 
impairs memory. Immunity. 21, 179-188. 

 
Kowal, C., DeGiorgio, L.A., Lee, J.Y., Edgar, M.A., Huerta, P.T., Volpe, B.T., 

Diamond, B., 2006. Human lupus autoantibodies against NMDA receptors 

mediate cognitive impairment. Proc. Natl. Acad. Sci. U. S. A 103, 19854-
19859. 

 
Lawrence, D.A., Bolivar, V.J., Hudson, C.A., Mondal, T.K., Pabello, N.G., 2007. 

Antibody induction of lupus- like neuropsychiatric manifestations. J. 

Neuroimmunol. 182, 185-194. 
 

Lehmann-Facius, H., 1939. Serologisch-analytische Versuche mit Liquores und 
Seren von Schizophrenen. Allg. Z. Psychiatrie 110, 232-243. 

 

Ma, X., Foster, J., Sakic, B., 2006. Distribution and prevalence of leukocyte 
phenotypes in brains of lupus-prone mice. J. Neuroimmunol. 

 
Margutti, P., Delunardo, F., Ortona, E., 2006. Autoantibodies associated with 

psychiatric disorders. Curr. Neurovasc. Res. 3, 149-157. 

 
Martin, S.E., Martin, W.J., 1975. Expression by human neuroblastoma cells of an 

antigen recognized by naturally occurring mouse anti-brain autoantibody. 
Cancer Res. 35, 2609-2612. 

 

Mondal, T.K., Saha, S.K., Miller, V.M., Seegal, R.F., Lawrence, D.A., 2008. 
Autoantibody-mediated neuroinflammation: Pathogenesis of 

neuropsychiatric systemic lupus erythematosus in the NZM88 murine 
model. Brain Behav. Immun. 22, 949-959. 

 

Narendran, A., Hoffman, S.A., 1988. Identification of autoantibody reactive 
integral brain membrane antigens - A two dimensional analysis. J. 

Immunol. Methods 114, 227-234. 
 
Narendran, A., Hoffman, S.A., 1989. Characterization of brain-reactive 

autoantibodies in murine models of systemic lupus erythematosus. J. 
Neuroimmunol. 24, 113-123. 



  73 

Porsolt, R.D., Bertin, A., Jalfre, M., 1977. Behavioral despair in mice: a primary 
screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 

327-336. 
 

 
Sakic, B., Szechtman, H., Keffer, M., Talangbayan, H., Stead, R., Denburg, J.A., 

1992. A behavioral profile of autoimmune lupus-prone MRL mice. Brain 

Behav. Immun. 6, 265-285. 
 

Sakic, B., Szechtman, H., Denburg, S.D., Carbotte, R.M., Denburg, J.A., 1993a. 
Brain-reactive antibodies and behavior of autoimmune MRL-lpr mice. 
Physiol. Behav. 54, 1025-1029. 

 
Sakic, B., Szechtman, H., Denburg, S.D., Carbotte, R.M., Denburg, J.A., 1993b. 

Spatial learning during the course of autoimmune disease in MRL mice. 
Behav. Brain Res. 54, 57-66. 

 

Sakic, B., Szechtman, H., Talangbayan, H., Denburg, S.D., Carbotte, R.M., 
Denburg, J.A., 1994a. Disturbed emotionality in autoimmune MRL-lpr 

mice. Physiol. Behav. 56, 609-617. 
 
Sakic, B., Szechtman, H., Talangbayan, H., Denburg, S.D., Carbotte, R.M., 

Denburg, J.A., 1994b. Behaviour and immune status of MRL mice in the 
postweaning period. Brain Behav. Immun. 8, 1-13. 

 
Sakic, B., Denburg, J.A., Denburg, S.D., Szechtman, H., 1996. Blunted sensitivity 

to sucrose in autoimmune MRL-lpr mice: a curve-shift study. Brain Res. 

Bull. 41, 305-311. 
 

Sakic, B., Szechtman, H., Braciak, T.A., Richards, C.D., Gauldie, J., Denburg, 
J.A., 1997a. Reduced preference for sucrose in autoimmune mice: a 
possible role of interleukin-6. Brain Res. Bull. 44, 155-165. 

 
Sakic, B., Szechtman, H., Denburg, J.A., 1997b. Neurobehavioral alteration in 

autoimmune mice. Neurosci. Biobehav. Rev. 21, 327-340. 
 
Sakic, B., Szechtman, H., Denburg, J.A., Gorny, G., Kolb, B., Whishaw, I.Q., 

1998. Progressive atrophy of pyramidal neuron dendrites in autoimmune 
MRL-lpr mice. J. Neuroimmunol. 87, 162-170. 

 
Sakic, B., Maric, I., Koeberle, P.D., Millward, J.M., Szechtman, H., Maric, D., 

Denburg, J.A., 2000. Increased TUNEL-staining in brains of autoimmune 

Fas-deficient mice. J. Neuroimmunol. 104, 147-154. 
 



  74 

Sakic, B., Hanna, S.E., Millward, J.M., 2005a. Behavioral heterogeneity in an 
animal model of neuropsychiatric lupus. Biol. Psychiatry 57, 679-687. 

 
Sakic, B., Kirkham, D.L., Ballok, D.A., Mwanjewe, J., Fearon, I.M., Macri, J., 

Yu, G., Sidor, M.M., Denburg, J.A., Szechtman, H., Lau, J., Ball, A.K., 
Doering, L.C., 2005b. Proliferating brain cells are a target of neurotoxic 
CSF in systemic autoimmune disease. J. Neuroimmunol. 169, 68-85. 

 
Schott, K., Schaefer, J.E., Richartz, E., Batra, A., Eusterschulte, B., Klein, R., 

Berg, P.A., Bartels, M., Mann, K., Buchkremer, G., 2003. Autoantibodies 
to serotonin in serum of patients with psychiatric disorders. Psychiatry 
Res. 121, 51-57. 

 
Schupf, N., Williams, C.A., 1987. Psychopharmacological activity of immune 

complexes in rat brain is complement dependent. J. Neuroimmunol. 13, 
293-303. 

 

Sidor, M.M., Sakic, B., Malinowski, P.M., Ballok, D.A., Oleschuk, C.J., Macri, 
J., 2005. Elevated immunoglobulin levels in the cerebrospinal fluid from 

lupus-prone mice. J. Neuroimmunol. 165, 104-113. 
 
Solomon, G.F., Moos, R.H., Fessel, W.J., Morgan, E.E., 1966. Globulins and 

behavior in schizophrenia. Int. J. Neuropsychiatry 2, 20-26. 
 

Solomon, G.F., Allansmith, M., McCellan, B., Amkraut, A., 1969. 
Immunoglobulins in psychiatric patients. Arch. Gen. Psychiatry 20, 272-
277. 

 
Szechtman, H., Sakic, B., Denburg, J.A., 1997. Behaviour of MRL mice: an 

animal model of disturbed behaviour in systemic autoimmune disease. 
Lupus 6, 223-229. 

 

Tanaka, S., Matsunaga, H., Kimura, M., Tatsumi, K., Hidaka, Y., Takano, T., 
Uema, T., Takeda, M., Amino, N., 2003. Autoantibodies against four 

kinds of neurotransmitter receptors in psychiatric disorders. J 
Neuroimmunol. 141, 155-164. 

 

Tang, B., Matsuda, T., Akira, S., Nagata, N., Ikehara, S., Hirano, T., Kishimoto, 
T., 1991. Age-associated increase in interleukin 6 in MRL/lpr mice. Int. 

Immunol. 3, 273-278. 
 
Theofilopoulos, A.N., 1992. Murine models of lupus. In: Lahita, R.G. (Ed.), 

Systemic lupus erythematosus Churchill Livingstone, New York, pp. 121-
194. 

 



  75 

Vogelweid, C.M., Johnson, G.C., Besch-Williford, C.L., Basler, J., Walker, S.E., 
1991. Inflammatory central nervous system disease in lupus-prone 

MRL/lpr mice: comparative histologic and immunohistochemical 
findings. J. Neuroimmunol. 35, 89-99. 

 
West, S.G., 1996. Lupus and the central nervous system. Curr. Opin. Rheumatol. 

8, 408-414. 

 
Willner, P., Muscat, R., Papp, M., 1992. Chronic mild stress- induced anhedonia: a 

realistic animal model of depression. Neurosci. Biobehav. Rev. 16, 525-
534. 

 

Zalcman, S., Greenjohnson, J.M., Murray, L., Nance, D.M., Dyck, D., Anisman, 
H., Greenberg, A.H., 1994. Cytokine-specific central monoamine 

alterations induced by interleukin-1, -2 and -6. Brain Res. 643, 40-49. 
 
Zameer, A., Hoffman, S.A., 2001. Immunoglobulin binding to brain in 

autoimmune mice. J. Neuroimmunol. 120, 10-18. 
 

Zameer, A., Hoffman, S.A., 2003. Increased ICAM-1 and VCAM-1 expression in 
the brains of autoimmune mice. J Neuroimmunol. 142, 67-74. 

 

Zameer, A., Hoffman, S.A., 2004. B and T cells in the brains of autoimmune 
mice. J. Neuroimmunol. 146, 133-139. 

 
Zandman-Goddard, G., Chapman, J., Shoenfeld, Y., 2007. Autoantibodies 

involved in neuropsychiatric SLE and antiphospholipid syndrome. Semin. 

Arthritis Rheum. 36, 297-315. 
 



  76 

 Chapter 3 
 

EARLY DETECTION AND STRATIFICATION OF SLE USING PEPTIDE 

MICROARRAYS 

ABSTRACT 

 
We describe and test a microarray technique, using random sequence 

peptides (based on the binding pattern of serum antibodies), for diagnosing the 

onset of lupus and its neuropsychiatric manifestations, since there are no current 

methods to accurately do this.  Significantly greater binding intensity and unique 

patterns were observed for the 4 month MRL/lpr in comparison to the 4 month 

MRL/mp and 4 month C3H/HeJ suggesting that this technique can be used in the 

diagnosis of lupus.  Within the MRL/lpr group there was variation in behavioral 

performance and binding pattern of the peptides.  There are compelling signs that 

the neurobehavioral phenotypes observed can also be diagnosed by this unique 

microarray technique. 

 

 
 
 

 
 

 
 
 

Key Words: Lupus; Microarray; Diagnostic; Neuropsychiatric; Brain-Reactive 
Autoantibodies; MRL/lpr Mice.   

SLE, Systemic Lupus Erythematosus; CNS, Central Nervous System; BRAA, 
Brain-Reactive Autoantibodies; IP, Intraperitoneal; PBS, Phosphate Buffered 
Saline; ELISA, Enzyme-Linked Immunosorbant Assay; BSA, Bovine Serum 

Albumin.    
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INTRODUCTION 
 

It is well known that there is a large diversity of autoantibodies in 

systemic lupus erythematosus (SLE) along with numerous manifestations like 

glomerulonephritis, skin lesions, neurologic problems, etc (Sakic et al., 2005).  

Some of these autoantibodies are characteristic of specific forms of the rheumatic 

diseases, but there are no clear cut patterns for diagnosing specific diseases 

(Colasanti et al., 2009; Wandstrat et al., 2006).  We are proposing the use of a 

random-peptide microarray technology for exactly this purpose.  Researchers 

have used microarray technology to determine both possible predictive and 

diagnostic antigens of type 1 diabetes (Quintana et al., 2004).  In this study we are 

testing two ideas, both using this unique, random-peptide, microarray.  In the first 

part of this paper we will be using this technique to diagnose SLE in an animal 

model by determining possible diagnostic peptides of lupus.  The second part is a 

bit more difficult, and interesting, since we also believe this microarray 

technology can be used for diagnosing specific neuropsychiatric manifestations of 

lupus in our mouse model.  We are currently interested in determining both 

predictive and diagnostic peptides of lupus and CNS-lupus, as well as using them 

for identifying pathogenic autoantibodies, but in this paper we are only focusing 

on the diagnostic utility of this technique for lupus and CNS-lupus.   

We are testing these ideas in a murine model (MRL/lpr), prior to moving 

on to human testing.  The mouse model is a good one and has been used many 

times in the study of SLE (Sakic et al., 1994, 1992, 1993b, 1993c, 1995; 

Theofilopoulos, 1992).  The lpr gene, which is related to a defect in fas, 
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accelerates and intensifies disease manifestations in the MRL mice.  Although a 

fas gene defect is rare in humans, the autoimmune disease manifestations are very 

similar to what occurs in human SLE (Ballok et al., 2003a; Theofilopoulos, 1992).  

The congenic MRL/mp mice are a perfect control, since they are virtually, 

genetically identical, except for the lpr gene.  These mice also develop an 

autoimmune state, but much more slowly and of less intensity.  The C3H/HeJ 

strain was also analyzed as a normal mouse with a different genetic background.  

Behavioral testing was done and antibodies to random peptides were tested by 

microarray on these three groups of mice (MRL/lpr, MRL/mp and C3H/HeJ) at 4 

months of age.   

 It would be very important to have a good, simple, yet rapid diagnostic 

technique for SLE and also be able to predict overt clinical manifestations months 

to years (in the case of humans) in advance.  Not only would this provide for a 

clear-cut diagnosis of the disease, but it would allow for early treatment to begin, 

perhaps preventing more serious manifestations.  The type of early treatment that 

could be administered for the different CNS manifestations may be also 

determined using the microarray technology since we intend to identify some of 

the brain targets using this technology.  Central nervous system (CNS) 

involvement in SLE is a form of lupus (CNS-SLE) where the immune system 

affects central nervous system function, causing neuropsychiatric manifestations 

including psychoses, cognitive impairment and emotional dysfunction (Hoffman 

and Sakic, 2009).  Psychiatric disorders can be observed in up to 70% of patients 

that have lupus (Lawrence et al., 2007).  We believe that the presence of a subset 
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of brain-reactive autoantibodies (BRAA) is responsible for causing some of these 

neuropsychiatric manifestations, through interaction with the integral membrane 

proteins on the surface of cells in the brain (Narendran and Hoffman, 1989; Sakic 

et al., 1993a; Zameer and Hoffman, 2001).  These BRAA can enter the brain 

through increased permeability of the blood-brain barrier as lupus progresses 

(Hoffman and Harbeck, 1989).  The BRAA could enter directly, or antibody 

producing cells can enter the brain and produce the BRAA.  One of our main 

goals is to characterize these BRAA by identifying the proteins they bind in brain, 

which will indicate which brain structures are being affected, possibly explaining 

these neuropsychiatric manifestations.  The battery of behavioral tests included 

the forced swim test, which looks at behavioral despair seen through increased 

float times, and secondly the sucrose preference test, which looks at anhedonia 

observed through decreased consumption of a 4% sucrose solution (Sakic et al., 

2005).  The major goal of this study is to test the diagnostic autoantibody 

hypothesis, which will allow us to identify a pattern of autoantibody reactivity on 

an immune-display microarray.  We posit that the microarray ‗immunosignature‘ 

is diagnostic not only of lupus, but of different neurobehavioral manifestations.   

This study develops a microarray probe using a pattern of autoantibody binding as 

a diagnostic indicator of lupus and its CNS manifestations.   

In order to do this we used behavioral tests to identify the mice with CNS 

manifestations and then performed a series of immunological assessments on their 

sera.  BRAA and anti-DNA ELISA were performed using sera to measure disease 

activity.  We also used a new immune-diagnostic microarray that uses 10,000 
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random-sequence 20-mer peptides to bind specific antibodies from disease-

affected and healthy individuals.  These arrays contain covalently-coupled 

peptides that contain random sequences of amino acids.  This differs from epitope 

arrays in that there are no overlapping life-space sequences on this array; any 

reactivity of antibody to peptide is driven by amino acid sequences with no 

similarity to the actual antibody-eliciting antigen.  These arrays bind and display 

differences in the level of antibodies raised to a broad variety of disease-specific 

immunogens.  These arrays allow broad application across diseases - the same 

arrays can be used for any disease without the need to create new epitopes.  Also, 

patients experiencing the same disease tend to produce antibodies that show 

common patterns of antibody binding, allowing us to cleanly distinguish naïve 

from affected samples (Legutki et al., 2010).  In the current study, we looked at 

the binding pattern of sera from healthy vs. lupus mice.  Affected mice perform 

differently on behavioral tests; some do better on one test and worse on another.  

If our hypotheses are correct, we would expect a link between autoantibodies and 

behavioral performance; this difference could be detected on the peptide 

microarray without having to know the identity of the antigen.  These differences 

in patterns would allow us to diagnose the onset of lupus-like disease, as well as 

the different neurobehavioral manifestations in our mouse model.  The data 

presented here is used to develop and test the diagnostic power of autoantibodies, 

both for the onset of disease and specific neurobehavioral manifestations.  
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MATERIALS AND METHODS 

ANIMALS   

The MRL/lpr strain develops lupus after 2 months of age and has 50% 

mortality at about 5 to 6 months of age.  The MRL/lpr mice used in this study are 

a new lot (stock #000485) from Jackson laboratory with heightened autoimmune 

state.  The congenic control, the MRL/mpJ substrain (stock #000486) develops at 

about 12 months of age.  The C3H/HeJ is the normal control that does not develop 

lupus but serves as a control for normal aging.  Results in the various tests were 

compared when these animals were 4 months of age.  There were 3-6 animals in 

each group and all were females.  The mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME) and individually housed under standard conditions.  

The light cycle was from 6:00 A.M. to 6:00 P.M.  They were given food and 

water ad libitum.  All behavioral tests commenced at 8:00 P.M.  Integral 

membrane proteins from 2 month old C3H/HeJ mouse brain were used in the 

BRAA ELISA. 

 The mice were sacrificed with an intraperitoneal (IP) injection of 

Nembutal sodium solution.  The blood was collected via cardiac exsanguination 

and allowed to coagulate in microcentrifuge tubes.  The tubes were then 

centrifuged for 10 minutes at 8500 rpm (5200 x g).  The serum was removed, 

aliquoted into 100 μl aliquots and frozen at -50oC.  The spleen and body weights 

of the mice were also measured.  The spleen weight was divided by the body 

weight of the mouse since each mouse had a different body weight.  
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 Animals are maintained in University facilities fully accredited by 

AAALAC and are registered with the USDA APHIS (Registration # 86-R-0002). 

An assurance is on file with the Office for Laboratory Animal Welfare (#3217-

01).  Animal husbandry programs and protocol review are in compliance with 

NIH and USDA standards.    

 

BEHAVIORAL TESTING 

SUCROSE TEST 

The sucrose test looks at anhedonia.  The mice were given 3ml of 4% 

sucrose solution for 24 hours over three days.  They were then allowed to rest, 

i.e., no sucrose solution, for 24 hours.  Following this a 7ml solution of 4% 

sucrose was given to the mice for one hour for three consecutive days.  The total 

amount of sucrose consumed by these animals was recorded.  The body weights 

of the mice were taken into account and therefore the amount of sucrose 

consumed was divided by their individual body weights.  

 

FORCED SWIM TEST  

The forced swim test looks at depressive-like behavior in the MRL/lpr 

mice compared to the controls.  A circular pool (~6 ft in diameter and 2.5 ft high) 

was filled with water at about 25°C.  All the mice were placed into the water at 

the same location and allowed to swim around for 10 minutes.  The total float 

time for each animal was recorded.  Floating is defined as the absence of 

movement in the tail and hind limb. 
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IMMUNOLOGICAL ASSESSMENT 
 

INTEGRAL MEMBRANE PROTEIN PREPARATION  

The technique used to extract the integral membrane proteins from the 

brain of the mice to be used in the BRAA ELISA was previously described 

(Narendran and Hoffman, 1988).  Briefly, the whole brain was chopped and 

teased through a porous cloth.  The cells were suspended in TBS and centrifuged 

for 10 minutes at 1200 rpm.  The pellet was then suspended in lysis buffer (buffer 

containing 4.18g of Tris, 1.71g of NH4Cl, 35mg of 

phenylmethanesulfonylfluoride (Sigma-Aldrich, USA) in 200ml of water at pH 

7.2) for 15 minutes.  The sample was then centrifuged again for 10 minutes at 

15000 rpm and followed by a 10 minute incubation at 37oC of the supernatant.  

The sample was then centrifuged for 10 minutes at 1000 rpm and the oily pellet 

collected.  Once the integral membrane proteins were extracted we suspended the 

proteins in phosphate buffer saline (PBS) and the concentration determined using 

the BCA Assay Kit (Pierce, USA). 

 

ELISA FOR ANTI-DNA AND BRAA  

Anti-DNA and brain-reactive autoantibody levels were determined using 

previously described protocols (Aotsuka et al., 1979; Crimando and Hoffman, 

1995; Zameer and Hoffman, 2003).    
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ANTI-DNA ELISA  

To test for anti-DNA autoantibodies, 96 well plates were incubated with 50μg/ml 

of poly-L- lysine (Sigma, USA) dissolved in phosphate buffer saline (PBS) at 

room temperature for 1 hour.  The plates were washed three times using 0.1% 

PBS-Tween in between the incubation steps.  Ten μg/ml of calf-thymus DNA 

(Sigma, USA; purified for dsDNA) dissolved in PBS was added to the odd wells 

of the plate and PBS only to the even wells and the plates incubated for 1 hour.  

Next, 100ug/ml of poly-L-glutamate (Sigma, USA) dissolved in PBS was added 

to the wells.  A 5% bovine serum albumin (BSA) (Sigma, USA) solution in PBS 

was then added followed by serial dilutions of the mouse sera.  A 1/1000 dilution 

of the secondary antibody, goat anti-mouse IgG antibody conjugated with 

peroxidase (Caltag, USA) in PBS, was then added.  Citrate buffer (1.04g/100ml of 

sodium citrate and 1.46g/100ml of citric acid (pH =4.4)) containing 2,2‘-azino-

bis(3ethylbenzthiazoline) sulfonic acid and hydrogen peroxide was added to 

plates for 30 minutes at 37oC.  The plates were then read at 405nm using a 

microplate reader.  The optical density of the control wells (the even wells) were 

subtracted from the optical density of the odd wells to give an S-value showing 

the levels of anti-DNA antibodies.  Some S-values may be negative, since the S-

values are all relative to each other. 
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BRAA ELISA   

Odd wells of 96 well plates were incubated with 10μg/ml of integral 

membrane proteins, isolated from a brain homogenate of healthy 2 month 

C3H/HeJ mice, in PBS, while PBS only was added to the even wells.  The plates 

were incubated for 1 hour at room temperature.  The wells were then washed with 

0.1% PBS-Tween three times.  A 5% BSA solution in PBS was added to all the 

wells and the plates incubated for 1 hour.  Next, serial dilutions of the mouse sera 

were added to the wells, followed by a 1/1000 dilution of the secondary antibody 

goat anti-mouse IgG antibody conjugated with peroxidase (Caltag, USA).  

Finally, 2,2‘-azino-bis(3-ethylbenzthiazoline) sulfonic acid (17mg/100ml) and 

hydrogen peroxide (100μ l/100ml) in citrate buffer was added to the wells and 

incubated for 30 minutes at 37oC.  The plates were then read at a wavelength of 

405nm and as with the anti-DNA ELISA, the S-Values were determined. 

 

MICROARRAY ANALYSIS   

Microarrays containing 10,000 randomly generated 20-mer peptides were 

obtained from the Center for Innovations in Medicine, Biodesign Institute, 

Arizona State University (Legutki et al., 2010).  The arrays were pre-blocked with 

buffer containing mercaptohexanol for 1 hour in a humidity chamber to quench 

any remaining reactivity on the surface of the arrays.  The plates were then 

washed once with Tris-buffered saline with Tween (TBST), twice with water and 

then spun dry for 5 minutes at 1500 rpm (2800 x g).  A hybridization chamber 

enclosed a 1/500 dilution of the sera samples in 300 μ l of hybridization buffer.  
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The slides were covered and incubated 1 hour at 37oC.  The slides were washed 

three times with TBST, three times with water followed by secondary detection.  

Goat anti-mouse IgG biotinylated secondary antibody (Bethyl, USA), 6.67μM (1 

nM final concentration) was added to the slides and the slides incubated for 1 

hour at 37oC.  A tertiary reagent, 5nM of streptavidin conjugated with AlexaFluor 

555, was added to the slides and incubated for 1 hour at 37oC.  The slide was 

removed from the hybridization chamber, washed three times with TBST, three 

times with water and spun dry at 1500 rpm for 5 minutes.  Once dried, the slides 

were scanned with a Perkin Elmer Scan Array laser Scanner (543nm emission, 

565 nm absorption, 75% PMT, 100% laser power).  

 

STATISTICS 

Analytical methods for conventional expression microarrays were used for 

the immunosignature microarrays and no unusual biases were noted.  The 

performance of the microarrays has been tested using sera from influenza and 

healthy mice.  The arrays yield 14% average slide-to-slide Coefficient of Variance 

across all peptides, and a 1.3-fold minimum detectable fold-change at the 95th 

percentile.  All experiments were done with triplicate technical and triplicate 

biological samples (9 samples per condition).  Tests were done on pooled sera 

from replicate mice but each mouse was also run independently to determine 

mouse-to-mouse variance and the robustness and representative nature of each 

immunosignature.  Each slide is imaged using the Agilent ‗C‘ scanner, producing 

a 16-bit TIFF image that was analyzed in GenePix Pro 6.0 (Molecular Devices, 
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Palo Alto, CA).  Resulting gpr (GenePix Results) files were exported to 

GeneSpring 7.3.1 (Agilent, Palo Alto, CA) or R (CRAN GNU open-source) for 

analysis.  Slides were median normalized and log-10 transformed.  Peptides <2 

standard deviations above the average background were discarded as non-

informative.  Statistical analyses were done on the remaining peptides, using the 

Welch‘s T-test using the Benjamini and Hochberg False Discovery Correction 

Rate set at 0.05.  Statistical analysis for the results shown in figures 1, 2, 5, 6A, 

6B, 7A, 7B and 8 used Model I 1-way ANOVA and LSD post-hoc analysis (SPSS 

16.0). 
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RESULTS 

DIAGNOSTIC MICROARRAYS FOR LUPUS 

 IMMUNOLOGICAL ASSESSMENT AND DISEASE ACTIVITY 

Before we tested the murine sera using the microarray technology, we 

wanted to determine that lupus was progressing in the MRL/lpr mice, so we tested 

the level of anti-DNA autoantibodies in the sera and measured spleen weights.  

We used anti-DNA autoantibody levels as a confirmation of disease activity since 

we (Crimando and Hoffman, 1992; Zameer and Hoffman, 2001) have previously 

shown that these measures correspond to disease activity.  Anti-DNA ELISA 

were performed on 3 randomly selected mice from each of the 3 groups (Fig. 1), 

and ANOVA analysis showed that the levels of anti-DNA autoantibodies was 

significantly different between the groups (F=112.953, p < 0.001).  LSD post-hoc 

analyses at p < 0.001 revealed the following differences.  MRL/lpr mice had 

significantly greater anti-DNA autoantibodies in comparison to both of the control 

groups.  Spleen weights per body weight were used as another measure of disease 

activity (Fig. 2), since they become enlarged.  ANOVA analysis showed that there 

was a significant difference between the groups (F=18.365, p < 0.003) and post-

hoc analysis at p < 0.007 revealed that the MRL/lpr mice had greater spleen 

weights in comparison to the MRL/mp and C3H/HeJ.  Since both increased 

spleen weights and higher levels of anti-DNA autoantibodies were detected in the 

MRL/lpr mice this indicates that lupus was progressing as expected.  
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 MICROARRAY ANALYSIS 

The sera samples from all nine mice were then analyzed using microarray 

technology.  We ran each of the sera samples in triplicates to ensure consistency 

in results.  Fig. 3 shows a representative slide from one animal from each of the 

groups.  Fig. 3A is the control slide to which no serum was added.  The secondary 

is titrated to the point where the primary is detected but essentially no 2o-only 

binding is detected.  Fig. 3B shows a C3H/HeJ mouse serum and, as in other 

experiments (Legutki et al., 2010 and unpublished observations) little reactivity is 

seen from naïve mice.  Fig. 3C shows the MRL/lpr mouse serum.  We have noted 

that there is consistently more overall fluorescence for infected/disease vs. naïve 

mice (personal observations), although the total amount of IgG incubated on the 

peptide microarray was identical as measured by Nanodrop 2000c (Thermo 

Scientific, Wilmington, DE).  We empirically determined that a 1:500 dilution of 

serum or plasma in incubation buffer provides a uniform signal, low background, 

and a concentration of ~20ug/ml total IgG for samples tested.  The coefficient of 

variance for this measure is 0.035 across 33 different BALB/cJ mice, 16 were day 

21 post-influenza infection, 17 were naïve (personal observations from previous 

data).  Fig. 3D shows MRL/mp serum; again the binding intensity was much 

lower than the MRL/lpr.  According to the anti-DNA and BRAA ELISA results, 

higher levels of anti-DNA autoantibodies and BRAA were detected in the sera of 

the MRL/lpr mice in comparison to both control groups, so these high levels of 

autoantibodies are consistent with expectations in the microarray.  
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 Each peptide on the microarray was synthesized and quality tested by Alta 

Biosciences (Birmingham, UK).  The sequence, mass spectrometry results, and 

other chemical characteristics for each peptide is known and although each 

peptide‘s intrinsic properties vary widely (pI, hydropathicity, hydrophobicity, 

mass, etc.) these properties are fixed.  Thus, statistical evaluation of the 

interaction between antibody and peptide can exclude these properties and only 

evaluate the differential binding of the antibodies as measured by fluorescence.  

Fundamentally, there are peptides that bind consistently to antibodies from 

autoimmune (MRL/lpr) mice vs. control mice.  We were able to pick out 200 

peptides where the binding intensity of the MRl/lpr was greater than controls.  

These were plotted on a line graph (Fig. 4A).  This demonstrates a pattern which 

can distinguish the groups as well as lupus-like disease activity.  Since these 200 

peptides had greater binding intensities for the MRL/lpr mice in comparison to the 

controls, they could be specific for autoantibodies that are diagnostic indicators of 

lupus.  These are the autoantibodies we are referring to as possible diagnostic 

autoantibodies for lupus.  Fig. 4B is another graph showing the intensities of these 

peptides across the groups. 

 

DIAGNOSTIC MICROARRAYS FOR CNS MANIFESTATIONS 

 BRAIN-REACTIVE AUTOANTIBODIES 

BRAA levels were used as a measure of CNS involvement, which has 

been discussed previously in the literature (Sakic et al., 1993a;Williams et al., 

2010).  The ANOVA analysis of the BRAA ELISA results (Fig. 5) revealed that 
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there was a significant difference between the groups (F=14, p < 0.005).  Post-hoc 

analysis at p < 0.004 showed that there was significantly greater levels of BRAA 

in the MRL/lpr mice in comparison to the MRL/mp and the C3H/HeJ mice at 4 

months of age.     

 

BEHAVIORAL DYSFUNCTION IN MRL/LPR MICE 

We used two behavioral tests, sucrose preference and the forced swim test, 

as measures of CNS dysfunction in these animals.  Even though there was not a 

significant difference (F=4.150, p < 0.074) in sucrose consumption between the 

groups (Fig. 6A), a decrease in consumption of the 4% sucrose solution for the 

MRL/lpr mice was seen in comparison to the congenic controls, the MRL/mp.  A 

significant difference in floating time was detected between the groups for  the 

forced swim test (Fig. 6B) (F=12.068, p < 0.008).  Post-hoc analysis at p < 0.007 

revealed increased floating time for the MRL/lpr mice in comparison to the 

MRL/mp and the C3H/HeJ.  The decrease in sucrose consumption and increased 

floating times are indicative of the CNS involvement (possibly emotional 

dysfunction) that is expected with the MRL/lpr mice (Sakic et al., 2005; Ballok et 

al., 2003b). 

 

 GROUP SEPARATION WITHIN MRL/LPR BY 

NEUROBEHAVIORAL MANIFESTATIONS 

Variations in behavior were observed within the 4 month MRL/lpr group 

of mice. Some of the mice perform differently depending on the behavior test.  In 
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addition, these mice have different levels of anti-DNA and BRAA and have 

different binding patterns in the microarray analysis.  Because of these 

differences, we believe that we will be able to use the microarray analysis to 

identify peptides that are bound by autoantibodies that are diagnostic of certain 

neuropsychiatric manifestations.  In order to test this, we first grouped the mice 

according to their behavior, and then we looked for differences in peptide binding 

patterns using the microarray analyses.  

We found in this study that there was a difference in behaviors for 

individuals within the MRL/lpr group, as has been previously reported by Sakic 

and colleagues (2005).  In the sucrose preference test MRL/lpr #2, #3 and #5 were 

grouped as low consumers and MRL/lpr #1 and #4 were grouped as high 

consumers (Fig. 7a).  Statistical analysis reveals that there was a significant 

difference between the groups (F=8.785, p < 0.009).  Post-hoc analysis at p < 0.03 

showed that there were statistical differences between the low consumers and 

high consumers, the low consumers and the MRL/mp (group3) and the low 

consumers and the C3H/HeJ (group4).  There was no difference between the 

MRL/lpr high consumers and the MRL/mp and C3H/HeJ.  

In the forced swim test MRL/lpr #2, #3 and #4 were grouped as having 

higher float times and MRL/lpr #1 and #5 had lower float times (Fig. 7b).  There 

was an overall significant difference between the groups (F=9.2, p < 0.008).  Post-

hoc analysis at p < 0.010 revealed statistically significant differences between the 

MRL/lpr with high float times and those with low float times, as well as 

compared to the MRL/mp and the C3H/HeJ.  There was, however, no significant 
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difference between the MRL/lpr with a lower floating time and the MRL/mp and 

C3H/HeJ.   

The fact that there was no difference between the mice with high sucrose 

consumption and lower floating time when compared to the controls indicates that 

these mice performed similar to the controls, which becomes interesting when 

looking at the microarray results, since according to the grouping for each of the 

behavior tests, each group did not include the same MRL/lpr mice so some mice 

did better on one test and worse on another.  These behavioral differences in the 

mice allowed us to pick out peptides that are specific to certain neuropsychiatric 

manifestations (below). 

We also split the MRL/lpr mice based on their anti-DNA autoantibody 

levels (Fig. 8), as a measure of disease activity.  MRL/lpr #2, #3 and #4 were 

grouped as having higher levels of anti-DNA autoantibodies and MRL/lpr #1 and 

#5 were grouped as having lower levels of anti-DNA autoantibodies.  There was a 

significant difference between the groups (F=91.176, p < 0.001).  Post-hoc 

analysis at p < 0.004 revealed that there was a significant difference between the 4 

month MRL/lpr with greater levels of anti-DNA antibody and the 4 month 

MRL/lpr with lower levels of anti-DNA autoantibodies, as well as the MRL/mp 

and the C3H/HeJ.  There was also a significant difference between the MRL/lpr 

that had lower levels of anti-DNA autoantibodies and the MRL/mp and the 

C3H/HeJ.  It should be noted that this breakdown was the same as for the forced 

swim test groupings, which is suggestive of disease activity (other than BRAA) 

causing these behavioral manifestations in the forced swim test.   
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SELECTED MICROARRAY PEPTIDES BASED ON 

NEUROBEHAVIORAL TESTS 

We next ran the microarray analyses based on the results of the behavior 

tests and the immunologic assessment described above.  This allowed us to pick 

out diagnostic autoantibodies for the neurobehavioral manifestations.  Using the 

groupings for the sucrose preference test we identified those peptides (Fig. 9a) 

where there was greater binding for the animals with lower sucrose consumption 

(group 2) in comparison to the animals with higher sucrose consumption (group 

1).  Some of these peptides are possibly detecting autoantibodies that are 

diagnostic of altered behavior in the sucrose preference test.  

Grouping the animals based on the forced swim test, which also 

corresponded to the anti-DNA antibody grouping, identified peptides (Fig. 9b) 

associated with high float times and high disease activity as measured by anti-

DNA autoantibody levels (group 2) in comparison to those with low anti-DNA 

levels and lower floating time (group 1).  Again, some of these detected peptides 

are possibly diagnostic autoantibodies for deficits in the forced swim test, or 

increased disease activity, in the form of elevated anti-DNA levels.  All of these 

differences were statistically significant, as shown in the figure.   
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Fig. 1.  Immunological assessment – serum anti-DNA autoantibody levels.  Three 

randomly selected mice from each of the 3 groups were used for immunologic 

assessments (the numbers next to each dot represents the mouse number).  

ANOVA analysis showed that the levels of anti-DNA autoantibodies was 

significantly different between the groups (F=112.953, p < 0.001).  Post-hoc 

analysis at p < 0.001 revealed that the 4 month MRL/lpr had significantly greater 

levels of anti-DNA antibodies (measured at a 1:800 serum dilution) in comparison 

to the controls.  S-values (ODs; see Methods) were used to correct for background 

reactivity and assess antibody levels.  In the box plot the middle line is the 50 th 

percentile, the top of the box is the 75th percentile and the bottom of the box is the 

25th percentile. 
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Fig. 2.  Spleen weights of MRL/lpr, MRL/mp and C3H/HeJ.  ANOVA analysis 

showed that there was a significant difference between the groups (F=18.365, p < 

0.003).  Post-hoc analysis at p < 0.007 revealed that the 4 month MRL/lpr had 

significantly greater spleen weights (per body weight) in comparison to the 

MRL/mp and C3H/HeJ.  In the box plot the middle line is the 50th percentile, the 

top of the box is the 75th percentile and the bottom of the box is the 25th 

percentile. 
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(A) (B) (C) (D)

 

 

 

Fig. 3.  Sample peptide binding intensities across pooled samples.  This figure 

demonstrates the intensity pattern across individual mice of different strains.  

Each green dot is the binding of the serum to an individual peptide.   (A) 

Secondary Only Control (only secondary and tertiary antibodies added).   (B) 

C3H/HeJ   (C) MRL/lpr strain.  (D) MRL/mp.  Identical amounts of IgG were 

added to each microarray. 
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A B
 

 

Fig. 4.  Graphs showing results with only 200 chosen peptides.  4A. Line graph of 

the intensity of two hundred peptides where MRL/lpr reactivity was greater than 

C3H/HeJ.  The samples are the pooled C3H/HeJ sera, the pooled MRL/lpr sera, 

and the pooled MRL/mp sera.  (B) Bar graph of the data in A.  There were 

significant differences between MRL/lpr and both control groups (p << 0.001), 

but not between the two control groups.  When these were run as individual 

samples, instead of pooled, there were still significant differences (p << 0.001).  
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Fig. 5.  Immunological assessment – Brain-Reactive Autoantibodies levels.  The 

ANOVA analysis of the BRAA ELISA results revealed that there was a 

significant difference between the groups (F=14, p < 0.005).  Post-hoc analysis at 

p < 0.004 revealed that the 4 month MRL/lpr had significantly greater levels of 

BRAA in comparison to the MRL/mp and C3H/HeJ.  In the box plot the middle 

line is the 50th percentile, the top of the box is the 75th percentile and the bottom 

of the box is the 25th percentile. 
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Fig. 6A. Measuring behavioral dysfunction.  For the sucrose preference test there 

was not a significant difference (F=4.150, p < 0.074) in sucrose consumption 

between the groups.  However, a decreased in consumption of the 4% sucrose 

solution for the MRL/lpr mice was seen in comparison to the congenic controls, 

the MRL/mp.  In the box plot the middle line is the 50th percentile, the top of the 

box is the 75th percentile and the bottom of the box is the 25th percentile. 
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Fig. 6B. Measuring behavioral dysfunction – Forced Swim Test.  A significant 

difference in float time was detected between the groups for the forced swim test 

(F=12.068, p < 0.008).  Post-hoc analysis at p < 0.007 revealed that the 4 month 

MRL/lpr had significantly greater float time in comparison to the MRL/mp and 

C3H/HeJ.  In the box plot the middle line is the 50th percentile, the top of the box 

is the 75th percentile and the bottom of the box is the 25th percentile. 
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Fig. 7A. Behavioral dysfunction within the MRL/lpr mice group.  There were five 

mice in the MRL/lpr group that were tested and so we included all 5 in this 

second set of analyses.  These 5 mice were split into two groups based on their 

performance and the results analyzed for significance using one-way ANOVA 

plus post-hoc analysis.  Statistical analysis reveals that there was a significant 

difference between the groups (F=8.785, p < 0.009).  Post-hoc analysis at p < 0.03 

revealed that the 4 month MRL/lpr low consumer (group 1) consumed 

significantly less sucrose in comparison to the MRL/lpr high consumer (group2), 

the MRL/mp (group3) and the C3H/HeJ (group 4).  There was, however, no 

difference between the MRL/lpr high consumer, the MRL/mp and the C3H/HeJ.  

In the box plot the middle line is the 50th percentile, the top of the box is the 75th 

percentile and the bottom of the box is the 25th percentile. 
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Fig. 7B. Behavioral dysfunction within the MRL/lpr mice group.  There was an 

overall significant difference between the groups (F=9.2, p < 0.008).  Post-hoc 

analysis at p < 0.010 revealed that the MRL/lpr mice with the high floating time 

(group1) had significantly greater floating time in comparison to the MRL/lpr 

mice with low floating time, the MRL/mp and the C3H/HeJ.  There was, 

however, no significant difference between the MRL/lpr with lower floating time 

and the MRL/mp and the C3H/HeJ.  In the box plot the middle line is the 50 th 

percentile, the top of the box is the 75th percentile and the bottom of the box is the 

25th percentile. 
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Fig. 8.  Immunological assessment within the MRL/lpr group.  The MRL/lpr mice 

were also split based on their anti-DNA antibody levels.  There was a significant 

difference between the groups (F=91.176, p < 0.001).  Post-hoc analysis at p < 

0.004 revealed that there was a significant difference between the 4 month 

MRL/lpr with greater levels of anti-DNA levels and the 4 month MRL/lpr with 

lower levels of anti-DNA autoantibodies, the MRL/mp and the C3H/HeJ.  There 

was, however, also a significant difference between the MRL/lpr that had lower 

levels of anti-DNA autoantibodies and the MRL/mp and the C3H/HeJ.  Results 

were analyzed using one-way ANOVA plus post-hoc analysis.  In the box plot the 

middle line is the 50th percentile, the top of the box is the 75th percentile and the 

bottom of the box is the 25th percentile. 
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Fig. 9A.  Line graph showing results after re-grouping five MRL/lpr mice.  Group 

one consists of MRL/lpr #1 and #4 (higher sucrose consumers), group two 

consists of MRL/lpr #2, #3 and #5 (lower sucrose consumers).  The two no sera 

controls (not shown) were not significantly different from group 1.  This grouping 

of the MRL/lpr is similar to that seen in the sucrose test (fig. 7A).  As can be seen 

there are a large quantity of peptides where there was greater binding in group 2 

as compared to group one (p < 0.001). 
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Fig. 9B.  Line graph showing results after re-grouping five MRL/lpr mice.  Group 

one consists of MRL/lpr #1 and #5 (low floating time and low anti-DNA levels), 

group two consists of MRL/lpr #2, #3 and #4 (high floating time and high anti-

DNA levels).  Once again the two no sera controls (not depicted) did not differ 

from group 1.  This grouping is similar to that of the forced swim test (Fig. 7B) 

and the anti-DNA ELISA (Fig. 8).  As can be seen there are a large quantity of 

peptides where there was greater binding in group 2 as compared to group one (p 

< 0.001). 
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DISCUSSION 

The above studies describe a unique peptide microarray whose array 

patterns are characteristic of disease activity and neurobehavioral manifestations 

in MRL/lpr mice.  We were able to detect peptides that had greater binding 

intensities for the MRL/lpr group in comparison to the MRL/mp and C3H/HeJ 

controls (Fig. 4).  These microarray patterns are possibly detecting autoantibodies 

that are diagnostic for lupus.  Indication of disease activity were the high levels of 

BRAA and anti-DNA autoantibodies detected in the MRL/lpr mouse sera similar 

to our previous studies (Zameer and Hoffman, 2001, 2004; Williams et al., 2010).  

The MRL/lpr mice also had greater spleen weights per body weight in comparison 

to the controls which along with higher levels of anti-DNA autoantibodies 

indicate that lupus was progressing in these mice (Figs. 1 and 2).  Thus, our 

results so far suggest that there may be autoantibodies that could be diagnostic of 

lupus (Fig. 4).  Even more interesting, the second part of our study further 

suggests that there are autoantibodies that may be diagnostic of specific CNS 

manifestations.  This was detected when looking within the MRL/lpr group.  We 

were able to observe that there was a difference in the performance of these 

animals in the behavioral tests and the autoantibody ELISA.  These differences 

corresponded to the statistically significant differences in the peptide binding 

patterns in the microarray within the MRL/lpr mice (Fig. 9).  We hypothesize that 

some of the autoantibodies that are binding to these peptides are involved in 

causing the behavioral changes and disease activity (viz., pathogenic 

autoantibodies).  The behavioral changes that are observed are likely due to the 
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neuropsychiatric manifestations of lupus because when these MRL/lpr mice 

undergo other behavior tests such as the beam walk or open field test (previous 

studies) these animals are able to physically perform these tests as well as 

controls.  Other researchers have also carried out these tests supporting that the 

performance in the Sucrose Test and Forced Swim Test are related to CNS 

manifestations (Ballok et al., 2003b; Sakic et al., 1994, 1996).  Finally, if the 

behavioral manifestations were due solely to disease activity, the peptides that are 

thought to indicate disease activity would be the same as those that are thought to 

be responsible for the behavioral changes, but they are not, as detected by the 

microarray data.    

 Early diagnosis of lupus will be very useful in helping to treat individuals 

who are prone to this disease.  We are trying to use microarray technology in 

order to create a test that would permit the diagnosis of lupus and are currently 

doing studies that will allow us to predict lupus.  Furthermore, the lupus prone 

MRL/lpr mice are known to display neurobehavioral deficits in comparison to 

controls (Figs. 6A and B), based on previous studies (Sakic et al., 1993a, 1996; 

Williams et al., 2010).  They had lower sucrose consumption and higher floating 

times, indicative of altered behavior.  BRAA and anti-DNA ELISA testing 

revealed that our MRL/lpr mice on average also had greater levels of 

autoantibodies (Figs. 1 and 5), as expected.  We have previously hypothesized 

(Hoffman et al., 1987; Narendran and Hoffman, 1989; Zameer and Hoffman, 

2001) that there is a subset of (pathogenic) brain reactive autoantibodies that are 

responsible for some of the neuropsychiatric manifestations seen in SLE, which 
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has been supported by others (Schott et al., 2003; Tanaka et al., 2003).  We also 

hypothesize that there are predictive autoantibodies for these neurobehavioral 

manifestations. 

In this study, microarray analyses of the sera show peptides where there 

was greater binding intensity for the MRL/lpr mice in comparison to the controls.  

Because there was greater binding with these peptides as seen in fig. 4, some of 

these peptides are likely diagnostic for lupus.  Peptides can be synthesized either 

chemically or in vivo to perform biochemical pull-downs of the antibodies of 

interest.  It would be technically challenging but these antibodies could then be 

used to isolate the original autoantigen.  We are working on more sensitive mass 

spectrometry methods that would require much lower sample sizes.  At a 

minimum, however, the 200 diagnostic peptides could be biomarkers for the 

disease, also making it likely that predictive autoantibodies also exist.  This would 

have to be tested in future studies.  Reducing the 200 peptides to a smaller set 

would require analysis of the variability of detectable antibodies in the population, 

but in our small test it is encouraging that our classification error is 0%.  In 

addition to identifying diagnostic autoantibodies, we should be able to use the 200 

peptides to identify the antibodies to the proteins in the brains of the MRL/lpr 

mice to which the BRAA are binding, possibly causing the neurobehavioral 

deficits.  Identifying these BRAA will be critical in order to backtrack from an 

antibody response to specific proteins – the proteins will lead to identification of 

the regions within the brain that are affected, and what behavior is likely altered 

due to the binding of these autoantibodies.  This would lead to the identification 
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of pathogenic autoantibodies.  In an article published in Nature Medicine, 

researchers used autoantigen microarrays to look at the autoantibody binding of 

patients with SLE and other disorders(Robinson et al., 2002).  Their work 

demonstrated how sensitive microarrays are, since only a small sample is needed, 

and provide better results than conventional methods.  They also discussed the 

importance of this technology in identifying autoantigens (which is one of our 

goals). 

We‘ve seen remarkable results from the random sequence peptide arrays 

using other diseases as a case study (Boltz et al., 2009;Morales Betanzos et al., 

2009; unpublished data).  We have been very successful at detecting and 

classifying influenza pre-symptomatically and before ELISA is able to make a 

distinction.  We‘ve used the power of the arrays to classify disease states with 

very low classification error, and we‘ve found diseases that are not typically 

associated with immune response or autoimmunity that can be detected and 

classified using these arrays.  The significance of partial binding between 

mimotope (peptide) and antibody cannot be understated.  Peptide arrays in the 

past relied on perfect interactions between antibody and peptide, but we‘ve 

created a system where 1-2 kCal/mol (millimolar binding constants) are sufficient 

to create a stable interaction on the arrays that can be recapitulated in solution.  

Thus, the patterns of binding that we see on the arrays correspond to actual 

reagents that can be used to biochemically pull down antigens that remained 

heretofore undiscovered and undetectable.  We believe these results are a good 
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indication of the power of immunosignaturing, and the resolution of 10,000 

random-space peptides, which can be applied to SLE. 

In addition to identifying diagnostic autoantibodies for lupus, we also 

believe that we can use these microarray techniques to diagnose diverse 

neuropsychiatric manifestations.  Evidence of this came when we looked within 

the MRL/lpr group and found differences in behaviors and microarray patterns.  

We found that in the sucrose consumption test there were MRL/lpr mice that can 

be grouped as low sucrose consumers vs. high sucrose consumers, while in the 

forced swim test, there were mice with higher float times and mice with lower 

float times.  Looking at the anti-DNA autoantibody levels, the MRL/lpr group can 

be split into mice having higher and lower anti-DNA autoantibody levels. When 

retesting only the MRL/lpr mice, using the microarray analysis, and grouping 

them based on these differences, we found that there were significant array 

differences between the groups (Fig. 9).  This suggests that based on the binding 

patterns of the arrays we may be able to diagnose the specific type of 

neuropsychiatric manifestation which an individual has when applying this 

technology to human sera.  The next step will be to see if we can use some of the 

above identified peptide arrays to detect the occurrence of disease activity, or 

neurobehavioral manifestations, long before manifestations.  It should be noted 

that based on the similarity of the groupings for the forced swim tests and anti-

DNA autoantibody levels, it may be that these anti-DNA autoantibodies may be 

responsible for some of the neuropsychiatric manifestations.  This has been shown 

to be a reasonable hypothesis according to the literature (DeGiorgio et al., 2001).  
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An alternative is that the anti-DNA autoantibodies are indicative of an 

inflammatory response and that cytokines are mediating the behavioral changes.  

Based on the above results, our microarray analysis appears to be a useful 

tool for aiding in the diagnosis and prediction of lupus and the associated different 

neuropsychiatric manifestations in our mouse model.  Beyond this, the microarray 

technique will be a powerful tool in allowing us to identify the specific proteins 

that the BRAA bind allowing us to better understand neuropsychiatric 

involvement in SLE, as well as develop unique therapeutic techniques.  As 

mentioned, our future studies are aimed at determining not only the diagnostic 

peptides of lupus and CNS-lupus, but also predictive peptides and their 

autoantibodies. 
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Chapter 4 

VALIDATING DIAGNOSTIC PEPTIDES OF LUPUS AND ALTERED 

BEHAVIOR AND DETERMING POSSIBLE PREDICTIVE PEPTIDES OF 

LUPUS AND ALTERED BEHAVIOR FROM LUPUS-PRONE MRL/LPR 

MICE USING MICROARRAY TECHNOLOGY 

ABSTRACT 
 

We believe antibodies are present early on which can be useful in 

predicting future occurrences of lupus and specific CNS manifestations.  Some of 

these will be able to be used to diagnose disease and may even be pathogenic 

autoantibodies.  We are using a random peptide microarray to identify these 

antibodies.  In a previous study, possible diagnostic peptides of lupus and of 

specific CNS manifestations were detected.  In the current study we are testing the 

possible validity of these peptides being diagnostic and identifying predictive 

antibodies.  Furthermore, these techniques can be used to identify pathogenic 

antibodies.  We validated 58 peptides as being diagnostic of lupus and identified 

18 possible predictive peptides of lupus.  Of more interest, validated diagnostic 

and possible predictive peptides of altered behavior in the forced swim test were 

identified.  There were overlaps between the possible predictive and validated 

diagnostic peptides of lupus and altered behavior, but there were some that were 

unique to each.  This provides us with a tool to not only diagnose and predict 

CNS-SLE, but also to better investigate pathogenic mechanisms.  Also, using five 

created monoclonal brain-reactive autoantibodies and the different peptide sets, 

we were able to suggest possible targets of these autoantibodies.  
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INTRODUCTION 

Systemic Lupus Erythematosus (SLE) is an autoimmune disease that 

affects many organs of the body including the joints, kidneys and brain (Sakic et 

al., 2005).  Some of the symptoms include arthritis, seizures, rashes and 

psychoses (Sakic et al., 2005).  One of the characteristics of lupus is the detection 

of autoantibodies to many different antigens in the body and it is the presence of 

these different autoantibodies that are thought to be partly responsible for some of 

the manifestations of lupus (Williams et al., 2010).  As mentioned, the brain is 

one of the organs that is affected, causing neuropsychiatric manifestations, such 

as cognitive impairment and psychoses (Hoffman and Sakic, 2009).  In about 31% 

to 70% of lupus patients there was some kind of neuropsychiatric manifestation 

observed (Tin et al., 2005).  We have hypothesized that there are brain reactive 

autoantibodies (BRAA) that bind to integral membrane proteins of brain and this 

interaction is partly responsible for some of the neuropychiatric manifestations 

seen in lupus (Narendran and Hoffman, 1989; Zameer and Hoffman, 2001; Sakic 

et al., 1993). 

Our model of lupus was the MRL/lpr mice.  These mice start to develop 

lupus after 2 months of age and they have 50% mortality at about 5-6 months of 

age.  The MRL/lpr have manifestations similar to humans such as rashes, swollen 

joints and neuropsychiatric manifestations (Ballok et al., 2003; Theofilopoulos, 

1992).  A mutant of the fas gene, the lpr gene, is thought to help accelerate lupus 

in these mice.  Because of the similarity in manifestations to humans, the 

MRL/lpr mouse is a good model of SLE and has been used by many other 
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researchers as their model of lupus (Ballok et al., 2003;Theofilopoulos, 1992).  As 

a control for the genetics of the MRL/lpr, we used the MRL/mp mice since they 

are almost genetically identical to the MRL/lpr (without the lpr gene) but have 

late-onset autoimmunity.  We also included a C3H/HeJ group as a control for 

non-autoimmune murine aging.  

We have multiple goals in this study.  The first goal is to validate peptides 

previously identified as possibly being diagnostic peptides of lupus and specific 

CNS manifestations, using a high- throughput, random peptide, microarray.  We 

had already performed a previous study (Study 1 – Chapter 3) that allowed us to 

suggest diagnostic peptides, but we ran the current study (Study 2 – Chapter 4), in 

a similar manner to study one, in order to validate which peptides are indeed 

diagnostic of lupus and specific CNS manifestations.  Validated peptides are those 

peptides that would show up in both studies.  Secondly, unique to this study, we 

wanted to be able to predict the onset of lupus, or a specific CNS manifestation, 

long before any observed symptoms and therefore looked at the mice at two ages 

(before and during the onset of the disease).  A third goal is to get preliminary 

information on the utility of this technique for future studies in identifying 

pathogenic peptides.  Pathogenic peptides are those peptides bound by 

autoantibodies, which may be responsible for a specific manifestation (may be 

CNS related or not) possibly through binding to protein targets in the body and 

altering their function.  If we can identify the targets of these autoantibodies that 

correspond with a specific manifestation using the sequences of the pathogenic 

peptides, then we can target those proteins for therapy.  
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There are low concentrations of autoantibodies present in the sera even 

before any clinical signs of lupus are observed.  If we can detect these 

autoantibodies, it is our hypothesis that we can predict if someone will get lupus 

or even specific neuropsychiatric manifestations.  In order to detect these 

predictive autoantibodies we used microarray technology (Legutki et al., 2010) 

and the MRL/lpr mice at 1.5 months (before any symptoms are observed), as well 

as 4 months.  We looked for peptides where there was greater binding in our 1.5 

month MRL/lpr compared to our control C3H/HeJ (assuming these would likely 

be the antibodies of importance) and compared them to peptides obtained using 

the same type of analysis and our 4 month MRL/mp (low levels of predictive 

autoantibodies should be detected in these mice since this is before any 

manifestations are occurring).  The peptides found to be in common between 

these groups are said to be identified are being predictive of lupus and is a unique 

attribute of the current study.  In order to detect predictive peptides of CNS 

manifestations, we regrouped the 1.5 month MRL/lpr into two groups based on 

how they perform on a specific behavioral test at 4 months of age (the age when 

they have lupus).  By doing this, we were able to determine which peptides may 

predict if a mouse will get a specific neurobehavioral manifestation (again unique 

to this study).   

Since we wanted to validate peptides that would diagnose lupus and a 

specific CNS manifestation, we did the same type of analysis as above, but 

instead used the microarray and behavior data for the MRL/lpr at 4 months of age 

(when they have lupus).  By repeating the study twice, it allowed us to be more 
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confident in our results and therefore we could say that we have validated the 

different groups of diagnostic peptides.  If this is successful, then this same 

technology can be applied to human SLE.    However, in order for this technique 

to be applicable to human lupus, we would need to run multiple trials using 

human sera samples.  These studies would be conducted over many years and 

then based on the results this would allow us to see if our technique was accurate 

in predicting the onset of lupus and specific CNS manifestation and diagnosing 

patients that already had lupus and different CNS manifestations.  The multiple 

trials would allow us to determine ―false positives‖ and ―false negatives‖ when 

using our microarray analysis results.  Microarray technology has been shown to 

be able to determine both predictive and diagnostic peptides of diseases such as 

diabetes and therefore should be applicable to lupus (Quintana et al., 2004).    

The manifestations of lupus resemble the manifestations of other diseases.  

This therefore makes the accurate diagnosis of lupus very difficult.  In order for a 

patient to be diagnosed as having lupus, physicians use a set of 11 criteria and 

patients must satisfy 4 out of the 11 criteria (Liu and Ahearn, 2009).  Antinuclear 

antibodies and anti-DNA autoantibodies have been used as some of the markers 

for the diagnosis of lupus (Colasanti et al., 2009).  However, these markers are not 

able to accurately diagnose a specific manifestation.  Therefore, being able to 

correctly diagnose lupus and its CNS manifestations is of high importance due to 

the lack of a means of accurately diagnosing lupus and its CNS manifestations 

(Colasanti et al., 2009).  Since our microarray technology provides specific 

patterns (specific peptides) for specific manifestations, this technology may prove 
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to be more accurate in diagnosing and predicting lupus and its CNS 

manifestations.  It is important to note that being able to predict the onset of lupus 

or specific CNS manifestations is of great significance since this will be very 

useful in providing early and accurate treatments.   

The third goal of this study is to test preliminary ideas about developing a 

reliable method for characterizing these autoantibodies, especially the BRAA.  If 

we can identify the specific targets of these BRAA, then we can better understand 

if they have any functional effects, whether they are pathogenic and if they may 

be mediating neuropsychiatric manifestations.  Eventually, this may lead to new 

methods of treating CNS-SLE.  Since we knew the sequence of the peptides on 

the microarray chip, once we determined which peptides could be predictive and 

diagnostic of lupus and specific CNS manifestations, we used those sequences 

and a computer program (Guitope) to determine possible proteins that these 

antibodies are targeting.  Even though we did not directly determine the targets of 

these BRAA, this information helps to suggest some possible molecular targets.  

As examples of the above, some researchers have found an autoantibody 

that reacts with double-stranded DNA and the NMDA receptor (Kowal et al., 

2004).  This autoantibody resulted in cognitive deficits in their murine model, 

which suggests that this NMDA receptor autoantibody is partly responsible for 

this CNS manifestation.  Another researcher found an autoantibody that is cross-

reactive with the dynamin-1 protein that also altered the behavioral performance 

of their autoimmune murine model in comparison to control samples (Lawrence 

et al., 2007).   Research data is, however, limited on the identification of the 
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targets of these autoantibodies and correlations between these specific targets and 

specific CNS manifestations and therefore more research is needed on the 

identification of these targets and their relation to function.  Using the microarray 

technology, we have a technique that will allow us to identify more targets of 

these BRAA (and not rely on chance findings to identify these), we can better 

understand what areas of the brain may be affected.  And if we can identify the 

areas of the brain possibly being affected, it may help us to understand why 

certain CNS manifestations are observed.  

One interesting way to do the above is to combine the microarray and 

hybridoma technologies.  Using one of the MRL/lpr with behavioral dysfunction 

from our current study, we created five monoclonal BRAA.  We tested these 

monoclonal BRAA using different immunological techniques to better determine 

the possible identity of their brain targets.   

The current study allowed us to validate diagnostic peptides of lupus and 

altered behavior in the forced swim test, from the first study, as well as identify 

predictive peptides of lupus.  We were also able to suggest possible predictive 

peptides of altered behavior in the forced swim test.  Using computer analysis we 

were able to suggest natural proteins possibly being affected by autoantibodies 

from the sera.  The latter shows how identifying the targets of the autoantibodies 

could be done, but it‘s only part of the story.  
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MATERIALS AND METHODS 
 

ANIMALS  

The MRL/lpr mice is our model of lupus which start developing overt 

signs of the disease after 2 months of age and have 50% mortality at about 5-6 

months of age.  The MRL/mp is the congenic controls which have 50% mortality 

at about 12 months of age and develop disease manifestations much more slowly.  

The C3H/HeJ strain serves as our age-matched control and is non-autoimmune.  

In the current study we used 9-10 MRL/lpr and MRL/mp mice, which were tail 

bled every two weeks starting at 1.5 months until 4 months of age.  All the mice 

were obtained from Jackson Laboratory (Bar Harbor, ME).  These mice 

underwent behavioral testing at 8:00 P.M after being in the ASU Animal facilities 

for one week.  The mice were housed under standard laboratory conditions with a 

light cycle of 6:00 A.M. to 6:00 P.M.  Water and food were available ad libitum.   

 We used data from animals in a previous study (see chapter 3) for 

comparison to the current study.  These animals included 3-5 MRL/lpr, C3H/HeJ 

and MRL/mp mice at 4 months of age.  These mice were housed under similar 

conditions as the current study and also underwent similar behavioral testing.  

 Mice were anesthetized with an intraperitoneal (IP) injection of Nembutal 

sodium solution and blood samples collected.  The blood was allowed to clot and 

then the tubes were centrifuged at 8500 rpm for about 10 minutes.  100 ul aliquots 

of the removed sera were frozen for future analysis.  The body weights of all the 

mice were measured.  The brains of 2 month old C3H/HeJ mice were used for 

preparing integral membrane proteins for the BRAA ELISA. 
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 Animals were maintained in University facilities fully accredited by 

AAALAC and are registered with the USDA APHIS (Registration # 86-R-0002). 

An assurance is on file with the Office for Laboratory Animal Welfare (#3217-

01).  Animal husbandry programs and protocol review are in compliance with 

NIH and USDA standards. 

To detect peptides that were specific to the different CNS manifestations, 

we had to look at the behavioral tests since we needed to split the MRL/lpr group 

into two.  The battery of behavioral tests that we used included the forced swim 

test and the sucrose preference test.  The forced swim test is used to test anti-

depressants and may be a model of depressive-like behavior and the sucrose 

preference test looks at affect and may be a model of anhedonia (i.e., the desire to 

seek out pleasurable stimuli).  Both of these tests have often been used by other 

researchers with the MRL/lpr mice and behavioral abnormalities were observed, 

so therefore we expect these tests to be useful in looking at emotional dysfunction 

in these MRL/lpr mice (Sakic et al., 2005). The MRL/lpr mice are expected to 

have high float time and low sucrose consumption.  That is, however, not always 

the case since some of the MRL/lpr mice will actually do better on one test 

compared to the others in the group. By splitting the MRL/lpr into two groups we 

are able to identify peptides specific to certain behavioral abnormality.  
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BEHAVIORAL TESTING  

SUCROSE TEST  

As previously described, for 24 hours a day and over three days the mice 

were given 3ml of 4% sucrose solution as a training phase (Williams et al., 2010).  

For 24 hours after the training phase the mice were given no sucrose solution.  

The following three days the mice were given 7ml of the 4% sucrose solution for 

1 hour on each day, known as the testing phase.  The amount of sucrose 

consumed on each of the days was recorded and divided by the body weight of 

each animal.  Consumption was used to measure altered behavior in this test.  

 

 FORCED SWIM TEST  

As previously described, using a circular pool filled (5 foot diameter, 2 

feet high) with 25oC water, each mouse was allowed to swim around for 10 

minutes (Williams et al., 2010).  All mice were tested in the same surroundings 

and also lowered into the pool at the same location.  The total amount of time that 

each mouse floated was recorded.  Floating was measured as the absence of 

movement in the tail and hind limbs.  Float time was used as a measure of altered 

behavior in this test. 
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IMMUNOLOGICAL ASSESSMENT 

 

 INTEGRAL MEMBRANE PROTEIN PREPARATION  

The protocol that was used to extract the integral membrane proteins from 

the brains of the mice has been previously described (Narendran and Hoffman, 

1988).  We used integral membrane proteins from a 4 month C3H/HeJ control 

mouse in the BRAA ELISA and Western blotting technique and their 

concentrations were determined using the Bradford Assay (Sigma-Aldrich, USA). 

  

ANTI-DNA AND BRAA ELISA  

We used previously described protocols to determine the levels of BRAA 

and anti-DNA autoantibodies in the sera of the mice (Aotsuka et al., 

1979;Crimando and Hoffman, 1995;Zameer and Hoffman, 2003). 

  

ANTI-DNA ELISA  

Fifty ug/ml of poly-L- lysine (Sigma, USA) dissolved in phosphate buffer 

saline (PBS) was added to the wells of 96-well plates and incubated for 1 hour at 

room temperature.  Using a 0.1% PBS-Tween solution the plates were washed 

three times.  This washing step was performed in between each of the incubation 

steps that will be described below.  Each of the incubations steps were done for 

one hour at room temperature unless noted otherwise.  The plates were then 

incubated with 10ug/ml of calf-thymus DNA (Sigma-Aldrich, USA; purified for 

dsDNA) dissolved in PBS in the odd wells only and PBS was added to the even 
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wells.  In the next incubation step, 100ug/ml of poly-L-glutamate (Sigma-Aldrich, 

USA) dissolved in PBS was added to the plates followed by incubation with a 5% 

bovine serum albumin (BSA) (Sigma-Aldrich, USA) solution dissolved in PBS.  

Mouse sera diluted in PBS was added to the wells and followed by one final 1 

hour incubation with the secondary antibody, goat anti-mouse IgG antibody 

conjugated with peroxidase (Caltag, USA) at a 1/1000 dilution in PBS.  In the 

final step, a solution containing citrate buffer (1.04g/100ml of sodium citrate and 

1.46g/100ml of citric acid (pH =4.4)), 2,2‘-azino-bis(3ethylbenzthiazoline), 

sulfonic acid and hydrogen peroxide was added to each well and incubated for 30 

minutes at 37oC.  The absorbance was read at 405nm using a microplate reader.  

In order to obtain the S-Value, which demonstrates the levels of anti-DNA 

autoantibodies for each sample, the optical density of the control wells was 

subtracted from the optical density of the wells that contain the calf-thymus DNA.  

Sometime the S-Values may be negative, but this can occur because the values are 

all relative to each other. 

 

 BRAA ELISA  

Ten ug/ml of the integral membrane protein extracted from the C3H/HeJ 

mouse brain diluted in PBS was added to the odd wells of 96-well plates and PBS 

was added to the even wells.  All incubation steps were done for 1 hour at room 

temperature.  After each incubation step, the plates were washed three times with 

a 0.1% PBS-Tween solution.  For the second incubation step, a 5% BSA solution 

dissolved in PBS was added to the wells.  Mouse serum diluted in PBS was the 
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third incubation step followed by incubation with a 1/1000 dilution of the 

secondary antibody, goat anti-mouse IgG antibody conjugated with peroxidase 

(Caltag, USA).  In the final incubation step a solution containing citrate buffer 

(1.04g/100ml of sodium citrate and 1.46g/100ml of citric acid (pH =4.4)), 2,2‘-

azino-bis(3ethylbenzthiazoline), sulfonic acid and hydrogen peroxide was added 

to each well and incubated for 30 minutes at 37oC.  The absorbance was read at 

405 nm using a microplate reader and the S-Values calculated in the same manner 

as that performed in the anti-DNA ELISA protocol described above.  

 

 MICROARRAY ANALYSIS 

Microarray slides containing 10,000 randomly generated peptides about 

20-mer in size were blocked with buffer containing mercaptohexanol for 1 hour in 

a humidity chamber (Legutki et al., 2010).  The slides were then washed with 

Tris-buffered saline solution containing Tween (TBST) once and then twice with 

water.  The slides were then centrifuged at 1500 rpm for 5 minutes and a gene 

frame was applied.  A 1/500 dilution of the sera samples in blocking buffer 

without mercaptohexanol was added to the slides in triplicates.  No primary 

antibody was added to some slides as controls.  The slides were then incubated for 

1 hour at 37oC in the humidity chamber.  The slides were then washed three times 

with TBST and three times with water after each of the remaining incubation 

steps.  A 6.67μM (1 nM final concentration) of the secondary antibody, goat anti-

mouse IgG biotinylated secondary antibody (Bethyl, USA), was added to the 

slides and incubated for 1 hour at 37oC.  5nM of streptavidin conjugated with 
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AlexaFluor 555, the tertiary reagent, was added to the slides for 1 hour at 37oC.  

The slides were washed for a final time and spun at 1500 rpm for 5 minutes.  The 

slides were then loaded into the Perkin Elmer Scan Array laser Scanner (543nm 

emission, 565 nm absorption, 75% PMT, 100% laser power) and scanned. 

 When the microarray analysis was performed on the monoclonal BRAA, 

we used a similar procedure to above except the process was done using the 

Tecan HS 4800 Pro Hybridization Station made by Tecan Group Ltd, Mannedorf, 

Switzerland.  Therefore the entire process was automated.  The tertiary antibody 

that was added was 5nM of streptavidin conjugated with AlexaFluor 647.    

 

MONOCLONAL ANTIBODY PRODUCTION   

Monoclonal BRAA were produced using a ClonaCell®-HY Hybridoma 

Kit purchased from STEMCELL Technologies (Vancouver, Canada).  Briefly, 

mouse myeloma cells (Sp2/0-Ag14) were purchased from ATCC (USA) and 

grown to the desired concentration using ClonaCell®-HY Pre-Fusion Medium.  A 

volume containing 2 X 107 cells was removed for fusion.  The spleen of MRL/lpr 

#2 was then removed and the spleen cells teased out.  A volume containing 1 X 

108 cells was removed for fusion.  Cell viability was determined using trypan 

blue.  The spleen cells and myeloma cells were combined, centrifuged for 10 

minutes at 1500 rpm and then all the supernatant was removed.  The cells were 

then fused using ClonaCell®-HY PEG Solution (PEG).  The PEG was then 

removed, followed by the addition of ClonaCell®-HY Medium B and 

ClonaCell®-HY Medium C.  The cells were then placed in the incubator 
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containing 5% CO2 at 37oC.  The following day, the cells were removed, 

centrifuged for 10 minutes at 1500 rpm, re-suspended in ClonaCell®-HY 

Medium C and then added to ClonaCell®-HY Medium D.  The cells were then 

plated out onto petri dishes and placed in the incubator for 14 days.  Visible 

colonies were removed from the petri dishes and suspended in 150 μl of 

ClonaCell®-HY Medium E in 96-well plates.  The wells were tested for the 

presence of BRAA using ELISA technique.  The cells that were positive were 

transferred to 24-well plates.  If the cells were still positive for production of 

BRAA, the cells were transferred to petri dishes.  The cells were allowed to 

expand and aliquots of the different cells were frozen at -80oC.  Using this kit, 5 

monoclonals were produced and tested using different techniques such as Western 

blotting and microarray in order to discover as much information about the 

identity of the proteins that the monoclonal BRAA are binding to.  

 

WESTERN BLOTTING  

The Western blotting protocol used has been previously described 

(Williams et al., 2010).  Briefly, brain membrane antigen from a 4 month 

C3H/HeJ was loaded in the wells of a 12% resolving and 4% stacking gel.  The 

gel ran for 2 hours at 102 volts.  The gel was then transferred to nitrocellulose 

membrane (BioRad Laboratories, CA) for 25 minutes at 98 volts.  The membrane 

was then blocked overnight at 4oC in blocking solution containing 0.1% Tris-

buffered saline with Tween-20 (TBST), 5% bovine serum albumin (BSA) 

(Sigma-Aldrich, USA) and 1% Casein.  The membrane was then cut into strips 
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and incubated with the primary antibodies (the 5 monoclonal antibodies, sera 

from MRL/lpr #2 and mouse anti-NK-1R (Zymed, USA) overnight at 4oC.  The 

membranes were then washed 3 times for 10 minutes using 0.5% TBST.  Then 

they were incubated with the secondary antibody, goat anti-mouse IgG HRP 

conjugated (Caltag, USA) at 1/1000 dilution overnight at 4oC.  The membranes 

were washed 3 times for 10 minutes with the 0.5% TBST.  The blots were 

visualized using a Chemiluminescence kit (Roche, USA) and detected on X-ray 

film (Kodak, New York).  For some of the strips it was necessary to wash more 

times in order to better see the bands.  The size of the bands were detected from a 

linear graph plotted using the molecular weight and distance traveled by the bands 

of the protein marker (Fermentas, USA).  

   

STATISTICS   

Standard microarray statistical methods were utilized to identify peptides 

that correspond to the disease conditions of interest (Stafford, 2009;  Stafford and 

Brum, 2007).  Each array of 10,000 peptides was tested for significant peptides by 

using either a Welch-corrected t-test or 1-way ANOVA with a FWER (family-

wise error rate) adjustment of 5% ensuring that all peptides selected are 

significant given multiple testing correction.  T-tests were typically done using 

multiple control animals against multiple animals at a particular disease state.  

Each sample was run on three technical replicates, the number of biological 

replicates varied per experiment.  
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Classification and clustering:  each set of peptides that corresponded to 

those that reacted to antibodies differentially between control animals and those at 

a certain disease state were used to create heatmaps –hierarchical clusters of 

peptides against hierarchical clusters of samples using Euclidean distance as the 

similarity measure.  Each heatmap shows how well the animals group based on 

the reactivity of the selected peptides.  Note that we selected all significant 

peptides, rather than only those that were higher in the animals with disease, so 

some peptides may be lower in the disease state rather than only higher.  

Classification was done using linear discriminant analysis as the classifier and t-

test or ANOVA as the feature selection method.  Cross-validation was done using 

Leave One Out as per (Stafford and Brun, 2007). 

In order to determine matches to natural proteins, the peptides were 

aligned individually to all proteins in the mouse proteome, using a gapless local 

alignment and scoring based on physiochemical similarity.  Alignment scores 

were summed along each protein and proteins were ranked by their maximum 

score.  The same numbers of peptides were randomly selected from the entire 10K 

to estimate the null distribution of these scores.  An empirical one-sided p-value 

was reported based on the precentage of proteins having higher scores with the 

randomly selected peptide sets.  This analysis was performed using an application 

called guitope (Halperin, et al., manuscript in preparation).  Halperin and 

colleagues have previously shown that a similar method of aligning random-

sequence peptides selected from array experiments has shown some value in 

predicting epitopes (Halperin et al., 2011). 
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Statistical significance for figures 1, 2, 3, 4 and 5 were determined using 

PASW Statistics 18.  We used Model I 1-way ANOVA and LSD post-hoc 

analysis. 
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RESULTS 

LUPUS 

 DISEASE ACTIVITY 

The level of anti-DNA autoantibody levels was measured for the 9-10 

MRL/lpr and MRL/mp in the current study to confirm disease activity.  ANOVA 

revealed that there was a significant difference between the groups (F=44.067, p < 

0.001).  LSD post-hoc analysis at p < 0.001 revealed, as expected, that the 4 

month MRL/lpr had significantly greater levels of anti-DNA autoantibody levels 

compared to the 4 month MRL/mp, 1.5 month MRL/lpr and 1.5 month MRL/mp 

(Fig. 1).  This increased level of anti-DNA autoantibodies in the 4 month 

MRL/lpr is an indicator of disease activity in these mice (Crimando and Hoffman, 

1992).  The 4 month C3H/HeJ from Study 1 were used as a control group in both 

studies since these are non-autoimmune mice.  The 4 month MRL/mp from Study 

1, was useful in determining possible predictive peptides of lupus since they are 

lupus-prone mice but develop the disease at a much later time compared to the 

MRL/lpr.  Therefore by comparing Study 1 and Study 2 (the current study) we 

were able to begin a validation of which peptides were diagnostic, as well as 

begin an identification of probable predictive peptides. 

 

MICROARRAY ANALYSIS 

VALIDATING DIAGNOSITC PEPTIDES OF LUPUS  

In order to validate the diagnostic peptides of lupus identified in study 1 

(chapter 3), we needed to see if the same peptides showed up as being diagnostic 



  136 

in study 2.  In order to do this we look at binding intensities on the microarrays 

when the animals have disease manifestations; therefore, we looked at the average 

binding intensities of the 4 month MRL/lpr.  We divided the average binding 

intensities of these 4 month MRL/lpr by that of the average binding intensities of 

the 4 month C3H/HeJ.  This picked out antibodies favoring autoimmune mice, but 

in order to be more conservative in our selection of diagnostic peptides, we 

selected only those peptides where the ratios were greater than the mean plus 1.5 

SD of the binding intensity of the 4 month C3H/HeJ.  There were 172 possible 

diagnostic peptides that were detected after this analysis for our current study.  In 

study 1, we had also identified possible diagnostic peptides of lupus using the 4 

month MRL/lpr in that study.  In order to validate that these were diagnostic 

peptides, and to pare down the number of diagnostic peptides, we first took the 

average binding intensities of the 4 month MRL/lpr from study 1 and divided 

them by the average binding intensities of the 4 month C3H/HeJ from study 1.  

Then we chose those peptides with ratios greater than the mean plus 1.5 SD of the 

binding intensity of the C3H/HeJ.  There were 193 possible diagnostic peptides of 

lupus detected.  When comparing the 193 possible diagnostic peptides of lupus 

from Study 1 and the 172 possible diagnostic peptides of lupus from the current 

study, 58 peptides were found to be in common.  Since these 58 peptides are 

reoccurring in both studies, they are validated as being diagnostic (Table 1). Of 

these 58, 3 were found to be in common with the predictive peptides of lupus, 23 

were found to be in common with the diagnostic peptides of altered behavior in 

the forced swim test (discussed below) and 20 were found to be in common with 
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the possible predictive peptides of altered behavior in the forced swim test (Table 

1).  Possible matches to natural mouse proteins using our computer analysis 

program include 40S ribosomal protein S10 (sp|P63325), 60S ribosomal protein 

L22- like 1 (sp|Q9D7S7), Histone H3-like centromeric protein A (sp|O35216 ), 

Follistatin-related protein 4 (sp|Q5STE3) and H-2 class II histocompatibility 

antigen, A-D alpha chain (sp|P04228). 

   

IDENTIFYING PREDICTIVE PEPTIDES OF LUPUS  

 Microarray analysis was performed on 10 of the 1.5 month MRL/lpr and 9 

of the 4 month MRL/lpr.  Overall, greater binding intensities were detected on the 

microarray slides for the 4 month MRL/lpr compared to the 1.5 month MRL/lpr.  

However there were still slightly greater binding intensities for some of the 

peptides for the 1.5 month MRL/lpr compared to the control C3H/HeJ group from 

Study 1.  In order to identify possible predictive peptides of lupus, long before 

any manifestations would be observed, we compared the binding intensities of the 

1.5 month MRL/lpr to that of the non-autoimmune 4 month C3H/HeJ from Study 

1.  The idea is that predictive peptides (actually antibodies binding to these 

peptides) will be those found in autoimmune mice, but not normal mice.  We 

divided the average binding intensities of 1.5 month MRL/lpr by that of the 

C3H/HeJ and selected peptides where this ratio was greater than the mean plus 

1.5 SD of the binding intensities of the C3H/HeJ.  After this analysis 518 possible 

predictive peptides of lupus were detected in the current study.  Since the 4 month 

MRL/mp are also lupus-prone but much later on in their life, at 4 months of age 
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they can also be used to detect predictive peptides due to no manifestations being 

present at that time.  We performed the same analysis where we took the binding 

intensities of the 4 month MRL/mp (from Study 1) and divided them by the 

binding intensities from the 4 month C3H/HeJ and then chose any peptides where 

the ratio was greater than the mean plus 0.25 SD of the binding intensities of the 

C3H/HeJ.  From this analysis 143 predictive peptides of lupus were detected from 

Study 1.  When comparing the 143 possible predictive peptides of lupus from 

Study 1 and the 518 possible predictive peptides from the current study, 18 

peptides were found to be in common between these two groups.  These 18 

peptides are the ones identified as being predictive peptides of lupus (Table 2).  

Possible matches to natural mouse proteins include complement C1q tumor 

necrosis factor-related protein 6 (sp|Q6IR41), Histone H3-like centromeric protein 

A (sp|O35216), Alpha-actinin-2 (sp|Q9JI91) and 60S ribosomal protein L22 

(sp|P67984). 

 

CNS-LUPUS 

 BRAA 

 We also measured the levels of BRAA in the sera of the mice since BRAA 

levels are expected to be higher in the 4 month MRL/lpr if they are one of the 

causes of the neuropsychiatric manifestations of lupus.  ANOVA revealed that 

there was a significant difference between the groups (F=9.746, p < 0.001).  LSD 

post-hoc analysis at p < 0.001 revealed that the 4 month MRL/lpr had greater 

BRAA levels compared to the 4 month MRL/mp, 1.5 month MRL/lpr and 1.5 



  139 

month MRL/mp in the current study (Fig. 2).  In study 1, the 4 month MRL/lpr 

also had significantly greater levels of BRAA compared to the 4 month MRL/mp 

and 4 month C3H/HeJ (Chapter 3).  

 

 BEHAVIOR TESTING 

In order to look at some of the neurobehavioral manifestations of the lupus 

mice, we performed the sucrose preference test and the forced swim test, which 

are both considered to be measures of affective dysfunction in murine models of 

lupus.  In the sucrose preference test a significant difference was found between 

the groups (F=12.950, p < 0.001).  Post-hoc analysis at p < 0.05 showed that the 4 

month MRL/lpr consumed significantly less sucrose compared to the 1.5 month 

MRL/mp and 4 month MRL/mp (Fig. 3).  There was, however, no difference 

between the 4 month MRL/lpr  compared to the 1.5 month MRL/lpr, which may 

mean that this manifestation is present early on even before any of the overt signs 

of lupus disease (Sakic et al., 1997).  In the forced swim test, there was an overall 

significant difference between the groups (F=11.057, p < 0.001) and post-hoc 

analysis at p < 0.05 revealed that the 4 month MRL/lpr floated significantly more 

than the 4 month MRL/mp, 1.5 month MRL/mp and 1.5 month MRL/lpr (Fig. 4).  

This indicates that the 4 month MRL/lpr were displaying altered behavior in the 

forced swim test.  In study 1, the 4 month MRL/lpr also had significantly greater 

float time compared to the 4 month MRL/mp and 4 month C3H/HeJ making them 

a good comparison for this behavior (shown in Chapter 3).   
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GROUP SEPARATION BASED ON THE FORCED SWIM TEST 

Overall, the 4 month MRL/lpr had significantly greater float times 

compared to all the control groups; however, there was a large variation in this 

behavioral performance within this group with some mice doing worse in this test 

versus others, so we split the mice in this group into two.  ANOVA revealed that 

there was a significant difference between the groups (F=30.253, p < 0.001).  Of 

the nine mice in the 4 month MRL/lpr group, numbers 5, 6, and 7 were grouped 

as low floaters, due to being similar to the control groups. This group of low 

floaters was significantly different compared to the 4 month MRL/lpr that were 

high floaters (p < 0.001).  Numbers 1, 2, 4, 8, 9 and 10 were grouped as high 

floaters.  This group of mice, having very high float times, were significantly 

different from all the other groups (1.5 month MRL/lpr, 1.5 month MRL/mp, 

4month MRL/mp and 4 month MRL/lpr low floaters) (p < 0.001) (Fig. 5). 

In study 1, we had also split the 4 month MRL/lpr into 2 groups since 

some animals did worse in this test compared to others.  Overall, the 4 month 

MRL/lpr high floaters had significantly higher float time compared to the 4 month 

MRL/lpr low floaters, 4 month MRL/mp and 4 month C3H/HeJ (data not shown).  

 

 MICROARRAY ANALYSIS  

 Since we were able to split the 4 month MRL/lpr into two groups for both 

study 1 and study 2 for the forced swim test, we were able to validate diagnostic 

peptides from Study 1 and identify possible predictive peptides of this behavior 

from our current study. 



  141 

 

VALIDATING DIAGNOSTIC PEPTIDES FOR ALTERED BEHAVIOR 

IN THE FORCED SWIM TEST  

 The 4 month MRL/lpr were split into two groups as mentioned above for 

the current study.  We then selected peptides where the 4 month MRL/lpr high 

floaters had greater binding intensities than the 4 month MRL/lpr low floaters, to 

get the highest of the antibodies in the autoimmune strains of mice binding to the 

peptides in the microarray.  Next, the binding intensities of these peptides were 

divided by their respective 4 month C3H/HeJ binding intensities.  We then 

selected only peptides that had ratios with greater binding intensities than the 

mean plus 1.5 SD of the binding intensities of the 4 month C3H/HeJ.  This 

allowed us to conservatively identify those peptides with reactivity to 

autoimmune mouse sera that were greater than non-autoimmune mice, picking out 

potentially diagnostic peptides.  From study 1, there were 261 possible diagnostic 

peptides of depressive- like behavior detected.  In this current study 190 possible 

diagnostic peptides of depressive- like behavior were detected (Fig. 6).  To 

―validate‖ the diagnostic peptides from study 1, we compared those to the ones 

seen in the current study, and found that there were 39 in common.  These 39 

peptides are therefore partially validated as being diagnostic peptides of 

depressive-like behavior in lupus (Table 3), more studies would have to be run to 

fully validate the selected diagnostic peptides.  When using our computer analysis 

program to determine matches to natural proteins using all 39 diagnostic peptides 

of depressive- like behavior, some of the resulting proteins that were of interest to 
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use include metabotropic glutamate receptor 4 (sp|Q68EF4), 60s ribosomal 

protein L22- like 1 (sp|Q9D7S7), Calcium/calmodulin-dependent protein kinase 

kinase 1 (sp|Q8VBY2) and 40S ribosomal protein S9 (sp|Q6ZWN5).   

 

 IDENTIFYING PREDICTIVE PEPTIDES FOR DEPRESSIVE-LIKE 

BEHAVIOR 

 In order to determine possible predictive peptides of altered behavior in 

the forced swim test, we split the 1.5 month MRL/lpr into two groups identical to 

the grouping that we used for the 4 month MRL/lpr for the forced swim test.  The 

logic here is that these (1.5 month) mice would later (at 4 months) display altered 

behavior in the forced swim test.  We classified these as ―1.5 month MRL/lpr high 

floaters‖ and ―1.5 month MRL/lpr low floaters‖.  In order to pick out predictive 

peptides, we averaged the binding intensities for the 1.5 month MRL/lpr in each 

of the 2 groups and chose peptides where the binding intensities for the 1.5 month 

MRL/lpr high floaters was greater than the 1.5 month MRL/lpr low floaters.  

Then the binding intensities of these peptides was divided by their respective 

binding in the 4 month C3H/HeJ and then we selected only those peptides where 

the ratios were greater than the mean plus 1.5 SD of the 4 month C3H/HeJ.  From 

these analyses we selected 354 possible predictive peptides of altered behavior in 

CNS-lupus (results not shown due to large number of peptides).  Of these 354 

possible predictive peptides of altered behavior, 15 were found to be in common 

with the possible diagnostic peptides of altered behavior in the forced swim test, 

20 were found to be in common with the possible diagnostic peptides of lupus and 
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8 were found to be in common with the possible predictive peptides of lupus.  

These are identified in the respective Tables.  

 

 CHARACTERIZING POTENTIALLY PATHOGENIC 

AUTOANTIBODIES 

 Another important objective is to identify ―pathogenic‖ BRAA.  One way 

this might be done is to produce monoclonal antibodies from mice displaying 

behavioral manifestations and use the microarray technique to help characterize 

these antibodies.  We produced some monoclonal antibodies in order to get a 

preliminary idea of how this might work.  The five monoclonal BRAA (labeled 

F9, G10, G4, D1 and D9) that were produced had S-Values above 0.1 OD on the 

BRAA ELISA, which we believe shows high reactivity of these antibodies (Fig. 

7).  The mouse, MRL/lpr #2 that was used to produce these monoclonals also had 

high levels of BRAA (Fig. 7).  Next, the approximate molecular weight of the 

targets of these BRAA was determined using Western blotting (Fig. 8).   

Using our microarray technology along with Western blotting results we 

tried to determine the best possible matches to natural proteins.  In Table 4, we 

have included six possible protein matches for each of the monoclonals using a 

computer analysis program and the approximate molecular weights of the targets 

based on the Western blot (proteins of interest to us have been highlighted and 

will be discussed).  Starting with D9, the approximate molecular weight of its 

target was determined to be 53 kDa.  Two interesting natural protein matches 

using our computer analysis program was the D (1B) dopamine receptor (DRD5) 
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and Galanin receptor type 3.  The detected molecular weight of D (1B) dopamine 

receptor (DRD5) is ~54 kDa (The UniProt Consortium, P21918) (Fig. 8).  We 

also detected a ~39 kDa band using the supernatant from D9, which has been 

detected at ~40 kDa by other researchers when using anti-serum to this receptor 

(Centonze et al., 2003).   

Using D1 on the Western blot, we detected two bands, one band at 55 kDa 

and a second at 95 kDa (Fig. 8).  After microarray analysis, possible matches of 

interest to us could be the gamma-aminobutyric acid receptor subunit rho-1 

(GABRR1) and endothelin B receptor.  GABRR1 has a molecular weight of ~56 

kDa (The UniProt Consortium, P24046).  The 95 kDa band that was detected, we 

believe is some kind of modification to the protein or a dimer between this protein 

and another Gamma-aminobutyric acid receptor subunit.  On the antibody data 

sheet for GABRR1 antibody, two bands were detected at 55 kDa and ~95 kDa 

(ProSci Incorporated, USA). 

For G10 on the blot, we detected one band at ~69 kDa (Fig. 8).  This band 

could possibly be leucine-rich repeat-containing protein 4C or matrix 

metalloproteinase-14.  With BRAA G4 a band at ~69 kDa was seen on the blot 

(Fig. 8).  This protein could possibly be GRB2-associated-binding protein 2 or 

vesicular glutamate transporter 3.  Lastly, for F9, on the blot, a band at ~158 kDa 

was detected (Fig. 8) and identified using the microarray as possibly being 

synaptojanin-2, epidermal growth factor receptor or glutamte [NMDA] receptor 

subunit epsilon-3.         
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Immunological Assessment

Anti-DNA Autoantibody Levels

Figure 1. Williams et al. 2011

  

Fig. 1.  The level of anti-DNA autoantibodies was measured for the MRL/lpr 

(N=9-10) and MRL/mp at 1.5 and 4 months of age.  ANOVA analysis revealed 

that there was a significant difference between the groups (F=44.067, p < 0.001).  

LSD post-hoc analysis at p < 0.001 revealed that the 4M MRL/lpr had 

significantly greater levels of anti-DNA autoantibody levels compared to the 4M 

MRL/mp, 1.5M MRL/lpr and 1.5M MRL/mp. 
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Immunological Assessment

BRAA Levels

Figure 2. Williams et al. 2011

 

 

Fig. 2.  The level of BRAA was measured in the MRL/lpr and MRL/mp at 1.5 and 

4 months of age and ANOVA analysis revealed that there was a significant 

difference between the groups (F=9.746, p < 0.001).  Post-hoc analysis at p < 

0.001 revealed that the 4M MRL/lpr had significantly greater levels of BRAA 

compared to the 4M MRL/mp, 1.5M MRL/lpr and 1.5M MRL/lpr.  
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Behavioral Dysfunction

Sucrose Test

Figure 3. Williams et al. 2011

 

 

Fig. 3.  The level of sucrose consumption was measured and a significance 

difference was determine between the groups (F=12.950, p < 0.001).  Post-hoc 

analysis at p < 0.05 showed that the 4M MRL/lpr consumed significantly less 

sucrose than the 1.5M MRL/mp and 4M MRL/mp, but not significantly less than 

the 1.5M MRL/lpr.  There was also not a significant difference between 1.5M 

MRL/lpr and 1.5M MRL/mp.  
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Behavioral Dysfunction

Forced Swim Test

Figure 4. Williams et al. 2011

 

 

Fig. 4.  For the forced swim test there was an overall significant difference 

between the groups (F=11.057, p < 0.001) and post-hoc analysis at p < 0.05 

revealed that the 4M MRL/lpr floated significantly longer than the 1.5M 

MRL/lpr, 1.5M MRL/mp and 4M MRL/mp.  The 1.5M MRL/mp was 

significantly different than the 4M MRL/mp.  
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Splitting Groups Forced Swim Test

Figure 5. Williams et al. 2011

 

Fig. 5. The 4M MRL/lpr were separated into two groups, a group of high floaters 

(mouse numbers 1, 2, 4, 8, 9 and 10) and low floaters (mouse numbers 5, 6 and 

7), based on their float times.  In the figure above the numbers on the x-axis 

represents: 1) the 1.5M MRL/lpr, 2) the 1.5M MRL/mp, 3) the 4M MRL/lpr low 

floaters, 4) the 4M MRL/lpr high floaters and 5) the 4M MRL/mp.  ANOVA 

analysis revealed that there was a significant difference between the groups 

(F=30.253, p < 0.001).  Post-hoc analysis at p < 0.001 showed that the 4M 

MRL/lpr low floaters were only significantly different from the 4M MRL/lpr high 

floaters.  The 4M MRL/lpr high floaters were also significantly different from the 

1.5M MRL/lpr, 1.5M MRL/mp and 4M MRL/mp. 
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Fig. 6. Graph showing the 190 peptides that were determined to be possibly 

diagnostic of altered behavior in the forced swim test in study 2.  The graph 

shows the peptides with greater binding intensities for the 4 month MRL/lpr high 

floaters (which had greater binding intenstities that the 4 month C3H/HeJ and 4 

month MRL/lpr low floaters) (group on left) as compared to the 4 month MRL/lpr 

low floaters (group on right).  
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Figure 7. Williams et al. 2011
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Fig. 7. BRAA ELISA results of our potential pathogenic monoclonal BRAA.  The 

graph shows that all of these monoclonal had high levels of reactivity (above 0.1 

OD).  Non-reactive monoclonal antibodies show S-values at 0 or very close to 0. 
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Western Blotting Results of Monoclonal BRAA
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Figure 8. Williams et al. 2011

 

 

Fig. 8. Western blotting results showing the banding pattern of the five potential 

pathogenic monoclonal BRAA. 
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Table 1: Diagnostic Peptides of Lupus

Table 1.  Williams et al. 2011

Study 1                   

4MLPR/ 4MC3H

Study 2              

4MLPR/ 4MC3H

ADGSNWAARHWIPRMPRGSC 3.404555813 2.332923454

AMSFHRGWDRKYRMSNIGSC 2.599608572 2.484332734 √

AQLGMYGVYRPVEIWPDGSC 2.872747926 2.519910261 √ √

ATDKTRFHFLYDYIRSNGSC 2.399571763 2.880058556

DDTLYNAHKHLKWFGFIGSC 2.515491313 3.037141329 √

EATGNDWVITRGGMRRYGSC 2.556966833 3.171502541

EMNNGRFHRWAQQERHPGSC 2.880990297 2.507493739

EMSWPRKPWRSKYYHEIGSC 2.353443025 2.435039315 √ √

ENILPTGRDRVAGWYRYGSC 2.825255829 2.675812354 √

EPKLWFKPRRGGYRHRHGSC 2.679076813 2.434485702 √

ERIYRDHFIHEHKANIIGSC 2.389911067 2.665777953 √

EWYYDPRGGTGSFYMRTGSC 2.826268307 3.144085944 √

FNRDHREFFEHFGFDEPGSC 4.422628739 2.314403551 √

FPGDRRSGRAFPEVRWRGSC 2.66924554 2.635674506 √

FTLMTGKKMIVWDWQRDGSC 2.564037604 2.381362551 √

FWEHHVFHSSRRDGWASGSC 2.951177541 2.464272834

GLVSRIPSVPKHDEWTFGSC 2.38601487 2.329539073 √

GRVPQDFNTPSFDRVFWGSC 2.513399666 2.788409089 √

GWLKAMGPFPWGRLVQNGSC 2.681235945 3.008923213 √ √

IEAMGPSQRYRGRYELIGSC 2.377783579 2.371993113

IGQRLKGKDENIRFENFGSC 2.347244686 3.594919118 √ √

ILDRRETAWNEHFSKFRGSC 2.781744911 2.979425643 √

KAMSIHQLANPFDWHFWGSC 2.316559723 2.705671849

KGYSIRHTEHAWPDIYVGSC 2.579657821 3.104342319 √

KLLMTDFMAKWPRNGWYGSC 3.325866727 2.467180958 √ √

KQHPIYIAHFLGTIVKRGSC 2.850248411 2.447758339

KVDYVNQWARRRIFMAPGSC 2.933406801 2.826782754 √

KWLQTQLNSAMYYIRLYGSC 3.442674101 2.816729922

LAFAWKPDPWQSLVTKFGSC 3.276131888 2.698697705 √

LFSFKEPQPFMWNKWQQGSC 3.390564552 2.759114763

LRKISRGIWGMREAGEFGSC 2.476731381 3.603591875

MFARAHNFDWVKWPLNRGSC 2.705759435 2.921507814 √

MWMSWGWAMLWLNGMMQGSC 4.177408974 2.432118292

PLVHPWYPTYIPGRHNMGSC 3.630154471 2.495553997 √

PMLFWKWHRQLNQQGRRGSC 2.75721307 2.335852256 √ √

PNPEAWARSFKRWNRKFGSC 3.313709957 3.508821684 √

PSAWEWIPRNQHLNKFRGSC 3.112407959 2.391409291 √ √

PTWRLPPYTDPPKYWHPGSC 4.201093721 3.373945327

PYRFDWAALPLKKPMWRGSC 2.40624731 2.565057719 √

QKKPPDYRTWHHPFYNGGSC 2.604969331 2.754487673 √

QKRWLQLPRNLMWRRETGSC 2.664022568 2.529899901 √

QRKIFFNYKLHKIWFTAGSC 2.362843141 2.462441712

QSHWFYDRTKDVYPGRHGSC 3.992759382 2.329563875 √

RAAMHESLKNWRVYREWGSC 2.388166554 2.725739509 √ √

RPAFDKFADSYWYPPNLGSC 2.471919459 2.483799875

RRLTKGIIRQYESQLWDGSC 2.38838007 3.049171397

RTIYRWSQGALSWYMDAGSC 2.443171562 2.802208961 √

SDQVIRGFKDVWQYKWFGSC 3.018394899 2.579167723

SRDAGLQYPYHRWLTGWGSC 2.452812911 2.732221588

SRLEQQHFATIPQIWYTGSC 2.462810107 2.571973953

SRQGLHYNLDGLKPIFPGSC 2.652106822 2.808739776 √

TLQRTWRRPLLEDLPWWGSC 5.695014524 3.855075257

VQERMHNRTWKRFGGSMGSC 2.754519694 2.496803929 √

WKPIWHSFHKRRPQILNGSC 2.50380818 2.372369774 √ √

WNGPEWKYSEKSKRILFGSC 2.445136421 2.433467124 √

WSYKYKKKQAWDWPWDPGSC 2.443311505 2.436968425 √

WTWPSIRFVKGEEYGRFGSC 2.991053751 2.626530982

YYNVQQVDRWVKLQWGLGSC 2.441114219 2.553038205 √

In Common 

with 

Predictive 

Peptides of 

Depressive-

Like Behavior

Binding Ratios

Peptide Sequence

In Common 

with 

Predictive 

Peptides of 

Lupus

In Common 

with 

Diagnostic 

Peptides of 

Depressive-

Like Behavior
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Table 2. Predictive Peptides of Lupus

Table 2. Williams et al. 2011

Study 1 

MP/C3H

Study 2     

1.5M LPR/C3H

DKFHYWMYMLYGINDKIGSC 2.122578617 2.341589487

DKLWKQIWTERHFMSHKGSC 1.56585119 4.3041941 √

DWDSRQINPHIIHHVGRGSC 1.412922851 2.776999584

EEHAHNKLFWWHRSRALGSC 1.605761133 2.522392064 √

EMSWPRKPWRSKYYHEIGSC 1.463541142 3.359490756 √ √

ENILPTGRDRVAGWYRYGSC 1.512851886 3.095766385 √

FNRDHREFFEHFGFDEPGSC 1.403104158 3.610817264 √

GYNYWIVEWDQDQWLMNGSC 1.39497628 2.759472191

HWKRRHKHKWPKRHPHKGSC 1.915619411 2.63694364

KIWAMRKPRYQYWNQPAGSC 1.407379051 2.859787278 √

KWDHGQNGLFPPMHYIPGSC 1.544327953 3.07086271

LEAHYKRSMHAQNWWEAGSC 1.406975222 2.595243258 √

QYLWWQMLKIEWNSTYAGSC 6.223795435 2.613516832 √

RHWYQDGSPLLAPVYKVGSC 1.480252182 3.07210387

SYQRENESDEEEKNNEDGSC 1.638884707 2.375427636

VEDNYGVTLRQPKYMGWGSC 1.406415063 2.363605066 √

WNAMGKWKAMVDKTGDFGSC 2.101647607 2.402774023 √

WNIHERHRFDQPYDYGHGSC 1.490400579 2.85033043

In Common 

With 

Diagnostic 

Peptides of 

Lupus

Binding Ratios

Peptide Sequence

In Common 

with 

Predictive 

Peptides of 

Depressive-

In Common 

with 

Diagnostic 

Peptides of 

Depressive-
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Table 3: Diagnostic Peptides of Altered Behavior in the Forced Swim Test

Table 3. Williams et al. 2011

Study 1 

4M LPR 

High 

Floaters/ 

4MC3H

Study 2 

4M LPR 

High 

Floaters/ 

4MC3H

AGAFRERRYKPMMWLHVGSC 2.3585698 3.2438923 √

AGVRHKFHPYLMQFRRHGSC 2.4804174 2.4405015

AQLGMYGVYRPVEIWPDGSC 3.2461162 2.5778561 √ √

DDTLYNAHKHLKWFGFIGSC 2.7148917 3.2115472 √

EKFKRPRWPHLPFTHWDGSC 2.6595031 2.459389

EPKLWFKPRRGGYRHRHGSC 2.8665683 3.0177305 √

EPSLQVITEYNINFLTIGSC 2.3961576 3.031862 √

EQEDYDDDEEQEQDEDDGSC 2.3678429 2.3572539 √

ERNRRESDSKERKNYDHGSC 3.2522315 2.6460973

FPGDRRSGRAFPEVRWRGSC 3.2688023 2.7553224 √

GFHGPGMLGKTGRLSYGGSC 2.7249439 2.4930268

GLVSRIPSVPKHDEWTFGSC 2.4475854 2.4896951 √

GRVPQDFNTPSFDRVFWGSC 2.720075 2.8850922 √

GWLKAMGPFPWGRLVQNGSC 2.9327554 3.1019225 √ √

IGQRLKGKDENIRFENFGSC 2.3991006 4.2322413 √ √

ILDRRETAWNEHFSKFRGSC 3.3735432 3.2197232 √

IPDGWLKNVYRVRVPWPGSC 2.6438333 2.340745

IRFVAILVFVIIILIARGSC 2.3412987 2.9533411 √

KLLMTDFMAKWPRNGWYGSC 3.7772183 2.7224506 √ √

KTHHSMWKGRITHELFAGSC 2.4523179 2.5201615 √

KVDYVNQWARRRIFMAPGSC 3.274227 3.3530846 √

LAFAWKPDPWQSLVTKFGSC 3.4876927 2.7242745 √

PMLFWKWHRQLNQQGRRGSC 3.1315924 2.4418162 √ √

PSAWEWIPRNQHLNKFRGSC 3.3805445 2.7599227 √ √

PYRFDWAALPLKKPMWRGSC 2.565745 3.1616486 √

QKKPPDYRTWHHPFYNGGSC 3.0421354 3.0142199 √

QKRWLQLPRNLMWRRETGSC 2.9189665 2.7744303 √

QRVPIVKWLLWEPRALPGSC 2.9902886 2.4816832

QSAYHNHRMKWRKIGIEGSC 2.4692871 3.2059303 √

QSHWFYDRTKDVYPGRHGSC 4.7885077 2.6374662 √

RAAMHESLKNWRVYREWGSC 2.487184 2.9067771 √ √

SRQGLHYNLDGLKPIFPGSC 2.7656199 3.3371676 √

SSELDFRKYSFYVHRPDGSC 2.7384221 2.5383546

TLNKRRSWRDGFTADEYGSC 2.3085759 2.3886609

VDARMETFYDMQYPYYLGSC 2.3683189 2.4565583 √

WKPIWHSFHKRRPQILNGSC 3.0463089 2.7121597 √ √

WRTKAAMKWQKYQREHRGSC 2.597044 2.6153741

WSYKYKKKQAWDWPWDPGSC 2.9343494 2.7360999 √

YYNVQQVDRWVKLQWGLGSC 2.6651713 2.6993872 √

Peptides Sequence

Binding Ratios
In Common 

with 

Predictive 

Peptides of 

Lupus

In Common 

with 

Diagnostic 

Peptides of 

Lupus

In Common 

with 

Predictive 

Peptides of 

Depressive-

Like Behavior
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Table 4: Possible Natural Protein Matches for Five Monoclonal BRAA

Table 4. Williams et al. 2011

Monoclonal Antibody Protein Name

D1 MLX-interacting protein 

D1 Endothelin B receptor 

D1 Gamma-aminobutyric acid receptor subunit rho-1 

D1 CAS1 domain-containing protein 1 

D1 Disintegrin and metalloproteinase domain-containing protein 1a 

D1 Protein tweety homolog 3 

G4 GRB2-associated-binding protein 2 

G4 Diacylglycerol kinase epsilon 

G4 Synaptotagmin-10 

G4 Differentially expressed in FDCP 6 

G4 Vesicular glutamate transporter 3 

G4 Carbohydrate sulfotransferase 15 

D9 Vacuolar protein sorting-associated protein 4B 

D9 Transmembrane protein 164 

D9 Cytohesin-1 

D9 Galanin receptor type 3 

D9 D(1B) dopamine receptor 

D9 Fas apoptotic inhibitory molecule 2 

F9 Serine/threonine-protein kinase TAO2

F9 Epidermal growth factor receptor 

F9 Glutamate [NMDA] receptor subunit epsilon-3 

F9 Nuclear pore complex protein Nup155 

F9 Synaptojanin-2 

F9 Astrotactin-1 

G10 Autophagy-related protein 9A 

G10 Leucine-rich repeat-containing protein 4C 

G10 Matrix metalloproteinase-14 

G10 Alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase A 

G10 N-acetylgalactosaminyltransferase 7 

G10 Tyrosine-protein kinaseFyn 

Highlighted proteins are of interest.
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DISCUSSION 

 We are currently characterizing antibodies in three categories: 1) 

Diagnostic, 2) Predictive, and 3) Pathogenic.  Diagnostic (auto)antibodies are 

simply those autoantibodies which can be reliably used for diagnosing a specific 

disease.  Predictive (auto)antibodies are those which can predict the future onset 

of that disease long before it occurs.  Finally, pathogenic (auto)antibodies are 

those which are responsible for pathogenic mechanisms in the disease causing 

symptomatology.  There is probably a good overlap between these 3 categories, 

but they can also be different.  Thus, diagnostic antibodies need not be predictive 

(although they can be), and predictive antibodies need not be diagnostic.  

Likewise, pathogenic antibodies need not be predictive, although they will almost 

certainly be diagnostic.  The focus of this study was on the central nervous system 

manifestations of lupus. 

Based on the above, our first goal in this (and our previous) study was to 

create a detection kit to diagnose and predict lupus and its CNS manifestations 

using a unique, high- throughput microarray technology.  This technology has 

been used in other studies to determine binding patterns specific to that disease, 

and we expect that for each disease there will be a different binding pattern that 

will allow us to distinguish one illness from another (Boltz et al., 2009; Morales 

Betanzos et al., 2009; unpublished data).  Therefore, based on the binding patterns 

of the autoantibodies present in lupus patients, we should be able to use this 

technology to distinguish lupus from other diseases.  In our case, because of the 

different symptoms of lupus such as different CNS manifestations and the idea 
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that certain autoantibodies are partly responsible for each CNS manifestation, the 

binding pattern of these different autoantibodies, should also allow us to 

distinguish one CNS manifestation from another.  Therefore, this technology may 

provide a more accurate means of diagnosing lupus.  Also, as mentioned above, 

we are also interested in predicting lupus.  Since we believe that autoantibodies 

are present in low amounts even before any manifestations are observed, by 

detecting these low levels of autoantibodies on the microarray chip, we may also 

be able to predict lupus and its CNS manifestations long before the onset of the 

disease.  Being able to predict and diagnose lupus will not only help in providing 

proper treatments to patients, but also better care during their lifetime, as well as 

novel therapies in the future.  In this study we identified predictive peptides.  Our 

second goal for this study was to better identify (i.e., ―validate‖) which peptides 

may indeed be diagnostic peptides from our first study.  Our third goal was to 

develop a reliable means for detecting pathogenic antibodies.  

 We ran the same protocols in two different studies because the results of 

the first study identified possible diagnostic peptides of lupus and its CNS 

manifestations and we wanted to validate these peptides.  Also, we used MRL/lpr 

at two different ages in the current study in order to identify predictive peptides of 

lupus and of altered behavior in the forced swim test.  In this study we were able 

to validate diagnostic peptides and identified predictive peptides, and produced a 

way of identifying pathogenic antibodies. By comparing the results of our 

previous study to the current study we could validate which peptides were likely 

diagnostic and narrow this category even further.  We measured anti-DNA 
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antibody levels in the mice in both studies, as a measure of disease activity.  In 

both studies, our 4 month MRL/lpr mice had significantly greater anti-DNA 

autoantibodies compared to the control groups verifying that the MRL/lpr mice 

had disease activity.  Disease activity in these mice have been detected in past 

research (Zameer and Hoffman, 2001; Zameer and Hoffman, 2004; Williams et 

al., 2010).  After performing different analyses on the peptide data using set 

criteria described above, we were able to better narrow our list down to 58 

diagnostic peptides of lupus.  Better methods are needed to diagnose patients for 

lupus and this microarray technology should allow us to do this.  

The 1.5 month MRL/lpr from our current study and the 4 month MRL/mp 

from study 1 did not display high levels of anti-DNA autoantibodies, indicating 

little or no disease activity; therefore we were able to use microarray data from 

these animals to determine predictive peptides of lupus since we know that in 

time both groups of animals will develop lupus.  Comparison of the peptides in 

our data analyses revealed 18 peptides in common between both groups 

identifying these 18 peptides as being able to predict if an individual is lupus-

prone.   

Of more interest was trying to identify diagnostic and predictive peptides 

for specific neuropsychiatric manifestations.  A certain percentage of lupus 

patients develop neuropsychiatric manifestations and therefore not only being 

able to predict and diagnose lupus is important, but also being able to predict and 

diagnose these specific neurologic and psychiatric manifestations (Lawrence et 

al., 2007).  All the MRL/lpr mice eventually develop lupus, but even though they 
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will all develop lupus, some of the CNS manifestations are more severe in some 

versus others (Sakic et al., 2005).  Some of the mice will display one CNS 

manifestation in the behavioral tests and not show any deficit in another (Sakic et 

al., 2005).  Therefore, we took advantage of this diversity and use this 

performance to re-group our microarray results to determine predictive and 

diagnostic peptides specific to different CNS manifestations.  We hypothesized 

that there are a subset of BRAA that are pathogenic and are at least partly 

responsible for some of the CNS manifestations that are observed (Hoffman et al., 

1978; Narendran and Hoffman, 1989; Zameer and Hoffman, 2001; Sakic et al., 

1993).  Therefore we expect that our MRL/lpr mice at 1.5 months of age should 

have low levels of these BRAA and the 4 month MRL/lpr should have higher 

levels of BRAA.  As expected, this is what was detected since our 4 month 

MRL/lpr in both studies had significantly greater levels of BRAA compared to the 

controls.  By detecting antibodies that are specific to each of these CNS 

manifestations, we can predict and diagnose the different CNS manifestations.   

Looking at anhedonia (making the assumption that this is what we are 

testing in our sucrose preference test) in our current study, the 4 month MRL/lpr 

consumed significantly less sucrose compared to the control groups, except for 

the 1.5 month MRL/lpr.  This may mean that this manifestation is present even 

before any of the signs of lupus are detected (Sakic et al., 1997).  We also found 

that in both studies the 4 month MRL/lpr floated significantly more in the forced 

swim test compared to the control groups.  This altered behavior is a 

manifestation that had been used by other researchers as a measure of CNS 
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dysfunction in the MRL/lpr mice (Sakic et al., 2005; Williams et al., 2010), 

specifically as a measure of depressive- like behavior.  As mentioned, some of the 

4 month MRL/lpr did worse in this test compared to others and because of this, 

we split the 4 month MRL/lpr into two groups, high floaters (animals showing 

deficit) and low floaters (animals behaving similar to control groups).  We found 

that after statistical analysis, the 4 month MRL/lpr that were high floaters, floated 

significantly more than the 4 month MRL/lpr that were low floaters and all the 

other control groups.  Therefore because we knew which 4 month MRL/lpr were 

displaying the altered behavior we re-grouped the microarray results according to 

this test and analyzed the results to better identify diagnostic peptides of altered 

behavior in the forced swim test.  After this type of analysis was done in studies 1 

and 2, there were found to be 39 peptides, validating these 39 peptides as 

diagnostic of altered behavior relevant to the forced swim test (possibly 

depressive-like behavior) in CNS-SLE.   

Furthermore, we are also interested in predicting altered behavior in the 

forced swim test and since we had the 1.5 month MRL/lpr in our current study 

and we knew which of these animals would display altered behavior at 4 months 

of age, we regrouped the microarray results for the 1.5 month MRL/lpr into a 

group of high floaters and low floaters.  We then determined possible predictive 

peptides of this altered behavior and found 354 peptides.  In order to further 

narrow down the true number of predictive peptides we would need to run another 

study and compare these peptides to the peptides that would be detected in that 

future study.  We cannot use the MRL/mp as a control here since we do not have 
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data on these animals at a much later time (viz., 10 months of age) when this 

altered behavior would likely be observed.  

Another major goal was to use the peptide sequences to see if we can 

determine possible matches to natural proteins, particularly for characterizing the 

brain antigens which might be mediating CNS manifestations.  Using Guitope 

computer analysis program, we were able to determine possible matches to 

natural protein (the corresponding synthetic peptide, is given in parentheses).  

When looking at the diagnostic peptides of lupus natural protein matches include 

40S ribosomal protein S10 (sp|P63325), 60S ribosomal protein L22- like 1 

(sp|Q9D7S7), histone H3-like centromeric protein A (sp|O35216 ), follistatin-

related protein 4 (sp|Q5STE3) and H-2 class II histocompatibility antigen, A-D 

alpha chain (sp|P04228).  These results are very interesting since autoantibodies 

to these proteins have been detected in lupus patients (Sherer et al., 2004).  

Autoantibodies to the 60S ribosomal protein L12, which is important in protein 

synthesis, has also been detected in 3-28% of lupus patients (Sherer et al., 2004).  

Even though this protein is not the same as the 60s ribosomal subunit we detected, 

it is possible that autoantibodies to our 60S ribosomal protein L22- like 1 protein 

can be affecting protein synthesis or by some other mechanism affecting areas of 

the body.   Autoantibodies to 40S ribosomal protein S10, which is also important 

in protein synthesis, have been detected in 11-40% of lupus patients (Sherer et al., 

2004).  The histone H3-like centromeric protein A, is like the H3 nucleosome 

which is important for packaging the DNA in the cell, and autoantibodies to this 

protein have been detected in 50-90% of lupus patients (Sherer et al., 2004; Su et 
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al., 2007).  These anti-histones antibodies are thought to play a role in lupus 

nephritis, which is one of the manifestations of lupus (Sherer et al., 2004).  The 

exact mechanism that is occurring and how these autoantibodies are altering body 

function is not known, but these results help to confirm that these proteins are 

being affecting during disease activity.  

When looking at the identified predictive peptides of lupus proteins of 

interest include C1q tumor necrosis factor-related protein 6 (sp|Q6IR41), histone 

H3-like centromeric protein A (sp|O35216), alpha-actinin-2 (sp|Q9JI91) and 60S 

ribosomal protein L22 (sp|P67984).  The collagen- like region of C1q protein is 

believed to play a role in lupus nephritis and the autoantibodies to this protein 

occurs in about 30-50% of lupus patients (Sherer et al., 2004).  Anti-alpha-

actinin-2 antibodies have been detected in patients with lupus nephritis (Croquefer 

et al., 2005).  It was interesting that these researchers detected anti-alpha-actinin-2 

antibodies even before lupus nephritis was present and anti-alpha-actinin-2 

autoantibodies is a possible match to the peptides that we identified as predictors 

of lupus (Croquefer et al., 2005).  Autoantibodies to histone H3-like centromeric 

protein A and 60S ribosomal protein L22 that were determined using the 

predictive peptides of lupus were in common with the diagnostic peptides of 

lupus, so these autoantibodies may be present early on as biomarkers and remain 

throughout the disease process.   

Natural protein matches for the diagnostic peptides of altered behavior in 

the forced swim test included metabotropic glutamate receptor 4 (sp|Q68EF4), 

60s ribosomal protein L22- like 1 (sp|Q9D7S7), calcium/calmodulin-dependent 
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protein kinase kinase 1 (sp|Q8VBY2) and 40S ribosomal protein S9 

(sp|Q6ZWN5).  The 60s and 40s ribosomal protein shows up again as a 

possibility, demonstrating that the proteins involved in protein synthesis are 

affected during lupus and CNS lupus.   Calcium/calmodulin-dependent protein 

kinase kinase 1 is thought to play a role in synaptic plasticity and learning and 

memory and our peptides suggesting that this protein is a target of autoantibodies 

may indicate that this protein is being affected during this altered behavior 

(Kaitsuka et al., 2011).  It is very interesting that the metabotropic glutamate 

receptor 4 is one of the matches since researchers found that using an agonist to 

this receptor helps to decrease the float time in the forced swim test, therefore this 

receptor may play a role as an anti-depressant (Palucha and Pilc, 2007).  One can 

hypothesize that autoantibodies binding to this metabotropic glutamate receptor 4 

may be preventing its anti-depressant properties and therefore allowing this CNS 

manifestation to develop.   

Other researchers have found autoantibodies that seem to be responsible 

for different CNS manifestations like the NMDA receptor being involved in 

causing cognitive deficits (Kowal et al., 2006).  Therefore, being able to 

determine proteins that can match specific CNS manifestations will help to 

provide better targets for specific manifestations.  Of course, being able to 

distinguish one manifestation from another is the key and this is where our 

diagnostic kit becomes very important. 

Using one MRL/lpr #2 we created five monoclonal BRAA.  We ran the 

supernatants collected from these BRAA on Western blotting (which gave us the 
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molecular weight of the unknown) and on a microarray chip (to determine the 

possible identity of the target).  To begin, for D9, we identified one of the targets 

as possibly being D (1B) dopamine receptor.  This receptor is expressed in the 

limbic system and plays a role in neurotransmission, which is important for cell to 

cell communication and it helps to regulate the release of glutamate (Centonze et 

al., 2003; Mair and Kauer, 2007).  Because this receptor is important for cell to 

cell communication, a dysregulation of this receptor would likely result in some 

neurological deficit, such as affecting memory (Mair and Kauer, 2007).  Since 

learning and memory deficits are observed in lupus, this could mean that this 

receptor could be involved in altering the learning and memory process (Arabo et 

al., 2005).  BRAA D1 was identified as possibly being the gamma-aminobutyric 

acid receptor subunit rho-1.  GABA binds to this receptor and has an inhibitory 

effect on the brain, which may be important in the synaptic plasticity in the 

amygdala (Rodrigues and Schafe, 2004).  Emotional dysfunction occurs in our 

lupus-prone mice, so it would be interesting to see the role that the GABA 

receptors are playing in lupus progression (Williams et al., 2010).   

For G10 the BRAA was identified as possibly targeting leucine-rich 

repeat-containing protein 4C.  This protein is also known as Netrin-G1 ligand 

(NGL-1) (Woo et al. 2009).  NGL-1 may be associated with schizophrenia and 

since schizophreniform disorder is observed in lupus, this protein possibly being 

targeted may help to explain some of these neuropychiatric manifestations.  G4 

may be targeting GRB2-associated-binding protein 2.  This protein may play a 

role in susceptibility to Alzheimer disease (Zhong et al., 2011).  Exactly what role 
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this protein is playing in neuropsychiatric lupus is unknown, but it would be 

interesting to further investigate how this protein is being affected.  Lastly, one of 

the possible targets of F9 could be synaptojanin-2, which is important in the 

secretion of vesicles in the synapse.  If there is a decrease in this protein then 

there is a decrease in the secretion of the vesicles (Jospin et al., 2007).  If these 

vesicles are not released into the synapse, then this would disrupt normal brain 

functioning.  As mentioned, in Table 4, we also listed other possible identities of 

the targets of these BRAA.  Future experiments must be run to determine which 

of the six possibilities for each BRAA is the correct target.  Knowing the identity 

of these BRAA will help us to understand what proteins are affected in the brain 

(since it is believed that many of the brain targets are not yet identified) and why 

these different CNS manifestations occur.  Eventually it would be necessary to 

inject these monoclonal BRAA and see if we can replicate these behavioral 

dysfunctions in control mice.  This would help to confirm the role of these BRAA 

in CNS-SLE. 

As mentioned, we are testing this technology in our lupus mouse model.  

The results here are only preliminary and have not been applied to human sera.  In 

order to truly validate the results of our study, we would need to run multiple 

trials using human sera and see how well our proposed set of diagnostic or 

predictive peptides work in being diagnostic or predictive.  Likewise, the 

proposed pathogenic autoantibodies will also have to be tested in future studies to 

confirm their role in lupus. 
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One very important asset of using our chip in predicting and diagnosing 

lupus and its CNS manifestations is that it is inexpensive since this chip is created 

to be used for any disease.  There will be no need to develop a specialized chip 

just to detect lupus.  Overall, this random peptide microarray analysis is able to 

identify both predictive and diagnostic markers of lupus and depressive- like 

behavior.  This technology therefore looks promising as a detection assay for 

lupus and its neuropsychiatric manifestations.   
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Chapter 5 

NEUROKININ-1 RECEPTOR CHANGES IN CNS-SLE 

ABSTRACT 

We hypothesized that the neuropeptide substance P is involved in altering 

permeability of the blood-brain barrier (BBB), during lupus progression, and this 

would be reflected in increased levels of its receptor, neurokinin-1 receptor (NK-

1R).  This would allow immune components, such as brain-reactive 

autoantibodies (BRAA), or lymphocytes, to have easier access to the brain, 

contributing to the diverse neuropsychiatric manifestations.  We measured the 

levels of the NK-1R in the brains of our lupus mouse model, the MRL/lpr mice, 

and our control groups and found that there was a significant increase in the 

expression of this receptor in the MRL/lpr in comparison to the controls.  These 

4-6 month old MRL/lpr also had significantly greater BRAA and anti-DNA 

autoantibody levels in comparison to the controls.  When looking at behavioral 

performance, we found that they consumed significantly less sucrose in 

comparison to the controls, a possible indicator of anhedonia.  These results 

suggest that increased NK-1R receptor levels may play a role in contributing to 

CNS dysfunction in SLE, perhaps through alteration of BBB function due to 

substance P binding. 
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INTRODUCTION 

 Systemic lupus erythematosus (SLE) is an autoimmune disorder that 

affects many organs/areas of the body including the liver, kidneys, skin, joints, 

spleen, central nervous system, etc (Sherer et al., 2004; Blatt and Glick, 1999; 

Williams et al., 2010).   Butterfly rashes are known to appear on the skin and 

when the joints are affected, this leads to arthritis (Blatt and Glick, 1999; Ghosh, 

2007).  Women are the vast majority of patients that are affected by SLE.  The 

reason for this is unknown, but hormones are believed to play a role in this 

occurrence since lower levels of testosterone have been detected in a male murine 

model of lupus (Sakic et al., 1998). 

 The etiology of lupus is currently unknown.  Many different 

autoantibodies have been detected in lupus and it is these autoantibodies 

interacting with their targets antigens that are known to play a role in the 

manifestations of lupus (Colasanti et al., 2009; Williams et al., 2010).  For 

example, an antigen-antibody complex that gets lodged in a filtering organ like 

the kidney leads to an immune reaction in that region, causing kidney damage 

known as glomerulonephritis (Colasanti et al., 2009).   

As mentioned one of the areas that is affected during lupus is the central 

nervous system.  This CNS involvement during lupus leads to many different 

neuropsychiatric manifestations in about 15% to 80% of patients (Borchers et al., 

2005).  Such manifestations can include cognitive impairment, psychoses, anxiety 

and depression (Mondal et al., 2008).  We have hypothesized that some of these 

neuropsychiatric manifestations are due to the presence of brain-reactive 
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autoantibodies (BRAA) binding to proteins in the brain and interfering with the 

function of those proteins (Hoffman and Madsen, 1990; Hoffman et al., 1978, 

1987; Narendran and Hoffman, 1989; Khin and Hoffman, 1993; Zameer and 

Hoffman, 2001, 2004; Williams et al., 2010).  Specific BRAA have been detected 

by other researchers and have been shown to be involved in causing behavioral 

dysfunction.  BRAA to dynamin I protein has been shown to cause behavioral 

dysfunction in the elevated plus maze test and BRAA to the NMDA receptor has 

been found to correlate with cognitive impairment in murine models of lupus 

(Kowal et al., 2004; Lawrence et al., 2007).   

So far, research is demonstrating that these BRAA are playing a role in 

neuropsychiatric manifestations.  Our goal in this study is, however, to understand 

how these BRAA are able to enter the brain in the first place in order to cause 

these dysfunctions.  The brain has always been thought to be an immune 

privileged site, protected by the BBB (Shatz, 2009).  Therefore in order for these 

BRAA to enter the brain, there has to be some alterations in this barrier.  We 

know that these BRAA do enter the brain because we have detected them in the 

brains of our murine model of lupus (Zameer and Hoffman, 2001).  Our prior 

research has also shown that there is increased BBB permeability during immune 

complex disease (Harbeck et al., 1979; Hoffman et al., 1983).  The underlying 

mechanisms are, however, unknown. 

Substance P is a neuropeptide that has many functions in the central 

nervous system including being a vasodilator (Annunziata et al., 2002).  

Researchers have found that substance P was released when stimulated by two 
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pro-inflammatory cytokines, TNF-α and IFN-γ.  They also found that the release 

of substance P leads to an increase in the permeability of cultured rat brain 

endothelium.  Pro- inflammatory cytokines are believed to play a role in the 

pathogenesis of lupus and CNS lupus (Mondal et al., 2008; Williams et al., 2010).  

This could mean that the increased levels of these pro-inflammatory cytokines are 

affecting the levels of substance P in lupus patients and thereby leading to an 

opening of the BBB.   

Substance P binds to the neurokinin-1 receptor (NK-1R) in the brain 

(Annunziata et al., 2002).  Since we hypothesized that increased activity of 

substance P is involved in altering permeability of the BBB, in this study we 

decided to measure the levels of the NK-1R.  We infer that if increased activity of 

substance P is needed to open the BBB, then there should be an increase in 

binding of substance P to its receptor and therefore a change in the receptor 

levels.  Our hypothesis is that increased levels of NK-1R plays a role in causing 

the neuropsychiatric manifestations of lupus due to increased binding by 

substance P, subsequently bringing about the opening of the BBB, allowing 

lymphocytes, autoantibodies and other molecules to enter the brain and alter brain 

function.   

We decided to look at the expression levels of NK-1R in the brains of our 

murine model of lupus, the MRL/lpr mice.  We chose to use this mouse because it 

has been a good model of human lupus and CNS involvement (Sakic et al., 

1994b,1996b, 2005; Ballok et al., 2003; Williams et al., 2010).  It has 

demonstrated altered behavior in different behavioral tests such as the forced 
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swim test (which has been used as a measure of depressive- like behavior) and the 

sucrose preference test (which is often used as an indicator of anhedonia).  Both 

of these behaviors are consistent with the emotional disorders seen in human 

lupus.  In our case, however, we are simply using these tests as an indication of 

altered behavior as compared to the controls.  Our control group is the MRL/mp, 

because they are virtually genetically identical to the MRL/lpr but do not develop 

the manifestations until much later on.  We included MRL/lpr from 4-6 months of 

age (when the symptoms of lupus are present) and the MRL/mp at 4 month of age 

(when they have no manifestations of lupus).  Levels of anti-DNA autoantibodies 

and BRAA were assessed to determine if the MRL/lpr have lupus and CNS lupus, 

respectively.  The mice were also subjects in a battery of behavioral tests to 

determine if they were displaying neurobehavioral manifestations.  The level of 

NK-1R was also measured to determine if there was a difference between our 

MRL/lpr and MRL/mp.  We do expect that the MRL/lpr mice with greater levels 

of NK-1R and the presence of high levels of BRAA to display neurobehavioral 

deficits. 

Understanding the role of the NK-1R in CNS lupus is important, not only 

for better understanding the mechanisms underlying CNS-SLE, but because if we 

know that this receptor is involved in opening up of the BBB, resulting in diverse 

neuropsychiatric manifestations, we can target this receptor for therapy.  This can 

then help prevent CNS manifestations from occurring in the lupus patient.  Some 

researchers have found that when cultured rat brain endothelium cells were given 

spantide, a substance P antagonist, the permeability of the cells decreased 
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(Annunziata et al., 2002).  In the same manner, NK-1R in the brains of CNS lupus 

patients could also be targeted to prevent further increase in BBB permeability.      
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MATERIALS AND METHODS 

ANIMALS 

 The mice used in this study were five 4-6 month MRL/lpr and six 4 month 

MRL/mp.  The MRL/lpr mice start to develop lupus after 2 months of age and at 

about 5-6 months of age they have 50% mortality.  The MRL/mp mice are a 

congenic control for the MRL/lpr because they are virtually genetically identical 

to the MRL/lpr, but they do not develop the disease until after 7 months of age, 

with 50% mortality at about 16 months of age.  Therefore we compared the 

MRL/lpr at 4-6 month of age to the MRL/mp at 4 month of age since this is after 

the MRL/lpr have lupus, but just before their high 50% mortality rate.  The mice 

were purchased from Jackson Laboratory (Bar Harbor, ME).  They were housed 

individually under standard laboratory conditions.  Light cycle was from 6:00 

A.M. to 6:00 P.M.  Behavioral testing commenced at 8:00 P.M.  The mice had 

food and water ad libitum.  The mice used in this study were from two different 

cohorts.  The two cohorts were subjected to a battery of behavior tests less than 

one year apart.  The conditions under which these behavior tests occurred were 

similar for each cohort.  The behavioral tests were performed at 8:00 P.M.  

 An intraperitoneal (IP) injection containing Nembutal sodium solution was 

used to sacrifice the mice.  The brain and blood samples were collected from each 

mouse.  The blood was allowed to clot, the tubes centrifuged for 10 minutes at 

8500 rpm and the serum was removed.  The serum was aliquoted into 100 ul 

samples and tested on the BRAA and anti-DNA ELISA.  Integral membrane 

proteins were extracted from the brains that was collected and used in Western 
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blotting to detect the levels of NK-1R and B-Actin.  Integral membrane proteins 

from a 2 month normal control C3H/HeJ mouse were used in the BRAA ELISA 

test. 

 The body weight and spleen weight of each animal was measured prior to 

being sacrificed.  The spleen weights for 3 of the 5 MRL/lpr and all 6 of the 

MRL/mp were included in this study. 

 

BATTERY OF BEHAVIOR TESTS 

  

FORCED SWIM TEST 

 As mentioned, the forced swim test is a possible indicator of depressive-

like behavior and since depression is one of the CNS manifestations in lupus, this 

test is important to investigate.  It has also been used to test novel anti-

depressants.  This test has been previously described (Williams et al., 2010).  To 

begin, each mouse was lowered into a swimming pool in the same location facing 

the same direction.  The mouse was then allowed 10 minutes to swim around and 

the amount of time that they spend floating was measured.  Floating is when there 

is no movement in the tail and hind limbs.  Increased floating is an indicator of 

this altered behavior and therefore increased float time is expected in our 4-6 

month MRL/lpr.  The pool was kept at a temperature of 25oC. 
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 SUCROSE PREFERENCE TEST 

 The sucrose preference test, a possible indicator of anhedonia, has been 

previously described (Williams et al., 2010).  Anhedonia is the inability to 

experience pleasure, or participate in an activity that is normally pleasurable.  

There were two phases in this test.  There was a training phase, which is where 

the mice were made aware of the sucrose solution and a testing phase, which is 

where we looked at the difference in consumption between our MRL/lpr and the 

MRL/mp.  In the training phase, the mice were given 3 ml of 4% sucrose solution 

for 24 hours for three days.  Then there was a 24 hour rest period.  In the next 

three days the mice were given 7 ml of the 4% sucrose solution for 1 hour and the 

amount of sucrose consumed was measured.  The sucrose consumption across the 

three testing days was measured for each mouse and divided by their individual 

body weights (to take into account differences in body weight affecting 

consumption). 

 

IMMUNOLOGICAL ASSESSMENT 

 INTEGRAL MEMBRANE PROTEIN EXTRACTION 

 The integral membrane proteins from each mouse were extracted 

individually as previously described (Narendran and Hoffman, 1988; Williams et 

al., 2010).  The proteins were suspended in phosphate buffered saline (PBS) when 

used in the BRAA ELISA and in Tris-buffered saline (TBS) when used in the 

Western blot.  We tested the concentration of the proteins used in the BRAA 
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ELISA using a BCA Assay Kit (Pierce, USA) and used the Bradford test (Sigma-

Aldrich, USA) to test the concentrations of the proteins used in the Western blot. 

 

ANTI-DNA ELISA 

 The protocol used to measure the levels of anti-DNA autoantibody levels 

in the mice sera has been previously described (Aotsuka et al., 1979; Crimando 

and Hoffman, 1995; Zameer and Hoffman, 2003; Williams et al., 2010).  Briefly, 

96 well plates were incubated with 50ug/ml of poly-L- lysine in PBS (Sigma-

Aldrich, USA) for 1 hour.  The plates were then washed three times using 0.1% 

PBS-Tween solution.  This washing step was performed after each incubation 

phase (each of which was 1 hour long).  The even wells of the plates were 

incubated with PBS and the odd wells were incubated with 10 ug/ml of calf-

thymus DNA (Sigma-Aldrich, USA; purified for dsDNA) in PBS.  100 ug/ml of 

poly- l-glutamate (Sigma-Aldrich, USA) in PBS was added to the wells, followed 

by incubation with a 5% bovine serum albumin (BSA) (Sigma-Aldrich, USA) in 

PBS.  Serial dilution of the sera was added to the wells followed by a 1/1000 

dilution of the secondary antibody, goat anti-mouse IgG conjugated with horse-

radish peroxidase (Caltag, USA) dissolved in PBS.  Citrate buffer containing 

hydrogen peroxide and 2,2‘-azino-bis(3ethylbenzthiazoline) sulfonic acid (Sigm-

Aldrich, USA) was added to the wells and the plates were then incubated at 37oC 

for 30 minutes.  The optical density was read at 405 nm on the microplate reader.  

The optical density of the control wells was subtracted from the optical density of 
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the wells containing DNA and these (S) values were used as a measure of the 

levels of anti-DNA autoantibodies in the sera.  

 

 BRAA ELISA 

  The protocol used to measure BRAA levels in the mice sera has also been 

previously described (Aotsuka et al., 1979; Crimando and Hoffman, 1995; 

Zameer and Hoffman, 2003; Williams et al., 2010).  The odd wells of the 96 well 

plates were incubated with the brain integral membrane proteins and the even 

wells received only PBS.  The plates were then washed with 0.1% PBS-Tween, 

followed by incubation with 5% BSA in PBS.  Serial dilution of the mouse sera 

was added to the wells followed by a 1/1000 dilution of the secondary antibody 

(Caltag, USA), goat anti-mouse IgG HRP conjugated.  Hydrogen peroxide 

(100μl/100ml) and 2,2‘-azino-bis(3-ethylbenzthiazoline) sulfonic acid 

(17mg/100ml) dissolved in citrate buffer was added to the wells for 30 minutes at 

37oC.  The optical densities of the wells were measured on a microplate reader at 

405 nm and the optical densities of the control wells were subtracted from the 

wells containing brain membrane antigens.  These S-values were then used as a 

measure of the levels of BRAA in the sera samples. 

 

WESTERN BLOTTING 

 The Western blotting protocol used to measure the levels of NK-1R and -

actin in the brains of the mice has been previously described (Narendran and 

Hoffman, 1989; Hoffman and Madsen, 1990; Williams et al., 2010).  The gel 
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concentration used in the Western blot was a 12% resolving gel and a 4% stacking 

gel.  The brain membrane protein from the each mouse was loaded into the wells 

of the gel and run for 1.5 hours at 102 volts.  The gel was then transferred to a 

nitrocellulose paper (BioRad Laboratories, CA) and the membrane was then 

incubated with blocking solution. Mouse anti- -Actin antibody (the loading 

control) was added to the membrane for one hour.  The membrane was washed 

for ten minutes with 0.5% TBS-Tween and then visualized using a 

Chemiluminescence kit (Roche, USA).  The intensity of the -actin bands 

detected on the X-ray film (Kodak, New York) was measured.  The blots were 

then stripped and re-probed with mouse anti-NK-1R antibody (Zymed, USA) at a 

1/2000 dilution overnight.  In order to strip the blots, they were incubated with a 

solution containing 1M Tris solution, mercaptoethanol, 10% sodium dodecyl 

sulfate solution and water for 10 minutes at 50oC.  The blots were then washed 5-

6 times for 10 minutes each with TBS-Tween, before adding the mouse anti-NK-

1R antibody.  After the primary antibody incubation, the blots were washed three 

times for ten minutes each and the secondary antibody, goat anti-mouse IgG HRP 

conjugated, at 1/1000 dilution was added to the blots.  The blots were then 

washed again three times for 10 minutes each and then visualized using the 

methods described above.  The level of the NK-1R detected on the X-ray film was 

divided by the level of the -actin.  The intensity of proteins detected on the X-ray 

film was measured using the Image J program (http://rsb.info.nih.gov/ij/). 

 

 

http://rsb.info.nih.gov/ij/
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STATISTICS  

 The data collected for the immunological assessments, behavioral tests 

and NK-1R levels were analyzed for statistical significance using the PASW 18 

statistical program (SPSS 18.0).  Statistical significance was measured using a 

one-way analysis of variance (ANOVA).  Figure 6 was plotted using the 

Microsoft Excel 2007 program.  
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RESULTS 

LUPUS IMMUNOLOGICAL ASSESSMENT 

When we measured the level of anti-DNA autoantibody in the sera of the 

mice (Fig. 1), the 4-6 month MRL/lpr were found to have significantly greater 

levels in comparison to the 4 month MRL/mp (F=17.697, p < 0.002).  The 

MRL/lpr also had significantly greater spleen weights in comparison to the 

MRL/mp (Fig. 2) (F=28.628, p < 0.001).  Since increased levels of anti-DNA 

autoantibodies and enlarged spleens are markers of disease activity in these lupus-

prone mice (Williams et al., 2010), this therefore indicates that lupus had 

progressed in our MRL/lpr. 

 

CNS-LUPUS IMMUNOLOGICAL ASSESSMENT 

 We have hypothesized that increased levels of BRAA detected during 

lupus progression is responsible for some of the neuropsychiatric manifestations 

observed in CNS lupus through interaction with brain proteins (Narendran and 

Hoffman, 1989; Zameer and Hoffman, 2001; Sakic et al., 1993).  Therefore, 

greater levels of BRAA are expected in our MRL/lpr displaying neuropsychiatric 

manifestations in comparison to control mice (Williams et al., 2010).  As 

expected, our 4-6 month MRL/lpr had significantly greater levels of BRAA in 

comparison to the 4 month MRL/mp (F=16.276, p < 0.003) (Fig. 3). 
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BEHAVIORAL DYSFUNCTION 

  The forced swim test and the sucrose preference test were used in this 

study to look at behavioral dysfunction in the MRL/lpr.  Decreased consumption 

in the sucrose preference test is indicative of altered behavior (possibly anhedonia 

since reduced consumption is associated with anhedonia).  Our 4-6 month 

MRL/lpr consumed significantly less sucrose in comparison to the 4 month 

MRL/mp (F=8.382, p < 0.018), displaying this CNS manifestation (Fig. 4).  There 

was not a significant difference between the two groups of mice in the forced 

swim test (data not shown), although in past studies, we and others have found 

significant differences in this test between our 4 month MRL/lpr and the control 

groups (Maric et al., 2001; Williams et al., 2010). 

 

NK-1R RECEPTOR LEVELS  

 Western blotting was used to detect the levels of NK-1R and -actin (our 

loading control) in the brains of the mice (Fig. 5).  The level of NK-1R was 

divided by the level of -actin for each mouse since we want to ensure that the 

overall brain protein concentrations were similar.  It was expected that there 

would be an increase in the levels of this receptor in the brains of our 4 month 

MRL/lpr as compared to the controls since we hypothesize that this receptor is 

involved in the opening of the BBB allowing the BRAA, or lymphocytes to enter.  

As hypothesized, we did find an overall significant increase in the levels of NK-

1R in the brains of our 4 month MRL/lpr as compared to the 4 month MRL/mp 
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(F=9.376, p < 0.014), demonstrating that there is an alteration in the levels of this 

receptor in the brains of mice with CNS lupus (Fig. 6). 

 

SUMMARY OF RESULTS  

 We included a summary of the NK-1R levels, behavioral dysfunction and 

immunological assessments of lupus and CNS lupus for each of our five MRL/lpr 

mice (Table 1).  For each variable, except in the case of the sucrose preference 

test, ―High‖ is defined as greater than the level of significance set for that specific 

variable, which differs for each (please see Table 1 for the levels of significance 

for each variable).  ―Medium‖ is defined as in between the average for the 

MRL/mp and the level set for ―High‖.  ―Low‖ is defined as less than the average 

of the MRL/mp.  For the sucrose preference test, it is the opposite since we are 

looking for a decrease as oppose to an increase.  So, ―Low‖ is defined as 

consuming less than the level set for significance, ―Medium‖ is defined as 

consuming between less than the average of the MRL/mp and the value set for 

―Low‖ and ―High‖ is defined as having greater consumption than the MRL/mp.  

The reason for this is that it is important to look at each individual animal because 

even though the MRL/lpr mice are genetically identical there is behavioral 

heterogeneity within this group of mice (Sakic et al., 2005).   

All the MRL/lpr developed lupus, as can be seen by the medium to high 

levels of anti-DNA autoantibodies detected in their sera.  For the 3 MRL/lpr that 

we had spleen weight measurements, high spleen weights was detected in all 

three, again demonstrating the development of lupus.  Also, 4 out of the 5 
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MRL/lpr had high levels of BRAA and only one had medium levels, therefore 

CNS dysfunction is possible in all these mice if the BRAA detected were 

pathogenic.  In regards to the levels of NK-1R receptor, 4 out of the 5 MRL/lpr 

had high levels of NK-1R and only one had medium levels of NK-1R, therefore 

BBB damage is possible in all these mice if our hypothesis is correct.  Since 

increased levels of NK-1R was detected in all the MRL/lpr and they all had high 

BRAA levels that can enter the brain and bind to brain proteins, we did expect 

some kind of CNS dysfunction in these mice.  The first MRL/lpr #1 did not 

display altered behavior in the forced swim test due to having low float time, but 

showed some dysfunction in the sucrose-preference test, by consuming less 

sucrose than the average MRL/mp.  It is important to note that this mouse could 

have other CNS manifestations that were not measured in this study.  MRL/lpr #2 

and #3 displayed CNS manifestations in both the sucrose preference test and the 

forced swim test.  MRL/lpr #4 did not display dysfunction in the forced swim test, 

but did show CNS manifestation in the sucrose preference test.  MRL/lpr #5 

showed some dysfunction in the forced swim test by having float times that was 

greater than the average MRL/mp, but not greater than the level set for 

significance, however there was definitely dysfunction detected in the sucrose 

preference test for this animal.  Overall, behavioral dysfunction was detected in 

all the 4-6 month MRL/lpr in at least one of the behavioral tests which 

corresponded to the increased levels of NK-1R detected in all of the 4-6 month 

MRL/lpr. 
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Fig. 1. Immunological Assessment – Anti-DNA Autoantibody Levels.  Disease 

activity in the mice was determined by measuring the serum Anti-DNA 

autoantibody levels.  The 4-6 month MRL/lpr had significantly greater levels of 

anti-DNA autoantibodies in comparison to the 4 month MRL/mp controls 

(F=17.697, p < 0.002).  Anti-DNA autoantibody levels was measured at a 1/200 

dilution. 
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Fig. 2. Immunological Assessment – Spleen Weight.  Disease activity in the mice 

was determined by also measuring the spleen weights.  The 4-6 month MRL/lpr 

had significantly greater spleen weights per body weights in comparison to the 4 

month MRL/mp controls (F=28.628, p < 0.001).  We had spleen weights for only 

3 of the 5 MRL/lpr, but for all 6 MRL/mp.  However, there was still a significant 

difference between the two groups.  
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Fig. 3. Immunological Assessment – BRAA Levels.  Significantly greater levels 

of BRAA levels were detected in the serum of the 4-6 month MRL/lpr in 

comparison to the 4 month MRL/mp (F=16.276, p < 0.003).  Serum BRAA levels 

was measured at a 1/80 dilution.  
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Fig. 4. Behavioral Dysfunction – Sucrose Preference Test.  When looking at 

behavioral dysfunction using the sucrose preference test, the 4-6 month MRL/lpr 

were found to consume significantly less sucrose in comparison to 4 month 

MRL/mp, indicating anhedonia (F=8.382, p < 0.018).  
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Fig. 5. NK-1R Western Blot.  Western blotting results showing the level of 

neurokinin-1 receptor and -actin in the brains of the five 4-6 month MRL/lpr and 

six 4 month MRL/mp. 
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Fig. 6. NK-1R Levels Analysis.  Graph showing that the 4-6 month MRL/lpr have 

significantly greater levels of NK-1R in comparison to the 4 month MRL/mp 

(F=9.376, p < 0.014).  The level of NK-1R was divided by the level of -actin 

detected in the brain of each mouse. 
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DISCUSSION 
 

 Substance P has been shown to play a role in increasing the permeability 

of rat brain endothelium cell cultures when stimulated by pro-inflammatory 

cytokines (Annunziata et al., 2002).  In our lupus mouse model, the MRL/lpr 

mice, increasing levels of BRAA have been detected in their brain, indicating that 

somehow the BBB is being altered to allow these BRAA, or the corresponding B 

cells, to enter (Zameer and Hoffman, 2001).  We hypothesized that substance P 

plays a role in altering this barrier and therefore we measured the levels of the 

NK-1R that substance P binds to in the brain.  

To review our findings, when we measured the levels of anti-DNA 

autoantibodies in the sera of our mice we found that our 4-6 month MRL/lpr had 

significantly greater levels of anti-DNA autoantibodies in comparison to the 

MRL/mp.  We also found increased spleen weights in all three of the MRL/lpr 

that we had measured in comparison to the controls.  This therefore demonstrates 

that the MRL/lpr had lupus.  Next, we measured the levels of BRAA 

autoantibodies in the sera, because this is an immunological assessment of CNS 

lupus since we believe that some of these BRAA play a role in causing the 

neuropsychiatric manifestations of lupus (Hoffman and Madsen, 1990; Narendran 

and Hoffman, 1989; Khin and Hoffman, 1993; Zameer and Hoffman, 2001; 

Zameer and Hoffman, 2004; Williams et al., 2010).  The 4-6 month MRL/lpr had 

significantly greater levels of BRAA in comparison to the MRL/mp.  

In order to observe CNS dysfunction, we looked at the forced swim test 

that looks at altered behavior (which is suggestive of depressive- like behavior 
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since floating in this test is used to test anti-depressants) and the sucrose 

preference test (for which decreased consumption is suggestive of anhedonia).  

The MRL/lpr consumed significantly less sucrose in comparison to the MRL/mp 

indicating that the MRL/lpr displaying altered emotions.  For the forced swim 

test, 3 out of the 5 MRL/lpr display ―medium‖ to ―high‖ float times, but there was 

not a statistically significant difference between the two groups.  This may be 

because the other two MRL/lpr, had very low float times (lower than the average 

for the MRL/mp) and the one MRL/lpr that had medium float time had a value 

that was more than three times less than the average of the two MRL/lpr with 

―high‖ float times.  Therefore the overall level of significance was not present 

because 3 of the 5 MRL/lpr had float times similar to or lower than the controls.  

However as mentioned, this test in the past has revealed significant behavioral 

dysfunction in the MRL/lpr (Maric et al., 2001; Williams et al., 2010).     

So far, all our MRL/lpr mice have high levels of BRAA and did display 

CNS dysfunction in one or both of the behavioral tests.  So there seems to be an 

association between the presence of these BRAA and the observed CNS 

dysfunction.  This association is, however, better discussed in one of our previous 

studies (Williams et al., 2010).  Next, we are trying to understand how these 

BRAA would enter the brain to cause these neuropsychiatric manifestations and 

so the level of NK-1R was measured.  It has been shown that opening the BBB 

was necessary for observing behavioral manifestations (Kowal et al., 2004).  This 

seems to suggest that increased BBB permeability is needed for CNS 

manifestations.  Our results showed that the 4-6 month MRL/lpr mice had 
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significantly greater levels of NK-1R in their brains as compared to the 4 month 

MRL/mp.  These results show that NK-1R levels are altered in our lupus mouse 

model.  Since we hypothesized that increased levels of NK-1R are allowing for 

more substance P to bind and bring about the opening of the BBB to allow the 

BRAA or lymphocytes to enter resulting in CNS dysfunction, this detected 

alteration in the levels of NK-1R is the first step to showing that the SP system is 

being affected in lupus.  More research is necessary to determine exactly how this 

system is affected in CNS lupus and it is also essential to demonstrate that NK-1R 

is indeed involved in alteration of the BBB, however our initial finding does allow 

us to suggest NK-1R as one possible target affecting the BBB. 

During immune complex disease (which occurs during lupus), it has been 

found that there is a change in the permeability of the blood-CSF barrier 

(Hoffman et al., 1983).  Immune complexes have been detected in the choroid 

plexus of these animals with immune complex disease, suggesting a role for these 

deposits in causing some of the CNS manifestations of lupus (Harbeck et al., 

1979).  It has also been suggested that the deposition of these immune complexes 

in the choroid plexus is partly responsible for changing the permeability of the 

BBB, but are not the sole factor responsible (Hoffman and Harbeck, 1989).  It 

may be that the immune complexes are mediating their effects on the BBB via 

substance P and its NK-1 receptor.  It is also possible that the inflammatory 

response associated with immune complex deposition could be stimulating the 

release of substance P, through the release of pro- inflammatory cytokines. 
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As mentioned increased pro- inflammatory cytokine levels have been 

shown to increase the permeability of rat brain endothelium cells by stimulating 

an increase in substance P levels (Annunziata et al., 2002).  These researchers also 

found that a substance P antagonist also significantly reduced the expression of 

ICAM-1, an adhesion molecule that helps with the trafficking of leukocytes to 

their location.  These results show that substance P plays a role in up-regulating 

the expression of ICAM-1.  We have also found an increase in the expression of 

ICAM-1 and VCAM-1 in the brains of our MRL/lpr (Zameer and Hoffman, 

2003).  Together, these suggest that substance P could be responsible for the 

increase in ICAM-1 expression found in the brains of MRL/lpr and along with 

opening up of the BBB, substance P may help to attract leukocytes to enter the 

brain, through increasing ICAM-1 expression.  Our past research also revealed an 

increase in the B and T cells in the brains of the autoimmune mice indicating that 

these cells do enter the brain (Zameer and Hoffman, 2004).  It should be 

mentioned that the BRAA are hypothesized to enter the brain directly or the 

lymphocytes are thought to enter the brain and produce the BRAA in situ and 

therefore finding increased levels of ICAM-1 supports this idea. 

The substance P antagonist was also found to block the up-regulation of 

MHC class I, so this indicates that substance P also plays a role in the increased 

expression of MHC class I (Annunziata et al., 2002).  We are currently testing the 

levels of MHC class I in the brains of our autoimmune mice and we have 

preliminary data showing an increase in this receptor level in comparison to our 

controls.  Adding all our data and other publish research together we hypothesize 
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that pro- inflammatory cytokines are increasing the levels of substance P in lupus 

mice, which then binds to increased levels of the NK-1R, increasing the 

permeability of the BBB and at the same time helping to increase ICAM-1 levels 

attracting leukocytes to the barrier, thereby allowing the BRAA producing-cells to 

enter or even the BRAA themselves (Annunziata et al., 2002; Zameer and 

Hoffman, 2001; Zameer and Hoffman, 2003).  All this then helps to result in 

some of the behavioral dysfunction that we have seen in past studies (Sakic et al., 

1994a, 1996a, 1998, 2005;  Williams et al., 2010).  

Substance P‘s involvement in increasing MHC class I levels also adds an 

interesting piece to the puzzle.  Datwani and colleagues (2009) found that mice 

lacking some MHC class I genes had increased synaptic plasticity (Datwani et al., 

2009).  Shatz proposed a hypothesis stating that MHC class I binding to its 

receptor PirB in the brain, is important in regulating plasticity (Shatz, 2009).  This 

could suggest that if a decrease or lack of MHC class I increases synaptic 

plasticity, then too much MHC class I would decrease synaptic plasticity and 

learning and memory.  Going back to our MRL/lpr, the increased NK-1R levels, 

suggesting increased substance P levels, could be causing an increase in MHC 

class I in our mice, which in turn could alter their ability to learn.  This could help 

to explain the cognitive impairments that are observed in our mice, as well as in 

the human condition (Shucard et al., 2007).  Shatz also suggested that MHC class 

I is located next to glutamate receptors and therefore can regulate the trafficking 

of these receptors (Shatz, 2009).  We are also looking at the expression levels of 
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glutamate receptor in our 4 month MRL/lpr and have preliminary data that these 

levels are also altered. 

Our current results show that the NK-1R which substance P binds to is 

altered in our lupus mouse model.  Due to other research demonstrating the 

involvement of substance P in altering membrane permeability, we hypothesized 

that substance P is binding to the increased NK-1R and then altering BBB 

functioning, allowing BRAA to be present in the brain and change the function of 

their target proteins.  As discussed, other data suggests that substance P may also 

be involved in causing CNS manifestations through alteration of expression of 

other molecules such as MHC class I.  It is important to note that the opening up 

of the BBB and the presence of BRAA during lupus progression are two different 

processes that together may be responsible for some of the neuropsychiatric 

manifestations seen in lupus.  Future research is necessary to establish NK-1R‘s 

role in alterating the BBB, but our current research demonstrates that this 

receptor‘s level is altered in our lupus prone mouse and therefore provides a 

possible target when investigating how changes occur at the BBB in CNS lupus.  
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 Chapter 6 

CONCLUSION 

Understanding the role of BRAA in CNS lupus has been the main goal of 

our research.  We hypothesize that BRAA bind to integral membrane proteins in 

the brains of patients with CNS lupus and interfere with the function of those 

proteins, resulting in different CNS manifestations (Hoffman and Madsen, 1990; 

Narendran and Hoffman, 1989; Khin and Hoffman, 1993; Zameer and Hoffman, 

2001, 2004; Williams et al., 2010).  One of our objectives is to identify the brain 

proteins being bound by these BRAA. This will help us to understand why 

different CNS manifestations occur.  If a specific protein is targeted, for example, 

in one of the limbic system structures, then this may account for emotional 

dysfunction in CNS-SLE.  Furthermore, we could then target these proteins for 

therapy.  For example, we could provide an inhibitor protein that would bind to 

these receptors preventing the receptors from being activated by the BRAA and 

thereby preventing the CNS manifestation.  An alternative would be to create B 

cell vaccinations to eliminate the specific B cells producing the pathogenic 

BRAA.  This is significant since current therapies are far from being specific in 

preventing disease or targeting specific CNS manifestations. They suppress the 

immune system in general, leading to complications like increased infections, or 

incidence of cancer (Yildirim-Toruner and Diamond, 2011).  Therefore the 

identification of brain targets for the BRAA is an important goal.  

Researchers have identified some of the BRAA targets, as being the 

NMDA receptor, synapsin I and dynamin-1 protein (Kowal et al., 2004; Lawrence 
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et al., 2007).  There are, however, possibly thousands of autoantibodies in lupus. 

We have detected a large diversity of BRAA in the past and therefore our goal 

was to identify more of their targets using different techniques (Narendran and 

Hoffman, 1989; Williams et al., 2010).  It seems that only a subset of BRAA can 

cause CNS dysfunction (called pathogenic BRAA) since BRAA have been 

detected in non-autoimmune mice and humans (called non-pathogenic BRAA) 

without CNS manifestations (Williams et al., 2010). 

To summarize, our first study showed that there is good evidence for the 

BRAA hypothesis.  The MRL/lpr mouse we used has been used by other 

researchers and has proven to be an excellent model to study lupus and its CNS 

manifestations (Sakic et al., 1994, 1996, 2005; Ballok et al., 2003; Williams et al., 

2010).  A few years ago, we started to notice the MRL/lpr were not displaying the 

same level of sickness as previously (which Jackson Laboratory confirmed).  So 

in our first study, a comparative study over one year, we showed that there was a 

decrease in the autoimmune phenotype of the MRL/lpr and fewer correlations 

between immunological variables and behavioral deficits (Williams et al., 2010).  

This demonstrated reduced sickness in the MRL/lpr mice.  Even with the reduced 

autoimmune phenotype as long as these MRL/lpr displayed elevated BRAA levels 

we expected behavioral deficits should still be observed.  This was indeed the 

case, plus behavioral deficits in the forced swim test correlated with elevated 

BRAA levels.  This helped to support the BRAA hypothesis since the detected 

BRAA may be responsible for this altered behavior.  Although correlation does 

not imply causation, it is a necessary component of the causal link. 
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We also used the Western blotting technique to identify some of the 

molecular weights of potential BRAA targets.  All the MRL/lpr that displayed 

high float times had binding on Western blotting, confirming autoantibody 

reactivity to brain and showing the potential molecular weights of the BRAA 

targets.  Using immunohistochemistry, we also showed binding in the 

hippocampus and cortex, as well as other areas of the brain using the MRL/lpr 

sera.  The binding helps to suggest what structures in the brain are affected. What 

is interesting is that behaviors associated with emotional dysfunction were 

observed in these animals and the hippocampus was bound, which may explain 

the emotional dysfunction.  When detecting the BRAA we chose to use different 

techniques and each technique had varying sensitivity.  By using all these 

techniques we were able to learn more about potential BRAA targets.  One unique 

attribute of our study was that when we measured the levels of BRAA, we used 

integral membrane proteins from control mouse brain as our antigen, so the 

autoantibodies were reacting to natural brain proteins unlike cultured Neuro-2A 

cells used in another study (Sakic et al., 1993).  

Many researchers have provided support for the autoantibody hypothesis 

including in human studies.  For example, Tin and colleagues (2005) found 

BRAA that correlated with the presence of psychosis and/or seizures (some of the 

neuropsychiatric manifestations observed in lupus patients).  Sakic and colleagues 

(1993) found that mice that had high levels of BRAA displayed behavioral 

abnormalities.  Our first study further confirmed the BRAA hypothesis in a 

unique way, since the MRL/lpr displayed altered behavior which correlated with 
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BRAA levels (while the controls did not).  There is much support for the BRAA 

hypothesis; however, data has yet to be shown which establishes a strong causal 

relationship between BRAA and CNS manifestations.   

The current method of diagnosing lupus is not accurate since the 

manifestations of lupus are similar to other diseases.  Physicians use a set of 11 

criteria to diagnose lupus.  In order for the patient to be diagnosed as having lupus 

they must have satisfied 4 out of the 11 criteria (Liu and Ahearn, 2009).  Levels of 

anti-dsDNA antibodies and anti-nuclear antibodies are used as criteria in the 

diagnosis, but again these methods are not reliable.  We were therefore interested 

to see if we can provide a more accurate means of diagnosing lupus. 

Our second study, used peptide microarray technology to see if we can use 

the binding pattern on a microarray chip to accurately diagnose lupus and specific 

CNS manifestations.  Results revealed that we were able to determine peptides 

that were likely diagnostic of lupus and two CNS manifestations (altered behavior 

in the forced swim test and sucrose preference test).  To our knowledge, no one 

else has created a random peptide microarray chip that can be used to diagnose 

lupus and specific CNS manifestations in the MRL/lpr mice.  In order to verify 

that some of these peptides were diagnostic and to identify predictive peptides of 

lupus and CNS-lupus, we ran another study using the same conditions as in the 

previous study, except with a larger number of animals and at different ages.  A 

comparison of both studies allowed us to narrow down the diagnostic peptides of 

both lupus and its CNS manifestations (specifically, deficits in the forced swim 

test).  Furthermore, we were able to identify predictive peptides of lupus, as well 
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as provide a preliminary list of predictive peptides of deficits in the forced swim 

test.  It is important to note here that this test is so specific that we were able to 

diagnose each specific CNS manifestation.   What is also of high interest to us 

was that this technology seemed to provide enough sensitivity that we could 

predict if the mice were going to get lupus and also display deficits in the forced 

swim test long before any signs.  These diagnostic and predictive peptides will 

have to be further refined and validated.  If we can make such predictions early on 

in humans, this can allow the individual to get treatments early on, which may 

prevent or lessen the severity of the disease.  To our knowledge, no such accurate 

test exists to predict or diagnose lupus or its CNS manifestations and therefore 

this technology, will be very important in helping individuals that have lupus or 

are lupus-prone (Yildirim-Toruner and Diamond, 2011).  This technology should 

be able to be extended to predict neuropsychiatric manifestations of many 

immunologically mediated disorders, not just lupus.  

Other researchers have applied microarray technology to lupus, but not 

peptide microarray technology (Rus et al., 2002).  These researchers used cDNA 

microarrays to look at the changes in gene expression in lupus patients versus 

controls and did find genes with greater expression levels in lupus patients versus 

the controls.  In contrast, our microarray chips used peptides as opposed to DNA, 

because an increase in gene expression does not always indicate an increase in 

protein expression, it may be more accurate to look at the changes in peptide 

expression levels.  This type of microarray technology has been used to identify 

predictive and diagnostic peptides of another autoimmune disease, diabetes 
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(Quintana et al., 2004).  After analysis, they were able to find a set of antigens on 

the chip that was specific to pre-diabetes development and post-diabetes 

development.  Therefore if such a test provides results that can predict and 

diagnose diabetes, this provides support to the idea that it can be applied to lupus.  

Other researchers have also used the same chip that we are currently using to 

study influenza and other diseases (Boltz et al., 2009; Morales Betanzos et al., 

2009; unpublished data).  Due to its applicability to multiple diseases, this means 

that the cost of using such a chip will be cheaper since we do not need a special 

chip for lupus. 

Since we were interested in identifying the targets of the BRAA and we 

knew the sequence of the peptides on the chip, we used a computer program to 

see if there are potential matches to natural proteins for each set of the peptides 

(sets include diagnostic and predictive peptides of lupus and its CNS 

manifestations).  We found interesting proteins matches for each set and these 

results are important since we may be identifying biomarkers and potential targets 

for therapy based on the disease manifestation.  One of the mice from our last 

study was used to create five monoclonal BRAA.  Even though we are not 100% 

sure as to the identity of the targets of these BRAA, we used the same computer 

analysis program.  This again becomes important in the overall goal of 

understanding the mechanisms of CNS lupus and for developing better future 

therapies. 

Using the computer analysis program and the microarray results, we were 

able to suggest the identities of the targets of the five created monoclonal BRAA.  
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However, it would be very helpful to actually identify the BRAA targets.  One 

possible means of identifying these targets is using affinity chromatography.  The 

monoclonal BRAA would be immobilized and used to isolate its corresponding 

antigen from a prepared mouse brain homogenate.  We would then identify the 

antigen using mass spectrometry.  It would be interesting if the identified target is 

one of the possible natural protein matches identified using the computer analysis 

program for the five monoclonal BRAA.  This would be a confirmation of the 

utility of the microarray analysis and our computer program in identifying brain 

targets of any antibody of interest.  Next, to determine if the BRAA is pathogenic, 

we would take each of our monoclonal BRAA and inject them into the low-

autoimmune MRL/mp at an age prior to disease development, or the non-

autoimmune C3H/HeJ mice.  If behavioral deficits are produced similar to what 

was observed in the original MRL/lpr that was used to generate the monoclonal 

BRAA, then this would be strong evidence that this is a pathogenic BRAA.  Since 

we would know the identity of the target of this BRAA, which corresponds with 

the CNS manifestations, then targeting this protein could be used to develop 

specific therapies.  Our means of using the computer and microarray analysis to 

identify the targets of our monoclonal BRAA was just one step in this overall 

goal. 

Of course, the BRAA hypothesis is not the only hypothesis, other than 

vascular damage, that is proposed as an explanation for why we observe different 

CNS manifestations in lupus.  Other researchers have proposed that cytokines 

play a role since increased expression of three cytokines, TNF-α, IL-1β and IL-6, 
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have been associated with increased abnormalities in sucrose consumption for the 

MRL/lpr mice in comparison to control groups (Ballok et al., 2003).  Another 

study also found increased expression of IL-1β in the MRL/lpr with lupus 

nephritis in comparison to the controls (Boswell et al., 1988).  Increased 

expression of adhesion molecules have also been detected in brains of our murine 

models of lupus, which suggest that they play a role in causing these CNS 

manifestations (Zameer and Hoffman, 2003).  ICAM-1 and VCAM-1 are two 

adhesion molecules that are important in allowing leukocytes to gain entry to 

tissues through binding with their receptors.  Using immunhistochemistry, 

previous research in our lab found that in the brains of 4 month MRL/lpr, there 

was increased expression of both of these adhesion molecules in comparison to 

the controls (Zameer and Hoffman, 2003).  This indicates that there is an immune 

response occurring in the brain.  It could also mean that the adhesion molecules 

are allowing leukocytes entry into the brain, which in turn gives the 

autoantibodies access to the brain, resulting in different neuropsychiatric 

manifestations.  Alteration of BBB permeability by itself could cause CNS 

manifestations.  Lastly, researchers also believe that components of the 

complement system may play a role in lupus (Liu et al., 2005).  However, exactly 

what role each of these factors is playing is not certain.  

For the BRAA to enter the brain and cause change of function there needs 

to be an alteration of the BBB.  It is hypothesized that the BBB is altered during 

CNS-SLE development, but this is still not completely understood (Zameer and 

Hoffman, 2001; Hoffman and Harbeck, 1989).  We have in the past detected 
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increased BRAA levels in the brains of our autoimmune mice in comparison to 

the controls (Zameer and Hoffman, 2001) as well as the presence of B and T cells 

in the brains of these mice (Zameer and Hoffman, 2004).  Because of the presence 

of the immunoglobulin in the brain during disease progression, this suggests that 

somehow these BRAA are able to cross the BBB and affect function or the 

leukocytes that produce these BRAA are somehow able to enter the brain and 

produce these BRAA in situ.  

Also, there is evidence that there is functional damage to the barrier 

(Hoffman and Harbeck, 1989).  During immune complex disease, changes in the 

permeability of the blood-CSF barrier have been detected.  Immune complex 

deposition found in the choroid plexus has been thought to affect the permeability 

of the blood-brain barrier and may be partly responsible for some of the CNS 

manifestations of lupus (Hoffman and Harbeck, 1989; Harbeck et al., 1979).  As 

further evidence of BBB involvement, other researchers have found that their 

antibodies to the NMDA receptor were able to enter the brain of control mice and 

affect behavioral performance, but only after compromising the BBB (Kowal et 

al., 2004).  These mice displayed cognitive impairment showing that if the BRAA 

are able to enter the brain through a disrupted barrier, then behavioral dysfunction 

is observed. 

We believe that multiple factors contribute to the opening of the BBB and 

generating CNS manifestations.  We hypothesize that substance P is involved in 

opening the barrier through binding to its neurokinin-1 receptor (NK-1R).  If 

increased substance P activity is necessary for opening the BBB, one way this 
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could occur is through increased levels of the NK-1R.  Researchers have found 

that pro- inflammatory cytokines caused an increase in the levels of substance P, 

which seems to affect barrier permeability (Annunziata et al., 2002).  They also 

found that this increase in substance P levels cause an increase in the expression 

of ICAM-1, since using a substance P antagonist causes a decrease in the 

expression of this adhesion molecule.  As mentioned, we also found an increase in 

the expression of ICAM-1 and VCAM-1 in our lupus mice (Zameer and Hoffman, 

2003).  Therefore in the presence of a certain level of pro- inflammatory cytokines, 

substance P seems to help in opening the blood-brain barrier as well as causing an 

increase in the expression of the adhesion molecules that attract the leukocytes 

which produce the BRAA.   

To test this hypothesis we looked at the levels of the NK-1R in the brains 

of MRL/lpr mice.  These MRL/lpr displayed lupus disease progression when 

measuring different immunological variables as well as increased BRAA levels.  

Altered behavior was observed in the MRL/lpr in the sucrose preference test (used 

to measure anhedonia) in comparison to controls.  When measuring the levels of 

NK-1R protein, our initial results showed a significant increase in the expression 

of this receptor.  These results (see chapter 5) suggest a role for this receptor in 

contributing to altered BBB permeability and CNS dysfunction, but more research 

is needed to solidify these findings. 

It is interesting to note that researchers have found that using an antagonist 

to substance P caused a decrease in the levels of MHC class I (Annunziata et al., 

2002).  This implies that an increase in substance P levels should cause an 
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increase in MHC class I levels.  It has also been found that mice lacking MHC 

class I have increased synaptic plasticity (Datwani et al., 2009).  Therefore, 

substance P causing an increase in MHC class I could be one reason for the 

learning and memory deficits seen in humans (Shucard et al., 2007) and MRL/lpr 

mice   Shatz proposed a hypothesis that MHC class I interacts with a protein in 

the brain called PirB and this helps to regulate synaptic plasticity (Shatz, 2009).  

We have been looking at MHC class I levels in the brains of our MRL/lpr mice 

and our preliminary results suggest an increase in MHC class I in the brains of our 

MRL/lpr.  Taken together, this could suggest that an increase in pro- inflammatory 

cytokine levels causes an increase in substance P levels and an increase in NK-1R 

binding (through an increase in NK-1R levels).  This increase in substance P 

levels causes an increase in ICAM-1 levels which attracts leukocytes to the brain.  

Substance P then alters the blood-brain barrier, allowing leukocytes to enter, or 

the BRAA themselves.  The BRAA are then able to bind to their target proteins 

and cause a variety of neuropsychiatric manifestations.  Substance P also causes 

an increase in the levels of MHC class I which, through binding to its ligand PirB, 

affects brain functioning resulting in CNS manifestations like cognitive deficits 

through decreased synaptic plasticity.  Of course, this is all hypothetical but the 

results that we and other researchers are finding seem to support these ideas.       

Overall, our studies have added a better understanding of the involvement 

of BRAA in causing neuropsychiatric manifestations.  We have developed a 

general procedure for determining the identities of pathogenic BRAA which 

likely will provide biomarkers and targets for therapy.  More research is needed to 
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solidify these techniques and the role that each of these proteins is playing in CNS 

lupus.  In order to confirm that these BRAA are indeed pathogenic, in future 

studies we would need to inject these BRAA into normal mice and see if we can 

replicate the altered behavior.  This would provide strong causal support for the 

BRAA hypothesis.  We have also discovered a better diagnostic and predictive 

technology for lupus and CNS lupus.  Our detection system is very noteworthy 

because it has allowed us to predict and diagnose CNS manifestations in our lupus 

mouse model, which at the current time is difficult to do.  The next step would be 

to apply this microarray technology to sera obtained from patients with lupus and 

CNS lupus.  We expect that this technology should prove to be very useful in 

accurately predicting and diagnosing lupus and each specific CNS manifestation 

in humans and also in providing better treatments since accurate diagnosis is the 

first step in providing better care.  Lastly, we have provided results to further 

suggest that the NK-1R may be playing a role in CNS lupus.  Of course, more 

studies are necessary to validate all of our results as well as to discover the exact 

role that BRAA are playing in neuropsychiatric lupus.  However, our findings are 

adding more information to what is necessary to better understand the 

mechanisms underlying CNS-SLE, and to help those individuals affected by this 

autoimmune disease. 
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