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ABSTRACT

With the introduction of compressed sensing and sparse representation,

many image processing and computer vision problems have been looked at in a

new way. Recent trends indicate that many challenging computer vision and im-

age processing problems are being solved using compressive sensing and sparse

representation algorithms. This thesis assays some applications of compressive

sensing and sparse representation with regards to image enhancement, restora-

tion and classification. The first application deals with image Super-Resolution

through compressive sensing based sparse representation. A novel framework is

developed for understanding and analyzing some of the implications of compres-

sive sensing in reconstruction and recovery of an image through raw-sampled and

trained dictionaries. Properties of the projection operator and the dictionary

are examined and the corresponding results presented. In the second application

a novel technique for representing image classes uniquely in a high-dimensional

space for image classification is presented. In this method, design and implemen-

tation strategy of the image classification system through unique affine sparse

codes is presented, which leads to state of the art results. This further leads to

analysis of some of the properties attributed to these unique sparse codes. In

addition to obtaining these codes, a strong classifier is designed and implemented

to boost the results obtained. Evaluation with publicly available datasets shows

that the proposed method outperforms other state of the art results in image

classification. The final part of the thesis deals with image denoising with a novel

approach towards obtaining high quality denoised image patches using only a sin-

gle image. A new technique is proposed to obtain highly correlated image patches

through sparse representation, which are then subjected to matrix completion to

obtain high quality image patches. Experiments suggest that there may exist a

structure within a noisy image which can be exploited for denoising through a
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low-rank constraint.
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Chapter 1

INTRODUCTION

Imaging and computer vision have been two extensively researched areas which

have directly or indirectly contributed to the technological advancement in visual

computing. Image representation, recognition, modeling, enhancement, restora-

tion, analysis and reconstruction from projections have been few of the areas

which have been looked at in a different way after the introduction of Compres-

sive Sensing. With the plethora of data available, it is very important to choose

which datum to pick from the vast set of data. Recently developed compressed

sensing provides direction in selecting the most important data. The challenging

task of computer vision has been and will be to develop systems which mimic,

represent and analyze the behavior charaterized by human beings.The systems

which aim at understanding and representing such behavior should have highly

accurate sensing and acquisition capabilities. This must be followed by certain

pre-processing for input data formatting, actual methodology of feature formation

and analysis, followed by post-processing such as enhancement and restoration.

The following steps outline some of the steps involved in a typical computer vision

system. Although different systems are application dependent, most of them can

be generalized to comprise of the following underlying steps.

Image Acquisition:Also commonly known as imaging is the first stage in-

volved in a computer vision system.A computational model of a camera, atleast

for its geometric part tells how to project a natural 3D scene onto an image and

how to project back from the image to 3D. There are different Camera models

classified according to different criteria such as viewpoint, complexity and imaging

type. Two plane model, fisheye model, affine models are some of the commonly

used camera models in the computer vision systems. A CCD or a CMOS sen-

sor is invariably used in most of the spatially sampled imaging systems with a
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pre-defined set of points defined on the imaging plane which follow the Shannon-

Nyquist sampling theorem. Sampling of amplitudes also known as quantization

and temporal sampling defined by the frame-rate are also involved in the acquisi-

tion process.

Pre-processing : Before a computer vision method can be applied to an

image in order to extract certain features, it is usually necessary to format the

data in such a way as to satisfy certain criterion required by the method. Some

of the examples include

• Re-sampling to make sure that the working image co-ordinate system is

accurate.

• Image restoration method such as noise reduction to ascertain that sensor

noise does not falsify the actual data values.

• Contrast stretching and enhancement to obtain relevant information before

any method is acted upon.

• Scaling and normalization for appropriate scale-space representation.

Image Feature extraction: Feature extraction and selection has been an

active area of research in computer vision, machine learning, data mining ,text

mining, genomic analysis , image retrieval etc. Image features have different

complexities depending on the input image type. Stable feature selection, opti-

mal redundancy removal and exploiting auxiliary data are some of the important

challenges associated with feature selection. There are various types of features

such as spatial features, transform based features, edges and boundaries, shape

features, textures etc. Feature extraction is an important step for analysis of

image data. It also plays an important role in further post-processing and recog-

nition/classification purposes as well.
2



Image Segmentation and Recognition/Classification: Image segmentation

refers to the decomposition of a scene into its components. It is one of the impor-

tant steps in image analysis. Various segmentation techniques such as amplitude

thresholding, component labeling, boundary based approaches, region based clus-

tering, template matching and texture segmentation are extensively used in image

analysis which leads to recognition/classification. Segmentation makes sure that

all the irrelevant features are discarded out paving way for selection of useful ob-

jects of interest. Classification is the final step which quantifies the nature of data

and leads to decision making. As the term itself indicates, it is used to classify the

object into one of several categories. Classification and segmentation are closely

intertwined with each one aiding the other in the final outcome.At a higher level

classification can be either supervised or unsupervised. Supervised classification

does not depend on a priori probability distribution functions and are based on

reasoning and heuristics. In unsupervised learning,the idea is to indentify the

clusters or natural groupings in the feature space. A cluster is a set of points in

feature space for which their local density is large compared to the density of fea-

ture points in the surrounding region.Clustering techniques are useful for image

segmentation and also for classification of raw data to establish different classes.

1.1 Motivation and direction of thesis

One of the main motivation for developing new computer vision applications is

the recent introduction of compressive sensing. With the advent of compressive

sensing a large number of new methods have been developed for image analysis

in computer vision. This particular work derives mathematical formulations from

the recently developed compressive sensing, sparse representation and matrix com-

pletion for related applications in image processing and computer vision. While

image acquistion and pre-processing plays an important role in acquring raw input

data, image analysis, image restoration and image enhancement are three impor-

3



tant aspects of a computer vision rendering system. Image analysis system which

consists of feature extraction, segmentation and classification/recognition forms

the first important step of understanding the raw image data. The analyzed data

is useful in making decisions in general applications such as video surveillance

for event and activity detection, organizing information for content based data

retrieval, for computer human interaction etc.

Of all the visual tasks we might expect a computer to perform, analyzing a

scene and recognizing all of the constituent objects remains the most challenging.

While computers excel at accurately reconstructing the 3D shape of a scene from

images taken from different views, they cannot name all the objects present in

the image.Then the question that arises is, why is recognition so hard? The real

world is made of innumerable objects which all occlude one another, have variable

poses, exhibit variability in terms of sizes,shapes and appearance. Thus it remains

an extremely hard problem of just performing an exhausting matching against a

database of exemplars. The most challenging version of recognition is general

category object recognition. Some techniques may rely purely on the presence

of features(such as bag of words or visual words or SIFT features),while other

methods involve segmenting the image into semantically meaningful regions so

as to obtain unique regions for classification. Given such an extremely rich and

complex nature of the topic,there is a need to divide the problem into subsequent

smaller steps before an effort is made to solve each one of them individually and

the problem as a whole.

General object recognition falls into two broad categories, namely the in-

stance recognition and class recognition. Instance recognition involves recognizing

a known 2D or 3D rigid object,potentially being viewed from a novel viewpoint,

against a cluttered background and with partial occlusions [74].The class recogni-

tion is a much harder problem of recognizing any instance of a particular object

4



such as animals,any general surrounding objects etc. The harder problems typi-

cally are characterized by a large dataset. Computational complexity is extremely

high if all of the data is to be used for recognition/classification. Compressive sens-

ing would play a handy role in such a scenario. Image data is invariably sparse,

leading to representations which can be much less denser than the ones involving

large raw inputs. Thus sparse representation would be able to convert such dense

data into sparse data.

Sparse signal representation has proven to be an extremely powerful tool

for acquiring, representing and compressing signals. The success is predominantly

due to the fact that general audio, image ,video signals have naturally sparse rep-

resentations in a basis (such as DCT, wavelets etc) or a concatenation of such

bases.This successful technique which has played an extremely important role

in classical signal processing for compact representations can also be employed

to computer vision applications where contents and semantics of the image are

more important than representations and recovery.This thesis tries to capture the

essence of compressive sensing based sparse representation which can be success-

fully employed in generic image processing enhancement technique such as image

Super-Resolution(SR) and image restoration such as image denoising and also in

computer vision applications such as Image classification.

With this background and motivation, the emphasis of this thesis is on the

following topics:

(i) Super-Resolution: Redundant representations of randomly sampled dictionar-

ies have provided good performance in sparse representation based reconstruction

algorithms. In this thesis, experimentation and analysis of redundant represen-

tations based trained dictionaries is conducted. In addition to analysis, it also

provides insights into the properties of these dictionaries and its relation to com-

pressive sensing. Also an empirical analysis of results for recovery and representa-
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tion based Super-Resolution is provided. In addition to these the sparse solution

space for representation and recovery methods is analyzed and zone of operation

for a trade-off between sparsity and reconstruction fidelity is provided.

(ii) Image Classification: Another computer vision application which is looked

into is image classification.Image classification has been an extensively researched

area in the last few years.It forms an important part of object recognition.Different

models and methods have been analyzed in the past few years,but none of them

have been able to achieve high degree of accuracy through these methods. A new

approach towards image classification through the method of obtaining trained

dictionaries through sparse representation in an affine invariant feature space is

depicted.Through the combination of a good classifier and good feature repesenta-

tion state of the art results on Caltech-101 and Caltech-256 dataset are presented.

(iii) Image Denoising :The last part of the thesis deals with one of the classical

image restoration technique namely image denoising. Inexact recovery of a large

matrix through matrix completion has provided new insights into the way missing

data can be recovered among a large set of correlated data.In this thesis, exper-

imentation and analysis of sparse representation based noise recovery is carried

out. In addition to obtaining noisy sparse representations of a noisy image, noisy

pixel elimination through matrix completion is analyzed and understood.

1.1.1 Related Work

This section reviews some of the common fundamental principles utilized in super-

resolution, image classification and image denoising. An overview of compressive

sensing and sparse representation from a compact representation point of view

is dealt with in detail. First the representation and recovery methods of image

super-resolution and image denoising is discussed. Then the focus shifts towards

the compact feature representation in image classification. But before that we

shall look into the emergence of compressive sensing commonly abbreviated as
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”CS”.

1.2 Compressive Sensing(CS): A Background

The Shannon/Nyquist sampling theorem specifies that to avoid losing information

when capturing a signal, one must sample at least two times faster than the signal

bandwidth. In many application, including digital image and video cameras, the

Nyquist rate is so high that too many samples are obtained,making compression

a necessity prior to storage or transmission. In other practical applications, in-

cluding imaging systems and high speed analog to digital converters, increasing

the sampling rate is very expensive.This section surveys the theory of compres-

sive sampling also known as compressive sensing or CS, a novel sensing/sampling

paradigm.CS theory asserts that one can recover certain signals and images from

far fewer samples or measurements that traditional methods use [72]. For this

to happen, CS relies on two principles: sparsity, which pertains to the proper-

ties of natural signals of interest, and incoherence, which involves how signal is

sensed/sampled.

The information rate of a continuous time signal may be much smaller than

that suggested by its bandwidth. This is the principle used to express the notion

of sparsity.This can also be stated in terms of a discrete-time signal wherein the

number of degrees of freedom of the signal is comparably much smaller than its

length. General natural signals are sparse or compressible and when expressed in

an appropriate basis Ψ have compact representations. This is the principle which

CS exploits.

Incoherence extends the duality between time and frequency. It expresses

the idea that objects having a sparse representation in Ψ must be spread out in

the domain in which they are acquired. This is similar to the analogy in which

Dirac or a spike in the time domain, is spread out in the frequency domain. But

in order for the signal of interest to be sparse in Ψ,incoherence suggests that the
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sampling/sensing waveforms have an extremely dense representation in Ψ.

The important observation is that one can efficiently design good sens-

ing/sampling protocols that captures all the relevant information from natural

occuring sparse signals and compress it into a much smaller data. The acquisition

signals or the waveforms need not be modifiable and hence need not necessitate

adaptive sparsifying basis. Thus with a small amount of fixed waveforms with lot

of incoherency with the signal to be acquired, an efficient design strategy can be

devised to capture the sparse information. Without trying to understand the sig-

nal, these sampling protocols capture the information very efficiently.Numerical

optimization provides a mechanism to reconstruct or recover the signal completely

from small amount of data collected.Thus using an imcomplete set of measure-

ments, compressive sensing is able to sample the signal at an information rate and

power which is much lower than that defined by shannon/nyquist theorem.

Compressive sensing which was originally developed for single pixel camera

and for medical imaging and ADC systems has been subsequently adopted into

the general signal processing community. Built upon the groundbreaking work by

[16] and [29], based on a new set of paradigms on signal model compared to the

existing Shannon/Nyquist model. The new paradigms, which CS theory is built

upon and are different from the conventional Shannon/Nyquist notion according

to the following:

1.Measurement principle

2.Sparsity

3.Incoherence

4.Measurement systems and sparse signal recovery conditions

5.Reconstruction Algorithms in CS Decoders

8



1.2.1 Measurement principle

Unlike in Shannons sampling case, there is no concept of point samples for repre-

senting the signal. However, linear measurements of the signal are obtained which

are now a generalization of samples, obtained by projection into a different space

called the measurement space. There are no actual pixels involved in an image

here since the captured information constitute a linear set of measurements. A

property called incoherence is necessary for acquiring good linear measurement

in the new measurement space defined in reference to the transformation space

(discussed in detail later). Under these two paradigms, the following section pro-

vides explanation of CS theory from a mathematical point of view. Here and in

most part of this document, only the discrete case of CS (called the discrete CS)

is considered. Let f(t) be a signal obtained by linear functionals

yk = 〈f, φk〉k = 1, . . . ,m (1.1)

With the basis functions φk we wish to correlate the signal to be acquired for a

fixed m. The sensing waveforms can be Dirac delta functions(spikes) or sinusoids.

A total of m such correlations using m different sensing waveforms lead to m

measurement values which are collaboratively called the new linear measurements.

At this point in time we would restrict our attention to discrete signals f ∈ <n.

Now we are concerned with undersampled situations in which the number m of

available measurements is much smaller than the dimension n of the signal f.

This raises an important question about accurate reconstruction from m << n

measurements only. This can be achieved through the set of operations given by

y = Af, y ∈ <M , f ∈ <N , A ∈ <MxN (1.2)

Though the problem is ill-posed in general, a way out can be found by relying

on realistic models of objects f which naturally exist. In CS terminology, y =
9



[y1, y2, . . . , yM ]T ∈ <M is the measurement vector, Φ= [φ1, φ2, . . . , φM ]T is the new

measurement space called the measurement matrix. Suppose f is a compressible

signal which is K-sparse(K<N), with the sparse representation expressed in an

orthonormal transformation space defined by Ψ ∈ <NxN , then f can be expressed

through the orthonormal basis Ψ = [ψ1, ψ2, . . . , ψn] as follows:

f =
n∑
i=1

xiψi (1.3)

where x is the coefficient sequence of f, xi = 〈 f, ψi 〉. With this background we

move to the next important concept Sparsity.

1.2.2 Sparsity

The Eq.1.3 described above represents an expansion of the signal in terms of a

few coeffcients of a basis function. Now sparsity implies that when a signal has

a sparse expansion, one can discard the smaller coefficients without losing out

any perceptually meaningful information. Now if we consider fK obtained by the

keeping the K largest values of xi in the expansion Eq.1.3, then this vector xK

is sparse in a strict sense since all but a few of its entries are zero. Since Ψ is

an orthonormal basis , we have ‖ f - f K ‖l2 = ‖ x - xK ‖l2 and if x is sparse

or compressible, then x is well approximated by xK and thus the error ‖ f - f K

‖l2 is small. This principle has been very effective in JPEG-2000 [30] and others

since there would not be any perceptual loss of information and also the gains at-

tained in terms of compression efficiency is high. In general sparsity is an efficient

modeling tool which permits effective signal processing as in the case of statis-

tical estimation and classification, efficient data compression and so on.Sparsity

has significant carriage on the acquisition process itself and it determines efficient

acquisition of signals nonadaptively [72].
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1.2.3 Incoherence

Suppose we have two pairs of orthobases Ψ ,Φ of <n and Φ is used for sensing f

and the other orthobasis Ψ is used for representing f. The coherence between the

sensing basis Φ and the representing basis Ψ is given by µ through the following

equation:

µ(Φ,Ψ) =
√
n. max

1≤k,j≤n
|〈φk, ψj〉|. (1.4)

Coherence measures the correlation between any two basis vectors of the orthonor-

mal bases Φ and Ψ [31]. Now if φ and ψ contain correlated elements, the coherence

is large else its small and the range of coherence µ(Φ,Ψ) ∈ [1,
√
n]. A compressive

sampling based acquisition is mainly concerned with low coherence pairs. For ex-

ample a dirac delta and a sinusoid are maximally incoherent in any dimension and

the pair obeys µ(Φ,Ψ) = 1. In general random matrices are largely incoherent

with any fixed basis Ψ and it follows that higher the incoherence, the lower the

number of samples necessary for perfect recovery.

1.2.4 Measurement systems and sparse signal recovery conditions

We would like to measure all the n coefficients of f, but we get to observe only a

subset of the samples M ⊂ 1, 2 . . . , n. Now these subset of samples are encoded

in the vector given by the following:

yk = 〈f, φk〉, k ∈ M (1.5)

We now try to recover the signal f through the reconstruction equation f̃ = Ψ

x̃ where x̃ is the solution obtained through l1-norm minimization through the

convex optimization program given by

min
x̃∈<n

‖ x̃ ‖l1 subject to yk = 〈φk,Ψx̃〉,∀ k ∈ M (1.6)

Thus among all signals f̃ = Ψx̃ we pick the appropriate coefficient sequence which

has the lowest l1 norm.Suppose the signal f ∈ <n in terms of the coefficient x is
11



K sparse, then selecting m measurements in the Φ domain uniformly at random

gives the following:

m ≥ C.µ2(Φ,Ψ).K.logn (1.7)

for some positive constant C, the solution to Eq. 1.6 is exact with overwhelming

probability. Also the probability of success exceeds (1-δ) if m ≥ C.µ2(Φ,Ψ).K.

log(n/δ). An immediate inference based on this equation is that the role of coher-

ence is very simple;the smaller the coherence, the fewer samples are needed,and

hence we look for systems with low coherence.Also there would be no loss of in-

formation by measuring just any set of m coefficients which may be far less than

the signal size and moreover if µ(Φ,Ψ) is equal or close to one, then for a K-

sparse signal, K.logn samples are sufficient instead of n. Also the signal f can be

exactly recovered from smaller data set through minimizing a convex functional

which need not have any knowledge about number of nonzero coefficients and

their locations or values.

Restricted Isometric Property : Another important concept in the study of

general principles of CS is the restricted isometric property(RIP) [32]. For each

integer K = 1,2,. . . , define the isometry constant δK of a matrix A as the smallest

number such that

(1− δK) ‖ x ‖2
l2≤‖ Ax ‖2

l2≤ (1 + δK) ‖ x ‖2
l2 (1.8)

holds good for all K-sparse vectors f. Without strict implications, it can be said

that matrix A obeys the RIP of order K if δK is not too close to one.Because of

this property, the matrix A preserves the Euclidean length of K-sparse signals,

which implies that K-sparse vectors cannot be in the null space of A. A notion

of pseudo-orthogonality can be developed from this theory wherein any subset

of the K-columns of the matrix A are approximately orthogonal. Now to see a

connection between RIP and CS, suppose we acquire K-sparse signals with A and
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δ2K is sufficiently less than one.This implies that all pairwise distances between

K-sparse signals must be well preserved in the measurement space [72].

(1− δ2K) ‖ x1 − x2 ‖2
l2≤‖ Ax1 − Af2 ‖2

l2≤ (1 + δ2K) ‖ f1 − f2 ‖2
l2 (1.9)

holds true for all K-sparse vectors x 1,x 2.

1.2.5 Reconstruction Algorithms as CS Decoders

The objective of the CS decoder is to reconstruct the K-sparse signal f ∈ <N

from its compressive measurements y ∈ <M . The first method of solving this l1

optimization problem is through Basis Pursuit(BP).It is given by

x̃ = argmin ‖ x ‖1 s.t. y = ΦΨx (1.10)

Yet another method of reconstruction through Basis Pursuit Denosing(BPDN) is

well suited in cases where measurements are noisy. The measuring process with

noise can be given by

y = Φx + z, y ∈ <M , x ∈ <N ,Φ ∈ <MxN (1.11)

where z is a stochastic noise or a deterministic unknown error term.The solution

to the BPDN optimization problem is given by

x̃ = argmin ‖ x ‖1 s.t. ‖ y− ΦΨx ‖< ε (1.12)

where ε is a constant which takes into account the variance of the noise z. An

unconstrained version of the above BPDN is given by the following equation given

by

x̃ = argmin τ‖ x ‖1 +0.5 ‖ y− ΦΨx ‖2
2 (1.13)

The reason the unconstrained version is popular is mainly due to its faster solving

capability. A faster algorithm for solving the sparse optimization problem is called

the Sparse Receovery by Separable Approximation(SpaRSA) [33] which controls

the tradeoff between sparsity of coefficients and fidelity of the reconstruction.More

details about this is discussed in the subsequent chapters.
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1.3 Organization of the thesis

This thesis is organized as follows;Chapter 2, titled compressive sensing based

super-resolution proposes new methods of evaluating sparse recovery and recon-

struction. Analyses and evaluation of trained and randomly sampled dictionaries

is performed and their implications on incoherence and sparsity is noted.In ad-

dition to providing these analyses, some of the general properties of trained dic-

tionaries for different super-resolving capabilities is discussed. Chapter 3 is titled

affine sparse codes for image classification. This chapter proposes and evaluates

novel methodologies of feature extraction,feature formation through sparse rep-

resentation and dictionary learning.Experimental results and benchmarking with

the most recent techniques is detailed.Chapter 4 discusses on the newest tech-

nique in image denoising through matrix completion. This method proposes and

evaluates using sparse representation along with singular value thresholding tech-

niques to search for the best denoised patch. Results are evaluated with the state

of the art techniques and along with the effectiveness of the method. The thesis

concludes with Chapter 5 detailing on the conclusions and future work.
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Chapter 2

SUPER-RESOLUTION THROUGH COMPRESSIVE SENSING

Super-resolution(SR) is the process of combining multiple low resolution images

to form a higher resolution one.Usually it is assumed that there is some (small)

relative motion between the camera and the scene, however motionless super-

resolution is indeed possible if other imaging parameters (such as the amount of

defocus blur) vary instead [34]. If there is relative motion between the camera

and the scene, then the first step to super-resolution is to register or align the

images; i.e. compute the motion of pixels from one image to the others. How-

ever this may not be the only form of Super-resolution, since there might be a

need of super-resolving from single image. Then we would not be able to use

data from multiple images to obtain a better high resolution version of the input

image.Super-resolution from a single image has received much attention with the

advent of Compressive Sensing(CS). There also have been other methods which

have been successfully able to achieve good results for different super-resolving

factors [25]. One such method utilizes the patch redundancy across the same

scale and different scales. The approach is based on the observation that patches

in a natural image tend to redundantly recur many times inside the image, both

within the same scale, as well as across different scales. First an overview of some

of the previous methods is investigated followed by a detailed description of the

proposed method.

2.1 Super Resolution: An Overview

SR methods have been broadly classified into two families of methods namely:

(i) Classical multi-image SR and (ii)Example based SR.In classical multi-image

SR a set of low resolution images of the same scene are taken (at subpixel mis-

alignments). Each low resolution image imposes a set of linear constraints on

the unknown high resolution intensity values. If enough low-resolution images
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Figure 2.1: Basic Premise of Classical Image SR.

are available (at subpixel shifts), then the set of equations becomes determined

and can be solved to recover the high-resolution image. Practically, however, this

approach is numerically limited only to small increases in resolution (by factors

smaller than 2) [22],[35],[36],[37]. Fig. 2.1 shows a typical classical image SR

framework. Now the next step would be to obtain the SR image from multiple

low resolution (LR) images. Multiple LR images of the same scene are a basic

necessity for increasing the spatial resolution in SR techniques.The LR images

are subsampled (aliased, no low pass filtering) as well as shifted at subpixel res-

olutions. Shifting by an integer amount in the LR image results in the same

information and it would not add any new information for reconstructing the HR

image. But LR images with different subpixel level shifts may add new informa-

tion and are useful in constructing a HR image even if they have aliasing present

in them. In this case, the new information contained in each LR image can be

exploited to obtain an HR image. But in order to achieve this, multiple images

with relative motion between them should be obtained. Multiple scenes can be

obtained from one camera with several captures or from multiple cameras located
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in different positions or multiplse scene motions [28]. If these scene motions can

be estimated within subpixel accuracy and if we combine these LR images, SR

image reconstruction is possible as illustrated in Fig. 2.1. But as previously men-

tioned the upfactors or the super resolving factors obtained are very small. Thus

these limitations have led to the development of example based or learning based

SR.

2.1.1 Example based SR

In example-based SR, correspondences between low and high resolution image

patches are learned from a database of low and high resolution image pairs (usu-

ally with a relative scale factor of 2), and then applied to a new low-resolution

image to recover its most likely high-resolution version [25]. By repeated appli-

cation of the same process images with higher SR factors have been obtained.

Example-based SR has been shown to exceed the limits of classical SR. But how-

ever this does not reflect directly into reconstructing the actual HR image since

there will be generation of pseudo high resolution details. In SR (example-based

as well as classical) the goal is recovery. This involves generating missing high-

resolution details which are not found in any individual low-resolution images.

In the classical SR, this high-frequency information is assumed to be split across

multiple low-resolution images, leading to information on high resolution images

in terms of sub-pixel shifts and in aliased form . In example-based SR, this miss-

ing high-resolution information is assumed to be available in the high-resolution

database patches or exemplars of dictionaries, and learned from the low-res/high-

res pairs of examples in the dictionaries.

2.1.2 Compressive sensing based SR

Recently, Compressive Sensing (CS) has emerged as a powerful tool for solving a

class of inverse/ underdetermined problems in computer vision and image process-

ing. In this work, we investigate the application of CS paradigms on single image
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Super-Resolution (SR) problems which are considered to be the most challenging

in this class. In light of recent promising results, a set of novel tools are proposed

for analyzing Sparse Representation based inverse problems using redundant dic-

tionary basis.Further, novel results establishing tighter correspondence between

SR and CS are provided. As such, some gains include insights into questions

concerning regularizing the solution to the underdetermined problem, like: (i) Is

sparsity prior alone sufficient? (ii) What is a good dictionary? (iii) What is the

practical implication of non-compliance with theoretical CS hypothesis? Unlike in

other underdetermined problems that assume random down-projections, the low

resolution image formation model employed in CS-based SR is a deterministic

down-projection which may not necessarily satisfy some critical assumptions of

CS. A further investigation on the impact of such projections in concern to the

above questions is provided.

SR is an inverse problem which deals with the recovery of a high-resolution

image from a single or a sequence of low-resolution images based on either specific

a priori knowledge or just assumed generic notion about the imaging model. In

generation of low-resolution images, the imaging process normally involves low-

pass filtering followed by decimation. Since such a process results in a loss of

entropy, the reconstruction problem is highly underdetermined. Hence proper

regularization is necessary for finding an appropriate solution, especially under

large magnification factors, due to the large size of the solution space. Generic

edge smoothness priors and/or other visual features are typically utilized to reg-

ularize the solution. Such examples include gradient prior [1] soft-edge prior [2],

Markov Random Field (MRF) [13], primal sketch prior [23], directional-priors [20]

and Total Variation (TV) [3]. The essence of these priors is to ensure coherence

in the local properties of the reconstructed image. Also many algorithms extract

local features and learn the local properties via recognition based priors to obtain
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an appropriate high resolution image [22],[26]. Recognition and learning based

super resolution algorithms [22], [24] estimate the bounds on the super resolving

factor that can be carried out on natural images. Single image SR algorithms

have been studied utilizing the patch repetitions across the same scale and mul-

tiple scales in natural images [25]. Sparse derivative priors, learning based image

up scaling, local correlation based super resolution and survey of different tech-

niques used in super resolution have been compared by Ouwerkerk and can be

found in [27]. In all SR problems, a fundamental global reconstruction constraint

is that the super-resolved image should yield the original low-resolution version

when the assumed imaging model is applied. The Iterative Back-Projection is one

such method widely employed for this purpose [6] [7].

The recently-emerged idea of Compressive Sensing (CS) theory provides a

different perspective in solving large underdetermined problems, exploiting spar-

sity as a prior [15] [16] [17] [18] [21]. This powerful and promising tool has proven

to be effective for a wide range of problems of this class, including sub-Nyquist

sensing of signals and coding, image denoising, and de-blurring [11] [15] [16]. Very

recently, [7] addressed the SR problem using a sparse representation-based algo-

rithm, reporting superior results. However, some fundamental questions are yet

to be answered, such as: whether CS paradigms can address SR problems? Is the

theoretical hypothesis of CS satisfied in the case of SR problems, and what are its

implications in practice? In this study, our goal is to holistically understand and

answer how effective are CS paradigms with respect to the SR problem. Since CS

has emerged as a powerful tool, it is of great interest and importance to address

the fundamental questions in CS for underdetermined problems like SR. Here, we

seek to understand and establish a relationship between CS and SR theories and

provide a better understanding of the role of sparsity priors and the properties of

the projection operator and dictionaries. In this study, the goal is to holistically
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understand and answer how effective are CS paradigms with respect to the SR

problem. Since CS has emerged as a powerful tool, it is of great interest and impor-

tance to address the fundamental questions in CS for underdetermined problems

like SR. Here,an attempt towards understanding and establishing a relationship

between CS and SR theories and provide a better understanding of the role of

sparsity priors and the properties of the projection operator and dictionaries is

undertaken.

2.2 SR in a CS framework

For completeness, we first briefly review some necessary background about the

CS. Suppose a signal x ∈ <N is S-sparse with respect to a basis Ψ ∈ <NxN(i.e,

x = Ψα, ‖ α ‖0= S < N) we define its measurement as y = Φx, y ∈ <M , using

the projection operator Φ ∈ <MxN ,M<N. Then, CS says that x can be recovered

from y ∈ <MxN using a decoder ∆ that in involves solving either of the following

l1 minimization problems.

B.P. α̂ = argmin ‖ α ‖1 s.t.y = ΦΨα (2.1)

B.P.D.N. α̂ = argmin ‖ α ‖1 s.t. ‖ y− ΦΨα ‖< ε (2.2)

Eq.2.1 is Basis Pursuit (BP) and Eq.2.2 is the Basis Pursuit De-noising (BPDN)

approach [15]. Faithful signal recovery is guaranteed by any decoder ∆ pro-

vided M ≥ Cµ2(Φ,Ψ)SlogN , where C is a constant and µ(Φ,Ψ) is the coher-

ence between the pair of the measurement matrix and the sparsifying basis Φ,Ψ

[15],[16],[17],[18] and S being the sparsity of signal x and N being the dimension

of signal x. Here coherence is defined as,

µ(Φ,Ψ) = max
j,k
|〈φj, ψk〉|, φj ∈ Φ, ψk ∈ Ψ (2.3)

For the lowest number of measurements M to be taken for an optimal S-sparse

signal what is the best measurement matrix Φ ∈ <MxN?The answer is provided
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by the notion of Restricted Isometry Property (RIP) by Candes [15],[16],[17]. RIP

of order S is satisfied by ΦΨ with a constant δ ∈ (0, 1) if

(1− δ) ‖ x ‖2
2‖≤‖ ΦΨα ‖2

2≤ (1 + δ) ‖ x ‖2
2, x ∈ ΣS (2.4)

Here ΣS is the set of all S-sparse vectors x, (x = Ψα). A reconstruction

of x is possible from y = Φx using a CS decoder ∆ under the condition that ΦΨ

satisfies the RIP property of order 3S for some δ ∈ (0, 1).The error bound is given

by:

‖ x−∆(ΦΨα) ‖2≤ Cσs(x)1/
√
S (2.5)

Here σs(x)1: = inf ‖ x− z ‖1, z ∈ ΣS is the error of the S-term approximation to

x in l1 norm. For optimal reconstruction results,ΦΨ has to satisfy RIP of order S

given by [14],[15],

S = M/log(N/M) (2.6)

Another notion says that if the sparsity is bounded as

S ≤M/(Cµ2(Φ,Ψ)log(N/δ)) (2.7)

for a given coherence µ(Φ,Ψ) and a constant δ, then a decoder ∆ can perfectly

recover x with probability exceeding 1- δ. Thus, for a given pair Φ,Ψ , higher

the RIP (order S) (or equivalently lower the coherence µ(Φ,Ψ), better the recon-

struction (i.e., better reconstruction guarantee and smaller reconstruction error)

for any decoder ∆. In most CS problems, the basis Ψ is generally assumed to be

orthonormal (ONB), and the projection Φ is usually chosen as a random Gaus-

sian matrix as it possesses good RIP and is highly incoherent with most Ψ [15].

With the above knowledge we can map an SR problem in a similar way.We can

consider y to be a low-resolution image and x being the high-resolution image and

the projection matrix Φ may be a deterministic imaging model and the sparsifying

basis Ψ may not necessarily be an ONB but an Arbitrary Redundant Dictionary

(ARB) (denoted as D∈ <NxK ,K >>N).
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2.2.1 Problem Definition: SR based on CS

Before we address the questions on SR projection operator, dictionaries and CS

solvers, it is necessary to formally formulate the SR problem in a CS framework.

The SR problem is to recover the high-resolution image X back from a single or

multiple low-resolution images Yi,i=1,..J. In this analysis, we consider only the

case of a single input image (J=1). The low-resolution image Y is obtained from

the high-resolution image X, through the following image generation model,

Y = RLpX = LX,X ∈ <PxQ, Y ∈ <P̃ xQ̃ (2.8)

where Lp is generally a low-pass operator and R is a decimation operator that does

the downward sampling of X. And U= P/P̃ (=Q/Q̃) is the decimation factor, and

we will call it simply the up-factor. The entire operation is linear in nature and

we represent it as a matrix operation L=RLp. Since Eq.2.8 results in information

loss, it is a challenging process of recovering the original image through the inverse

operation.Instead of solving the recovery problem for an entire image, the problem

can be split into number of small parts which we call the patch which is used

to recover original patch [7] with an additional constraint that the final image

obtained should result in an input Y when the model of Eq.2.8 is applied. Now,

if x ∈ <N is a 1-D representation of a small patch of X, we have an over-complete

dictionary D ∈ <(NK) that can sparsely represent x as,

x = Dα, ‖ α ‖0= S, S < K (2.9)

then, the low-resolution patch is given by,

y = Lx (2.10)

where x is projected using the low pass operator to obtain y , similar to a CS

measurement. Certain CS recovery conditions are to be satisfied Eq. 2.6,Eq.2.7,
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if the sparse vector α in Eq.2.9 can be recovered from the lower dimensional

measurement.

y = LDα (2.11)

Eq.2.11 is an optimization problem which can be solved either by Eq.2.1 or Eq.2.2.

A necessary condition to make sure that the final solution complies with the

imaging model Eq.2.7 [7] is to apply a global reconstruction constraint like back-

projection. In the next section, we present theoretical analysis of the projection-

operators and the dictionary.

2.2.2 Theoretical analysis of projection operator and redundant dictionaries

Our goal is to evaluate and understand the nature of a given pair of projection-

operator and dictionary, (L,D) in the context of SR and compare it with (Φ,D).

Again, we emphasize L is a deterministic projection operator and Φ is a random

projection operator and D is an overcomplete dictionary (ARB). Most of the CS

theories have been developed for sparse representations on ONBs, but recently

in [8], [19] attempts have been made to generalize these theoretical results on

sparsity/recovery constraints to any ARBs. For example, mutual-coherence µ of

2.3 is a good measure and can be relied on for evaluating tighter sparsity bounds

of a CS system with (Φ,Ψ) (ONBs). So we will resort to theoretical analysis of the

properties of the projection operator and the redundant dictionaries to understand

the sparsity bounds and its relation to the mutual coherence.

A. The L Projection Operator

An important property about L operator is its deterministic nature and frequency

discriminative nature since it preserves only the low pass information of the signal

x. Since L exhibits good RIP characteristics (CS property)(Eq.2.4) it can be

represented in the matrix form which is circulant in nature and it also satisfies the

property,li+1,j+u=li,j , where u:= N/M and i,j are row, column indices incremented

in modulo N arithmetic. While Φ is not frequency discriminative, it also preserves
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Figure 2.2: 2-D frequency response of a random projector (left) and a L.

all frequencies of a signal when subjected to a Φ operator.Fig. 2.2 visualizes the 2-

D frequency responses of the two operators. In this regard, we draw an interesting

connection to the results in [14] obtained for deterministic CS matrices.

Specifically, Theorem 3.4 of [14] states that the circulant matrix con-

structed from finite fields satisfies the RIP property of order S given by

S <
√
M.log(M/8.log(N/M)) (2.12)

and since L∈ <MN is a similar matrix, we may use Eq.(1.13) as an upper-bound.

Hypothetically, either considering L independently or in conjunction with an ideal-

basis, Eq.1.13 indicates a much inferior bound on sparsity compared to the case of

random operator required for optimal reconstruction. For example, if we consider

an ideal basis and an imaging model L, image patch y of M=9 (3x3 pixels), and

an original x patch of N=81 (9x9), then, the upper bound for sparsity is S<1.4 or

S=1 as opposed to S<9 for a random operator Φ (Eq.2.6). The upper bound on S

=1 confirms the fact that the image patch itself has to be the basis. But in reality,

such basis may not exist and we may need to resort to dictionaries D. Thus, the

sparsity bounds should be evaluated using joint properties of pair (L,D).

B. Redundant Dictionaries in SR

What is a good dictionary? This is the fundamental question which has been re-
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searched on in the recent years for various scenarios or goals (sparse-representation

/coding, recognition etc). A very naive over-complete dictionary is one whose

base-atoms are the element-type itself selected from random sampling of some

training data. In case of SR they are raw-image patches (these are simply called

random-sampled or RS). We have also seen recent attention on training algorithms

with a goal to obtain compact dictionaries [10],[11],[21]. In SR, the goal is not

sparse representation, but sparse recovery. In this section, our objective is to gain

insight on properties and performance of RS and trained dictionaries. Unlike in

ONBs, which provide a unique sparse representation, the first question is if unique

single sparsest representation exists for a system Eq.2.9. According to [19], if the

condition

‖ α ‖0= S < 0.5(1 +
1

µD
) (2.13)

is satisfied, then the sparse-representation α is unique and also the sparsest. From

a low-dimensional space with L, perfect-sparse-recovery of α requires much stricter

criterion to be satisfied,

‖ α ‖0= S < 0.5(1 +
1

µLD
) (2.14)

In practice, for most D (RS or well-trained), µD and µLD are almost close to 1 (see

Fig.2.3 ), which yields sparsity bounds no better than S=1. Thus, theoretically,

this means that optimal recovery is possible only if there is exactly one match

in the dictionary. Thus far, we may say this is an over-pessimistic demand that

does not give us understanding of aforementioned questions on the (L,D) pair and

different types of D.

C. Proposed Tools for Analysis of L, Φ and D

As we can see from the above analysis, there is a need to evaluate the joint prop-

erties of the (L, D) pair and also the mutual coherence evaluated for different

dictionaries may not provide complete information on their properties. Similarly
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Figure 2.3: Grammian of D, LD, ΦD for original dictionary D ∈
<81x1024(9x9)trained by [21].

Figure 2.4: GramH of D, LD, ΦD (p=2,4 bins)for original dictionary D ∈ <81x1024

(9x9)trained by [21].

for an ARB (D), complete reliance on for a stricter sparsity bound will always

be misleading, since D∈ <(NK) has K>>N. So, one may obtain similar µ for a

relatively well-conditioned D having fewer similar-atoms as well as a totally ill-

conditioned one with large number of similar atoms. Other options may include

relying on RIP-based on uniform uncertainly principle (UUP) [18]. Reasoning

similar to the case of coherence, RIP constants only give the worst case con-

ditioning of the dictionary, so are not completely reliable. Another notion is a

geometrical view point in [17]. Since none of the measures described above pro-

vide a clear description of the properties of the dictionaries, there is a need for

new method of analysis which provides insights into the nature of the dictionary

and its atoms and its collective influence on signal reconstruction. In this thesis,

in addition to coherence, we propose new methods to evaluate dictionary D or its
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projection OD matrix, (O is L or Φ), based on the Gram-matrix which is defined

as, G(D)=D̃T D̃ where D̃i = Di/ ‖ Di ‖2 (i.e., columns normalized by l2 energy).

Then, the coherence (µ) of the dictionary is redefined as,

µ(D) ∼= max1<i,j<K;i 6=jG(i, j) (2.15)

and takes the values in [0,1]. A 0 signifies least coherence (orthogonal column

vectors) and a 1 means highest (exactness). In the rest of the thesis, we will

resort to the following new statistics for analyzing D or OD (O ∼= L orΦ). (i)

Gram-Histogram: This is a histogram of µ defined as

GramH D,K, p ∼= hist(µ(Dp)), bins ∈ [0, 1] (2.16)

where Dp is the set of all sub-matrices of D formed by choosing p column support

from the set 1.K. There are KCp such possible elements. Thus, this is similar to

RIP evaluation, but additionally it provides statistics as to how well-conditioned

the base atoms are. For example, if p=2, then (16) evaluates the distribution

of coherence for all KCp pair-wise combinations of base-atoms. This can be

evaluated over B bins in the range [0,1]. More entries in the lower bins (near 0)

means that on a pair-wise basis, most atoms are highly uncorrelated. More entries

near 1 signify that many atoms are similar (ill-conditioned). If evaluated for OD,

it gives joint properties of (O,D). For p=2, (16) can be easily implemented by

simply plotting the histogram of Gram matrix G with diagonal explicitly made,

say -1 (/∈[0,1]). (ii) Gram-Member: This is another metric defined as

GramM D,T, p, B ∈ [0, 1] ∼= K̃ (2.17)

Here T≤K is a threshold, B is a bin in the range [0,1]. K̃ ≤K gives the number

of Gram members for bin B. The i-th base atom (column vector) Di is called

the Gram-member of bin B under threshold T, if the following is true: one can

find at least T sub-matrices in the set Dp involving Di, for which µ(Dp) ∈ B.
27



To explain this better, let us take an example of p =2, T=50 and dictionary D

of size K=1024. Now Dp is the set of all pair-wise combination of sub-matrices

and there are 1023 such pairs for a base-atom Di denoted as Dp,i. If there are

at least 50 (T) elements inDp,ifor which, µ(Dp,i) ∈ B, then, we declare Di to be

a member of bin B.We repeat this for allDi,i=1..K. The final result of GramM

of is simply the count of the number of members in bin B. Thus, if B near zero,

[0,δ) (for a small δ), GramM would provide the information about the number of

base-atoms, that maintain ultra-low correlation with atleast T other base atoms.

Greater this number, better it is. Similarly, for a B near one [1-δ,1] , GramM

should be as low as possible. Note that greater the T, stricter is the measure. If

the percentage of base atoms with ultra low correlation with atleast T other base

atoms is close to 100% then the dictionary exhibits excellent well-conditionedness.

GramM conveys more local information since it provides information regarding the

uncorrelatedness between the base atoms and GramH provides global information

on well-conditionedness of the dictionary D or the pair (O,D) as a whole. In

our analysis, we typically use p=2 and classify the coherence bins as [0, 0.1]

(best), (0.1, 0.3] (good), (0.3,0.8] (mid) and (0.8,1] (worst) for analysis of GramH.

Also, in case of GramM, we simply use bins in steps of 0.1. The measure of

well-conditionedness of a dictionary directly translates to a significant quality

improvement in the recovered/reconstructed image. With the theoretical analysis

in mind and the new tool set proposed, we now proceed to the experiments section.

This includes the experimental evaluation of projection operator and dictionaries

in terms of the coherence measures like GramM and GramH, and visual results

to corroborate the experimental evaluation .

2.3 Experiments and Discussion

A. Evaluation and Gram Statistics Validation of the L Projection operator

We consider an over-complete dictionary D with 90,000 atoms obtained by ran-
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Figure 2.5: GramM:LD and ΦD for various dimensions: 3x3, 4x4 and 6x6 and
original D with p=2 and T=30.

domly sampling the raw-image patches from training images. This random sam-

pled dictionary is trained using the Feature sign search (FSS) algorithm in [21]

to obtain a dictionary of size 1024. The Grammian (coherence) for D (9x9

patch size), LD and ΦD are shown in table of Fig.2.3. Clearly, this worst case

RIP/coherence measure is high for all cases and shows only marginal superior-

ity for Φ. Thus, we resort to Gram-statistics measures described earlier. In Fig

2.4, GramH measures (with p=2) are compared for (L,D) and (Φ,D) pair for

M=9 from original N=81. Clearly, D is far well-conditioned: 50 In Fig 2.5, we

present the GramM measures for (L,D) and (Φ,D) for various projection dimen-

sions (3x3,4x4,6x6), evaluated with p=2 and T=30. For a fixed up-factor, Φ curves

are superior compared to L (higher coherence bins have lesser Gram-members for

Φ than L).This trend is true for any up-factor. On the other hand, compared to

D, both LD and ΦD degrade as up-factor increases. Thus, in line with the theo-

retical results, these measures also show that, from a CS connection L is inferior

compared to Φ. Performance Evaluation: With this, we are now interested in un-

derstanding the practical implications of L in SR. We evaluate the performance by

devising experiments determining the distortion characteristics in super-resolving
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Figure 2.6: RMSE reconstruction curves L,Φ and R for various up-factors

image patches by different up-factors (Us). We selected multiple 9x9 patches xi

with varied texture information from multiple high-resolution test images. The

corresponding low-resolution patches yi were created assuming L to be a Gaussian

blurring kernel with cut-off frequency π/U, followed by a decimation U↓ (or R).

We recover the original patch by solving for α in 2.2 using BPDN 2.11. Fig. 2.6

shows the results of the experiment average RMSE curves for L and Φ operators

for various up-factors. Although the Φ does not have any semantic meaning in

SR, we use it to benchmark and understand L for reasons discussed earlier. From

theoretical perspective and Gram-analysis, as expected ΦD is better conditioned

than LD. However, this does not translate to superior performance as indicated in

Fig.2.7. In fact, from Fig.2.6, the L curve is better than Φ, especially for dimen-

sions lower than M=7x7. An intuitive reason is provided for this contradiction

explaining two cases which result from this. Since the patches of xi of natural

images do not occupy full nyquist range, we can say that x is band-limited to say

π/W, for some W=1(π being the Nyquist frequency).Suppose y ∈ <MM and x

∈ <NN and U = N/M, we have the following two cases:

• U>W. Assuming good transition characteristics, L preserves most of the
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Figure 2.7: Visual image results (a) Reconstructed 9x9 patches from 3x3 for L(left)
and Φ (right).Reconstruction of 9x9 from (b) 5x5 for L (left) Φ (right) and (c)
6x6 dimensions for L (left) Φ (right)

energy of the signal x is preserved in only M points occupying frequencies (0,

π/U). All the information in the range (π/U, π/W) is lost. While φ preserves

all the information (0,π) in M points, L does not waste any measurements

capturing frequencies above π/U. Thus when U is increased the RMSE of

estimated x̃ w.r.t x is much superior for L than φ, in the range (0, π/U),

leading to better overall-RMSE. Since the problem being dealt with here is

undetermined, recovering all frequencies seem to be much more harder than

recovering only frequencies which L has not captured which is much lesser

than what φ has captured.

• U<W, then the probability of perfect recovery for L is high. Visual results

in super-resolving Lenna image for U=3 is presented in (a) of Fig.2.7, which

corroborate these facts. The left image is for L and the right for φ. Also

see (b) of Fig.2.7 and (c) of Fig.2.7 showing high-texture section (recovery)

for other up-factors. This is in line with the fact that L preserves all of the

energy within U while Φ tries to preserve all of the energy within W. As

the up-factor increases Φ closes in on L. Now that the properties of L are
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evaluated experimentally, we focus the next subsection on the properties of

D in SR.

B. Experimental evaluation of redundant dictionaries

We resort to Gram statistics for evaluation of dictionaries. The high patch dictio-

nary D and low patch dictionary LD are evaluated for trained dictionaries like the

feature sign search (FSS), KSVD and non-trained dictionary like the randomly

sampled (RS) dictionary.

Gram Statistics Validation: We consider the two categories of Ds of size

1024 for N=81 (9x9) high-resolution patches (i) RS (evaluated for various trials

of random sampling). (ii) Two examples of trained dictionaries: Feature-Sign-

Search (FSS) [21] and K-SVD [10], [11]. Fig. 2.8 provides the GramH measures

for p=2 and four bin ranges for these types of Ds and their low dimensional ver-

sions LD. Clearly, for the lower coherence bin (0-0.1) in D, the statistics indicate

that training reduces the correlation among base-atoms. FSS is overall better

conditioned than KSVD with 50% against 38% of pair-wise correlations respec-

tively, while RS has 30% in the (0-0.1) region. On the other hand, the worst

case correlations in the region (0.8-1) of FSS is very low (0.05%), but significant

(0.33%) for RS. KSVD dictionary has higher value in this bin compared to RS.

The general conditioning of LD for all types of D degrade (see Fig 2.8). For a

3x3, the numbers maintain similar trends across FSS, KSVD and RS dictionaries.

The number of worst-case correlations increases to a quite high of 6.5% in RS,

while for the trained they remain relatively low. Fig. 2.9 compares the GramM

measures of FSS and RS (D and LD for 6x6 and 3x3). Clearly, the curves indicate

that FSS has far superior conditioning than RS both in high and low-resolutions

dictionaries D and LD.
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Figure 2.8: GramH (p=2, 4 bins) for various types of dictionaries D of length
1024 (9x9 patches) and two categories: RS (average for various RS), and trained
(FSS and KSVD). Also presents GramH for LD (3x3)

C. SR: Solution Space and CS Solvers

We gained insights on the role and properties of dictionaries in SR in the previous

sub-section. This sub-section bridges understanding of some important questions

related to sparse solution and recovery in SR: (i) The role and constraints on spar-

sity; (ii) Solution space and CS solver; (iii) Is uniform sparse-recovery possible or

important? This section reviews some of the preliminary experiments conducted

previously by [38]. Also a modified results of their experiments are presented and

analyzed in this section. Theoretical and Practical Connections: For a dictionary

satisfying 2.13, the BP problem 2.1 is guaranteed to find the unique sparsest so-

lution [19]. However, for actual SR dictionaries discussed in the previous section,

a BP solver like l1-magic has stability issues due to the size and poor conditioning

properties of the dictionaries (compared to ONBs) In practice, the unconstrained

version of BPDN 2.2 cast as the following

α̃ = argmin τ‖ α ‖ 1 + 0.5 ‖ y− ΦΨα ‖2
2 (2.18)

is a suitable choice for the CS decoder. Here τ is a regulariser that controls the

tradeoff between sparsity and fidelity. In this subsection, we study and provide
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Figure 2.9: GramM (17) with p=2 and T=30 for FSS and RS.

Figure 2.10: RMSE performance curves for various up-factors for the Random
sampled(RS) and trained(FSS,KSVD) dictionaries. This curve is an average eval-
uated over various patches. Clearly, FSS and KSVD dictionaries perform better
than RS.

interesting insights on the question how necessary is a sparse solution for SR? and

What is a suitable value for the τ? Accordingly we are interested in the following

zones of operation [19], based on t, when solving 2.18

• (i)For τ=0, (2.18) reduces to an l2 problem.

• (ii)For τ=0+ (positive but arbitrarily close to 0), the unique optimum point

of (2.1) or BP coincides with (2.2) or BPDN under certain conditions [19].
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• (iii)For τ in the interval, (0+,τmax)where, τmax=‖ (LD)Ty ‖∞ the solutions

of BP and BPDN diverge.

As τ increases, the sparsity of the solution improves at the cost of fidelity. We

want to study the behavior of the CS solver in various ranges of the regularizer

t in terms of sparsity and we define these important aspects on sparse solution:

Uniform Sparse-Representation:Sparse representation problem is defined in 2.9 is

recalled here,

x = DαH , ‖ αH ‖0= S, S < N (2.19)

and the sparse analysis is achieved by solving 2.18. We represent τ values of 2.18

as follows,

τ = β ‖ (D)Tx ‖∞, β ∈ (0+, 1) (2.20)

With τ value set with a β as per 2.20, we call the sparse coefficient recovered by

2.18 as αHβ.The support of αHβ is a set Tβ of size Sβ chosen from 1K (where K

is length of D). We say that the BPDN decoder performs uniform sparse repre-

sentation, if Tβ1 is a subset of Tβ0 with Sβ1 ≤ Sβ0, for any β1 > β0. This is the

same best Sterm sparse approximation observed as β or τ increased. Uniform

Sparse-Recovery: In SR what is important is sparse recovery. This involves (see

2.10), solving for αL

y = LDαL, ‖ αL ‖0= SL, SL < K (2.21)

by BPDN and form an SR patch as x̃ =DαL. The equivalent τ values in solving

the system of (2.21) is again defined similar to (2.20), except that D is replaced

by LD and x by y. Now uniform sparse recovery happens when the support of

αLβ is a subset of that of αHβ (again best S-term approxiation). We are interested

in analyzing such aspects to understand the sparse SR solution space.

D. Operational Characteristics in SR

First, we perform an experiment to show the optimal zones of operation for an
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acceptable reconstruction in SR.For an up-factor of 3 the reconstruction fidelity

and the corresponding sparsity is determined(both in (2.19) and (2.21)) for var-

ious τ values for an RS dictionary. Fig.2.11 shows the related results. We find

that the best zone of reconstruction is for a range of τ (from 0+ > 0) (shaded

region Fig.2.11). Now as we can see there is hardly any change in the fidelity with

changes in sparsity. Now this can be termed as Relaxed Sparsity Zone where

the constraints of sparsity is of reduced significance. Similar trends are observed

even with trained dictionaries and hence the plots are eliminated. Referring to

the dotted curve of Fig.2.11 (sparse-representation problem of 2.19), we see that

as τ increases, the RMSE degrades, while sparsity increases. The SR or sparse-

recovery of (2.21) can perform no better than this dotted RMSE curve, (it acts

as the lower bound). However, interestingly, in relaxed sparsity zone, for a wide

range of τ , the recovery-performance (2.19), has stable and constant RMSE, in-

dicating that striving for sparsity is not necessary or significant. A threshold is

set to determine the impact of coefficients on sparsity. Hence only significant

coefficients above this threshold are taken into account while plotting curves in

Fig.2.11. A threshold is set to eliminate the smaller non-zero coefficients which

might not strongly contribute towards sparsity. Note that the sparsity for re-

covery in (2.21) is higher than that for representation (2.19) as can be seen in

Fig.2.11 and varies from 60 to 4-5 coefficients. On the other hand, striving for

sparsity as per theoretical bounds of S=1 for optimal recovery is meaningless as

the reconstruction heavily degrades. Further it was verified for τ = 0 or an l2

case, the results are not optimal either.

Next, we study the uniform sparse representation and recovery character-

istics for the three dictionaries. For the former, we simply solve (2.19) for various

values of τ and plot the percentage common support of αHβ between T(β0+) and

Tβ for all other β > 0+. For the latter, we simply plot the percentage common
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Figure 2.11: The curve shows reconstruction RMSE and sparsity as a function of
β (τ) which is a fraction of the interval [0+,‖ (LD)Ty ‖∞ ]. In the shaded zone
the reconstruction is stable across all sparsity S within the range. For the other
regions, even when S satisfies optimal reconstruction constraints of CS i.e.S=1,
RMSE suffers.

Figure 2.12: Evaluations of percentage common supports for uniform for sparse-
representation

support between αHβ and αLβ as a function of β(τ). Again similar to the case for

determining sparsity, a threshold is set and the coefficients above this threshold

are used for finding indexes of common supports. Common supports are calcu-

lated as indexes of coefficients which contribute strongly towards sparsity. At

different sparsity levels or at different t, common indexes with coefficient values
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Figure 2.13: Evaluations of percentage common supports for uniform for sparse-
recovery

Figure 2.14: Evaluations of percentage common supports for visualization of SR
solution space, with concentric regions representing relaxed sparsity zones.

above a specified threshold form the common supports αHβ between T(β0+) and

Tβ for the sparse reconstruction case and between αHβ and αLβ for the sparse

recovery case. Our observations are as follows: (i) Uniform sparse representation

is satisfied for all three dictionaries to a similar degree (see Fig.2.12). (ii) Interest-

ingly, uniform sparse recovery characteristics are much better and consistent with

increase in τ for RS (see Fig.2.13). The common support forms a monotonically

increasing curve for only RS. However, despite such clean characteristics (which
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Figure 2.15: Visual Results (a) for an up-factor =3

Figure 2.16: Visual Results (b) for an up-factor =3

are important in CS), we saw that RS performs inferior to trained counterparts.

This along with earlier discussions on sparsity/relaxed sparsity zones corrobo-

rates the fact that in SR, uniform sparse recovery is not important and does not

guarantee better results unlike in conventional CS using ONBs.

Finally, from these discussions, we visualize the solution-space in SR prob-

lems (see Fig. 2.14). As shown in Fig.2.14, it consists of concentric regions of

sparse solutions yielding constant MSE also referred to as relaxed sparsity regions

with sparsity being relaxed as we move outwards from central black region to
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Figure 2.17: Visual Results (c) for an up-factor =3

Figure 2.18: Visual Results (d) for an up-factor =3: Top left in each of
(a),(b),(c),(d) is the original image. Top right in each of them is generated using
Feature Sign Search(FSS) dictionary, bottom right in each of them generated us-
ing KSVD dictionary and bottom left in each of them generated using Randomly
sampled(RS) dictionary. When we observe closely we can see how there is slight
degradation in image quality as we move clockwise from top left to bottom left.

outer brown region. These points may have widely varied sparsities, with or with-

out common supports (i.e. need not be best S-term subsets), but yet yield similar

reconstruction. For a sparse-recovery case, on varying τ , the decoder remains in

the same region as shown through red arrow in Fig. 2.14 and is not promoted to

a superior MSE region. But for a sparse-representation case (2.19), the decoder
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follows the blue arrow, traversing across the constant MSE regions with increase

in τ .We will now discuss on the visual results obtained from random sampling(RS)

and trained(FSS and K-SVD) dictionaries for a set of images.

2.4 Visual Results

We now present a set of visual results to further illustrate some of the comparisons

reported in the previous discussion. Fig. 2.18 shows visual results for different

images for an up-factor 3. Images have been scaled for display reasons. Clearly

we can see FSS and KSVD (trained) dictionaries outperform RS(un-trained) dic-

tionary. Some important characteristics to note are:(i) Consistency of solution

in whole-image (patch neighbor) is far superior for the trained dictionary case.

This is due to the fact that the probability of solver picking an unambiguous base

atom from a trained dictionary (FSS, KSVD) is higher compared to that of a

randomly sampled dictionary (RS). This is because of the well conditionedness of

a trained dictionary in terms of its uncorrelated base atoms. Discontinuity does

not appear when an overlap constraint (smoothness constraint [7]) is imposed on

the solver while it picks a base atom from a trained dictionary. (ii) In RS, the

result shows local patch-wise discontinuities. Although these can be reduced by

applying smoothness constraints [7], RS will have artifacts which cannot be re-

moved by any type of smoothness constraints, because of reasons explained above.

(iii) As we can see from objective measurement of Fig.2.19, FSS performs slightly

better than the KSVD, and both FSS and KSVD perform much better than RS

dictionary. The reason can be attributed to the well conditionedness of the FSS

dictionary when compared to KSVD Tests were conducted on a wide variety of im-

ages using RS, KSVD and FSS dictionaries and a few results have been presented

here. The patch-wise discontinuities as can be seen in RS dictionary is because

of higher percentage of correlated base atoms in the [0.8 - 1] range tabulated in
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Figure 2.19: Average mean squared error over all patches for each of the images
shown in Fig 9. It can be noticed that trained dictionaries (FSS and KSVD)
perform better than randomly sampled (RS) dictionary.

Fig 2.8. Training reduces the percentage of correlation between base atoms and

minimizes the worst case correlation [0.8 1] range of Fig 2.8. The mean squared

errors were obtained for all 3 dictionaries with FSS performing slightly better

than KSVD dictionary. The worst case coherence plays a key role in determining

the ambiguity with which a solver picks a base atom. As we can see from Fig 2.9,

the untrained (RS) dictionary has higher correlated base atoms than its trained

(FSS) counterpart. This is directly seen in the mean squared values obtained in

Fig 2.10 as well as Fig 2.19, which is a clear indicator of inferior dictionary as in

the case of RS when compared to FSS. Also one more important observation is

the convergence of mean squared errors of trained dictionaries as the patch size is

increased from 3x3 to 9x9. This is due to the fact that when up-factor decreases

from 3 towards 1(i.e. moving from patch size 3x3 to 9x9) the ill conditionedness in

terms of the GramH measure of a trained dictionary keeps decreasing. Then the

GramH of LD will approach GramH of D of Fig 2.8.So clearly the trained dictio-

naries are superior to untrained dictionaries in terms of their grammian properties

as well as in terms of mean squared errors.
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2.5 Conclusions

We investigated various issues in SR within a CS framework. A strong relation-

ship between CS and SR was established and their underlying properties were an-

alyzed. The study, including its discussion and experimental illustrations, serves

to bridge some critical gap in knowledge of CS-based SR problems. We primarily

discussed on the following aspects of the problem: (i) Implication of deterministic

operator. The deterministic operator LD(joint properties of L and D) when com-

pared with random basis like ΦD yields superior performance in terms of lower

reconstruction error of high resolution image. As mentioned in previous section,

this is due to the fact that LD tries to preserve all energy within the downsampled

spectral range, while ΦD tries to preserve in the entire spectral range.(ii) Proper-

ties and performance of dictionaries. Trained dictionaries are effective in aiding

a solver to pick an unambiguous base atom for reconstruction than the untrained

counterpart. This is because of the compact nature of the trained dictionaries

eventually resulting in negligible redundancy in correlation between its own base

atoms as opposed to random sampled or untrained dictionaries. Thus trained

dictionaries result in lower reconstruction error than untrained dictionaries. (iii)

Grammian Analysis. GramM and GramH respectively bring out local and global

properties of the dictionaries. These properties can be analyzed to evaluate the

reconstructive capability of trained and untrained dictionaries. (iv) CS solvers

and solution space, with implications on sparsity, uniform sparse recovery in SR.

As we could observe from the experiments, sparsity is not a necessary criterion un-

like in conventional CS methods and uniform sparse recovery may not necessarily

guarantee better reconstruction results as discussed in operational characteristics

in SR Obviously, these understandings will provide design guidelines in designing

an SR system based on the CS framework. Specifically here we emphasize the

fact that theoretical study cannot provide tighter bounds or informative conclu-
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sions on sparsity in sparse recovery as opposed to those obtained in the sparse

reconstruction case. Thus sparsity is not a necessary criterion unlike in formal

CS methods. These analyses have also provided us with some potential future

directions to explore on other aspects in SR. Since CS involves theoretical analy-

sis on sparse representation based schemes, new techniques for analysis on sparse

recovery methods in CS need to be investigated. Theoretical analysis on funda-

mental issues like optimal set of measurements required for sparse recovery for a

given up-factor needs to be understood. This should also consider the determin-

istic down projection model L. We note that there are other important aspects

of SR, which should be considered. These include: (i) impact of non-CS priors

(e.g., feature space, directional smoothness priors etc); (ii) methods of training

the dictionary explicitly considering the properties of L; and (iii) the impact of

the size of the dictionary on the solution space. These will be among the future

efforts that would provide more insights into the properties of dictionaries and

the priors involved.
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Chapter 3

IMAGE CLASSIFICATION: A NEW FRAMEWORK BASED ON AFFINE

SPARSE CODES

Recent years have seen an explosion of work in the aread of object recognition

[38],[51],[61],[39],[40],[41]. Several datasets have emerged as standards in the com-

munity which include Coil [42],CSAIL [43],PASCAL VOC [44],Caltech-101 [65]

and Caltech 256 [49].These datasets have become progressively challenging as

the datasets have consistently saturated performance. The Caltech-101 dataset

consists of 9144 images of cars, motorcycles,airplanes,faces etc.The MIT-CSAIL

database has more than 75000 objects labeled within 23000 images shown in a

variety of environments.The PASCAL VOC has around 21,738 images with 20

classes. Caltech-256 has around 30607 images with 257 classes. Image databases

are an essential element of object recognition research. They are required for

learning visual object models and for testing the performance of classification,

detection, and localization algorithms. Fig. 3.1 shows some of the sample images

from Caltech 101 and Caltech 256 dataset. Caltech 256 is a harder category with

more classes and more images than Caltech 101. Due to the variability associ-

ated with poses, orientations and some level of occlusion and clutter along with

non-class specific data such as background images, Caltech datasets are one of

the harder datasets for achieving high classification and detection accuracy. In

this chapter a novel method for extracting unique features representable in a high

dimensional space is proposed. In addition to this a new method of representing

these unique features through sparse representation is discussed along with the

use of a good classifier such as AdaBoost. We start with the necessity of the

proposed method and introduction followed by detailed analysis and experiments

followed by conclusions.
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Figure 3.1: Sample Images from Caltech 101 and Caltech 256 dataset.

3.1 Necessity for Image Classification

Images in general are captured under a diverse set of conditions. An image of

the same object can be captured with varied poses, illuminations, scales, back-

grounds and probably different camera parameters. The task of image classifica-

tion then lies in forming features of the input images in a representational space

where classifiers can be better supported in spite of the above variations. Existing

methods have mostly focused on obtaining features which are invariant to scale

and translation, and thus they generally suffer from performance degradation on

datasets which consist of images with varied poses or camera orientations. Here

we present a new framework for image classification, which is built upon a novel
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way of feature extraction that generates largely affine-invariant features called

affine sparse codes. This is achieved through learning a compact dictionary of

features from affine-transformed input images. Analysis and experiments indicate

that this novel feature is highly discriminative in addition to being largely affine-

invariant. A classifier using AdaBoost is then designed using the affine sparse

codes as the input. Extensive experiments with standard databases demonstrate

that the proposed approach can obtain the state-of-the-art results, outperforming

existing leading approaches in the literature.

3.1.1 Introduction

Image classification has seen significant development in recent years, with new

approaches ranging from bag-of-features-based visual vocabulary generation [45]

and spatial pyramid matching (SPM) [51] to the most recent locality-constrained

linear coding (LLC) [58]. In general, naturally-captured images from various

sources are not restricted to fixed acquisition condition. This poses a challenge in

terms of associating invariant features to images of the same object under diverse

acquisition conditions. Many of the current state-of-the-art image classification

framework rely on a set of features which are largely scale and translation in-

variant. Scale and translation invariant features generally work well for objects

with similar poses or in cases where similar features for an object class can be

generated by normalizing the pose. But these features may not be discriminative

enough when the images involve a wide range of pose variation.

The SPM method [51] formulates the image classification problem in terms

of the global non-invariant representation by aggregating local features over dif-

ferent subregions at different scales. This method is effective only when objects

involved undergo spatial translation. A non-parametric nearest neighbor classifier

[63] obtained good classification performance based on nearest neighbor distances

on local image descriptors. But this method is only scale-invariant. Recently
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sparse-coding-based SPM method was found to be effective in obtaining promis-

ing results on the Caltech datasets [59]. The main idea was the use of sparse codes

to obtain discriminative features which could be classified by a classifier such as a

linear SVM. The same authors further improved on the performance through the

use of LLC, reporting state-of-the-art classification performance on the Caltech

101, the Caltech 256 and the PASCAL datasets [58]. Again the features used

in this method were only scale and translation invariant and features would lose

their discriminative ability under large pose variations.

Various image categorization datasets such as the Caltech and the Visual

Object Class (VOC) datasets have widely varied poses/orientations. This poses

a challenging task of obtaining unique features which are discriminative in nature

and also largely invariant to common variations including scale, translation and

(both in-plane and out-of-plane) rotation. Assuming the commonly-used affine

model for image transformation, the problem is then one of finding affine-invariant

features. Techniques for image matching using affine transform (e.g., [56]) can be

used to generate affine-invariant descriptors. However, such descriptors directly

generated from raw image patches are often not discriminative enough on their

own. This demands new ways of extracting discriminative features from the raw

affine-invariant descriptors. Further, images from multiple classes may have sim-

ilar appearance, and hence the features, even if being discriminative, may not be

sufficient to clearly distinguish the images beyond reasonable doubt.

Aiming at addressing the above challenges, in this thesis we present a new

framework for image classification, which is built upon a novel way of feature ex-

traction that generates largely affine-invariant features called affine sparse codes.

This is achieved through learning a compact dictionary of features from the set of

raw affine-invariant descriptors computed from the input images. Then a classifier

using AdaBoost is designed using the affine sparse codes as the input, further im-
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proving the separability of the classes by assigning different set of weights to each

of the classes adaptively. We evaluated the proposed framework and algorithms

based on two commonly-used datasets: Caltech 101 and Caltech 256. Compar-

ative study of the experimental results has shown that the proposed method is

able to outperform existing state-of-the-art in the literature.

3.2 Proposed Approach

In this section, we present the proposed approach towards image classification.

The proposed method relies on a combination of three key techniques to achieve

the desired invariance and accuracy: (1) Exacting affine-invariant raw descriptors

from the input images using a simplified Affine-Scale invariant feature transform

(ASIFT) algorithm [56]; (2) Developing a novel way of extracting discriminative

features through first learning a compact dictionary from the raw descriptors

and then perform sparse coding with the dictionary; (3) Building a classifier

using AdaBoost to maximally exploit the compact affine sparse codes in final

classification. The implementation of the proposed method involves the following

logical steps:

1. Obtain ASIFT features for the given input images;

2. Obtain a compact codebook from the dense ASIFT descriptors;

3. Use sparse coding for extracting coefficients from the ASIFT descriptors

under the codebook;

4. Select the best descriptor for each spatial region on the basis of minimum

error sparse codes;

5. Max pooling of the sparse feature codes across finer subregions;

6. Use a classifier based on AdaBoost for training and testing the affine sparse

codes.

We describe the different steps of the algorithm in detail in the following sub-

sections
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Figure 3.2: A few examples of Caltech 101 and Caltech 256 dataset showing
different poses and orientations in images.

3.2.1 ASIFT: An Overview

SIFT method combines the idea of simulation and normalization [53]. Since scale

changes result in blurring of the original image, it cannot be normalized. SIFT ob-

tains invariant features by simulating zoom across different scales. The translation

and spin parameters are normalized. In general a camera model involves 6 pa-

rameters namely scale, translation (vertical and horizontal), rotation, latitudinal

and longitudinal camera axis parameters. Any affine map (without translation)

involves transformation through the matrix given by

A = λ

cosψ − sinψ

sinψ cosψ


t 0

0 1


cosφ − sinφ

sinφ cosφ

 (3.1)

where λ > 0, factor t is responsible for the tilt involved, and ψ represents camera

spin and φ ∈ [0,π). As with SIFT, ASIFT also normalizes translations and spin

but it also involves simulation of camera axis parameters and the scale (zoom)

parameter.

A smaller dataset like Caltech 101 has large inter-class variations while a

much larger dataset like Caltech 256 has large intra-class variations in addition

to the inter-class variations. Large intra-class variations along with many similar

inter classes put a constraint on how features can be obtained which can be

separated in high-dimensional space such that objects belonging to the same class
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Figure 3.3: A few examples of Caltech 101 and Caltech 256 dataset showing
similar appearance among objects belonging to different classes.

are easily differentiated from other objects of similar classes. A simple example

is shown in Fig. 3.2 where an object belonging to the same class has widely

varied poses/orientations and scales. These images have different discriminative

features and they need to be mapped onto a uniquely representable discriminative

feature space. This example illustrates the necessity of a feature transform which

is invariant not only to scale but also to varied poses and orientations. While

another example in Fig. 3.3 shows objects belonging to different classes which have

similar appearances. This makes it extremely difficult to obtain good classification

performance on classes with similar features. This example indicates the necessity

of a classifier which can discriminate classes with similar features by assigning

different weights to them and generating multiple hypothesis.

Images undergo affine distortion caused by change in the optical axis orien-

tation as viewed from a frontal position. These distortions can be charaterized by

the latitude and longitude camera parameters φ and θ. The longitude parameter

also known as φ can be simulated by rotating an image about the horizontal axis

viewed from the frontal position. The latitude parameter also known as tilt which

is inversely related to cosine of the angle θ can be simulated by performing di-

rectional t-subsampling defined in [56][60]. The ASIFT framework defined in [56]

experimentally provides a set of 6 different tilts performed on a finite number of

rotational angles φ. Since the image datasets considered comprise of data where
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there are no images rotated greater than 90 degrees in the horizontal and vertical

axes, we restrict ourselves to a maximum of 4 tilts and corresponding different

rotations. So the algorithm in simple terms can be explained as follows:

1. Obtain tilt factor t =
√

2
i

where i = 1,2,3,4

2. Obtain φ for each tilt factor t given by k∗72
t

where k = 1,2,3,... such that

k∗72
t

< 180◦ .

3. Calculate the affine transform of the input image for all tilts t and rotations

φ .

The tilts t = 1
cos θ

correspond to the latitude angle θ and the sampling

range follows a geometric series given by 1, a, a2, · · · an. Experimentally it has

been found that setting a =
√

2 provides a good range for performing various tilts

[56]. The longitude angle φ for each tilt is sampled accordingly so as to follow

an arithmetic series given by 0, b
t
, · · · kb

t
where b = 72◦ is a good choice and k is

such that kb
t
< 180◦. A set of affine transformed images are obtained using the

above method. Dense SIFT descriptors are obtained for each affine transformed

image. These dense ASIFT descriptors form the input to the dictionary learning

algorithm as well as for the formation of sparse descriptors.

3.2.2 Codebook formation and sparse descriptor generation

The features extracted from ASIFT correspond to a large set of dense descriptors.

There exists a lot of redundancy in the descriptors obtained. The most relevant

descriptors among them need to be picked. In order to achieve good classification

performance we need to generate similar codes for descriptors belonging to the

same class and they also should be able to distinguish themselves from descriptors

belonging to other classes. Such codes are obtained through sparse representation.

This necessitates the need for a prior learned dictionary for which we propose an

online learning algorithm. Consider a dictionary D of K basis atoms and dense

52



features F, then the dense features can be uniquely represented in a dictionary D

through sparse representation given by

α ∼= argminα∈<K

1

2
‖ F−Dα ‖2

2 +λ ‖ α ‖1 (3.2)

Under mild conditions the solution to the system is unique. With this

background we will consider the codebook formation step.

The ASIFT descriptors obtained are of the order of 106. A batch processing

based scheme like [64] would require huge amount of memory and also would

require lot of computations to obtain accurate representation of the large data

features. Thus we resort to an efficient online dictionary learning mechanism.

Recently an online dictionary learning scheme of [54][55] details the efficiency

of stochastic gradient approximations. For large datasets the speed and memory

requirements would be huge and it would be impractical to use a batch processing

based optimization technique.

The codebook generation algorithm involves two important steps. The first

step is the sparse coding step which involves finding the coefficients which can ap-

proximately represent the input features through a dictionary. The second step

is dictionary updating which involves updating the base atoms of the dictionary

through coordinate descent method with warm restarts. Once the compact dictio-

nary is obtained, the dense ASIFT descriptors can be represented in a dictionary

basis through sparse coefficients. The l1 sparse coding problem can be cast as

Eqn. 3.2. This problem also known as basis pursuit or Lasso has been quite suc-

cessful in l1-decomposition problems. Since there are two parts in the equation,

namely the least squares part and the l1 penalty part, they can be individually

optimized keeping the other one fixed. It is well known that a penalty such as l1

will lead to a sparse set of coefficients α. We also performed experiments on the

sparse coding problem with separable constraints. In this method we write the
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Figure 3.4: Plot of error between original and reconstructed features for a few
classes

equation with separable positive and negative constraints. It is given by

α ∼= argminα∈<K

1

2
‖ F−D+α+ +D−α− ‖2

2 +λαT+1 + λαT−1

s.t α+, α− ≥ 0 (3.3)

Eqn. 3.3 is again a convex optimization problem which can be solved using

coordinate descent method. Coordinate descent methods are fast and has been

shown to converge to a stationary point of the cost function with probability one

[48].

Experiments have been conducted on features using the K-nearest neigh-

bours based LLC method, the Lasso method and the coordinate descent method.

Fig. 3.4 shows the average squared error over all dimensions of the input features.

In the plot, only LLC and Lasso methods have been shown and the errors have

been plotted for 30 of the 257 classes of the Caltech 256 dataset. The errors

obtained using coordinate descent method (not shown in plot) are comparable

with the Lasso method and both of these methods have considerable gain over

the K-nearest neighbor based LLC method. One of the reasons why coordinate

descent method performs better than others is because of the nature of dictionary

updates in the online learning mechanism. Since similar mechanisms are used in

both the cases, the codes obtained are much closer to the input features.

The aforementioned algorithm for online dictionary learning is summarized

below:
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Algorithm 2.1

Online codebook generation for obtaining sparse codes

Input : Features F ∈ <MxN , Initial Dictionary

D0 ∈ <MxK , Iterations R, λ ∈ <

(regularization/sparsity parameter)

Output: Dictionary D ∈ <MxK

1 : P0 ←0,Q0 ←0

2 : for i = 1 to R do

3 : Draw samples f ∈ <M from F

Sparse coding step using LASSO

4 : αi ∼= argminα∈<K
1
2
‖ fi −Di−1α ‖2

2 +λ ‖ α ‖1

5 : Pi = Pi−1 + αiα
T
i

6 : Qi = Qi−1 + fiα
T
i

7 : Calculate D using coordinate descent updates from

Di−1and also Pi, Qi

Di
∼= argminD∈C

∑i
j=1

1
i
‖ fj −Dαj ‖2

2 +λ ‖ αj ‖1

8 : end for

9 : Return DR

3.2.3 Feature selection via sparse coding

ASIFT descriptors are obtained for various rotations and tilts. Thus we have

a multitude of dense feature descriptors for each spatial position of the image.

Feature selection involves selecting a subset of features from all the representative
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features. We use sparse coding to obtain the best feature for the given spatial

location among all ASIFT descriptors. Let Ak be the descriptor for the kth affine

transformed image and let fk be the descriptor obtained by sparse representation

of Ak, we select the best descriptor given by

Ak
∼=

L

min
k=1
‖ Ak − fk ‖2

2 (3.4)

where L is the number of affine transformed images on which SIFT descriptors

are formed. Thus among all the dense ASIFT descriptors for each spatial location,

only one of the sparse code gets selected. The assumption is that the low error

sparse codes are more likely to lead to informative and discriminative codes than

the ones with higher error. There are two advantages of picking the code with the

lowest error. First, the codes are the best representations of the input feature;

Second, when the error is small, the codes are sparser, resulting in larger coefficient

values. Larger coefficients inherently lead to selection of the closest basis from the

dictionary for the input feature during max-pooling. This method thus plays an

important role in spatial pooling where sparse codes are max-pooled. Spatial max-

pooling involves dividing the image into finer sub-regions and picking the largest

coefficient among the sparse coefficients obtained from the ASIFT dictionary. The

largest coefficient represents the weightage associated with the dictionary element

and uniquely represent the feature for the spatial region. Codes formed across

different sub-regions are now concatenated to obtain the final feature descriptors.

These feature descriptors form input to the classifier.

3.2.4 AdaBoost-based Classification

Feature extraction, representation and selection are necessary for formation of the

training and test sets for a classification algorithm. An efficient classifier would

make the best usage of the given training data set to learn the model and gener-
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alize it over the test data. Recognizing that boosting is one such general method

for improving the accuracy of any given learning algorithm [46][47], in this work,

we propose to use AdaBoost [62] in building the desired classifier. For the multi-

class case, the AdaBoost algorithm takes input features for all different classes

with different labels. It calls a weak learning algorithm repeatedly for a different

distribution set over different classes. The distribution for all classes represents

the weights associated with each sample belonging to each class. Initially the

distribution is uniform, and after each iteration the weak classifier returns a hy-

pothesis. The distribution is modified so as to give more weightage to misclassified

samples of each class. The error of the weak learner’s hypothesis is measured by

its misclassified samples on the distribution on which the samples were trained.

The weak hypothesis outputs the classification accuracy based on the distribu-

tion of the samples. In case of binary class, even if the error is greater than 1
2

the hypothesis ‘h(xi)’can be replaced by ‘1 − h(xi)’[46]. Hence theoretically we

can minimize the classification error as small as possible until overfitting occurs.

However, in the multi-class case this cannot be done because there cannot be an

equivalent of hypothesis ‘1 − h(xi)’in the multiclass case and hence we need to

stop continuing with generating the hypothesis once classification accuracy is less

than 1
2
.

With these, we summarize the actual implementation of the AdaBoost al-

gorithm used in this thesis:
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Algorithm 2.2

Implementation of Multiclass AdaBoost Algorithm of [46]

Input : Sequence of training and testing features

ftrain, ftest ∈ F with labels yi ∈ Y

1 : Initialize weights D1, D2, · · ·DN = 1
N

2 : for j = 1,2,...T

3 : Call weaklearning algorithm such as SVM with

distribution D; get back the model and hypothesis hj

4 : Error over D : εj =
∑N

i=1D
j
i [hj(xi) 6= yi]

5 : If εj >
1
2
terminate loop

6 : Using model obtain testing hypothesis Hj

7 : Calculate βj =
εj

1−εj

8 : Calculate weights Dj+1
i = Dj

iβ
1−[hj(xi)6=yi]
j

9 : end for

10 : Output final train hypothesis

hT (F ) = argmaxy∈<Y

∑T
j=1 log( 1

βj
)[hj(F ) = y]

11 : Output final test hypothesis

HT (F ) = argmaxy∈<Y

∑T
j=1 log( 1

βj
)[Hj(F ) = y]

3.3 Experimental Results

The experiments were performed on the Caltech 101 and Caltech 256 datasets.

We used only ASIFT descriptor for all the experiments. The dimension of each

ASIFT descriptor is 128. The set of descriptors of the order of 106 are trained

using the online dictionary learning mechanism to obtain a dictionary of size 1024.
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ASIFT descriptors generated from images taken only from Caltech 256 dataset

were used for training a common dictionary which was used for sparse descriptor

generation for both Caltech 101 and Caltech 256 dataset. The best affine sparse

descriptors obtained after feature selection are max-pooled across 4x4,2x2 and

1x1 scales to obtain the final feature descriptors. The max pooling is obtained by

selecting the max of the sparse codes obtained across different sub regions. These

codes are now concatenated to obtain a final feature vector which is sparse.

3.3.1 Results with Caltech 101

Table 3.1 shows the results obtained for the Caltech 101 dataset. Caltech 101

dataset consists of 9144 images which are divided among 101 object classes and

1 background class. As we can see from Table 3.1, even for a small training

size the classification accuracy is comparatively higher than other methods. The

classification performance without the background class for train size of 30 is

87.72%. The percentage accuracy for various classes is illustrated in Fig.3.5 and

Fig.3.6. As we can see from Fig.3.5, a few of the classes achieved 100% accuracy.

In fact a total of 8 classes achieved 100% accuracy. We also provide a few examples

with accuracy less than 25%, shown in Fig. 3.6. As expected, the background class

is one among them since there are no specific features which are discriminative and

hence leading to misclassification. The other cases includes cougar body which was

in majority classified as leopard, and crab as crayfish. These are typical examples

of classes which are extremely similar in nature and are hard to classify even

with the most discriminative features. Other factors include the camouflaging of

images with the background and occlusion. Over 70 classes achieve an accuracy

of 50% or higher. Only 5 classes had low accuracy of 25% or less.

Experiments on classification performance with and without AdaBoost was

also carried out. This is illustrated through the use of another classifier such

as SVM. Table 3.2 illustrates the performance of a classifier such as SVM with
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Gerenuk Accordion Skate Sunflower Umbrella

Acc-100 Acc-100 Acc-100 Acc-98.8 Acc-98.3

Figure 3.5: Results of Caltech 101 dataset showing some selected classes with high
accuracy.

Background Beaver Mayfly crocodile Crab

Acc-13 Acc-18.9 Acc-22 Acc-23 Acc-23.5

Figure 3.6: Results of Caltech 101 dataset showing some selected classes with low
accuracy.

Table 3.1: Caltech 101 dataset classification results

Training size 5 10 15 20 25 30
Zhang[61] 46.6 55.8 59.1 62 - 66.2

Lazebnik[51] - - 56.4 - - 64.6
Griffin[49] 44.2 54.5 59.0 63.3 65.8 67.6
Boiman[63] - - 65.0 - - 70.4

Jain[50] - - 61.0 - - 69.1
Gemert[57] - - - - - 64.16
Yang[58] 51.15 59.77 65.43 67.74 70.16 73.44

Ours 66.13 73.09 78.38 78.50 82.36 83.28

Note: ’-’ indicates unavailability of results

linear kernel on Caltech 101. Similarly, Table 3.4 illustrates the same for the

Caltech 256 dataset. Although [52] emphasizes on the effectiveness of radial basis

functions as a kernel, we used a linear SVM kernel because of low computational

complexity involved in training. Using an SVM with linear kernel as a weak

learner, we obtained a classification accuracy of 79%. The training involved in case
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Table 3.2: Performance of SVM and AdaBoost on the Caltech-101 dataset

Training size 5 10 15 20 25 30
SVM 63.4 70.1 73.6 73.9 77.3 78.9
AdaBoost 66.13 73.09 78.38 78.50 82.36 83.2

of AdaBoost was not intensive. Only three iterations were required to train the

weak classifier and obtain a hypothesis for each case. It is obvious that, without

involving intense training, there has been considerable performance gain achieved

by AdaBoost. The classes for which the performance was improved in each of

the hypothesis were the ones whose images were largely similar. The distribution

change was able to convert the misclassified samples to their respective class

without affecting the appropriately classified samples. We shall see how error

bounds affect the classification performance of AdaBoost in a later sub-section.

3.3.2 Results with Caltech 256

Table 3.3 shows the results for Caltech 256. This is a harder dataset with much

larger inter as well as intra class variations. There are a total of 30607 images

which are divided among 256 object classes and 1 background class. Fig. 3.7

provides accuracies for a few of the classes in Caltech 256. The dictionary used in

the sparse descriptor generation consists entirely of images only from Caltech 256

dataset. Experiments were carried out on online dictionary training using 40%,

80% and 100% of the images from Caltech 256 dataset. A common dictionary

trained from such images was used for feature descriptor generation in both Cal-

tech 101 and 256 datasets. There was no significant difference in the performance

obtained when the number of images used were reduced from 100% to 80% and

to 40% for Caltech 256 dataset. In fact, in case of Caltech 101 there was slight

increase in the performance when 80% and 40% images were used, which may

be because of overfitting issues when more number of images are involved. Table

3.5 shows some of the results obtained for Caltech 256 and Caltech 101 datasets
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Galaxy Motorbikes Car-side Faces

Acc-95.23 Acc-98.9 Acc-100 Acc-98.67

Brain Deskglobe Saturn Kayak

Acc-91.3 Acc-86.3 Acc-88.46 Acc-91.66

Guitar Chandelier Homer Mbike

Acc-83.3 Acc-73.9 Acc-51.3 Acc-63.6

Figure 3.7: Results of Caltech 256 dataset showing classes with different accura-
cies.

when different percentage of the images were selected for dictionary learning. For

Caltech 256 dataset in cases when 80% and 40% of images were used in dictionary

learning, it was made sure that the remaining 20% and 60% images would be part

of the test set. For the Caltech 101 case no such restrictions were involved for

training and testing. This is a clear indicator that a single dictionary generated

from a larger dataset would result in discriminative codes for both Caltech 101 and

Caltech 256. This again substantiates the discriminative power of the dictionary

for generating sparse codes which are largely affine-invariant.

3.3.3 Analysis of affine sparse codes

The affine sparse descriptors are discriminative in nature. The reason is attributed

to the sparse coefficients obtained which can be termed as features with minimum

intra class variance and maximum inter class variance. This comparison was
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Table 3.3: Image classification results for Caltech-256 dataset

Training size 15 30 45 60
Griffin[49] 28.3 34.1 - -
Gemert[57] - 27.17 - -
Yang[58] 34.36 41.19 45.31 47.68
Ours 39.42 45.83 49.3 51.36

Table 3.4: Performance of SVM and AdaBoost on Caltech-256 dataset

Training size 15 30 45 60
SVM 37.67 43.1 46.9 49.84
AdaBoost 39.42 45.83 49.3 51.36

Table 3.5: Performance comparison on images selected for dictionary learning

Training size 15 30 60
Caltech256(40%) 37.3 44.11 49.2
Caltech256(80%) 38.51 45.24 51.13
Caltech256(100%) 39.42 45.8 51.36
Caltech101(40%) 79.98 84.1 -
Caltech101(80%) 79.2 83.8 -
Caltech101(100%) 78.38 83.2 -

made with the SIFT LLC codes. Correlation statistics for affine sparse codes are

shown in Fig.3.9 and SIFT codes are shown in Fig.3.8. Fig.3.10 shows the sum of

correlations obtained for each class. The intra-class correlations obtained for the

same class of features represent within class correlations among feature vectors.

The inter class correlations represent the correlations between feature vectors

belonging to different classes. A random set of feature vectors were correlated

with a random set of vectors from all other classes. The number of random vectors

picked for each class was 30. The number of random classes picked to correlate

with the current class was 25. The four different colors shown in Fig. 3.10 shows

four different correlation statistic of the two different codes. As can be seen from
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Fig. 3.10, the red and green labels clearly indicate that affine sparse codes have

higher intra class correlations and lower inter class correlations than SIFT LLC

codes shown in blue and black labels respectively. This is also evident from the

scatter matrix plots of fig 3.8 and fig 3.9. The scatter matrix is a representation

of the pearson correlation coefficient statistic. The points represent the scatter of

each class with respect to every other class.

Correlations are divided into three different ranges as can be seen in Fig.

3.8 and Fig. 3.9. High correlation values, mid and low correlation values are

represented by black dots, red dots and green dots respectively. Black dots clearly

seen on the diagonal indicate the correlation among class features of the same

class. Red and green dots indicate correlations of each class feature with features

of other classes. Both sparse codes and LLC codes exhibit higher correlations

among features of same class. But sparse codes gain an upper hand in terms of

inter-class correlations. We can see denser red dots in case of LLC codes indicating

higher inter-class correlations than in case of affine sparse codes. Sparser red dots

lead to lower inter-class correlations and hence the features are discriminative with

respect to each other. Dense green dots obviously imply sparse red dots and hence

lower inter-class correlations. Thus the classification performance is improved by

the high intra class correlation and low inter class correlation between features.

This is quite evident from Table 3.1 and Table 3.3 for both Caltech 101 and

Caltech 256 datasets.

3.3.4 Analysis of error bounds of AdaBoost

Suppose that the weak learning algorithm such as SVM generates errors ε1, ε2...εT

where εj is defined as shown in Algorithm 2.2 and assuming εj ≤ 1/2, then error

ε =
∑
i ˜D

[hf (xi) 6= yi] (3.5)
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Figure 3.8: Plot of scatter matrix of all classes for LLC codes belonging to Caltech
101 dataset

Figure 3.9: Plot of scatter matrix of all classes for Sparse codes belonging to
Caltech 101 dataset

Figure 3.10: Plot of averaged correlations for LLC and Sparse codes

65



Table 3.6: Error bounds of AdaBoost algorithm on Caltech-101 and Caltech-256
datasets

Dataset ε1 ε2 ε3 εf
Caltech101 0.12 0.024 0.0024 1.4.10−3

Caltech256 0.263 0.081 0.0259 3.13.10−3

defined in [46] of the final hypothesis hf is bounded by

ε ≤ 2TΠT
j=1

√
εj(1− εj) (3.6)

We obtained error bounds for the Caltech 101 and Caltech 256 datasets as shown

in Table 3.6. These error bounds also illustrate the fact that beyond a certain

number of iterations the error of the final hypothesis would not accurately rep-

resent the training error because it would be less than 1
2

and that would be the

point to stop generating hypothesis.

3.4 Conclusion and Discussion

We proposed the affine sparse codes for providing compact and discriminative

features, which is then used in an AdaBoost-based classifier for the image clas-

sification task. Detailed analysis has been performed on the proposed approach,

using two standard test sets. The discriminative nature of the proposed feature

is due to the affine-invariance and sparsity-based learning. Sparsity allows us

to pick different number of basis atoms from the dictionary and hence leading

to low-error high-energy codes. Affine invariance is responsible for low intra-class

variance, thus making features of the same class clustered tightly around its mean.

With the proposed method, we have seen considerable gain in classification per-

formance over leading existing methods.

One of the drawbacks of the current method is the use of large number of

raw descriptors. A new method for efficiently discarding the dense feature points

before online dictionary learning needs to be incorporated. This will considerably
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reduce the amount of space required to extract each dense descriptor and storing

it before sparse coding. Also the existing method may not achieve good perfor-

mance on datasets involving multiple class labels in a single image. Thus features

extracted from the images should be such that multiple labels can be assigned to it

by a classifier. Thus we aim at addressing following issues in the future: Obtaining

considerably less number of ASIFT descriptors to reduce space requirements and

also better feature selection mechanisms to generate unique sparse features of low

dimensionality. Combining these with a classifier which has the ability to assign

multiple class labels to certain features would lead to much better classification

system.
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Chapter 4

EXPLORING K-SVD BASED IMAGE DE-NOISING USING MATRIX

COMPLETION

In many practical problems of interest, one would like to recover a matrix from a

sampling of its entries. In computer vision and image processing, many problems

can be formulated as the missing value estimation problem, e.g., image in-painting

[66][67][68], video decoding, and video in-painting. The values can be missing due

to problems in the acquisition process, or because the user manually identified

unwanted outliers. Image denosing has been an active research topic for many

many years. Since image noise is generally caused by image sensors, amplifiers,

ADC’s, or maybe even due to quantization, it is imperative that the noise should

be handled by an image denoising algorithm. Image denoising problem in general

can be modeled as one of a clean image being contaminated by additive white

Gaussian noise (AWGN), though modeling in terms of impulse or Poisson noise

is also common. In this thesis we introduce a new method for exploring K-SVD

based image denoising through low-rank matrix completion. This method incor-

porates dictionary formation and learning through sparse representation using

K-SVD. Before getting into the details of the new method an overview of Matrix

Completion is given.

4.1 Introduction to Matrix Completion and Related Work

Recently, Candes and Recht [69][70] showed that if a certain restricted isometry

property holds for the linear transformation of the constraints, the minimum rank

solution can be recovered by solving a convex optimization problem, namely the

minimization of the trace norm. Their work theoretically justified the validity

of the trace norm to approximate the rank [73]. Indeed, they proved that most

low-rank matrices can be recovered exactly from most sets of sampled entries even

though these sets have surprisingly small cardinality, and more importantly, they
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proved that this can be done by solving a simple convex optimization problem. To

state their results, suppose that the unknown matrix M ∈ <nxn is square, and that

one has available m sampled entries Mij : (i; j) ∈ Σ where Σ is a random subset

of cardinality m. [69] proves that most matrices M of rank r can be perfectly

recovered by solving the optimization problem

minimize ‖ X ‖∗ subject to Xij = Mij, (i, j) ∈ Σ (4.1)

provided the number of samples obeys

m ≥ Cn6/5rlog(n) (4.2)

for some positive constant C. In the next subsection, an overview of the algorithm

and the detailed experimentation are explained.

4.2 Overview of the Algorithm

In this study, the K-SVD algorithm is used in exploring the impact of matrix com-

pletion on image de-noising. Our study is based on the premise that an underlying

structure exists in the noisy image which can be carried over into a representa-

tional space where noisy pixels can be removed to obtain denoised patches which

are very close to the original. The algorithm assumes a partially denoised image

obtained from the K-SVD algorithm. Then the patches of the denoised image

are used in subsequent steps to obtain better patches in the reconstructed de-

noised image. The following steps outline the algorithm: (i) Obtain a partially

denoised image using any of the algorithms such as K-SVD based denoising. (ii)

Obtain randomly sampled patches from this partially denoised image across dif-

ferent scales to form different dictionaries. (iii) Train the dictionaries to obtain

a better compact representation for these randomly sampled dictionaries. (iv)

Collect randomly sampled patches from the noisy image and form a randomly

sampled dictionary; Train it using online dictionary learning algorithm to obtain

a compact trained dictionary. The only difference is that this is done across one
69



scale only. (v) Obtain the sparse representation for a noisy patch and use the

sparse coefficients to form a patch from all dictionaries generated from partially

denoised image. (vi) Use all the patches obtained from different dictionaries to

form a matrix. Remove pixels which are noisy through the means of comparing

the variances of partially denoised patch and sparse representation based patches.

In addition to this, thresholds are also determined using pixel difference between

K-SVD denoised patches and noisy patches. (vii) Subject this matrix with miss-

ing entries to matrix completion. The recovered matrix represents the completely

denoised patch. This process is repeated for all patches of an image.

4.2.1 Dictionary formation and learning

This is the first step of the algorithm. Once a partially denoised image is obtained

through K-SVD, this image is used for randomly sampling overlapping patches

to obtain a randomly sampled dictionary. For the experimentation, five different

sets of randomly sampled dictionary were used. In addition to these three scales

were used for forming these dictionaries. So in addition to the original scale two

downsampled scales were used to obtain randomly sampled patches. Thus we have

a total of fifteen randomly sampled dictionaries across three scales. Now these

dictionaries are trained using an online dictionary learning algorithm to obtain a

compact learned dictionary. These dictionaries are further used for representing

patches obtained from the noisy image. In addition to these fifteen dictionaries,

a noisy dictionary of randomly sampled patches is formed. This dictionary is

trained to obtain a noisy trained dictionary.

4.2.2 Sparse representation and noise removal

The next step is sparse representation. Given a noisy patch, a sparse representa-

tion of this noisy patch from the noisy dictionary is formed. These coefficients are

carried over to form an image patch from all the fifteen dictionaries. Now these

representation individually may represent a recovered image itself. But these may

70



not be the best denoised image that can be formed since each dictionary can at

best represent the original partially denoised patch itself. Hence an appropriate

method of noise removal is to be undertaken. Based on the variance of the image

patches a different threshold is set to determine pixel values which are far away

from partially denoised image. The noisy image is used to provide an input on

the variance of the patch and the variability of individual pixels to aid the pixel

removal step. Now these patches with noisy pixels removed are arranged to form

a large matrix.

4.2.3 Matrix completion of sparse representation based patches

Now the large matrix with missing entries obtained from sparse representation

is subjected to matrix completion. Matrix completion is a method of recovering

missing entries of a sufficiently low-rank matrix through nuclear norm minimiza-

tion. Mathematically this can be represented as a matrix with missing entries

Mj,k. The matrix recovery involves solving the minimization problem from the

incomplete set of observations Mj,k to obtain Nj,k given by

minN ‖ N ‖∗ s.t. ‖ N |Ω −M |Ω ‖2
F≤ #(Ω)σ̂2 (4.3)

where σ̂ is the estimate of standard deviation of the noise, which is obtained by

calculating the average of the variances of all elements ∈ Ω on each row where

Ω is the index set where M |Ω denotes the vector including elements in Ω only.

Instead of solving 4.3 directly a lagrangian version is solved which is given by

minN 0.5∗ ‖ N |Ω −M |Ω ‖2
F +µ ‖M ‖∗ (4.4)

which is equivalent to 4.3 for some value of µ by the duality theory. There are

many efficient algorithms available for solving the minimization problem of 4.4.

The fixed point iterative algorithm is used in this implementation and the detailed

algorithm is as shown below in Algorithm 1.
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Algorithm 1

Fixed point iterative algorithm for solving the minimization problem of 4.4

1.Set N (0) := 0

2.Iterating on i till ‖ N (i) −N (i−1) ‖F≤ ε Z(i) = N (i) − τMΩ(N (i) −M)

N (i+1) = Dτµ(Z(i)),

where τ and 1 ≤ τ ≤ 2 are pre-defined parameters, D is the shrinkage operator

defined as Dτ (M) = UΣτV
T and NΩ is the projection operator of Ω defined by

MΩ(i, j) =

 N(i, j), if(i, j) ∈ Ω

0, otherwise.

3.Output N := N (i)

4.3 Experiments and Visual Results

In our experiments fifteen patches reconstructed from the sparse representation

are chosen to obtain fifteen vectors which are stacked to form the large matrix.

The variance of the reconstructed patch was used as the threshold. In addition

to this, the pixel difference between the denoised K-SVD image and noisy image

was also used as an additional constraint. The threshold is used to compare

the pixel difference between the denoised K-SVD image and the dictionary based

reconstructed image. Based on this threshold the pixels are removed from the

reconstructed image. For matrix completion, the stopping criterion used is either

one of ε ≤ 10−5 or the maximum number of iterations 500 being reached, whichever

occurs first.

The final results are compared with the original to understand the mea-

sure of accuracy obtained from many missing entries. Fig.4.1 shows an original
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Figure 4.1: Original Image

Figure 4.2: Image corrupted with Gaussian Noise

image to which is corrupted with a gaussian noise as shown in Fig.4.2. There

are two reconstructed images shown here with Fig.4.3 image denoised using the

K-SVD method of [71] and Fig.4.4 image denoised using matrix completion. The

mean square error obtained is slightly higher than the one obtained using K-SVD.

With better approach towards removing noisy pixels, there is a better chance of

recovering a denoised image very close to the original.

The table 4.1 illustrates some of the results obtained on different number

of patches of different images. Approximately 40% of the patches obtained using

matrix completion have lower mean squared error than de-noised K-SVD patches.

The table shows statistics of the number of patches obtained using matrix com-

pletion which have better mean squared error than de-noised with K-SVD for
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Figure 4.3: Image denoised using K-SVD method

Figure 4.4: Image denoised using Matrix Completion method

Table 4.1: Statistics of Patches reconstructed using K-SVD and Matrix Comple-
tion

Image Total
Patches

No of patches with
better MSE ob-
tained using Ma-
trix Completion

No of patches with
better MSE ob-
tained using K-
SVD

Boat 3969 1313 2656
Bridge 3969 1426 2543
Couple 3969 1361 2608
Man 3969 1541 2428
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different images and vice-versa. Original groundtruth patches were used to com-

pare the mean squared error for de-noised K-SVD and matrix completion patches.

This empirically proves that with better noisy pixel removal techniques, better

than de-noised K-SVD method can be obtained. In addition to this, a prior knowl-

edge on the texture of the patches would aid in picking the appropriate patches

for combined reconstruction using K-SVD and matrix completion, eliminating the

need for groundtruth patches.

4.4 Conclusions and Future Work

K-SVD based de-noising algorithm is explored through matrix completion. A

good percentage of patches can be reconstructed which are very close to the orig-

inal and have lower mean squared error than those obtained using K-SVD. Under

the assumption that a noisy image has an underlying structure which is able to

be represented in an already existing denoised image, we can formulate the prob-

lem of forming similar patches as a sparse representation problem. Once all the

sparse representation based patches are obtained there are stacked to formulate

the denoising problem as a matrix completion problem.Prior to applying matrix

completion the noisy pixels are removed to obtain missing entries in a largely

stacked patch matrix. This method does not assume any underlying statistical

properties of image noise and is robust to patch matching error. The advantage

of this method is the use of single image only for denoising eliminating the need

for storing many images which generally is the case with denoising.This method

is also robust different types of noise since no noise property is used for denoising

purposes. Future work involves finding the appropriate textured patches to elim-

inate the use of groundtruth image patches.There is also a need to explore single

image denoising using as few dictionaries as possible. A thorough analysis of pixel

removal to appropriately remove the noisy pixels only need to be examined, which

in combination with finding appropriate textured patches might provide a basis
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for single image de-noising using matrix completion only.
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Chapter 5

CONCLUSIONS

In this thesis, three pieces of closely-related studies were reported. First, a new

framework for understanding and analyzing CS based SR is proposed. The sim-

ulation results and analysis clearly show that sparse recovery and representation

are different aspects of the problem in CS and hence similar properties of CS may

not hold true in sparse recovery case. Visual results which provided consistent

results among trained dictionaries further support the argument that trained dic-

tionaries are better than randomly sampled dictionaries. This thesis also proposes

a new framework for image classification. A new way of representing images in

an unique subspace through affine projection is proposed. A dictionary learn-

ing algorithm based on online-learning is developed. The affine sparse codes are

generated through the dictionary and classified through one of the boosting algo-

rithms namely AdaBoost. Results on the standard databases affirm that the codes

are indeed unique and can result in state of the art results on publicly available

datasets. Finally, a new method for obtaining high quality image patches over

existing denoising algorithms is proposed and implemented. Sparse representa-

tion and matrix completion techniques are utilized on the image to be denoised

to obtain high quality denoised image patches. Results confirm the existence of

substructure within noisy image which can be extracted to obtain high quality

image patches. Though the results are not consistent across all patches of the im-

age, these results provide impetus for selecting appropriate thresholds for different

textured patches to obtain consistency across all patches.
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