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ABSTRACT  

With the rapid growth of mobile computing and sensor technology, it is now 

possible to access data from a variety of sources. A big challenge lies in linking 

sensor based data with social and cognitive variables in humans in real world 

context. This dissertation explores the relationship between creativity in 

teamwork, and team members’ movement and face-to-face interaction strength in 

the wild. Using sociometric badges (wearable sensors), electronic Experience 

Sampling Methods (ESM), the KEYS team creativity assessment instrument, and 

qualitative methods, three research studies were conducted in academic and 

industry R&D labs. Sociometric badges captured movement of team members and 

face-to-face interaction between team members. KEYS scale was implemented 

using ESM for self-rated creativity and expert-coded creativity assessment. 

Activities (movement and face-to-face interaction) and creativity of one five 

member and two seven member teams were tracked for twenty five days, eleven 

days, and fifteen days respectively. Day wise values of movement and face-to-

face interaction for participants were mean split categorized as creative and non-

creative using self- rated creativity measure and expert-coded creativity measure. 

Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) =  6.49 , p < 0.001] 

confirmed that average daily movement energy during creative days (M = 1.31, 

SD = 0.04; M = 1.37, SD = 0.07) was significantly greater  than the average daily 

movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The 

eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-

test also confirmed that face-to-face interaction tie strength of team members 
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during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) =  2.36, 

p < 0.01] than the average face-to-face interaction tie strength of team members 

for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) 

indicated a large effect size. The combined approach of principal component 

analysis (PCA) and linear discriminant analysis (LDA) conducted on movement 

and face-to-face interaction data predicted creativity with 87.5% and 91% 

accuracy respectively. This work advances creativity research and provides a 

foundation for sensor based real-time creativity support tools for teams. 
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Chapter 1 

INTRODUCTION 

Creativity has been defined as any process, product, or person that is novel and 

appropriate (Mayer, 1999). This dissertation investigates the relationship between 

group activity characterized through team members’ movement and face to face 

interactions within teams, and creativity. The relationship was investigated in 

research and development (R&D) teams in the industry and the academia. Group 

activity was tracked through sensor data from sociometric badges(Kim, Chang, & 

Pentland, 2007). A social science survey instrument KEYS (T. Amabile, 1996; T. 

M. Amabile, Conti, Coon, Lazenby, & Herron, 1996) was implemented through 

electronic Experience Sampling Method (ESM) (Kahneman, Krueger, Schkade, 

Schwarz, & Stone, 2004) to capture self -reported creativity and was 

supplemented with expert-coded creativity measures. Statistical methods, 

machine learning, and qualitative approaches were used to analyze and validate 

the relationship between group activity (movement and face-to-face interaction) 

and everyday creative and non-creative events. The proposed framework paves 

the way for automated creativity support tools (CSTs) based on team activity. 

Everyday Creativity Comes to the Fore 

Creativity as a phenomenon has been of deep interest to scientists, philosophers, 

artists and policy makers. While research on creativity can be traced back to the 

Greek times (Aristotle, 350BC), Guilford’s annual American Psychological 

Associations’ presidential speech in 1950 marked the beginning of modern 

creativity research (Guilford, 1950). In the modern view, creativity is considered 
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to be a part of everyday life (Certeau, 1988). People recycle, adapt, or transform 

everyday objects in multiple ways for their benefit (Wakkary & Maestri, 2007; 

Wentworth, 2006 ). These everyday innovations can be conceptualized on a 

continuous creativity spectrum based on the degree of creativity they may express 

(T. M. Amabile, 1983; R. J. Sternberg & T. I. Lubart, 1995). Researchers 

distinguish everyday creativity from those of substantial creative contributions in 

a variety of ways. Gardner expresses range of creativity as ‘little C’ creativity as 

opposed to ‘big C’ creativity (Gardner, 1993). According to Gardner, while 

efforts of Einstein and Van Gogh can be said to possess ‘big C’ creativity, small 

creative efforts in everyday life are examples of ‘little C’ creativity. While there is 

some debate on the issue of what constitutes substantial contributions in creativity 

research, there is a widespread consensus that everyday creativity is a cognitive 

process that is part of core human make-up. 

From the early days of computer science, there has been interest in 

researchers to simulate and understand human abilities through computational 

tools. In a similar vein, computers have been used to either simulate human 

creativity or support human creativity. The former promise of using computers to 

simulate human creativity (also called computational creativity) was heralded in 

the 1980s by the BACON system  (Langley, Simon, Bradshaw, & Zytkow, 1987) 

that replicated the third law of Kepler (The square of the orbital period of a planet 

is directly proportional to the cube of the semi-major axis of its orbit.) 

automatically. More recently, the latter human-centric approach to creativity and 

computation has emerged. In the human-centric approach, taken up by Human 
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Computer Interaction (HCI) researchers (Burleson & Selker, 2002; Shneiderman, 

2003), the aim is to create tools that promote and support human creativity.  

In fact recent years have seen an increase in the research on creativity 

based on the human centric view. In 2002, Burleson and Selker (Burleson & 

Selker, 2002) convened a workshop at the annual conference of Computer-Human 

Interaction (CHI) and emphasized the connection between human creativity and 

computational interfaces and placed the user at the forefront. In 2007, a workshop 

on creativity support tools (Shneiderman et al., 2006) was attended by several 

prominent creativity and HCI researchers. Papers now appear regularly as part of 

leading international HCI conferences that address the issue of supporting 

creativity. The national science foundation in United States launched the 

CreativeIT initiative which recognized the need for research that focuses on the 

confluence of technology, arts as well as the unique role of information 

technology (IT) in advancing new understandings of creativity. While these 

initiatives have led to several key contributions in the field of creativity research, 

there are still gaps of knowledge that need to be filled on the issue of 

computational support for creativity. One such gap that this dissertation seeks to 

address lies in employing wearable sensors to model, sense and predict creativity 

of teams. 

Recently, scientists have found novel ways to access nonverbal cues and 

subconscious states in human users through physiological and biometric sensing 

which includes skin conductance recording, voice tone recognition, facial 
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expression analysis, gesture and posture signals and geospatial behavioral 

tracking through location, movement, and network sensors (Pentland, 2008; 

Picard et al., 2004). Instruments advanced by the social sciences have also 

reflected the growth in understanding of creativity and a transition from 

appreciating creativity as a pure reasoning process to a more complex interactive 

spectrum within users’ internal and external context (T. Amabile, 1996). With the 

use of wearable computing tools, there is an opportunity to collect multimodal 

data about human activities and interactions and use this data to model creativity, 

predict creativity, and support creativity through computational tools.   

Wearable Sensor Based Approach to Group Creativity Research 

Computer science has aggressively advanced sensor based pattern recognition 

with applications such as face recognition (Turk & Pentland, 1991) and gait 

recognition (Lee & Grimson, 2002). Broadly, the goal of these techniques has 

been to detect a low level signal stream and recognize relevant patterns from it. 

Such recognition systems have been useful in a variety of application areas such 

as security and health. The underlying algorithms that process large quantities of 

multidimensional data have matured and computing solutions to complex 

recognition, prediction and analysis problems have been developed. However, 

since their widespread introduction in the 1990s, these computational systems 

have by and large not been mobile due to the lack of available computing power 

on mobile platforms at that time. Their sensors were installed at certain key 

locations and this information was transmitted to a central server, a little like a 

central nervous system connected with a mass of low level servers (Pentland, 
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2009). These fixed computing heavy approaches limited the use of such 

technology to study teams and groups which were highly mobile and dynamic. 

With the rapid growth in mobile computing and sensor technology, it is 

now possible to access data from a variety of sources ("A special report on smart 

systems: A sea of sensors," Nov 4, 2010). With the increase in pervasive nature of 

sensors and their miniaturization, it is possible to develop wearable computing 

platforms where teams dynamics can be sensed in a continuous manner. However, 

researchers face new challenges with regards to advancing mobile computing 

methods and deploying sensors in the real world.  A central theme that is now 

emerging as a major area of investigation in computer science lies in recognition 

and prediction of complex human behavior by analyzing sensor streams from 

mobile devices. A person’s location, presence, physiology and environment 

(among other things) can now be captured through easily available smartphones. 

These smartphones are already an integral part of the human user and usage of 

these devices provides important clues about their human users (Pentland, 2009). 

Smartphone penetration in the world is poised to grow manifolds (Wikipedia, 

2011). Given the opportunity that the current situation presents, it is important for 

researchers to investigate various facets of use of wearable technologies in 

studying human behavior.  

Studying behavior has been of interest to researchers in anthropology, 

cognitive psychology and more recently to human computer interaction 

investigators. From a data collection setting and realism perspective, there are 
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traditionally two approaches in the study of human behavior. In the first approach, 

participants’ behavior is studied in controlled conditions with experiments 

designed to induce a certain behavior and detailed protocols are used to precisely 

assess the variables. In the second approach, participants’ behavior is studied in 

their natural environment (often termed as “in the wild” studies) with embedded 

human experimenters annotating and analyzing behavior. It was necessary for the 

experimenters to make difficult choices of methods that compromised 

generalizability to real environments on the one end by focusing the study of 

human groups within strict laboratory conditions and of compromising precision 

on the other end by employing ethnographic qualitative observations (McGrath, 

1995). In the wild studies employ a combination of ethnographic observations, 

shadowing of humans, surveys and questionnaires to study human behavior. 

These in the wild methods of analysis have the best chance of accurately 

capturing human behavior due to their realism. Traditional use of the tools helps 

in collecting data that can be adequately used to model segments of human 

behavior limited to a particular individual and their activities. However, from a 

team behavior perspective, while the patterns generated through conventional 

qualitative tools may capture many aspects of the overall behavior, more often 

than not, certain key pieces of information may remain amiss. For example, 

observations gathered by a single observer may not be adequate to capture 

multiple activities occurring in a team at any instance of time. Theoretically, by 

increasing the number of observers in the environment it is possible to capture 

information about the activities in the environment from several perspectives. 
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However, more than two observers are often considered to be disruptive to 

capture naturalistic interactions. With such constraints imposed on data collection 

in complex environments, there is a need for an unobtrusive alternative that can 

augment existing methods of data collection and enable piecing together a more 

complete picture of behavior from an individual and team perspective. This is 

precisely where wearable sensors and mobile computing can enable a 

methodological contribution to in the wild studies.  

Sensor based methods can provide the unobtrusive alternative to studying 

human behavior in the wild. I propose a mixed methods approach to studying 

human behavior. In this mixed-methods interdisciplinary approach, human user is 

equipped with the sensors “in the wild” that capture low level information on 

human behavior. This low level information is augmented with qualitative 

approaches such as ethnography to give rise to novel understanding of human 

behavior. The described human-centric multi-methodological approach can enable 

an improved understanding of the teams and inform the creation of sensor-rich 

environments that maximize the creativity of teams.  

Some work has been done to investigate the feasibility of sensors and 

computational environments to support group work (Pentland, 2005, 2008). Eagle 

(Eagle, 2005) proposed that the team interaction sensors, behavior sensors and 

physiological sensors could be studied in combination with conventional 

qualitative methods to mine behavior of individuals and groups within their real 

world context. Termed as reality mining (Eagle, 2005; Pentland, 2009), it is an 
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interdisciplinary approach that combines social science methods with pattern 

recognition to give useful patterns of human and team behavior. To date, work in 

reality mining has been limited to studying team behavior in terms of 

productivity, efficiency and the impact of providing feedback on team 

performance on a teams’ productivity (Pentland 2009). In this dissertation, I apply 

tenets of reality mining to study creativity within research teams. To develop such 

approaches, it is important to choose the appropriate wearable sensors that capture 

the required information in a seamless manner. 

In order to analyze creativity through sensors, from a sensor design 

perspective, there are three research major challenges:  

1) Finding a comprehensive framework that maximizes the utility 

of the sensors for humans. A key element of promoting use of 

sensors lies in providing a persuasive framework for human 

users to wear and utilize the sensors. This requires a careful 

design of the sensors’ ubiquity to allow for a low physical 

profile of the sensors and a feedback mechanism from the 

sensors that is meaningful to the users and the community. 

2) Defining the nature and form of effective interactions between 

sensors and humans. Interactions between sensor systems and 

humans need to be carefully choreographed to allow for a rich 

meaningful interaction experience. If sensors and interactions 
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are cumbersome, then humans are not likely to use the systems 

in the long term. 

3) Conducting empirical investigations into mutualism that 

involves benefits as well as limitations of both humans and 

technology. Sensor technology should be designed to provide 

information that benefits teams directly and also seeks human 

input to improve its data analysis capabilities when needed.  

In essence, study and creation of sensor enriched civilization is dependent 

on our understanding of the human user and the context within which he or she 

operates.  

An interesting recent example of a device that meets the above criteria is 

the sociometric badge (Pentland, 2007). These badges are placed around the neck 

of the user to capture movement, speech, and location. They are a form of 

“environmentally aware computing” allowing capture of person’s location, 

presence, and elements of the environment (Pentland, 2005). This information can 

then be used to develop human-centered applications that motivate and facilitate 

human-environment and human-human relationships. In addition, these badges 

provide a customized platform for sensor based interfaces and applications that 

can provide feedback and support users. The level of feedback they can generate 

can be used to provide scaled functionality based on user expertise. The badges 

are easy to use, small in size and are ubiquitous in their nature. HCI research has 

leveraged such sensors using speech, and artifacts to study interactions within 
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members of groups (DiMicco & Bender, 2007; Farooq, 2007; Olguin Olguin, 

Gloor, & Pentland, 2009). Based on these factors, sociometric badges were 

chosen in this research, as an adequate platform to capture team behavior and link 

them to creativity.  

As a part of my investigations, I apply a novel framework that combines 

existing qualitative methods of studying group creativity in context (T. M. 

Amabile, Barsade, Mueller, & Staw, 2005) with sensor-based data gathered with 

the means of a wearable computing tool. The goal is to link sensor data with 

human creativity. The research is done in naturalistic settings and aims to find the 

optimal use of sensor data toward supporting human creativity and team work. 

This dissertation makes a fundamental contribution in the methods for assessing 

the functions and needs of groups that can benefit from novel means of 

technological support for creative problem solving. I show through several studies 

reported in this dissertation that in many ways the world of sensors is synergistic 

with the world of humans and that empirical investigations into the nature of this 

relationship will ultimately lead to symbiotic socio-technical systems supporting 

creativity.  

Creativity Support Tools 

While the work in this dissertation focuses on measurement and evaluation 

of creativity through sensors, it is important to consider the state of the art in 

creativity support tools (CST) to generate the requirements from a measurement 

tool. Such an understanding of CST would enable design, development and 
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evaluation of an effective measurement system that could seamlessly provide 

creativity support in the future.  

In the workshop for creativity support tools (CST) (Shneiderman et al., 

2006) sponsored by NSF, the attendees identified qualities of CSTs. In these 

qualities, an emphasis is placed on the structure of the creative production. The 

researchers offered a classification of CSTs into five non-exclusive categories  

a. low formality ad hoc interfaces free from restrictions,  

b. high flexibility interfaces that allows wide range of interactions,  

c. systems capable of providing detailed information on functioning 

of themselves,  

d. systems marked by the ease of selection and manipulation,  

e. systems characterized by high ceilings, low thresholds and wide 

walls meaning they provide facilities for advanced users, easy 

entry for novices, small well-chosen set of features that support 

wide range of features respectively.  

While the above said characteristics embody some of the needs of the 

creative user, there are additional means that can be employed to maximize 

human creativity. In addition to the ease and flexibility of use, creativity support 

needs to be marked by following additional characteristics: (a) customization, (b) 

exploration, (c) accessibility, (d) utility, (e) aesthetics, (f) social embededness also 

known as context. It is argued that a successful CST will facilitate user’s 

cognitive skills through effective behavioral feedback and reinforcement. These 
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characteristics are situated in the theory of intrinsic and extrinsic motivation that 

drives user’s creativity (T. Amabile, 1996). 

Motivation and engagement play an important role in the creative process 

(Russ, 1999). Research by Russ (Russ 1999) suggests that a creativity support tool 

needs to measure creativity effectively through a mixed methodology approach to 

gain a comprehensive understanding of creativity. The methodology must 

includes both internal and external context of the user and then define methods 

based on this holistic understanding of creativity to positively impact creativity 

production. Some existing research suggests that this is a feasible goal. In fact, it 

has been shown that the interaction of physiological and behavioral variables and 

cognitive styles can be managed by enhancing awareness between and among 

group members. Higher self-awareness leads to self-directed adaptation of 

behavior (DiMicco & Bender, 2007). It may also allow higher attention to group’s 

processes, goals, and strategies. West et al.. (West, Patera, & Carsten, 2009) 

defined this as reflexivity. This type of feedback is related to work by Gersick and 

Hackman (Gersick & Hackman, 1990) who found that work groups can break 

dysfunctional habitual routines by self-reflection. Similarly, a group’s self-

monitoring can enhance the understanding of breakdowns of creativity related to 

both cognitive or affective factors and lead to prevention of breakdowns (Farooq, 

2007). Thus the underlying requirement for any measurement approach to 

succeed in the real world lies in effectively measuring creativity in context. 
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Several researchers have emphasized the role of context in creativity. 

Specifically researchers argue that creativity must be studied as a phenomenon 

that interacts with its environment. An example routinely cites is of the role of 

communication backchannels, such as vision, touch, and body language in our 

interactions with the real world and the limitations of lab based analysis of 

groupwork in capturing these communication backchannels. In recent years 

efforts have shifted from emphasizing communication support to supporting 

interaction as a whole: a paradigmatic change that further emphasizes the need for 

studying creativity in context. Now, there is a greater demand of tools and 

techniques that are able to adequately capture the physiological signals and social 

interactions of humans to advance human capacity to create and produce. 

Another element of CST research that bears some influence on the work 

presented in this dissertation lies in design of the feedback mechanisms. Several 

types of CST’s proposed by researchers either partially recognize, or promote the 

idea of supporting interaction through persuasion, monitoring, and feedback. The 

success of persuasive interfaces (Fogg, 2003) is a proof of the potential of this 

technology. Today users’ needs go beyond words, and research is needed to 

adequately identify and model these needs and create design rationale for CSTs 

that guide the synergy between humans and computer. In other words, we need 

socially intelligent tools that allow emergent creativity. Allowing for persuasive 

feedback means we need both team centered and individual centered measures. 

This is a key requirement for creativity measurement architecture.  
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As a summary, we need to assess whether we can scientifically elucidate 

the relationship between the user’s internal context with its environments through 

our measurement architecture. Then investigation is required to ascertain whether 

the measures can be sufficiently modeled to allow novel design rationales in 

human centered computing. In order to do this, we must first derive clear and 

concise definition of creativity and team interaction from existing literature. Then, 

we must look into models of each to understand and draw any connections 

between creativity and team interactions. Subsequently, we must empirically test 

the validity of this connection and fine-tune the creativity measures accordingly. 

For CST, we must be able to design interfaces that elucidate and exploit this 

relationship in order to give rise to emergent creativity clusters across users. In 

addition, we must generalize the role of these creativity support environs in 

different contexts and analyze their common and differing grounds with varying 

motivation, domain specificity, and requirements. We must be able to visualize 

the pros and cons of such interfaces. All of these activities require a method to 

study creativity in context and adequately link user’s complex cognitive and 

behavioral variables with creativity. 

By using a human-centric sensor based approach in conjunction with 

creativity research methodologies from the social sciences, this dissertation 

advances a framework that employs wearable sensor based information to 

understand individual and team creativity in context(T. M. Amabile et al., 1996). 

It employs sociometric badges (Pentland, 2007) to predict creative and non-

creative days among team members, based on the movement and face-to-face 
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interaction of team members. Furthermore, it uses sensor based data to model 

creative and non-creative days within teams by using pattern recognition 

techniques. In the future, we can employ this wearable computing tools for team 

behavior management and feedback to foster creativity. Thus, the presented 

research lays the foundation for automated creativity support tools (CSTs) aimed 

at promoting creativity.   

  In this investigation, several long term studies (from two to four weeks) 

were conducted over two years on group creativity in leading research and 

development (R&D) laboratories. These laboratories had similar spatial 

environments. All were located within a room with cubicles facing the walls. All 

participants had regular working hours and the environment encouraged hands-on, 

real time interaction towards development of artifacts. To explore initial variable 

of interest, a pilot study was conducted consisting of five people over twenty-five 

days. This pilot study was conducted remotely and had limited experimenter 

involvement. Encouraged by the trends discovered in the pilot study, two further 

experiments were subsequently conducted with two, seven member teams for 

eleven and fifteen days in leading R&D labs. The goal was to study creative 

behavior of small groups in the wild(T. M. Amabile et al., 2005).A combination 

of daily online survey, cell phone based experience sampling methods, qualitative 

observations, and wearable sensing that detected movement and face-to-face 

interaction was used. The ultimate goal of this research is to develop activity 

(such as movement, and face-to-face interaction) based models of creativity that 
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can analyze and predict creativity by monitoring sensor data. This paves the way 

for sensor based real time creativity support tools for members in teams. 

Organization Overview 

In Chapter 2, related work and background is discussed in relation to the proposed 

goals of the dissertation. Then, instruments that are used in the studies are 

presented in Chapter 3. Chapter 4 details the conceptual framework that informed 

the design of the experiments. Chapter 5, Chapter 6, and Chapter 7 present 

exploratory experiment, experiment 1, and experiment 2 respectively. Chapter 8 

describes the computational modeling that predicts creativity. Chapter 9 provides 

a discussion and Chapter 10 presents conclusions highlighting the key 

contributions of this dissertation. 
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Chapter 2 

LITERATURE REVIEW 

Major Approaches in the Study of Creativity 

There are many definitions for creativity but there is a consensus that creativity is 

creation of anything that is useful and original (Mayer, 1999).  Gardner (Gardner, 

1993) described creativity as “the human capacity to regularly solve problems or 

to fashion products in a domain, in a way that is initially novel but ultimately 

acceptable in a culture.” According to Csikszentmihalyi, creativity is a process 

that can be observed only at the intersection where individuals, domains and 

fields intersect (M Csikszentmihalyi, 1997). Amabile defines creativity as an idea 

or product that is novel and meaningful and a creative person as one that is 

capable of creativity (T. Amabile, 1996). Depending on one’s perspective taken of 

creativity, as property of a person, product, or process, researchers are divided 

over several of the basic questions on creativity as well as the best research 

approaches that are suitable for the study of creativity (Sternberg, 2007). 

There are five main approaches to study of creativity (Mayer, 1999): (1) 

Psychometric (2) Experimental (3) Historiometric (4) Biographical (5) Biometric. 

Guilford’s test on creativity(Guilford, 1950) and Torrance Tests of Creative 

Thinking (Torrance, 1974) were some of the early psychometric efforts designed 

to measure either the personality traits or cognitive-affective tendency. These 

psychometric studies focus on personality and environmental correlates of 

creativity of product, process, or person. Since psychometric studies focus on 
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direct measurement of creativity, it suffers from problems such as that of internal 

validity (confusing measures of creativity with other constructs), external validity 

(generalization of tests), and predictive validity. Experimental approaches focus 

on experiment or quasi-experiments that isolate cognitive or problem solving 

aspects of creativity. Being conducted in laboratory settings, they tend to be high 

in precision but low on generalizability.  Historiometric studies focus on historical 

data. Various historiometric studies have been conducted on topics such as 

eminence, musical creativity and invention. A variety of factors have been 

isolated and discussed in relation to creativity using historical data.  

One of the famous approaches is that of biographical studies that focuses 

on qualitative analysis of specific individuals recognized to be highly creative and 

understanding the factors of creativity behind them. This method remains popular 

till today and is the basis of several popular science books. With recent advances 

in neurobiology and genetics, some researchers have started to focus on biometric 

studies of creativity that use technologies such as fMRI to understand the 

relationship between brain functions and cognitive functions.   Sometimes 

researchers may combine two or more methodologies in order to strengthen their 

results. For example, it is not unusual to find a combination of biographical and 

historiometric approach to derive conclusion on factors of creativity. 

The experimental studies on creativity focus on developmental, social, 

educational, cognitive, and emotional influences and aspects of creativity as their 

dependent variable.  An experimental study will typically involve manipulation of 
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some variable prior to creativity or problem solving tasks and subsequently 

testing its effect on creative process or output. For example, Runco (Runco, 2004) 

found that explicit instructions can in fact be used to manipulate flexibility as well 

as appropriateness of solutions. Researchers have also tested matters of intuition 

where guesses were found to correlate with correct responses even when the 

participants were not sure  (Bowers, Regehr, Balthazard, & Parker, 1990). 

Experimental approaches have also been employed to study the 

relationship between affect and creativity. Most of these studies have focused on 

the self-report of varying types of emotional states such as happiness, excitement 

etc. The research then is geared towards linking physiological responses such as 

heart rate to emotional state and creativity. Some researchers have actively 

manipulated affective states in participants and tested their effect on creative 

problem solving (Isen, 1999; Russ, 1999). For example, Hoppe and Kyle (Hoppe 

& Kyle, 1990) manipulated the affective state by showing participants short 

movie clip containing images and sounds of personal loss and mourning and 

found that those exposed to the films tended to use more affect laden words and 

were less imaginative. Closely related to affect is the issue of intrinsic motivation. 

First discussed by MacKinnon (MacKinnon, 1965) as one the most prevalent 

traits in creative personality, several researchers have identified and supported the 

role of intrinsic motivation in the creative process (T. M. Amabile et al., 1996; M 

Csikszentmihalyi, 1997). 
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Study of creativity within the environmental context has been increasing 

rapidly (T. Amabile, 1996; R. J. Sternberg & T. Lubart, 1995) due to the 

arguments listed in Chapter 1. Creativity in context studies tend to identify the 

positive or negative impact of environmental and contextual factors such as 

availability of resources, work pressure and leadership style as well as intrinsic 

motivation and extrinsic motivation.  As expected in these studies, the role of 

intrinsic motivation has emerged as a major factor. Supporters of intrinsic 

motivation take the view that creative expression is motivated by personal 

enjoyment and satisfaction and is not necessarily affected by direct external 

rewards or punishments of creative expression. In fact, in some cases of “in the 

wild” studies, external reward has been found to be deterrent to creative output. 

Overall the researchers propose that extrinsic award can only serve the purpose of 

engaging a person in a task (Russ, 1999). Too much extrinsic reward will 

discourage a person from risk taking behavior, encourage conformity and 

therefore hinder creativity.  This is known as “intrinsic motivation hypothesis” 

proposed by Amabile (T. Amabile, 1983) and forms a cornerstone of her 

componential model of creativity in context (T. Amabile, 1996).  

Componential model of creativity (T. Amabile, 1996) identifies three 

components of the creative performance: (1) domain relevant skills that are 

acquired either innately or by education, (2) creativity relevant skills acquired 

through training and dependent on personality, and (3) task motivation which 

involves minimization of influence of extrinsic motivation and maximizing 

intrinsic motivation. Like the componential model of creativity, Sternberg and 
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Lubart (R. J. Sternberg & T. Lubart, 1995) investment theory of creativity states 

that in some cases extrinsic motivation may serve to enhance intrinsic motivation. 

Woodman  et al.. (Woodman, Sawyer, & Griffin, 1993) interactionist model of 

creative behavior too identifies intrinsic motivation as a component conducive for 

creativity.  Csikszentmihalyi (M Csikszentmihalyi, 1997) and Gardner (Gardner, 

1993) include intrinsic motivation as a personality trait important for creativity.  

Intrinsic motivation has been talked about in the form of intense commitment to 

work, passionate involvement in problem solving, deriving pleasure in working, 

seeking challenges that match skill level, a psychological ‘high’ with heightened 

feelings of involvement and concentration (described as ‘flow’ by 

Csikszentmihalyi). Hence, measurement and analysis of intrinsic motivation in 

context has to be an important part of any computational tool for creativity 

analysis. The means to measure intrinsic motivation may not be limited to 

cognitive measurements. Wearable computing gives us means to find behavioral 

correlates that may be indicative of states of ‘flow’ or high intrinsic motivation. 

Assessment of Creativity 

For the measurement of creativity, several divergent thinking tests have been 

designed that test for fluency or rate of ideation in individuals. Some early tests 

proposed to test creativity were Guilford’s Structure of Intellect (SOI) divergent 

production tests (Guilford, 1956), and Torrance’s Tests of Creative Thinking 

(TTCT) (Torrance, 1974).  The SOI battery of tests have factors that represent 

several types of fluency (number of ideas), flexibility (variety of perspectives 
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represented in the ideas), originality (statistical infrequency), and elaboration 

(explanation of ideas beyond what is strictly demanded).  

These tests for assessment of creativity differ on four scales (Sternberg, 

2007): (1) Time: timed or untimed (2) Mode of instruction: game like or test like 

(3) Unit of analysis: individual level, or group level, or organizational level (4) 

Instruction type: specific instructions such as “be creative” or non-specific 

instructions. These four scales have been found to have different influence on the 

final result. In addition, these tests are susceptible to training effects where long 

term exposure to the tools biases users and affects the outcome as well as 

intervention effects where knowledge of the tools being used biases users and 

affects the results. To avoid these effects, some researchers have suggested 

alternative methods to measure creativity in longitudinal studies. One proposed 

alternative to normal frequency tabulation of creativity measures is using 

summative scores, uncommon scores, weighted fluency scores, and collective 

scores. These limit the statistical biases in the data. However, there is also the 

issue of confluence where one factor such as fluency may affect flexibility.  

It is generally recognized that the above defined parametric approaches 

may measure only one aspect of creativity and can work only in controlled 

laboratory conditions. In an alternative approach, since the bedrock of creativity is 

the end product, several efforts have started to focus of the creative quality of the 

final product. These tests range from simple rating scale such as creative product 

semantic scale (Besemer & O’Quin, 1993) to a more complex consensual 
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assessment technique (CAT) (T. Amabile, 1996). Typically researchers provide 

the judgers or raters with rating categories. For example, Csikszentmihalyi and 

Getzels (M. Csikszentmihalyi & Getzels, 1971) asked art critics and artists to rate 

drawings by art students on the basis of craftsmanship, originality, and aesthetic 

value. These guided ratings are motivated by creativity models such as 

componential model of creativity proposed by Amabile (T. Amabile, 1996).  

Overall, most of these tests require that users either find new instances or 

applications of existing topics or sets of objects in order to demonstrate creativity.  

The tests assume that creativity is a quantifiable domain-independent trait of 

individuals. However, while creativity scores from these tests may be indicative 

of a person’s natural tendency and inherent talent for creativity, these do not 

necessarily translate to creativity in a specific domain which requires a high level 

of expertise, idea generation, and verification (gate keeping) that is particular to a 

given field. Moreover, these tests do not transfer to team or small group creative 

activity. To address these limitations, some researchers have suggested alternative 

methods to evaluate team creativity. One such approach is the Consensual 

assessment technique (CAT) proposed by Amabile (T.Amabile 1996). 

CAT can be employed to address domain specific creativity and also be 

extended for analysis of team creativity. In CAT, researchers provide judge raters 

with rating categories. CAT relies on the inter-rater reliability between these 

expert judges to evaluate levels of creativity in processes and products.  Amabile 

has also developed the KEYS scale based on her componential model of creativity 
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(T. M. Amabile et al., 1996) that measures variety of factors such as affect, 

rewards, motivation, and asks the participants to self report on creativity (on a 

Likert scale) and to explain what they did throughout the day in an open ended 

question format. This scale is particularly useful since it addresses individual, 

team, and context variables concurrently. It also has several checks and cross 

checks to ensure consistency and accuracy of responses. 

Another research direction lies in automated analysis of creativity through 

sensors and data mining. In order to create computational tools that support 

creativity within teams, we need to understand the basic nature of group creativity 

and the factors that may influence creativity. Thus, there is a need to find sensor-

level measures that correlate with existing measures of creativity such as that 

obtained from consensual assessment technique. We expect that in the future we 

shall be able to reliably predict creativity by computational modeling of human 

behavior based on raw sensor information. This is a challenging problem since 

quantifying complex cognitive variables such as intelligence and creativity by 

physiological measures requires a long process of validity checks in 

interdisciplinary settings. This type of research is very much in its infancy but 

there is some promising initial work. 

A few researchers (Burleson, Picard, Perlin, & Lippincott, 2004; Kapoor, 

Burleson, & Picard, 2007; Kim et al., 2007; Olguin Olguin et al., 2009) have 

successfully employed empirical setups that make use of physiological sensing 

and wearable computing to understand and predict the relationships between low 
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level signals and high level behavioral constructs such as affect, activity and 

creative output. For example, methods from affective computing have been able 

to distinguish affective state with 81% accuracy throughout everyday activities 

(Kapoor et al., 2007) while machine learning tools that incorporate Human Eigen 

behaviors and Coupled Hidden Markov Models (CHMMs) have been shown to 

account for 96% of the variance of behavior of typical individuals(Eagle, 2005). 

This dissertation leverages the strengths of social science survey tools and 

wearable computing methodologies towards new findings on creativity. In the 

proposed approach, wearable and mobile computing tools are embedded in user’s 

context and integrated with users’ daily routine to gather data throughout creative 

processes which is subsequently used for computational modeling of human 

creativity.  

Group Creativity 

Work on creativity has largely focused on individual creativity. However, in 

recent years, there has been an increased interest in studying team creativity 

within organizations. An important observation is that it is not very clear how 

individual creativity is linked to team creativity (Pirola-Merlo & Mann, 2004). 

Researchers have dealt with this conundrum by focusing on individual creativity 

alone, or on team creativity alone, or on processes of interactions between team 

members (Bain, Mann, & Pirola-Merlo, 2001; Pirola-Merlo & Mann, 2004; Scott 

& Bruce, 1994; Taggar, 2002 ). 
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Group creativity can be conceived as additive or disjunctive property of 

individual creativity (Pirola-Merlo & Mann, 2004). If it is additive then each 

individual member’s creativity adds up to the final creative output of the team. If 

it is disjunctive, the most creative ideas which may come from one or more 

individuals are adopted by the team. Team creativity may also manifest itself as a 

weighted combination of individual contributions.  

Lately, several researchers have pointed that context plays an important 

role in the intra-individual factors and how individual creativity is related to team 

creativity. Amabile, in her componential model of creativity, has pointed out that 

intra-individual factors such as organization incentive for innovation, resources 

made available, and external pressure can impact individual creativity (T. 

Amabile, 1996). Taggar (Taggar, 2002 ) found that in addition to creativity 

relevant skills, domain relevant knowledge, and intrinsic motivation at the 

individual level, there might be group related processes that are relevant to 

creativity.  Amabile’s KEYS scale (T. M. Amabile et al., 1996) tries to quantify 

such variables in an efficient way and is shown to be quite reliable in measuring 

team creativity.  

Group creativity is also studies by researchers in the field of computer 

supported collaborative work (CSCW). McGrath defines a group “ as an intact 

social system that carries out multiple functions, while partially nested within, and 

loosely coupled to, surrounding systems (e.g. an  organization)” (McGrath, 1984). 

In the 1960s many specialized group study systems for the analysis of specific 
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classes of groups or group activity were proposed. However, by the late 1970s 

and early 1980s , research hit the limits by the type of technology that was 

available for that time  and suffered from lack of adequate theory to support 

further development (Lubich, 1995). By the 1980’s new technology for data 

collection (e.g. sophisticated video, taping systems) and for data analysis (Fourier 

analysis etc.) triggered a rise in group work(Lubich, 1995). In the 2000’s, group 

work had turned to the use of sensors for feedback and the display of group 

behavior (DiMicco & Bender, 2007; Kim et al., 2007). The goal was to create 

automated sensor-driven tools that enhance group performance. These tools 

employ sensors in laboratory environments and focus on single modality, such as 

speech (Leshed, 2009), for promoting group performance . With the introduction 

of personal computers, several creativity support tools (CSTs) have also been 

developed that aim to improve group creativity. Most of the studies in CSTs 

center on the comparisons of an experimental group that uses the CST system 

versus a nominal group ( set of individuals not acting as a group) or a control 

group that does not use the system (Massetti, 1996). Studies tend to focus on 

quantifying interactions and using them as a measure of creativity and 

productivity. These are discussed in the next section. 

Role of Interactions in Group Creativity 

Research has shown that network communication strength and the types of 

communication modalities within a team are additional behavioral factors that 

may impact group creativity (Kraut, Egido, & Galegher, 1988). While there is a 

belief that face-to-face interaction strength is central to the understanding of 
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social networks in relation to creativity, there is insufficient empirical evidence to 

indicate strong relationship between face-to-face interaction and creativity. Tie 

strength (weak, strong) is a function of the amount and quality of interactions, 

emotional intensity, and reciprocity that takes place between two individuals 

(Granovetter, 1973). Zhou et al.. (Zhou, Shin, Brass, Choi, & Zhang) found that 

employees exhibited greater creativity when their number of weak ties was 

neither too low, nor too high (an intermediate level exhibited greatest level of 

creativity). Perry-Smith and Shalley (Perry-Smith & Shalley, 2003) showed that 

weak ties rather than strong ties are beneficial for creativity among research 

scientists. In contrast, Obstfeld (Obstfeld, 2005) showed that engineers with 

strong ties are more creative. These studies show a complex, inconclusive, and 

possibly domain specific relationship between tie strength and creativity. 

Research has also investigated the nature of structure of the social network 

within team, that is more supportive for creativity (Ohly, Kase, & Skerlavaj, 

2010). For example, Burt (Burt, 2004) claims that a network with several 

structural holes (many disconnected individuals) may be more creative. Burt 

hypothesizes that members who are closer to these structural holes are exposed to 

a greater diversity of perspectives which has a positive impact on creativity. On 

the other hand, Perry-Smith and Shalley (Perry-Smith & Shalley, 2003) claim that 

a dense network with all members strongly connected to each other provides an 

opportunity for free interchange of information and hence greater creativity. 
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All these studies generally agree that interaction between key members of 

the team will lead to increase in domain-relevant skills and creativity relevant 

skills. The reliance on questionnaire based self reports from the participants 

however is a methodological limitation of social network studies on the 

importance of face-to-face network in creativity. The use of wearable computing 

in the real world context allows us to more reliably map the network relationships 

between participants. Moreover, we can distinguish between collocated 

interactions and remote interactions and conduct a finer grain analysis of the 

member interactions in a network. 

Past research in group work suggests that different patterns of interaction 

based on in time and space can have a significant impact on group performance. 

Pentland(Pentland, 2008) observed that the group that has greater oscillation 

between periods of information discovery and periods of integration has more 

creativity than those groups with lesser oscillation. Information discovery is 

marked by group members gathering information at the individual level by talking 

to people outside their own group and information integration occurs when team 

members spend time together. 

Using sociometric badges this research focuses on collocated (located in 

the same room) real time interactions between team members. The results will 

disambiguate much of the debate on the relationship between interaction tie 

strength (generally considered to be a function of team member’s emotional 

intensity, reciprocity, and interaction) and creativity (Perry-Smith & Shalley, 
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2003). Studies on team interaction have shown promise in understanding the 

relationship between face-to-face interaction and team performance(Olguín-

Olguín, Kam, & Pentland, 2010). Moreover, research indicates that by analyzing 

wearable computing data, we can evaluate the patterns of movement and 

interaction (discovery and integration) that contribute towards creativity. Thus, 

with careful implementation of reality mining approaches that link sensor data 

recorded in the real world to the social and cognitive variables of humans, we can 

gain crucial insights into the relationship between human interaction and 

creativity. 

While face-to-face interaction has been studied to some extent in relation 

to creativity, movement of the team members has been largely neglected as a 

variable that pertains to creativity. Most research conducted on the relationship 

between movement and creativity is in the exercise sciences where brief period of 

activity such as walking on the treadmill is followed by creativity assessment 

questionnaires (Malone, 1989; Singh-Manoux, Hillsdon, Brunner, & Marmot, 

2005). These studies have established that physical activity in humans is linked to 

their creativity. However, research is needed to understand how individual 

movement in the work environment is related to the creative production. 

Movement is closely linked with sharing of information such as moving to 

the same location to share the artifact and moving around in the office to talk to 

people. Movement is hence an interesting variable for creativity. We can imagine 

two people in a team: person X moves a lot, while person Y moves is glued to his 
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or her desk. Another person Z moves a lot but also has periods of non-movement 

in which he or she works alone. All these scenarios are interesting in their 

relationships to both personal and team creativity.  In essence, a certain amount of 

movement implies creativity by indicating sharing of artifacts and convergence of 

knowledge as well as dispersion and dissemination of knowledge especially in 

closed lab settings. 

A Note on Assumptions and Challenges in Analyzing Group Data 

While much work has been conducted in groupwork, it is important for the reader 

to consider that group research is a challenging task (Saddler & Judd, 2003). 

Some of the common problems in group research are ensuring participation and 

compliance, asking the right questions, measuring group variables, and designing 

appropriate structure of the experimental sessions. The most difficult challenge 

from a statistical perspective lies in analyzing data from groups (Hoyle, 

Georgesen, & Webster, 2001; David A.  Kenny, Mannetti, Pierro, Livi, & Kashy, 

2002). Data gathered from individual participants in group studies is often 

interdependent which limits the use of several statistical tools for analysis. The 

data provided by individual group members may reflect both their own unique 

perceptions and the elements they share with other members of their group. 

Separating individual and shared factors in group data is statistically challenging. 

Kenny and Judd identify three sources that might produce 

nonindependence in groups (D. A. Kenny & Judd, 1986; David A.  Kenny et al., 

2002): (1) Compositional effect occurs when the sampling of the subjects is not 
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random and instead is influenced by personal likes or dislikes of attributes (2) 

Mutual influence occurs when members interact with each other directly and 

reciprocally such as in a small group of friends (3) Common fate occurs when 

members coexist in a common environment such as team members in the work 

environment. In a typical laboratory environment, common fate threatens the 

validity of the independence assumption on the collected data. 

Even with the recognition of such confounding factors, the issue of non-

independence is still largely ignored in group research. In fact, Hoyle et al. 

reported that in 1992 and 1997, only about 60% of the publications in group work 

acknowledged the problem of dependency in data and one third of those papers 

reported analysis only at the individual level. The most frequent analytic strategy 

used to deal with non-dependence of data was to use group as a unit of analysis. 

Hierarchical Linear Modeling (HLM) was at that time proposed to be a solution to 

analyze data from individual in groups by Kenny et al. (D. A. Kenny, Kashy, & 

Bolger, 1998) but it was not used in any of the reported literature. A key element 

of the present analysis in this dissertation was to ensure that the approach 

accounted for the possibility of interdependence of data collected in various 

experiments. 

Employing techniques such as ANOVA that rest on the independence 

assumption can be valid in group data as long as preliminary analysis of data 

shows that the observations are independent. A foremost technique to show 

independence is correlation analysis (Hoyle et al., 2001). In this case, non-
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independence is viewed as a correlation between observations and can be either 

negative (when the data points are dissimilar but predictably related) or positive 

(when they are similar and predictably related) (D. A. Kenny, Mannetti, Pierro, & 

Livi, 2002). In general, if intraclass correlation coefficient is effectively zero for 

the observed data points, it can be concluded that non-independence of data does 

not hold. In that case, no group-level inferences (using group as a unit for 

analysis) are necessary, and the analysis focuses on individual level effects. If this 

coefficient is nonzero, then effects at the individual level are estimated after 

group-level effects have been estimated (using multilevel models) (Christensen & 

Bedrick, 1997; Griffin & Gonzalez, 1995; Hoyle et al., 2001; D. A. Kenny & 

Judd, 1996; Moritz & Watson, 1998). In this dissertation, calculation of intraclass 

coefficients confirmed that assumption of independence of data is valid (since the 

coefficients were effectively zero). 
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Chapter 3 

INSTRUMENTS AND METHODS FOR THE MEASUREMENT OF GROUP 
CREATIVITY 

This chapter details the instruments and methods used for measurement of group 

creativity. This dissertation uses a multi-methodological approach drawing upon 

computer science and social science. It uses a combination of a daily online 

survey based on KEYS scale, previously used by Amabile et al. (T. M. Amabile et 

al., 1996) to measure creativity. It also uses sociometric badges from the Human 

Dynamic group at the MIT Media Lab(Pentland, 2007) to measure group activity. 

Sociometric Badges 

Sociometric badges are a type of wearable computing, such as PDA and cell 

phone devices, worn around the neck (See Figure 1 and 2). The badges record 

network data (Infra Red pings) at 17 Hz, body movements (2D accelerometer) at 

50 Hz and ambient audio using embedded speaker at 8 kHz. In addition, these 

badges have their own power supply (charged through USB) and a storage device. 

Thus, sociometric badges track location and analyze elements of participant’s 

social interaction through bi-directional infrared transceiver, accelerometer, and 

low-resolution microphone analysis. No personally identifiable data is recorded 

which ensures privacy of subjects. The raw data from the sensors needs to be 

analyzed to extract meaningful features that may correlate with team members’ 

characteristics. The process of feature extraction from the raw sensor stream is 

described below. 



 

Figure 1. Front and back of a sociometric badge. 

 

Figure 2. A participant is wearing the badge around his neck. 
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Calculating Average Movement Energy 

Badges are equipped with triaxial accelerometers that give the value of movement 

in X, Y, and Z directions. Figure 3 plots raw accelerometer values of a badge 

when the badge was moved up and down 1 meter in the X, Y, Z direction 

respectively at every 1 minute. Using the standard value for gravity (g = 9.8 m/s2), 

and initial starting values of X, Y, and Z as baseline, normalized X, Y, Z values 

were calculated. Figure 4 shows the plot of normalized values. 
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Figure 3. Raw accelerometer values of a badge when the badge was moved up 
and down 1 m in X, Y, Z direction respectively every 1 minute are shown. 

Finally movement energy array was calculated by the following formula:   

) Z+ Y + (X =Energy Movement 22
normnorm

2
norm 

where Xnorm, Ynorm, and Znorm are normalized values of X, Y, Z axis. 
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Figure 4. Xnorm, Ynorm, and Znorm, normalized values of X, Y, Z axis 
respectively, are plotted against time. 

  

Figure 5. Movement energy values for the sample badge. The mean energy 
calculated for this array was 1.33 with a standard deviation of 0.17. The total 
number of samples in this test sample was 4432. 

The movement energy array (see Figure 5) was used to calculate the mean 

and standard deviation of movement energy for each participant for each day. 
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Movement energy gives a measure of the intensity of individual movement that 

includes the effect of variation in signal around the three axes in the 

accelerometer (Olguin Olguin et al., 2009). Activity recognition based on 

movement energy is an extensively researched area and various papers have 

focused on how the signal stream from the X, Y, Z may be correctly classified 

into various types of physical activity such as walking, running, and sleeping 

(Ravi, Dandekar, Mysore, & Littman, 2005).  

Figure 6. Participants wearing sociometric badges during a group meeting. 

Calculating Face-To-Face Tie Strength 

Infrared signals in the sociometric badges are used to give us a measure of face-

to-face interaction (Figure 6 shows participants in a group meeting wearing 
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sociometric badges). Badges record presence and duration of other badges when 

they are in direct line of each other (IR signal cone of height ≤ 1 meter and radius 

r   ≤  h tan Ө where Ө =  ±15º) (Olguin Olguin et al., 2009). We counted the 

number of pings for each badge and constructed adjacency matrix for the data. 

Cells in the adjacency matrix represent the number of pings recorded for each 

badge with all other badges.  This matrix was first made symmetric with respect 

to the minimum number of pings recorded for each pair. Subsequently, the 

adjacency matrix was used to generate face-to-face tie strength for each day 

(Total pings/Detected Number of Badges) for each participant. The badges have 

been extensively validated over several studies (Basu, 2002; Choudhary, 2004; 

Kim et al., 2007; Olguin Olguin et al., 2009; Pentland, 2008). We now discuss 

tools to measure creativity in the dissertation. 

KEYS Scale 

To obtain daily measures of creativity from the participants, we employed a 

version of electronic Experience Sampling Methodology (ESM) based KEYS 

daily questionnaire (T. M. Amabile et al., 1996) (See Appedix A). KEYS scale 

includes items related to creativity, affect, and external environmental factors for 

that particular day.  It is based on the componential model of creativity 

proposed by Amabile(T. M. Amabile, 1983). 

The KEYS survey is designed to assess the perceived stimulants and 

obstacles to creativity in organizational work environments. Items of KEYS scale 

address negative and positive aspects of the environment. It is widely recognized 
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as the current standard for measuring team creativity and innovation within 

organizational work environments (T. M. Amabile et al., 2005). KEYS defines 

creativity as a production of novel and useful ideas in any domain and innovation 

is defined as the successful implementation of creative ideas. The research team 

that developed KEYS appreciated that creativity by individuals and teams is a 

necessary but not sufficient condition for innovation in organizations. They 

considered team creativity to be the starting point for organizational innovation 

(T. M. Amabile et al., 1996). 

The KEYS survey has fifteen questions two of which are open ended 

responses. A 7 point Likert scale (ordinal measures) (1 – ‘not at all’ and 7 – 

‘extremely’) is used for each of the questions. Our first measure is self -rated 

creativity that is extracted from the report of team creativity. The variable 

assesses member reports of creativity being experienced by the team. For the open 

ended questions, participants were asked to 1) “In a few words, briefly describe 

the major work you did on the assigned project pertaining to this study today, or 

the major activities you engaged in that were relevant to the target project” 2) 

“Briefly describe ONE event from today that stands out in your mind as relevant 

to the target project, your feelings about this project, your work on this project, 

your team’s feelings about this project, or your team’s work on this project”. 

KEYS requires an expert judge to rate the participants’ reports by 

assigning numerical value for the level of creativity (0 or 1) in addition to the self-

reports through questionnaire. It has been shown to be reliable when the rating is 
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conducted with one or more expert judges. Expert is defined as a person 

knowledgeable about domain. 

Table 1. 
A sample of combined narrative into events. CODE represents Event 
Number_ParticipantID_Day. Adding the layer to connective tissue was previously 
described as a routine task by the participant. 

CODE EVENTS CREATIVE 
(1/0) 

 11_P6_D4 Work on Cholecystectomy [sic] scene. Made a 
minor breakthrough today. A physics asset of a 
gall bladder model seemed to interact well. I 
pursued that lead with Cord and as it turned out I 
managed to create with his help a very nicely 
interacting model of the gall bladder. 

1 

 12_P6_D4 Besides this I spent the day adding another layer to 
the connective tissue. 

0 

 

In this dissertation, the method described by Amabile et al. (T. M. 

Amabile et al., 2005) was followed to obtain expert coded creativity. The 

descriptions from the open ended questions were combined together to form 

open-ended narratives for each participant. Unique instances of completed actions 

were extracted from the narrative for each participant to identify individual 

‘events’. The KEYS coding protocol defines creative thought as any of the 

following: (1) a discovery, insight, or idea; (2) the act of searching for a 

discovery, insight, or idea; (3) solving a problem in a non-rote way; or (4) the act 

of searching for a problem solution in a non-rote way. Events that had any of 

these were labeled 1 and events that did not have any of these were given 0. Table 

1 illustrates the process through an example. In the code of the form “X_Y_Z”, X 
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stands for index number of the event, Y is the participant ID that was assigned 

prior to the experiment, and Z is index number of the day the event occured.  

The basic assumption of KEYS is that psychological perceptions of work 

environment by the team members play a vital role in their creativity. The 

underlying model (T. Amabile, 1993) identifies three components within the 

individual that have an effect on creativity, including individual’s intrinsic 

motivation, their thinking style, and domain relevant knowledge. The KEYS 

scales has been validated over several studies and is reported to have high validity 

and reliability of creativity scores (median Cronbach alpha = 0.84, test-retest 

reliability = 0. 87); high content validity (items measure the content they were 

intended to measure) (median r with KEYS scale for stimulants and obstacles = 

0.46); convergent validity ( scores predict a criterion measure and results correlate 

with other results) (median r with WES scales  = 0.43); and discriminant validity ( 

items measure hypothetical constructs or concepts). (median r with WPI scales =. 

09, KAI  r=  -0.02)(T. M. Amabile et al., 1996).  
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Chapter 4 

CONCEPTUAL FRAMEWORK 

This chapter explains the conceptual framework that guides the experimental 

design and rationale of this dissertation. In past work, some creativity tasks 

performed in laboratory settings, implicitly embody movement and speech while 

some emphasize cognitive processes. There are few studies in the exercise 

sciences that link creativity with general movement such as aerobic exercises. 

However, to the best of my knowledge, no prior work exists that has studied the 

direct relationship between movement and creativity and the work on face to face 

interaction in teams has primarily been concentrated on productivity rather than 

creativity. This dissertation explores the relationship between individual 

movement and face to face interaction and creativity within a team.  

This work is motivated by seminal contributions in scientific literature on 

creativity and activity. In his book, Honest Signals, Pentland talks about four 

categories of human signals based on their timing, energy, and variability 

(Pentland, 2008): Influence (extent to which one person causes other person’s 

pattern of speaking to match their own), mimicry (reflexive copying of gestures), 

activity (increased activity levels such as vigorous body movements that indicate 

interest and excitement), and consistency (different thoughts or emotions manifest 

themselves in jerky movements and speech while focused thought is manifested 

through consistency of emphasis and timing). As indicated by research in affect 

(Damasio, 1994; Darwin, 1913; Kaufmann, 2003), learning (Chi, 2009 ) as well 
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as research on creativity and performance using sociometric badges(Olguin 

Olguin et al., 2009), I chose to study the relationship of activity and creativity in 

teams.  

Research was conducted in two broad phases. First phase was exploratory 

and the second phase involved careful design of “in the wild” experiments that 

had hypotheses derived from the exploratory study. In the exploratory study, data 

from a group of participants was recorded with the intention of evaluating 

feasibility of movement and face-to-face interactions as being valid variables of 

interest for studying creativity. Participants were observed over four work weeks. 

Their movement and interactions were recorded through sociometric badges and a 

daily survey was administered to explore the relationship of their activity to their 

creative output. Analysis of this data suggested that movement and face-to-face 

interaction were variables of interest with respect to creative production in a 

research laboratory. Informed by these results, the main experiments were 

designed. The two main experiments confirmed the relationship between 

movement and face-to-face interaction among team members to creativity in a 

team. 

In the main experiments, participants engaged in creative work are 

observed for two work weeks. Participants have regular work hours (9 am -5pm) 

and are engaged in research intensive creative work in an information technology 

environment. A survey based on Amabile’s KEYS scale that assesses creativity is 

administered. 
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 For the purposes of this dissertation, creativity was defined as “a product 

or response that can be judged as creative to the extent that (a) it is novel and 

appropriate, useful, correct or valuable response to the task at hand, and (b) the 

task is heuristic rather than algorithmic” (T. M. Amabile et al., 2005). Amabile’s 

work represents the best accepted tool and definition of creativity. Given its 

extensive validation in the real world studies of creativity, it is an adequate 

instrument to study the feasibility and applicability of sensor data analysis to 

extract creativity measures. 

 Movement and interaction activities of the team are recorded concurrently 

using wearable computing tools and experimenter observation. Accelerometer and 

face-to-face recordings are obtained through a wearable computing tool called 

sociometric badges(Olguin Olguin et al., 2009).The movement data was 

characterized through energy as it represents the gross effort put into physical 

displacement of individuals. Face-to-face interaction is captured through the 

infrared transceiver pings which occur when the transceivers on different badges 

face each other. The results of the initial experiment and informal observations 

indicated that the signal to noise ratio in both these data streams (defined as the 

ratio of valid interactions to overall interactions) will be high and the data will be 

sufficiently reliable to evaluate proposed hypotheses. 

Data collection through two different experiments enabled testing the 

hypotheses linking face-to-face interaction, movement, and creativity in two 

separate occasions. This helped in proving generalizability of the results. The 
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experiments presented in this thesis strongly prescribe to the view of studying 

creativity in context. It is for this purpose, that I do not include any explicit tests 

of creativity but rather study emergent creativity both through self-report and 

expert-coded creativity. The experiments capture both self-reported creativity and 

expert-coded creativity because they represent two related yet distinct views of 

creativity. 

Selection of participants in this dissertation was carefully designed. In the 

initial exploratory experiment, a team was selected from the information 

technology research industry. The team members were driven by time dependent 

goals and had project management practices imbibed in their work culture. This 

allowed for us to study emergent creativity in environments with high level of 

external motivators. For the main experiments, research teams in a Level I 

research university were recruited. Research teams in a Level I research university 

are engaged in highly creative processes with the benefit of limited influence of 

other factors such as time, finances, etc. The primary goal of research teams in 

university settings is to conduct research which involves a significant component 

of collaborative problem solving and group creativity. 

In this way, the participants in the main experiments satisfied each of the 

criteria of componential model of creativity(T. M. Amabile, 1983) namely: task 

motivation, domain relevant skills, and creativity relevant processes. Modern 

research environments in the universities typically involve high use of IT, high 

interpersonal interaction, and collocated laboratory. The environment tends to be 
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competitive (publish or perish). In addition, individual freedom or latitude (lesser 

hierarchy) is highly valued. University research laboratories operate as 

independent units minimizing the external context (rewards, pay) and typically 

place a high value on internal context (such as personal motivations). Thus, for 

this dissertation, research laboratories that satisfied these conditions were 

selected. It may also be noted that with inclusion of teams in both industry and 

academia , the overall experimental design allowed for rigorous testing of 

generalizability of our results. 

Our choice of statistical tools for the experiment was designed to ensure 

statistical validity of the results and generalizability. As mentioned in Chapter 3, 

the methodology paid special attention to ensure that the assumption of 

independence of data held true. From an analysis perspective, the methodology 

employs a mean split in creativity data to categorize events as creative or non-

creative. In creativity research, it is not uncommon to split the creativity scores 

into different levels (Tierney & Farmer, 2002). This approach enabled 

comparisons between creative and non-creative events to effectively structure and 

test the hypotheses. 

A key element of the presented work lies in design, development and 

evaluation of a computational model for creativity. A computational model of 

creativity can have several applications including automatic prediction of 

creativity, development of creativity support tools and creating tools for 

assembling teams and designing the environments to maximize creativity. I 
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intended to use probabilistic and deterministic tools for computational modeling 

of creativity. By employing both these approaches, it was possible to study the 

underlying model of the relationship between creativity and the sensor data. 

Further I employ linear techniques of analysis as they represent the least common 

denominator in data mining approaches and success of linear techniques could 

open up several possibilities of developing effective models for analysis of 

creativity. In the following chapters, I describe in detail the experiments, results, 

and discussion. 
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Chapter 5 

EXPLORATORY EXPERIMENT 

Overview 

A pilot study was conducted to explore whether there are correlations between 

individual activity and self-reported team creativity in a small group. It used a 

combination of quantitative and qualitative data that was collected for a team of 

individuals over an extended period of time. These individuals worked in a 

industry research environment that required high levels of information technology 

and creativity in an industry setting. Creativity was measured through an online 

survey that had a combination of scale-rated responses and open ended questions 

that allowed participants to describe their day to day experience of creativity. A 

multi- methodological approach was used to explore the relationship between data 

obtained from the sensed activity (movement and face-to-face interaction) 

(Pentland, 2007) and levels of creativity collected via Electronic Experience 

Sampling Methodology (ESM) (T. M. Amabile et al., 2005). The results of this 

study informed our hypotheses for subsequent experiments. 

Methods 

Participants 

A team of five people (2 females, 3 males; mean age = 32.4 years, range= 

26-38 years) participated in a five week study (total 25 working days). All 

participants had undergraduate degrees in engineering and two had post-graduate 

degrees (1 MBA and 1 MS). The team was involved in software coding and 

research in a leading industrial R&D laboratory in the United States. All 
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participants were part of a single team engaged in highly creative research and 

development activities.  

The participants were selected because they worked in a tightly knit single 

location laboratory advancing IT research. The majority of work in this laboratory 

is conducted by the members in a highly interactive manner. No rewards were 

given to participants in this study. The head of this department was contacted via 

email and they in turn put the experimenter in contact with the team that 

volunteered for the study. The study was approved by the Institutional Review 

Board at Arizona State University, Tempe, AZ. All participation was voluntary 

and participants had the option to opt out at any time.  

Materials and Procedure 

This study used sociometric badges and the KEYS daily questionnaire 

(See the Chapter 3 for details on instruments). 

The study was conducted at a remote site with a team involved 

professionally in software coding projects. The experimenter shipped the badges 

to the remote site at the beginning of the study. Participants were required to 

charge the badge on their own every night by plugging them into computers via a 

USB cable that was provided.  

All participants were informed that the investigation was on workflow 

issues in team work. This was largely done to avoid any bias on part of the 

participants towards creativity. All participants were given a unique participation 
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ID through which they corresponded for the duration of the study. The 

participants were also informed that their responses would remain anonymous and 

evaluated by researchers unaffiliated with their work environment. The 

participants were ensured that the data would not be shared with the supervisors 

directly and only deidentified aggregate analysis would be presented to audience. 

  Before the main experiment began, subjects were requested to answer an 

initial demographic questionnaire. During the study, each subject wore a 

sociometric badge. The subjects were requested to wear the badges throughout 

their workday (9 am to 5 pm) during the experimental period.   At the end of the 

day, subjects were requested to answer a daily questionnaire (see Chapter 3 on 

Instruments). The data collection protocol occurred for 25 days and provided us 

with an extensive sampling of creative, non-creative episodes and the activity 

profiles associated with it. A reminder was sent at 4:15 pm everyday with the 

survey link via email to each participant. The data was downloaded only once at 

the end of the study when the badges were shipped back. Except for initial 

clarification on how badges worked and debriefing, there was no interaction 

between the experimenter and the participants.   

Data Analysis and Results 

Data from 1) KEYS daily questionnaire and 2) Sociometric Badges was analyzed 

for this experiment with the following methodology. 
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KEYS Daily Questionnaire Results 

While there are 15 questions in the KEYS survey, this analysis focused on three 

questions that dealt with self-rated creativity, expert-coded creativity, and 

measures of team interaction (other variables in the KEYS survey are beyond the 

scope of current investigation). Out of 125 expected responses (25 days *5 

participants), 96 daily surveys were received, and the average response rate was 

76.8% with a standard deviation of 23%. From the surveys, the value for self 

reported creativity was obtained (Likert Scale: 1 – ‘not at all’, 7 – ‘extremely’) 

(see Table 2). See Table 3 for the number of hours in each workday that each 

participant spent with the team.  See Table 4 for number of people of the team 

each participant interacted with during each day (degree) (see Chapter 3 on 

instruments for more detail). 

 In addition to the scaled responses, the KEYS instrument and its 

methodology provide the opportunity for expert coding of creative and non-

creative events.   

Table 2.  
The summary statistics for the self-rated creativity scores for the five participants 
across 25 days. (PID: Participant ID) 

  MEAN STD DEV MIN MAX N 
PID 1 3.95 0.21 3 4 22 
PID2 4.39 0.58 3 5 21 
PID3 3.13 0.92 1 4 9 
PID4 1.72 0.82 1 3 22 
PID5 2.52 0.99 1 5 21 
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For each survey response, the narratives from the two open ended 

questions were combined. The participants’ combined narratives ranged from 462 

words to 2348 words with a mean of 53 words.   

Table 3. 
 The summary statistics for hours spent with team during each day across 25 days  

  MEAN STD DEV MIN MAX N 
PID 1 7.8 0.85 4 8 21 
PID2 5.5 1.73 2 8 19 
PID3 6.4 2.92 2 10 9 
PID4 7.8 0.85 4 8 21 
PID5 7.8 1.39 4 10 21 

 

Table 4. 
The summary statistics for number of team members (including self) (degree) 
each participant met during each day across 25 days. 

  MEAN STD DEV MIN MAX N 

PID 1 2 1.33 1   5 22 
PID2 4 0.87 2   5 19 
PID3 2 1.56 1   5 8 
PID4 3 0.84 1   5 22 
PID5 3 0.99 1   5 21 

 

Table 5. 
Expert-coded creativity scores for all the participants across 25 days. 

  # Of 
Events 
(A) 

# Of Events 
Regarded Creative 
(B) 

Creativity Score 
(B/A) 

N 

Pid1 67 10 0.15 22 
Pid2 34 11 0.32 21 
Pid3 25 1 0.04 9 
Pid4 36 12 0.33 22 
Pid5 53 16 0.3 21 
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Table 5 shows the number of events for each participant and the corresponding 

creativity score assigned to them across 25 days.  

Sociometric Badges Results 

The five badges were collected at the end of the 25 day period. While the 

mean and standard deviation for four participants was obtained over all days 

successfully, one of the badges failed to record any data and the remaining four 

failed to record face-to-face interaction data.  Due to the remote nature of the 

study and the lack of time stamps, the exact time and duration of wearing and 

taking off the badges could not be determined.  Table 6 shows the summary 

statistics for movement energy  

Table 6. 
 Summary statistics for movement energy for all participants across 25 days. The 
data for PID4 could not be recorded due to an error.  

  MEAN STD 
DEV 

PID1 1.32 0.1 
PID2 1.46 0.16 
PID3 1.3 0.18 
PID4 - - 
PID5 1.23 0.31 

 

Correlation Results 

Table 7 shows Pearson correlation coefficient values obtained for all 

major variables. The significance value was set at 0.1 as this was an exploratory 

study with a low N. There was a significant large correlation (r =0.91) between 

self-rated creativity and movement of the participants. There was a significant 
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medium correlation (r=0.77) between speech and expert-coded creativity.  There 

was a medium significant correlation (r=0.88) between degree (KEYS scale) and 

expert-coded creativity.  There was a medium negative correlation (r =- 0.82) 

between movement and hours spent with team (KEYS scale).   

Table 7.  
Pearson Product-Moment Correlations between All Bivariate Relationships 
among All Major Variables. 

VARIABLES 1 2 3 4 5 
Creativity Measures          
(1) Self-rated creativity          
(2) Expert-coded 
creativity 

0.15        

Activity Measures          
(3) Hours spent with team -0.56 -0.07      
(4) Degree 0.34 0.88* -0.54    
(5) Movement 0.91* 0.29 -0.82* 0.6  
      
N= 4          
*p-value < 0.1          

 

Summary 

We conducted a 25 day study at a remote R&D research lab. The study 

investigated relationship between individual activity (movement, speech, face-to-

face interaction) and creativity. We found that participants’ self-rated creativity 

was highly correlated with their daily movement energy. However, there was low 

correlation between expert-coded creativity and movement and expert-coded 

creativity and self-reported creativity. On the other hand, the number of people a 

team member meets has medium correlation with expert-coded creativity.  
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The data indicated a few strong trends. First, participants feel more 

creative when they move more. Second, they are generally more creative when 

they are meeting more people in the team and feel more connected. As a 

corollary, individuals when meeting their team have limited movements 

indicating an interest in communication and collaboration. The data indicates that 

an interesting relationship exists between team members’ movement, network, 

and creativity scores and the results warranted further investigation. To gain 

deeper insights into this relationship, we chose to conduct our next study in a 

laboratory with more direct experimenter involvement. Two bivariate 

relationships of interest for further investigation were identified: self-rated 

creativity and movement, expert-coded creativity and face-to-face interaction 

during this study and main experiments were designed to study these two 

relations. 
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Chapter 6 

EXPERIMENT 1 

Hypotheses 

This experiment builds on the pilot study described in Chapter 5 and uses similar 

methodologies and procedures to investigate the following two hypotheses.  

H1. Average daily movement energy of team members during days with above 

average self-rated creativity is significantly greater than the average daily 

movement of days with below average self-rated creativity. 

H2. Average face-to-face tie strength of team members during days with above 

average expert-coded creativity is significantly greater than the average face-to-

face tie strength of team members of days with below average expert-coded 

creativity. 

Methods 

Participants 

Seven participants engaged in creative research were observed for two 

work weeks (11 days) during regular work hours (9 am -5 pm). The mean age of 

participants was 24.7 years (range = 24–32 years), and 4 out of 7 participants 

were men. The sample was highly educated, 4 out of 7 participants were college 

graduates engaged in postgraduate work, and 3 were senior undergraduates. The 

study was approved by the Institutional Review Board of Arizona State 

University (See Appendix B for application and approval). All participants were 

recruited via email and signed consent form for voluntary participation prior to 
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the start of the study. Approval was also obtained from the laboratory head, prior 

to the start of the study. No rewards were provided for participation in the study.  

Materials and Procedure 

We employed sociometric badges and daily questionnaire used in the 

exploratory experiment (See Chapter 3 for details on instruments). The materials 

and procedures were same as the pilot study (see Chapter 5) with the following 

modifications. 

Recruited participants worked together as a team in a Research level I 

university in information technology rich environments. At the beginning of the 

experiment, the experimenter met with participants individually to provide an 

overview of the study and assigned participant participation identification (PID) 

number. This participant ID was used for collection of data for the duration of the 

study for both badges as well as the daily online survey. Participants were not 

informed of PIDs of participants other than themselves.  The experimenter kept 

the master list of participant names, badge number, and IDs in a single file in a 

secure electronic folder. This file was only accessed once at the end of the study 

period to categorize and save all study data and subsequently destroyed.  

For 11 days, the experimenter visited the laboratory each morning to 

ensure that the participants’ badges were worn at 9 am. The experimenter 

observed activities throughout the day and at 5 pm requested the participants to 

turn the badges off. During the experiment in the event of participants leaving the 

research laboratory for long periods of time, Participants were asked to turn off 
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the badges before they left the building and turn it back on when they enter the 

laboratory again. The experimenter was present on site to facilitate compliance 

while minimizing intrusion on the working behavior of the team. At 4:15 pm 

every day, an electronic reminder was sent to each participant via email that had 

the link to the survey to complete the survey for that day before midnight. Due to 

a drop in survey completion rates, on two occasions the experimenter reminded 

the group to complete the surveys. To ensure reliability of data and its 

correspondence for the day, the experimenter downloaded the data from the 

badges every evening and recharged the badges for the next day.  

Data Analysis and Results 

The methodology analyzed the 1) KEYS daily questionnaire and 2) sociometric 

badge data.  

KEYS Daily Questionnaire Results 

Out of total 77 (11 days *7 people) daily online surveys, the number of 

surveys filled were 58. The mean response rate was 75% with a standard 

deviation of 19%. From the survey, the value of self-rated creativity was 

calculated.  Table 8 shows the summary statistics for self-rated creativity for the 

seven participants.  

Expert-coded creativity scores were obtained by analyzing the narratives 

(see Chapter 3 for the description of the methodology) are reported in Table 9. 

Participants’ combined narratives ranged from 63 words to 516 words with a 

mean of 290 words for each participant.    
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Table 8. 
The summary statistics for self-rated creativity for all participants over 11 days. 

  MEAN STD DEV MIN MAX N 
PID1 3.4 1.75 1 7 7 
PID2 4.38 0.41 4 6 8 
PID3 4.9 0.99 3 7 4 
PID4 4.04 1.59 1 7 9 
PID5 6.44 0.48 6 7 11
PID6 5.6 0 6 6 9 
PID7 4.2 0 4 4 10

Table 9. 
The summary statistics for expert-coded creativity Scores across 11 days. 

  MEAN STD DEV MIN MAX N 
PID1 0.21 0.33 0 1 7 
PID2 0.32 0.46 0 1 8 
PID3 0.08 0.13 0 0.38 4 
PID4 0.23 0.41 0 1 9 
PID5 0.24 0.42 0 1 11
PID6 0.09 0.3 0 1 9 
PID7 0.41 0.49 0 1 10

Table 10. 
The summary statistics for movement energy for seven participants across 11 
days. 

  MEAN STD DEV MIN MAX N 
PID1 1.26 0.01 1.25 1.27 4 
PID2 1.29 0.03 1.22 1.32 10
PID3 1.35 0.04 1.3 1.38 9 
PID4 1.33 0.03 1.31 1.35 9 
PID5 1.35 0.04 1.3 1.4 10
PID6 1.26 0.02 1.24 1.27 6 
PID7 1.27 0.02 1.24 1.32 10

 

Sociometric Badge Results 

Accelerometer data from the badge of each participant was downloaded 

every day. For each day, participants’ movement energies were calculated. Table 

10 shows summary statistics for movement across all days.  The badges record 
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face-to-face interaction recorded by the infrared IDs of participants at distances of 

up to approximately 10 meters. The adjacency matrix thus obtained was made 

symmetric with respect to the lowest number of signals (or pings) that were 

recorded.  The average number of pings was calculated for each participant for 

each day. Table 11 shows the adjacency matrix for all participants.  

Table 11. 
Adjacency matrix for infrared pings (face-to-face interaction) for seven 
Participants across 11 days. For analysis, this was made symmetric by using the 
minimum value in transpose pairs. 

  PID1 PID2 PID3 PID4 PID5 PID6 PID7 
PID1 0 203 5 24 8 13 5 
PID2 109 0 72 24 66 25 383 
PID3 8 77 0 185 18 23 112 
PID4 14 222 22 0 1 0 14 
PID5 13 145 10 0 0 76 118 
PID6 20 73 22 4 31 0 1 
PID7 9 229 94 9 114 3 0 

 

Experimental Results 

The following four variables: (1) self-rated creativity (2) expert-coded 

creativity (3) movement energy (4) face-to-face tie strength were included for the 

analysis. The creativity data was mean split in two ways based on 1) self-rated 

creativity and 2) expert-coded creativity. K-Means clustering showed that there 

the ratio of inter-cluster distance to intra-cluster distance was high (R=0.94) 

which validated the choice of mean split. For each of these two measures of 

creativity, the days that had values for creativity higher than the mean were 

labeled creative while those days that were at or below the mean value were 
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classified as non-creative. A paired-sample t-test for conducted for each of the 

hypotheses.  The p value of less than 0.05 was accepted as statistically significant. 

H1 Result.  A paired-samples t-test was conducted to test H1. This t-test [t (36) = 

3.132, p < 0.005] confirmed, the hypothesis that average daily movement energy 

during days with above average creativity (M = 1.31, SD = 0.04) is significantly 

greater than the average daily movement of days with below average creativity 

(M = 1.29, SD = 0.03). The eta squared statistic (0.21) indicated a large effect 

size. 

H2 Result.  A paired-samples t-test was conducted to test H2. The t test [t (21) = 

1.05, p > 0.1] showed no significant difference between average face-to-face tie 

strength of team members during days with above average expert-coded creativity 

(M = 9.4, SD = 10) and the average face-to-face tie strength of team members (M 

= 6.3, SD = 7) for days with below average expert-coded creativity  

Correlation Results 

There was a significant correlation between face-to-face interaction and both self-

rated creativity and expert-coded creativity. A significant correlation was also 

found between movement and self-rated creativity (see Table 12).  

Summary 

Our results show that H1 was confirmed that average movement for creative days 

is significantly higher than for non-creative days. However, our data failed to 

confirm H2, that face-to-face interaction for creative days is not significantly 

higher that of non-creative days. We found that face-to-face interaction was 
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highly correlated with expert-coded creativity and movement was highly 

correlated with self-rated creativity. 

Table 12.  
Pearson Product-Moment Correlations between All Bivariate Relationships 
among All Major Variables.     

VARIABLES 1 2 3 4 
Creativity Measures        
(1) Self-rated creativity        
(2) Expert-coded creativity 0.24      
Activity Measures        
(3) Movement 0.07  0.66*    
(4) Face-to-face tie strength  0.45**  0.45** 0.36  
         
N= 76        
*. Correlation is significant at the 0.01 level (2-tailed). 
**. Correlation is significant at the 0.1 level (2-tailed). 
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Chapter 7 

EXPERIMENT 2 

Hypotheses 

This experiment supplements and extends results from Experiment 1 using the 

same methodologies and procedures to answer the following two hypotheses: 

H1. Average daily movement energy of team members during days with above 

average self-rated creativity is significantly greater than the average daily 

movement of days with below average self-rated creativity. 

H2. Average face-to-face interaction tie strength of team members during days 

with above average expert-coded creativity is significantly greater than the 

average face-to-face tie strength of team members of days with below average 

expert-coded creativity. 

Methods 

Participants 

Seven participants engaged in creative research were observed for two 

work weeks (15 days) during regular work hours (10 am -5 pm). They engaged in 

research intensive creative work in an information technology (IT) rich 

environment.  The mean age of participants was 27.4 years (range = 23–32 years) 

and 6 out of 7 participants were men. Our sample was highly educated, 4 out of 7 

participants were college graduates engaged in postgraduate work, and 3 were 

senior undergraduates. The study was approved by the Institutional Review Board 

of Arizona State University (See Appendix for application and approval). All 
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participants were recruited via email and signed consent forms for voluntary 

participation prior to the start of the study. Approval was also obtained from the 

laboratory head prior to the start of the study and no rewards were provided for 

participation in the study.  

Materials and Procedure 

In this study, I employed  the sociometric badges and the KEYS daily 

questionnaire previously employed in the exploratory experiment and experiment 

1 (See Chapter 3 for details of the instruments). The materials and procedures 

were same as Experiment 1 with the following modifications; however, in order 

to ensure a stronger understanding of face-to-face interaction and its relationship 

to creativity I included daily cell phone based reports in the following manner. 

During each workday, participants were requested to self-report any 

interactions with other team members for each hour from 10 am to 5 pm. The self-

report included whether or not the member was meeting with one or more other 

group members and a label for the episode namely, creative or non-creative. A 

SMS data matrix (see Table 13) was presented on the wall of the laboratory as a 

reminder of the codes for reports. At the end of each hour (starting at 11 am and 

stopping at 5 pm), the experimenter sent a SMS reminder to the participants cell 

phones stating “For the last hour, you were Creative 1 or Non-creative 2 and 

Meeting 1 or not meeting 2 (respond 1 1 if creative and meeting and so on)” to 

each participant. On site qualitative observations by an expert coder were used to 

supplement these self-reports. Qualitative observations included descriptions of 



  66 

time, people involved, description of actions, and whether movement or meetings 

were occurring.  

Table 13. 
Code matrix for SMS hourly reports. Participants reported a combination of row 
1 (creative, procedural) and row 2 (meeting, not meeting). 

Creative Non-creative
1 2 

Meeting Not meeting 
1 2 

 

The data collection protocol occurred for 15 days and provided us with an 

extensive sampling of creative and non-creative events and activity profiles 

associated with them. Data was downloaded each day for the duration of the 

study.  

Data Analysis and Results 

Data from 1) KEYS daily questionnaire, 2) Sociometric Badges, and 3) SMS 

reports was analyzed for this experiment. 

KEYS Daily Questionnaire Results 

Out of a total of 105 (15*7) daily online surveys, number of surveys filled 

were 76. Table 14 shows descriptive statistics of self-rated creativity for the 

participants. The open-ended narratives were coded to obtain scores for expert-

coded creativity for all participants for each of the 15 days.  The Participants’ 

combined narratives ranged from 293 words to 1663 words with a mean of 973 

words.  Table 15 shows summary statistics for each participant across 15 days. 
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Table 14. 
The summary statistics for self-rated creativity for all participants across 15 days. 

  MEAN STD DEV MIN MAX N 
PID1 3.47 0.49 3 4 7 
PID2 5.95 1.07 3 7 12
PID3 5.71 1.35 1 7 13
PID4 5.08 0.72 3 6 7 
PID5 6.07 0.43 6 7 7 
PID6 7 0 7 7 15
PID7 4.85 1.9 1 7 15

 

Table 15.  
The summary statistics for expert-coded creativity for participants over 15 days. 

  MEAN STD DEV MIN MAX N 
PID1 0.14 0.22 0 0.5 7 
PID2 0.35 0.36 0 1 12
PID3 0.69 0.36 0 1 14
PID4 0.02 0.06 0 0.25 9 
PID5 0.3 0.41 0 1 8 
PID6 0.3 0.46 0 1 5 
PID7 0.18 0.29 0 1 15

 

Sociometric Badge Results 

Accelerometer data from the badge of each participant was downloaded every 

day. By using the same formula used in our previous studies, we calculated a 

movement energy array that was later used to give us mean and standard 

deviation of movement energy for each day.  Table 16 shows the descriptive 

statistics for movement for all participants. 
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 The badges record infrared IDs of participants that approximately 10 

meters face-to-face from each-other. The average face-to-face tie strength was 

calculated for each participant across 15 days. Table 17 presents the original 

adjacency matrix across 15 days.  Table 18 presents the value of face-to-face tie 

strengths calculated from the adjacency matrix for each day. 

Table 16.  
The summary statistics for movement energy for all participants across 15 days. 

  MEAN ST DEV MIN MAX N 
PID1 1.19 0.08 1.04 1.38 10
PID2 1.33 0.06 1.22 1.45 11
PID3 1.38 0.09 1.17 1.46 10
PID4 1.37 0.01 1.35 1.4 7 
PID5 1.42 0.01 1.41 1.44 7 
PID6 1.36 0.01 1.35 1.38 7 
PID7 1.32 0.05 1.24 1.38 10

Table 17. 
Adjacency matrix of infrared pings (face-to-face interaction) for participants 
across 15 days.  

  PID1 PID2 PID3 PID4 PID5 PID6 PID7 
PID1 0 0 12 0 65 33 22 
PID2 14 0 101 3 4 0 26 
PID3 12 143 0 0 64 15 88 
PID4 0 3 15 0 0 61 19 
PID5 11 1 38 0 0 18 166 
PID6 32 0 16 3 1 0 17 
PID7 39 35 161 34 118 8 0 

 

Experimental Results 

We obtained the following four variables for each participant for 15 days: 

(1) self-rated creativity (2) expert-coded creativity (3) movement energy (4) 

average face-to-face tie strength.  The data was mean split in two ways based on  
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Table 18. 
The summary statistics of the participants for face-to-face average tie strength 
across 15 days. 

  MEAN STD DEV MIN MAX N 
PID1 1.23 1.65 0 4.71 10
PID2 1.25 2.91 0 10.57 11
PID3 2.97 4.8 0 16.14 10
PID4 0.41 0.9 0 3 7 
PID5 2.11 3.03 0 8.71 7 
PID6 0.69 0.95 0 2.88 7 
PID7 3.75 4.46 0 15.43 10

 

1) self-rated creativity and 2) expert-coded creativity. For each of these two 

measures of creativity, the days that had values for creativity higher than the mean 

were labeled creative while those days that were at or below the mean value were 

classified as non-creative. A paired-sample t-test was conducted to analyze the 

hypotheses.   

H1 Result. A paired-samples t test was conducted to test H1. The t test [t (23) = 

6.49, p < 0.001] confirmed that average daily movement energy during days with 

above average self-rated creativity (M = 1.37, SD = 0.07) is significantly greater 

than the average daily movement of days with below average self-rated creativity 

(M = 1.24, SD = 0.09). The eta squared statistic (0.36) indicated a large effect 

size.  

H2 Result. A paired-samples t test was conducted to test H2. The t test [t (41) = 

2.36, p < 0.01] showed average face-to-face tie strength of team members during 

days with above average expert-coded creativity (M = 2.69, SD = 4.01) is 

significantly greater than the average face-to-face tie strength of team members 
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for days with below average expert-coded creativity (M = 0.9, SD = 2.1). The eta 

squared statistic (0.11) indicated a large effect size. 

Correlation Results 

Pearson product-moment correlations between all major variables in the 

study were calculated (Table 19). We found that self-rated creativity was weakly 

but significantly correlated with expert-coded creativity (r = 0.25). In addition, 

movement and self-rated creativity were significantly correlated (r = 0.55).  Face-

to-face interaction had significant correlation with both self-rated creativity (r = 

0.20) and expert-coded creativity (r = 0.25).  

Table 19. 
Pearson Product-Moment Correlations between All Bivariate Relationships 
among All Major Variables 

VARIABLES 1 2 3 4 
Creativity Measures        
(1) Self-rated creativity        
(2) Expert-coded creativity .25**      

Activity Measures        
(3) Movement .55** 0.15    

(4) Face-to-face tie strength .20* .25* 0.157  

     
N= 105        
*. Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 

 

SMS Results 

A total 99 hours of data was collected for 1 hour intervals of self-reported 

daily activity indicating whether meetings or non-meetings were occurring and 
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whether or not these hours were creative. We summed across all days for four 

variables: (1) Creative and Meeting (2) Creative and Not meeting (3) Non-

creative and Meeting and (4) Non-creative and Not meeting. Table 20 shows the 

summary of SMS reports across all days. We found that people reported to be 

creative while they were meeting (165 hours) more than twice than when they 

reported to be not creative while meeting (71). The correlation between self-rated 

creativity and creative and meeting reports was found to be significant (r = 0.82, 

p<0.01), and there was significant negative correlation between reports of non-

creative and non-meeting and self-rated creativity (r= - 0.58, p<0.05). 

Table 20.  
The summary statistics for sms based self-reports across 15 days. 

 Mean Std Dev N Sum 
Creative and Meeting  11.00 5.20 15 165 
Non-creative and Meeting  4.73 3.43 15 71 
Creative and Non-meeting  8.67 3.70 15 130 
Non-creative and Non-
Meeting  

11.47 4.90 15 172 

 
Summary 

A significant difference was found between team member movements for creative 

days and non-creative days. Creative days were also shown to have higher face-

to-face interaction than the non-creative days. Participants’ sms reports indicated 

that episodes of meeting one or more team members were twice more likely to be 

creative than non-creative. Moreover, across fifteen days, there was a significant 

correlation between meeting episodes and self-reported creativity. People were 

twice more likely to report non creative event when not in meeting. This indicates 
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that team members typically do not experience being non-creative in a meeting 

than otherwise. Overall, our results show that participants in a small group are 

likely to be more creative when they are more active in terms of both movement 

and face-to-face interaction. 
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Chapter 8 

COMPUTATIONAL MODELING OF TEAM CREATIVITY 

Overview 

Experiment 1 and experiment 2 suggest an intimate relationship between activity 

(face-to-face interaction and movement) and creativity. From a perspective of 

prediction, it is feasible to develop an approach that can monitor activities within 

a group and classify the interactions between the teams as creative or non-

creative. Such a system would allow organizations to better assess possible 

creative output in their teams and use this awareness to change or sustain current 

practices. While there is no substitute for productivity and final output analysis by 

managers and organizations, such a system would provide automatic formative 

feedback for the team on their performance and inform managers about 

developments during the creative process and not just after it.  

Here an initial feasibility study is performed on the design, development 

and evaluation of an automated classification system to analyze data from 

wearable sensors and label events as creative or non-creative. Statistical learning 

techniques and pattern recognition techniques on validated features available from 

the sociometric badges were employed for the development of the computational 

models. The sensor features are described in detail in previous work with 

sociometric badges (Olguin Olguin et al., 2009) and I employ a subset of the 

available features from the badges for the analysis. 
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Background 

In past work, Olguin-Olguin et al. (Olguin Olguin et al., 2009) have developed 

computational techniques for studying the relation between activity measured 

through sociometric badges and several variables like performance in healthcare 

environment and studying productivity in IT domains (Wu, Waber, Aral, 

Brynjolfsson, & Pentland, 2008). These techniques employ signal processing 

techniques to extract relevant features from the data stream that correlate with 

social signals and measures of performance. Pentland employed eigenvector 

representation to study the variance of behavior of individuals (Pentland, 2007). 

The work showed that there was limited amount of behavior variance across days 

for individuals implying high predictability. In another line of analysis, Pentland 

employed coupled Hidden Markov Models to study the relation between features 

from sociometric badges and social factors such as affiliations and friendship 

between participants. In these works, the objective of the investigations was to 

validate the features extracted from the tags. Features included accelerometer 

signal magnitude and number of pings representing duration of face-to-face 

interactions (Olguin Olguin et al., 2009). These approaches informed the design 

of the three approaches used for computational model in this dissertation. 

 The first approach that was employed was standard linear regression. 

Linear regression employs linear models to study relationship between activity -

network profiles and the creativity class. It allowed testing of a basic statistical 

approach for classification. The general linear regression model is given by  



   Yi = α0 + α 1Xi1 +   α 2X12   +. α p-1X1(p-1) + . . .     εi,  i = 1, 2, …, n.            (1) 

In matrix terms this becomes 

 Y = X α + ε        (2) 

where Yi  = α 0  +  α 1Xi1  +   α 2X12   + . α p-1X1(p-1) + . . .     εi, Y is the vector of 

n responses Y1, Y2, . . . , Yn and X is an n x p matrix. α  is the p x 1 vector of 

parameters α 0,  α 1. ,  . . . , α p-1. ε   is an n x 1 vector of uncorrelated errors ε1, ε2,  . 

. . , εp..The random errors ε1, ε2,  . . . , εp are assumed to be independent with mean 

0 and have common variance σ2. They are assumed to be normally distributed. 

The principle of least squares, which involves minimizing sum of squares of 

errors, was employed for α  and ε parameter estimation. 

Q =   =  Σ[Yi  - α 0  -  α 1Xi1  -   α 2Xi2   - . α p-1Xi(p-1)]2      (3) ∑
n

i
1

2ε

The Y in our case was the label for creative or non-creative class, X was 

the values from the sensors and least squares enabled finding the best possible 

values of α  and ε to accurately predict creativity. The training matrix was 

employed to estimate the parameters by minimizing least squares for creative and 

non-creative class labels (based on mean split of creativity data). The prediction 

for the test matrix was derived by the estimated model. The recognition 

percentage (accuracy) was calculated as the number of correctly classified data 

points divided by total number of data points in the testing dataset. 

 The second approach that was tested to predict creativity from activity 

was Naïve Bayesian Classifier (NBC). NBC is particularly suitable for high 
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dimensional data. The aim of the NBC, as with other classifiers, is to assign an 

object V to one of a discrete set of categories C1, C2, …, Cm based on its 

observable attributes X1, X2, …, Xn. In our case, there were two categories 

namely creative and non-creative. X represents signals from the sensors. A Naïve 

Bayesian classifier was trained using maximum likelihood criterion which 

estimates probabilities associated with the class by relative frequency from the 

training set. NBC calculates the probability that a vector I as extracted from the 

sensors belongs to each category, conditioning on the observed attributes; I is 

typically assigned to the category with the greatest such probability. 

For testing the accuracy of a trained NBC, we want to find the probability 

that test vector I belongs to each category, that is, ( )1 2, , ,i nP I C X X X∈ K

.Applying Bayes’ Theorem, this is rewritten as 

( ) ( ) ( )
( )

1 2
1 2

1 2

, , ,
, , ,

, , ,
i n

i n
n

iP I C P X X X I C
P I C X X X

P X X X
∈ ∈

∈ =
K

K
K        (4) 

Under the mutual conditional independence assumption of NBC, the equation can 

be rewritten as  

( ) ( ) ( )
( )

1 2
1 2

1 2

, , ,
, , ,

, , ,
i n

i n
n

iP I C P X X X I C
P I C X X X

P X X X
∈ ∈

∈ =
K

K
K   (5) 

for each category Ci. Since the denominator is constant for all categories, we need 

to only calculate the numerator for each category i, choosing

 
( ) ( )*

1

arg max
n

i j
j

i P I C P X I
=

∈ ∈ ∏ iC∈
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and assigning I to category Ci*. NBC is a stochastic approach and represents an 

important element of the investigations. 

 As a final approach, a combination of principal component analysis (PCA) 

for dimensionality reduction and linear discriminant analysis (LDA) for 

classification was selected. The original dimensionality of the obtained data was 

high which can significantly impact accuracy of the classification algorithms 

(except NBC described above). In order to address this issue, principal component 

analysis (PCA) was employed for dimensionality reduction. PCA is a multivariate 

procedure which rotates the data such that maximum variability is projected onto 

the new axis. Essentially, a set of correlated variables are transformed into a set of 

uncorrelated variables which are ordered by reducing variability. This is also the 

basis of dimensionality reduction, as the technique identifies underlying principal 

components of the data.  

Let the training set of vectors be 1Γ , 2Γ , 3Γ , … MΓ , and the average 

vector of the set is defined by ∑
=

Γ
M

n
1

=Ψ
nM

1  . Each vector differs from the 

average by the vector Ψ−Γ=Φ nn . This set of vectors is subjected to principal 

component analysis, which seeks a set of M orthonormal vectors, nμ , that best 

describe the distribution of the data. The kth vector, kμ  is chosen such that 

∑
=

Φ=
M

n
n

T
kk M 1

2)(1 μλ
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is maximum, subject to 

⎩
⎨
⎧ =

=
otherwise

kl
k

T
l ,0

,1
μμ

 

The vectors and scalars are the eigenvectors and eigenvalues, respectively, of the 

covariance matrix  

∑
=

=ΦΦ=
M

n

TT
nn AA

M
C

1

1

 

where the matrix ]...[ 21 MA ΦΦΦ= . 

The PCA helps reduce the dimensionality of the data and the LDA works 

as a classifier to maximize inter class distance in the new space between the 

creative and non-creative classes. LDA aims to find a hyper-plane that with most 

accuracy can separate the underlying classes. So in the reduced dimensional 

space, LDA was applied on the training data to define the hyper-plane and then 

the testing data was passed through an algorithm that evaluated whether the 

testing data point was creative or non-creative. This kind of approach that 

combines PCA with LDA has been done before in face recognition (Li, Zhao, & 

Zhang, 2009). This combined approach is a sophisticated deterministic approach 

to computational modeling of creativity. 

In each of the algorithms, maximum likelihood estimation (MLE) was 

used as the training approach. MLE is used to take the training data and estimate 

the parameters of the model that may have generated the data. In the case of linear 
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regression, MLE tries to estimate the coefficients of regression. In case of NBC, it 

tries to estimate to conditional probabilities. In LDA, it is used to estimate the 

equation of the hyper-plane. 

Each of these three approaches described above and their underlying 

theory are presented in Duda, Hart and Stork (Duda, Hart , & Stork, 2000). These 

three methods enable development of the computational model using stochastic 

and deterministic approaches. Matlab 2009® was employed to develop these 

algorithms. The inbuilt implementation of these algorithms was used in the 

analysis (glmfit for linear regression, NaiveBayes.fit and predict for Naïve 

Bayesian Classifier and classify function for LDA). 

Procedure 

 Data from experiment 1 and experiment 2 provided day to day 

team member’s activity and overall creativity scores. The data sets were 

combined and the days were divided into two classes: creative and non-creative 

based on the mean split of reported creativity measures. The movement data was 

divided based on self-rated creativity while the face-to-face interaction (or 

network pings) data was divided based on expert-coded creativity. The 

corresponding measures were chosen to classify the data based on the results from 

experiment 1 and experiment 2. Overall 182 hours of data per subject (participant 

n=7, for 26 days) totaling 1274 hours of data was collected. The activity as 

measured through accelerometer (X, Y, and Z) and network pings from IR were 

considered for analysis.  
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For face to face quantification, the average IR ping information for the day 

for each participant was considered for the computational model. As each 

experiment had 7 participants, we had a 7x7 matrix of face-to-face network pings 

as sensed by the IR sensor for each day. For every day, I calculated the frequency 

of pings for every pair of participants which could be understood as network edge 

strength in the team’s network. In the team network, participants are the node and 

the edges represent face-to-face interactions. I had 26 days worth of network data, 

out of which 14 were labeled creative and 12 were labeled as non-creative 

according to expert-coded creativity. The 7x7 matrix of IR ping frequency for 

each day was linearized into a 49x1 vector representing pings per day for all 

possible person-person interactions. The creativity class (creative or non-creative) 

for each vector was known. This matrix was employed to train and test pattern 

recognition algorithms to assess expert-coded creativity as this was the measure 

that was present in experiment 1 and experiment 2. 

For movement analysis, the accelerometer readings were sampled at 

50,000 readings per day with 3 measures per reading (X,Y,Z), to define a 

representative sample of activity profile for each day. The day-activity matrix was 

assembled by linearizing the accelerometer activity into a vector and then 

assembling the individual vectors into a matrix. For each vector, a class of 

creativity (creative or non-creative) was known. This matrix was employed to 

train and test pattern recognition algorithms to assess creativity. 
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 The investigation tested three different approaches of pattern 

recognition described above. For each approach, an 80/20 train/test paradigm was 

employed. I trained the algorithms for movement data and network ping (face-to-

face interaction) data individually as they provided related but distinct 

information and related with different measures of creativity. In the analysis of 

face-to-face interactions, the core idea was to classify the entire day as being 

creative or non-creative for the whole team. This computational engine was tuned 

to gestalt creativity classification for an entire day and it hence provided 

complementary information to movement data based classifier that was giving us 

per day per person rating. Network ping based classifier was geared towards 

assessing team’s everyday creativity. 

Results 

The first technique used on movement based classification was linear 

regression. Linear regression aims to define a linear relationship between the 

features which in this case were readings from the accelerometer and creativity 

classification. The second technique used was naïve Bayesian classification 

(NBC) which is stochastic or a probabilistic classifier based on the Bayes 

theorem.  

 In the third technique, I chose to apply PCA for dimensionality reduction 

and LDA for classification as a means of achieving high accuracy and fast 

computation results. By noting the energy of the eigenvalues it was seen that 7 

dimensions were sufficient to cover 95% of variance with the movement data. 



Hence, using PCA I reduced the dimensionality of the data from 150000 to 7. 

After PCA, I employed linear discriminant analysis as the classification 

technique. In the case of face-to-face interaction strength, I found that 3 

dimensions were sufficient to represent 95% of variance in PCA and hence I 

reduced dimensionality to 3 and performed LDA for classification. 

The results of the experiment with movement data and network data are 

shown in Figure 7.  
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For movement data, linear regression showed the lowest classification 

accuracy of 45.2%. The fit was not high or significant for movement where r = 

0.32 and p <0.6 or for face-to-face interaction where r= 0. 43 and p <0.3. Naïve 

Bayesian Classifier showed an accuracy of 70.2%. The Bayesian fit actually 

performed significantly better than linear regression achieving accuracies of about 

70% for both movement and face-to-face interaction data. The combined 

approach of principal component analysis and linear discriminant analysis showed 

an accuracy of 87.5% for per day per person data as measured through the 

movement stream and 90.91% creativity for face-to-face interaction. 

Additional experiments on using reduced dimensionality data for linear 

regression and the Naïve Bayesian Classifier showed slight improvements 

achieving 47.1% and 71% classification accuracy. This suggests the superiority of 

the PCA/LDA approach in obtaining accurate classification. The results for face-

to-face interaction data were analogous, with the PCA/LDA combination 

achieving the highest recognition accuracy of 90.9%, NBC achieving 71.2% and 

linear regression achieving an accuracy of 44.5%. 

Discussion 

While the results are on a limited data set and require further validation, it is 

encouraging to note that computational engine can be designed to ascertain 

creativity from sensor data. I used linear techniques such as PCA, LDA for my 

analysis which yielded close to 92% accuracy. While we cannot imply causality 

to this result, the fact that linear approaches give encouraging results opens up 



  84 

several possibilities for analysis of creativity in an automated fashion. The two 

approaches NBC and PCA-LDA combination both have unique advantages and 

requirements. NBC can be very successful in developing long term trends and 

patterns and can be employed in a formative fashion. The PCA-LDA combination 

can actually give the highest accuracy as it removes noise from the original data. 

Noise may have contributed to low accuracy in the results of linear regression. 

The results suggest the feasibility of developing an automated approach to 

classify creative days from non-creative days by monitoring activities through 

sociometric badges and also personal creativity. We trained and tested on data 

gathered at two different occasions which suggests robustness and generalizability 

of the approach. As mentioned before, such an approach could have a significant 

impact on how teams and organizations gauge the output of a day and facilitate 

conditions and interventions that improve their creative output. 

 The results also suggest how computational models can augment the 

information base of managers in making creativity support tools. While currently 

there is no substitute for observations and ethnographic approaches, 

computational models can inform better quality of ethnographic analysis. This is a 

key finding of this investigation and will benefit from further study in the future. 

This feasibility study also suggests that there is scope for development of more 

sophisticated pattern recognition approaches to identify the creative events from 

non-creative events. 
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It must be noted that I used 80-20 analysis for the modeling. I felt that 

such a limited data set, it will not be useful to conduct a more extensive testing. 

Collected data gives an indication of general trend of the relationship. A more 

plausible analysis would be to model creativity based on teams. For this, data on 

several teams must be collected in identical conditions and then some teams 

should be used to train the data and others to test the data. This would be an 

interesting enterprise. However, as there has been no prior attempt at modeling 

creativity based on wearable computing measures, this dissertation paves the way 

for such future work. 

Summary 

Computational modeling of team creativity has several benefits. (1) It allows 

automated evaluation and prediction of creativity. (2) It paves the way for 

software and programs that support creativity. (3) It allows development of 

guidelines and procedures towards creativity in teams and within organizations. 

(4) It enhances our theoretical understanding of creativity and its relationship to 

team member activity. In this chapter, I presented results of computational 

modeling that I performed on sensor data from experiment 1 and experiment 2. 

Three different algorithms (linear regression, NBC, and LDA and PCA) were 

employed to conduct automated analysis of creativity with two approaches 

achieving high accuracy. In summary, the modeling results indicate a definite 

possibility measuring creativity through wearable sensors and assessment of 

everyday creativity using a computational model. 
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Chapter 9 

DISCUSSION 

An exploratory study and two main experiments were conducted with three teams 

to study the relationship between team member’s activity (face-to-face interaction 

and movement) and team creativity. For measurement of creativity, a social 

science instrument KEYS (T. M. Amabile et al., 1996) was employed. 

Sociometric badges (Pentland, 2007) was used concurrently to obtain signal data 

of participants’ movement and face-to-face interaction. The exploratory study 

indicated that movement and face-to-face interaction between the team members 

might be significant indicators of their creativity. Subsequent studies confirmed 

this hypothesis and a computational model was developed that allowed for 

automated analysis of creativity. In this chapter, I shall critically summarize and 

analyze the results of the experiments. 

An individuals’ activity was defined in the experiments as daily movement 

energy and face-to-face interaction. Creativity is defined as production of novel 

and useful ideas in any domain and innovation is defined as the successful 

implementation of creative ideas (T. M. Amabile et al., 2005). For analysis, the 

data was first aggregated from each participant across all days. Then data from 

movement energy and face-to-face tie strength was mean split twice once on the 

basis of self-rated creativity and once on the basis of expert-coded creativity 

resulting into four groups (two creative and two-non-creative). I found that there 



  87 

is a significant relationship between (1) individual movement and self-rated 

creativity and (2) face-to-face interaction and expert-coded creativity. 

Specifically, I found that daily movement energy for creative days was 

significantly higher than the movement energy of the non-creative days for team 

members. In terms of face-to-face interaction, in experiment 1, while I did not 

find a significant difference between face-to-face interaction for creative and 

noncreative days classified on the basis of expert-coded creativity, the trend in 

significance encouraged me to explore the relationship further in experiment 2. In 

the second experiment, a well accepted sms based ESM was implemented to 

gather participants report on their ongoing behavior (Weisner, 2001). These 

hourly reports were collected at the end of every hour in the workday through an 

experimenter reminder. 

I found that participants reported the highest number of both creative and 

meeting and noncreative and not-meeting episodes. The third highest number was 

creative and not-meeting. The least reported variable was not creative and 

meeting. This suggests that participants were generally more creative when they 

were meeting and generally more non-creative when they were not meeting. 

However, an important component of overall team creativity is a combination of 

team and individual creativity. I found that the reports of being creative and not-

meeting were on the same days they had reported to be creative and meeting. 

Therefore, teams were far more creative on days in which the members meet. 

Team members also report to be personally more creative after active interactions 
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with other team members. In experiment 2, I found that face-to-face tie strength 

was significantly greater in the creative days than that of non-creative days. 

The results show a strong correlation between movement and self-rated 

creativity. Prior studies have found that exercise or a physical activity of some 

kind enhances cognitive performance (Singh-Manoux et al., 2005) and physical 

activity is correlated with creativity (Malone, 1989). While the results of these 

prior studies were based on questionnaire data implemented on the middle aged or 

elderly populations, the presented research is the first effort of its kind to employ 

a multi-methodological approach that confirms the relationship between objective 

movement data with creativity. 

There were two other data streams that were interesting but were not 

chosen. First, badges also record speech (Olguin Olguin et al., 2009). 

Disambiguating speech that is purposefully employed in a team versus that from 

outside the context of the team was not feasible in the groups that were studied. 

The laboratories had highly interactive environments with members from 

participating teams and their frequent interactions with members of a larger group 

such as that of the university at large. In addition, chatting, phones, and music, etc 

contributed to the recorded speech and might have further complicated any 

evaluation of the hypotheses. In other words, the signal to noise ratio in speech 

was very low and hence limited meaningful analysis. 

In the KEYS scale, there are two variables namely individual creativity 

and team creativity. Interestingly, there was 94% correlation between reported 



  89 

scores of team creativity and individual creativity. This might be because 

individual participants had no prior definition of creativity or basis of 

differentiating between the two variables. This is a rich and active area of 

research. This does raise the question of what exactly the two variables personal 

creativity and team creativity represent in the KEYS scale. The results point out 

that how participants feel about their own creativity (self-reported personal 

creativity) may be the same as how they rate their team as being creative (team 

creativity). It must be noted that the creativity score obtained by an expert that is 

based on their descriptions is not necessarily correlated with their creativity self-

reports. This could be due to the fact that in essence they are measuring two 

different facets of creativity. However from a systems perspective, putting these 

two measures in close coherence may have strong benefits. The results indicate 

the need of stronger assessment tools for measuring team creativity in the wild 

that accounts for the need of this coherence. 

An interesting aspect is that the movement is highly correlated with the 

self-reported scores of team creativity.  On the other hand, expert-coded creativity 

is highly correlated with team members’ face-to-face interaction. The 

observations strengthen existing arguments in favor of consensual assessment 

techniques for assessment of creativity as opposed to self-reports of creativity. 

Another thing that must be noted is that links have been shown between positive 

affect and creativity and there might be a triad of positive affect manifesting itself 

through increased movement. However, in the interest of showing a strong link 

between wearable computing data and creativity, I have considered the discussion 
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between other variables outside the scope of this dissertation. Link between 

emotions, context, and creativity is a fertile research area and in future, addition 

of affective computing will give greater insights into the relationship indicated in 

this dissertation. 

Several key questions need to be answered with respect to the nature of 

following question: how much and how often team interactions should occur for 

the team to be more creative? To provide clues to some of these questions, I 

explored the role of degree (number of team members meeting each other) in both 

the experiments and found that in both cases it was not significant [t (36) = 1.55, 

p > 0.12; t (20) = 0.23, p > 0.8]. The means in the two cases in both the 

experiments were almost equivalent (Non Creative: M = 1.81, SD = 1.68; M = 

1.67, SD = 1.8;   Creative: M = 1.24, SD = 1.38; M = 1.52, SD = 1.5). Thus it is 

not the number of people a team member meets with, but rather the quality of 

face-to-face interaction (or the time spent with the team members) that influences 

creativity.  

The computational modeling results show the feasibility of developing an 

automated system for creativity based on team members’ activities. Linear 

regression analysis did not yield high accuracy but the Bayesian modeling and the 

combined PCA and LDA approach had high recognition accuracies. Bayesian 

approaches are very helpful in developing scalable algorithms due to their 

iterative nature. They also are successful in high dimensional spaces which is a 

dominant feature of the activity based data sensed in a continuous manner. Both 
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motion based and face-to-face interaction based classifiers show comparable 

accuracy with Bayesian approaches. This dissertation extends applicability of 

Bayesian approaches in classifying team creativity based on team activity. 

Principal component analysis showed that 7 dimensions encompassed 

close to 95% variation in the underlying data from movement data and 3 

dimensions encompassed 95% variation in the face-to-face interaction data. The 

analysis of principal dimensions and the weights of the individual units were very 

interesting. It was seen that the principal component gave the highest weight to an 

individual with highest creativity and lowest weight to an individual with lowest 

creativity. PCA and LDA both are linear approaches which suggest that creativity 

may have a linear relationship with activity in a lower dimensional space that 

accounts for maximal variance within the data. While this hypothesis needs to be 

explored in more detail, if true it suggests that several pattern recognition engines 

could be trained and tested for creativity analysis.  
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Chapter 10 

CONCLUSION 

This chapter summarizes the major findings of the dissertation. In addition, it 

presents the significance and implications of the conclusions drawn from the 

reported results. Short and long term future work is briefly discussed. 

Summary of Results 

Broadly speaking, the presented research had two phases. In the first phase, the 

effective combination of sociometric badges and creative scales was explored. 

This exploration was guided by review of previous work from multiple disciplines 

emphasizing the interdisciplinary foundations of creativity research. The goal was 

to derive a meaningful relationship between activity (face-to-face interaction and 

movement) and creativity in teams. This led me to initial indications of the 

relationship between team activity and team creativity. The second phase was 

confirmatory. In the two main experiments, the findings about the relationship 

between team activity and teams, in terms of the measures that were utilized, are: 

(1) The days in which the team is highly creative are also the days in which 

the teams’ members meet more often, 

(2) On days in which team members report to be highly creative also have 

higher levels of movement among team members than the days they report 

to be non-creative. 
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Contributions and Intellectual Merit 

This dissertation contributes to the basic science of creativity and to the empirical 

methodologies that assess creativity. It contributes to the design of creativity 

support tools that are based on movement and face-to-face interactions by 

providing a means of continuously measuring and sensing creativity accurately 

and with minimal human inputs. Overall, the results of this dissertation enhance 

the understanding of the nature and mechanisms of team creativity. In addition, 

the dissertation links wearable computing data with creativity survey instruments. 

It implements a novel multi-methodological approach that enables empirical 

investigations based on coupling of sensor based analysis with creative behavior 

assessment in the wild. 

Benefits and Broader Impact 

The findings from this research may benefit organizational theorists who wish to 

gain further insights into the nature of creativity and designers and programmers 

who wish to design applications that track, estimate, or predict creativity. It 

contributes to the design and development of creativity support tools in computer 

supported collaborative work (CSCW) by providing a robust automatic method to 

measure creativity. The findings of the research can be applied to the broad 

framework of sensor-behavior coupling and may impact various domains such as 

education, health, and innovation. 

Future Work 

Recent advances in sensors and wearable computing tools enable objective 

tracking and modeling of human behavior. In the near term, I would like to 
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advance the findings of this dissertation to create interventions and study their 

impact on creativity. Future work in computational models will include 

development of algorithms for assessing creativity levels based on individual data 

streams and also developing multisensory fusion models for combining inputs 

from different activity domains to yield creativity measures. I will also explore 

nonlinear algorithms such as Manifold learning (Duda et al., 2000) for accuracy 

of recognition. 

In future, I would like to conduct temporal analysis and assessment of 

team creativity at a much finer granularity. In this dissertation I did not deal with 

the variables of affect and creativity. This relationship would be explored in the 

future.  The relationship between physiological and behavior measures will give 

us important insights into creativity as well. I would also like to investigate how 

CST might be implemented using movement and if there is any basis for causal 

relationships between the variables. More broadly, I would like to advance richer 

computational models and empirical frameworks that estimate and predict 

cognitive and social variables of humans from sensor based data and inform 

human centered technology design by these models across areas such as problem 

solving in education, medicine, and policy. 
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