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ABSTRACT 

This dissertation provides a fundamental understanding of the impact of bulk    

polymer properties on the nanometer length scale modulus.  The elastic modulus 

of amorphous organic thin films is examined using a surface wrinkling technique.  

Potential correlations between thin film behavior and intrinsic properties such as 

flexibility and chain length are explored.  Thermal properties, glass transition 

temperature (Tg)  and the coefficient of thermal expansion, are examined along 

with the moduli of these thin films.  It is found that the nanometer length scale 

behavior of flexible polymers correlates to its bulk Tg and not the polymers 

intrinsic size. It is also found that decreases in the modulus of ultrathin flexible 

films is not correlated with the observed Tg decrease in films of the same 

thickness. Techniques to circumvent reductions from bulk modulus were also 

demonstrated.   

However, as chain flexibility is reduced the modulus becomes thickness 

independent down to 10 nm.  Similarly for this series minor reductions in Tg were 

obtained. 

To further understand the impact of the intrinsic size and processing conditions; 

this wrinkling instability was also utilized to determine the modulus of small 

organic electronic materials at various deposition conditions.   

Lastly, this wrinkling instability is exploited for development of poly furfuryl 

alcohol wrinkles.  A two-step wrinkling process is developed via an acid 

catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid 

generator.  The ability to control the surface topology and tune the wrinkle 
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wavelength with processing parameters such as substrate temperature and photo 

acid generator concentration is also demonstrated.  Well-ordered linear, circular, 

and curvilinear patterns are also obtained by selective ultraviolet exposure and 

polymerization of the furfuryl alcohol film.  As a carbon precursor a thorough 

understanding of this wrinkling instability can have applications in a wide variety 

of technologies. 
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 1 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The nanometer length scale behavior of glassy materials are of valuable 

fundamental interest for the development of advanced materials in 

microelectronics,1 coatings,2 and adhesives.3  As technology demands the use of 

materials at the nanometer length scale thermal and mechanical properties become 

a critical parameter for accessing their stability and performance.  Understanding 

properties such as modulus and glass transition temperature of organic glasses at 

sub 100 nm length scales will provide guidance needed for implementation of 

organic glasses in thin films and nanostructures. More specifically the goal of the 

research presented here is to determine whether bulk material properties and 

correlations such as time temperature superposition hold at the nanoscale, a length 

scale that approaches their characteristic length.  Lastly, surface wrinkling will 

also be exploited to obtain substrates with controlled topology. 

Mechanical properties of organic thin films are challenging to measure 

using traditional techniques for inorganic films.  Common techniques such as 

indentation are limited when attempting to characterize ultrathin films as the data 

commonly exhibits artifacts as a result of the stiffer underlying substrate.4 These 

artifacts are further complicated in polymer thin films due to their relative 

softness.  Here, a wrinkling based metrology is used to overcome these 

experimental difficulties and to determine the elastic moduli of ultrathin organic 

glass films.   Understanding fundamental behavior of organic glasses will 
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contribute to the use of these thin films in a variety of applications including 

photonics,5 nanostructures in microelectronics,6 non-linear optics,7 and 

biosensors.7  

In this introduction, a brief summary of each chapter is provided, along 

with a discussion on the properties of ultrathin films, mechanical measurements of 

thin films, the wrinkling based metrology, as well as the buckling mechanics used 

to calculate the elastic moduli of thin films.  

In Chapter 2, the elastic moduli as a function of quench depth in the glass, 

the difference between the bulk glass transition temperature (Tg,bulk) and the 

experimental temperature (T), (Tg,bulk-T), are examined in order to determine 

correlations between Tg,bulk and modulus.  Although it has been widely shown that 

the glass transition temperature (Tg) in thin polymer films can deviate from bulk 

values as the film thickness is decreases to the materials characteristic length 

scale.8-21  Some results suggest that these deviations are preparation artifacts and 

given proper sample treatment no deviation from bulk values can be obtained.22  

On the other hand a decrease in bulk values at sub 100 nm length scales is also 

reported in the absence of strong favorable interactions between the polymer and 

substrate and an increase from bulk values is reported given strong interactions.8-

12   These results therefore suggest that parameters such as polymer affinity for the 

substrate and sample preparation are critical for sub-100 nm Tg.  However, there 

is little known about the modulus of sub-100 nm polymer films.  Thus, one might 

use this depressed Tg as a surrogate to estimate how the modulus of nanoconfined 

polymeric materials deviates from the bulk.23   Therefore a better understanding 
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on the relationship between bulk Tg and modulus is needed.  The first series of 

polymers studied is poly (alkyl methacrylate)s.  This series of polymers was 

chosen due to a large impact on Tg,bulk (27°C<Tg,bulk <105°C) as the alkyl chain 

length is increased.24   This large range in Tg,bulk  allows for a systematic study of 

quench depth while still performing experiments at ambient with no increased 

experimental setup. 

The second set of polymers studied is a series of polystyrene (PS) with a 

wide range of molecular mass (1.2 kg/mol up to 990 kg/mol).  This PS series 

allows for an understanding on the effect of the materials intrinsic size on the 

modulus of ultra thin films, while still maintaining a systematic variation in 

quench depth, as Tg becomes molecular weight dependent below the 

entanglement molecular weight.25  All of the polymers in these two series showed 

a decrease in the modulus in ultrathin films with the onset of confinement effects 

shifting to larger film thicknesses as the quench depth decreases.  However, this 

deviation length scale does not scale with molecular weight.  The results also 

show that the decrease in modulus of ultrathin films is not directly correlated with 

the observed Tg decrease in films of the same thickness. 

In Chapter 3 the addition of small diluent molecule (Dioctyl phthalate) to 

PS and poly (methyl methacrylate) (PMMA) as well as ultraviolet-ozone (UVO) 

surface treatment to the same polymers is examined.  This is done in an effort to 

maintain the polymers robustness at sub 40 nm length scales as small molecules 

can reduce the length scale for collective motion.   Although small molecule 

diluents tend to plasticize and hence reduce the bulk modulus, previous work on 
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the Tg of PS thin films show promising results, an increase in Tg at sub 50 nm 

length scales.26 PS films thicker than 40 nm exhibit a reduction in modulus when 

compared to neat PS.  However, for sub 40 nm films the diluent molecule effect is 

reversed, and the modulus of the PS is increased when compared to the neat 

polymer at identical thickness.  The small molecule diluent can eliminate the 

substantial reduction in modulus for ultrathin films.   

UVO surface treatment oxidizes and crosslinks the near surface of PS.27 

UVO treatment is successful for maintaining the mechanical roboustness for the 

high molecular weight PS as it completely crosslinks the ≈4 nm free surface layer 

responsible for the decrease in sub 40 nm modulus.  For the lower molecular 

weight PS, results from Chapter 2 reveal an increased free surface layer, ≈50 nm, 

UVO is unsuccessful as research shows it only crosslinks the top 5 nm.27  On the 

other hand, Poly(methyl methacrylate) undergoes a chain scission reaction when 

exposed to UVO leading to an unchanged modulus at short exposure times. 

In Chapter 4, the modulus and Tg for a series of polymers with varying 

backbone flexibility and architecture are studied as a function of film thickness.  

Aryl-phosphonate copolymers poly (aryl phosphonate)s and poly [5-(2-

phenylethylnorbornene)] (PENb) with differing extents of hydrogenation are 

studied.  Addition polymerized PENb (AddPENb) contains an unsaturated 

backbone with a pendent phenyl ring, which leads to a relatively rigid polymer 

with a high bulk Tg (186.3 ± 2.3˚C).  Both Tg and modulus are statistically 

thickness independent; selective hydrogenation of the pendent phenyl ring leads 

to a small increase in Tg and decrease in modulus for the bulk, but these properties 
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remain thickness independent.  PENb polymers formed by ring opening 

metathesis polymerization (hROMP PENb) yield saturated backbones, while the 

pendant phenyl ring can be subsequently hydrogenated to provide analogous 

polymers to the addition polymers.  However, both hROMP PENb exhibit a 

thickness dependent modulus and Tg.  This difference between the ROMP and 

addition polymers is attributed to the preservation of the bridged ring in the 

polymer backbone in the addition polymer that decreases its flexibility.  To 

further investigate the role of backbone flexibility, a series of poly(arylate-

phosponate) copolymers were investigated with varied aryl:phosphate ratios; a 

decrease in this ratio leads to a decrease in bulk Tg and an increase in bulk 

modulus.  For the thin films, high aryl content leads to near thickness independent 

moduli and Tg, while as the phosphate ratio increases properties become thickness 

dependent at 20 nm and 40 nm for 50:50 and 0:100 ratios.    

Furthermore, the impact of polymer architecture is also examined as PS 

branching is systematically increased from trifunction (comb), to tetrafunctional 

(centipede), to hexafunctional (star).  The bulk Tg for these PS films is 

independent of branching and all exhibit a bulk Tg of approximately 103.5 ± 1 °C, 

statistically invariant from their linear counter parts.  However, films thinner than 

40 nm show significant reductions in Tg for linear and centipede PS, 25 K and 40 

K, respectively.  Interestingly, the modulus of the thick films is dependent upon 

the chain architecture with the star and comb polymers being the most compliant 

(~ 2 GPa) while the centipede PS is most rigid (~ 5 GPa). However at 10 nm, the 

modulus of the centipede polymer is less than that of the star or comb PS.  The 
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comb PS exhibits no thickness dependence in moduli, while all other PS 

architectures examined show a decrease in modulus as the film thickness is 

decreased below approximately 40 nm.  These results suggest that thickness 

dependent properties for polymer films are related to chain flexibility and this 

provides a route to systematically explore the origins for size dependent behavior 

in polymeric glasses. 

In Chapter 5, the modulus of widely utilized small molecule organic electronic 

materials, 4,4’-N,N’-dicarbazole-biphenyl (CBP), N,N-diphenyl-N,N-bis(3-

methylphenyl)-1,1-biphenyl-4,4-diamine  (TPD), N,N’-Di-[(1-Naphthyl)-(N,N’-

diphenyl]-1,1’-biphenyl)-4-4’-diamine (NPD), and tri(8-

hydroxyquinolinato)aluminum (Alq3) is studied.  Similar to most organic 

glasses,28 the Young’s modulus of these materials is on the order of 1-2 GPa.  The 

moduli are statistically invariant for thicknesses > 20 nm.  However, a dramatic 

decrease or increase in modulus is observed for films less than 20 nm thick.  This 

behavior is found to be dependent upon the bulk glass transition (Tg) temperature 

of the material.   For both CBP and TPD, which have similar Tg’s (60 ºC and 62 

ºC, respectively), the modulus at room temperature decreases ≈50% when the 

thickness is decreased to 10 nm.  Conversely, the modulus of NPD, with a bulk Tg 

of 95 ºC, increases by nearly a factor of two when the thickness is decreased 

below 20 nm, as does the aluminoquinone glass with a Tg of 175 ºC.  This 

behavior could have significant implications for engineering of organic 

electronics, as our results indicate that sub-20 nm vapor deposited glasses may 

behave electronically significantly different from thicker films due to variations in 
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packing density.  This result illustrates that the thickness of active layers in 

OLEDs impacts not only the device performance as previously determined,29 but 

also their elastic properties; these properties are important for use in flexible 

devices.30 

In Chapter 6, polyfurfuryl alcohol films with controlled surface 

morphologies are obtained from a photo polymerization process.  A wrinkling or 

creasing morphology is obtained by drop casting a photo acid generator and 

furfuryl alcohol solution onto a heated substrate followed by ultraviolet ozone 

exposure.  The wavelength, amplitude, and surface morphology can be tuned by 

varying the concentration of photo acid generator and substrate temperature.  By 

controlling the rate of polymerization wavelengths in the range of 80-150 µm 

were obtained.  Both surface wrinkling and creasing regimes can also be 

controlled with these parameters.  Furthermore selective polymerization of the 

drop cast film obtained by limiting UV exposure through masks allows for 

ordering of the wrinkling morphologies. 

In Chapter 7, a brief description of future work is given, including work 

aimed at a continued understanding of confinement on the modulus of ultra thin 

films.  It is proposed to study the impact of aging on the modulus of polymeric 

thin films critical for end use applications.   The impact of nanofiller in polymer 

matrixes at the nanoscale is also of interest given the increase in interface 

interactions as well as its applicability to organic electronics.31  For example, the 

impact of C60 nanoparticles on polymer matrixes (PS and PMMA) will be studied.  

Effects of C60 nanoparticles can then be related back to the small molecule diluent 
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effect on PS and PMMA leading to a better understanding of nanoconfinement.   

Continued work on organic electronics from Chapter 5 and use of wrinkled 

polyfurfuryl alcohol substrates from Chapter 6 is also discussed. 

1.2 Properties of organic glass thin films 

1.2.1 Glass transition temperature 

Although mechanical properties of organic glasses at the nanometer length 

scale have not been examined in detail, the glass transition temperature has been 

studied extensively.12, 14, 18, 32-35 The relative ease of these measurements coupled 

with the strong correlation of Tg on other properties of polymeric materials such 

as Young’s modulus and loss modulus36 has provided a wealth of information 

regarding the properties of thin polymer films.  Correlations such as time-

temperature superposition principles rely on the fact that viscoelastic properties of 

polymers show a strong temperature dependence near Tg.  For example, the elastic 

modulus exhibits a transition profile, where at low temperatures a plateau in 

modulus is observed and as the temperature is increased to above Tg the modulus 

will undergo a transition where the modulus decreases several orders of 

magnitude to the “rubbery plateau”.  Overall time temperature superposition 

allows the response time function of the modulus at a given temperature to be 

shifted following the empirical equation given by Williams-Landel-Ferry (WLF). 

The WLF equation allows for the development of isotherms of polymer properties 

over large time scales.   For example, data taken at a given temperature on a rapid 

time scale can be used to determine the data at a lower temperature and slower 

time scale once the shift factor and empirical constants are determined.  This 
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technique is limited to noncrystalline polymers, stable polymers in the 

temperature range studied, and pure polymers with no composites.  

Given the sensitivity of other properties on Tg significant work on Tg of 

organic glasses confined to the nanometer length scale has been performed.  

Studies involving glass-forming liquids confined to small glass pores pioneered 

research of nanometer length scale effects on Tg.15, 37 Confinement arises as the 

materials film thickness is reduced to length scales approaching its characteristic 

dimensions. The first comprehensive study on the Tg of materials in confined 

geometries were done by Jackson and McKenna using differential scanning 

calorimetry.15  They observed an 18 K depression in bulk Tg for o-terphenyl 

confined to 4 nm pores.  Work by Zhang et al. confirmed the reduction in Tg for a 

series of small molecules confined to sol-gel silica nanopores.38 These 

observations lead to significant interest in understanding the properties of 

confined materials.  The transition from glass pores to thin films was influenced 

by the many advantages of thin film geometries.  Most notably the fact that the 

confining dimension, film thickness, can be easily controlled over a wide range of 

length scales approaching the materials characteristic length scale.  Additionally 

thin films allow for more facile exploration of interfacial effects and surface 

treatments when compared to nanopores.   

Similar to the confining pore geometry for small molecule glasses, Keddie 

et al. found a 20K decrease in Tg for PS as the film thickness is reduced to 10 

nm.18  The glass transition temperature of ultrathin films has been determined 

with a wide range of techniques such as: ellipsometry,18, 39 Brillouin light 
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scattering,40 X-ray reflectivity,41, 42 acoustic wave spectroscopy,43 shear 

modulation force microscopy,44 positron annihilation lifetime spectroscopy,9, 45 

dielectric spectroscopy,46 and probe diffusion.12  The Tg of nanoconfined polymer 

films have shown inconsistent results; where the Tg increases, decreases, or 

remains unchanged as the film thickness is reduced. 14, 18, 42, 47-51  Attempts to 

understand confinement effects have then progressed in two distinct directions: 

first, the importance of interfaces and interfacial interactions12, 52; and second, a 

fundamental examination of the controlling length scales such as molecular 

weight14, 33, 35  and cooperative rearrangement length, ξ(CRR), of the polymer 

segments.33 Polymer-substrate interfacial interactions are critical to the observed 

confinememnt effects on the Tg of thin films.  Ellipsometric measurements have 

shown and increase in the Tg of PMMA while supported on a native oxide silicon 

wafer and decrease while supported on a gold coated silicon surface.19   

Using the same technique, Grohens showed the Tg of isotatic PMMA to 

increase and the Tg of syndiotatic PMMA to decrease as the film thickness 

decreased below 100 nm suggesting molecular architecture has an effect on the Tg 

of thin flims.53, 54  While utilizing a variety of techniques such as spectroscopy, 

reflectivity, and differential scanning calorimetry Kremer and coworkers report 

only a ± 3 K change in Tg for PMMA and PS at 5 nm. 55 Furthermore, Kremer and 

coworkers also report no confinement effects for atactic PMMA on hydrophobic 

nor hydrophilic substrates when studied via ellipsometry and dielectric 

spectroscopy.22  In these experiments deviations from bulk values is attributed to 

variations in sample preparation.  Reductions in Tg due to the characteristic length 
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of the molecules have been studied via variations in molecular weight.  Results 

reveal that supported polymer films have shown no significant reduction in Tg 

with varying molecular weight,10, 18 but free standing films are  strongly molecular 

weight dependent on Tg.10, 20, 56  Forest et al. used Brillouin light scattering to 

measure Tg of thin free standing PS films, their results show an onset of 

confinement, a deviation from bulk values, at 70 nm and a 70K depression of Tg 

at ~30 nm unlike support PS films where a 30K depression is observed beginning 

at 40 nm.13, 57  Unlike supported films, free standing PS and PMMA films with 

similar molecular weight show different magnitudes of Tg depression, also 

suggesting a polymer-free surface interface effect.20  DeGennes proposed that this 

increased reduction in Tg for freely standing films is due to collective motion 

taking place only on chain loops as chain ends segregate to the free surface region 

increasing the free volume and consequently increasing polymer chain mobility.8  

On the other hand, Kremer and coworkers attributed the lack of reduction in Tg to 

preparation techniques allowing residual solvent in the film.55  These results 

suggest that the chemistry and surface energy of the substrate as well as sample 

preparation can play an important role on the behavior of ultra thin films.19, 47, 48, 

58-60   

One key advance in understanding the Tg of thin films was made by 

Ellison and Torkelson who demonstrated that a gradient in Tg exist as a gradient 

from both the substrate and free interface.12   This was done by using a fluorescent 

probe method in a multilayer film, where dye labeled layers were systematically 

placed at various known depths from the free surface.  In particular, a region of 
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enhanced mobility (lower Tg) at the free surface was found to penetrate several 

tens of nanometers into the polymer film, with the reduction for thicker films 

greater than very thin films.12, 61  Recently, a study by Tsui and coworkers have 

measured the viscosity of unentangled polystyrene films and determined that the 

transition temperature for the viscosity decreased with decreasing film thickness 

also due to the presence of a mobile surface liquid layer, consistent with previous 

reports of a decrease in Tg at sub 40 nm’s.62      Furthermore, recent work by Tsui 

and coworkers revealed no correlation between Tg and film dewetting at the 

nanoscale and therefore the fluidity of polymer thin films is not completely 

predicted by Tg.63  This lack of correlation at the nanoscale was attributed to 

confinement and interface effects such as enhanced dynamics at the free surface.63  

Fakhraai and Forest examined this liquid like layer at the surface by annealing a 

system of gold spheres on top of PS films and measuring the recovery of the film.  

Fakhraai and Forrest observed a layer of increased mobility at the surface both at 

annealing temperature above and below Tg.64    The existence of a layer of 

increased mobility at temperatures below Tg could lead to a significant impact on 

ultrathin film properties even for molecules deep in the glass as the surface to 

volume ratio is increased and the free surface becomes more significant. 

1.2.2  Thin film polymer dynamics 

This enhancement of surface mobility has been studied by direct 

measurements of dynamics at the polymer-free surface interface.  Using slow-

positron-annihilation spectroscopy of PS thin films, Jean and coworkers show 

variations in Tg with implantation distance from the free surface down to ~40 nm, 
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with the top 5 nm showing a 57 K Tg depression.16 Molecules within 15 nm of the 

polymer-air interface have higher mobility than those in the bulk via optical 

birefringence measurements of ~10µm thick films and dewetting studies of 

ultrathin PS films on float glass.65, 66 Furthermore a significant amount of work 

has been done on polymer mobility utilizing incoherent neutron scattering (INS).  

INS studies of polycarbonate (PC) thin films have shown a significant reduction 

in mean-square atomic displacement, a direct measure of polymer mobility, at sub 

30 nm length scales.67  More detailed studies on PMMA, poly(vinyl chloride) 

(PVC), and PC show a complex mobility behavior.  For example a general 

reduction in mobility is found with decreasing film thickness at temperatures 

above Tg.68, 69  However, at temperatures below Tg the magnitude in the reduction 

becomes polymer dependent.  With decreased mobility in ultrathin films, a 

decrease in diffusion at these length scales would be expected.  In agreement, 

Frank et al. found a slight decrease in lateral diffusion for films less than ~150 nm 

when supported on an attractive substrate.70   Similarly, measurements on chain 

self diffusion near an attractive solid surface show a two order of magnitude 

decrease in diffusion coefficient near the polymer-substrate interface for both PS 

and PMMA on silicon oxide from a few Rg’s up to 10Rg respectivly.71-73 

Translational diffusion of small molecules in PS films supported on fused quartz 

showed a reduction in diffusion at thicknesses below 150nm, with no change in 

diffusion for in poly (isobutyl methacrylate) nor poly (2-vinylpyridine) films.74  

These results suggest that not only is polymer affinity for the substrate important 

at the nanoscale but suggests that polymer flexibility and architecture can also 
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play an important role.  In contrast,  Tseng and coworkers use fluorescence 

recovery of a tracer in PS to show an increase in the diffusion coefficient with a 

decrease in film thickness. 75 The discrepancy on the direction and magnitude of 

variation in diffusion coefficient is attributed to a complex combination of surface 

and substrate effects.  These interactions are believed to play a major role in 

observed Tg behavior at the nanometer length scale.9 

1.2.3 Rheological properties 

Viscoelastic properties of polymer thin films have been measured via 

dewetting, nanobubble inflation,76 and thermal wrinkling77. Utilizing nanobubble 

inflation, McKenna and coworkers have reported creep compliance down to 13nm 

measured by using an atomic force microscope to image nanobubbles as a 

function of time, temperature, and film thickness.78  Most recently, they have 

reported a dramatic reduction in rubbery compliance, an increase in modulus, for 

sub 40nm thick PS and poly (vinyl acetate) films.79 Bodiguel and coworkers 

report a reduced viscosity beginning at a film thickness of 200 nm and a surface 

layer in which chain motion is enhanced on the range of Rg.80  In order to address 

viscoelastic properties at a polymer surface, surface rheological experiments have 

been conducted via the decay of imprinted surface corrugation gratings.  

Johannsmann et al. found a chain length dependence on the near-surface moduli 

of PS films >1µm.81  The surface modulus for PS above entanglement molecular 

weight  exhibited bulk like values; however, a 10 fold increase in apparent 

stiffness was found for PS below entanglement molecular weight.81  While  

utilizing broadband dielectric spectroscopy, Kremer and coworkers report no 
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broadening in the dynamic glass transition temperature at the surface of polymer 

thin films.82  Furthermore, the dielectric spectroscopy of annealed PS films 

capped by aluminum layers revealed an increase in Tg at the interfaces which the 

authors attributed to reduced chain mobility due improved packing with 

annealing.83 These results are inconsistent with an increase in surface mobility 

and deviation length scales observed for Tg in the sub 100 nm range.  This 

inconsistency can be attributed to a wide range of materials studied as well 

variations in experimental techniques.  

1.2.4 Phase behavior and physical properties 

Surface and substrate effects also have an impact on phase behavior, 

crystallization, chain conformation, gas permeability, thermal, and mechanical 

properties of thin films. Using a PS/poly(vinyl methyl ether) blend, Tanaka and 

coworkers noticed phase separation of the two components in films below 25 

nm.84  These results indicate a decrease in the spinodal temperature for the blend 

at sub 25 nm length scales.  The surface composition and structures of PS/PMMA 

blends are dependent on film thickness, where at sub 10nm length scales a phase-

separated structure with uniform domain sizes was obtained.85   Using UV 

absorption spectroscopy, Frank et al. found a reduction in the rate of 

crystallization and in the crystallinity of poly (di-n-hexylsilane) for film 

thicknesses below 50 nm, due to a transition between bulk nucleation and one-

dimensional nucleation.86  Polysulfone thin films  have shown an increase in 

selectivity and a slight decrease in permeability compared to bulk. 87, 88 If the 

films are subsequently aged, a further and significant decrease in permeability is 
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observed.87, 88  Results on aging of nanoconfined films performed by Priestley and 

coworkers show a dependence on a variety of factors including molecular 

structure and interface interactions, whereby controlling these factors can enhance 

or eliminate aging effects.89  For example, a significant reduction in aging is 

found in a 20nm PMMA film on an attractive substrate compared to the 500 nm 

counterpart due to the attractive substrate interaction significantly increasing Tg.90  

While bulk like aging is observed in a 500 nm PS film on a silicon wafer, aging is 

suppressed for the 10 nm films.  This observation is attributed to a 30K Tg 

depression in the 10nm film, as physical aging is only possible below Tg.  With 

properties of thin films exhibiting a complex behavior, understanding the 

confinement effect on the mechanical properties of glassy materials becomes 

critical as a significant decrease in mechanical robustness is detrimental to device 

performance. 

1.2.5 Elastic modulus  

Traditional techniques such as nano-indentation,91 atomic force 

microscopy (AFM),4 Brillouin light scattering (BLS),92 scanning probe 

miscroscopy (SPM),44, 93 and surface acoustic wave spectroscopy (SAWS),94 have 

been used to measure the elastic modulus of thin films, but are hindered when 

attempting to characterize ultrathin polymer films.  Indentation studies apply 

either a constant loading rate or a constant displacement rate, with the resulting 

loading and unloading curves dependent on the precise characterization of the 

indenter’s geometry.95, 96  The modulus is determined from a the load 

displacement curves and known information about the indenter tip.  However 
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nanoindentation is optimized for hard surfaces.  Polymeric materials are complex 

due to their soft characteristic challenging sub-micrometer length scale lateral and 

depth penetration.4 Nanoindentation requires an indentation depth less than 10% 

of the film leading to instrumental limitations such as load resolution, large error 

in determining initial contact loads, and calibration requirements limit the 

accuracy for thin polymeric films.4 Reported measurements using nano-

indentation show an indentation size effect, or decreasing elastic modulus with 

increasing penetration depth.97, 98  The AFM traditionally used for adhesion and 

surface topology can also be used to probe surface forces and indentation, most 

recently the interfacial force miscroscope (IFM).99 In AFM/IFM indentation 

techniques, the force on the tip is measured as a function of the vertical movement 

of the scanner.  Although promising, difficulties with these measurements lie in 

accurate knowledge about the tip geometry, therefore requiring idealized 

assumptions, as well as the use of the Hertz contact mechanics model that do not 

account for polymers viscoelastic behavior.100   Non contact techniques such as 

SAWS and BLS have been successful in the determination of the glass transition 

temperature of thin films. 92  However only limited data for the out-of-plane 

elastic properties of polymers has been determine due to difficulties in film 

handling and substrate interaction for both techniques.101  

An alternative technique to measure thin film modulus was reported by 

Stafford et al.102  This technique termed strain-induced elastic buckling instability 

for mechanical measurements (SIEBIMM) uses a wrinkling instability that occurs 

as a response to compression of a polymeric film on a thick elastic substrate.28, 102   
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Details describing the mechanism as well as the mechanics used to determine the 

elastic modulus will be described in Section 1.3. 

1.3 Wrinkling 

The wrinkling used to determine the elastic modulus of thin film is 

observed throughout nature.  For example, a dehydrating fruit and human skin, 

where dehydration of the fruit or epidermins places a compressive force on the 

skin inducing wrinkling.103, 104  In human skin, a stiff epidermis layer lies below a 

much softer elastic dermis layer.  With time, the elasticity of the dermis layer is 

reduced placing the system under strain, which is relieved as the skin wrinkles.  

Similarly, reversible wrinkles appear due to the force applied as muscles contract; 

when the force is removed, they disappear.  For fruits, the soft outer skin is placed 

under a compressive force as the fruit begins to dehydrate; the outer skin wrinkles 

in response to this force.  This wrinkling phenomena commonly found in nature 

has potential in a variety of fields including material assembly,103 adhesion,105 

antifouling surfaces,2 and flexible devices106.   

For example, the success of flexible devices depends on the ability of 

stretchable interconnects and electrodes to remain conductive under operational 

induced strain.  Wrinkling has been used to develop successful flexible features 

by depositing gold and chromium strips onto flexible substrates such as 

PDMS.107-109  These electrodes and interconnects have been strained, which 

wrinkles the metal, while maintaining conductivity to approximately 22% strain, 

with negligible loss in conductivity as the sample is cycled between the strain and 

unstrained states.107-110 Recently, researchers have utilized wrinkling to wrap 
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silicon-based electronic circuits onto curvilinear surfaces for use as flexible 

electronics in medical sensors.111 Furthermore, by wrinkling plasma or ultraviolet 

treated PDMS slabs, groups have shown the ability to control the amplitude of the 

wrinkles allowing them to tune the intensity of the diffraction and therefore use 

wrinkled surfaces as an optical grating.112, 113 The plasma or ultraviolet exposure 

crosslinks the surface creating a silica thin film on the elastic PDMS; under 

compression this system wrinkles, the wavelength is controlled by plasma or 

ultraviolet exposure while the amplitude is controlled with strain.112  Crosby and 

coworkers have demonstrated the use wrinkling patterns to develop smart 

adhesives, where the adhesion of the material is tailored by geometric patterns.3 A 

wrinkled surface has 7-fold increase in strength when compared to a smooth film 

as well as an increase in the reversibility of the adhesion.  For example, Lin and 

coworkers utilized crosslinked PDMS to develop tunable dry adhesives, that 

demonstrate real-time adhesive tunability by adhering and releasing a glass bead 

by controlling the strain on the PDMS substrate.114  Efimenko et al. have shown 

wrinkled surfaces to be promising in the fight against marine fouling; their 

research showed a decrease in fouling on wrinkled surface as compared to smooth 

surfaces.2  Wrinkled hierarchical and functionalized surfaces have also been used 

for contact guidance of cells,115 microfluidic sieves for ordering of spheres,116 and 

as a tool for separation.116  Here we use this wrinkling instability as a technique to 

measure the elastic modulus of ultrathin films.  The naturally occurring wrinkling 

instability is harnessed by utilizing a  homogenous in plane compressive force of 

a stiff film on an elastic substrate yielding a  uniform wrinkled film.  The 
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mechanism, shown schematically in Figure 1.1, begins with an unstrained slab of 

PDMS mounted onto a custom-built strain stage, discussed in Section 1.9.  The 

PDMS is pre-strained followed by the transferring of a thin film.  By releasing the 

pre-strain applied to the PDMS, the film is compressed and wrinkling is induced 

in order to minimize the total strain energy in the system.  

 

Figure 1.1 Schematic of mechanical induced wrinkling.   

 

When compressed, the film can undergo two different deformations.  As 

shown in Figure 1.2 the film can buckle and delaminate from the substrate, or 

remain bonded to the substrate and deform concurrently wrinkling.117, 118 With the 

deformation mechanism determined by the substrate (compliant substrates, 

, will buckle, while stiff substrates, 

€ 

Es >> E f , delaminate).117, 118    

Where Es and Ef are the modulus of the substrate and film respectively.  

 

Figure 1.2 Two different deformation mechanisms [a] delamination [b] wrinkled. 

 

The mechanics behind wrinkling begins with the following expression for 

bending of an elastic layer on an elastic foundation while neglecting shear stresses 

between the two layers:119, 120 
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 Where, as shown in Figure 1.3, y is the displacement orthogonal to the 

plane of the film, x is the distance along the direction of wrinkling, F is the 

compressive force, νf and Ef are poisson’s coefficient and film modulus of the 

film, I is the second moment of area of the film about the axis of bending, and k is 

Wrinkler’s modulus of half-space.   

 

Figure 1.3 Schematic of an elastic film on an elastic substrate with the coordinate 
system showing the y-axis perpendicular to the film and x-axis along the 
wrinkling direction.  Followed by the same system under a compressive force, F. 
 

The second moment of bending is dependent on the width of the film, w, 

film thickness, hf, and amplitude A: 

€ 

I =
whf

3

12
        (2) 

Wrinkler’s modulus of half-space represents the modulus resistance to 

displacement from the film into the substrate and is given by:121 

€ 

k =
Esw
1−ν f

2
π
λ

        (3) 

Where λ represents the wrinkle wavelength, w the film width, and Es and 

νs are the substrate modulus and poisson’s ratio.  The above Wrinkler’s modulus 

is only valid for a sinusoidal deflection of the coating, 

€ 

y = Asin 2π
λ

 where small 



 22 

perturbations are assumed.  Combining this deflection and Wrinkler’s modulus 

into Equation 1 the compressive force in the film, F is:120 

€ 

F = E f I
4π 2

(1−ν f
2 )λ2

+
Esw

4π(1−ν s
2)EsI

λ
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟     (4) 

The minimal value of the compressive force per unit area represents the 

critical compressive strain, εc, beyond which point wrinkling is induced.  The 

compressive strain is dependent on the ratio of the plane strain moduli of the 

substrate to the plane strain moduli of the film, 

€ 

E s
E f

, as shown in Equation 5. 

€ 

εc = −
1
4
3E s
E f

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 / 3

       (5) 

Where 

€ 

E s = E /(1−ν 2) is the plane strain modulus, E is Young’s modulus, 

ν is poisson’s ratio, and the subscripts f and s denote film and substrate 

respectively.  The negative sign in Equation 5 denotes compression.  When the 

prestrain (ε) is greater than the critical strain (ε  >εc), a bifurcation occurs that 

results in the stable equilibrium state of the film being wrinkled into a series of 

patterns dependent on the anisotropy of the compressive stress, with a uniform 

compression resulting in a sinusoidal wrinkling.122, 123   Below this critical strain, 

the film is stable and no wrinkling will be observed. 

Equation 4 can be rewritten in a dimensionless form with as shown in 

Equation 6. 

€ 

Σ =
π 2

3
Λ−2 +

1
4π

Λ        (6) 
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Where: 

 

€ 

Σ =
σ

E f E s
23

                 (6a) 

€ 

Λ =
Es

E f h f
33 λ                   (6b) 

Differentiation of Equation 6 determines the wavelength where the 

compressive stress is minimized and found to be 

€ 

Λ =
2π
31/ 3

. By inserting this value 

in Equation 6b the wavelength of the films is given by Equation 7.  

       (7) 

Thus, as long as the film behaves elastically, the substrate is much thicker 

than the film (semi infinite), and >> , the wrinkling wavelength is invariant 

to the applied stress/strain.  This strain invariance of the equilibrium wavelength 

results in a simple route to back calculate the thin film modulus if the modulus of 

the substrate,  and the film thickness, hf , are known. 

       (8) 

Additional strain in the system acts to increase the equilibrium amplitude 

of the wrinkles while determined from the sinusoidal deflection and shown in 

Equation 9, 

        (9)  
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This wrinkling instability is a consequence of the competition between 

elastic strain energy in the film and that in the substrate.   The effects of surface 

energy are neglected in this derivation, as the role of surface energy is generally 

negligible. 117, 124, 125 Outside of the linear elastic regime the wavelength becomes 

dependent on the applied strain and a decrease in wavelength and amplitude with 

increasing strain is observed as shown in Equation 10 and 11.126  The wavelength 

and amplitude become strain dependent due to finite deformations at large strains. 

€ 

λ =
λ0

1+ε pre( ) 1+ ξ( )1/ 3
                       (10) 

€ 

A =
A0

1+ε pre( ) 1+ ξ( )1/ 3

⎛ 

⎝ 

⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ ⎟ 

3

             (11) 

Where, 

€ 

λ0 = 2πh
E f

3Es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

and 

€ 

A0 = h
ε pre
εc

−1  (or Equations 7 and 8),	   and	  

€ 

ξ = 5ε pre (1+ε pre ) /32, therefore at low strains, ε0, Equation 7 and 8 are 

recovered. 

1.4 Two-plate buckling 

The wrinkling instability presented earlier is limited to cases where the 

films of interest can be deposited directly onto the substrate.  In cases where the 

material is not amenable to deposition directly on the PDMS substrate, a material 

is chosen as an intermediate in the deposition chain.  The material can be chosen 

such that it will act as a barrier film or allow for increased adhesion between the 

PDMS and the film of interest.   The resulting system is a two-plate composite, or 
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two layers on a substrate, that exhibits a wrinkling instability when subjected to 

the same compressive forces as its homogenous (single film) counterpart.  By 

using composite bean theory and deconvoluting the mechanical contributions of 

each layer from the behavior of the two-plate composite film, Nolte et al have 

obtained an expression for the Young’s modulus for the film of interest.127  

 

Figure 1.4 Schematic of mechanical induced two-plate wrinkling.  The PDMS is 
pre-strained 2-5% followed by the integration of two thin films.  Wrinkling is 
induced by compressing the pre-strained system. 

 

The schematic for the system is shown in Figure 1.4, where E1 and E2 

represent the modulus of the film of interest and the modulus of the barrier film 

respectively.  The modulus of the top layer is given by the following expression, 
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E 2 =

E eff
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3                   (12) 

Where 

€ 

E eff  is the effective modulus, or the modulus of the two-plate 

composite as if it were a homogenous system as shown below in Equation 13.  

Equation 12 is similar to the expression shown for modulus of the homogenous 

system with the exception of dt which is the total thickness of the film, h1+h2. 
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€ 

E eff = 3E s
λ
2πdt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

               (13) 

The deviation factor for the neutral axis of bending is represented by κ.  If 

the apparent modulus of both layers is identical κ=1, meaning the neutral axis of 

bending is located at the center of the two films.  This deviation factor is 

represented by Equation 14 as a function of φ1, or the height fraction of layer 1 

(i.e. h1/(h1+h2)), and the ratio of the apparent modulus of layer 1 to layer 2, 

€ 

E1
E 2

. 

€ 

κ =

1+ φ1
2 E1
E 2

−1
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1+ φ1
E1
E 2

−1
⎛ 
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⎜ 

⎞ 

⎠ 
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                     (14) 

This system of equations is solved iteratively for 

€ 

E 2  until the value 

converged with no variations to at least the third decimal point. 

1.5 Wrinkling and the modulus of ultrathin films 

Stafford and co-workers used this wrinkling instability and buckling 

mechanics to determine the modulus of ultrathin PS and PMMA films: the 

reduced modulus, 

€ 

E f /E bulk , for both polymers collapses onto a simple curve and 

a decrease from bulk values is observed.28  This decrease in the modulus is 

attributed to a surface anomaly similar to those observed in Tg and rheological 

measurements. The modulus as a function of film thickness for PMMA down to 5 

nm is shown in figure 1.5.28 The bulk modulus of PMMA is approximately 3GPa 

and remains statistically invariant from 150 nm+ down to 40 nm.  Below 40 nm 
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the modulus begins to decrease significantly and at 5 nm the modulus is one third 

of the bulk modulus.  The Tg of PMMA on a gold surface is simultaneously 

plotted as open triangles in Figure 1.5.   

 

 
Figure 1.5  Apparent modulus as a function of film thickness for PMMA (●)28 
and Tg as a function of film thickness for PMMA (),19 the dashed line 
represents a fit to the bilayer modulus discussed below. 

 

The ultrathin film Tg behavior is similar to the modulus were a significant 

decrease from bulk values is observed at ~40 nm.  These results are in agreement 

with those reported from research groups for both PS and PMMA, where the Tg 

and modulus begins to decrease at 40 nm.17-19, 28, 128 This is also in agreement with 

simulations that suggest modulus deviations of materials deep in the glass, with 

high Tg’s, occur near 40 nm.129   However, simulations also suggest a dependence 

of mechanical properties on bulk Tg’s.129, 130   This prediction raises questions as 

to the relationship between Tg and modulus in polymer thin films and their 

correlations at the nanometer length scale. 
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This surface wrinkling instability has also been utilized to determine the 

modulus of polyelectrolyte multilayer (PEM) systems.127, 131, 132  By simply 

introducing a polymer film whose surface can be modified and used in a layer by 

layer assembly process, Nolte and coworkers determined the modulus of 

polyelectrolytes a function of deposited layers.127  Furthermore, Nolte and 

coworkers have been able to determine the modulus of PEM, PS, and PMMA as a 

function of relative humidity by in situ measurements of surface wrinkling.132  

This surface wrinkling technique also allowed for the study of the mechanical 

robustness of PEM systems under a variety of biologically relevant conditions.131 

1.6 Surface effects 

In order to account for the deviation in modulus and Tg shown in Figure 

1.5 bilayer models accounting for surface effects have been developed.  It is well 

understood that at the surface, materials exhibit properties that differ from the 

bulk.12, 16, 94, 118, 133, 134  For example, stress is increased at the surface as compared 

to the bulk due to the nature in chemical bonding at the interface.  In the interior 

of a film molecules are constrained due to their bonding to underlying molecules, 

while molecules at the surface remain unconstrained.  This difference in bonding 

causes the constrained inner atoms to exert stress on the surface atoms. 135  In 

polymer thin films it is well known that end groups segregate to the free surface 

in which can lead to free surface effects.136  When determining bulk properties 

these variations in surface properties are considered negligible; however at the 

nanometer length scale, the surface to volume ratio is increased leading to a 
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significant contribution of surface effects on the material properties measured.  As 

previously mentioned in Section 1.2, experimental work has also shown a region 

on enhanced mobility at the free surface.  

Models accounting for this free surface and fitted to the experimental 

values have been developed for both the modulus and thermal properties at the 

nanometer length scale.  For example, the coefficient of thermal expansion (βR) 

above Tg for H-passivated PS shows a significant decrease at sub-50 nm length 

scale.9  The following two-layer model was able to accurately represent the data: 9 

€ 

βR (h) = βR (h) 1−
δ
h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Where δ represents the layer of reduced Tg.  Similarly, Tg of PS has been 

modeled with a simple model as follows:137 

€ 

Td (h) = Tg
∞ 1− δ

h
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Where 

€ 

Tg
∞ is the bulk Tg and δ represents the layer of reduced Tg.  In an 

effort to quantify these surface effects on the modulus of thin films, a simple two-

layer model has been derived utilizing the rules of mixtures.    The model consists 

of a film of total thickness, hf, divided into two regions with distinct modulus.  

The free surface layer is characterized by a finite thickness, δ, and modulus, 

€ 

E * , 

with the remainder of the film, (hf-δ), exhibiting bulk-like modulus, 

€ 

E bulk .  In this 

derivation it is assumed that the surface stress is uniformly distributed throughout 
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the thickness of the surface layer.  The effective modulus of bending for the 

bilayer system is given by Equation 14. 
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E bending = E bulk 1−
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 (14) 

From wrinkling mechanics, the expression for the wavelength then takes 

the form shown in Equation 16. 118 
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Where: 
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              (17) 

With no free surface layer, δ=0, the modulus is homogenous throughout 

the thickness of the film, 

€ 

E bulk = E *
, and the modulus becomes thickness 

independent.  When h>>δ, the surface layer does not significantly contribute to 

the overall modulus of the bilayer system. As hδ, the surface modulus becomes 

significant and the bulk properties of the film begin to deviate.  A hard free 

surface, 

€ 

E *
> E bulk , leads to an increase in the average modulus of the thin film, 

while a soft free surface, 

€ 

E *
< E bulk , leads to a decrease in the overall modulus of 

the thin film. This model is likely an extreme simplification of a potential gradient 
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in modulus that extends from the free surface, similar to proposed gradients in 

Tg.12  However, without a clear idea of the shape of the gradient, the two-layer 

model approach provides a model with a minimal number of fitting parameters.  

As shown in Figure 1.5 this bilayer model is a good fit for the experimental data 

previously published by Stafford and coworkers, where 

€ 

E bulk=3.2GPa, 

€ 

E *=0.1GPa, and δ=2 nm.28 

1.7 Additional applications for wrinkling  

Although wrinkling has been a successful tool for studying the modulus of 

ultrathin organic glasses, there has been a significant amount of research into 

other techniques to utilize wrinkling.  Wrinkling of polymer films is a result of a 

critical compressive stress, which can be induced in a variety of ways.138-144 

Previously discussed wrinkled surfaces have been developed via a unidirectional 

compressive force resulting in sinusoidal wrinkles.  Other wrinkling mechanisms 

such as thermal contraction and constrained swelling relieve stresses isotropically 

leading to wrinkles coexisting in all directions.  

Constrained swelling was first observed by Southern and Thomas, while 

studying crosslinked rubber vulcanizates with various swelling agents.145  

Recently, surface wrinkling is induced by creating regions with local differences 

in the elastic moduli of laterially confined materials materials via surface 

treatments such as Ultraviolet-Ozone (UVO) exposure146, 147 or by using 

photocurable swelling agents3.  Once the surface is treated the system is exposed 

to swelling agents, which due to preferential swelling of the lower moduli 
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material generates the compressive force required for the surface instability.  

Other techniques utilizing focused ion beams and hydrogel swelling have also 

been reported with the underlying mechanism being a geometric constraint 

following by swelling or crosslinking of the surface layer.147-149 

In order to induce a surface instability utilizing swelling agents a surface 

treatment is required such as UVO.  However, polymers exposed to UVO can 

undergo both cross-linking and chain scission simultaneously.150  The dominance 

of each process is dependent on the polymer structure,151 in order to create a local 

difference in the elastic moduli, cross-linking of only the near surface of the 

polymer is required.  The portion of the polymer not crosslinked retains its 

capability to swell, a reversible deformation, attributed to the large network of 

covalent crosslinks absorbing the solvent.152, 153  While the UVO exposed area 

have a reduced capability to swell.  Therefore, exposure to a swelling agent 

creates an osmotic pressure difference as the uncrosslinked area is preferentially 

swollen when compared to the UVO exposed area.  This resistance of the stiffer 

oxide surface creates a compressive stress in the uncrosslinked area, once this 

stress reaches the material-defined critical stress wrinkling is observed.  The 

schematic for swelling induced wrinkling is shown in Figure 1.6 below.  Using 

this process Chung and coworkers have shown wrinkling instabilities with 

morphologies ranging from spokes, targets, labyrinths, and dotted patterns 

coupled to the degree of UV crosslinking.147  It is speculated that these patterns 

are generated as imperfection or impurities on the surface of the film initiate 

swelling followed by a decrease in diffusion in the radial direction.  Imperfections 
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at serve as an initiation site for solvent uptake and therefore initiate the instability.  

The patterns also varied with UVO exposure time due to a decrease in solvent 

diffusion with increased exposure time.  The authors suggest these results could 

allow for understanding the diffusion kinetics of solvents into the films as long as 

proper monitoring of the temporal growth is possible.147  Perhaps a stepping stone 

for the development of a new technique for monitoring diffusion of solvent into 

polymer films.  Understanding the kinetics of solvent diffusion is important for 

the continued growth of this instability driven self-assembly. 

 

Figure 1.6 Schematic of swelling induced wrinkling. The top 5 nm of the film is 
oxidized and crosslinked via UVO exposure.  The crosslinked film is placed in a 
chamber with toluene.  Where an osmotic pressure differential induces 
wrinkling.147 

A second method to induced wrinkling in laterally confined system 

consists of a photocurable elastomer being used as the film and swelling agent.  

The photocurable elastomer is deposited onto a substrate and cured with 

Ultraviolet (UV) exposure.  A second doze of photocurable elastomer is deposited 

onto the film and allowed to swell the system.  The same osmotic stress and 

geometric constraints similar to the previous mechanism develops surface 

wrinkling.  UV light is then used to photopolymerize the system and hence 

stabilize the wrinkles.  The schematic for this process is shown in Figure 1.7.  A 

series of complex wrinkling instabilities can be created via constrained swelling 

by varying UV exposure time,3, 147  crosslinker concentration,154 and defect 
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locations.147 For example, work by Whitesides and coworkers reveals that the 

patterns etched into the PDMS substrates act as stress relief structures.139  

Therefore when the PDMS/oxidized surface system is placed under compressive 

force the surface wrinkles begin and end at defect locations.  Guvendiren et al. use 

poly(hydroxylethyl methacrylate) hydrogel films confined on a substrate to create 

ordered hexagonal, lamellar, and worm-like structures, where the surface 

morphology is determined from crosslinker concentrations.154  That is at 

compressive stress greater than ≈0.33% creasing, or folding of the surface, is 

observed while at moderate and low strains wrinkling or no surface 

microstructure is observed respectively.155  Hayward and coworkers have studied 

the stability and wrinkling patterns of poly(acrylamide) hydrogels as a function of 

monomer and cross-linker concentration, their results show a decrease in 

compressive stress (i.e. no creasing) with high cross-linker concentration while at 

low cross linker concentration creasing increases linearly.155  This stress variation 

with cross-linker concentration seems to be the controlling factor in surface 

morphologies described above. 

 

 

Figure 1.7 Schematic of photocurable elastomer swelling.  The first film of 
elastomer is cured with UV then swelled with fresh photocurable elastomer.  The 
constrained swelling induces wrinkles which are stabilized with a second dose of 
UV.3 
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Lastly, wrinkling phenomena will also occur through differential thermal 

expansion between the film and the substrate.  For example, if a film is deposited 

onto a thermally expanded polymer, or the film and substrate are allowed to 

thermally expand, upon cooling a mismatch between the coefficient of thermal 

expansion of the film and substrate place a compressive stress onto the film.  

Once the stress is greater than the critical value surface wrinkling is observed.112, 

139 The compressive force due to thermal contraction is equi-biaxial therefore 

there is neither preferred orientation nor ordering of the wrinkles.  Further cooling 

leads to an increase in the compressive force on the system increasing the 

amplitude of the wrinkles following by folding or creasing. 

On the other hand, researchers have been able to eliminate wrinkling due 

to thermal expansions in poly electrolytic/PDMS systems by incorporating silica 

nanoparticles.156  Hendricks and coworkers were able to use layer by layer 

assembly to incorporate nanoparticles throughout the film  and attribute the 

dissipation of compressive stress to the isotropically dispersed nanoparticles. 

1.8 Tools and characterization techniques 

Well ordered sinusoidal wrinkling is obtained via a homogenous in-plane 

compressive force.  A custom built strain stage shown in Figure 1.8 is used to 

exert the in-plane compressive force onto the bilayer system.157  The stage allows 

for generation of periodic wrinkles oriented perpendicular to the strain direction. 

The design followed a previously documented strain stage used by Stafford et al 

as a tool for a high throughput modulus measurement technique for thin films.157  
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The strain stage has a fixed grip as well as an adjustable grip that is controlled 

with an actuator.  A 7.5 cm by 2.5 cm slab of PDMS is clamped between the grips 

and the adjustable grip is displaced via the actuator so that the PDMS is strained.  

The strain stage has locking groves, allowing for the strain to be maintained while 

also having the ability to separate the strain stage from the actuator. 

 

Figure 1.8 Strain stage design.  The PDMS is placed between the clamps and the 
strain rate/quantity is controlled with a motorized actuator.  The dimensions of the 
stage were designed such that it would be compatible with a motorized actuator. 
 

 
A film of known thickness is then integrated onto the PDMS.  For most of 

the work presented here, vacuum deposition or a preferential adhesion method is 

used.   First a film is spun cast onto a silicon wafer, the supported film is then 

placed into direct contact with the PDMS substrate and allowed to softly bond to 

the PDMS prior to immersion in water.  Then through preferential adhesion the 

film transfersfrom the wafer onto the PDMS due to preferential segregation of 

water to the polymer-wafer interface.157  Once the transfer is complete and the 

thickness of the thin film is determined the strain stage is placed onto the actuator 

for release of the pre-strain.  The actuator allows for accurate and precise control 

of the rate and magnitude of the compressive force required for wrinkling, control 

of the release rate allows for minimization of structural defects.116  
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As previously shown in Equation 7, in order to determine the modulus of 

the wrinkled film, the substrate modulus, film thickness, and the wrinkling 

wavelength need to be determined. The modulus of the elastic substrate is 

determined using a texture analyzer (TA.XT Plus, Texture Technologies).  A pure 

slab of PDMS is clamped into the analyzer and the stress strain behavior is 

obtained as shown in Figure 1.9. 

 

 

Figure 1.9  Stress-strain behavior for a PDMS slab obtained from the texture 
analyzer.  The slope of the line, 0.6MPa, represents the modulus of the substrate. 

The thickness of the thin films can be determined from various techniques 

such as ellipsometry,158 interferometry,159 profilometry,160 and x-ray 

reflectivity161.  For this work, ellipsometry (J.A. Woollam M-2000) is used.  

Ellipsometry is a non-destructive optical technique used in determining the optical 

properties and thickness of thin.  Ellipsometry does not directly measure the 

thickness or optical constants of a film; instead it measures changes in 

polarization of light.  Model based analysis is used to convert the measured values 

into film thickness.  A schematic setup of an ellipsometer is shown in Figure 1.10.   
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Figure 1.10  Schematic of a spectroscopic ellipsometer used to determine film 
thickness. 

Light emitted from the light sources first goes through a polarizer where it 

becomes linearly polarized.  The light interacts with the sample and is then 

reflected back to the analyzer.  The light reflected from the sample is elliptically 

polarized, this change in polarization is measured through the ellipsometric 

angles, Ψ and Δ, describing the amplitude ratio and the phase difference.  The 

detector converts the change in polarization of light to an electronic signal.  

Measurements are taken over a wavelength range from 250 nm to 1700 nm using 

three incident angles, 50°, 60°, 70°, and 80° in order to cover the Brewster angle 

of PDMS (~50°).  The ellipsometric angles used to describe the change in 

polarization for the PDMS as a function of wavelength are saved and fit to a 

Cauchy layer, shown in Equation 18.  

€ 

n(λ) = A +
B
λ2

+
C
λ4

              (18) 

Where A, B, and C are constants and λ represents the wavelength of light. 
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Figure 1.11 Ellipsometric angles, Δ (green) and Ψ (blue), for PDMS with a 
Cauchy fit (red). 

This model is used to fit the predicted response from Fresnel’s equations 

to experimental data as shown in Figure 1.11 and then the optical constants for 

PDMS are determined.   The PDMS fit is saved as a material model and used as a 

substrate for the polymer film.  Once the thin film is transferred onto the PDMS 

spectroscopic ellipsometric the used to calculate the film thickness.  Another 

Cauchy layer is used to describe the thin film and the ellipsometric data obtained 

from the thin film is fit to this model in order to determine the film thickness and 

optical constants.  The Cauchy model used in the above analysis is limited to 

transparent nonabsorbent layers over the entire measuring wavelength.  The phase 

information obtained from an ellipsometer is sensitive for films down to a 

thickness of approximately 2 nm and an upper limit of tens of microns, making it 

suitable to determine thickness for ultra thin films.162   
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Figure 1.12 Small Angle Light Scattering schematic, showing the laser 
transmitting through the sample and a detector measuring the intensity and 
angular distribution of the scattered light. 

 

In order to determine the wavelength of the wrinkled films techniques 

such as optical micrscopy (OM), small angle light scattering (SALS), and atomic 

force microscopy (AFM) can be used.  AFM and SALS are valid techniques for 

the investigation of wavelengths and amplitudes at sub micrometer length scales, 

while OM is only valid for wavelengths greater than 5 µm.   
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Figure 1.13 Fast Fourier transform of a 100nm Polystyrene film showing a 
characteristic wavelength of 8.7µm.  The insert represents the optical micrograph 
of the film. 

 

In SALS, coherent light from a laser is passed normal to the sample 

surface.  The magnitude in the phase shift of the light as it passes through the 

wrinkled surface is proportional to the wrinkling amplitude while the diffraction 

pattern is related to the wrinkling wavelength.  Therefore, angular distribution of 

the scattered light is analyzed to determine the wavelength of the wrinkled film.  

A laser incident normal to the surface is scattered by the wrinkled surface.  The 

value of the scattering vector is given by the following relationship: 

€ 

q ≈ 2π
d

                  (19) 

Where λl is the wavelength of the laser used, d is the wrinkle wavelength, 

and θ represents the scattering angle.  A schematic of the SALS setup is shown in 

Figure 1.12.   
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In order to increase accuracy analysis time, the images obtained using OM 

are converted to Fourrier space using custom code written in Matlab.  The 

characteristic wavelength is determined per image then used to calculate the 

modulus.  A sample FFT is shown below in figure 1.13.  AFMs can be used to 

provide information on the hardness of a sample,163 the adhesion between the tip 

and the sample,164 and interactions between molecules165.  It can also provide a 

3D profile of a surface.  This is used for characterization of sub 50 µm 

wavelengths.  Because of potential damage to the soft wrinkled surface, the AFM 

is operated in intermittent contact mode.  In this mode, the cantilever is oscillated 

at its resonant frequency with a piezoelectric crystal.  Due to the proximity of the 

tip and the surface, between 0.5 and 2 nm, during scanning the tip interacts with 

the Van der Waal forces from the surface.  In order to maintain a constant 

oscillation amplitude the feedback loop adjusts the tip-sample separation.  To 

acquire an image, the vertical and lateral deflections of the cantilever are 

measured by variations in frequency of the tip.  The reflected laser is sent to a 

photodiode detector where the signal is converted to an image. 

AFM images for this work are all acquired at ambient temperature (T=21± 

2°C) in tapping mode.  AFM images are analyzed using the AFM software, which 

include a 1D FFT to obtain the characteristic wavelength of the wrinkles, a 

sample image is shown below in Figure 1.14.  The AFM image is of a wrinkled 

38 nm PS film, where the amplitude is ~200 nm and the characteristic wavelength 

is 1.8 µm.   
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Figure 1.14 AFM micrograph of a 38 nm polystyrene film.  The scan size of 
7.5µm by 7.5µm and the height scale for this image is 250nm.  

 

1.9 Summary 

 The modulus as a function of film thickness will be studied utilizing 

surface wrinkling.  Techniques such as AFM and OM combined with buckling 

mechanics will allow for the characterization of the surface microstructure and the 

modulus determination.  In this study relationships between the materials 

flexibility, architecture, bulk Tg, intrinsic material size (Rg) and moduli will be 

obtained.  Proper understanding of the moduli behavior at the nanometer length 

scale is critical for the use of organic materials in of next generation technologies.  

Furthermore, this surface microstructure will be explored for the development of 

substrates with controlled topography. 
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CHAPTER 2  

DEPENDENCE OF THE ELASTIC MODULUS ON THE GLASS 
TRANSITION TEMPERATUE AND MOLECULAR MASS 

2.1 Introduction 

One of the fundamental principles used in understanding the viscoelastic 

properties of polymers is time-temperature superposition, which enables the 

collapse of temperature and rate dependencies of the complex modulus to a single 

master curve.1, 2  This correlation enables prediction of long-term mechanical 

properties of polymers.  Williams, Landel and Ferry (WLF) illustrated the use of a 

single empirical shift factor and a reference temperature to correlate the 

rheological data for several macromolecules.2  The glass transition temperature 

(Tg) is commonly employed as the reference condition due to the viscoelastic 

behavior of the polymer being extremely sensitive to temperature near Tg.3   For 

example the Young’s modulus can decrease orders of magnitude as the 

temperature is decreased from just above Tg to just below Tg.  Additionally, 

universal empirical parameters have been found when setting the reference 

temperature near Tg.4  This dependence of modulus of Tg in the bulk has been 

proposed to also apply to polymers at the nanoscale.5, 6 Understanding the 

modulus and its dependence on Tg at the nanoscale is essential since the long-term 

mechanical stability of polymer nanostructures is critical for numerous developed 

and emerging applications including photonics,7 microelectronics,8 non-linear 

optics, and biosensors9.  For example, the future for semiconductor manufacturing 

aims at the production of polymeric nanostructures in the sub 32 nm range.  

Nanometer sized features are fabricated by a lithographic process.10   The 
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traditional photolithography process involves the deposition of a resist layer.  This 

resist layer is patterned, etched, and then removed by a developer.  It is during the 

development step where the surface tension of the rinse liquid causes the 

nanoscale pattern to collapse.11 The future of nanoscale features has lead to the 

development of an alternative nanolithographic techniques including nanoimprint 

and block copolymer lithography.  A key advantage with these lithographic 

techniques is the ability to pattern sub 25 nm structures over a large area with 

high throughput and relatively low cost.12   For block copolymer lithography, the 

molecular scale self-assembly of diblock copolymers is harnessed to create the 

nanoscale features.   The feature size is control via domain length with successful 

features including pillars and cylinders being reported.13  Selective removal of 

domain structures provides the template for pattern transfer. Nanoimprint 

lithography is a two-step process where a mold with etched nanostructures is 

pressed onto a thin resist film.  This step creates a thickness contrasts pattern that 

is transferred throughout the resist film via reactive ion etching or ultraviolet 

exposure.  Therefore, decreases in the mechanical properties at small length scales 

would be detrimental to patterning for next generation lithography.14  In 

nanoimprint lithography15 for example,  the flow resistance of polymer melts in 

confined geometries has recently been reported to decrease when the slit width is 

comparable to the molecular dimensions of the polymer.16 More importantly, the 

induced flow of the polymer into the mold creates a large amount of shear stress, 

therefore the molded structure then has tremendous residual stress,17 thus 

understanding the elastic modulus in confined geometries is also critical to the 
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stability of structures formed via nanoimprint lithography.  Lastly, block 

copolymer lithography utilizes polystyrene below its entanglement molecular 

mass to create nanostructures; 18, 19 therefore mechanical properties as a function 

of molecular mass are important to the ultimate stability of these nanostructures.  

Thus for predicting mechanical stability of polymeric nanostructures, direct 

measurements of the mechanical properties such as Young’s modulus is desired 

for polymers when confined to nanometer dimensions.  As the ability to correlate 

deviations at bulk Tg with modulus behavior at the nanometer length scale is 

unknown. 

The Tg of ultrathin polymer films has exhibited deviations from bulk 

values at the nanometer length scale.  However, the origins of the deviations in 

properties of thin polymer films are still being debated.3, 20-27 In particular, 

polystyrene (PS) and poly (methyl methacrylate) have become model systems for 

thin film measurements,3, 27, 28  but even for these systems, there are inconsistent 

results regarding the direction of deviations23, 29   in Tg and the influence of 

molecular mass.30, 31  For example the Tg of PS has shown no molecular mass 

effect when confined to a substrate, however free standing PS films exhibit 

significant reductions in Tg with increasing molecular mass.32  Two potential 

origins for the observed deviations have been discussed based upon (1) the 

confinement of the polymer chains25, 33 and (2) increased contributions from 

interfacial effects as the film thickness is decreased (increased surface area to 

volume ratio)3.  Typically the characteristic size used is the radius of gyration, Rg, 

which is the average distance from the center of gravity to the chain end.  As the 
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radius of gyration gives a quantitative way to measure the effective size of the 

polymer under given conditions.  At film thicknesses of several Rg, deviations in 

the physical properties of the polymer relative to the bulk are generally observed 

for a host of different properties such as polymer interdiffusion, mobility, and 

thermal expansion.34-36  The radius of gyration has been found to be proportional 

to the square root of the number of polymer units or molecular mass.37  Thus, due 

to the dependence of Rg on molecular mass it is expected that changing the 

molecular mass would significantly influence the behavior of thin films.25  That is 

as the intrinsic size of the polymer is decreased, the deviation from bulk values 

due to confinement effects would be reduced.  However based upon recent 

reports, there exists growing evidence that Tg is independent of molecular mass in 

thin films.30, 38 Understanding if there is any dependence of the modulus on Mn for 

thin films is important from both a fundamental and practical prospective.  It is 

fundamentally interesting to understand the impact of intrinsic size on the 

nanometer length scale modulus while practically polymers with different 

molecular weights are employed in a variety of applications at the nanometer 

length scale.  

Although limited experimental data exists on the modulus of polymeric 

thin films, a series of discontinuous molecular dynamic simulations have been 

conducted.39, 40  These simulations have suggested that deviations in the modulus 

of a polymer deep in the glass, when bulk Tg is significantly higher than the 

experimental temperature,  occur near 40 nm as observed from extracted  apparent 

Young’s Moduli.39  For example, in previous wrinkling studies, the reduced 
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modulus, (

€ 

E f /Ebulk), for PS and PMMA thin films is found to exhibit statistically 

identical behavior with deviations from the bulk modulus at approximately 40 nm 

at ambient temperature,41 in agreement with the above simulations as both PS 

(Tg~100°C) and PMMA (Tg~105°C) are deep in the glass.  However, 40 nm is 

also close to the length scale where changes in the thin film Tg for PMMA and PS 

are typically observed.42, 43  Interestingly, simulations by Bohme and de Pablo 

suggest the existence of significant stress relaxation occurring at the air-polymer 

interface even at temperatures deep in the glass where a deviation in mechanical 

properties would not be expected.39 

These experimental and simulation results39 call into question some of the 

common assumptions regarding the relationship between thin film Tg and 

mechanical properties.5, 44  For example, if a significant decrease in modulus 

would be observed as bulk Tg is approached  or a correlation between thin film Tg 

and modulus behavior.  However, McKenna and coworkers have demonstrated 

that the creep compliance of thin polymer films experience stiffening in the 

rubbery regime in comparison to the bulk even in the absence of any change in 

the Tg of thin films.45 This results suggest that changes in polymer Tg due to 

confinement are not correlated with the moduli of polymer thin films.  To develop 

a more clear understanding of the relationship between Tg and elastic modulus of 

ultrathin polymer films, experiments need to be conducted over a wide range of 

bulk Tg’s.  By varying the bulk Tg of the materials studied at room temperature a 

wide range in quench depth (Tg,bulk-T) is examined.  It is in the region, TTg, that 

the mechanical properties of bulk polymeric materials exhibit increased 
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cooperativity and molecular motions that lead to a depression in modulus.46  By 

understanding the modulus behavior for ultrathin films near their bulk glass 

transition temperature as well as the nanometer length scale Tg behavior, we will 

be able to establish whether fundamental concepts such as the WLF equation, 

considered basic tenets of polymer science, indeed hold true at the nanoscale.  

In this Chapter, the impact of quench depth and intrinsic polymer size will 

be studied.  First, a series of methacrylate polymers are examined to determine 

how the quench depth into the glass for the bulk polymer impacts the moduli of 

thin films.  The use of methacrylate polymers allows for the quench depth to be 

readily varied without requiring in-situ heating or cooling during the experiments, 

as Tg is significantly impacted by unbranched alkyl chain length.47  Moreover, the 

chemistry difference is less for these methacrylate polymers than between PMMA 

and PS examined previously where these two glassy polymers exhibited 

statistically identical fractional changes in modulus as the film thickness is 

decreased below approximately 40 nm.48  Thus, we hypothesize that the chemistry 

effects from changes in the alkyl chain length from methyl to n-propyl on the thin 

film modulus behavior will be minor in comparison to the large changes in 

quench depth (75°C),  if simulations capture the physics of thin film mechanics.39, 

40 Additionally, a wide range of PS molecular mass from 1.2 kg/mol to 990 

kg/mol is examined to determine how molecular mass impacts the elastic modulus 

of thin polymer films.  Decreasing the molecular mass from 990kg/mol to 1.2 

kg/mol leads to an order of magnitude change in Rg, 20 nm to 0.6 nm 

respectively, allowing for the mechanical behavior of thin films to be related back 
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to the characteristic size.  However, a decrease in molecular mass also impacts the 

glass transition temperature below the entanglement molecular mass.37   

Therefore, studying both the PS and poly (alkyl methacrylate)s leads to an 

improved understanding of the modulus with respect to quench depth and 

characteristic size. 

2.2 Experimental 

Poly(methyl methacrylate) (PMMA) was purchased from Polymer Source 

(Mw=91 kg/mol, Tg=105°C).  Four other methacrylate polymers, poly(ethyl 

methacrylate) (PEMA) (Mw=250 kg/mol, Tg=65°C), poly(n-propyl methacrylate) 

(PnPMA) (Mw=70 kg/mol, Tg=36.1°C), poly(benzyl methacrylate) (PBzMA) 

(Mw=70 kg/mol, Tg=54°C),  and poly(isobutyl methacrylate) (PiBMA) (Mw=200 

kg/mol, Tg=47 °C) were obtained from Scientific Polymer Products.  Mw is the 

mass average relative molecular mass.  The Tg of each methacrylate polymer was 

determined from the discontinuity in the CTE of thick (> 100 nm) films using 

ellipsometry as reported previously.24  

Table 2.1  Physical characteristics of PS utilized in this study. 
 

Mn (kg/mol) Mw/Mn Tg, bulk(ºC) 
990 1.05 106.3 ± 2.0 
492 1.03 106.1 ± 2.5 
9.4 1.06 94.1 ± 2.3 
3.2 1.05 76.1 ± 2.2 
2.3 1.05 62.3 ± 1.5 
1.3 1.13 29.9 ± 3.1 
1.2 1.13 21.3 ± 3.2 
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PS with varying molecular mass were purchased from Polymer 

Laboratories.  The PS used in this study was synthesized with butyllithium 

initiator and are methyl terminated.   The molecular mass of the PS samples were 

independently measured by gel permeation chromatography (GPC) using a 

Waters Breeze 2 equipped with a Waters 1515 high-performance liquid 

chromatography pump and a Waters 2414 refractive index detector. Two size 

exclusion chromatography columns (Waters HT2 and HT6E) with tetrahydrofuran 

as the mobile phase were used at a flow rate of 1 mL/min to separate, identify, 

and quantify samples. Samples were prepared at 2 mg/mL. Data processing was 

conducted using the GPC Isocratic Technique in the Breeze software.  A 3rd order 

calibration was conducted using Polymer Labs Easical PS2B as the calibrant.  The 

glass transition temperature of each PS was measured using differential scanning 

calorimetry (DSC), which was performed on a TA Instruments Q1000 heat flux 

DSC under a dry nitrogen purge (50.0 mL/min). All runs were performed at 

heating and cooling rates of 10 °C/min in T4P mode, and temperature calibration 

for heating runs was achieved using an indium standard at the same heating rate. 

The physical characteristics of these polymers are listed in Table 2.1.  

Silicon wafers (450 mm thick) were used as substrates for PS films after 

being cut into 2.5 cm × 1 cm pieces and cleaned with ultraviolet/ozone (model 

342, Jelight, Inc.).  Mica substrates were used for the poly (alkyl methacrylate) 

series due to the increase in bonding between the methacrylate and the silanol.  

Dilute polymer solutions were spin-cast from toluene onto the substrates to create 

thin films of uniform thickness.   
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Figure 2.1 Ellipsometric angles, Δ (green) and Ψ (blue), for PS on [a] Si wafer 
[b] PDMS with a Cauchy fit (red). 

Film thickness was controlled by polymer concentration (0.2 % to 2 % by 

mass polymer) and spin speed (150 rad/s to 265 rad/s). The thickness of the 

polymer film was determined using a Variable Angle Spectroscopic Ellipsometer 

(VASE, J.A. Woollam Co., Inc.) over a wavelength range from 250 nm to 

1700 nm at three incident angles, 67°, 70°, and 73° in order to account for the 

Brewster angle of the substrate which allows for increased light transmission and 

decreased reflection. The data were fit using a Cauchy layer to represent optical 

constants of the polymer.  Figure 2.1 shows the Cauchy fit of 990kg/mol PS on 
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both the Si wafer and once transferred onto the PDMS substrate.  The fits to the 

Cauchy model, A and B, as well as the film thickness are shown as inserts in each 

figure.  From the fits, the film thickness for both remains statistically invariant.  

For a detailed discussion on the Cauchy fit refer to Chapter 1.  

Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was prepared at a 

ratio of 20:1 by mass of base to curing agent and cast on float glass to a thickness 

of approximately 1.5 mm.  The PDMS was allowed to gel at room temperature for 

3 h before curing at 100 °C for 2 h.  After cooling, the PDMS sheet was cut into 

2.5 cm × 7.5 cm × 1.5 mm slabs.  The modulus of the bulk PDMS sheets was 

determined using a tensile test (Instron) at a cross head speed of 0.01 mm/s along 

the long dimension.  The PDMS was pre-strained to 3 % on a custom stage.41  The 

supported polymer film was placed in contact with the strained PDMS, and 

allowed to soft bond prior to being immersed in water.  Due to the hydrophobic 

nature of the polymers, water preferentially segregates to the wafer surface.  The 

film is therefore transfered from the wafer onto the PDMS.  The sample was 

allowed to dry under vacuum at 10 °C below its bulk Tg to prevent thermal 

wrinkling.  Heating above Tg would induce the required compressive force 

required for wrinkling due to the difference in the coefficient of thermal 

expansion of the polymer and PDMS.  The film thickness of some samples was 

then re-measured with VASE,  no statistical difference in film thickness was 

observed after transfer as discussed with Figure 2.1.  The pre-strain on the PDMS 

was released at a rate of 0.1 mm/s in order to minimize defects and cracks.  All 

samples were released at ambient temperature (T = 21 °C ± 2 °C).  
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The wrinkled surfaces were characterized using AFM and optical 

microscopy.  AFM micrographs were acquired at ambient temperature on an 

Agilent Technologies 5500 system in tapping mode using Pico Plus 1.0 software 

at constant scan size of 7.5 µm × 7.5 µm and scan speed of 1 Hz.  Optical 

micrographs were acquired on a Mititoyo Ultraplan FS-110 with an image 

resolution of 768 pixels × 1024 pixels.  The wrinkling wavelength was 

determined using 1-D fast Fourier transforms (FFT) of the micrographs. 

 

2.3 Results 

The modulus of ultrathin films is examined using the wrinkling based 

metrology discussed in Chapter 1.  The relationship between the film modulus 

and the wrinkling wavelength is given by41 
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Accurate metrologies for determining both the film thickness and the 

modulus of the substrate are well established, thereby allowing for the 

determination of the film modulus by measuring the wavelength, λ.   

Figure 2.2 illustrates the sinusoidal structure resulting from the wrinkling 

of PMMA and PS films.  These micrographs illustrate the increase in wavelength 

associated with an increase in film thickness as expected from Equation 1, where 

the substrate modulus, Es, was maintained nominally constant at ≈ 1MPa. As the 
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film thickness is decreased from 200 nm to 47 nm for PMMA, the equilibrium 

wavelength decreases from 14.7 µm ± 0.9 µm to 4.3 µm ± 0.3 µm, respectively. 

 
Figure 2.2 Optical micrographs of wrinkled 91kg/mol PMMA films that are (a) 
200 nm, (b) 100 nm, (c) 47 nm thick, and 990 kg/mol PS films that are (d) 211 
nm, (e) 121 nm, and (f) 48 nm thick.  The wavelength of the wrinkles decreases as 
the film thickness is decreased. 

 

Similarly, for the PS films the wavelength decreases from 14.3µm ± 0.41 

µm to  3.7µm ±  0.22µm as the film thickness is decreased from 211 nm to 48 nm.  

Given the similar wavelengths as well as the linear relationship of wavelength to 

thickness the calculated modulus for these films is approximately 4 GPa and 3.8 

GPa for PMMA and PS respectively.  This is statistically invariant down to the 47 

and 48 nm films.  For thinner films, the wrinkles cannot be well-resolved with 

optical microscopy and instead AFM is utilized.  As shown in Figure 2.3, the 

wrinkling wavelength for a 33 nm film of PMMA and a 25 nm film of 990kg/mol 

PS decreases to 2.5 µm ± 0.2 µm and 1.3 µm ± 0.3 µm respectively.  However, 

this reduction in wavelength is greater than expected: suggesting a decrease in the 

modulus of the film. By examining the thickness dependence of the wavelength, a 
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more comprehensive picture of how the moduli of thin films vary with thickness 

can be constructed.   

 
Figure 2.3 AFM images of wrinkled films of [a] 33 nm thick PMMA film and [b] 
25 nm 990kg/mol PS film.  Scan size is 7.5 mm × 7.5 mm and the height scale of 
the micrograph is 70 nm as shown. 
 

According to simulations,39 the quench depth into the bulk glassy state is 

an important factor in determining the length scale at which deviations in elastic 

modulus occur in thin films.   By extraction of the apparent Young’s moduli 

simulations suggest that as quench depth is decreased the deviation length scale is 

increased.39  A schematic of critical length scales is shown in Figure 2.4, where 

for polymers deep in the glass (red), large quench depth, a deviation length scale 

of ≈40 nm is expected and those with Tg,bulk closer to the experimental 

temperature show an increase in deviation length scales. 

Although temperature-dependent measurements of the modulus would be 

preferred, the in-situ heating of a polymer-PDMS bilayer through all processing 

steps and characterization is impractical.  Instead, a constant temperature (T=21 

°C ± 2 °C) is utilized in these studies. The influence of quench depth is probed by 

variation in polymer chemistry to examine materials with widely varying Tg’s; the 

series of poly(n-alkyl methacrylate)s represents an ideal series, as PMMA has 

been widely studied with regards to Tg and modulus.  Furthermore, the bulk Tg of 
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these poly(n-alkyl methacrylate)s can be varied from well above ambient to below 

ambient temperature, simply by increasing the length of the alkyl chain from 

methyl to n-butyl.  

 
Figure 2.4 Schematic of the definition for deviation length scale from bulk 
modulus as discussed in the text.  The deviation length scale is defined as the 
point at which deviation from bulk properties is observed denoted by the black 
arrow. 

 

Figure 2.5 shows optical micrographs for approximately 100 nm thick 

films of PMMA, poly(ethyl methacrylate) (PEMA), and poly (n-propyl 

methacrylate) (PnPMA) that are wrinkled on a PDMS substrate.  One salient 

feature to note is that the wavelength of the wrinkles also decreases as the alkyl 

chain length increases; this corresponds to a lower modulus in the longer alkyl 

polymers, as expected.  The wavelength, λ, as a function of film thickness, hf, for 

PMMA, PEMA, and PnPMA is shown in Figure 2.6 with nominally constant 

€ 

E s~0.7 MPa.  The slope of the linear fits to the wavelength data decreases as the 

alkyl chain length is increased, 75 µm/nm (PMMA), 68 µm/nm (PEMA), 57 

µm/nm and (PnPMA), which is consistent with a progressively smaller modulus 
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for PMMA to PEMA to PnPMA as increasing the alkyl chain has shown to lead 

to interal plasticization.49 Additionally, the extrapolated wavelength does not 

extend through the origin as expcted due to the linear dependence of wavelength 

on film thickness.  Instead, there appears to be a finite thickness (hf
*) where the 

film might be intrinsically stable (zero wavelength), where no wrinkling is 

observed, if the linear thickness dependence on λ continues. 

 

Figure 2.5 Optical micrographs of wrinkled ≈ 100 nm thick films of (a) PnPMA, 
(b) PEMA, and (c) PMMA.  Note that the wavelength of the wrinkles decreases 
from PMMA to PEMA to PnPMA corresponding to a decreasing modulus. 

 

However, this behavior has been previously reported for PS thin films and 

is attributed to free surface effects.41 This free surface effect has been attributed 

both a reduction in steric constraints as well as an increase in free volume.  In the 

case of the poly(n-alkyl methacrylate)s examined here, extrapolated thicknesses 

for null wavelength wrinkles are observed, up to nearly 15 nm for PnPMA as 

shown in Figure 2.6.  As explained in the introduction in order to observed this 

wrinkling instability a pre-strain greater than the critical strain must be applied.  

As shown below the critical strain (εc) is proportional to the ratio of the plain-

straine moduli of the substrate to the film (

€ 

E s
E f
). 
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Therefore a null wavelength would exists only when the critical strain 

could not be exceeded, or the film becomes liquid like. 

 

Figure 2.6 Wrinkling wavelength as a function of film thickness for PMMA (●), 
PEMA (■), and PnPMA (♦).  The extrapolated wavelength-thickness correlation 
deviates from the origin, consistent with thickness dependent moduli.   

The inset in Figure 2.6 shows that as the quench depth into the bulk glass 

is decreased, the extrapolated thickness for the zero wavelength shifts to larger 

values.  Interestingly, this thickness appears inversely proportional to the quench 

depth (Tg-T). As TTg, hf* increases (as 1/hf
* decreases).  Moreover, 

extrapolation to    T = Tg results in the bulk polymer being apparently intrinsically 

stable from wrinkling (hf
* ≈ ∞).  This result is expected, as a rubbery material (T ≈ 

Tg) would not exhibit stable wrinkles due to rapid relaxation.  Moreover the 

critical strain in the material significantly exceeds the applied strain, εc>>ε.  This 
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correlation between hf* and (Tg-T) is consistent with simulations from de Pablo 

and coworkers where an increase in free surface mobility is expected as bulk Tg is 

approached.44  The wavelength versus thickness should transverse the origin in 

the case of constant film and substrate moduli as discussed in Chapter 1 and 

shown in Equation 2.  However since the wavelength becomes non-linear, it can 

be determined from Figure 2.6 that the moduli of these films are thickness 

dependent.  

	   	   	   (2) 

 

Figure 2.7 Elastic moduli of PMMA (●), PEMA (■), and PnPMA (♦) thin films 
as a function of film thickness. The dashed lines are a fit to the bilayer model.  

Figure 2.7a illustrates the apparent moduli, 

€ 

E f , as a function of film 

thickness for PMMA, PEMA, and PnPMA as determined from film wrinkling.  

The modulus for thick films (> 100 nm) examined here was found to be 

independent of film thickness.  By assuming a Poisson’s ratio of 0.3350, the 

Young’s modulus of these >100 nm thick polymer films is estimated to be 3.48 
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GPa, 1.72 GPa, and 1.01 GPa for PMMA, PEMA, and PnPMA, respectively.   

These moduli correspond well with the corresponding bulk modulus reported in 

the literature of 3.2 GPa for PMMA, 1.8 GPa for PEMA, and 0.98 GPa for 

PnPMA.41, 51, 52  The modulus of PMMA decreases as the thickness of the film is 

decreased below ≈ 50 nm and reaches a value that is 45% of the bulk value (1.65 

GPa) at ≈ 20 nm, in agreement with previous reports for moduli of PMMA thin 

films.41  The modulus of PEMA appears to deviate at slightly larger thicknesses 

(≈ 57 nm) and reaches 50% of its bulk value (0.86 GPa) at approximately 20 nm.  

However, due to statistical variation in the data, there is no significant difference 

in the deviation length scale from bulk modulus for PMMA and PEMA as shown 

in Figure 2.7b where the normalized data is plotted for PMMA, PEMA, and 

PnPMA.  For PMMA and PEMA, both polymers are well into the glassy regime 

with bulk Tg’s of 105 °C and 65 °C for PMMA and PEMA, respectively, in 

comparison to the measurement temperature, 21° C ± 2 °C.  Additionally, hf* are 

comparable between these two polymers, 5 nm (PMMA) vs. 7 nm (PEMA), so a 

large difference in the thickness dependence on the modulus might not be 

expected.  The moduli of PnPMA, having a lower quench depth (Tg,bulk = 36.1 

°C), begins to deviate from bulk at a significantly larger length scale ≈ 80 nm, 

decreasing to 0.31 GPa at ≈ 20 nm, or 31% of its bulk modulus.  This 

correspondence between bulk quench into the glass (Tg,bulk – T) and deviation 

thickness is consistent with predictions from simulations.40 Additionally, to better 

assess the surface layer or the intrinsically stable layer, as discussed in Chapter 1, 

a bilayer model is used.53 In this model, the polymer film consists of two distinct 



	   76	  

layers: a surface layer of thickness δ with elastic modulus , and the remainder 

of the film of thickness hf - δ with bulk elastic modulus .  Additionally, δ is 

assumed to be a material property and independent of hf.  The film elastic 

modulus is then a function of both the bulk  and the surface elastic modulus 

( ).  The dashed lines in Figure 2.7 represent the fit to this bilayer model.  The 

fits to the bilayer model reveal an increasing free surface layer, δ, from 4.6 nm, 

7.1 nm, to 22 nm with increasing alkyl chain length.  Similarly, 

€ 

hf
* ,or the linear fit 

of λ with respect to film thickness, increases from 5 to 7 to 15 nm from PMMA to 

PEMA to PnPMA respectively.   Lastly, the bilayer model shows a systematic 

decrease in 

€ 

E f

*
 with increasing alkyl chain length from 0.2 ± 0.04 GPa, 0.06 ± 

0.02 GPa, to 0.02 ± 0.01 GPa where a systematic reduction in is also 

observed.  This reduced modulus for the free surface layer is one to two orders of 

magnitude less than their bulk counterparts.  

One issue with the series of poly(n-alkyl methacrylate)s is that both 

modulus and Tg decrease with alkyl chain length; thus it is not clear if the 

correlation in length scale for thin film moduli deviations from the bulk is due to 

the changes in bulk Tg or modulus.  To delineate these effects, two methacrylate 

polymers with similar Tg but different moduli, poly(isobutyl methacrylate) 

(PiBMA, Ebulk =2.23 GPa, Tg,bulk = 47 °C) and poly(benzyl methacrylate) 

(PBzMA, Ebulk =3.02 GPa, Tg,bulk = 54 °C), are interrogated for the impact of film 

thickness on their elastic moduli.  Figure 2.8a shows the apparent moduli, 
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€ 

E f ,app =
E

(1−υ 2)
, of both polymers as a function of film thickness.  The film 

thickness dependence exhibits similar features to the poly(n-alkyl methacrylate)s 

series: a plateau of their bulk moduli at large thicknesses (h>40 nm) followed by 

significant decrease in moduli as the film thickness is decreased.  Comparison of 

the moduli of the two polymers in thin films appears to show a common length 

scale (≈ 70 nm) where a deviation from the bulk-like moduli occurs.  

 

Figure 2.8 [a] Moduli of PiBMA(▲) and PBzMA(●) [b] Normalized moduli of 
PiBMA(▲) and PBzMA(●).  The data shows differing bulk moduli for both films 
with similar deviations observed at ≈ 85 nm.   

 



	   78	  

This is consistent with a correlation between modulus and quench depth 

into the glass for thin polymer films,39 as the modulus of the bulk PiBMA is only 

approximately 70 % of that of PBzMA.  Again the moduli of these films can be fit 

with the simple bilayer model53 with an order of magnitude decrease in the 

modulus at the near surface of the films.  The bilayer fit reveals a statistically 

invariant free surface layer  of 10 and 12 nm for PiBMA and PBzMA 

respectively.   

 

Figure 2.9 Comparison of the [a]Tg and [b]moduli of PnPMA in thin films on 
PDMS.  The solid line is a fit of the data to a bilayer model. 

 

To better illustrate the similarity in the thin film behavior between PiBMA 

and PBzMA, Figure 2.8b shows the reduced modulus (

€ 

E f /E bulk ) where the data 

collapses onto a single master curve.  Additionally as shown in the inset in Figure 
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2.8b, the extrapolated film thickness at zero wavelength (hf
*) for these two 

additional polymers falls on the same line as for the poly(n-alkyl methacrylates).  

This suggests that the modulus of thin glassy polymer films is predominately 

influenced by the quench depth into the glass (Tg-T).  

This longer length scale for observed changes in the modulus of polymer 

films is consistent with simulations while approaching Tg,bulk.41  This begs the 

question as to whether the Tg of PnPMA films is also impacted on this size scale?  

It is known that the glass transition temperature of supported thin polymer films is 

strongly dependent upon the interactions with the substrate.  Thus to compare the 

changes in thin film modulus and Tg, identical substrate interactions should be 

considered.  Fortuitously, PnPMA films thicker than approximately 50 nm are 

stable on a PDMS surface in the rubbery state (no dewetting), thus enabling the Tg 

of the films to be measured from the discontinuity in the coefficient of thermal 

expansion between the glass and rubbery state.  Also to avoid aging artifacts, the 

measurements are performed by cooling from the rubbery state into the glass.  

Interestingly, the Tg of PnPMA films on PDMS does not statistically vary as the 

thickness is decreased down to nearly 50 nm, as shown in Figure 2.9. This result 

suggests that typical deviations in the apparent Tg of thin films, as measured by x-

ray reflectivity54, 55, ellipsometry42, 56, and Brillouin light scattering8, 43, 57 do not 

always correlate with the size scales where changes in the mechanical properties 

of polymers occur. 

The results shown in Figure 2.9 are similar to novel bubble rheology 

experiments from McKenna and coworkers that showed changes in rheological 
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properties of thin films where no change in Tg was observed.45 Even when 

considering gradients in the polymer properties permeating from the interfaces, 

there are differences in length scales involved in the changes in Tg (α-relaxations) 

and physical aging (β-relaxations).58   The results show that α and β relaxations 

are influenced differently by the surfaces and interfaces.  Where perturbations to 

the β-relaxations extend over 100 nm from the interfaces while no impact on α-

relaxations is observed at these lengths scales.  There exists a clear need to 

determine the local distribution of moduli in these films in order to gain further 

insight into nature of the surface effect.  However, there are limited reports for the 

gradient in polymer thin film Tg’s59 and no reports to date on the distribution of 

mechanical properties in thin films.  Simulations have suggested that the free 

surface mobility/relaxations are responsible for the decrease in the modulus of 

polymer thin films.39, 40  Thus, these thin film moduli as reported in Figure 2.9b 

are only the average properties of the film in the case that gradients in mechanical 

properties may exist.  Simulations appear to provide one method to address a 

distribution of mechanical properties in thin films of polymers.  Regardless, the 

lack of correlation between the length scale for thickness-dependent modulus and 

Tg raises questions as to the relevant parameters that control the mechanical 

stability of polymeric nanostructures. 

To continue to address this issue, a wide range of PS molecular mass from 1.2 

kg/mol to 990 kg/mol is examined to determine how molecular mass impacts the 

elastic modulus of thin polymer films.  Furthermore a range of Tg will be 

concurrently studied as Tg ranges from 32°C at 1.2 kg/mol to 98°C at 
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Mn>10kg/mol. 37  Figure 2.10 illustrates how the wrinkle wavelength, λ, depends 

upon the film thickness, hf, for the series of different molecular mass PS films.   

 
 

 
Figure 2.10 Wrinkle wavelength dependence on film thickness for (●) 990 
kg/mol, 492 kg/mol, 9.4 kg/mol, 3.2 kg/mol (■) 1.3 kg/mol, (▲) 1.2 kg/mol PS, 
and extrapolated fit through origin for 1.2kg/mol PS (inset). The extrapolated 
wavelengths intersect at increasing thicknesses. 
 

The wavelength shows a linear dependence upon the film thickness for all 

molecular masses examined, but the slope of the data begins to decrease slightly 

when the molecular mass is decreased below 3.2 kg/mol.  The slope changes from 

77.6 µm/nm for Mn > 3.2 kg/mol PS to 70 µm/nm for 1.3 kg/mol PS to 65 µm/nm 

for 1.2 kg/mol PS.  This decrease in slope is a result of a decrease in the bulk 

modulus of the films.  Note that bulk Tg of PS also decreases precipitously in this 

molecular mass region (Table 1).  It should be noted that the modulus of PS might 

be expected to decrease at much higher molecular mass that is the entanglement 

Mn based upon bulk rheological properties of PS melts.  However in this case, the 



	   82	  

elastic moduli of the PS glass are probed with small strain deformations.  Only 

short length scales are probed with this wrinkling measurement; for 

entanglements to become important larger deformations are necessary in glassy 

films.  The length scales probed and underlying polymer physics involved in 

determining the elastic modulus of these glassy PS films using wrinkling differs 

substantially from measurements of PS film viscoelasticity60 determined by 

dewetting kinetics.  In this later experiment, large-scale chain motion is required 

and thus the measurement is sensitive to entanglements as well as the stress state 

in the film.  Furthremore, it is found that the reduction in viscosity is controlled 

by the coil size while Tg involves shorter length scales and therefore different 

deviation length scales are observed. Concluding that sensitivity to confinement is 

dependent on different regions of the time spectrum. 

A second feature in Figure 2.10 is the shift to larger thickness for the 

extrapolated wavelength as Mn is decreased below 3.2 kg/mol.  From the linear fit 

of the data, the thickness of this apparent free surface layer, 

€ 

hf
* , increases with 

decreasing molecular mass, from approximately 5 nm for 990 kg/mol PS to nearly 

35 nm for the 1.2 kg/mol PS films as listed in Table 2.2 (

€ 

hf
*  is obtained from 

extrapolation of the data to zero λ and δ as a fit parameter of 

€ 

E f  as a function of 

film thickness in the bilayer model).  The thickness of the free surface layer at sub 

3.2kg/mol is significantly larger than has been reported in previous modulus 

studies. 41, 61  However, by studying surface recovery Fahkarai and Forrest 

observed enhanced surface mobility to extend several nanometers (≈10 nm).62  
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This increase in the thickness of the free surface layer is expected to significantly 

impact the overall modulus in the ultrathin film regime. 

Table 2.2 Bilayer model fit for different molecular mass PS films with 
comparison of the thickness of surface layer from the bilayer model (model) and 
the linear extrapolation (linear) to zero wavelength. 
 

Mn (kg/mol) (GPa)  (GPa) δ (nm) 
(model) 

€ 

hf
*  (nm) 

(linear) 
990 3.81 ± 0.22 0.171 ± 0.037 5.4 ± 1 5.5 ± 0.5 
492 3.92 ± 0.27 0.139 ± 0.045 5.6 ± 1.2 5.7 ± 0.5 
9.4 3.90 ± 0.21 0.095 ± 0.079 5.9 ± 1.6 5.9 ± 0.3 
3.2 3.44 ± 0.21 0.086 ± 0.046 7.0 ± 1.9 6.0 ± 0.7 
2.3 3.37 ± 0.26 0.052 ± 0.014 10.3 ± 1.9 10.1 ± 0.1 
1.3 1.76 ± 0.10 0.046 ± 0.010 27.5 ± 1.6 18.2 ± 0.1 
1.2 1.30 ± 0. 17 0.026 ± 0.003 59.1 ± 2.5 37.3 ± 0.2 

 
 

Table 2.2 lists the thickness of the free surface layer as well as the 

apparent modulus of both the free surface layer and the bulk layer as a function of 

molecular mass that is obtained from the fits.  The free surface layer maintains a 

near statistically invariant thickness of approximately 5.7 nm and plane-strain 

modulus of ≈ 0.1 GPa for > 3.2 kg/mol PS.  As the molecular mass decreases 

below 3 kg/mol, the free surface layer thickness (

€ 

hf
* ) increases significantly.  For 

high molecular masses, the 

€ 

hf
*  from the bilayer fits corresponds well with the 

€ 

hf
*  

(intercept) obtained from linear fits of the wavelength data, as shown in Table 2.2.  

However, the dependence of 

€ 

hf
*  on wavelength is non-linear.53  While the 

curvature is small, this leads to underestimation of the thickness of the soft 

surface layer.  As the thickness of the layer increases, the disagreement with the 

extrapolated estimate increases.  For example, there is disagreement in 

€ 

hf
*  for Mn 
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= 1.2 kg/mol between the two methods, with h* from the fit and the extrapolation 

differing by a factor of 2 with a smaller value from the extrapolation.  The linear 

extrapolation is only an approximation, but it provides an accurate estimate at 

€ 

hf
*  

< 15 nm as shown previously.61, 63  As the bulk Tg of the polymer is decreased 

(due to the decrease in Mn), the surface layer thickness increases for a fixed 

measurement temperature, in this case 21 °C ± 2 °C.  The increase in the length 

scale at which a deviation in modulus occurs with decreasing quench depth, from 

5 nm to 59 nm, agrees with predictions from de Pablo and coworkers.39, 40 The 

deviation length scale from bulk modulus actually increases as Rg is decreased; 

this result strongly suggests that the change in mechanical properties of thin 

polymer films is not a result of an intrinsic effect from confinement on the 

polymer chains.  Instead there appears to be a correlation between bulk Tg and the 

free surface layer.  This suggests that the change in mechanical properties of thin 

polymer films is due to increased interfacial area of the free surface layer with 

decreasing film thickness.  For PS films with Mn > 3.2 kg/mol, the reduced 

modulus ( ) as a function of film thickness collapses onto a single curve, 

as shown in the inset in Figure 2.11a.  The thickness at which this observed 

deviation in elastic modulus, the critical thickness, occurs is ≈50 nm, which is 

consistent with prior reports for high molecular mass PS.41  Again, simulations 

suggest a length scale of ≈40 nm for deviations in mechanical properties when the 

polymer is quenched deep into the glass.39 For Mn of 3.2 kg/mol and 2.3 kg/mol, 

the thick film (“bulk”) modulus is reduced relative to the higher Mn PS films by 

approximately 10%.  The thickness at which the deviation from bulk behavior is 
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observed is not greatly effected and still occurs at ≈50 nm.  However, a further 

decrease in Mn to 1.3 kg/mol results in a significant decrease in the bulk modulus 

to 1.2 GPa as well as a shift in the critical thickness to nearly 70 nm.  In this case, 

the quench depth into the bulk glass is less than 10 ºC.  Simulations have 

suggested that near bulk Tg the mechanical properties of polymer thin films will 

begin to deviate from the bulk at approximately 80 nm.39, 40   

 
Figure 2.11 Film thickness dependence of the modulus of PS thin films for 
molecular masses of (a) 990 kg/mol (●, red), 9.4 kg/mol (●, blue), 3.2 kg/mol (●, 
green), and reduced modulus collapsing onto a single curve (inset) (b) 2.3 kg/mol, 
(c) 1.3 kg/mol, and (d) 1.2 kg/mol.  

 

The experimental results reported here are in good agreement with those 

simulations.  Interestingly, when the quench depth into the glass is ≈1 ºC (i.e., 1.2. 



	   86	  

kg/ mol PS) the polymer films begin to exhibit deviations from bulk modulus 

values at approximately 100 nm.  This length scale is extremely long for 

observing nanoconfinement effects, although even longer length scales for Tg 

deviations have been reported.30  For example Ellison and coworkers report the 

critical length scale for the Tg of poly(4-tert-butylstyrene) between 300-400 nm.30  

However, it is compelling that the deviation observed here occurs for such a small 

Mn PS.  On the other hand, the Tg of PS begins to decrease at the entanglement 

molecular (~18 kg/mol) weight sub 10kg/mol approximately where the modulus 

begins to decrease ( below ~9.4 kg/mol).  Thus, it appears that the quench depth 

into the bulk glass (Tg,bulk - T) is the a parameter for determining the elastic 

moduli behavior of thin glassy films.  

The increase in critical thickness with decreasing Mn for the low 

molecular mass PS suggest the quench depth, (T-Tg,bulk), rather than finite chain 

confinement based upon molecular size, is a key parameter in determining the 

mechanical behavior of polymer thin films.  Figure 2.12 illustrates the 

dependency of quench depth on the length scales where deviations in the elastic 

modulus of thin PS films occurs, as revealed by δ determined from the bilayer fit. 

At large quench depths, T-Tg>50°C,the surface layer thickness is essentially 

constant at approximately 5 nm.  This result suggests that there is a nearly 

constant thickness soft surface for high Mn PS films.  This thickness is consistent 

with prior reports in the literature regarding a soft surface layer that is 

approximately 5 nm thick.22, 56, 64  For example, Fischer and coworkers studied the 

Tg of PS spheres in an aqueous suspension utilizing a dynamic scanning 
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calorimeter.  There results show a heat capacity jump that is consistent with a 

mobile layer ~4 nm thick near the outer shell of the spheres.22  While Keddie and 

coworkers utilize AFM equipped with a thermal probe to study the surface of bulk 

polystyrene, their results also suggest a thin surface layer ~3-5 nm thick.65 

 
Figure 2.12 Free surface layer thickness as determined from the bilayer model is 
strongly correlated with quench depth into the glass, PS(●), poly (alkyl 
methacrylate)s (▲).   

As Mn and Tg,bulk decrease, the thickness of the surface layer increases 

dramatically.  As T approaches Tg, δ appears to diverge.  Due to the dependence 

of bulk modulus on temperature; at T=Tg, it would be expected that the entire film 

irrespective of thickness would have a lower modulus, which would be similar to 

the bulk modulus of the rubber.  The dependency of the surface layer thickness, as 

determined from our modulus measurements and shown in Table 2.2 and Figure 

2.12, on the proximity of the bulk Tg may lend insight into glass formation in 

polymers where the near surface remains more mobile (lower modulus) than the 

bulk. The expansion of the rubbery-like surface layer as the bulk Tg is approached 
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is reminiscent of the growth of the liquid phase from the free interface into glassy 

tris-naphthylbenzene.66  The surface layer dependence on quench depth can be fit 

equally well by an exponential and inverse (inset) relationship as shown in Figure 

2.12.  The linear characteristic scaling universal for all the Mn PS films as well as 

the poly(alkyl methacrylate) series has implications for the development of 

polymeric composites, where baring any variations in chain flexibility or 

intrachain/interchain interactions by controlling the quench depth the mechanical 

properties can be controlled.   

Simulations have suggested that fast segmental motions67-69 near the free 

surface initiate cooperative motion of many segments and results in an enhanced 

polymer mobility70 that leads to a decrease in modulus.39, 40  However, additional 

theoretical work on the relationship between quench depth and the modulus of 

nanoconfined polymers is required to understand exactly how the soft surface 

thickness scales.  Nonetheless, the surface layer thickness appears to be well 

correlated with the quench depth into the bulk glass for all molecular masses of 

poly (alkyl methacrylate)s and PS examined here.  Other factors influencing the 

surface layer still need to be examined, for example chain end segregation and 

polymer rigidity.  By controlling end groups functionality segregation of chain 

ends and surface energetics can be controlled thus impacting the free surface layer 

composition and impacting nanometer length scale Tg.71 Furthermore increasing 

polymer backbone rigidity limits end group segregation also impacting the free 

surface layer composition, that is due to steric hindrance the polymer is more 

sensitive to conformational changes with confinement.72  More importantly 
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techniques for controlling the surface layer thickness and maintaining mechanical 

robustness (eliminating increased surface mobility) still need to be researched.  

2.4 Conclusion 
 

In summary, the thin film modulus for a series of poly (alkyl methacrylate)s and 

PS was determined using an approach based on Euler type wrinkling of a stiff 

polymeric film on an elastic substrate.  For the poly (alkyl methacrylate) series, 

there is a clear decrease in moduli compared to bulk values as film thickness was 

decreased. The length scale at which deviations from bulk moduli occurred was 

proportional to the bulk glass transition temperature of the polymer.  As the 

quench depth into the bulk glass decreases, the critical thickness at which the 

polymer film exhibits deviations from bulk-like values progressively increases to 

larger thicknesses.  Additionally, changes in the modulus of PnPMA thin films do 

not correlate with the thin film Tg behavior of identical films.   

For the PS series, the bulk modulus decreased as Mn decreases below a 

threshold (≈3.2 kg/mol).  However, for all the Mn PS films examined deviations 

from bulk values were observed.  For high Mn (> 3.2 kg/mol), the deviation in 

modulus is independent of molecular mass and begins when the film thickness is 

less than ≈50 nm.  However at Mn = 1.2 kg/mol, the modulus decreases at much 

larger thickness (≈100 nm). The deviation in the modulus of thin films appears to 

scale directly with the quench depth into the bulk glass and not with molecular 

size effects.  The deviation is attributed to the free surface effect at the 

polymer/air interface and the variation in length scales is directly related to the 

thickness of the surface layer with lower modulus. 
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The thickness of the soft surface layer determined from the bilayer model 

varies from ≈5 nm deep in the glass to greater than 50 nm when the measurement 

occurs within ≈1 ºC of Tg,bulk.  This result is in agreement with discontinuous 

molecular dynamics simulations which suggest that as Tg is approached the effect 

of a mobile surface layer increases, leading to decreases in the modulus at longer 

length scales.15,24  It was also found that the inverse of the free surface layer 

scaled linearly with the quench depth.  These results have direct implications in 

the robustness of polymeric nanostructures critical for future microelectronics, 

coatings, and adhesives. 

2.5 References 

1. Ferry, J. D., Viscoelastic properties of polymers. John Wiley and 
Sons: New York, 1980. 

2. Williams, M. L.; Landel, R. F.; Ferry, J. D., Mechanical Properties 
of Substances of High Molecular Weight .19. the Temperature Dependence of 
Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming 
Liquids. Journal of the American Chemical Society 1955, 77 (14), 3701-3707. 

3. DeMaggio, G. B.; Frieze, W. E.; Gidley, D. W.; Zhu, M.; Hristov, 
H. A.; Yee, A. F., Interface and surface effects on the glass transition in thin 
polystyrene films. Physical Review Letters 1997, 78 (8), 1524-1527. 

4. Ohno, H.; Kobayashi, N.; Takeoka, S.; Ishizaka, H.; Tsuchida, E., 
Larger cations can move faster in solid polymer electrolytes. Solid State Ionics 
1990, 40-41 (Part 2), 655-658. 

5. Cappella, B.; Kaliappan, S. K.; Sturm, H., Using AFM force-
distance curves to study the glass-to-rubber transition of amorphous polymers and 
their elastic-plastic properties as a function of temperature. Macromolecules 2005, 
38 (5), 1874-1881. 

6. Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; 
Kim, H.; Hawker, C. J., Nanoscale effects leading to non-Einstein-like decrease in 
viscosity. Nature Materials 2003, 2 (11), 762-766. 



	   91	  

7. Ozin, G. A.; Yang, S. M., The race for the photonic chip: Colloidal 
crystal assembly in silicon wafers. Advanced Functional Materials 2001, 11 (2), 
95-104. 

8. Hartschuh, R.; Ding, Y.; Roh, J. H.; Kisliuk, A.; Sokolov, A. P.; 
Soles, C. L.; Jones, R. L.; Hu, T. J.; Wu, W. L.; Mahorowala, A. P., Brillouin 
scattering studies of polymeric nanostructures. Journal of Polymer Science Part 
B-Polymer Physics 2004, 42 (6), 1106-1113. 

9. Lei, J.; Fan, J.; Yu, C. Z.; Zhang, L. Y.; Jiang, S. Y.; Tu, B.; Zhao, 
D. Y., Immobilization of enzymes in mesoporous materials: controlling the 
entrance to nanospace. Microporous and Mesoporous Materials 2004, 73 (3), 
121-128. 

10. Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L.; Zhuang, L. In Sub-
10 nm imprint lithography and applications, Papers from the 41st international 
conference on electron, ion, and photon beam technology and nanofabrication, 
Dana Point, California (USA), AVS: Dana Point, California (USA), 1997; pp 
2897-2904. 

11. Tanaka, T.; Morigami, M.; Atoda, N., MECHANISM OF RESIST 
PATTERN COLLAPSE DURING DEVELOPMENT PROCESS. Japanese 
Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 
1993, 32 (12B), 6059-6064. 

12. Stoykovich, M. P.; Nealey, P. F., Block copolymers and 
conventional lithography. Materials Today 2006, 9 (9), 20-29. 

13. Ramanathan, M.; Darling, S. B.; Sumant, A. V.; Auciello, O. In 
Nanopatterning of ultrananocrystalline diamond thin films via block copolymer 
lithography, AVS: 2010; pp 979-983. 

14. Solak, H. H.; David, C.; Gobrecht, J.; Golovkina, V.; Cerrina, F.; 
Kim, S. O.; Nealey, P. F., Sub-50nm Period Patterns with EUV Interference 
Litrhography. Microelectronic Engineering 2003, 67, 56-62. 

15. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint Lithography 
with 25-Nanometer Resolution. Science 1996, 272 (5258), 85-87. 

16. Rowland, H. D.; King, W. P.; Pethica, J. B.; Cross, G. L. W., 
Molecular Confinement Accelerates Deformation of Entangled Polymers During 
Squeeze Flow. Science 2008, 322 (5902), 720-722. 

17. Ding, Y.; Ro, H.; Douglas, J. F.; Jones, R. L.; Karim, A.; Soles, C. 
L., Polymer viscoelasticity and residual stress effects on nanoimprint lithography. 
Advanced Materials 2007, 19, 1377-1382. 



	   92	  

18. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, 
D. H., Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 
1 square centimeter. Science 1997, 276 (5317), 1401-1404. 

19. Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; 
Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; 
Russell, T. P., Ultrahigh-density nanowire arrays grown in self-assembled diblock 
copolymer templates. Science 2000, 290 (5499), 2126-2129. 

20. Ellison, C. J.; Torkelson, J. M., Sensing the glass transition in thin 
and ultrathin polymer films via fluorescence probes and labels. Journal of 
Polymer Science Part B-Polymer Physics 2002, 40 (24), 2745-2758. 

21. Ellison, C. J.; Torkelson, J. M., The distribution of glass-transition 
temperatures in nanoscopically confined glass formers. Nature Materials 2003, 2 
(10), 695-700. 

22. Fischer, H., Thermal probe surface treatment of a bulk polymer: 
Does a surface layer with a lower glass transition than the bulk exist? 
Macromolecules 2002, 35 (9), 3592-3595. 

23. Forrest, J. A.; DalnokiVeress, K.; Dutcher, J. R., Interface and 
chain confinement effects on the glass transition temperature of thin polymer 
films. Physical Review E 1997, 56 (5), 5705-5716. 

24. Forrest, J. A.; DalnokiVeress, K.; Stevens, J. R.; Dutcher, J. R., 
Effect of free surfaces on the glass transition temperature of thin polymer films. 
Physical Review Letters 1996, 77 (10), 2002-2005. 

25. Forrest, J. A.; Mattsson, J., Reductions of the glass transition 
temperature in thin polymer films: Probing the length scale of cooperative 
dynamics. Physical Review E 2000, 61 (1), R53-R56. 

26. Fryer, D. S.; Peters, R. D.; Kim, E. J.; Tomaszewski, J. E.; de 
Pablo, J. J.; Nealey, P. F.; White, C. C.; Wu, W.-l., Dependence of the Glass 
Transition Temperature of Polymer Films on Interfacial Energy and Thickness. 
Macromolecules 2001, 34 (16), 5627-5634. 

27. Fukao, K.; Miyamoto, Y., Glass transitions and dynamics in thin 
polymer films: Dielectric relaxation of thin films of polystyrene. Physical Review 
E 2000, 61 (2), 1743-1754. 

28. Kanaya, T.; Miyazaki, T.; Watanabe, H.; Nishida, K.; Yamana, H.; 
Tasaki, S.; Bucknall, D. B., Annealing effects on thickness of polystyrene thin 
films as studied by neutron reflectivity. Polymer 2003, 44 (14), 3769-3773. 



	   93	  

29. Huth, H.; Minakov, A. A.; Serghei, A.; Kremer, F.; Schick, C., 
Differential AC-chip calorimeter for glass transition measurements in ultra thin 
polymeric films. European Physical Journal-Special Topics 2007, 141, 153-160. 

30. Ellison, C. J.; Mundra, M. K.; Torkelson, J. M., Impacts of 
polystyrene molecular weight and modification to the repeat unit structure on the 
glass transition-nanoconfinement effect and the cooperativity length scale. 
Macromolecules 2005, 38 (5), 1767-1778. 

31. Singh, L.; Ludovice, P. J.; Henderson, C. L., Influence of 
molecular weight and film thickness on the glass transition temperature and 
coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid 
Films 2004, 449 (1-2), 231-241. 

32. Dalnoki-Veress, K.; Forrest, J. A.; Murray, C.; Gigault, C.; 
Dutcher, J. R., Molecular weight dependence of reductions in the glass transition 
temperature of thin, freely standing polymer films. Physical Review E 2001, 63 
(3). 

33. Forrest, J. A.; Dalnoki-Veress, K., The glass transition in thin 
polymer films. Advances in Colloid and Interface Science 2001, 94 (1-3), 167-
196. 

34. Lin, E. K.; Wu, W. I.; Satija, S. K., Polymer interdiffusion near an 
attractive solid substrate. Macromolecules 1997, 30 (23), 7224-7231. 

35. Shin, K.; Obukhov, S.; Chen, J. T.; Huh, J.; Hwang, Y.; Mok, S.; 
Dobriyal, P.; Thiyagarajan, P.; Russell, T. P., Enhanced mobility of confined 
polymers. Nature Materials 2007, 6 (12), 961-965. 

36. Soles, C. L.; Douglas, J. F.; Jones, R. L.; Wu, W. L., Unusual 
expansion and contraction in ultrathin glassy polycarbonate films. 
Macromolecules 2004, 37 (8), 2901-2908. 

37. Hintermeyer, J.; Herrmann, A.; Kahlau, R.; Goiceanu, C.; 
RoÃàssler, E. A., Molecular Weight Dependence of Glassy Dynamics in Linear 
Polymers Revisited. Macromolecules 2008, 41 (23), 9335-9344. 

38. Seemann, R.; Jacobs, K.; Landfester, K.; Herminghaus, S., 
Freezing of polymer thin films and surfaces: The small molecular weight puzzle. 
Journal of Polymer Science Part B-Polymer Physics 2006, 44 (20), 2968-2979. 

39. Bohme, T. R.; de Pablo, J. J., Evidence for size-dependent 
mechanical properties from simulations of nanoscopic polymeric structures. 
Journal of Chemical Physics 2002, 116 (22), 9939-9951. 



	   94	  

40. Yoshimoto, K.; Jain, T. S.; Nealey, P. F.; de Pablo, J. J., Local 
dynamic mechanical properties in model free-standing polymer thin films. 
Journal of Chemical Physics 2005, 122 (14), 144712. 

41. Stafford, C. M.; Vogt, B. D.; Harrison, C.; Julthongpiput, D.; 
Huang, R., Elastic moduli of ultrathin amorphous polymer films. Macromolecules 
2006, 39 (15), 5095-5099. 

42. Campbell, C. G.; Vogt, B. D., Examination of the influence of 
cooperative segmental dynamics on the glass transition and coefficient of thermal 
expansion in thin films probed using poly(n-alkyl methacrylate)s. Polymer 2007, 
48 (24), 7169-7175. 

43. Forrest, J. A.; Dalnoki-Veress, K.; Dutcher, J. R., Brillouin light 
scattering studies of the mechanical properties of thin freely standing polystyrene 
films. Physical Review E 1998, 58 (5), 6109-6114. 

44. Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; 
Kim, H. C.; Hawker, C. J., Nanoscale effects leading to non-Einstein-like 
decrease in viscosity. Nature Materials 2003, 2 (11), 762-766. 

45. O'Connell, P. A.; McKenna, G. B., Rheological Measurements of 
the Thermoviscoelastic Response of Ultrathin Polymer Films. Science 2005, 307 
(5716), 1760-1763. 

46. Inoue, T.; Cicerone, M. T.; Ediger, M. D., Molecular Motions and 
Viscoelasticity of Amorphous Polymers near Tg. Macromolecules 1995, 28 (9), 
3425-3433. 

47. Rogers, S. S.; Madlkern, L., Glass Transitions of the Poly-(n-Alkyl 
Methacrylates). Journal of Physical Chemistry 1957, 61 (7), 985-991. 

48. Stafford, C. M.; Vogt, B. D.; Harrison, C.; Julthongpiput, D.; 
Huang, R., Elastic Moduli of Ultrathin Amorphous Polymer Films. 
Macromolecules 2006, 39, 5095-5099. 

49. Van Damme, H. S.; Hogt, A. H.; Feijen, J., Surface mobility and 
structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact 
angle measurements. Journal of Colloid and Interface Science 1986, 114 (1), 167-
172. 

50. Brandrup, J.; Immergut, E. H.; Grulke, E. A., Polymer handbook. 
Wiley-Interscience: 2003. 

51. Korkmaz, T.; Dogan, A.; Usanmaz, A., Dynamic mechanical 
analysis of provisional resin materials reinforced by metal oxides. Bio-medical 
Materials and Engineering 2005, 15 (3), 179-188. 



	   95	  

52. Seitz, J. T., The estimation of mechanical properties of polymers 
from molecular structure. Journal of Applied Polymer Science 1993, 49 (8), 1331-
1351. 

53. Huang, R.; Stafford, C. M.; Vogt, B. D., Effect of surface 
properties on wrinkling of ultrathin films. Journal of Aerospace Engineering 
2007, 20 (1), 38-44. 

54. vanZanten, J. H.; Wallace, W. E.; Wu, W. L., Effect of strongly 
favorable substrate interactions on the thermal properties of ultrathin polymer 
films. Physical Review E 1996, 53 (3), R2053-R2056. 

55. Wallace, W. E.; van Zanten, J. H.; Wu, W. L., Influence of an 
impenetrable interface on a polymer glass-transition temperature. Physical Review 
E 1995, 52 (4), R3329. 

56. Keddie, J. L.; Jones, R. A. L., Size-Dependent Depression of the 
Glass Transition Temperature in Polymer Films. Europhysics Letters 1994, 27, 
59-64. 

57. Sun, L.; Dutcher, J. R.; Giovanni, L.; Nizzoli, F.; Stevens, J. R.; 
Ord, J. L., Elastic and elasto-optic properties of thin films of poly (styrene) spin 
coated onto Si (001). Journal of Applied Physics 1994, 75 (11), 7482-7488. 

58. Priestley, R. D.; Ellison, C. J.; Broadbelt, L. J.; Torkelson, J. M., 
Structural Relaxation of Polymer Glasses at Surfaces, Interfaces, and In Between. 
Science 2005, 309 (5733), 456-459. 

59. Keddie, J. L.; Jones, R. A. L.; Cory, R. A., Interface and surface 
effects on the glass-transition temperature in thin polymer films. Faraday 
Discussions 1994, 98, 219-230. 

60. Bodiguel, H.; Fretigny, C., Viscoelastic Properties of Ultrathin 
Polystyrene Films. Macromolecules 2007, 40 (20), 7291-7298. 

61. Torres, J. M. S., C.M.; Vogt, B.D., Elastic Modulus of Amorphous 
Polymer Thin Films: Relationship to the Glass Transition Temperature. ACS 
Nano 2009, 3 (9), 2677. 

62. Fakhraai, Z.; Forrest, J. A., Measuring the Surface Dynamics of 
Glassy Polymers. Science 2008, 319 (5863), 600-604. 

63. Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; 
Vanlandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E., A 
buckling-based metrology for measuring the elastic moduli of polymeric thin 
films. Nature Materials 2004, 3 (8), 545-550. 



	   96	  

64. Sasaki, T.; Shimizu, A.; Mourey, T. H.; Thurau, C. T.; Ediger, M. 
D., Glass transition of small polystyrene spheres in aqueous suspensions. Journal 
of Chemical Physics 2003, 119 (16), 8730-8735. 

65. Keddie, J. L.; Jones, R. A. L.; Cory, R. A., Size-dependent 
depression of the glass-transition temperature in polymer-films. Europhysics 
Letters 1994, 27 (1), 59-64. 

66. Swallen, S. F.; Traynor, K.; McMahon, R. J.; Ediger, M. D.; 
Mates, T. E., Stable Glass Transformation to Supercooled Liquid via Surface-
Initiated Growth Front. Physical Review Letters 2009, 102 (6), 065503. 

67. Jain, T. S.; de Pablo, J. J., Investigation of transition states in bulk 
and freestanding film polymer glasses. Physical Review Letters 2004, 92 (15), 
155505. 

68. Mansfield, K. F.; Theodorou, D. N., Molecular-dynamics 
simulation of a glassy polymer surface. Macromolecules 1991, 24 (23), 6283-
6294. 

69. Tseng, K. C.; Turro, N. J.; Durning, C. J., Molecular mobility in 
polymer thin films. Physical Review E 2000, 61 (2), 1800-1811. 

70. Jain, T. S.; de Pablo, J. J., Influence of confinement on the 
vibrational density of states and the Boson peak in a polymer glass. Journal of 
Chemical Physics 2004, 120 (19), 9371-9375. 

71. Xie, F.; Zhang, H. F.; Lee, F. K.; Du, B.; Tsui, O. K. C.; Yokoe, 
Y.; Tanaka, K.; Takahara, A.; Kajiyama, T.; He, T., Effect of Low Surface 
Energy Chain Ends on the Glass Transition Temperature of Polymer Thin Films. 
Macromolecules 2002, 35 (5), 1491-1492. 

72. Arriaga, L. R.; Monroy, F.; Langevin, D., Influence of backbone 
rigidity on the surface rheology of acrylic Langmuir polymer films. Soft Matter 
2011. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



	   97	  

CHAPTER 3  

MANIPULATIONS OF THE ELASTIC PROPERTIES OF POLYMERS AT 

THE NANOSCALE 

3.1 Introduction 

As discussed in previous chapters, at sub 100 nm length scales polymer 

properties begin to deviate from bulk values, including viscosity,1 modulus,2 

compliance,3 and relaxation dynamics4, 5 (including surface Tg)6.  In these studies 

of polymer thin films, polystyrene (PS) has been generally examined as model 

system.  Additionally, several reports have demonstrated that surface dynamics 

are much faster than the bulk for PS and PMMA films, consistent with a reduced 

surface modulus.7, 8 For example, Fakhraai and Forrest embedded gold 

nanospheres on the surface of PS thin films, annealed them at temperatures 

ranging from 277K to 369K and after removal of the spheres measured the 

surface recovery.  Their results show that surface relaxation occurred at all 

temperatures a direct measure of enhanced surface mobility.7  Ellison and 

Torkelson utilized pyrene labeled layers within PS films to examine the 

distribution of Tg’s, which illustrates a gradient in Tg extending approximately 40 

nm below the free surface at which point bulk values were reached.6 Furthermore 

a similar fluorescence study on the Tg at both the free surfaces and silica 

interfaces of a series of poly (n-methacrylate)s revealed increases in Tg for poly 

(methyl methacrylate) (PMMA), decreases for poly (ethyl methacrylate) (PEMA), 

and invariant for poly (isobutyl methacrylate)(PiBMA).9  This trend was 
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attributed to hydrogen-bonding between PMMA and the hydroxyl groups on the 

silica surface, in the case of PEMA the free surface reduction in Tg dominated 

substrate effects, while similar strengths in substrate and free-surface Tg 

perturbations resulted in  a net cancellation in Tg for PiBMA.9 These results 

indicate that the free surface of polymer films has properties that differ from the 

bulk.  At nanometer length scales, reduced surface properties become significant 

and lead to a decrease in the mechanical integrity of polymeric nanostructures due 

to the high surface to volume ratios.10, 11 Finite-element inversion analysis of 

Brillouin light scattering data as well as cantilever beam bending measurements 

reveal dimensional dependent elastic modulus below beam widths of 50 nm for 

PMMA nanostructures,10, 11  where elastic constants in nanostructures show a 3-

11% decrease at 50 nm from their corresponding bulk values.10  Similarly, 

Torkelson and coworkers demonstrated that the Tg of lithographically patterned 

PMMA films is less than that observed for unpatterned films of identical 

thickness.12 These results suggest that increasing the free surface area leads to a 

reduction in polymer properties.  Thus, minimizing this free surface effect is 

necessary for generating robust polymeric nanostructures.  As shown in the 

previous chapter, one route to decrease the free surface effect is to increase the 

bulk Tg of the polymeric system.13, 14  However, high Tg polymers can be difficult 

to process in general due to difficulties with annealing and removal of processing 

history; for example,  nanoimprint lithography requires processing in the melt to 

allow for flow of polymer into the nanostructured mold, but this temperature must 
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be below the degradation temperature.  Therefore, reducing the free surface effect 

with higher Tg polymers limits processability and an alternate route is desired. 

Polymer modification techniques such as electron beam, gamma ray, and 

ultraviolet (UV) radiation have been used extensively in industry.15  These 

techniques allow for control of saturation, crosslinking, and polymer molecular 

weight which allows them to tune material properties.15  It is therefore suggested 

that these free surfaces could be chemically modified in a manner that might 

improve the mechanical integrity by altering the surface properties.  One common 

route to the modification of polymer surfaces is through use of UV radiation.  

Koberstein and coworkers have used UV radiation coupled with molecular 

oxygen to create inorganic oxide coatings on surfaces, which should be 

significantly more robust mechanically than the precursors.16 Similarly, ultraviolet 

ozone (UVO) treatment simultaneously utilizes UV light and ozone produced in 

situ to photochemically modify the surface.  In cases where oxidation and 

crosslinking occur such as for poly(dimethylsiloxane) (PDMS) and PS, UVO is 

known to improve adhesion,17 wettability,18 biocompatibility,19 and toughness18 of 

polymers through modification of the near surface region, ≈ 5 nm.17, 18  However, 

other polymers, such as PMMA, predominantly undergo chain scission rather than 

crosslinking; thus UVO treatment would not appropriate for all polymers.17, 18 

Recently, de Pablo and coworkers used simulations to identify an 

alternative route to eliminate the observed decrease in modulus of thin films and 

nanostructures: the use of an antiplasticizer.20  These simulations also suggest that 

upon the confinement of a polymer/diluent system, both the initial energy barriers 
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for chain relaxation and Tg are unchanged, unlike the neat polymer where a 

reduction in bulk values are observed when confined to a thin film.21 Simulations 

studying particle movement within confined polymer films suggest the addition of 

an antiplasticizer eliminates the propagation of free-surface effects by making the 

cooperative motions in the film and near surface homogeneous; thus decreasing 

the required cooperative motion length scale in the vicinity of the free surface for 

polymer relaxation.6, 20 However, plasticizers, rather than antiplasticizers, are 

commonly utilized in nanoimprint lithography,22 but Ellison et al. illustrated that 

a plasticizer, dioctyl phthalate (DOP), can effectively eliminate any finite size 

effects on Tg of PS.23  The results are explained in terms of a free surface layer 

with reduced properties relative to the bulk due to enhanced surface dynamics.  

The authors argue that addition of a diluent molecule alters the dynamics in the 

film normally influenced by the free surface.  If addition of small molecule 

diluents alters polymer dynamics at the free surface it is expected that the elastic 

modulus would be influenced as free surface effects seem to control sub 50 nm 

length scale modulus.   However, it is presently unclear if a small molecule that 

acts as a plasticizer in the bulk can actually lead to apparent antiplasticization and 

enhancement of mechanical properties in polymer thin films and nanostructures.  

In this Chapter, we examine the efficacy of two distinct processing routes, 

UVO treatment and addition of a plasticizer, on effectively increasing the moduli 

of ultrathin (< 30 nm) PS and PMMA films in comparison to their pure polymer 

counterparts.  Elastic moduli are elucidated using the wrinkling instability of a 

thin polymer film on an elastic substrate discussed in the previous chapters.  To 
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understand molecular mass effects, a high molecular mass PS and an oligomer of 

PS are studied using both processing routes.  We demonstrate that low 

concentrations of a plasticizer can effectively eliminate thickness dependence of 

the elastic modulus in thin polymer films without significantly decreasing the 

modulus.  A more complex situation arises with UVO treatment, where the 

efficacy of this method is dependent upon chemistry (PS vs. PMMA) and 

molecular mass (high vs. low).  These experimental results can be explained in 

terms of near surface effects and the impact of the processing routes explored here 

on polymer properties in the vicinity of a free interface.  Using these techniques, 

sub 30 nm modulus reductions are eliminated, important for next generation 

lithography where polymeric materials are used to generate sub 32 nm 

nanostructures. 

3.2 Experimental 

PS of varying molecular mass was purchased from Polymer Laboratories 

(Mn = 1.3 kg/mol, Tg = 29.9 °C; Mn = 2.3 kg/mol, Tg=64.3 °C; Mn = 492 kg/mol, 

Tg = 106.1 °C; Mn = 990 kg/mol, Tg = 106.3 °C).  PMMA was purchased from 

Polymer Source (Mw = 91 kg/mol, Tg = 105 °C).  Dioctyl phthalate (DOP) and 

toluene were purchased from Aldrich and used as received.  

Silicon wafers (450 µm thick) were used as substrates for PS, cleaved into 

approximately 2.5 cm × 1 cm pieces and cleaned with UVO (model 42, Jelight).   

To assist with film transfer (interactions between silanol and methacrylates), mica 

sheets were used as substrates for PMMA films.  Polymer films were spin-cast 
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from the dilute solutions in toluene onto these substrates. PDMS (Sylgard 184, 

Dow Corning) was prepared at a ratio of 20:1 by mass of base to curing agent, 

cast into 1.5 mm thick sheets, and allowed to gel at room temperature for 3 h 

before curing at 100 °C for 2 h.  After cooling to ambient, the PDMS was cut into 

approximately 2.5 cm × 7.5 cm strips.  The modulus of the PDMS was 

determined using a Texture Analyzer (TA-XT Plus) at a strain rate of 0.01 mm/s 

and found to be 0.7 MPa ± 0.1 MPa.   

In order to exceed the critical strain required to produce surface wrinkling 

on all samples, the PDMS was pre-strained to 4% using a stage described 

previously.24 The polymer film was then transferred to strained PDMS using 

differential adhesion in water. The sample was dried under vacuum at 10 °C 

below its bulk Tg to avoid thermal induced wrinkling.  In cases where UVO 

treatment was used, the polymer film on the strained PDMS was exposed to UVO 

at a distance of approximately 10 mm from the UV source for either 30s, 60s, or 

90s.  The pre-strain on the PDMS was then released at a rate of 0.1 mm/s.  All 

samples were released at ambient temperature (T = 21 °C ± 2 °C).   

The thickness of the polymer film on the strained PDMS was determined 

using a Variable Angle Spectroscopic Ellipsometer (VASE M-2000, J.A. 

Woollam Co., Inc.) over a wavelength range from 250 nm to 1700 nm using three 

incident angles, 67°, 70°, and 73°. The data were modeled using the optical 

properties of the PDMS substrate and a Cauchy layer to describe the polymer 

film.  The film thickness measured before transfer (i.e., on the silicon wafer) was 

found to be within 1 nm of the film thickness after transfer (i.e., on PDMS).   
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Additionally, the decrease in film thickness from UVO exposure is less than 1.5 

nm in all cases examined. 

Characterization of the wrinkled surfaces was performed using atomic force 

microscopy (AFM) and optical microscopy.  AFM images were acquired at 

ambient temperature on an Agilent Technologies 5500 system in contact mode 

using a constant scan size of 7.5 µm × 7.5 µm at a scan rate of 1 Hz.   AFM 

images were analyzed using 1D Fast Fourier Transform (FFT) to obtain the 

wavelength of the wrinkles.  Optical images were acquired using a Mititoyo 

Ultraplan FS-110 and analyzed using 1D Fast Fourier Transform (FFT) to 

determine the wrinkle wavelength.  

To measure the Tg of PS with 5 mass % DOP thin films on PDMS, 20:1 PDMS 

films were spin cast onto clean silicon wafers from a dilute toluene solution (0.5 

% to 2 % by mass PDMS) and cured at 100 °C for 2 h.  The PDMS layer was 

varied from 30 nm to 70 nm thick.   PS films containing 5 mass % DOP (hf ≈ 55 

nm) were transferred to the PDMS films from silicon wafers as described above. 

Ellipsometry was used to measure the thermal response of PDMS films and 

PDMS/PS-DOP bilayers. Tg was determined from changes in the PS-DOP film 

thickness measured upon cooling from 150 °C to 30 °C at 1.0 °C/min in a 

nitrogen purge atmosphere.   

 

3.3 Results 

As shown in Chapter 2 and reported elsewhere the modulus of PS and 

PMMA films confined to the nanometer length scale exhibit a dramatic decrease 
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when using “non-contact” metrologies such as wrinkling25-27 and and nanobubble 

inflation28. This reduction in modulus is consistent with a reported “liquid”-like 

free surface layer that is dependent on both the structure and properties of the bulk 

polymer and the substrate.6, 29   For polystyrene films with Mn=1.3 kg/mol and 

Mn=493 kg/mol the modulus as a function of film thickness has two salient 

features as shown in Figure 3.1.  First a bulk-like modulus is observed until a 

critical thickness is reached.  Below this critical thickness  deviation from bulk 

values are observed.  One interesting feature is that unlike the Tg of PS, the 

critical thickness at which deviations in the elastic modulus are observed is 

dependent upon molecular mass of the PS.27 As detailed in Chapter 2, the surface 

layer of PS shows a molecular mass dependence, where the surface layer 

increases from δ ≈ 5 nm to δ ≈ 52 nm when the number-average relative 

molecular mass (Mn) of PS is decreased from 492 kg/mol to 1.1 kg/mol.  Similar 

to the change in δ, the length scale below which deviations from the bulk-like 

modulus occurs shifts from approximately 50 nm for the high Mn PS to greater 

than 70 nm for the low Mn PS.  If the surface of the polymer is indeed the source 

of the decreased modulus, one potential route to overcome the decreased 

mechanical robustness is to crosslink the surface of the PS in order to decrease 

polymer mobility and increase the surface stiffness.30 One well established route 

to crosslink PS surfaces is through exposure to UVO.17, 18 UVO crosslinking 

reduces the mobility of polymers by chemical reactions where the polymer chains 

form larger 3-dimensional networks.  It is expected that this stiffening of the 

polymer chains would therefore increase the free surface modulus of the polymer.  
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The impact of exposure to UVO on the thickness dependence of the modulus for 

1.3 kg/mol and 492 kg/mol PS films is shown in Figure 3.1.   

	  

 
 
Figure 3.1  [a] Modulus as a function of film thickness for 1.3 kg/mol PS: pristine  
(●), after  30 s  UVO exposure (◇), after  60 s UVO exposure (△), and after 90 s  
UVO exposure (□) [b]Modulus as a function of film thickness for 493 kg/mol PS: 
pristine  (●), after  30 s UVO exposure (◇), and  60 s UVO exposure (△).   

 

 
Interestingly for 1.3 kg/mol PS films (Figure 3.1a), a reduction from bulk 

values is observed even after UVO exposure at hf <50 nm.  Thus, the UVO 

treatment is unable to eliminate the effects of nanoconfinement on the elastic 

modulus of low molecular mass PS films.  However compared to the unexposed 

low molecular mass PS, the thicker (> 50 nm) UVO exposed films show an 

overall increase in apparent elastic modulus from E(tUVO=0) ≈ 1.06 GPa to  

E(tUVO=30, 60, 90 s) ≈ 1.87 GPa assuming a Poisson’s ratio, n, of 0.33.  This 

increase in bulk modulus with UVO exposure is expected as UVO has shown to 
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crosslink PS.31  Note that Figure 3.1 reports the strain-plane modulus, 

.  Similarly, the 492 kg/mol PS films exhibit an increase in overall 

modulus when exposed to UVO, but the modulus becomes independent of 

thickness after UVO exposure of 30 s and 60 s.  The bulk elastic modulus of this 

unexposed PS is approximately 3.2 GPa, which increases to approximately 3.5 

GPa and 4.0 GPa after 30s and 60s of UVO exposure, respectively.  Additionally, 

a bulk-like modulus is measured for films as thin as 15 nm after this UVO 

exposure; this is counter to neat polymers that we have examined where a 

decrease in modulus relative to the bulk is observed at this length scale.14, 32, 33  

Furthermore, this increase in modulus was observed after 24 hrs of treatment, 

however it is expected that surface recovery would be observed at longer time 

scales.  To explain the observed dependence on molecular mass for the efficacy of 

UVO treatment, an understanding of the effects of UVO on the properties of PS 

surfaces is required. 

Fortuitously, the UVO surface treatment of PS has been widely studied 

and the mechanism of surface modification has been established.17, 18, 30   UVO 

initially breaks molecular bonds on the surface of the polymer, allowing for the 

addition of oxygen atoms.34  For short exposure times (tUVO < 60 s), the 

concentration of chemisorbed oxygen increases linearly with time to 

approximately 6 atom-% after 60 s exposure.18 Atomic oxygen then reacts with 

the polymer chain by an insertion reaction to form carbonyl groups or through the 

removal of hydrogen from the chain to yield a carbon radical; this carbon radical 

can lead to the formation of carboxyl groups and enables cross-linking between 
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polymer chains.17, 18 As oxygen is required for these reactions, the diffusion of 

oxygen through the film is required; crosslinking of the surface limits the 

diffusion of oxygen and leads to an apparent limitation of the oxygen mediated 

modification to the near surface region extending approximately 5 nm into the 

film.17, 18 For high molecular mass PS (492 kg/mol), the free surface layer (hf ≈ 5 

nm) having a reduced modulus should be completely oxidized and crosslinked 

based on the observed diffusion-limited penetration depth of ≈ 5 nm for molecular 

oxygen during UVO exposure.  Conversely, the UVO treatment of low molecular 

mass PS (1.3 kg/mol) does not eliminate the thickness dependent modulus.  

However, the lower molecular mass PS has a significantly larger surface layer (δ 

≈ 25 nm) that cannot be fully oxidized and cross-linked.  Crosslinking low 

molecular mass PS free surface is limited due to the UVO penetrating only 5 nm 

into the film.   However some of this soft surface is converted to a less compliant 

oxidized, crosslinked material, thus explaining the overall observed increase in 

elastic modulus for a fixed thickness after UVO treatment, as illustrated in Figure 

3.1.  However surface rearrangement of the more rigid treated surface with the 

more compliant free surface layer does not allow for the thinner films to exhibit a 

thicker bulk-like modulus.  This simple explanation based upon the finite 

penetration depth of the UVO treatment appears consistent with the observed 

data.   

To further investigate the influence of UVO treatment on the mechanical 

properties of polymer thin films, films of PMMA were also examined.  The 

impact of UVO exposure on the elastic modulus of PMMA is shown in Figure 
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3.2; the UVO treated PMMA remains statistically invariant from the unexposed 

PMMA at identical thickness.  During exposure to UV radiation, cross-linking 

and chain scission occur simultaneously, but the dominance of either process is a 

function of the polymer structure.35, 36 Unlike the predominance of cross-linking 

processes for PS, PMMA primarily undergoes chain scission of the methyl esters 

followed by the generation of one unsaturated bond in the polymer chain under 

UV irradiation.36  

 

Figure 3.2  Modulus as a function of film thickness for 91 kg/mol PMMA: 
pristine (△) and after 30 s UVO exposure (○).   
 

This difference in behavior has been exploited in block copolymer 

lithography using PS and PMMA segments to create a nanoporous template upon 

removal of the PMMA fragments.37 Since the surface of the PMMA is not 

appreciably crosslinked by UVO exposure, there is no strengthening of the 

surface and hence no statistical change in the thin film moduli.  However, 
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reduction in the molecular weight of PMMA via chain scission will ultimately 

lead to a decrease in the modulus.  Based on the observations shown here, any 

decrease in average molecular mass from chain scission during a 30s UVO 

exposure is insufficient to adversely impact the elastic modulus in comparison to 

the neat unexposed PMMA.  However, UVO treatment is not able to effectively 

eliminate decreases in the mechanical properties of ultrathin PMMA films.   Thus, 

the data for both PMMA and the low molecular mass PS illustrate the limitations 

of UVO for improving the elastic modulus at the nanoscale, although UVO is 

effective for some specific polymer systems such as high molecular mass PS.  

Other polymers such as polybutadiene and polyethylene have been shown to 

crosslink when exposed to UV. 38, 39 

One potential alternative to UVO treatment for mechanically reinforcing 

polymers at the nanoscale is through the addition of an antiplasticizer.20  

Traditionally, small molecule diluents known as plasticizers are added to polymer 

materials to increase processability and reduce fragility/brittleness by reducing Tg. 

However, addition of plasticizers also leads to a decrease in the modulus, which 

can be detrimental for some applications.  For example, phthalates are used for 

increasing poly (vinyl chloride)’s flexibility, while ester plasticizers are used in 

rubber manufacturing. Conversely, antiplasticization can occur at low diluent 

levels when a strong interaction is present between the small molecule and the 

polymer that leads to densification.40, 41  In cases where antiplasticization occurs, 

the increased physical density of the material leads to an increased elastic 

modulus, despite a decrease in Tg from the addition of the diluent to the 
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polymer.40-42 Simulations by de Pablo and coworkers indicate that antiplasticizers 

can also provide enhanced mechanical rigidity of polymers at the nanoscale where 

confinement effects are eliminated and bulk like values are possible.20  Nealy and 

coworkers investigated the mechanical properties of PMMA beams with 

plasticizer tris(2-chloropropyl) phosphate (TCPP) via cantilever bending models 

and observing structure collapse.  Their results show that addition of TCPP 

increases the elastic modulus of the PMMA nanostructures by 18% to 26%, 

allowing antiplasticized structures to remain stable at aspect ratios that have been 

shown to collapse with pure PMMA.11   

 
Figure 3.3  Ellipsometry data of the film thickness as a function of temperature 
for [a] pure 2.3 kg/mol PS with Tg = 64.3 ºC ± 1.6 ºC and [b] 5wt% DOP in 2.3 
kg/mol PS with Tg =55.1ºC ± 2.1ºC. 

 

Additionally, through molecular dynamic simulations it is found that the 

antiplasticizer homogenizes the polymer film in terms of cooperative 

rearrangement;20 this homogenization eliminates surface effects5 that have been 

attributed as the cause for a decrease in Tg
43 and bulk mechanical properties1 of 

nanoconfined polymers.     Experimentally, Ellison et al. showed that addition of 

approximately 9 wt % pyrene in PS eliminated any size dependencies on the film 
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Tg behavior;23 this result is consistent with the aforementioned simulations where 

antiplasticizing diluents homogenize the film.20 Potential π-π interactions between 

PS and pyrene could lead to an antiplasticization effect.  However, addition of 

only 4 mass % DOP to PS also eliminates nanoconfinement effects on thin film 

Tg.23 This results is quite curious as addition of DOP to bulk polymers leads to 

plasticization with a reduction in the bulk glass transition temperature and a 

decrease in the elastic modulus.44, 45  In this study the addition of DOP to ≈ 100 

nm thick PS films results in a decrease in both Tg and elastic modulus.  Figure 

3.3a shows the film thickness as a function of temperature for a 100 nm pure 2.3 

kg/mol PS film.  The intersection of the slope for the linear and melt behavior is 

used to extrapolate Tg.  Without DOP, the Tg of the PS (Mn = 2.3 kg/mol) is 

extrapolated to be 64.3 ºC ± 1.6 ºC.  

 
Figure 3.4  Modulus dependency on DOP mass % for both 990 kg/mol (●) and 
2.3 kg/mol (▲) PS films.  The error bars represent one standard deviation of the 
data, which is taken as the experimental uncertainty of the measurement. 
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However from Figure 3.3b the Tg decreases to 55.1 ºC ± 2.1 ºC with the 

addition of 5 mass % DOP. This depression in Tg is consistent with previous data 

for the Tg of DOP plasticized PS in the bulk.46  Figure 3.4 illustrates the decrease 

in elastic modulus of PS films (hf ≈ 55 nm) from approximately 3.3 GPa at 0wt% 

to 2.2 GPa at 15wt%. Note that this decrease is independent of molecular weight 

as both the 990kg/mol PS and 2.3 kg/mol PS collapse onto a single curve.  The 

decrease in both Tg and elastic modulus with addition of DOP in the films is 

indicative of plasticization of the PS.  However in thin films, the thickness 

dependence on Tg of PS films can be eliminated by using DOP,23 but as shown in 

Chapter 2 deviations in the modulus of thin poly(n-propyl methacrylate) films do 

not correlate with thin film Tg. Thus, it would be instructive to understand how 

the addition of DOP to these thin PS films impacts the elastic moduli.      

 
Figure 3.5 Modulus of [a] 990 kg/mol and [b] 2.3 kg/mol PS with varying DOP 
concentration: pure PS (●), 1 mass% (■), 3 mass% (◆), and 5 mass%(▲).  
 
 

The addition of DOP to 990 kg/mol PS thin films leads to a progressive 

increase in the modulus for films less than approximately 50 nm thick as shown in 

Figure 3.5a. Although the bulk modulus is not significantly impacted by the 
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addition of up to 5 mass % DOP, the modulus of ultrathin (< 30 nm) films is 

strongly dependent upon the DOP concentration over the same range.  At 5 mass 

% DOP, the PS film modulus is statistically independent of film thickness. This is 

reminiscent of the impact of DOP on the Tg of PS thin films where bulk Tg is 

recovered in ultrathin films if 4 mass % DOP is added,23 although the length scale 

at which Tg and modulus deviations from bulk occur is not always consistent.14 

 

Figure 3.6 The modulus of 990 kg/mol PS with varying DOP concentration: 5 
wt%(■), 10 wt%(▲), and 15 wt%(●). 

 

The addition of non-volatile diluents appears to be a facile mechanism to 

improve the elastic modulus of polymers at the nanoscale.  Although as 

previously mentioned, only diluents where polymer-diluent interactions dominate 

have been successful.  However, the effect of UVO treatment on the mechanical 

behavior of both high and low molecular mass PS thin films is strikingly different, 

so it would be insightful to determine if similar differences exist when adding 

DOP to these systems.  One issue that arises is the initial low Tg of the 1.3 kg/mol 
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PS; addition of 5 mass % DOP decreases Tg below ambient.  As discussed in 

Chapter 2 when the Tg approaches the experimental temperature (21 ± 2°C) 

surface wrinkling is not stable thus precluding the formation of stable wrinkle 

patterns to elucidate the thin film modulus.  Instead, a slightly larger molar mass 

is utilized for the DOP studies (2.3 kg/mol).  As shown in Figure 3.5b, the 

addition of DOP to this lower molecular mass PS also yields improvements in the 

modulus of the ultrathin films.  As shown, the impact of DOP on the modulus is 

identical between the two varying molecular masses, where the modulus is 

independent of film thickness for >5wt% DOP.  However as the amount of 

plasticizer continues to increase, a significant decrease in bulk modulus, from ~3 

GPa at 5wt% to 2.2 GPa at 15wt% is observed as shown in Figure 3.6.  This 

decrease in elastic modulus at h>50 nm while increasing the sub 30 nm modulus 

suggest that both plasticization and antiplasticization begins to occur at DOP 

concentrations greater than 15 wt%.  This also suggests that the mode of 

inhibition of nanoconfinement effects by addition of DOP is independent of the 

degree of mechanical heterogeneity within the film as the thickness of soft surface 

layer (δ) is estimated to be nearly double for the 2.3 kg/mol PS in comparison to 

the 990 kg/mol PS.14  To further examine the broad applicability of adding DOP 

to eliminate decreases in the modulus of polymer thin films, a polymer lacking 

aromaticity is examined: PMMA.   Figure 3.7 shows the film thickness 

dependence on the moduli of PMMA as a function of DOP concentration. Similar 

to the observed behavior for PS, addition of DOP systematically increases the 

modulus of ultrathin (<50 nm) films of PMMA.  At 5 mass % DOP, the modulus 
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of the PMMA films is independent of film thickness. These results suggest that 

small molecules in ultrathin polymer films may be able to act as antiplasticizers, 

even if these diluents are plasticizers in the bulk.   This is in agreement with 

recent experimental work by Nealy and coworkers where a maximum elastic 

modulus was obtained with the addition of 5wt% antiplasticizer to PMMA.11  

However Nealy and coworkers suggest a dimension-dependent elastic modulus in 

PMMA nanostructures, where a slight depression in bulk modulus was observed 

with decreasing structure size.  The lower modulus in nanostructures can be 

attributed to a geometric difference where supported thin films are limited to one 

free surface and nanostructures are influenced by a series of other free surface-

polymer interactions. 

 
 
Figure 3.7  The modulus of 91 kg/mol PMMA with varying DOP concentration: 
5 wt%(△), 3 wt%(◇), 1 wt%(□), and pure polymer (●). 
 

It is unclear how the addition of a diluent to a polymer thin film can 

increase its modulus, but molecular dynamic simulations suggest thin films 
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containing a small molecule exhibit smaller-scale collective motion, which 

reduces the influence of the free surface layer and subsequently leads to 

elimination of the bulk modulus reduction that is present in the neat polymer 

film.21  In order to study the collective motion of the polymers, second-order non 

linear optics (NLO) which monitors the rotational reorientation of extrinsic 

molecular probes or chromophores in polymers can be utilized.  Recently NLO 

measurements have shown that the measured chromophore reorientation 

dynamics are coupled to the cooperative segmental mobility of the polymer.47 

Therefore time resolved optical techniques such as birefringence and second-

order NLO allow for the detection or chromophore orientation and thus a method 

to measure the collective motion and cooperative rearrangement of polymer thin 

films.  NLO would therefore be able to determine if indeed the addition of small 

molecules reduce collective motion within the polymer matrix. 

3.4 Conclusions 

The elastic moduli of neat PS and PMMA are found to decrease when the 

film thickness is less than 50 nm as a result of a mechanically compliant surface 

layer.  Two strategies to limit or circumvent the reduction in modulus of polymers 

at the nanoscale are examined: UV-ozone promoted oxidation/crosslinking of 

surface and addition of liquid diluent.  UVO exposure leads to oxidation and 

cross-linking of the near surface of PS (≈ 5 nm), which leads to in overall increase 

in modulus.  For high molecular mass PS  (492 kg/mol), the thickness of the 

crosslinked layer is similar to that of a soft free surface layer (δ ≈ 5 nm) and the 

modulus of these films after 30s UVO exposure is independent of film thickness.  
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For low molecular mass PS (1.3 kg/mol), the free surface layer (δ ≈ 25 nm) is 

larger than the depth of surface modification, thus the modulus for this low 

molecular mass PS is still thickness dependent after UVO exposure.  Due to chain 

scission during the photodegradation process for PMMA, UVO exposure showed 

no statistical variation in the modulus from the pure nanoconfined polymer.  

Conversely, addition of DOP to bulk PS and PMMA leads to a reduction in the 

extent of decrease in moduli for ultrathin films.  At 5 mass % DOP, the moduli of 

PS and PMMA films are independent of film thickness.  This result suggests PS 

and PMMA are antiplasticized by up to 5wt% DOP at the nanoscale despite DOP 

acting as a plasticizer in the bulk for both polymers.    However as previous work 

has shown not all plasticizers eliminate nanoconfinement effects (i.e. PS 

oligomers in a PS matrix).20  Suggesting that only if interactions between the 

diluent and polymer matrix exist will antiplasticization occur. 
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CHAPTER 4 

INFLUENCE OF CHAIN STIFFNESS AND ARCHITECTURE ON THERMAL 

AND MECHANICAL PROPERTIES OF POLYMER THIN FILMS  

4.1 Introduction 

One outstanding issue in fundamental physics is characterization of the 

glass transition.1-3 Over the past decades, there has been a concerted effort in 

examining how the glass transition temperature (Tg) changes with confinement of 

the glass former to nanoscale dimensions.4-6 In particular, a single polymer, 

polystyrene (PS), have been examined extensively to assess how confinement to 

thin films its physical properties including Tg,4, 7-9 thermal expansion,8-10 elastic 

modulus,11 chain conformation,12 segmental motion,13, 14 viscoelasticity,15 creep 

behavior,16 as examples.  However, these studies have yielded conflicting 

conclusions depending upon the technique used.  For example, Tg of supported 

ultrathin PS films has been shown to decrease when using fluorescence,7, 17 BLS18 

or ellipsometry,19 but micro-calorimetry20 indicates no change in Tg irrespective 

of thickness.  Russell and co-workers have recently suggested that the observed 

changes in Tg for confined thin films is a result of residual stress and not intrinsic 

changes in the physical properties,21 which is similar to conclusions by Kremer 

and co-workers based upon long term annealing of polymer thin films.22 Even if 

the thickness dependent properties of these polymer films are indeed artifacts of 

the film formation process, it will not always be possible to anneal out these 

effects in technological applications due to the time associated with the chain 
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relaxation. For example in microelectronics, lithographically patterning the 

surface of polymer thin films leads to a decrease of Tg, which is attributed to 

increasing the area of the free surface.23 These discrepancies in the conclusions as 

well as those discussed in previous chapters provide motivation to examine the 

thin film behavior in greater detail.  One route to improved understanding is to 

examine polymers other than linear PS.  For example by utilizing different 

tacticity of poly(methyl methacrylate) (PMMA), it was shown that the specific 

monomer interaction with the substrate can dramatically impact the observed 

thickness dependent behavior.24, 25 The homologous series of poly(n-alkyl 

methacrylate)s provides a facile route to examine how polymer structure impacts 

thin film behavior.26 In this case, there appears to be some correlation between 

cooperative dynamics for the bulk and the thin film behavior.26, 27 Similarly, 

Ellison and Torkelson examined how minor variations to the monomer structure 

of PS impacts the thin film behavior,7 but no obvious correlation between 

cooperative and Tg changes are present.  Additionally, the addition of diluents to 

the polymer appears to eliminate the influence of confinement on both Tg
28, 29 and 

modulus30, 31 of polymer thin films.  However in all these cases, relatively flexible 

polymers have been examined.  When more rigid polymers have been examined 

such as polycarbonates, only a weak suppression in Tg was observed,32 while the 

segmental dynamics appear to be suppressed upon confinement.33 These results 

appear to be counter to those obtained for PS where Tg is significantly decreased 

and the segmental dynamics are enhanced in ultrathin films.13, 34 Thus, a more 

detailed examination of monomer specific effects could provide insight into 
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critical parameters that control deviations in physical properties for thin film 

glasses. 

In addition to these fundamental questions, there are a number of 

technologically relevant situations where functionalized polymers are utilized at 

the nanoscale.  By varying the functionality of polymer chains, new and improved 

materials can be developed.  For example, the melt rheological and 

thermodynamic properties of polyethylene can be well controlled through a 

combination of short-chain branching and long-chain branching to the polymer 

backbone.35 To provide understanding of the impact of these parameters, a 

systematic variation in the polymer structure is critical in order to delineate 

effects.   One technologically relevant route is through co-polymerization, where 

the ratio of each polymer block can be tuned.  For example in fuel cell 

membranes, the ratio of sulfonated and fluorinated moieties in the polymer 

backbone controls the performance.36 Similarly, the fire resistant behavior of 

polycarbonates can be varied through copolymerization of phosphates and 

arylates and further tailored by choice of polymer base, bisphenol-A or 

deoxybenzoin.37, 38 These moieties provide significantly different degrees of 

rigidity to the polymer backbone limiting backbone rotation and thus could be 

able to smoothly tune the intrinsic polymer flexibility through composition.   

Conjugated polymers provide another opportunity for examining rigid 

backbones,39 but many of these are semi-crystalline.40 Additionally, the pendant 

groups involved could significantly impact the thin film properties through 

interfacial interactions.  One route to minimize variations in pendant groups is 
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through selective hydrogenation of unsaturated bonds in the polymer.  Bond 

saturation has shown to alter the polymers thermal stability, storage and loss 

modulus, and optical properties.41-44 The hydrogenation of polystyrene to 

poly(cyclohexylethylene) (PCHE) results in a decrease in density and Tg 

attributed to the cyclohexyl ring limiting the polymers ability to coil tightly.45 

Selective hydrogenation of unsaturated polymers via choice in catalyst provides a 

route to systematically vary the structure.  Nonetheless, both discussed methods 

of hydrogenation and copolymerization lead to some uncertainty in the exact 

effects on thin film behavior due to the coupling of physical and chemical 

properties. 

Similarly, branching of polymer chains can also influence material 

properties. With precise control over branching, functionality, and molecular 

weight enabled by synthetic advances,46-50  branched, hyperbranched polymers 

and dendrimers with unique properties have been developed.51, 52  For example, 

the unique architecture of these branched polymers can increase drug payload and 

drug release as compared to their linear counterparts.53  Additionally, the 

mechanical properties of branched multigraph polyisoprene (PI) and polystyrene 

(PS) are improved as the number of branch points increase.51   It is thus expected 

that branching will impact entanglements and/or film density directly controlling 

thin film Tg and modulus. 

These novel architectures can also lead to changes in the nanoscale 

behavior.  Blending linear polymers with dendrimers can inhibit dewetting of film 

due to dendrimer segregation to the substrate.54  Additional thin film studies of 
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hyperbranched polyesters illustrated a deviation from bulk Tg in relatively thick 

films (~200 nm)  attributed to their spatial arrangement as a result of their 

molecular architecture.55    Moreover, the Tg of polymer thin films has shown that 

the behavior of star-shaped polymers does not directly correlate to their linear 

analogues.56 Large deviations in Tg for PS thin films have typically been observed 

using ellipsometry or BLS;7, 57  in contrast, hyperbranched star PS films exhibit 

only marginal changes in Tg for thin films.58  A 5K, 3K, and 0K Tg suppression 

was found for the hyperbranched, star, and linear polystyrene respectively 

attributed to changes in film density of 5%, 3%, and 0%. 

Although the bulk mechanical properties of branched polymers are known 

to change when compared to their linear counterparts,51 their behavior in thin 

films is unexplored.  However, the mechanical properties of linear polymer thin 

films have been explored via wrinkling mechanics.59-61  In these studies, the bulk 

Tg of the polymer appears to control the softening of the free surface.60  These 

results are consistent with some atomic force microscopy (AFM)-based 

indentation measurements.62 However, other measures of the viscoelastic 

properties of polymer thin films have yielded conflicting results.  McKenna and 

coworkers have reported stiffening in thin films for the rubbery films, while no 

change in the storage modulus of the glass near Tg is observed using nanobubble 

inflation rheology.30, 63  Tsai and coworkers have used AFM to elucidate the 

viscoelasticity of PS thin films and simple scaling with the thin film Tg can 

account for film thickness dependencies.64  This disagreement between research 

groups using different techniques to measure mechanical properties of thin 
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polymer films is not unexpected as there is still disagreement in the literature 

about the Tg of PS thin films despite nearly 20 years of studies.57, 65, 66  However 

when using the same techniques (or ones measuring similar properties), there is 

generally good agreement; for example, there is generally good agreement in thin 

film Tg from ellipsometry, BLS and fluorescence,67, 68 which all rely on variation 

in density or free volume.  Thus, it might be more instructive to examine 

systematic series of polymers using several techniques to more clearly elucidate 

how confinement impacts properties, rather than focusing on a single polymer. 

Therefore, in an attempt to understand the role of architecture on the 

properties of confined polymers, a series of PS with varying architectures will be 

utilized. Four different polymers of similar molecular mass are examined: 

trifunctional (comb), tetrafunctional (centipede), tetrafunctional (4-arm star), and 

linear polystyrene.  In order to directly study the role of chain rigidity on the 

properties of confined polymers, both hydrogenation and copolymerization as 

described previously will be utilized in tandem. For these copolymers, a series of 

poly(arylate-phosphonate) produced by polycondensation of bisphenol-A (BPA) 

with phenylphosphonic (PPDC) and isophthaloyl chloride (IPC) are examined as 

a function of PPDC:IPC ratio.38 As the PPDC content is increased, the polymer 

chain becomes more flexible.  Similarly, poly [5-(2-phenylethylnorbornene)] 

(PENb) can be selectively saturated/unsaturated depending upon choice of 

polymerization method, addition or ring-opening metathesis polymerization 

(ROMP), and post-polymerization hydrogenation. Addition [5-(2-

phenylethylnorbornene)] (Add PENb) yields unsaturation in the polymer 
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backbone, while ring-opened poly [5-(2-phenylethylnorbornene)] (hROMP 

PENb) produces a saturated cyclopentyl backbone.  Additionally, the aromaticity 

of the phenyl ring can be preserved or hydrogenated to a cyclohexyl group 

(hROMP CENB and Add CENb).69 These polymers provide a facile route to 

examine the effect of subtle changes on the mechanical and thermal properties of 

confined polymer glasses.  Both the thermal and mechanical behavior of these 

polymers will be studied using ellipsometry to elucidate Tg and surface wrinkling 

to determine the modulus of thin films. This study will provide additional insight 

into the impact of backbone rigidity and polymer architecture on thin film 

properties. 

4.2 Experimental 

PS materials were synthesized through anionic polymerization.70-72 

Benzene, hexanes, styrene, butadiene, SiCl4, (CH3)SiCl3, (CH3)2SiCl2 and 

methanol were obtained from Aldrich and purified by using established methods. 

Sec-BuLi was synthesized from sec-BuCl and Li.   4-Chlorodimethylsilylstyrene 

(CDMSS) and 4-dichloromethylsilylstyrene (DCMSS) were each synthesized 

from 4-chloromethylstyrene, by transformation first into a Grignard reagent and 

subsequent addition to (CH3)2SiCl2 or  (CH3)SiCl3.73-75  Polymerizations and 

linking reactions were conducted in all-glass, n-BuLi-washed, benzene-rinsed 

reactors equipped with break-seals for the addition of reagents and constrictions 

for the removal of intermediate aliquots and products.  Linear PS was synthesized 

simply from polymerization of styrene from sec-BuLi.  4-arm star PS was 

synthesized by (1) preparing PSLi, end-capping it with a few units of butadiene to 
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reduce steric burdens, (2) linking these macroanions with SiCl4 in slight 

stoichiometric want, and (3) fractionating in toluene/methanol.  Comb PS was 

synthesized by (1) preparing PSLi and end-capping with butadiene, (2) preparing 

a macromonomer, in-situ, by adding this macroanion to CDMSS in a very slight 

stoichiometric want, and, finally, (3) polymerizing fresh styrene from sec-BuLi in 

the presence of this macromonomer adduct.  Centipede PS was synthesized by (1) 

preparing PSLi and end-capping with butadiene, (2) preparing a macromonomer 

in-situ by adding this macroanion to DCMSS incrementally up to the 2-

equivalence point, and (3) polymerizing fresh styrene from sec-BuLi in the 

presence of this macromonomer. Samples were characterized by using size 

exclusion chromatography equipped with refractive index and light scattering 

detection  [Waters 2695 Alliance HPLC separations module, THF mobile phase at 

35 °C, 3 X Polymer Labs Mixed C polystyragel separation columns, Wyatt 

miniDAWN triple angle laser light scattering detector, Waters 2414 refractive 

index detector].  Molecular characteristics are given in Table 1. 

Table 4.1 Molecular characteristics of varying architecture PS samples 

SEC-RI SEC-LS 
SAMPLE 

PDI MW 
(kg/mol) 

MW 
(kg/mol) 

LINEAR 1.05 575 486 
4-ARM STAR 1.03 − 483 
(arm for star) 1.03 130 125 
CENTIPEDE 1.07 − 540 

(arm for centipede) 1.03 29.7 28.1 
COMB 1.06 − 734 

(arm for comb) 1.02 60.1 58.6 
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F 

igure 4.1 Gel permeation chromatograph for [a] linear, [b] comb, [c] centipede 
and [d] star polystyrene main chain (dark) polymer arms (light). 

 

 Silicon wafers (450 µm thick) were used as substrates; the wafers were 

cut into approximately 3.5 cm × 3.5 cm pieces and cleaned with ultraviolet-ozone 

(model 42, Jelight) for 40 minutes. In order to cast PS films, varying architecture 

PS samples were dissolved in toluene.  After complete dissolution they were spin 

coated onto the UVO cleaned silicon wafers for modulus and Tg measurements, 

respectively.  The structure for each of these polymers is shown in Figure 4.2. 
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Figure 4.2 Schematic of the chain architecture for the non-linear PS samples 
examined: (a) comb PS, (b) centipede PS and (c) star PS. 

 

Poly(styrene sulfonic acid) (PSS) was utilized as a release layer to enable 

surface wrinkling on PDMS.  PSS in 2-propanol solution was spin cast onto the 

cleaned wafers.  The film was annealed in vacuum at 130°C for 24 hrs in order to 

remove the remaining solvent and reduce surface roughness.  After annealing, the 

film thickness and optical constants for the PSS layer were determined using a 

Variable Angle Spectroscopic Ellipsometer (VASE, J.A. Woollam Co., Inc.).  
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Measurements were performed from 40° to 75° in 5° increments and fit using a 

Cauchy model.  

 

Figure 4.3 Structure of the Aryl-Phosphonate copolymer. 

 

 Aryl-phosphate copolymers were synthesized as reported previously and 

their structure is shown in Figure 4.3.76 These copolymers were dissolved in 

anhydrous dimethylformamide and then spin coated onto the PSS coated or UVO 

cleaned silicon wafers for modulus and Tg measurements, respectively. The four 

poly [5-(2-phenylethylnorbornene)]s as reported previously76 (hROMP PENb, 

hROMP CENb, Add PENb, and Add CENb) were dissolved in toluene and then 

spin coated to form the films.  The structure for each of these polymers is shown 

in Figure 4.4.   

 

Figure 4.4 Structure of the four poly [5-(2-phenylethylnorbornene)]s [a] (hROMP 
PENb,[b] hROMP CENb, [c] Add PENb, and [d]Add CENb). 
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For all polymers variations in both solution concentration and the spin 

speed allowed for systematic reduction in film thickness.  After spin coating the 

samples, the films were annealed at 200°C for 24 hrs in an inert N2 atmosphere.  

The thickness of the polymer film was also determined using VASE and fit using 

a Cauchy model (and the previously determined optical constants and film 

thickness for PSS for the mechanical measurements).  This measurement also 

allowed for a check on interdiffusion of the polymer into the PSS layer, however 

due to the lack of solubility of  PSS in toluene or dimethylformamide no 

interdiffusion was observed. 

To wrinkle the polymers to elucidate the elastic modulus, 

polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was utilized as the 

substrate and prepared at a ratio of 20:1 by mass of base to curing agent to a 

thickness of approximately 1.5 mm.  The PDMS was allowed to degas at ambient 

for 3 h prior to curing at 100°C for 2 h.  Slabs of PDMS measuring 2.5 × 7.5 × 1.5 

mm were utilized as substrates for the wrinkling experiments.  The bulk modulus 

of the PDMS was determined using a Texture Analyzer (TA.XT Plus, Texture 

Technologies).  For the surface wrinkling measurements, the PDMS slab was 

mounted onto a custom built strain stage, pre-strained to ≈3.5% and then the 

polymer film of interest is transferred77   The transfer was accomplished by 

placing the supported film in contact with the PDMS and immersing the system in 

a water bath.  The polymer film transferred onto the PDMS surface, while any 

PSS layer dissolved in the water bath.  The thickness of the transferred polymer 

film was measured for a second time utilizing ellipsometry in order to verify the 
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complete transfer of the film and removal of the PSS.  The film thickness 

obtained after transfer was in good agreement (within 10Å) with that prior to 

transfer.  In order to wrinkle the films, the pre-strain on the PDMS was released at 

a rate of 0.1 mm/s at ambient temperature (T= 21 °C ± 2 °C). 

Characterization of the wrinkled surface was performed using atomic 

force microscopy (AFM, Agilent 5500) in intermittent contact mode using a 

constant scan size of 10µm by 10µm and optical microscopy (OM, Mititoyo 

Ultraplan FS-110) with an image resolution of 1024 pixels by 768 pixels.  Both 

images were analyzed using a 1-D Fast Fourier Transform (FFT) in order to 

obtain the wavelength of the wrinkles.   

The glass transition temperature (Tg) and coefficient of thermal expansion 

(CTE) of the polymer films directly cast onto the silicon wafer were measured 

using spectroscopic ellipsometry.  The thermal response of the polymer was 

measured under a nitrogen atmosphere upon cooing from either 260 °C or 180 °C 

to 30 °C at 1.0 °C/min.  The choice in upper bound temperature is dependent upon 

expected polymer Tg and in order to avoid polymer degradation. To determine the 

Tg of the film, the data were fit to the following empirical expression assuming a 

tanh profile:6 

 

where h is the film thickness, M and G are the linear thermal expansion 

coefficients of the melt and glass, w is the width of the transition, and c is the film 

thickness at T = Tg. 
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In order to determine the modulus of soft polymeric materials at sub 100 

nm surface wrinkling is utilized.  Minimization of total strain energy accounts for 

the resulting wrinkled surface.78  In the linear elastic limit, the modulus of the 

polymeric film, , can be determined from the wavelength, λ, of the surface 

wrinkles as:79 

	  	   (2) 

where , is the modulus of the PDMS substrate and hf is the thickness of the PS 

film.  

4.3 Results 

4.3.1 Varying PS architecture 

Variation in branching is known to impact the physical properties of 

polymers,80-82 in particular, those related to flow or mechanics.81, 83, 84  In this 

case, the selected branched polymers have a well controlled architecture via 

chlorosilane linking chemistry85 and molecular mass distribution to elucidate how 

branching impacts the glass transition temperature (Tg) and storage modulus at 

ambient T of PS when confined to nanoscopic dimensions in the form of a thin 

film.   

Figure 4.5 illustrates how Tg depends upon film thickness for the linear, 

comb, centipede, and star PS.  For the thick films, the bulk-like Tg remains 

statistically invariant for all PS architectures at approximately 103 ± 2 °C as 
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would be expected based upon prior reports for linear PS57 (105 °C) and a 794,00 

g/mol star PS58 (103 °C).  However, there are significant differences in the 

thermal behavior for these different architectures for the thinner films.  For 

example for the linear PS, a decrease in Tg is observed at approximately 30 nm 

with as much as a 25K reduction at 10 nm.  This reduction in bulk Tg for linear PS 

on silicon is in agreement with previously reported work utilizing  spectroscopic 

ellipsometry by Keddie and coworkers86 and fluorescence with pyrene labeled 

linear PS by Ellison and Torkelson.57   

 

Figure 4.5 Glass transition temperature as a function of film thickness for [a] 
linear, [b] comb, [c] centipede and [d] star polystyrene. 
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Introduction of branching as a result of a trifunctional monomer results in 

a comb polymer that exhibits only a 10K reduction in Tg for a 10 nm thick film 

(Figure 4.5b).  This small reduction in Tg could be attributed to increased 

interchain and intrachain entanglements commonly observed with increased 

branching,87 as these interactions reduce segmental mobility, which appears 

related to Tg at the nanoscale.14 However, altering the branching to form a 

centipede actually results in an increased thin film Tg depression compared to the 

linear PS (Figure 4.5c).  For this tetrafunctional PS, a 40K depression is observed 

for a 10 nm thick film of the centipede PS.  Interestingly, the star PS exhibits the 

least change in Tg of the four polymers examined with only a 8K reduction 

beginning at 30 nm.  This result is equivalent to a 749,000 g/mol star PS where a 

2K depression was observed at 10 nm;58 this decreased sensitivity to confinement 

for the star polymer is attributed to reduction in density with branching.58  This 

explanation is consistent for the comb and star PS examined here, but is counter 

to what is observed for the branched centipede PS.  As the chemistry used for the 

synthesis is similar in each case, this divergent behavior is unexpected.  However, 

the regularity in the branch structure of the centipede might allow for improved 

packing in the bulk and thus be more susceptible to conformational changes due 

to confinement in a thin film.  As the elastic moduli of a material is generally 

closely tied to its physical density (in the absence of specific interaction) for the 

bulk, it could be instructive to examine the mechanical properties of this series of 

polymers to understand the origins of the different Tg behavior in thin films.  
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Figure 4.6 illustrates the modulus as a function of film thickness for all 

four PS samples.  The bulk-like elastic modulus for the linear PS (Figure 4.6a) is 

approximately 2.57 ± 0.24 GPa, which is in contrast with previously reported 

modulus for a 492kg/mol PS film  (3.92 ± 0.27 GPa).60   This discrepancy in bulk 

modulus for linear PS could be attributed to a variation in tacticity of the PS that 

depends upon the synthetic protocol (prior PS examined are standards obtained 

from Varian), but even with this variation, the moduli lies within range of 

previously reported PS elastic modulus for bulk samples.88 Despite this difference 

in the thick film moduli, these linear PS films exhibit an order of magnitude 

decrease in modulus to 0.58 ± 0.17 GPa when the film thickness is reduced to 14 

nm, which agrees with the thickness dependence previously reported for the 

moduli of linear PS measured using wrinkling.59, 60  Branching in the form of a 

comb polymer results in a slight decrease in bulk-like modulus to 1.87 ± 0.16 GPa 

(Figure 4.6b).  This decrease in modulus relative to the linear PS is consistent 

with a reduced packing density as has been postulated in the prior discussion on 

the thin film Tg of these polymers. Although the comb PS exhibits the lowest bulk 

modulus, the modulus remains independent of film thickness down to 5 nm; this 

is similar to the limited thickness dependence of Tg for this polymer. However for 

the centipede PS (Figure 4.6cc), a significant increase in the bulk-like modulus is 

observed in comparison to the linear and comb PS examined here.  It should be 

noted that the moduli of the thick films, 3.99 ± 0.17 GPa, is consistent with prior 

reports for linear PS.59, 60 This increased modulus in comparison to the comb PS 

could be attributed improved packing of the more ‘regular’ branching of the 
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centipede.  The improved mechanical properties of the centipede PS is consistent 

with a more complex series of multigraft copolymers, where tensile strength 

increases from comb to star to centipede for a polydiene (PI) backbone with 

branches of PS chains.52 The improved mechanical properties of branched PI-PS 

copolymers are attributed to increased stress relaxation and tethering of the PS 

chains.  There is a decrease in modulus as the centipede PS film becomes thinner, 

beginning at 40 nm. A 77% decrease in modulus is observed for a 10 nm thick 

film (0.75 ± 0.18 GPa).  One intriguing feature for the thickness dependent 

moduli of this centipede PS is the narrow thickness window in which the modulus 

is drastically impacted.  This sharp decrease in modulus is distinctly more 

pronounced than for the linear PS and most thin film Tg studies where a more 

gradual ‘roll-off’ behavior is observed.65  This latter behavior is observed for the 

star PS (Figure 4.6d) where the modulus decreases to 0.91 ± 0.17 GPa for a 10 nm 

thick film.  The bulk-like modulus for the star PS is 2.19 ± 0.24 GPa, which is 

also lower than the linear PS.  Despite the similarity in bulk-like modulus to the 

comb PS, the modulus of the star PS is strongly dependent upon the film 

thickness (h < 40 nm). 

One route to explain the differences in modulus behavior is to explore the 

implications of the relatively well accepted surface model, where the free surface 

of the polymer film has a reduced Tg and modulus in comparison to the bulk 

polymer.14, 57, 67   In this case, the chain conformations at the free surface will be 

critical to the thin film behavior as the increased surface mobility in thin films has 

been attributed to enrichment of chain-end groups at the free surface.89 The chain 
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ends in branched PS are surface active as evidenced by a significant reduction in 

surface tension when compared to their linear analogues.90  However, the 

different thin film behavior between the comb and centipede PS indicates that 

surface conformation due to chain end segregation alone cannot account for the 

thickness dependent properties of polymer thin films. Alternatively, several recent 

reports have indicated that the thickness dependent properties of spin coated 

polymer glasses can be eliminated by proper long term annealing.91, 92 

Interestingly, the casting solvent can dramatically impact the viscoelastic behavior 

of the thinnest films;93 this effect is attributed to the difference in chain 

conformation between the casting solution and the ‘equilibrium’ glass cooled 

from the melt. 

 

Figure 4.6 Modulus as a function of film thickness for [a] linear, [b] comb, [c] 
centipede and [d] star polystyrene.  The error bars represent one standard 
deviation. 



	   142	  

 

However, solution properties of branched polymers revealed an increase in 

stiffness in comb and centipede PS as compared to their linear counterpart due to 

repulsion of neighboring chains or specific phenyl ring interactions and observed 

by an increase in persistence length from 2 nm to 2.8 nm to 5.5 nm for the linear, 

centipede, and comb polystyrene respectively.94, 95   And the slope of dependence 

of persistence length on molecular weight in trans-decalin increased from 0.46 to 

0.52, and 0.6 for the comb, centipede, and linear PS.95 It is conceivable that the 

lack of thickness dependencies observed for the comb PS is a result of the limited 

conformations available such that the chain conformation during film formation is 

similar to the equilibrated glass.  This limited conformation should also manifest 

itself in a lower mass density; this would be consistent with the low modulus for 

the comb PS.  Additional work is required to fully understand the correlations 

between molecular structure and thin film properties. 

4.3.2 Poly [5-(2-phenylbornene)]s 

Given the traditional application of these polycarbonates in fire retardant 

applications, the thermal behavior of the PENb and CENb polymers was 

examined by in-situ ellipsometry in order to obtain not only the Tg but also the 

coefficient of thermal expansion (CTE).  The CTE’s are determined from the 

slope of the temperature dependence.  For AddPENb and AddCENb, two distinct 

CTE’s can be seen from the temperature dependent thickness shown in Figure 4.7.   

However, due to instrument limitations only the glass CTE for the ring-opened 

polymers was determined.   
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Figure 4.7 Coefficient of thermal expansion for [a]AddPENb, [b] AddCENb, [c] 
hROMP PENb, and [d] hROMP CENb.  

 

The data shows a bulk glass CTE of 178ppm/°C and 175ppm/°C for the 

ring-opened polymers hROMP PENb and hROMP CENb.   While the addition 

polymers exhibit bulk glass CTE’s of 170ppm/°C and 160ppm/°C for AddPENB 

and AddCENb respectively.  This slight decrease in bulk CTE is consistent with a 

decrease in mobility for the addition polymers due to the bridged hydrocarbon in 

the polymer backbone.  Both ring-opened polymers exhibit an increase in CTE at 

sub 40 nm length scales.  This increase in CTE at sub 40 nm length scales can be 

attributed to higher mobility as a result of a more flexible backbone. For the less 

flexible addition polymers the CTE for the unsaturated polymer also shows a 
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slight increase at sub 40 nm length scales however the addition polymer with the 

saturated pendant ring remains statistically invariant.  This is attributed to the 

bulkier cyclohexyl pendant ring further reducing chain mobility. This effect can 

also be observed in the ring opened polymers as the increase in sub 40 nm CTE is 

lower for the saturated polymer than the unsaturated polymer.   

However, in order to better understand and therefore explain the thermal 

behavior of the polynorbornene polymers, the glass transition temperature of 

these materials was also examined.  The Tg of these films is determined from the 

kink in the thermal expansion.  As shown in Figure 4.8, Add PENb films exhibit a 

Tg of 186.3 ± 3.7 ˚C that is statistically independent of film thickness; similarly, 

there is no thickness dependence to the Tg of Add CENb (223.1 ± 5.4˚C).   

 

Figure 4.8 Tg as a function of film thickness for Add PENb (●) and Add CENb 
(▲).  The error bars represent one standard deviation of the data, which is taken 
as the experimental uncertainty of the measurement. 
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This increase in Tg upon saturation of the pendent phenyl ring is consistent 

with previously reported data for these polymers determined via thermo-optical 

analysis (TOA).69 However, there is an offset in Tg by approximately 27 ˚C 

between TOA and ellipsometric dilotometry; we have further examined this 

behavior with modulated DSC, where the Tg is found to agree with the 

ellipsometric measurements reported here.  It is currently unclear why TOA 

provides such a large offset in Tg for these addition polymers.  Nonetheless this 

increase in Tg with saturation is consistent with prior reports for polyolefins, 

where a systematic increase in bulk Tg with hydrogenation is observed with a 

60˚C increase with complete saturation.43 In this case, the change in Tg is 

attributed to a reduction in main chain cooperative motion due to the conversion 

of the phenyl ring into a cyclohexyl moiety, which is supported by the decrease in 

density with saturation.69 Interestingly, the Tg for these materials remains 

statistically invariant over all thickness examined from 120 nm down to less than 

10 nm.  As a comparison, PS, which has a pendent phenyl ring similar to Add 

PENb, exhibits a large decrease in Tg at thicknesses less than 30 nm from 

ellipsometry measurements.7 Hydrogenation of the phenyl (Add CENb) does not 

significantly impact the thin film performance.  The extent of saturation of the 

backbone can be investigated by comparing these addition polymers (Add PENb 

and Add CENb) with the analogous polymers synthesized by ROMP (hROMP 

PENb and hROMP CENb).  Unfortunately, the low Tg of these ROMP polymers 

prohibits the accurate identification of the glass transition by the current 

ellipsometry setup.  However, other physical properties of these polymers can be 
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examined to compare their thin film behavior. Figure 4.9 shows how the room 

temperature modulus of each PENb-based polymer is impacted by film thickness.  

 

Figure 4.9 Modulus as a function of film thickness for [a] Add PENb, [b] Add 
CENb, [c] hROMP PENb, and [d] h ROMP CENb. The error bars represent one 
standard deviation of the data, which is taken as the experimental uncertainty of 
the measurement. 

For Add PENb and Add CENb, the modulus of these materials is 

thickness independent, similar to the Tg behavior discussed previously. The 

modulus for the Add PENb polymer is approximately 1.0 ± 0.2 GPa from 140 nm 

down to 15 nm.  The average modulus is slightly decreased to 0.88 ± 0.19 GPa 

with saturation of the phenyl ring into cyclohexyl (Add CENb), but this modulus 

is also thickness independent. In contrast to the Tg for the addition polymers, the 
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bulk modulus actually decreased with saturation of the phenyl ring, which is 

unexpected from the prospective of density and Tg.  For example, the conversion 

of saturation of the phenyl ring in polystyrene to polycyclohexylethylene results 

in a decrease in density due to the bulky cyclohexyl group resulting in an decrease 

in Tg.96  However, there are differences in the specific interactions present that 

could impact the mechanical behavior; in particular, the phenyl rings provide a 

route for π-π interactions that would not be present for the cyclohexyl containing 

polymer.  Nonetheless, both Tg and modulus are statistically independent of film 

thickness for both addition polymers.  In contrast to the addition polymers, the 

ring opened poly [5-(2-phenylethylnorbornene)] films exhibit a pronounced 

thickness dependence to the observed modulus as shown in Figure 4.9c and 4.9d.  

hROMP PENb with preserved phenyl ring has a modulus of 0.64 ± 0.11 GPa for 

films thicker than 80 nm; a 65 % decrease in modulus to 0.22 ± 0.13 GPa occurs 

when the thickness is decreased to 42 nm.  This decrease in modulus occurs at 

larger thicknesses than typically observed for PS,11 but we have found that the 

length scale at which deviations in modulus occurs in thin polymer films scales 

with the quench depth into the bulk glass.43, 60 As the measurement temperature 

approaches Tg, the modulus tends to begin to decrease in thicker films.  The bulk 

Tg for hROMP PENb and hROMP CENb is reported to be 28 ºC and 26 ºC, 

respectively. Based upon previous examination of flexible styrene and 

methacrylate polymers, a decrease in the modulus of hROMP CENb and hROMP 

PENb would be expected at approximately 80 nm, as is observed experimentally.  

Interestingly, the hROMP CENb exhibits an increase in modulus compared to the 
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hROMP PENb for films thicker than 80 nm (0.87 ± 0.10 GPa) and only a slight 

(33%) decrease in modulus to 0.58 ± 0.13 GPa at 41 nm.  The modulus behavior 

of these hROMP polymers agrees qualitatively with previous results for flexible 

polymers; but to explain the behavior of the Add PENb and AddCENb thin films, 

a more detailed examination of other physical properties must be undertaken.   

We hypothesize that the stiffer polymer backbone of the addition polymers as a 

result of the bridge hydrocarbon in the cyclopentyl ring is responsible for the 

change in behavior.  

4.3.3 Arylate-Phosphonate copolymers 

To further examine the role of chain stiffness on thin film behavior, a 

series of copolymers based on bisphenol-A (BPA) with varying ratios of 

phenylphosphonic (PPDC) and isophthaloyl chloride (IPC) are examined. Figure 

4.10 illustrates how Tg as a function of film thickness is dependent upon the 

aryl:phosphate ratio in the copolymer.  The Tg for thick films is increased as the 

phosphate (PPDC) content in the copolymer is decreased.  For the polymer that 

consists fully of BPA and PPDC, Tg is approximately 116.8 ± 1.8 ˚C from 100 nm 

down to 21 nm, but then rapidly decreases for films less than 20 nm thick to 107 ± 

0.5˚C for a 14 nm thick film. As the IPC ratio is increased to 50:50 IPC:PPDC, 

the bulk-like Tg is increased to 132.5 ± 3.5˚C, but also the glass transition 

temperature begins to decrease at 40 nm with a decrease to 107.5 ± 1.2 ˚C at 18 

nm observed.  The highest Tg is observed for 80:20 IPC:PPDC copolymer with a 
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value of 150.7 ± 2.2 ˚C  for the thickest films and only a slight decrease to 144.5 

± 0.45˚C at 12 nm. 

 

Figure 4.10 Tg as a function of film thickness and modulus as a function of film 
thickness for aryl-phosphate copolymers 0:100 (a,b), 50:50 (c,d), and 80:20 (e,f). 
The error bars represent one standard deviation of the data, which is taken as the 
experimental uncertainty of the measurement. 

 

This systematic increase in Tg with increasing IPC concentration is in 

agreement with previously reported values where pure BPA-PPDC copolymers 
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exhibit a bulk Tg of only 115 ˚C, while pure BPA-IPC copolymers exhibit a bulk 

Tg of 183 ˚C.43  As illustrated in Figure 4.9, Tg and modulus for the aryl-

phosphate copolymers are thickness dependent for the copolymers with 100 % 

and 50 % PPDC concentration, but the modulus becomes thickness independent 

and only a slight reduction in Tg is observed when the concentration of PPDC 

decreases to 20 %.  As shown in Figure 4.8b, the 100% PPDC polymer exhibits 

modulus of 2.91 ± 0.23 GPa from 100 nm down to 40 nm, but the modulus 

significantly decreases as the film thickness decreases below 40 nm to 0.65 ± 0.17 

GPa at 10 nm (approximately 20 % of the value for the thickest films).  Similarly, 

modulus of the 50:50 PPDC:IPC copolymer exhibits thickness dependent 

behavior; however, the modulus only begins to decrease from a near constant 2.32 

± 0.15 GPa, when the film thickness is less than approximately 25 nm.  When the 

film is 10 nm thick, the modulus is reduced to 1.55 ± 0.23 GPa, a 33% decrease 

from the thickest films.  It is interesting to note that Tg of the 50:50 PPDC:IPC 

copolymer also decreases in this thickness regime, but only a 19% decrease in Tg 

is observed.  Increasing the IPC concentration in the 80:20 IPC:PPDC copolymer 

leads to a further decrease in the thick film modulus to 1.56 ± 0.21 GPa, however 

the modulus becomes thickness independent.  This statistically invariant modulus 

is attributed to an increased stiffness of the copolymer backbone with increasing 

IPC concentration.  The thin film mechanical behavior of tyrosine-derived 

polycarbonates, which are similarly stiff, has been reported to be thickness 

independent for films ranging from 30 to 200 nm; unfortunately, the behavior of 

thinner films was not reported, but these results agree well with the data presented 
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here.97 These data illustrate that the thermal and mechanical properties of polymer 

thin films as determined by ellipsometry and surface wrinkling is strongly 

dependent upon the flexibility of the polymer; the deviations from bulk behavior 

are significantly reduced or eliminated for polymers containing stiff backbones.  

Interestingly, a similar behavior is obtained when a flexible polymer contains 

approximately 5 wt % good solvent when examining the Tg
28 and modulus31 of 

polymer thin films.  These similarities might not be completely unexpected as 

polymer chains are stretched in the presence of a good solvent and thus the chain 

confirmation is impacted by the residual solvent. However, this does not agree 

with the hypothesis that residual solvent might be responsible for the reported 

decrease in Tg of thin films of PS that can be eliminated by proper annealing.92 

Similarly, Thomas et al. has reported the viscoelastic properties of PS thin films 

to be dependent upon the casting solvent and bulk-like behavior can be recovered 

through annealing.91 These experiments suggest that the highly non-equilibrium 

chain conformation in the vitrified film can lead to significant changes in the 

polymer properties.   In this context, the current results might be explained based 

upon the chain conformations available that do not allow the film to adapt highly 

non-equilibrium states and thus no changes in the physical properties are 

observed.  Additional theoretical and/or simulation work on the impact of chain 

stiffness on chain conformations and the glass transition near surfaces is also 

necessary to understand the molecular mechanisms. 
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4.4 Conclusion 

In summary, the modulus and Tg of thin films for a series of poly (aryl 

phosphonate)s, poly [5-(2-phenylethylnorbornene)], and varying architecture PS 

films was determined using wrinkling on an elastic substrate and ellipsometry, 

respectively.  Unlike previous wrinkling studies involving flexible polymers,31, 98 

not all polymers examined exhibit a decrease in modulus for the thin films.  This 

behavior was found to be dependent upon the polymer flexibility.  The polymers 

with a stiff backbone show no change in modulus as the film thickness is 

decreased to 10 nm; additionally, Tg is independent or only slightly dependent 

upon film thickness for these polymers.  For the PS films with varying 

architecture, the bulk-like Tg and modulus was determined to be independent of 

polymer architecture.  However, at sub 40 nm length scales the Tg and modulus 

suppression becomes dependent upon polymer branching resulting in either a 

reduction from bulk values attributed to increased interchain and intrachain 

entanglements or an increase in bulk values suppression attributed to improved 

packing as a result of regular branching. 

For the PS samples, the nanometer length scale behavior could be 

attributed to surface effects dependent upon polymer branching.  Where polymer 

end segregation to the free surface leads to a reduction in Tg and modulus at the 

surface significantly impacting the sub 40 nm length scale.  This is in agreement 

with recent results where changes in a polymer’s surface tension was achieved 

with changes in its architecture.90 
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CHAPTER 5  

THICKNESS DEPENDENCE MODULUS OF VACUUM DEPOSITED 

ORGANIC MOLECULAR GLASSES FOR ORGANIC ELECTRONIC 

APPLICATIONS 

5.1 Introduction 

Organic based electronics, in particular organic light emitting devices 

(OLEDs), have recently been incorporated into commercial flat panel displays,1, 2 

but there is significant interest in extending these materials into cost effective 

flexible devices.3-5 The potential fully organic electronic devices could be 

ultralow-cost, lightweight and compatible with the flexible substrates and 

employing well-established printing techniques in a roll-to-roll process.2, 6 

Furthermore, low temperature processing allows for next generation flexible 

electronics on plastic substrates.  These flexible electronics enable the 

development of conformal, lightweight, rugged devices with implications in fields 

such as photovoltaics,6 displays7, medical devices8, and detectors9.  The electric 

and optic properties of organic materials could be strongly affected by their 

molecular packing due to changes in orbital overlap, which could be easily 

influenced with the different mechanical stresses that the organic thin films 

undergo as a result of thermal contraction during operation or bending during 

handling.11 Thus, how organic materials respond to strain during bending could be 

critical to the performance of flexible electronic devices.12  The mechanics of 

flexible electronics utilizing inorganic active components has been examined 
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more rigorously due to their propensity for cracking, therefore a significant 

decrease in performance has been observed at strains much less than the strain at 

failure.13  The success of flexible devices depends on mechanical robustness of 

the active materials under operational induced strain.   Rogers and coworkers 

have developed engineered stretchable interconnects based upon wrinkling of 

rigid inorganic active materials to enable flexible photodetectors14 and sensors.8,15  

Despite these successes, there are issues with this process as it is necessary to 

transfer the active circuitry from a rigid substrate where fabrication occurs to the 

flexible substrate.  Direct fabrication of electronics on flexible plastic substrates 

has been demonstrated using inorganic active materials,16 but these devices have 

limited flexibility where bending can led to catastrophic device failure.13  

Polymers are significantly more compliant than these inorganic materials, but 

their electronic properties are generally inferior.17  Organic small molecules can 

generally provide improved electronic performance when compared to polymeric 

materials, but very little is known about their mechanical properties. To begin to 

address this issue in rapidly emerging organic electronics, the mechanical 

properties of organic electronic materials need to be understood at the 

corresponding scale and morphology or molecular packing associated with the 

actual devices.   

Although the properties of organic small molecules at the nanometer 

length scale have not been determined.  The nanometer length scale glass 

transition temperature (Tg)  behavior of glass forming liquids  confined to 

nanopores, 2-100 nm in diameter, has been examined.  First reports by Jackson 
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and McKenna show a 10K decrease in Tg for ortho-terphenyl (o-TP) as the pore 

size was decreased from 73 nm down to 4 nm.18   This is attributed to a size 

effect, where either an increase in entropy or free volume due to reduced packing 

efficiency explains such a decrease in Tg.  Further work by Park and McKenna 

shows that the confinement of o-TP results in two Tg’s, one below and one above 

the bulk Tg.19  The glass transition temperature less than the bulk value is 

associated with a size effect, previously reported by the same group, and the Tg 

greater than the bulk value is considered a surface effect.18, 19 This surface effect 

is believed to be a result of an interacting layer at the pore surface and hence the 

higher Tg.  Continued work on the two transitions revealed Tg’s that either 

increased or decreased dependent on the strength of the interaction between the 

wall of the pore and the confined liquid.20-22  Where strong surface interactions 

found an increase in surface Tg and weak interactions found a decrease in surface 

Tg, however both found a core Tg less than bulk Tg.20, 21  On the other hand, Alba-

Siminonesco and co-workers, reported only one Tg for both benzene and toluene 

confined to silicate nanopores with a non-monotonically varying Tg.23 They 

reported a slight decrease in Tg followed by an increase in the Tg with decreasing 

pore size of both toluene and benzene confined to silicate nanopores.23  The 37K 

increase in Tg when confined to a 2.4 nm pore diameter is attributed to the 

interactions between the confined molecules and the pore walls, while the 

decrease in Tg at larger pore sizes is attributed to an intrinsic size effect.  Not only 

is the Tg of small molecules impacted by confinement but also the melting 

temperature,24 crystallization,25 and density24.  For example, Jackson et al. have 
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reported the inability of cylcohexane and decaline to crystallize in pores with 

diameters less than 4 nm.24  Although complex observations have been found with 

regards to the thermal properties of confined organic glasses, it is well stated that 

at the nanometer length scale materials exhibit properties that differ from their 

bulk counterparts.  

The abundance of research into the thermal properties of confined organic 

glasses has been enhanced due to the availability of non-invasive thermodynamic 

and dynamic measuring techniques that allow for the determination of Tg from the 

non-linear behavior of the materials properties or shifts in input frequency.  

However, there are numerous challenges involved in measuring the mechanical 

properties of organic electronic materials.  First, many active materials are glasses 

vapor deposited as thin films; thus, bulk measurements would likely not 

accurately capture the mechanical properties of the material in functioning 

devices.  Furthermore, the expense of many OLED materials precludes the use of 

bulk tensile testing even if the bulk and thin film properties are identical.  

Nanoindentation (NI)26 and Brillouin light scattering (BLS)27 are commonly used 

to assess the elastic properties of films; however, for highly complaint materials 

like most organics and polymers, the mechanical properties of the substrate can be 

convoluted with those of the film of interest.28  Application of atomic force 

microscopy (AFM) to control indentation depth has enabled the near surface 

modulus of glassy films to be determined.  A reduced elastic modulus in the top 

(5 to 7) nm of polystyrene (PS) has been elucidated using this technique.29  

Conversely, van Vliet and coworkers showed a significant increase in surface 
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stiffness within 200 nm of the PS surface using nanoindentation.30 Further, 

nanoindentation measurements of >100 nm thick films of a common OLED 

material, tris(8-hydroxyquinolinato)aluminum (Alq3), have demonstrated a strong 

dependence of the elastic properties on the supporting substrate.31, 32  On hard 

silicon substrates, the Alq3 modulus is extrapolated to be on the order of 100 GPa; 

while on plastic substrates, the modulus of the same material is only on the order 

of 1 GPa.31, 32  One potential route to overcome these difficulties in determining 

the elastic modulus of soft materials in thin films is through surface wrinkling 

instability, which occurs upon compression of a system consisting of a stiff film 

on a soft substrate.33  This technique has been applied to determining the elastic 

moduli of ultrathin (down to 5 nm) polymer films34, 35 and organic electronic 

materials.36  The latter study demonstrated that the mechanical properties of 

several active organic electronic materials could be determined using surface 

wrinkling for thicknesses (30 nm to 200 nm) comparable to those utilized in 

functional devices.36   

The layers in many organic electronic devices, in particular OLEDs, are in 

the sub-50 nm range.37 This length scale also corresponds with dimensions where 

the thermophysical behavior of glass forming materials has been shown to deviate 

from bulk properties.25, 34, 38-41  Recently, we have investigated the mechanical 

properties of several confined polymer thin film systems.34, 35, 42  For all glassy 

polymers examined, there is a decrease in the elastic modulus of ultrathin (< 30 

nm) films in comparison to the bulk modulus.  The length scale at which 

deviations in the elastic moduli occur are found to scale with the bulk Tg of the 
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polymer35, 43 in agreement with molecular simulations43.  However, very little is 

known regarding the mechanical properties of organic molecular glasses at the 

nanoscale.  Recently, Kearns et al. utilized BLS to determine the modulus of 

vapor deposited indomethacin films;44  however, the films were required to be 10 

µm to 15 µm thick.44  Kang and coworkers have utilized surface wrinkling to 

determine the elastic modulus of thin pentacene films that are prepared by vapor 

deposition.36  However because these films are polycrystalline they have a 

reported elastic modulus of approximately 15 GPa.  The quality of the wrinkles 

formed from the pentacene films is poor and apparent delamination occurs at 

modest strain (10 %), thus it is unclear if surface wrinkling is appropriate for 

determining the elastic properties of small molecule organic electronic materials. 

In this chapter, the mechanical properties of sub-100 nm, vapor deposited 

tris(8-hydroxyquinolinato)aluminum (Alq3), triarylamines: 4’-N,N’-dicarbazole-

biphenyl (CBP), N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-biphenyl-4,4-

diamine  (TPD), and N,N’-Di-[(1-Naphthyl)-(N,N’-diphenyl]-1,1’-biphenyl)-4-4’-

diamine (NPD) films are determined using surface wrinkling.  These materials are 

widely used as an electron transporting layer, electron injecting-layer, hole 

transporting layer, and host material for various dyes in OLEDs due to their 

luminescent properties, high carrier mobility, and high thermal and 

electrochemical stability.45, 46 In an attempt to mitigate substrate influences, the 

modulus ranging from 10 nm to 100 nm in thickness is determined using surface 

wrinkling.  Not only does this provide the mechanical properties these materials 

that will enable a deeper understanding as to how bending/stretching will impact 
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performance of OLEDs, these measurements provide the first experimental data 

demonstrating a thickness-dependent moduli for an organic molecular glass.   

5.2 Experimental 

  Alq3, NPD, CBP, and TPD were purchased (from Sigma Aldrich) and 

purified by thermal evaporation.  The structure for each of these molecules is 

shown in Figure 5.1.  

 
 

Figure 5.1 Schematic of [a] Alq3 [b] NPD [c] CBP and [d] TPD 

  For an elastic substrate for wrinkling, polydimethylsiloxane (PDMS) 

(Sylgard 184, Dow Corning) was cast at either 10:1 or 20:1 base:cure agent onto 

float glass and allowed to degass and gel at ambient for 3 h.  The PDMS was then 

cured at 100°C or 120°C for 2 h.  Variation in the formulation ratio or cure 

temperature impacts the mechanical properties of the PDMS, but does not change 

the calculated moduli for the films.  75 mm × 25 mm × 1.5 mm slabs of PDMS 

are then pre-strained.47  

  Alq3, NPD, CBP, and TPD were deposited directly on the strained 

substrate using resistively heated tantalum at pressures below 10-7 Torr in a 

vacuum thermal deposition system (Trovato Mfg.).  A shadow mask restricted 
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deposition to a 16 mm diameter circular pattern.  Deposition rate was controlled 

between 1 and 1.5 Å/s with the use of crystal growth monitors.  The film growth 

rate calibrations necessary to report absolute thin film thicknesses ranging from 8 

nm to 100 nm were accomplished through agreement between three sources of 

measurement.  First, direct measurements of the film(s) on PDMS were collected 

after small molecule deposition using Variable Angle Spectroscopic Ellipsometer 

(VASE, J.A. Woollam Co., Inc.).  Identical depositions for thicknesses 

representing the full range of experimental data were also performed with silicon 

substrates loaded in place of the PDMS and their thickness was measured by 

VASE and profilometry (P-6, KLA-Tencor). Profile scans were collected across 

shadow masked edges as well as ledges exposed by post deposition removal of 

Kapton® tape to enable sampling at the center of the film.  All methods agreed to 

confirm predictable deposition rates.  

  Initially, the stability of Alq3 films on PDMS was monitored using VASE 

and fit to a three layer model consisting of a PDMS substrate, an intermixed layer, 

and a Cauchy layer representing Alq3 (for wavelengths between 650 nm and 1700 

nm).  The intermixed layer was used to model the diffusion of Alq3 into PDMS 

through weighting of the PDMS and Alq3 optical constants.41  Significant changes 

in the Alq3 film thickness suggest that diffusion of Alq3 into PDMS can obfuscate 

mechanical analyses. 

  To prevent diffusion of Alq3 into the PDMS substrate, polystyrene (PS,  

Mn = 9.4 kg/mol, Polymer Laboratories) or addition polynorbornene (Add 

PENb)48 films were utilized as barrier coatings to inhibit the diffusion of the small 
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molecules into PDMS. These polymers were spin cast onto cleaned silicon 

wafers, annealed under nitrogen at T=Tg + 20 ºC and transferred to the pre-

strained PDMS. Alq3, NPD, CBP, and TPD were vacuum deposited (Trovato 

Mfg.) onto the pre-strained polymer-PDMS.   Surface wrinkling was induced by 

releasing the pre-strain at approximately 0.1 mm/s under ambient conditions (T = 

21 °C ± 2 °C). 

  The thickness of the PS or Add PENb was determined using a VASE over 

a wavelength range from 250 nm to 1700 nm measured at three incident angles 

(65°, 70°, and 75°) both on the silicon wafer and once transferred onto the PDMS 

utilizing proper material files and Cauchy layers.   The thickness of the molecular 

glass thin films was also determined VASE utilizing a two-layer model 

(polymer/PDMS).  The thickness of these barrier films ranged from 24-26 nm.  

The modulus of PDMS was determined using a Texture Analyzer (TA.XT Plus, 

Texture Technologies).   

  The wavelength of the wrinkled surface was determined using atomic 

force microscopy (AFM, Park XE-150) in intermittent contact mode using a 

constant scan size of 10 µm by 10 µm, and optical microscopy (OM, Mititoyo 

Ultraplan FS-110) with an image resolution of 1024 pixels × 768 pixels.  AFM 

images were analyzed using a 1D Fast Fourier Transform (FFT) in XEI software 

in order to obtain the wavelength of the wrinkles.  Similarly, the wrinkling 

wavelength from the OM images was determined using a 1D FFT of the 

micrographs using custom written Matlab code.  
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5.3 Results  

5.3.1 Stability of Alq3 films on PDMS 

One of the first indications that Alq3 films directly deposited onto PDMS 

are not stable is a change in the color of the as-deposited film over the course of 

several hours.  To quantify the changes in the films, the ellipsometric angles, Ψ 

and Δ, for the film are obtained at 55° as a function of time.  As shown in Figure 

5.1 when Alq3 is deposited directly onto PDMS, there is a significant reduction in 

the film thickness as the film ages at ambient conditions.  

 

Figure 5.2 Apparent Alq3 normalized film thickness (h/hi) as a function of time 
on 10:1 ≈2 MPa PDMS, 20:1 ≈0.7MPa PMDS, and  20:1 ≈0.7MPa PDMS with a 
20 nm PS barrier film.  The decrease in thickness for the Alq3 film for both bare 
PDMS substrates is attributed to diffusion of Alq3 into the PDMS layer. 

Although Alq3 is known to be marginally unstable in air,49 the change in 

thickness is too great to be attributed to degradation.  PDMS formulated with 20:1 

base to curing agent forms a network with a modulus of ≈0.7MPa.  This loose 

network enables Alq3 to diffuse into the PDMS substrate.  After 150 min, the 

thickness of the Alq3 layer decreased by 40%.  By increasing the base to curing 
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agent ratio to 10:1, the crosslink density of the PDMS increases leading to a 

modulus of ≈2MPa.  Comparatively, Alq3 deposited onto 10:1 PDMS exhibited a 

decrease in film thickness of 23% after 150 min, as shown in Figure 5.1.  

As of result of increased packing density and hence higher bulk elastic 

modulus, attempts to wrinkle these films yield ill-defined structures as shown in 

Figure 5.3.  This result is reminiscent of the poorly formed wrinkles using 

pentacene vapor deposited onto PDMS reported by Tahk et al.36  The low glass 

transition temperature of PDMS (Tg = -125°C)50 and large free volume of PDMS 

appears to enable diffusion of Alq3 and potentially other small molecules into the 

PDMS network;51 this may lead to a poorly defined system for wrinkling analysis. 

Thus, direct vapor deposition of small molecules on PDMS is likely problematic 

for determining their elastic moduli using wrinkling.  

 

Figure 5.3 Wrinkled films of Alq3 directly deposited onto the PDMS 

substrate. 

However it is possible prevent diffusion of Alq3 into the PDMS substrate 

by addition of a barrier film; in this case, a nominal 20 nm polystyrene (PS) film 

as shown in Figure 5.1 appears to prevent diffusion of the Alq3 into the PDMS 
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substrate.  The thickness of Alq3 film remains invariant due to the limited free 

volume in PS and the slow glassy chain dynamics.  By insuring sharp interfaces 

with the use of a barrier, the Alq3 – polymer composite film on PDMS yields well 

defined wrinkles as illustrated in Figure 5.4.    

 

Figure 5.4  [a] Optical image of a 36 nm Alq3 film where the wavelength is 1.17 
µm ± 0.18 µm [b] AFM image of an 8 nm Alq3 film with a 1.76 µm ± 0.22 µm 
wavelength. 

An Alq3 film (hAlq3 = 36 nm) on a PS film (hPS = 22 nm) wrinkles with a 

uniform wavelength of 3.5 µm ± 0.13 µm (Figure 5.4a). Figure 5.4b shows an 

AFM micrograph of an 8 nm Alq3 film on 22 nm PS film with wavelength of 2.1 

µm ± 0.15 µm.  These well-defined wrinkles are similar to those observed for 

most glassy polymers, but the added PS layer must be included in the analysis of 

the wrinkling to determine the elastic modulus of Alq3.  

5.3.2 Elastic modulus 

 The elastic modulus of the vacuum deposited materials (

€ 

E i) was 

determined using well-established two-plate buckling mechanics.52, 53 Due the 

inclusion of the barrier layer leads to a modification of the typical analysis for an 
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elastic rigid film on a soft substrate, such that an effective modulus (

€ 

E eff ) for the 

barrier and vacuum deposited material is determined first as:  

€ 

E eff = 3E s
λ
2πdt
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3

 

Where dt is the total film thickness (barrier + vacuum deposited materials), 

λ is the measured wrinkle wavelength, and 

€ 

E s  is the plane strain modulus of the 

PDMS.  To determine the elastic properties of the film of interest, bending 

mechanics can be applied to describe the composite structure of the film + barrier 

as: 
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where the deviation from the neutral axis,  κ, of bending is given by 
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, φ2 is the ratio of the thickness of the barrier film to the 

triarylamine and 

€ 

E1 is the modulus of the barrier film: 3.6 ± 0.24 GPa for PS42 

and 1.0 ± 0.2 GPa for the Add PEN.  This approach has  been applied previously 

to describe the modulus of polyeletrolyte layer-by-layer films.52 Changing the 

barrier film from PS to Add PEN does not statistically impact the 

€ 

E i calculated 

for a given material. 

 Utilizing two-plate mechanics, the Young’s modulus of the 36 nm thick 

Alq3 film (Figure 5.4a) is 1.17 ± 0.18 GPa.  This is significantly less than the 
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estimated 100 GPa modulus for Alq3 determined using 100 nm thick films on 

silicon wafers with nanoindentation.31  This modulus from nanoindentation is 

extremely large for an organic molecule and is similar to that of the hard support 

(Esilicon = 130 GPa).  However, the modulus of most organic glass formers formed 

by supercooling the liquid is between 1 and 2 GPa; this is in agreement with the 

modulus of Alq3 determined by wrinkling.  Even for vapor deposited glasses, 

Kearns et al. have recently shown that the elastic modulus of indomethacin and 

trisnaphthylbenzene is between 4 GPa and 5 GPa using BLS.44  It should be noted 

that the Young’s modulus of these vapor deposited organic glasses is dependent 

on deposition conditions.   Nonetheless, the elastic modulus of the Alq3 film 

reported here appears to be reasonable based upon comparison to other organic 

molecular glasses.  On the other hand, the wrinkled 8 nm thick Alq3 film shown in 

Figure 5.4b is calculated to have a Young’s modulus of 1.76 GPa ± 0.22 GPa.  

This suggests that the modulus of Alq3 increases if it is confined to nanoscale 

dimensions. Figure 5.5a illustrates how the plane strain modulus of Alq3 depends 

on film thickness. For films thicker than 20 nm, the modulus is independent of 

film thickness at approximately 1.2 GPa.  This is similar to the modulus of 

pentacene, which has been shown to be independent of film thickness down to 25 

nm.36  However as the film thickness of Alq3 is reduced from 20 nm to 10 nm, the 

plane-strain modulus increases significantly.  For example, decreasing the 

thickness from 20 nm to 10 nm results in an increase in the plane-strain modulus 

from 1.21 GPa ± 0.31 GPa to 2.35 ± 0.41 GPa.  Thus, there is nearly an 80 % 

increase in the elastic properties of Alq3 when confined to 10 nm.  This large 
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increase in elastic modulus is counter to most reports for glassy polymers where 

10 nm films can exhibit a modulus that is only 10 % of the bulk.34   However, 

enhancements in the yield strength and ductility of metallic glasses upon 

confinement to the nanoscale have been reported for a number of different 

systems.54  Thus, enhancements in mechanical properties for Alq3 upon 

confinement to the nanoscale are not completely unexpected.  However, changes 

in the modulus for Alq3 occur when the film is less than 20 nm thick, whereas 

enhancements in the yield stress of metallic glasses typically are observed at sizes 

greater than 100 nm.54, 55   

Figure 5.5b illustrates the thickness dependent moduli of NPD.   The modulus of 

NPD is independent of thickness for films greater than 20 nm thick (1.65 ± 0.23 

GPa).   For a 10.3 nm thick film, the modulus of NPD is also increased by 

approximately 50 % to 2.39 ± 0.33GPa.    This behavior is similar to that for Alq3 

as shown in Figure 5.5a. 

 

Figure 5.5 Modulus as a function of film thickness for [a] NPD and [b] Alq3 
determined using the two-plate composite calculations. The error bars represent 
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one standard deviation of the data, which is taken as the experimental uncertainty 
of the measurement. 

  Figure 5.6a illustrates the thickness dependencies in the moduli of CBP.  

The bulk-like modulus of CBP is 1.9 ± 0.4 GPa and remains constant down to 

film thicknesses of approximately 20 nm.  One unusual feature in these data is the 

large variation in moduli for these thicker films; the probable origins of this 

behavior will be addressed later.  Nonetheless, further decreasing the thickness of 

the CBP leads to a decrease in the film modulus.  For example, a 9.6 nm thick 

film of CBP exhibits factor of four reduction in modulus to 0.51 ± 0.20 GPa.  This 

behavior is more characteristic of thin polymer films where an order of magnitude 

decrease is observed for 10 nm PS films34 than Alq3 and NPD previously 

examined where a factor of two increase in modulus is found.  Thus, the thin film 

mechanical behavior of glassy films is molecularly dependent, but it is not clear 

what factors control this behavior.   

 

 

Figure 5.6 Modulus as a function of film thickness for [a] CBP and [b] TPD 
determined using the two-plate composite calculations. The error bars represent 
one standard deviation of the data, which is taken as the experimental uncertainty 
of the measurement. 
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  In an attempt to understand these factors, the structure of the CBP is 

modified by changing two of the phenyl moieties to naphthalene groups to make 

TPD.  In this case, the bulk Tg of the molecule only increases slightly from 60 °C 

to 62 °C by changing from CBP to TPD.  Figure 5.6b shows the moduli as a 

function of film thickness for TPD.  Unlike the CBP, the variation in the thickness 

independent modulus is within the error of each individual measurement 

(approximately 1.42 ± 0.18 GPa).  By decreasing the thickness to 10.3 nm, the 

modulus of TPD is reduced by a factor of two to 0.66 ± 0.22 GPa.  As the 

behavior for polymer thin films is similar to that observed for CBP and TPD, it is 

instructive to examine why a reduction in moduli are observed for polymers; this 

has typically been attributed to a reduced modulus at the polymer-air interface56 

that has been directly measured via indentation.29  Thus, a similar effect could be 

present in these materials. 

  For polymer thin films, the proximetry of the bulk Tg to the measurement 

temperature is a critical factor in determining the length scale at which deviations 

from the bulk modulus are observed.41   The thin film behavior of polymers has 

been shown to not only depend upon the free surface,57 but also the substrate 

interface.58  Contratry to polymers, these small molecules are vacuum deposited 

and therefore packing of the molecules is dependent upon deposition conditions.  

Recent work by Ediger and coworkers has illustrated that vacuum deposition 

conditions for two model systems, Indomethacin (IMD, Tg ~ 42 °C) and 

Trisnaphthylbenzene (TNB, Tg ~ 75 °C), can  result in variations in packing 

density for these small molecules.59-61  The proximety of the substrate temperature 
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to bulk Tg has been found to be critical for the density, aging and thermal 

properties of the glass.  For IMD and TNB, an optimal deposition temperature of 

40°C below bulk Tg (0.85Tg  with Tg in Kelvin) for stability of the glass has been 

identify using Neutron Reflectivity to measure interdiffusion of deuterated and 

protonated layers.61  Deposition temperatures close to Tg yields a monolayer of 

increased mobility that allows for configurational sampling of the molecule as it 

arrives at the substrate.  This configurational sampling increases the molecules 

packing density.59  Utilizing these enhanced dynamics the molecules can 

assemble in an efficient layer-by-layer fashion.  The modulus of these more stable 

films (15µm IMD and TNB film) deposited at 0.85Tg  is increased by 19% and 

14%, respectively, in comparison to the ordinary glass created by colling the 

liquid.62  

  The room temperature deposition of CBP and TPD with Tg’s of 60°C and 

62°C is 0.89Tg and 0.88Tg, which is slightly greater than the optimum conditions 

of 0.85Tg.  Thus, one would expect significant rearrangement of the surface to 

enable improved packing. The origin for the decrease in moduli for these 

molecules for sub-20 nm films is likely this enhanced mobility surface.  An 

increase in molecular mobility should lead to a decrease in the capacity of the 

material to store stress and hence a decrease in modulus.  This enhanced mobility 

surface in the molecular glass is similar to what has been reported for PS 

surfaces63 where a decrease in moduli for ultrathin films56 has been reported.  To 

explain the thin film moduli behavior of Alq3 (Tg ~ 175°C) and NPD (Tg ~ 95°C), 

we can utilize a similar argument.  At deposition temperatures significantly below 
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Tg (<0.85Tg), molecules hit the surface with less rearrangement and the structure 

is instanteously frozen during deposition.  This lack of rearrangement creates 

glasses with high molar volumes or low packing densities, and high enthalpies.  

The surface should not be mobile as the deposition conditions correspond to 

0.66Tg and 0.78Tg.  Additionally, the deposition surface can impact the structure 

of the film for vacuum deposited molecules. For example, hole injection barrier 

for NPD and pentacene reveals a magnitude difference in carrier mobility 

between the materials deposited on Au or electronic polymer layers, which is 

attributed to the impact of the substrate on the packing on the molecules.64  

Moreover, an increase in mobility of the first monolayer of pentacene has been 

attributed to a unique packing of the first monolayer of pentacene.65  Thus, the 

initial monolayer of Alq3 and NPD may be more densely packed due to 

interactions with the substrate.  As the film grows, the lack of surface mobility of 

the molecules lead to a decrease in packing efficiency.  This proposed behavior is 

consistent with the thickness dependent moduli reported for Alq3 and NPD.  

These results indicate that the bulk Tg of the molecule is a critical factor in 

assessing the thickness dependent behavior.  For molecules with Tg near ambient 

T, there is a significant decrease in modulus in the thinnest films due to a mobile 

surface layer; conversely for molecules with Tg significantly greater than ambient 

T, the thinnest films exhibit a larger modulus than thick films due to poor 

molecular packing during film growth.  
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Figure 5.7 Ellipsometric fits for Alq3 deposited on the PS/PDMS substrate [a] 80 
nm Alq3 [b] 20 nm Alq3 and [c] 12 nm Alq3. 

Furthermore, it is known that the change in morphology from thin film to 

bulk is accompanied by a corresponding change in the optical properties of the 

film.  Thus, thickness dependent structure of the vacuum deposited films should 

be marked by changes in the optical constant of the film as well. After vapor 

deposition of the Alq3, the thickness and optical constants for the Alq3 in the 

transparent region (600-1600 nm) are determined by fitting D and Y using a 
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Cauchy dispersion model. The ellipsometric angles, Ψ and Δ, as well as their fits 

are shown in Figure 5.7 below for a wide range of Alq3 film thickness. 

To assess these changes, the absorption coefficient, k, is also determined 

for each film.  The film thickness is extracted from the original fit shown in 

Figure 5.7 and remains fixed.  The optical constants are then fit utilizing multiple 

Lorenzian oscillators following the procedure of Djurisic and coworkers.66  The 

absorption	  coefficient	  as	  a	  function	  of	  film	  thickness	  is	  ploted	  in	  Figure	  5.8. 

 

Figure 5.8 Optical constant of Alq3 films with thicknesses of 80 nm, 44 nm, 22 
nm, and 12 nm.  Peaks at 260 nm and 385 nm are present for all Alq3 films with 
decreasing intensity as the film thickness is reduced.  The intermediate adsorption 
band (310-340 nm) associated with aggregates of Alq3 shifts to larger wavelength 
as the film thickness decreases with no peak observed for the 12 nm thick film. 

 

Figure 5.8 illustrates how the extinction coefficient varies with thickness 

for Alq3 films ranging from 80 nm to 12 nm.  For all films, there are two 

absorption peaks at 260 nm and 385 nm which correspond to those observed for a 

dilute Alq3 solution.67 This suggests that these adsorption bands are associated 

with the isolated Alq3 molecule.  For the thicker films, another absorption band in 
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the range of 310-340 nm is observed that is indicative of the formation of Alq3 

aggregates.  This peak shifts to higher wavelength as the thickness of the film is 

reduced, which suggests a change in the molecular packing.  However, it is not 

well understood how different molecular packing influences the absorption 

energy and intensity. To quantify differences in the aggregates as a function of 

film thickness will require improved morphological characterization techniques 

and a more diverse group of materials to enable correlation of shifts in adsorption 

bands with aggregate size/shape.  

It should also be noted that the optical constants for Alq3 deposited on 

silicon wafers were also measured in order to determine if there is a difference in 

morphology that manifests itself in the optical properties.  The fits of Alq3 on Si 

and PS/PDMS are shown in Figure 5.9.  Figure 5.9 shows that the optical 

constants determined from spectroscopic ellipsometry are similar for Alq3 

irrespective of substrate.  It should also be noted that a decrease in the single 

molecule adsorption peaks (~10-15 %) was also observed for very thin Alq3 films 

deposited directly on a silicon wafer using analogous deposition rates, where there 

is no possibility for interdiffusion.  These results suggest that the changes in the 

fit adsorption spectra are not from interdiffusion. 

It should be noted that the wrinkling metrology utilized here appears 

capable of mitigating substrate effects to determining the modulus of small 

organic glasses at the nanometer length scale.  These results therefore indicate the 

bulk Tg of the molecule impacts the thickness dependent modulus due to packing 

differentials preliminarily observed via optical constant variations. 
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Figure 5.9 Refractive index and extinction coefficient of Alq3 films deposited on 
Si (red, circles) and PS/PDMS (blue, lines) with thicknesses of [a] 50 nm, [b] 20 
nm, and [c] 12 nm. 

 

5.4 Conclusion  

  The elastic modulus of a series of triarylamines, NPD, CBP, and TPD, 

films was determined utilizing a two plate wrinkling instability as a function of 

film thickness.   The moduli of sub 20 nm thick films is dependent on the bulk Tg 

of the deposited molecule.  For materials with a deposited at T > 0.85Tg a 

systematic decrease from bulk modulus for sub 20 nm films is observed.  This 

behavior is similar to that observed in polymeric thin films, which has been 

attributed to free surface effects. For these vacuum deposited small molecules 

increased mobility of the surface monolayer is consistent with recent studies on 

ultrastable organic glasses.  Materials with higher bulk Tg (deposited at T < 

0.85Tg) exhibit an increase in sub-20 nm moduli that is attributed to increased 

packing frustration due to initial surface directed packing and lower surface 

mobility of the material during film growth.   
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CHAPTER 6 

PHOTOINITIATED WRINKLES FROM LIQUID COATINGS 

6.1 Introduction 

Surface wrinkling was first experimentally observed as a result of thermal 

contraction after electron beam deposition of a 50 nm gold film onto 

polydimethylsiloxane (PDMS).1  In order to minimize the compressive stress 

induced by thermal contraction the gold/PDMS system deformed developing 

surface wrinkles.  This instability has since been exploited as a technique that can 

generate complex surfaces through physical self-assembly driven by relaxation of 

a mechanical,2, 3 thermal,1 or osmotic4, 5 compressive force.  The potential to 

develop complex patterns with long-range order has been of interest for a variety 

of systems.  For example, Whitesides and coworkers were able to control and 

orient the wrinkling morphology of the metallic films on PDMS by patterning 

relief structures on the PDMS.1  Similarly, Chua and coworkers patterned a 

PDMS substrate prior to plasma exposure and reported complex patterns via 

buckling of the silica-like layer.6  Furthermore, Whitesides and coworkers also 

observed the reversibility of buckling, or the appearance and disappearance of 

wrinkles, through repeated heating and cooling cycles.1  Recently, two-

dimensional microstructures with multiple polymer components have been 

reported by selectively depositing polymers into pre-wrinkled substrates.7  By 

taking advantage of embossing techniques the multicomponent patterns were also 

transferred onto silicon wafers.7  Similarly utilizing polyelectrolyte multilayers 

researchers have been able to induce patterned wrinkling by patterning the 

substrates with relief structures followed with embossing.8  
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Various surface wrinkling morphologies have also been obtained by 

controlling the applied overstress to a system.  For example, work by Breid and 

coworkers studied the impact of overstress on the surface morphology of 

crosslinked PDMS.4  A systematic increase in overstress induced by a 

combination of UV exposure and solvent vapor pressure revealed morphologies 

including dimples, bumps, and herringbones.4  The evolution of a wide range of 

surface microstructures such as peanut shapes, lamellar, and wormlike, have also 

been reported by swelling of a hydrogel with a well controlled gradient in 

crosslink density developed via variations in UV exposure.9 Surface wrinkling 

patterns in response to osmotic stresses including spokes and targets have also 

been developed by swelling of a crosslinked polystyrene film and morphology 

controlled via ultraviolet (UV) exposure times.10  Yang and coworkers have 

reported a variety of surface patterns by simply adjusting the relative mechanical 

strain applied in the different planar directions.11  By either simultaneously or 

sequentially applying a compressive force in both planar directions of an oxidized 

PDMS surface transitions from one-dimensional ripples to two-dimensional 

herringbone surfaces were obtained.11 Researchers have demonstrated the ability 

to obtain complex wrinkle patterns by utilizing nanobubble inflation to control the 

applied compressive stress applied on a PDMS film combined with soft 

lithography to generated ordered wrinkles.12   

Recently, these ordered surface microstructures have been studied as 

templates for nanoparticle assembly with implications in optical and electronic 

devices13 and as stamps for micro contact printing.14 For example, by varying UV 
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exposure times in an oxidized PDMS system researchers have been able to 

develop hierarchical wrinkling patterns.15  These nestled wrinkles have been 

exploited as particle sieves resulting in monodispersed linear arrangement of 

particles.15 Researchers have combined wrinkling with layer-by-layer self-

assembly as a lithography free method to pattern three-dimensional colloidal 

assemblies with precise control over width and number of sphere layers by 

varying wavelength and amplitudes of the polymer film.16 Microcontact printing 

of polyelectrolytes and proteins has been demonstrated utilizing wrinkled PDMS 

with 400 nm wavelengths and 40 nm amplitudes generated via plasma exposure.14  

The potential to develop well controlled complex surface microstructures via 

surface wrinkling continues to be of particular interest due to the reduced cost and 

ease of fabrication in comparison to common lithographic techniques. 

Here we describe a simple process to generate a variety of surface 

morphologies including surface wrinkling, folding, and dimples at the micrometer 

length scale on a unpatterned surface with no need of a compliant PDMS like 

substrate.  First a solution of furfuryl alcohol and photo acid generator (PAG) is 

drop cast onto a substrate.  The system is then exposed to UV where surface 

segregation of PAG increases the polymerization rate at the free surface.  This 

mismatch in polymerization rates generates a pseudo-bilayer system with a stiff 

layer at the free surface.  As the bulk of the solution continues to polymerize and 

shrink, a net compressive force is applied to the system inducing a surface 

instability.  Adjusting the concentration of PAG as well as the substrate 

temperature can act to control the surface microstructure.  The regime of the 
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substrate instability and tunability of the characteristic properties of the 

morphology are examined as a function of processing conditions.  Therefore we 

demonstrate that the characteristic wavelength of the surface wrinkling regime 

can also be controlled.  Furthermore, pyrolysis of polyfurfuryl alcohol, a carbon 

precursor, has the potential to generate carbon films with controlled 

morphologies.  This carbon film would exhibit enhanced chemical and physical 

properties such as high hardness and resistance to acid, alkalies, and solvents 

allowing the substrate to be used in a variety of different envinronments.  

Furthermore, if utilized as nanostructures in microelectronics the crosslinked and 

carbonized surface morphology will not be impacted by processing or operating 

conditions unlike patterned polymer films. 

6.2 Experimental 

Silicon wafers (450 µm thick) were cut into 1cm × 1 cm pieces and 

cleaned with ultraviolet-ozone (model 42, Jelight) for 40 min and used as 

substrates.  The substrates were placed on a hot plate for 20 min prior to further 

use in order to equilibrate the substrate temperature. The temperature of the hot 

plate was varied from 65°C, 80°C, 120°C, and 150°C in order to study the effect 

of temperature on the polymerization of the PAG/FA and the resulting 

morphology.  Solutions containing 0.025 wt%, 0.05 wt%, 0.1 wt%, 0.15 wt%, and 

0.2 wt% of the photo acid generator, triphenylsulfonium triflate, in polyfurfuryl 

alcohol were prepared.  30µL of each solution were drop cast onto the silicon 

wafer substrates and placed on a hot plate.   
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Patterning of the wrinkling morphology was obtained by utilizing metal 

masks with linear, circular, and curvilinear patterns.  The silicon substrate was 

heated to 150°C prior to drop casting the 0.1 wt% PAG furfuryl alcohol solution.  

The desired mask was placed ~1 mm above the drop cast solution followed by 

254 nm UV radiation for 20 min until the surface morphology developed.  Lastly 

the film was annealed at 120°C in order to complete the polymerization and 

crosslinking reactions.   Carbonization of the films was performed under nitrogen 

in a furnace at 400°C with a 1°C/min ramp rate.  The sample was maintained at 

400°C for 3 hrs. 

6.3 Results 

6.3.1 Drop cast films 

Furfuryl alcohol undergoes an acid catalyzed polycondensation reaction.17, 

18 First, the PAG in this case triphenylsulfonium triflate ([C6H5)3S+][CF3SO3
-]) 

absorbs UV light decomposing into triflic acid (CF3SO3H) as shown below.19   

[C6H5)3S+][CF3SO3
-] +hυ[C6H5)2S+][CF3SO3

-]+C6H5
- 

[C6H5)3S+][CF3SO3
-]+ C6H5

-(C6H5C6H4)(C6H5)S+CF3SO3H 

 

This triflic acid becomes the catalyst required to initiate furfuryl alcohol 

polymerization.  Triflic acid is a hygroscopic molecule with a pKa ~15 this is 

considered a super acid.20 
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Figure 6.1 Furfuryl alcohol polymerization schematic [a] Initial growth via 
methylene linkages and elimination of water [b] continued crosslinking and [c] 
development of amorphous carbon during pyrolysis. 

Next, a condensation reaction leads to methylene linkages between two 

furan rings and elimination of water.  These linear oligomers continue their step 

growth followed by further crosslinking resulting in nontransparent polyfurfuryl 

alcohol films as illustrated in Figure 6.1b.18  Continued treatment under an inert 

atmosphere at temperatures greater than 400°C then generate amorphous carbon 

(Figure 6.1c).21 

However, it is well known that photo acid generators in polymer matrixes 

can segregate to the free surface due to a combination of both entropic and 

enthalpic effects.22, 23  For example, by comparing the electron and fluorescent 

yield of a photoresist system a significant increase in the surface reaction rate as 

compared to the bulk rate has been observed and attributed to segregation of the 

photo acid generator to the air interface.23  At the surface the mole fraction of 

PAG was 20-70 times greater than in the bulk.23   Similarly, roughness 

measurements of PAG polymer films show increased surface roughness with 
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increasing PAG concentration and curing temperature, not only suggesting 

surface segregation of the PAG but a temperature dependent segregation.22  

Furthermore, the triflic acid is hygroscopic and therefore expected to rapidly 

segregate to the free surface.  This surface segregation of the photo acid generator 

combined with ultraviolet (UV) exposure increases the rate of polymerization at 

the polymer-free surface compared to the bulk.  As the system continues to 

polymerize, the film continues to shrink and a compressive force is developed due 

to the geometrically constrained film.  Once the compressive force is greater than 

the critical stress required for wrinkling or creasing, the film undergoes 

deformation.   This deformation is then characterized by optical micrographs as 

shown below in Figure 6.2.    

 
Figure 6.2  Buckling regime of polyfurfuryl alcohol films as a function of 
PAG concentration and substrate temperature.  [a] 0.25 wt% and 65°C, [b] [a] 
0.25 wt% and 120°C [c] 0.01 wt% and 65°C, and [d] 0.15 wt% and 120°C.  
The scale bars are 1000µm. 
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Figure 6.2, shows the different buckling regimes observed as a function of 

PAG concentration and substrate temperature.  At low PAG concentrations, 0.01 

wt%, and low substrate temperatures ≈65°C, a dimple regime is observed.  

Dimples have been previously reported at a low overstress for UV treated 

PDMS.4   Dimple patterns are single points with local maxima and minima.  

However, as the PAG concentration is increased to 0.25 wt%, a wrinkling 

morphology is observed with characteristic wrinkle wavelength of 107.26 ± 

5.55µm.  On the other hand, at high temperatures ≈120°C this high PAG 

concentration film exhibits significant creasing.  Creasing occurs as large strain 

induces a buckling instability that leads to the film collapsing or folding.   While 

at these high temperatures and lower PAG concentration, 0.15 wt%, smaller 

wavelength wrinkles,  86.23± 3.12 µm, are observed.  This suggests that the 

morphology of the film is dependent upon the overall compressive stress applied 

to the system in agreement with previous work on the morphologies of wrinkled 

hydrogels and oxidized PDMS surfaces.4, 9  A system under low compressive 

stress or at low PAG concentrations and temperatures exhibits dimples.  An 

increase in compressive stress can be induced by increasing the rate of PAG 

segregation to the free surface via substrate temperature or by increasing PAG 

concentration.  Increased PAG at the free surface leads to an increase in the ratio 

of the polymerization at the free surface to the bulk.  By increasing the stress with 

either an increase in PAG concentration or substrate temperature the critical stress 

for wrinkling is surpassed and wrinkles are observed.  Further increasing the 

compressive stress by both increasing the PAG concentration and substrate 



	   199	  

temperature leads to creasing of the film.  This is in agreement with recently 

published work on the morphologies of crosslinked PDMS, where by 

systematically increasing the overstress researchers obtained dimples, wrinkles, 

and creases on the surface.4 Furthermore, the critical strain for creasing has been 

suggested to be ~0.35%,24 significantly greater than the critical stress for 

wrinkling, ~0.01%,25 suggesting increased compressive stress is obtained by 

simultaneously increasing substrate temperature and PAG concentration.  

In order to better characterize the surface morphologies as a function of 

PAG concentration and substrate temperature, previously described wrinkling 

mechanics can be considered.  In previous chapters, the equilibrium wavelength 

( λ) of a stiff film on a compliant substrate is controlled by the film thickness (h) 

and the ratio of the modulus of the film (Ef) to the modulus of the substrate (Es) as 

shown in Equation 1.2 

        

€ 

λ = 2πh
E f

3Es

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

              

(1) 

Therefore it is possible to understand the surface morphology of the 

polyfurfuryl alcohol film as a function of PAG at the surface which impacts the 

film thickness and the rate of polymerization which controls the ratio Ef / Es.  
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Figure 6.3 Wavelength as a function of PAG concentration for substrates at [a] 
80°C and [b] 150°C. The error bars represent one standard deviation of the 
measurement, which is taken as the experimental uncertainty. 

 

Figure 6.3, shows the wavelength as a function of PAG concentration for 

films cast onto substrates at 80°C and 150°C.  Interestingly the characteristic 

wavelength as a function of PAG concentration follows similar behavior for both 

temperatures studied, 80°C and 150°C.  This can be attributed to the fact that the 

wrinkle wavelength is determined by the intrinsic properties of the film and 

suggests that the critical parameter is PAG concentration.  However, as shown in 

Figure 6.3 at low temperatures and minimal PAG concentration no wrinkling is 

observed.  It is expected that at low temperature the viscosity of the furfuryl 

alcohol limits diffusion of PAG to the surface and becomes the rate limiting step 

in the polymerization process and therefore the critical stress required for 

buckling is not reached.18  At higher temperatures, 150°C, (Figure 6.3b) the 

viscosity of the furfuryl acohol film is reduced and diffusion of PAG to the 

surface leads to an increase in polymerization rate at the surface generating the 
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compressive force required for wrinkling.18  As shown in Figure 6.3, increasing 

the PAG concentration from 0.025 wt% to 0.05 wt% doubles the wrinkling 

wavelength from 71.97 ± 11.35 µm to 145.94 ± 3.64 µm.  This is similar with 

previous work on polyhydroxylethylmethacrylate (PHEMA), where increasing 

crosslinker concentration increases the modulus of the PHEMA film. 26  It is 

expected that increased PAG at the surface will increase the rate of 

polymerization and therefore crosslinking at the surface.  However, as the PAG 

concentration increases to 0.1 wt% and 0.15 wt% the wavelength decreases to 

120.85 ± 3.63µm and 86.13 ± 3.90 µm respectively.  This is could be attributed to 

the fact that as PAG gets to the surface and the polymerization reaction begins to 

crosslink leading to an increase in film viscosity.  This increase in film viscosity 

limits diffusion of the remaining PAG.  Due to this diffusion limitations the ratio 

of the modulus of the free surface layer to the substrate modulus decreases as 

more PAG remains in the bulk and therefore systematically decreasing the 

characteristic wavelength.  These results suggest that the optimal crosslink 

density, highest 

€ 

E f /Es ratio, and therefore larger wavelength is found at 0.05 

wt%.  
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Figure 6.4 Wavelength as a function of substrate temperature with PAG 
concentration of [a] 0.025 wt% [b] 0.05 wt%, [c] 0.1 wt% and [d] 0.15 wt%. The 
error bars represent one standard deviation of the data, which is taken as the 
experimental uncertainty of the measurement. 

The wavelength of the surface morphology as a function of substrate 

temperature for all PAG concentrations studied is shown in Figure 6.4.  As shown 

in Figure 6.4a, at low PAG concentrations partial or no wrinkles are observed 

over the temperature range studied.  This could be attributed to a lack of PAG 

required to generate a stiff surface layer and therefore the critical stress required 

for out of plane deformation is not reached. Furthermore, at the higher PAG 

concentrations studied a slight decrease in average wavelength with increasing 
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substrate temperature is observed.  This decrease in wavelength with an increase 

in temperature is more pronounced at intermediate concentrations as shown in 

Figure 6.4c and Figure 6.5.  This slight decrease in wavelength with increasing 

substrate temperature could be attributed to an increase in polymerization rate 

limiting the amount of PAG segregating to the free surface and therefore the film 

thickness, which is directly proportional to the wavelength as shown in Equation 

1. 

 

Figure 6.5 Optical micrographs for 0.1 wt% PAG in FA polymerized at [a] 65°C 
[b] 80°C [c] 120°C and [d] 150°C. 

6.3.2 Patterning 

One common feature of all the samples in the previous section is 

disordered surface wrinkles in the center of the film.  However near the edges, an 

ordering of wrinkles is observed.  This ordering of wrinkles near the edge is in 

agreement with previous work where lateral stress relaxation in stretchable gold 

conductors leads to the development of parallel waves.27  Therefore, long-range 

order of the wrinkled film is obtained by exploiting edge effects via templates.  In 

this process the desired template was placed over the drop cast film followed by 

UV radiation.  The irradiated regions undergo photopolymerization resulting in an 

ordered wrinkled pattern commensurate with the chosen mask.   
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Figure 6.6 Optical micrographs for [a] partial at 120°C and [b] complete 
polymerization at 150°C with selective UV exposure. 

 

Figure 6.6 illustrates patterning of polyfurfuryl alcohol substrates with 2.5 

mm wide linear patterns.  In the case where both a combination of selective UV 

exposure and overall film exposure were utilized, the film patterned by the mask 

exhibits aligned wrinkles while the unpatterned areas show disordered wrinkles 

(Figure 6.6a).  However if selective UV exposure was allowed until the film was 

completely crosslinked no wrinkles were observed in the unexposed region and 

ordered wrinkles were observed as patterned by the mask (Figure 6.6b).  It is also 

important to note that the wavelength for Figure 6.6a is 91.1 µm while Figure 

6.6b is only 57.5 µm, this is in agreement with section 6.3.1 where an increase in 

substrate temperature reduced the wrinkle wavelength due to an increase in the 

rate of polymerization.  

As shown in Figure 6.7, curvilinear wrinkles were also generated, where 

the wrinkles pinned at the edges of the exposed region developed in a matching 

curvilinear pattern.  These curvilinear wrinkles suggest the possibility of 

generating a series of complex poly furfuryl alcohol patterns commensurate with 

the chosen mask.  
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Figure 6.7 Curvilinear patterns generated with 0.1 wt% at 150 °C. 

 

Not only were a linear mask utilized but 3.5 mm diameter circular patterns 

were also studied as shown in Figure 6.8.  As shown in Figure 6.8 by 

systematically increasing the PAG concentration generation of shell-like to 

flower-like patterns.  In the shell-like patterns wrinkling was observed throughout 

the UV exposed area.  However, with decreasing PAG concentration flower-like 

patterns emerged were wrinkles are observed at the exterior edges and dimples at 

the interior of the film.  It is important to note that it was not possible to generate 

ordered patterns at higher PAG concentrations or lower temperatures.  Utilizing 

circular patterns at these extremes resulted in creasing and random wrinkling 

within the UV exposed region. 

 

Figure 6.8 Optical micrographs for circular patterned films with varying PAG 
concentration [a] 0.15 wt% [b] 0.1 wt% and [c] 0.05 wt% with a substrate 
temperature of at 150 °C. 
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6.4 Conclusions 

In summary, polyfurfuryl alcohol wrinkles were generated by UV exposure of a 

drop cast PAG and furfuryl alcohol solution.  A combination of surface 

segregation of PAG and continued polymerization generated the required 

compressive force to generate surface wrinkles.  To control the wavelength of the 

surface wrinkles the substrate temperature and the PAG concentration were tuned.  

Furthermore it was possible to generate ordered surface wrinkles by utilizing a 

mask which allowed for selective UV exposure of the drop cast material.  Linear, 

shell-like, flower-like, and curvilinear patterns were successfully generated. 
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CHAPTER 7 

FUTURE WORK 

An initial study on the modulus of amorphous organic glasses has been 

performed in this work.  Other factors including processing conditions, film 

growth, aging effects, and understanding the behavior of nanocomposite films still 

remain an unstudied part of this research work and a challenge in the development 

of next generation technologies.    

For the successful implementation of polymeric thin films in end use 

applications, the effects of aging need to be addressed. Aging or structural 

relaxation is the drift of properties of a glassy polymer towards equilibrium.  

During aging, a loss of free volume is observed where thin films undergo 

densification, which significantly alters mechanical, thermal, optical and transport 

properties of polymers. Aging in the bulk has been observed via changes in 

properties as function of storage time, both macrostructural properties such as 

specific volume, enthalpy, mechanical, and dielectric response  and 

microstructural such as free volume and mobility (Hutchinson, 1995). While in 

thin films, a reduction in the rate of permeability has been observed with aging, 

the aging rate was also found to increase at higher temperatures and for thinner 

films (Huang et al, 2005).  A change in aging rate has also been observed in 

ultrathin polystyrene (PS) films attributed to the reduced Tg of the confined film 

(Priestley, Broadbelt et al., 2005).  More in depth fluorescence studies show a 

distribution in structural relaxation rates of poly (methyl methacrylate) (PMMA) 

due to free surface and substrate effects which were found to extend over 100 nm 
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into the film (Priestley, Ellison et al., 2005).  This distance is significantly greater 

than the layer of increased mobility, ~4 nm, previously reported (Stafford, Vogt et 

al., 2006).  As shown in Chapters 2 and 3, a layer of enhanced mobility of 4-20 

nm at the free surface impacts the overall modulus significantly at sub 100 nm.  

Therefore it is expected that the enhanced relaxation at the interfaces resulting in 

polymer densification will significantly alter the modulus at the nanometer length 

scale.  If indeed enhanced relaxation and therefore densification of the interfaces 

is observed, an increase in sub 40 nm to bulk-like modulus is expected as the free 

surface effect is eliminated.  It is possible to study the effect of aging on the 

modulus of ultra thin films by isothermally aging the spin cast polymer films.  

Prior to isothermally aging the polymer the thermal history of the polymer is 

eliminated by careful annealing at temperatures above their bulk Tg.  The modulus 

of the aged films as a function of time can easily be determined via surface 

wrinkling and characterization.  

Next, the addition nanoparticles into polymeric thin films would continue 

to elucidate interface and confinement effects on the modulus of ultrathin 

nanocomposite films.  The addition of nanoparticles inhibits polymer mobility 

and increases interface effects due to their high surface areas.   Studies by 

Torkelson and coworkers have reported modification of confinement effects via 

Tg enhancements relative to the bulk for PMMA-silica nanopoarticle films due to 

attractive interactions between the polymers and nanoparticles (Rittigstein et al., 

2006). The focus here is the addition of C60 nanoparticles due to their significance 

for both the organic electronics and photovoltaics applications (Hiroyoshi et al., 
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2006; Akihiko et a.l, 2007).  Efforts to understand the behavior of C60 in aromatic 

solvents has shown that these fullerenes form nanometer length scale aggregates 

(Rudalevige, Francis et al., 1998).   Using static and dynamic light scattering 

Ying and coworkers have shown significant aggregation of C60 nanoparticles in 

benzene (Ying, Marecek et al., 1994).   Via static and dynamic Rayleigh 

scattering aggregation of C60 in solvent has been reported in single-solvent 

toluene solutions as well as binary solvent mixtures, where binary solvent 

mixtures exhibit enhanced aggregation kinetics (Rudalevige, Francis et al., 1998).  

This nanoparticle aggregation has been observed in solution as well as polymer 

thin films.  For example, the addition of C60 fullerenes has eliminated the 

dewetting tendency of ultrathin unentangled PS thin films by modifying the 

polymer-substrate interaction (Barnes, Karim et al., 2000). Neutron reflectivity 

measurements of these PS-C60 show a diffuse layer of C60 particles at the 

polymer-substrate interface of spin cast films once the nanoparticle loading 

reaches 1wt% (Barnes, Karim et al., 2000).  The nanoparticle cluster dimensions 

are on the order of 10 nm for a 3wt% C60 in PS while at 4wt% 1-2 µm clusters are 

observed (Han, Lee et al., 2009). Similarly, neutron reflectivity measurements for 

spinodal clustering studies revealed annealed low molecular weight films (<10 

kg/mol) maintained a stable diffuse C60 layer at the polymer-substrate interface 

while similar high molecular weight films (>270 kg/mol) films exhibit clustering 

at the same interface (Wong e Cabral, 2010). Studies on the Tg of C60-PS films 

have shown a systematic increase in the Tg of the C60-PS film as the C60 

concentration increases from 1wt% to 4wt%, while at higher loadings the film 
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exhibits bulk Tg (Balberg, Naidis et al., 2001). Recent inelastic incoherent neutron 

scattering studies have reported reduced mobility of PMMA-C60 films, suggesting 

strong interactions between the PMMA and the C60 particles (Kropka, Putz et al., 

2007).  While similar studies on PS-C60 films show enhanced polymer dynamics 

with the addition of C60 similar to the addition of small molecule diluents or 

plasticization (Sanz, Ruppel et al., 2008).  Although there is a lack of literature on 

the modulus of ultrathin films with respect to C60 loading, the properties of PS 

and other nanoparticles in bulk have been studied.   In order to uniformly disperse 

the nanoparticles into the polymer matrix surface modifications of the particles 

with compatible ligands have been studied (Ahmed, Jones, et al., 1990).  Studying 

a system of PS ligand modified cadnium selenide nanoparticles in PS, Lee and 

coworkers have shown an exponential decrease in the bulk modulus as 

nanoparticle loading increased from 0 to 12wt% while a minimal impact on Tg 

was reported (Lee, Su et al., 2007).  By decoupling the ligand and nanoparticle 

effect, Lee and coworkers concluded the effect of nanoparticles on modulus is 

determined by the enthalpic and entropic interaction between particle and polymer 

matrix.  Where low enthalpic interactions between the polymer and nanoparticles 

leads to reductions in polymer density near the nanoparticle and hence reductions 

in Tg and modulus.  While Ji and coworkers also determined the size of the 

nanoparticle in a attractive polymer-nanoparticle system influences the bulk 

modulus, where due to an increase in interfacial regions small particles lead to an 

increase in bulk modulus (Ji, Jing et al., 2002).  It is expected that due to the 

higher modulus of C60, a higher overall bulk modulus would be observed.  While 



	   214	  

at the sub 40 nm length scales the polymer chain-C60 interactions will become 

dominant and influence the overall modulus.  Where an increase in C60 

aggregation decreases the available C60-PS interface and will enable us to 

understand the influence of these interactions in detail.   

It is proposed to therefore study the impact of C60 and C60 aggregation on 

the modulus of ultrathin films.  Determining the aggregation of C60 in solution can 

be carried out using dynamic light scattering by monitoring the change in 

scattering intensity of the solution with time.  While the aggregation of C60 

clusters at the polymer-free surface and polymer-substrate interface can be studied 

using atomic force microscopy (AFM).  AFM images of spin cast films will be 

monitored for polymer-free surface aggregation and once transferred onto the 

PDMS the polymer-silicon substrate interface can be studied. Since previous 

observations suggest that polymer-particle interactions of PS and PMMA lead to 

significantly different dynamics (Lee, Su et al., 2007), a study on both PS and 

PMMA with similar molecular weight would lead to a better understanding of 

nanoparticle-polymer interactions.  In order to determine the effect of annealing 

on these systems, thermal wrinkling above PS Tg in vacuum can also be examined 

as previous work has shown annealing segregates the nanoparticles to the 

polymer-substrate interface (Barnes, Karim et al., 2000).  Furthermore, the 

addition of meso fillers and its impact on the modulus of ultrathin films could also 

be of interest as these particles are larger than the polymer chains.  As well as the 

addition of particles to polymer blends or block copolymers where the 

nanoparticle fillers would preferentially wet one of the components and 
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significantly alter material properties (Balazs, Emrick et al., 2006).  The effect of 

not only spherical but rod like, plate like, and nanosheet particles such as 

nanotubes and clays can also be explored.  It is expected that since nanoparticles 

preferentially wet one component in either the polymer blends or block 

copolymers, two distinct moduli and Tg will be observed.  Where an increase in 

modulus could be possible in the wetted phase due to the higher modulus of the 

nanoparticle and an unchanged modulus for the plain phase. 

With the development of flexible organic technologies the electronic and 

mechanical properties of organic electronic materials are of interest. A recent 

report shows that the moduli of conjugated polymers can be well correlated with 

their electronic properties like mobility (O'Connor, Chan et al.).  Furthermore, 

they have found that annealing of polymeric semiconductor films results in a two-

fold increase in modulus and a four-fold increase in hole mobility.  These results 

are consistent with the expectations that the improved crystallinity during 

annealing would lead to a more densely packed and higher density film; both 

electrical and mechanical properties of materials are strongly correlated with 

physical density (Al-Douri, Abid et al., 2001).  Work performed in Chapter 5 

suggested a modulus dependent on deposition conditions.  More specifically in 

agreement with work by Ediger and coworkers where an increase in film density 

and resulting modulus was observed for indomethacin and trisnaphthylbenzene 

films deposited at temperatures greater than 85% of the materials bulk glass 

transition temperature (Tg) (Kearns, Swallen et al., 2007).   
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Figure 7.1 Modulus as a function of substrate temperature for NPD.  
Measurements on a polystyrene barrier film (closed, red) and on an addition 
polynorbornene barrier film (open, black). The error bars represent one standard 
deviation of the data, which is taken as the experimental uncertainty of the 
measurement. 

Therefore an initial study on the modulus of N,N’-Di-[(1-Naphthyl)-

(N,N’-diphenyl]-1,1’-biphenyl)-4-4’-diamine (NPD) with substrate temperatures 

ranging from 24°C to 100°C was recently examined.  The modulus as a function 

of film thickness is shown in Figure 7.1 above.  As reported in Chapter 5, the bulk 

modulus for NPD vacuum deposited at room temperature (24 ± 1ºC) exhibits a 

bulk modulus of 1.54± 0.24 GPa.   As the substrate temperature is slowly 

increased the bulk modulus increases to 1.96± 0.29 GPa, 2.31± 0.23 GPa, and, 

2.50 ± 0.20 GPa at 45ºC, 65ºC, and 70ºC respectively.  As the substrate 

temperature increases to 80ºC and 94ºC the bulk modulus remains at 2.40 ± 0.27 

GPa and 2.30 ± 0.20 GPa however at temperatures above Tg the modulus 

decreases to 1.89 ± 0.28 GPa at 102ºC.  Here the highest modulus obtained was at 

approximately 0.91 and 0.93Tg, in agreement with Edgier’s work where the 
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increased packing efficiency is expected at T>0.85Tg.  Atomic force microscopy 

was utilized to characterize the surface of the NPD films at all temperatures and 

atomic scale resolution was obtained for all samples suggesting minimal 

crystallization.  However, in order to properly characterize the crystallization of 

the NPD films, differential scanning calorimetry (DSC) measurements can be 

performed.  DSC measurements can be utilized to extract the thermodynamic and 

kinetic stability of the deposited films, that is both a fictive temperature and an 

onset temperature can be calculated.  The onset temperature represents the kinetic 

stability of the film, as it marks the temperature at which heat absorbed by the 

sample induces mobility.  While the fictive temperature represents the 

thermodynamic stability of the film as it represents the intersection of the liquid 

enthalpy and the vacuum deposited enthalpy.  DSC also allows for the 

determination of percent crystalline by comparison of the heat absorbed at the 

materials melting temperature while carefully remaining below the materials 

crystallization temperature as to not induce crystallization.  Crystallization of the 

NPD films can also be monitored via Raman spectroscopy.  NPD films have 

shown slight shifts and width changes in the Raman spectra with crystallization 

(Sugiyama, Furukawa et al., 2005).    For example, at 532 nm NPD exhibits in 

three characteristic bands at 1609cm-1 (ring stretch), 1288 cm-1 (C-C stretch), and 

1198 cm-1 (C-H bond) a red shift in wavenumber and a decrease in bandwidth has 

been reported with polycrystallization (Sugiyama, Furukawa et al., 2005).  

Crystallization of NPD could be expected as it has previously been reported 
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during device operation and high temperature treatments (Sugiyama, Furukawa et 

al., 2005; Kim, Kim et al., 2006). 

Furthermore, if as suggested in Chapter 5 deposition of NPD at T>85%Tg 

leads to an increase in packing density and therefore an increase in modulus, the 

overall density of the film would be of interest.  Quartz Crystal Microbalance 

(QCM) allows for a quantitative technique to determine the density of the film.  

QCM determines the water uptake of the NPD film which is expected to decrease 

as the film density increases.  The amount of water uptake as a function of NPD 

film conditions can be obtained by measuring the changes in resonant frequency 

of the crystal and the Sauerbrey equation  as shown below (Sauerbrey, 1959).   

€ 

Δf = −CfΔm  

Where, Δf is the observed frequency change in Hz, Cf is the sensitivity 

factor in Hz/ng/cm2, and Δm is the change in mass per unit area in ng/cm2. 

QCM can therefore potentially discern density changes while revealing 

pertinent information for future device stability as moisture uptake is detrimental 

to organic electronics.  Finally, the performance of a single carrier hole-only 

OLED device with an anode/NPD/cathode structure where different NPD 

deposition conditions are utilized can be characterized.  It is then possible to 

extract carrier mobility of the various NPD films utilizing the space charge 

limited current region of the current-voltage curve.  A more detailed 

understanding of the impact of high temperature NPD deposition can also be 

obtained by characterizing fully developed OLED devices.  This series of 
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experiments would allow for the development of any potential correlations 

between bulk modulus, carrier mobility, density, and device stability. 

 

Furthermore, although correlations between polymeric semiconductors 

and elastic modulus have been reported, no information on carrier mobility of the 

wrinkled surface has been reported.  Understanding the electronic properties of 

wrinkled materials is of interest in flexible organic electronics as flexible 

electronics are subjected to high strains during operation.  Recent work has shown 

that compressive strain on pentacene thin-film transistors results in increased 

mobility due to decreased energy barrier between grain boundaries with 

compression of the system (Chen, Chen et al., 2011).  Research has shown a 

significant increase in the conductivity of organic semiconducting polymers with 

increased pressure explained in terms of reduction in energy barriers due to 

compressible intermolecular distances or an increase in the π-π overlap (Pohl, 

Rembaum et al., 1962).   The conductivity of organic molecules is attributed to 

their conjugated structure and delocalized π electrons.  It is therefore expected 

that the pressure applied in the valleys of a wrinkled film will impact carrier 

mobility, which will be a function of compressive strain due to variations in π-π 

overlap.  A study on the mobility of these wrinkling films as a function of 

pressure (wrinkling wavelength) could therefore be of interest for the 

development of flexible electronics. 

Lastly, a large amount of work is still to be studied with the recent 

development of poly furfuryl alcohol wrinkles in Chapter 6.   Under inert 
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conditions polyfurfuryl alcohol begins to carbonize at 450°C (Li, Lu et al., 1996).  

Therefore the potential to develop carbon substrates with controlled morphologies 

could be achieved by simple pyrolysis of current polyfurfuryl alcohol films.  

However, in order to mitigate stress within the film, a heat treatment process 

would need to be developed with proper annealing, pyrolysis recipes, and if 

needed an intermediate elastic layer such as polydimethylsiloxane (PDMS) film. 

The ability to carbonize poly furfuryl alcohol films allows for the use of 

these substrates in a wide range of systems from micro-mechanical devices to 

sensors and biologically related fields.  Both work on biological systems and as 

substrates for the development of sensors is achievable.  For example, past 

research has shown that cells tend to elongate and align in the presence of 

patterned grooves (Singhvi, Stephanopoulos et al., 1994; Teixeira, Abrams et al., 

2003). Jiang and coworkers have shown that chemically modified wrinkled 

PDMS surfaces are also successful in inducing contact guidance of bovine 

capillary endothelial cells (Jiang, Takayama et al., 2002).  Likewise, Wilkinson 

and coworkers have shown increased alignment and elongation of cells when 

exposed to carbon surfaces with micrometer etched grooves (Wilkinson, Riehle et 

al., 2002). Therefore, these wrinkled carbon surfaces could become a tool or 

model in understanding cell-substrate interactions important for the development 

of medical implants and cell cultures.  Future work could include a study on cell 

elongation and behavior on these substrates with systematically varying wrinkling 

wavelength, amplitude, and topography controlled via photo acid generator 

concentration and substrate temperature.   
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Due to the inert nature of carbon materials these wrinkled surfaces could 

also be coated with metals via electrochemistry or sputtering.  Previous research 

has successfully shown uniform deposition of Au replicating a master pattern via 

electrochemical deposition (Lee, Alexe et al., 2005).  These coated surfaces with 

controlled surface topology could then have applications in sensors.  Furthermore, 

surface energy can also be controlled, surface wettability is traditionally 

controlled via surface chemistry and surface roughness (Encinas, 2010). However, 

recent work on wrinkling has shown a relationship between surface energy and 

wrinkle wavelength and amplitude (Chung, Youngblood et al., 2007; Bukowsky, 

Torres et al., 2010).  Controlling the hydrophobicity of amorphous carbon or 

coated surfaces has an important role for adsorption, adhesion, coatings, and 

catalysis.  This two step wrinkling process is an attractive cost saving way to 

develop patterned amorphous carbon substrates with controlled surface energy. 
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