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ABSTRACT  

   

Time series analysis of dynamic networks is an important area of study 

that helps in predicting changes in networks. Changes in networks are used to 

analyze deviations in the network characteristics. This analysis helps in 

characterizing any network that has dynamic behavior. This area of study has 

applications in many domains such as communication networks, climate 

networks, social networks, transportation networks, and biological networks. The 

aim of this research is to analyze the structural characteristics of such dynamic 

networks. 

This thesis examines tools that help to analyze the structure of the 

networks and explores a technique for computation and analysis of a large climate 

dataset. The computations for analyzing the structural characteristics are done in a 

computing cluster and there is a linear speed up in computation time compared to 

a single-core computer. As an application, a large sea ice concentration anomaly 

dataset is analyzed. The large dataset is used to construct a correlation based 

graph. The results suggest that the climate data has the characteristics of a small-

world graph. 
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Chapter 1 

INTRODUCTION 

A network is a system of interacting nodes [1]. The nodes can be airplanes 

in a transportation network, genes in a biological network or individuals in a 

social network. Interacting dynamical systems can also be represented by a 

network. The study of networks with non-trivial structural properties is done in 

various fields. Networks can be used as an analysis framework, and it is easier to 

visualize results in a network. 

A graph is an abstract representation of a set of objects where some pairs 

of the objects are connected by links. The interconnected objects are called 

vertices, and the links that connect some pairs of vertices are called edges. In this 

thesis we model the networks as graphs and we use the terms interchangeably. 

Regular networks are networks that have same degree for each of the 

vertices [1]. Each node has the same number of links connecting it in a specific 

way to a number of neighboring nodes, like a full graph, ring, etc. In a fully 

connected network, each node is linked to all other nodes [1]. Random networks 

are networks that contain links or edges chosen completely at random with equal 

probability. 

In a regular graph, the length of a shortest path from one vertex to another 

can be quite long. But in random graphs, far away nodes can be connected as 

easily as nearby nodes and information may be transported over the network more 

efficiently than in ordered networks [2].  
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A small-world network is a simple connected graph G exhibiting two 

properties. First, each vertex of G is linked to a relatively well-connected set of 

neighboring vertices. Second, these networks have small mean shortest path 

length [2]. Small-world networks have a high degree of local clustering and a 

small number of long-range connections [3]. These networks have small mean 

shortest path lengths. Small-world networks have received attention in 

understanding the theory of networks and the applications they have in many 

application domains – such as analysis of social networks, ecological systems, 

biological networks, transportation networks, communication networks, the 

internet, financial market analysis, etc. 

The clustering coefficient, degree distribution and the characteristic path 

length are some important techniques to study the network structural properties of 

networks. To determine whether the network is a small-world graph, the mean 

clustering coefficient and the characteristic path length are calculated and 

compared to a random graph of the same size. In small-world networks, the mean 

clustering coefficient is much higher than the random networks and the 

characteristic path length is greater than or equal to that of the random networks 

[3]. 

The application of networks to climate science is an important area of 

study [3]. Two important applications of networks to atmospheric sciences were 

presented by Tsonis and Robert [1, 3]. In climate networks, a dynamic system 

varies in some complex way and we are interested in the collective behavior of 

these interacting dynamical systems and the structure of the resulting network [1, 
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3]. Complex networks offer a compelling perspective for capturing the dynamic 

behavior of the climate system. The combination of analytic methods and 

computational tools has the long-term potential for a transformative impact on 

understanding the climate system. Identifying the patterns and analyzing them 

helps understanding the complex processes of the observed phenomena in 

scientific, social and political interest [3].  

1.1 Motivation 

The main motivation behind the thesis is to implement tools to analyze the 

structural properties of the dynamic networks. Statistical network modeling has 

gained interest in the systems biology domain, and a number of methods and 

models have been proposed as frameworks for studying large biological networks 

[4, 5, 6]. In these studies, features like node degree distribution and small 

connected sub-graphs have been analyzed to capture some important features of 

the network structure [7]. Efficient tools are needed to systematically study these 

networks and their local features. 

Sea ice anomaly data is an important proxy indicator of climate change, and 

many research activities are conducted on Arctic sea ice. Data acquired by 

meteorological satellites provides one of the most effective ways to study large-

scale changes in sea ice conditions in the Arctic. Sea ice covers most of the Arctic 

Ocean and plays a significant role in the global water cycle and the global energy 

balance. Thus, any changes in the Earth‘s climate are likely to first be seen in 

areas such as the High Arctic. 
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Each month the National Snow and Ice Data Center (NSIDC) offer an 

update of how much ice is covering the vast Arctic Ocean. Since the 1970s, the 

real extent of sea ice has been shrinking. In September sea ice coverage hits its 

absolute minimum, after the long summer season of melting and before ice starts 

to grow again [8]. In September of 2010, the mean sea ice extent was 1.65 million 

square miles, which is the lowest ever recorded for the month of September, 

shattering the previous record in 2005 by 23%. Current climate model projections 

indicate that the Arctic could be seasonally ice-free by 2050-2100, which will 

significantly impact the global climate [9]. 

1.2 Contribution 

This research work is aimed at implementing correlation based tools for the 

time-series analysis of climate networks for a large sea ice concentration anomaly 

dataset. The tools can help in analyzing large datasets to characterize the structure 

of the network. Since this dataset is large, effective ways are developed to 

partition the data based on space and time. These tools help in monitoring the 

networks for different time periods. Studying them may identify if the network 

has acquired more long-range or small-range connections.  This work aims at 

examining if the networks have a high degree of local clustering and a small 

number of long-range connections.  

These tools also help in graphing the structural properties of the networks. 

Visual representations are also done for the random graphs and the small-world 

graphs. The tools for comparing the climate graphs—Degree Distribution, 

Clustering Coefficient and Characteristic Path length—are computed and 
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analyzed. The degree distribution of the graphs is represented as histograms and 

bar graphs for analysis. The comparison and the results suggest that the climate 

networks appear to have similar characteristics of small-world graphs. 

1.3 Document Outline 

The rest of the thesis is organized as follows: Chapter 2 provides background 

information about the terms used in the thesis and the implementation 

environment, Saguaro cluster and the visualization tools used for computation. 

Chapter 2 also gives related work done in the area of time-series analysis of 

dynamic networks. The design and implementation of the system are presented in 

Chapter 3. Chapter 4 shows the results and evaluation done in the research work. 

Conclusions for this thesis and future work are presented in Chapter 5. 
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Chapter 2 

BACKGROUND AND RELATED WORK 

This chapter describes the background information on this thesis work and 

the related work done in the analysis of dynamic networks. 

2.1 Background 

This section will discuss some of the basic concepts and terms which are 

related to time-series analysis, statistics of dynamic networks, and related topics 

to understand the rest of the thesis. 

2.1.1 NSIDC 

The National Snow and Ice Data Center (NSIDC) is part of the 

Cooperative Institute for Research in Environmental Sciences at the University of 

Colorado at Boulder. NSIDC supports research into our world's frozen realms: the 

snow, ice, glaciers, frozen ground, and climate interactions that make up Earth's 

cryosphere [10]. Scientific data, whether taken in the field or relayed from 

satellites orbiting Earth, form the foundation for the scientific research that 

informs the world about our planet and our climate systems. NSIDC manages 

cryosphere-related data ranging from the smallest text file to terabytes of remote 

sensing data from NASA‘s Earth Observing System satellite program. They 

manage polar and cryospheric data and conduct research under sponsorship from 

the National Aeronautics and Space Administration, the National Oceanic and 

Atmospheric Administration, and the National Science Foundation. NSIDC 

archives scientific data and makes hundreds of scientific data sets accessible to 

researchers around the world [10]. In this thesis the sea ice concentration anomaly 
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dataset for the years 1979-2005 was used as the data for these years was archived 

and publicly available. 

2.1.2 Time Series 

The sea ice concentration anomaly dataset provided by NSIDC is a time 

series. A time series is a sequence of data points, measured at successive times 

spaced at uniform time intervals [11]. Time series analysis comprises methods for 

analyzing time series data in order to extract meaningful statistical information. 

Time series data have a natural temporal ordering [11]. This property makes time 

series analysis distinct from other data analysis problems, in which there is no 

natural ordering of the observations. A time series model will generally reflect the 

fact that observations close together in time will be more closely related than 

observations further apart. Time series models will often make use of the natural 

one-way ordering of time so that values for a given period will be expressed as 

deriving in some way from past values, rather than from future values [12]. The 

sea ice concentration anomaly dataset will be represented as a correlation based 

graph. 

2.1.3 Correlation-Based Graph 

Tsonis et al. derived a correlation-based graph G = (V, E) from a wind 

anomaly dataset [3]. The vertex set of this graph corresponds to the relevant 

dataset and there is an edge between any two vertices if the correlation between 

the data values corresponding to this pair of vertices is greater than some 

correlation threshold. 
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Correlation coefficients have been used to analyze the topology of gene 

expression networks [13, 14, 15].  It has been used to characterize financial 

markets [1, 16]. The effect of a different correlation threshold was studied by 

Tsonis [1, 17]. Onnela analyzed the weighted properties of the network, where 

each link is assigned a weight proportional to its corresponding correlation 

coefficient [18].  

 2.1.4 Statistical Methods for Analysis 

The correlation coefficient, clustering coefficient, characteristic path 

length and degree distribution are some of the important statistical methods to 

examine the structural features of the graphs and the time-series. 

 Pearson Correlation Coefficient 

The Pearson correlation coefficient, denoted by r, is a measure of the 

strength and direction of a linear relationship between two random variables. The 

correlation coefficient takes on values ranging between +1 and -1 [19]. 

The formula for the sample correlation coefficient for n data points (  ,   ) 

is given by, 

  
   

√      
 

          (2.1) 

where,          

    ∑(     ̅)(     ̅)

 

   

 

    ∑(     ̅)
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 In a graph, the correlation coefficient quantifies how well-connected are 

the neighbors of a vertex [20]. 

Clustering Coefficient 

In a graph, let ‗v‘ be a vertex and let N(v) denote the neighborhood of a 

vertex ‗v‘ containing all the vertices adjacent to ‗v‘. The graph generated by N(v), 

G(N(v)) has vertex set N(v) and its edges are all edges of the graph with both 

endpoints in N(v) [21]. If k(v) and e(v) denote the number of vertices and edges in 

G(N(v) respectively, then the clustering coefficient of v is given by, 

    
 ( )

( ( )
 
)
  

  ( )

 ( )( ( )   )
 

       (2.2) 

 

Then the mean clustering coefficient of a graph G is the mean of the clustering 

coefficients of all vertices of G. 

 The clustering coefficient measures the degree to which nodes in a 

network tend to cluster together. Calculating the clustering coefficient of the 

correlation based graphs indicates how close its neighbors are to being a clique. It 

is measured based on two definitions, namely global and local clustering 

coefficients.  
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The Global Clustering Coefficient calculates the number of triangles 

proportional to number of connected triples [21]. The local clustering coefficient 

Ci for a vertex    is calculated as the proportion of links between the vertices 

within its neighborhood divided by the number of links that could possibly exist 

between them. Let    be the number of edges such that both endpoints are 

neighbors of   . Then the local correlation coefficient for vertex    is, 
  

(
  
 
)
 , where 

   is the neighbor of vertex   . The local clustering coefficient gives 

embeddedness of single nodes. It quantifies how close the neighbors of a 

particular vertex are to being a complete graph [21]. The average clustering 

coefficient of the correlation-based graph is computed as the average of the local 

clustering coefficients of all the N vertices. 

Characteristic Path Length 

Let di,j  be the length of the shortest distance between the vertices i and j. 

Then the characteristic path length L(G) for the graph G=(V,E), is di,j averaged 

over all  pair of vertices. 

 In a connected graph, the average distance between pairs of vertices is 

called the characteristic path length [22]. Characteristic path length is one of the 

most important and frequently invoked characteristics of a social network [22]. 

 To compute the characteristic path length, the length of all the shortest 

distances of all possible pairs of vertices in the graph is calculated. This length is 

averaged over all node pairs in the network. The shortest paths are calculated 

using the breadth first search in the graph. Dijkstra‘s algorithm is used to compute 

the shortest paths. 
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Dijkstra’s Algorithm 

Dijkstra's algorithm is used to find the single-source shortest paths on a 

graph G = (V, E). All weights must be nonnegative. The algorithm maintains a set 

S of vertices whose final shortest-path weights from the source s have already 

been determined. The algorithm repeatedly selects the vertex u   V – S with the 

minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u [23].  

A naive implementation of the priority queue gives a run time complexity 

O (V²), where V is the number of vertices. Implementing the priority queue with a 

Fibonacci heap makes the time complexity O (E + V log V), where E is the 

number of edges [23]. 

Degree Distribution 

 The degree of a node in a network is the number of edges it has to other 

nodes. The probability distribution of these degrees over the whole network is 

called degree distribution [24]. The degree distribution helps us identify the nodes 

with a significantly higher vertex degree than the average. 

Power Law 

 A power law is a kind of mathematical relationship between two quantities 

in which the frequency of an event varies as a power of some attribute of that 

event. The frequency is said to follow a power law [25]. For instance, the number 

of cities having a certain population size is found to vary as a power of the size of 

the population, and hence follows a power law [25]. 
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2.1.5 Graph Models to Compare Correlation-Based Graphs 

 In order to analyze the structural properties of the correlation based 

graphs, random graphs and small-world graphs are used. 

Random Graphs 

Random graphs were introduced by Erdős and Rényi [26]. They defined 

two ways for generating random graphs. A Gn,p graph is undirected, has n vertices 

and p is the probability that an edge is present between any arbitrary pair of 

vertices in the graph. Gn,p graphs are generated by drawing an indicator random 

variable for each possible edge in the graph. A Gn,m random graph is undirected, 

has n vertices and m edges. The m edges are chosen uniformly at random from the 

set of all possible edges in the graph [27]. 

Barabási and Albert introduced a discrete time step model that creates a 

random scale-free graph [28]. They start with a single vertex and in each time step 

add another vertex to the graph. The network begins with an initial network of m 

nodes (m ≥ 2) and the degree of each node in the initial network should be at least 

1, otherwise it will always remain disconnected from the rest of the network. New 

nodes are added to the network one at a time. Each new node is connected to m 

existing nodes with a probability that is proportional to the number of links that 

the existing nodes already have. [28].  

Watts-Strogatz Small-World Model 

 Watts and Strogatz proposed a network model called a small-world graph 

[1, 29]. In small-world graphs, most nodes are not neighbors of one another. Most 

nodes can be reached from every other by a small number of hops [29]. In small-
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world graphs, the average distance between any two nodes is proportional to the 

logarithm of the number of nodes in the network [29].  

In the context of a social network, there is a small-world characteristic of 

strangers being linked by mutual acquaintance [30]. Small-world graphs tend to 

contain sub graphs which have connections between almost any two nodes 

between them. This property results in a small-world graph having a high 

clustering coefficient [30]. Another property is that the mean shortest path length 

is small [1, 30]. Many real life networks like road maps, food chains, voter 

networks, social influence networks, etc. exhibit properties of small-world  

graphs [30].  

Density of a Graph 

The density of a graph is the ratio of the number of edges and the number 

of possible edges. The density of the correlation based graph will be computed 

and used to construct random graphs and small-world graphs of same density. 

 

2.2 Implementation Specific Terms 

The environment and the tools used for implementation are explained in 

this section. A high performance computing platform called Saguaro computing 

cluster is used for implementation. 

2.2.1. Saguaro Cloud Computing 

Current engineering and scientific problems require the ability to manage 

ever-growing volumes of data and to evaluate increasingly complex 

computational models. By using clusters of computers and the concept of parallel 
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computing to distribute tasks over multiple processors at once, it is possible to 

tackle certain problems with linear speed up in computational time. Not only does 

it enable researchers to perform existing operations much faster and in greater 

volume than ever before, but also allows to solve complex problems that would be 

impractical without the capabilities of  parallel processing. 

The High Performance Computing Initiative (HPCI) facility at Arizona 

State University host more than 5,000 processor cores, each as fast as or faster 

than a single top-of-the-line desktop computer. The central computing cluster, 

Saguaro, is capable of sustained performance of more than thirty trillion 

computations per second (30 teraflops). In addition, more than 1 petabyte of disk 

storage is available, providing both high performance and archival data storage to 

the ASU research community [31]. 

2.2.3 Visualization Packages 

R is a programming language that comes with a software environment 

fully enabled for statistical computing and graphics [32]. It is a de facto standard 

programming language for statistics and has strong support for bioinformatics and 

computational biology, where statistical procedures are increasingly used more 

frequently for biological data analysis. R comes with many built-in and third party 

packages. Some of the packages used in R for analysis of the structure of the 

graphs. 

 Network Tool 

The ‗network‘ package in R is used to create and modify network objects. 

The network class can represent a range of relational data types, and it supports 
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arbitrary vertex/edge/graph attributes. The network package provides tools for 

creation, access, and modification of network class objects. These objects allow 

for the representation of more complex structures than can be readily handled by 

other means (e.g., sparse matrices), and are substantially more efficient in 

handling large, sparse networks [33]. Network objects can often be treated as if 

they were sparse matrices and they are also compatible with the Social Network 

Analysis (SNA) package. 

Social Network Analysis (SNA) Tool 

The SNA package in R contains a range of tools for network analysis.  

Supported functionality includes node and graph-level indices, structural distance 

and covariance methods, structural equivalence detection, random graph 

generation, and 2D/3D network visualization [34]. 

Network data for SNA routines can be given in any of these forms in this 

package -- adjacency matrices, arrays of adjacency matrices, edge lists, sparse 

matrix objects, ‗network‘ objects (from the network package), and lists of 

adjacency matrices/arrays [35]. 

igraph Tool 

The igraph is a library in R for analysis of graphs. The main goals of the 

igraph library is to provide a set of data types and functions for  implementation 

of graph algorithms, and fast handling of large graphs with millions of vertices 

and edges, allowing rapid prototyping via high level languages like R [36]. 

This library provides three different ways to visualize a graph. The first is 

the ‗plot.igraph‘ function. This function uses a base R graphics engine and can be 
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used to plot a graph to a pdf or png file or the GUI output window. The second 

function is ‗tkplot‘, which uses a Tk GUI for basic interactive graph manipulation. 

The third way requires the ‗rgl‘ package and uses OpenGL [36]. 

Fruchterman-Reingold Layout 

Fruchterman and Reingold proposed a layout for drawing graphs that uses 

a force-based algorithm [37]. There are two main principles that were used for 

drawing the graphs using the layout. First, the vertices connected by an edge are 

drawn near each other. Second, the vertices are not drawn too close to each other. 

The approach uses a force based method for drawing the graphs [37].  

Frucherman Reingold layout helps to position the nodes of a graph in a two-

dimensional space so that all the edges are of more or less equal length and there 

are as few crossing edges as possible. 

 

2.3 Related Work 

There are many practical computing problems concerning large  

graphs [38]. The size of these graphs is as high as billions of vertices and trillions 

of edges, and it is a challenge for efficient processing of such large data. There 

exists no scalable general-purpose system for implementing graph algorithms in a 

distributed environment [38]. In order to use distributed processing on real-life 

graphs, we need a computation model that is scalable and fault-tolerant. Analysis 

of networks has been done in many application domains. 

 In a financial market, the performance of a company is characterized by its 

stock price. In the financial world, companies interact with one another creating a 
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complex system of interacting nodes [39]. The analysis of financial networks is 

important in risk management and investment, and serves as inputs to the 

portfolio optimization problem in the Markowitz portfolio theory [39].  

In biological networks, complex underlying structures are studied to 

identify blocks to describe the network. The exponential random graph models, a 

family of statistical models that have previously been used to study social 

networks, are used in modeling the structure of biological networks as a function 

of the prominence of local features [4]. Saul and Filkov argue that the flexibility, 

in terms of the number of available local feature choices, and scalability, in terms 

of the network sizes, makes this approach ideal for statistical modeling of 

biological networks [4]. Saul and Filkov illustrate the modeling on both genetic 

and metabolic networks and provide a novel way of classifying biological 

networks based on the prevalence of their local features [4]. The properties like 

node degree distribution and small connected sub graphs are used to capture 

features of biological network structure. Tools are needed to systematically study 

these and other local features and the ways they collaborate to form the network 

structure [4]. 

Studies on the community structure in social networks are used to analyze 

the statistical properties of networked systems such as biological networks and the 

World Wide Web [40]. Researchers have concentrated on a few properties that 

seem to be common to many networks: the small-world property, power-law 

degree distributions, and clustering coefficient. Girvan studied the property of 
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community structure, in which network nodes are joined together in tightly-knit 

groups between which there are only looser connections [6, 40]. 

Some software based techniques have been developed for processing of 

large-scale datasets. Pregel is a system that is designed for computations on large 

graphs to use distributed processing on real-life graphs. Pregel is scalable and 

fault-tolerant. MapReduce is a programming model and an associated 

implementation for processing large datasets that is amenable to a broad variety of 

real-world tasks [41]. Users specify the computation in terms of a map and 

a reduce function, and the underlying runtime system automatically parallelizes 

the computation across large-scale clusters of machines, handles machine failures 

and schedules inter-machine communication to make efficient use of the network 

and disks. More than ten thousand distinct MapReduce programs have been 

implemented internally at Google over the past four years, and an average of one 

hundred thousand MapReduce jobs are executed on Google's clusters every day, 

processing a total of more than twenty petabytes of data per day [41]. 

The theory of graphs was first applied to climate data by Tsonis et al., 

specifically to a National Centers for Environmental Protection (NCEP) wind 

anomaly gridded dataset [1, 2, 3]. An anomaly or deviation dataset is a dataset in 

which the long-term average is subtracted from the data, giving the deviation 

from the long-term average. They calculated correlation based graphs from the 

wind anomaly dataset. Such graphs had the characteristics of small-world graphs, 

since they had a high degree of local clustering and a small number of long-range 

connections. 
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The goal is to analyze and study a large dataset that contains 

measurements varying in space and time. The large dataset is used to construct a 

correlation based graph, G. Computations involving large datasets have been 

challenging to analyze and study, and efficient tools are needed to characterize the 

dynamic changes in any type of network. 

In order to extract meaningful information from large datasets one needs 

to identify the kinds of correlation and the thresholds to be used. These kinds of 

correlations vary for different datasets. To find relations between the nodes, one 

needs to increase or decrease the threshold to identify how things are related in 

the graph.  

Since the amount of data can be huge (tens of thousands to millions of 

nodes), there is a trade-off between the threshold selection and the computation 

time. The higher the correlation threshold, it is likely that the number of edges in 

the correlation based graph will be smaller. If the correlation threshold is low, the 

number of edges constructed in the correlation based graph is higher, and as a 

result of which, the computations in such graphs are quite time consuming.  

Since the amount of data is huge, sequential processing of such data can 

take a long time to execute. Hence, a parallel computing approach is preferred to 

make better use of the computing facilities available today. Data is partitioned 

based on time and space and computations are performed independently on 

different processors.  
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Chapter 3 

DESIGN AND IMPLEMENTATION 

This chapter explains the sea ice concentration anomaly dataset and the 

approaches used to partition the dataset. The techniques used for computation of 

degree distribution, characteristic path length and the clustering coefficient are 

also explained. 

3.1 Sea Ice Anomaly Data 

The sea ice concentration (SIC) anomaly dataset consists of 27 years 

(1979-2005) of weekly SIC anomaly data derived from the Nimbus-7 Scanning 

Multi-channel Microwave Radiometer (SMMR) and Defense Meteorological 

Satellite Program Special Sensor Microwave/Imager (DMSP SSM/I) series of 

meteorological satellites. Data acquisition started in late 1978, with the first full 

year of data in 1979. An anomaly dataset is the long-term average subtracted from 

the data to remove seasonal trends, making the data more amenable to statistical 

analysis. 

The climate dataset consists of sea ice anomaly data for 27 years (1979 – 

2005). The dataset is given as 52 binary files (representing 52 weeks per year) for 

each of the 27 years. The data for each week is a 304 × 448 floating point array 

representing the Northern Hemisphere. The data value at each cell (x, y) in the 

array represents the percentage of deviation in ice concentration from the 27-year 

average for a given week. The cells represent the geographical position where the 

data is recorded. 



  21 

Since there are 52 weeks per year for 27 years, there are 1,404 arrays in 

the data stack. Each array has 304 columns and 448 rows for a total of 136,192 

cells. Each cell corresponds to a time series (hence there are 136,192 time series) 

and each time series [x, y, t], 1 ≤ t ≤ 1,404 contain 1,404 values, starting at week 1 

of 1979. 

Figure [3.1] shows a sample SSM/I sea ice concentration image for a week 

of 1979. Each pixel corresponds to a nominal physical area of 25 sq. km. There is 

a large circular disk over the North Pole, an area of missing data due to the 

satellite‘s orbit. The satellite orbits from pole to pole (i.e., longitudinally), but at 

an incline, so there is a circular area that is not covered. Hence, the only missing 

data is in the circular region over the North Pole. 

 

Figure 3.1: Sample SSM/I total sea ice concentration image for a week of 1979. 
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The data for each year is represented by 52 binary files(52 weeks per year) 

by NSIDC. Each binary file contains 304 X 448 floating point elements (cells). 

The files are read in a little-endian format, taking 32-bits at a time to form a 

floating point number. This is a sequential operation and 136,192 (304 * 448) 

values are read. The dataset consists of land masses that can be ignored. In the 

climate dataset land is denoted by the value 168. Missing data is denoted by the 

value of 157.  

The latitude and the longitude values provided by the NSIDC are 

explained in Appendix A. The location (latitude and longitude) is plotted in a two 

dimensional plot for the whole dataset and then the values on land and missing 

data discarded. Figure 3.1, gives the concentration of sea ice data arranged based 

on latitude and longitude for a week with latitude in x-axis and longitude in y-

axis.  

 

Figure 3.1: Climate data with land and missing data for a week of 1979. 
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The missing data and the land masses are discarded and the plot is shown 

in Figure 3.2. In this plot it can be seen that the area over Greenland is not filled. 

 

 

Figure 3.2: Climate data – Missing data removed 

The latitude and longitude values are plotted in a map. Google earth is 

used to display the locations (latitudes and longitudes) on the map. The input to 

Google earth is a data sheet that has the list of all latitudes and longitudes and 

other parameters explained in Appendix A. Figure 3.3 shows the locations plotted 

over Greenland. Figure 3.4 shows the geographical locations plotted over the 

North Pole. It can be seen that the circular area over the North Pole is not covered. 
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Figure 3.3: Map showing geographical locations over Greenland 

 

Figure 3.4 Map showing geographical locations over North Pole 
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3.2 Partitioning the Data 

Partitioning the data is an important task for such a large dataset of 

approximately 2GB in size. Since the dataset is huge and we are interested in 

local clustering, we have partitioned the dataset both in time and space to 

construct the correlation based graph. Since there are 27 years (1979-2005) of 

data, the data is partitioned into 9 parts for each 3-year periods by reading the 

binary files for only 3 years. The data is also partitioned into 3 parts for each 9-

year periods by reading the binary files for 9 years.  

The data can be partitioned in space by giving range of locations (latitudes 

and longitudes). The range of latitudes and longitudes varies between (31.10267, 

168.3204) and (34.47208, -9.99898). The file ―Positions_Sea.csv‖ containing the 

list of locations is explained in Appendix A. The range of points 1 to 10000 

represents the range of latitudes and longitudes between (31.10267, 168.3204) 

and (50.41197, 155.1614). The range of points 10001 to 20000 represents the 

range of latitudes and longitudes between (50.4822, 154.8594) and (69.94001, 

169.3236). Figure 3.5 and 3.6 shows a sample of six partitions done on the 

dataset. 

 This partition in space can be done for the 3-year and 9-year periods. 

Then the partitioned data is used as input for the functions to compute the degree 

distribution, clustering coefficient and characteristic path length as explained in 

Appendix A. Partitioning the data helps in computing and the computations can 

be performed in parallel for these areas. 
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Figure 4.5 Sample partitions over Greenland 

 

Figure 4.6 Sample partitions over NorthPole 
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3.3 Constructing the Correlation-Based Graph 

The correlation-based graph G = (V,E) is constructed from the dataset. 

The vertex set V corresponds to the cells. To determine the edge set, the Pearson 

correlation coefficient is calculated between all pairs of cells (x, y) and (x’, y’),     

1 ≤  x, x’ ≤ 304, 1 ≤  y, y’ ≤ 448, (x, y) ≠ (x’,y’), of time series. That is, the 

correlation coefficient is computed between [x,y,t] and [x’,y’,t], 1 ≤ t ≤ 1404, for 

each possible pair of cells. 

If the correlation coefficient for a pair of cells (x, y) and (x’, y’) at the time 

t i.e., [x, y, t] and [x’, y’, t], 1≤ t ≤ 1404, is greater than some threshold, then an 

edge is inserted between cells (x, y) and (x’, y’). In our study, correlation values of 

0.5, 0.7 and 0.9 are chosen to see how closely nodes are correlated in the graph, 

G. The final result is a graph with edges between the cells having a correlation 

greater than the threshold. This correlation based graph is used to study the 

topological properties of the network. 

3.4 Constructing the Random Graph models 

Random graph models are used to compare the structure of the correlation 

based graph. A random graph is constructed to be of the same number of vertices 

as the correlation-based graph and is compared with the correlation based graphs. 

In this implementation, the two random graph models used are Erdos Renyi 

graphs and Barabasi graphs.  

In order to construct the random graphs, the number of edges E in the 

correlation-based graphs and the number of possible edges is computed. The 
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random graphs are constructed with same density values as the correlation based 

graphs using the procedure explained in Appendix A. 

3.4 Constructing the Small-World Graphs 

The correlation based graphs are compared with the Watts-Strogatz small 

world graph model to examine if they have the characteristics of a small world 

graph. The small-world graphs are constructed with the same density as the 

correlation based graphs. 

3.5 Comparing the graphs 

The degree distribution of the correlation based graph is calculated and the 

histogram is plotted. The degree of the graph gives the number of edges 

connected to each vertex of the graph. This distribution helps us identify the 

nodes with a significantly higher vertex degree than the average. In order to 

analyze the degree distribution of the graph, the mean of the degree and the mean 

of the frequency are denoted by vertical and horizontal bars, respectively. The 

degree distributions of the correlation based graphs are compared with the degree 

distribution of the random graph models and small world graphs. 

The clustering coefficient and the characteristic path lengths of the correlation 

based graphs and the random graphs are calculated using the procedure explained 

in Appendix A and are compared. 
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3.6 Graph Visualizations 

This work tries to visualize the correlation based graphs created for 3-year 

periods and 9-year periods and for different correlation thresholds. The degree 

distribution of the graph is computed and a histogram is plotted for the 

distribution. The characteristic path length of the graph is computed and plotted 

against random graphs to see if the correlation based graphs, has the structure of a 

small-world graph. 

Looking for short-term and long-term changes in graphs is also an important 

feature to study how things change over different time periods and is useful to 

make predictions. Different characteristics of the graph are analyzed for different 

lag periods and different correlation thresholds. These lag periods are used to 

identify the changes in the network on a short and long-term basis. 

The adjacency list computed based on the correlation coefficient is used to 

construct the graph and is represented using the Fruchterman Reingold layout. 

The edges between the nodes having only certain thresholds are inserted in the 

graph and others are discarded. The connected components in the graph are 

computed using the ‗clusters‘ utility in R. ‗clusters‘ utility takes the graph as input 

and gives three results : the membership, size of clusters(a vector) and number of 

clusters. The membership is a numeric vector giving the cluster id to which each 

vertex belongs. 

The constructed correlation based graphs, random graphs and the statistical 

methods can be used for analyze and compare the correlation based graphs. 
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Chapter 4 

ASSESSMENT AND EVALUATION 

In this section, the number of edges present in the correlation based graphs 

for different correlation thresholds is compared. The degree distribution, 

clustering coefficient and the characteristic path length are computed for the 

correlation based graph for the sea ice concentration (SIC) anomaly dataset for 

thresholds 0.5, 0.7 and 0.9. The results are compared to Erdos-Renyi graph, 

Barabasi graph and Watts-Strogatz graph of same density. The number of clusters 

present in the graph for correlation thresholds of 0.5, 0.7 and 0.9 are calculated. 

The dataset is partitioned in space and the geographical area where the largest 

cluster occurs is identified for correlation threshold of 0.7. Graph visualization of 

the correlation based graph for this geographical area (with largest cluster) is 

presented. Visualizations are also done for the random graph models and Watts-

Strogatz graph of same density. The dataset is also partitioned based on time for 

3-year periods and 9-year periods for the area with largest cluster and the degree 

distributions are computed. The mean and standard deviations are computed for 

the partitions based on time. The comparison of execution times in the Saguaro 

cluster and a desktop computer for reading the sea ice anomaly dataset is also 

presented. 

4.1 Choice of Correlation Thresholds 

The correlation-based graphs for the SIC anomaly dataset are constructed 

for different correlation thresholds of {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 

0.95} and the numbers of edges in the graphs are computed. The number of nodes 
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in the correlation based graphs is 66,131 nodes. Figure 4.1(a) shows the number 

of edges in the correlation based graphs for different correlation thresholds. The 

number of edges is high for correlation thresholds less than 0.5.  

 

Figure 4.1(a): Number of edges for different correlation thresholds. 

In Figure 4.1(b) the number of edges in the correlation based graphs for 

correlation thresholds greater than 0.5 are shown. As the correlation threshold 

increases from 0.5 to 0.95, the number of edges in the graph decreases.  
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Figure 4.1(b): Number of edges for higher correlation thresholds 

 

Table 4.1 shows the number of clusters, the largest cluster and the second 

largest cluster that occurs in the correlation based graphs for the SIC anomaly 

dataset for correlation thresholds of 0.5, 0.7 and 0.9. Table 4.1 suggests that for 

higher correlation thresholds(r = 0.9) there are more number of clusters compared 

to r=0.5. The size of the largest cluster at r=0.9 is less compared to that of r = 0.5. 

For correlation threshold r = 0.5 almost all the nodes are in the largest cluster. 

Correlation graph No. of clusters Largest cluster  Second largest cluster 

r = 0.5 42 65948 23 

r = 0.7  987 9184 5996 

r = 0.9 9771 144 95 

Table 4.1: Cluster sizes for different correlation thresholds for the SIC dataset 
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Because of the large number of edges and most of the nodes is part of the 

largest cluster, the correlation thresholds less than 0.5 are not considered. For 

correlation threshold 0.9 the cluster sizes are very small. 

4.2 Comparison of Degree Distributions 

Figure 4.2(a-c), shows the degree distributions of the correlation based 

graph for the SIC anomaly dataset for correlation thresholds of 0.5, 0.7 and 0.9. 

The degree distributions of the random graph models and a small-world graph of 

same density are also plotted.  

 

Figure 4.2(a): Comparison of degree distributions (r=0.5) 
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Figure 4.2(b): Comparison of degree distributions (r=0.7) 
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Figure 4.2(c): Comparison of degree distributions (r=0.9) 

 

The comparison of degree distributions of the correlation based graphs, 

the random graph models and small-world graphs for the SIC anomaly dataset 

suggest that the correlation based graphs have a similar power law distribution 

like a small-world graph. 

 

4.3 Comparison of Clustering Coefficient 

 The clustering coefficient of the correlation based graphs is compared with 

the random graphs and Watts-Strogatz graph of the same density for the SIC 

anomaly dataset. Figure 4.3(a-c), shows the clustering coefficient comparisons for 
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correlation thresholds 0.5, 0.7 and 0.9. The results suggest that the correlation 

based graphs have higher clustering coefficient than the random graph models. 

 

Figure 4.3(a): Comparision of Clustering coefficients for r=0.5 

 

 

Figure 4.3(b): Comparision of Clustering coefficients for r=0.7 
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Figure 4.3(c): Comparision of Clustering coefficients for r=0.9 

 

4.4 Comparison of Characteristic Path Lengths 

The characteristic path length of the correlation based graphs is compared 

with the random graphs and Watts-Strogatz graph of the same density for the SIC 

anomaly dataset. Figure 4.4(a-c), shows the characteristic path length 

comparisons for correlation thresholds 0.5, 0.7 and 0.9. 

 

 

Figure 4.4(a):  Comparison of Characteristic Path lengths r=0.5 
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Figure 4.4(b):  Comparison of Characteristic Path lengths r=0.7 

 

 

Figure 4.4:  Comparison of Characteristic Path lengths r = 0.9 
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Range Start 

(Latitude, 

Longitude) 

Range End 

(Latitude,  

Longitude) 

No. of Nodes No. of 

Clusters 

Largest Cluster Second 

Largest 

Cluster 

(31.10267,

168.3204) 

  
 

(56.70051, 

148.0525) 

  
 

13300 63 5288 1035 

(56.74782, 

147.6757) 

  
 

(79.57246, 

87.31622) 

  
 

13300 77 1426 438 

(79.40207, 

86.47855) 

(73.47177, 

-63.1837) 

13300 41 2219 1192 

(73.54094, 

-62.4254) 

(48.50162, 

-6.26872) 

13300 88 6524 681 

(48.37449, 

-6.03151) 

(34.47208, 

-9.99898) 

12931 217 3292 116 

Table 4.2: Cluster size for partitioned areas 

Figure 4.5 shows the geographical area where the largest cluster appears 

for the partitioned areas. The yellow regions are actually 3D points representing 

the location (latitude, longitude). The purple areas are the 3D lines that connect 

these 3D points from the surface of the map. 

 

Figure 4.5 Geographical region with largest cluster (r = 0.7) 
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The visualization of the correlation based graph for the geographic area 

with the largest cluster is constructed. The random graph models (Erdos-Renyi 

graphs, Barabasi graphs) and a Watts-Strogatz graph are constructed with the 

same density as the correlation based graph.  Figure 4.6 shows the correlation 

based graph for the geographic area with the largest cluster. The edges in the 

graph are the grey lines in the background and are not seen clearly. 

 

Figure 4.6 correlation based graph for area with the largest cluster 

  

Figure 4.7(a-c) shows the Erdos-Renyi graph, Barabasi graph and Watts-

Strogatz graph constructed with the same density as correlation based graph 

constructed for the partitioned area with the largest cluster. 
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Figure 4.7(a) Erdos Renyi graph(same density as correlation based graph) 

 

Figure 4.7(b) Barabasi graph (same density as correlation based graph) 



  42 

 

Figure 4.7(c) Barabasi graph (same density as correlation based graph) 

4.4 Partitions Based on Time 

The geographical area with the largest cluster is partitioned based on time 

for 3-year and 9-year periods and the degree distributions for the correlation based 

graphs are calculated. 

4.4.1 Comparisons for 9-year Periods 

 

The degree distributions are calculated for every 9 year periods from 1979 

to 2005 for the correlation based graphs for these partitions. Figure 4.8 (a-c) 

shows the histogram of the degree distributions for correlation threshold 0.5.  
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Figure 4.8(a): r=0.5 (1979 – 1987)  Figure 4.8(b): r = 0.5 (1988 – 1996) 

 

Figure 4.8(c): r = 0.5 period 1997-2005 

Table 4.3 gives the mean and standard deviation of the degree for 

correlation thresholds of 0.5, 0.7 and 0.9. 

 

 r = 0.5 r = 0.7 r = 0.9 

Time 

Period 

Mean 

Degree 

Standard 

Deviation 

Mean 

Degree 

Standard 

Deviation 

Mean 

Degree 

Standard 

Deviation 

1979 – 

1987 

32.81 32.01 5.89 3.38 1.25 1.03 

 

1988 – 

1996 

22.19 18.57 5.04 2.11 1.46 0.89 

 

1997 – 

2005 

32.98 25.19 6.13 2.92 1.74 0.96 

 

Table 4.3: Mean Degree and Standard Deviation for thresholds 0.5, 0.7 and 0.9 
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4.3.1 Comparison for 3-year Periods 

The degree distributions are calculated for every 3-year periods from 1979 

to 2005 for the correlation based graphs for the geographical area with the largest 

cluster. Figure 4.9 (a-i) shows the histogram of the degree distributions for 

correlation threshold 0.7 for the 3-year time periods. 

       

Figure 4.9(a) r=0.7 (1979-81)  Figure 4.9(b) r=0.7 (1982-84) 

  
Figure 4.9(c) r=0.7 (1985-87)  Figure 4.9(d) r=0.7 (1988-90) 
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Figure 4.9(e) r=0.7 (1991-93)  Figure 4.9(f) r=0.7 (1994-96) 

  

Figure 4.9(g) r=0.7 (1997-99)  Figure 4.9(h) r=0.7 (2000-02) 

 

Figure 4.9(i) r=0.7 (2003-05) 
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Table 4.4 gives the mean and standard deviation of the degree for 

correlation thresholds of 0.5, 0.7 and 0.9. 

 

 r = 0.5 r = 0.7 r = 0.9 

 Mean 

Degree 

Standard 

Deviation 

Mean 

Degree 

Standard 

Deviation 

Mean 

Degree 

Standard 

Deviation 

1979-

1981 

117.24 108.32 13.71 18.01 1.67 1.39 

1982-

1984 

89.68 69.35 9.09 8.69 1.41 1.22 

1985-

1987 

58.35 47.63 6.73 5.25  1.3 1.09 

1988-

1990 

78.28 62.71 7.53 5.97 1.68 1.07 

1991-

1993 

81.33 59.67 7.76 6.51 1.56 1.03 

1994-

1996 

72.94 60.64 7.81 6.42 1.73 1.11 

1997-

1999 

126.65 89.91 14.32 13.39 2.14 1.29 

2000-

2002 

84.54 68.51 9.96 10.51 

 

1.89 1.17 

2003-

2005 

65.82 46.24 7.49 5.61 

 

1.78 1.12 

Table 4.4: Mean Degree and Standard Deviation for thresholds 0.5, 0.7 and 0.9 

 

   

 

 

4.2 Comparison of Execution Times 

The implementation was done in the Saguaro cluster. In the Saguaro 

cloud, there is a wait time before the nodes are assigned. In order to compare the 

execution times in the cluster environment as opposed to a desktop computer, the 

time taken for reading the input binary files and converting them to floating point 

values was calculated. The execution time was compared on two different nodes 

in the Saguaro cluster and a dual core computer. The Nehalem nodes have 24GB 
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RAM and 8 cores. Four of these nodes are acquired to run the computations. The 

Nocona nodes (32 nodes used) have 2 cores per node and 4 GB of available 

memory. On an average, there is ten times increase in the computation time on the 

cluster environment for reading the whole dataset. The comparison is shown in 

Figure 4.18. 

 

Figure 4.18: Comparison of execution times for reading the climate dataset. 

The comparison of the degree distributions, clustering coefficient and the 

characteristic path lengths of the climate graphs, random graphs and small-world 

graphs suggest that the climate graph appears to have similar characteristics of a 

small-world graph. 
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

This research presents software based tools that can be used to analyze and 

study the structural characteristics of dynamic networks. The tools are used to 

construct the correlation based graphs, the random graphs and the small-world 

graphs. The SIC dataset was partitioned in space and the geographical area with 

the largest cluster is identified. Correlations are computed by partitioning the area 

with the largest cluster for 3-year and 9-year periods. Comparisons of the degree 

distributions of the correlation based graphs are used to identify trends in the 

networks over a period of time and can be used to study short-term and long-term 

changes.  

Clustering coefficients of the graphs are compared with the random graphs 

and the results suggest that for climate graphs, the clustering coefficient is higher 

than that of the random graphs. The characteristic path lengths are used as a tool 

to analyze the correlation based graphs with the random graphs. The results 

suggest that the correlation based graphs appears to have similar characteristics of 

a small-world graph. 

In continuation to this work, this tool can be enhanced as a GUI based 

application and can be used as a generic tool to analyze the structural 

characteristics of dynamic networks.  A new method can be developed to 

communicate with the Saguaro cloud to acquire maximum number of nodes for 

the computation. This method should also assess the waiting time for execution of 

the jobs in the cluster. New areas of application in communication networks, 
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social networks, transportation networks and many more domains can be 

identified and studied to identify the properties of dynamic networks. 
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APPENDIX A  

INSTRUCTION MANUAL FOR THE TOOLS 

Accessing the Saguaro Environment 

The computations are performed in the Saguaro cluster at the High 

Performance Computing Initiative facility. The operating used for the client slide 

is Ubuntu 10.04. The command to login to the cluster using secure shell is ―ssh 

<username>:saguaro.fulton.asu.edu‖ where <username> is the name 

registered in the Saguaro environment. To login in interactive mode (to view the 

graphs and the plots), the command “ssh username –X –I <username> 

saguaro.fulton.asu.edu” is used. 

The nodes in the Saguaro cluster are used using the command ―qsub –l 

nodes=X:node_name‖. X is the number of nodes to be acquired and the optional 

node_name can be specific nodes like tigerton, nehalem, harpertown, and 

clovertown. The default nonoca node has 2GB per CPU. Our tigerton computers 

can handle that. They have 16 cpu's and 64GB. of RAM. Nehalem nodes have 

24GB RAM and 8 processors. Harpertown nodes have 8 cores and 16GB RAM. 

Clovertowwn nodes have 8 cores and 16GB RAM, as well. 

 The computations are done using 4 nehalem nodes. The 4 nehalem nodes 

has the same computation time as 32 nonoca nodes and the time taken to acquire 

32 nonoca nodes is higher compared to 4 nehalem nodes. To acquire 4 nehalem 

nodes, the command ―qsub –l nodes=4:nehalem‖ is used. The command for 

interactive mode is ―qsub –X –I –l nodes=4:nehalem‖ 
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 After a successful login to the cluster, the command ―use R-2.11.1‖ is 

used. Then the command ―R‖ is entered in the terminal to enter the R command 

prompt.  

 

Geographical locations of the dataset 

 The latitudes and the longitudes for the locations are provided by NSIDC. 

The documentation for these tools can be found in the web page 

―http://nsidc.org/data/polar_stereo/tools_geo_pixel.html‖. The files are 

psn25lats_v2.dat (latitudes) and psn25lons_v2.dat (longitudes).The 

latitude/longitude grids are in binary format, and stored as 4-byte long integers in 

little-endian format. The values are scaled by 100000. The binary files are read by 

the program readLatLon.R and the result is written to the file positions.csv(a 

comma separated file) that be imported into Microsoft Excel. The positions.csv 

file also contains the data values for a week. This contains the entire 136,192 

locations. The data values that are greater than 100 are masked and only the sea 

ice data is obtained and copied to a xls document. The file Positions_Sea.csv 

contains the list of latitudes and longitudes that has only the values on the sea and 

the missing values removed.  

 Then the tool Earthpoint(www.earthpoint.us) is used to convert the xls 

sheet to kml file compatible with Google earth to be displayed. A user account 

must be created in earthpoint.us to make the conversion and for students the 

account is free. In the xls document additional parameters like IconScale, 

IconType, etc are added and the documentation for the extra paramenters are 

http://nsidc.org/data/polar_stereo/tools_geo_pixel.html
http://www.earthpoint.us/
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provided in the web page http://earthpoint.us/ExcelToKml.aspx. Since only a 

maximum of 35000 rows are to be used the sea ice locations are split into two 

files and are used in ExcelToKml conversions.  The kml file needs to be 

opened using Google Earth software. Google Earth displays the locations on the 

globe. 

 

Reading the Dataset 

The readData function will read all the values from the binary files for 27 

years. The data for each year is present inside the folder ―ClimateData‖ with 

folder names 1979 through 2005. The source codes are also placed in the same 

folder ―ClimateData‖. Each folder for the year has 52 files for each week.  

The folders are copied from the local machine to the Saguaro cluster using 

secure copy. The command ―scp ClimateData/* 

<username>@saguaro.fulton.asu.edu:~/ClimateData/‖ is used to copy the 

contents of the data and source code from local machine to the Saguaro cluster. In 

order to copy the files from Saguaro to current folder in the local machine, the 

command  

“scp <username>@saguaro.fulton.asu.edu:~/ClimateData/<foldername>/* .‖ 

must be used. 

The function readData reads the data for 27 years. The function prototype 

is readData(range_beg, range_end, start, end, LAG). If the data has to be 

partitioned for 9-year periods, type the following command in the prompt.  

>source(“readData_9years.R”, echo=T, print.eval=T) 

http://earthpoint.us/ExcelToKml.aspx
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This reads the climate dataset for 27 years and partitions the data into 3 parts.  In 

this file readData_9years.R the parameter values are start=1 and end=9 to the 

function readData for values to be read for 9 years.  

If the data has to be partitioned for 3-year periods, type the following 

command in the prompt,. 

>source(“readData_3years.R”, echo=T, print.eval=T) 

In this file readData_3years.R there are variables that can be configured. 

In this file readData_3years.R the parameter values are start=1 and end=3 to the 

function readData for values to be read for 3 years. 

The configuration variables are,  

BASE_YEAR = 1979 

ROW = 304 

COL = 448 

NUM_WEEKS = 52 

LAG_WEEKS = 2 

 

The BASE_YEAR is used to change the year from which the data should 

be read. ROW and COL gives the dimension of the data in the file. The number of 

weeks to be read can also be configured using NUM_WEEKS variable. The 

LAG_WEEKS variable can be used to read the data with a lag of 0, 1, 2, 3, etc 

weeks. 

The dataset for the 3-year and 9-year periods can be partitioned in space 

by modifying the range_start and range_end parameters in the call to the function 

readData. The range_start and range_end are the index values that correspond to 

a set of latitudes and longitudes in the file Positions_Sea.csv. 
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Computing the Pearson Correlation Coefficient 

The Pearson correlation coefficient and the graph is constructed for 

correlation coefficient greater than the threshold using the function, 

corGraphPearson(data, threshold, filename).The output of the function is the 

correlation based graph. The input parameters are the data to be passed, the 

correlation threshold to be used to construct the correlation based graphs and the 

filename to store temporary results like the number clusters in the graph and the 

size of the clusters. The file correlationTool_9years.R and 

correlationTool_3years.R must be invoked before calling the function 

corGraphPearson. This function is invoked in the prompt using, 

>source(“correlationTool_9years.R”,echo=T,print.eval=T) 

>G1 = corGraphPearson(data, 0.7, “file.txt”) 

Plotting the Graphs 

The Pearson correlation coefficient and the graph is constructed for 

correlation coefficient greater than the threshold using the function, 

corGraphPlot(data, threshold, filename).The output of the function is the 

correlation based graph. The input parameters are the data to be passed, the 

correlation threshold to be used to construct the correlation based graphs and the 

filename to store temporary results like the number clusters in the graph and the 

size of the clusters. The files correlationToolPlot_9years.R or 

correlationToolPlot_3years.R must be invoked before calling the function 

corGraphPlot. This function is invoked in the prompt using, 

>source(“correlationToolPlot_9years.R”,echo=T,print.eval=T) 
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>resultGraph = corGraphPlot(data, 0.7, “file.txt”) 

 The correlationToolPlot_9years.R uses another file igraph_randomPlot.R 

to plot the random graphs and the small-world graphs. The functions to plot the 

small-world graphs are placed inside the igraph_randomPlot.R file. The output 

files are stored as .png files in the folders plot_r05_9 or plot_r05_3 depending on 

the data processed for 3 years or 9 years. 

Computation of Degree Distributions 

The files correlationToolPlot_9years.R or correlationToolPlot_3years.R 

must be invoked before calling the function degreeDist depending on computation 

for 3 year periods or 9 year periods. The graph that is computed using 

corGraphPearson is passed as a parameter to the function degreeDist to compute 

the degree distribution of the graph. In this function the density of the correlation 

based graph is computed and used to construct the random graphs and the small-

world graphs. The degree distributions of the random graphs and the small-world 

graphs are also computed. 

 The prototype of the function is degreeDistribution(graph, id, path) where 

graph is the correlation based graph, id is the identifier used for the distribution if 

many distributions are created for different time periods and path is the path used 

to store the results. 

>source(“correlationTool_9years.R”,echo=T,print.eval=T) 

>degreeDist(G1, 0.7, “graph_r07/”) 
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Computation of Clustering Coefficient and Characteristic Path Length 

The functions computeCC and computeCPL are used to calculate the 

clustering coefficient and the characteristic path length of a given graph. These 

functions also compute the values for the random graphs and the small-world 

graphs with the same density as the given graphs. 

The function prototype for clustering coefficient is computeCC(graph, id, 

path) where graph is the correlation based graph, id is the identifier used for the 

distribution if many distributions are created for different time periods and path is 

the path used to store the results. 

>source(“correlationTool_9years.R”,echo=T,print.eval=T) 

>computeCC(G1, 0.7, “graph_r07/”) 

The function prototype for clustering coefficient is computeCPL(graph, id, 

path) where graph is the correlation based graph, id is the identifier used for the 

distribution if many distributions are created for different time periods and path is 

the path used to store the results. 

>source(“correlationTool_9years.R”,echo=T,print.eval=T) 

>computeCPL(G1, 0.7, “graph_r07/”) 

When the source file correlationTool_9years.R is included once for 

constructing the graph, it need not be included again for computing the degree 

distributions, correlation coefficient and the characteristic path length. 


