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ABSTRACT

The purpose of this study was to investigate the effect of complex
structure on dimensionality assessment in compensatory and noncompensatory
multidimensional item response models (MIRT) of assessment data using
dimensionality assessment procedures based on conditional covariances (i.e.,
DETECT) and a factor analytical approach (i.e., NOHARM).

The DETECT-based methods typically outperformed the NOHARM-
based methods in both two- (2D) and three-dimensional (3D) compensatory
MIRT conditions. The DETECT-based methods yielded high proportion correct,
especially when correlations were .60 or smaller, data exhibited 30% or less
complexity, and larger sample size. As the complexity increased and thesampl
size decreased, the performance typically diminished. As the complexity
increased, it also became more difficult to label the resulting sets affitem
DETECT in terms of the dimensions. DETECT was consistent in classificatti
simple items, but less consistent in classification of complex items. Out of the

three NOHARM-based methodﬁ/D andALRgenerally outperformed RMSR.
)(é/D was more accurate whéh= 500 and complexity levels were 30% or lower.

As the number of items increaséd,R performance improved at correlation of
.60 and 30% or less complexity.

When the data followed a noncompensatory MIRT model, the NOHARM-
based methods, specificajiy ,p @ndALR, were the most accurate of all five

methods. The marginal proportions for labeling sets of items as dimension-like



were typically low, suggesting that the methods generally failed to label two
(three) sets of items as dimension-like in 2D (3D) noncompensatory situations.

The DETECT-based methods were more consistent in classifying simple
items across complexity levels, sample sizes, and correlations. However, as
complexity and correlation levels increased the classification @tedl inethods
decreased. In most conditions, the DETECT-based methods classified complex
items equally or more consistent than the NOHARM-based methods. In
particular, as complexity, the number of items, and the true dimensionality
increased, the DETECT-based methods were notably more consistent than any
NOHARM-based method. Despite DETECT’s consistency, when data follow a
noncompensatory MIRT model, the NOHARM-based method should be preferred
over the DETECT-based methods to assess dimensionality due to poor

performance of DETECT in identifying the true dimensionality.
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Chapter 1
INTRODUCTION

Dimensionality Defined

Dimensionality in assessment concerns the number of abilities or
constructs assessed by a test or a set of items. Dimensionality can ligiewe
many different ways, such as through the lens of aspects of assessmenidesign i
terms of the dimensions intended to be assessed (e.g., Mislevy, Aimond, & Lukas,
2003) or the analysis of observed responses to test items. The current work
focuses on analyses of the latter type. Within this area, some resedsefirezs
dimensionality as the number of traits that underlie a set of test itponses
and which account statistically for variances and covariances among the item
(e.g., Hattie, Krakowski, Rogers, & Swaminathan, 1996; Stout, Froelich, & Gao,
2001; Stout, 1990; Zhang 2007). Others further characterize dimensionality as
being influenced by the interaction between the test items and the examinees, or
understand dimensionality in the context tied to the purpose of a test (e.qg., Gierl
Leighton, & Tan, 2006; Reckase, 2009). Few scholars extend these definitions to
emphasize the patterns of dependency of the items to their respective dimensions,
suggesting that the number of underling dimensions or factors may not be
sufficient in understanding dimensionality of data (e.g., Levy & Svetinargiss).

Even though test dimensionality is defined and understood in several

different contexts, there seems to be an agreement among the contemporary



researchers that investigation of the dimensional structure of a teseuasite
part of a comprehensive validation process" (Jang & Roussos, 2007, p. 2).
Dimensional structure can be defined as the relationship between the items
on the test and the latent proficiencies believed to be measured by the test. In
other words, the internal structure of the test indicates which items aotatsd
with what dimensions, where a dimension is defined as a latent proficiency that
accounts for performance on the items and therefore the associations among them.
Often, a dimension is substantive in nature. For example, on a science test,
several proficiencies might be measured, including proficiency in life jqalys
and earth sciences. If the test ought to measure examinee proficiencin thes
aspects of science, we might seek evidence to support a three-dimensional
structure of items responses via dimensionality assessment.
The Importance of Assessing Dimensionality of the Data
Over the last few decades, researchers have provided arguments for
supporting dimensionality assessment and understanding the structure chs test
an important step in testing (Hambleton, Swaminathan, & Rogers, 1991; Jang &
Roussos, 2007; Tate, 2003; Zhang, 2007). The process of developing, evaluating,
and maintaining of (large-scale) testing program requires dimensionality
assessment as it contributes to providing empirical support for the content and
cognitive process aspects of test validity (e.g., AERA, APA, & NCME, 1999;
Hattie, 1985; Tate, 2003). By examining the dimensionality, researchers are able

to link the substantive interpretation with the statistical outcomes for the purpose



of better understanding examinee-by-item interactions (Gierl, et al., 2806). |
broad terms, dimensionality assessment contributes to providing evidence for
various aspects of the validity argument.

Assessing the internal structure of the item responses on a test is crucial
because it forms the basis of statistical analysis of the data (Hambtedbn, e
1991; Zhang, 2007). Through psychometric modeling of the data, researchers
gather evidence for making inferences about students. In order to make such
inferences, psychometric models used in the analysis ought to be technically
sound and aligned with the data from the tests. For example, in traditional
psychometric models of item response theory (IRT; e.g., 1-, 2-, or 3-parameter
logistic models), the assumptions that a test measures a singleatillitiyat the
item responses "obey the principle of local independence” are explicitly made
(Jang & Roussos, 2007, p. 2). Within a classical test theory framework, the same
can be expressed through the existence of “homogeneous” items on the test
(McDonald, 1999).

In educational tests, it is often the case that multiple proficiencies are
present, which leads to multidimensionality of the data. Therefore, understanding
the structure of the data is paramount if we are to make appropriate ¢eferen
about the scores based on a test. In other words, if a researcher is to draw
meaningful inferences about examinee’s standing on the construct(s) ddtiritere
is essential to assess the (uni)dimensionality of data (Stout, 1987; Stout, et al.,

1996). Stone and Yeh (2006) summarized it well in saying that the investigation



of the internal structure of a test allows one “to identify what domains arg bei
measured, identify the relationship between those domains, provide support for
the hypothesized multidimensionality and test score interpretations, andyidentif
construct-irrelevant variance” (p. 194). Examination of the relationships between
the constructs allows us to find support for the alignment with the intended
constructs and to control for the unintended constructs (e.g., by using
multidimensional IRT; MIRT). Both of these are essential if we are totaiai
consistent measurement and score interpretations across tests.

Negligence in dimensionality assessment or misalignment of the
psychometric model and the data may lead to severe consequences in various
aspects of testing. These consequences include inaccurate and impreciselitem
person parameter estimates, issues in test linking and equating of thitetasts
bias and test assembly, and score reporting (e.g., Ackerman, 1989, 1994; Chen &
Thissen, 1997; Reckase, Carlson, Ackerman, & Spray, 1986; Walker & Beretvas,
2003; Way, Ansley, & Forsyth, 1988; Yen, 1985).

For instance, Reckase and his colleagues (1986) demonstrated that when
multidimensionality and difficulty were confounded, a unidimensional scaling
produced different meanings at various points on the scale. Way, Ansley, and
Forsyth (1988) examined the effects of using the unidimensional model to
estimate two-dimensional data. They found that for data generated by
compensatory MIRT model the estimated discrimination parameterdestre

considered as a complex combination of the discrimination parameters along the



two dimensions, while item difficulty parameter estimates and the ability
estimates were close to the average of the their respective values oa the tw
dimensions. Similar findings were obtained in Ackerman (1989), where the
author found even stronger relationship between the ability estimate under the
unidimensional model and the complex combination of the two abilities (or
discrimination) that are approximated by the dimension of best measurement.

In addition to the inaccurate estimates as a result of the inappropriate
application of the psychometric model to the data, there also exists a potential
concern regarding the score comparability. In situations where equating is
important (such as for the purpose of providing a developmental scale across
grades), the tests’ structures ought to be equitable in order to maintain dampara
scores. Changes in test structures from grade to grade could threaten sadidity
that scale changes artificially increase or decrease the witile gariability
(e.g., Yen, 1985). In other words, the invariance structure of the test needs to be
preserved (Yeh, 2007, p. 2), and utilizing tools for dimensionality assessment may
prove helpful in assuring that such needs are met.

Dimensionality assessment may also provide support for meaningful and
appropriate score reporting. According to the legislation of No Child LeftnBehi
(NCLB, 2001), states must report both scale and subscale scores (Goodman &
Hambleton, 2004). Through understanding the dimensionality, evidence may be
gathered for appropriate score reporting. For example, in a mathetaatjds/e

content areas might be evaluated, including number properties and operations,



measurement, geometry, data analysis, and algebra. If information in theedata a
consistent with the hypothesis of five distinguishable proficiencies comdsy

to the five content areas, subscale score reporting, in addition to the overall
mathematics score, may indeed be appropriate. However, if the dimensionality
assessment supports an alternative interpretation of the number of dimensions
underlying the data, such subscale reporting might not be appropriate.

An added motivation leading to dimensionality assessment, related to the
issue of fairness, is raised through the potential presence of bias in theTitgsns
can be understood as the result of a multidimensional test structure that could be
related to construct-irrelevant factors (Tate, 2002). Examining the dionality
of the test and understanding why some items are biased may help avoid such bias
in the future constructions of the items.

In summary, by assessing dimensionality of the item responses on a test
one can examine and deal with potential threats to various aspects of validity,
including substantive and structural, as well as other issues related ta ®gting
examining the (multi)dimensionality of the data, construct-irrelevanigeeoties
potentially measured by some of the items on the test can be found, items with
differential item functioning can be examined, and potentially improper eguati
of the new test forms can be avoided. The above scenarios point to some of the
main concerns and potential motivations for assessing the dimensionalitysbf a te

(e.g., Tate, 2002, 2003).



It is thus argued that given the role of dimensionality assessment in
supporting a variety of psychometric endeavors, assessing dimensionality shoul
be aprerequisiteto applying most commonly used IRT models (Childs & Oppler,
2000; Jang & Roussos, 2007; Nandakumar & Yu, 1996; Nandakumar, Yu, Li, &
Stout, 1998; Seraphine, 2000).

A fair number of techniques have been developed across various modeling
paradigms to assess dimensionality of the structure of responses (LeviirgaSve
2010; Tate, 2003). The technigues may be grouped based on a variety of
elements, including approaches to analysis (exploratory, confirmatory), the
modeling paradigm within which they are commonly applied (e.g., factor analytic,
item response, etc.), and distributional assumptions (parametric, nonparametri
The variety of methods commonly used today offer researchers the flexibility
make appropriate choices about how to determine the number of dimensions
present in the data.

Previous research has shown that to a large degree, commonly used
methods today perform well under certain conditions (Finch & Habing, 2005;
Froelich & Habing, 2008; Gierl, et al., 2006; Hattie, et al., 1996; Nandakumar,
1991, 1993; Nandakumar & Stout, 1993; Nandakumar & Yu, 1996; Nandakumar,
et al., 1998; Stout, 1987; Stout et al., 1996; van Abswoude, van der Art, &
Sijtsma, 2004; Zhang, 2007; Zhang & Stout, 1999b). These conditions are
typically those that align well with the principles upon which the tools were built

However, relatively little research has been conducted on the extent to which



these methods are robust to departures from their assumptions. The current study
focuses on how well some of the more commonly used methods work under
conditions that do not align with the foundational principles of the tools.

For example, DETECT (Dimensionality Evaluation To Enumerate
Contributing Traits; Kim, 1994; Stout et al., 1996; Zhang, 2007; Zhang & Stout,
1999Db) is a procedure that seeks dimensionally distinct clusters of items based on
the conditional covariances among the item pairs. Dimensionality distinarslust
are sought such that approximaieplestructure is preserved under a generalized
compensatory MIRT model (Zhang & Stout, 1999b). A common 3-parameter
compensatory normal-ogive MIRT model expresses the probability of a correct
response of persarto itemj as:

P(X;; =1]0,a;,d;,¢;) = ¢; + (1 — c))@(a;0; + d)), 1.1
where,® is a cumulative normal distribution functid, = (84, 6,, ..., 6,,)" is a
vector ofM latent variables for examingea; = (a;;, aj,, ..., aju)’ is a vector of
M parameters related to discriminating power of the jtemis a lower
asympotote parameter for itgrandd; is the intercept related to the marginal
difficulty for item (e.g., McDonald, 1997). Following McDonald (1999), an item
is referred to afactorially simpleif it has only one nonzero coefficient in dg
vector. Conversely, and itemfactorially complexf it has more than one
nonzero coefficients in ita; vector.

A model for a set of items exhibiggmple structuref, according to the

model, all of the items are factorially simple. In other wordsjnmplestructure,
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each item is associated with only one latent variable. Moving away fromesimpl
structureapproximate simple structurefers to situations in which any one item
is primarily associated with only one dimension, although trivial but nonzero
coefficients in the item’s; vector allow items to be associated with multiple
latent examinee variableSomplexstructure further extends any one item'’s
association with multiple latent examinee variables; however, those d@ssEcia
are now nontrivial.

These concepts are discussed in more detail in Chapter 2. For the present
purposes, it is sufficient to note that DETECT is grounded in principles of simple
structure. Therefore, the performance of DETECT in situations where comple
structure exists might suffer. More generally, there seems to be a ladeafch
and support for most, if not all, of the commonly used methods for dimensionality
assessment in realistic situations where the principles of the methods and
conditions of the data are not aligned. It will be argued that while methods for
dimensionality assessment have shown great promise, further research,
particularly with respect to complex data, is needed.

Purpose of the Study

Popular methods for dimensionality assessment assume that items simple
or approximately simple. Furthermore, these methods are typically apptiee i
context where a compensatory multidimensional model is assumed. This study

seeks to go beyond the present practices.



The purpose of this study is to investigate the effect of complex structure
on dimensionality assessment data that follow both compensatory and
noncompensatory MIRT models using dimensionality assessment procedures
based on conditional covariances (i.e., DETECT) and factor analytical apmoache
(i.e., NOHARM). The procedures of DETECT and NOHARM, discussed in
greater detail in Chapter 2, are chosen because these methods embody the two
most common and popular approaches to dimensionality assessment (i.e.,
conditional covariance and factor analytical). Additionally, both of theskadst
allow for exploratory nature of dimensionality assessment, have been shown to
perform rather well under a variety of conditions, and are to some extent flexible
in their application.

The following research questions are addressed in this study:
a) How well do methods based on DETECT and NOHARM perform in
estimating the dimensional structure of the data that exdubiplex

structure? This includes their performance in estimating the number of

dimensions that underlie the data, and the interpretability of the resulting

groupings of items.

b) Do the underlying MIRT models (compensatory and noncompensatory),
correlations among latent variables, sample size, and/or the number of
items influence the performance of these dimensionality assessment

methods?
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In order to investigate the effects of the complex data on the performance
of these two procedures, this study will be carried out via a simulationstudy
a Monte Carlo approach. By using Monte Carlo, the “true” dimensionality
structure is known and thus can be compared to the estimated dimensional
structure.

The motivation for this study stems in part from the fact that the literature
on issues related to dimensionality assessment typically focuses oimiexgtime
procedures to assess (i.e., detect departures from) unidimensiondtity étlal.,
1996; Nandakumar, 1993, 1994; Nandakumar & Stout, 1993; Nandakumar & Yu,
1996; Nandakumar, et al., 1998; Roussos, Stout, & Marden, 1993; Stout, 1987;
Stout et al., 2001). The evaluation of dimensionality is no less important when it
comes to multidimensional models (Levy & Svetina, in press). This is partjcula
important, given a recent rise of development and applications in MIRT models
such as modeling of multidimensional data, applications in adaptive testing, or
equating (e.g., Ackerman, 1996, Bolt & Lall, 2003; De Champlain, 1996;
Embretson 1997; McDonald, 1997; Walker & Beretvas, 2003; Yao & Boughton,
2007, etc.). These studies recognize and point to the need for supporting data-
model fit procedures, including dimensionality analysis.

The literature on multidimensional item response data primarily models
situations whereapproximatg¢ simple structurexists (e.g., Finch & Habing,

2007; Gierl, et al., 2006, etc.). Rarely are exploratory methods assessed in the

context of complex data, which is partially due to the fact that several of the
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commonly used methods, including DETECT, are based on the principles of
simple structure. The only study found to date addressing performance of
DETECT in the context of multidimensional data with complex structure is Gierl
et al.’s (2006) study. The results of the Gierl's study, reviewed in more detail
later, provided important evidence of DETECT’s performance. Several tampor
issues were left unexamined, which motivated this study.

The current study attempts to examine issues related to dimensionality
assessment when a researcher haspriori hypothesis of the structure of the
data, when in fact the data exhibit complex structure. In particular, this study
focuses on examining the performance of the procedures when
multidimensionality is present and where several items on a test ael rielat
multiple rather than just a single dimension; that is when some items on a test are
factorially complex. In addition to the methods based on the popular, conditional
covariance based DETECT procedure, the performance of methods based on the
output from a factor-analytical procedure, NOHARM, is examined for

comparison purposes.
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Chapter 2
BACKGROUND LITERATURE
Definition of Dimension

Though there seems to be an agreement of the importance of assessing
dimensionality, the definition of dimensionality of data may vary depending on
the adopted modeling paradigm. Traditionally, in defining dimensionality of the
data, a researcher tries to address the questimowomany latent variables
(factors) are thought to underlie data on a set of test it€iften, the analyst is
interested in understanding and (statistically) explaining the variandes a
covariances among the items on a test. In assessment settings, we kgt as
complex is the latent space needed to adequately represent students’ pedgorma
on a particular test.

Some of the more recent definitions and references to dimensionality
include Camilli, Wang, and Fesq (1995), who defined test dimensionality as “the
number of latent variables that account for the correlations among item responses
in a particular data set” (p. 80). McDonald (1981) echoed Lord and Novick
(1968), when suggesting that the proper quantification of dimensionality in the
data ought to be based on 8teng local independengeinciple. That is, the
dimensionality of the data is that which is needed to achieve strong local
independence. In this line of reasoning, Hattie, et al. (1996) suggested that, when
the dimensionality is correct, then “[o]nce trait values are fixed atemgialue

(i.e., conditioned on), the responses to items become statistically independent.
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Thus, in order to determine the dimensionality of a set of items it is necesdary a
sufficient to identify the minimal set of traits such that at all fixeele of these
traits the item responses are independent” (p. 1).

Relaxing the assumption of the strong local independence, a number of
researchers (e.g., Junker, 1993; Stout, 1990; Stout et al., 2001; Zhang, 2007),
operationalized the definition of the dimensionality of data by describing it in
terms of a minimum number of (dominant) dimensions necessary to achieve (pair-
wise)local independencandmonotonicity(discussed in further detail in the next
section).

Others suggested that the issue of dimensionality involves more than
(successfully) arriving to a number proficiencies or dimensions thatiattor
the item responses (Levy & Svetina, in press; McDonald, 2000). These authors
point that in addition to arriving to the number of dimensions that underlie the
item responses, the relationship between the items and dimensions play a crucial
role in dimensionality assessment. One could be successful in identifying the
number of dimensions that underlie the data, however, if the relationships
between the items and dimensions are incorrectly identified, problems in the
appropriate estimation and score reporting may occur. Thus, it is important to not
only arrive to the correct number of dimensions but to also appropriately account
for the patterns of the relationships as well.

A related but slightly different understanding of dimensionality has

emerged from the recent growth of cognitive diagnostic models charadtegz
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their use of discrete latent variables (Rupp & Templin, 2008). In the binary skills
model (Haertel, 1989), latent classes are identified with a distinct pattern of
dichotomous skills. Rather than thinking about a single (or multiple) continuous
dimension(s), one might think about dimensionality in terms of how skill
combinations define classes of students and their proficiency within a specifie

skill space. The multidimensional nature of the models, as suggested by Rupp and
Templin (2008), can be described as “the number of latent variables depends on
the number of skills that researchers hope to numerically separate in a reliable
manner with the assessment” (p. 228).

Unlike in the typical factor analytical or IRT analyses, where multiple
dimensions operationalize different constructs (or different aspects sathe
construct), in applications of such latent class models Rupp and Templin (2008)
suggest that dimensionality be broken down even further to elementary
components and their interaction (p. 228). DiBello, Roussos, and Stout (2007) add
that it is the purpose of the assessment that will have “significant impact on
whether the targeted latent attribute of skill space will be modeled with one or
more than one variable...” (p. 981).

Substantively, “a decision about dimensionality...inevitable rests partly on
a substantive basis, and should constitute a conclusion about the detailed structure
of the relationships — not merely the number of dimensions” (McDonald, 2000, p.
103). In other words, dimensionality assessment should be a process of both

statistical and substantive investigations of the relationships betweemtie ite
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and/or latent, unobservable, traits, and the pattern of relationships between the
items and dimensions.

Though substantive considerations are important, this work focuses on the
notions of dimensionality that resemble those of Stout (1990) and others. In
particular, statistical investigations meant to account for associatisgethe
items are meant to partially provide support for determining a number of
dimensions in a set of items. As seen from a few examples above, the term
“dimensionality” has been defined and used in multiple ways. Although often
referred to dimensionality of the test, one should really discuss dimensionality of
the observed item responses that represent the interaction between examiinees a
items.

The remainder of this chapter is divided in the following sections. First,
concepts related to dimensionality assessment are discussed, including the
concepts related to local independence. Next, to motivate a discussion about
current dimensionality approaches, parametric and nonparametric based
approaches to dimensionality assessment are presented. Each of thesdhapproa
is followed by a discussion of commonly used procedures and software for
dimensionality assessment. The chapter concludes with current research on
dimensionality assessment, with a primary focus on the research egthatin

two methods used in this study; NOHARM and DETECT.
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Concepts Related to Dimensionality

Stout (1990) defined the dimensionality of a test as the minimal
dimensionality required for a possibly vector-valued latent var@ple,produce
a model that is both locally independent and monotone. The (increasing)
monotonicity is achieved when the probability of a correct response increases as
the ability increases. Local independence (LI), also known as strong local
independence (SLI) states that the joint probability of the responses to the set of
items comprising the test is equal to the product over items of conditional
probabilities for all the item responses on a test giv@tattie, et al., 1996;

Stout, 1990). This is can be formulated as:

J
P(Xy,X,,..X,10) = 1_[ P(X;l0), 2.1

whereX, X,, ..., X; are scores for itemjszll, 2,... upXaypically scored as O for
an incorrect and 1 for a correct response in dichotomously scored itendssand
the total number of items on a test. Equation 2.1 states that a joint probability for
all item responses on a test giveis a product of each conditional probability
separately. In other words, if we condition@rithe response to any item is
independent of the response to any other item.

In practice SLlI is difficult to investigate. Thus, weak local independence
(WLI), which deals with item pairs rather than joint distribution of all iteiss
typically used in investigating local independence. WLI is the condition that for
all unique item pairs and for d| the covariance between the item pairs,

conditional ord is zero:
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cov(Xj,X-IIB) =0, 2.2
whereX; is a scored response to it¢@nd X/ is a scored response to it #
j, andcovstands for covariance between the items in question. From Equation
2.2, we can see that WLI implies that each item pair has zero covariance once the
latent trait(s) has been accounted for.

McDonald (1994) and others argue that in cases of real data for which
WLI holds, SLI holds approximately (Stout, et al., 1996). Note that higher-order
dependencies are allowed among the items, although if WLI holds, it is unlikely
that SLI would not (e.g., Zhang, 2007). Thus, if one accepts that in cases where
WLI holds, SLI will also hold approximately (and monotonicity is assumed), then
evaluating WLI is sufficient for evaluating SLI and dimensionality.

Here, a cautionary note needs to be made; though LI and dimensionality
assumption are related, the two are not identical. For example, if the data follow a
model with a particular dimensional structure, and we employ that modelll LI wi
hold. If the data follow a multidimensional structure, and we employ a
unidimensional model, LI will not hold. However, if the data follow a
unidimensional structure, and we employ a multidimensional model, LI will also
hold. Nevertheless, evidence that LI does not hotdiea facieevidence that the
dimensional structure, and possibly the number of dimensions, is incorrectly
specified.

Even in cases where tests are designed to measure a single construct (i.e

to be unidimensional), “minor” or “nuisance” proficiencies are likely to account
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for some inter-item dependencies, in addition to a single dominant construct
(Goldstein, 1980). These minor proficiencies or dimensions may be functions of
the testing environment, characteristics of instruments, or instructionetiseffe
(Seraphine, 2000). Further, even when we do have the correct number of
dimensions, we still might not have LI if the pattern dependencies of the items on
the dimensions are incorrectly specified (Levy & Svetina, in press)der
take into account minor latent nuisance trait(s), Stout (1987, 1990) broadened
conceptualization of dimensionality basedessential independence

The responses to items are essentially independent if the average of all
inter-item covariances conditioned on correctly specified (multiple) msioas
approaches zero as the number of items approaches infinity (Nandakumar &

Stout, 1993; Stout, 1987; Stout et al., 1996),

215j<j’s]|cov(xj' X |9)|
)

Concepts related to dimensionality can be illustrated graphically. Figure 1

- 0as] - co. 2.3

illustrates three data structures that are relevant for discussion afsimality.

In panel (a) of Figure 1, axact simple structuris shown. All of the items on a

test are associated with one dimension only. Some of the items are influenced by
01, while others by.. In panel (b), ampproximate simple structuie shown. We

can see that there is a potential influencéoih some items primarily influenced

by 61 and vice versa. Dashed lines indicate that such influence is weak in strength

and magnitude. Aomplex structureas presented in panel (c), suggests that some
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items are influenced by boéh andf,, while others by a single dimension only.

Pamel (a) Panel (b)

Pamnel (c)

Figure 1. Geometric representation of exact simple (a), approximate simple (b),
and complex (c) structure.

An alternative way to represent a two-dimensional latent space and items
is given in Figure 2. Such a graphical representation is useful in visualizing
structural features, where the coordinates in multidimensional space nephese

latent abilities measured by the test (e.g., Ackerman, 1996; Stout et al., 1996).
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Analogous to panel (b) of Figure 1, Figure 2 illustrates a two-dimensional
test (represented iy and6,), with anapproximate simple structurdlote that in
Figure 2, the two axe$4and6,) are shown to be orthogonal to each other. While
this does not have to be the case; for simplicity purposes, the two dimensions
pictured here are uncorrelated. The lines coming out from the origin represent
item vectors- a single line represents an item on this two-dimensional test. The
direction/location and the length of the item communicate its characteribtie
direction (angle) of théem vectotis the direction in multidimensional space that
the item provides maximal discrimination, and reflects the relative amount of
information that the item provides about the dimensions (i.e., in terms of whether
the item vector is closer 3 or 0;). The length of thatem vectoiillustrates
multidimensional discrimination of that item (i.e., longer lines indicate higher

discrimination values).

Figure 2Two-dimensional test displaying approximate simple structure.
Note Stout at el., 1996.
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In Figure 2, the location and direction of item vectorsuggest there are
two groups (or clusters) of items: one cluster of items that mostl telét, and
another cluster of items mostly relatedtoWe can also see that the strength of
the relationship between the items and their respective dimensionsiiehglat
comparable for all items (i.e., the lengths of the lines are somewhairgimil

Relating back to the concepts of conditional covariance previously
discussed, we describe this set of items u8igg Oc,, and®+t. Here,®¢; and
Oc. represent the cluster’s unidimensional latent variables best measuiteat for t
cluster scores, ar@r is a unidimensional latent dimension of best measurement
for the total test scor@+r can be thought of as a dimension in a
multidimensional space consistingébbélong which a set of items maximally
discriminates (i.e., rough average ofidm vectorsStout et al. 1996).
Importantly,®r is analogous to the direction of the latent variable in this
multidimensional space that would be obtained by fitting a unidimensional model
(Stout, et al., 1996).

Similarly, on a subtest level, there is a unidimensional latent variable best
measured for any one subtest (in this gdsegand®c,). Although not illustrated
here, the representation of tienpleandcomplexstructuresusing example in
Figure 2, would be as following. Femmple structureall itemvectorswould fall
on either®; or 0, axis. Forcomplex structureat least somigem vectorsvould be

closely located around tleerr (between 35° and 55° frofh, Gierl et al. 2006).
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As presented in Figure 2, two clusters are formed, ant@adlvectordie
closely to one of the two axes (i.e., two dominant dimensions exist). Zhang and
Stout (1999b) illustrated that within each cluster, items appear relatively
homogeneous (i.e., more similar), and their conditional covariance @imqenill
be positive. For item pairs whose vectors come from different clusters, the
conditional covariances givedrr will be negative.

Zhang and Stout (1999a) also showed that the angles and lengths of the
item vectors project the magnitude of the item’s association with dimenston, w
respect to the direction of best measurement. They showed that as an item
“moves” away from th@+, the covariance with items in the cluster (which
remain fixed) increases, givéhr. For example, consider a different two-
dimensional case (Figure 3), where faems vectoref equal length are
represented by, throughU,, and where angles and discrimination vectors

(lengths) are fixed.

=

Figure 3Direction of best measurement for four items in two-dimensional space.
Note: Stout at el., 1996.
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Zhang and Stout (1999a) illustrated tha¥(U1,U,|®11) < co Uz, U3|O+7)
< cov(U3,U4|@®17). In addition, the authors illustrated that as the angle between the
items decreases and as either of the items increase its angkryyitheir
conditional covariance, givedyr, increases. Similarly, the conditional
covariance between the items increases as the lengths of the item vectasan
(i.e., increase in magnitude of item discrimination vectors). These concepts a
important in that they provide building blocks for many of the current
dimensionality assessment procedures described next.
Dimensionality Assessment Approaches and Methods

There are many ways to organize dimensionality assessment methods. One
such way is to think about methods and tools used to examine dimensionality
through the lenses of parametric and nonparametric approaches. Another grouping
may be based on the methodological nature (e.g., exploratory or confirmatory) or
modeling paradigm (e.g., factor analytic or IRT). For the following d&ouns a
grouping based on parametric and nonparametric approaches will be adopted.
Within each of these approaches, various methods have been developed to assess
dimensionality. Some methods have factor analytical (FA) roots, while others
grew out of IRT traditions. Similarly, some methods are purely exploratory or
confirmatory, while others can handle both. Current, commonly used, procedures
associated with both parametric and nonparametric approaches are discussed next.

Parametric approach to dimensionality assessmenithin the

parametric approach to dimensionality assessment, one of the two frameworks
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typically adopted: FA based methods and MIRT based methods. In this section,
the FA and MIRT frameworks are presented fist. Next, the relationship betwee
the two approaches is noted. Lastly, current methods based on parametric
approaches to assessing dimensionality are discussed.

Factor analytic (FA) framework. Traditionally, a common approach to
testing dimensionality has been through factor analysis methods. In dlassica
linear factor analysis, a researcher seeks to identify a set ofsfédiimensions)
that can account for the observed pattern of correlations among the scores (Kane,
2006). The relationship between the factor(s) and observed measures is expressed
through factor loadings. In the common FA model, each variable is a linear
combination of one or more common factors and one unique factor. A unique
factor is unobserved and is composed of two parts: the latent factor component
that represents unexplained variance and the measurement error due to
unreliability of the measured variable. The common factor model for linear fact
analysis can be mathematically presented as:

Xij = Aj10i1 + 4205 + -+ AjnOim + €4, 2.4
where/jn is the loading (weight) for iteqon factor (dimensiorn, 6;,, is the
factor score for examinae®n factorm, ande; is a term that carries a residual (or
unique) information for examineen item,.

In a common factor model, variables are assumed to be continuous. In
educational data, variables are often scored dichotomously, causing the assumed

linear relationship between the items and factors to become nonlinear. This
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nonlinear relationship led to occurrences of spurious “difficulty” level facto
based on the observed-item correlations (Green, 1983; McDonald & Ahlawat,
1974).

Due to this nonlinear nature of item responses in educational data,
researchers developed tools to accommodate the nonlinear relationship between
the items and the factors by using tetrachoric (rather than Pearson or phi)
correlations in the analysis (Jang & Roussos, 2007). Unfortunately, using
tetrachoric correlation matrices could be problematic since they arenotten
positive definite (Cook, Dorans, & Eignor, 1988; Knol & Berger, 1991; Lord &
Novick, 1968). The issue of not positive definite matrices presents the problems
in estimation, as typically maximum likelihood (ML) or generalizedtlegaare
(GLS) estimation procedures are used. Further, tetrachoric matricdseemay
inappropriate when the distribution of the latent ability is nonnormal (Jang &
Roussos, 2007; van Abswoude, et al., 2004) and when a potential for guessing
(e.g., in multiple-choice items) is present (Jang & Roussos, 2007; Hattig, et al
1996; Mislevy, 1986). Therefore, the appropriateness of using linear methods in
cases where item responses are nonlinear (as often the case witltoedludata)
may be challenged.

As alternatives, parametric nonlinear factor analytic (NLFA) methods
have been proposed. Such methods have been incorporated in procedures
including the limited-information, covariance-based method, NOHARM (Fraser

& McDonald, 1988) and the full-information based method implemented in
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TESTFACT (Wilson, Wood, & Gibbons, 1991). More detail on the NLFA
procedure of NOHARM as a dimensionality assessment tool is provided in the
subsequent section.

For either linear or nonlinear factor analytic approaches, the
dimensionality of item responses can be achieved by appropriate factor
identification and examination of the patterns of loadings. Identifying an
appropriate number of factors will reflect the dimensionality of the daga. It
desirable that the most parsimonious test structure is obtained while at the same
time adequate account for the relationships between the items and factors is
produced. The issue of proper identification of the number of factors has been
debated in the literature. Because the FA approaches were developedlpriginal
for continuous data, there has been limited research on their use with
dichotomously scored data.

Determining the number of factoismepirical criteria are frequently used
to determine the number of factors that should be extracted, including
eigenvalues-greater-than-one criterion (eigenvalues > 1; Guttman, 1954, Kaiser
1960) based on eigenvalues from a correlation matrix, the scree test (Cattell,
1978), as well as the less commonly applied techniques of the minimum average
partial test (MAP; Velicer, 1976) and parallel analysis (PA; Horn, 1965).rOthe
methods could also be applied in determining the number of factors, including
decisions based on settiagriori desired amount of variance to be accounted for

(i.e., selecting the fewest number of factors that reach that amount) and using ML
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estimation procedure to estimate the model and compare it to models of higher
dimensionality (i.e., nested models comparison viadifference test).

The four methods for determining the number of factors (eigenvalues >1,
scree test, PA, and MAP) are introduced next. For a review of widely used
procedures for determining the number of factors and recommendations for use,
see Velicer, Eaton, and Fava (2000).

Theeigenvalues > tule is one of the most commonly used methods in
determining the number of factors (Zwick & Velicer, 1986), and it is often a
default in common statistical packages (e.g., SPSS, SAS). This rule suggests
the number of factors to be retained from the data should reflect the number of
eigenvalues from a correlation matrix that are larger than 1. Research has show
that this rule tends to extract too many factors (i.e., over-extractiongiagpan
small to moderate sample size in sample data due to capitalization on chgnce (e.
Cliff, 1988; Fabrigar, Wegener, MacCallum, & Strahan, 1999; Horn, 1965;
Hubbard & Allen, 1987; Preacher & MacCallum, 2003; Revelle & Rocklin, 1979;
Zwick & Velicer, 1982, 1986). It is also noteworthy to say that the research has
shown that an over-extraction is typically more favorable than under-extraction
when it comes to determining the number of factors using any of the extraction
methods (Fava & Velicer, 1992, 1996; Wood, Tataryn, & Gorsuch 1996).

Thescree tes{Cattell, 1966) is another criterion that can be utilized in
determining the number of extracted factors. The scree plot is a graphical

representation of the plotted eigenvalues in descending order. The number of

28



factors (components) retained using the scree plot is done such that the number of
factors above the “elbow” is retained. In other words, graphically, as the
eigenvalues tend to level off factors above that leveling point should be retained.

Given its subjective nature, a problem in determining the number of
factors via scree plot could arise when there is no clean break between tlte plotte
eigenvalues (i.e., several eigenvalues around the elbow point). The method was
also found to be less accurate in smaller sample size and complex patterks (Zwic
& Velicer, 1982). Even with its subjective nature, scree plots have shown to yield
more accurate results than the eigenvalue > 1 rule, especially with langle sam
size and strong factors (e.g., Zwick & Velicer, 1982). Further, the scree plot has
been recommended to be used in conjunction with other procedures rather than a
standalone method (Crawford, et al., 2009, Velicer, et al., 2000).

The minimum average partidMAP; Velicer, 1976) method is based on
the matrix of partial correlations. In this approach, after each ohflaetors
(components) is partialed out, the average of the squared correlations of the off-
diagonal partial correlation matrix is computed (Velicer, 1976, developed this
method for use with principal components analysis, although factors and
components can be used interchangeably to represent a dimension). The number
of components retained is determined by the point where the average squared
partial correlation reaches a minimum. This occurs when the residual magix m

closely resembles the identity matrix.
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MAP can be applied to any covariance matrix, and as an exact method, it
yields results where at least two variables have high loadings on eachdeta
component; and it directly relates to the concept of factors represertreghman
one variable (Zwick & Velicer, 1986). MAP method has been shown to be more
accurate in determining the number of factors than eigenvalues > 1 rule (e.g.,
Zwick & Velicer, 1982, 1986). MAP is not a standard procedure in major
software packages, although some programs have been written to implement
MAP procedure (e.g., Gorsuch, 1991; Reddon, 1985).

Lastly, parallel analysis(PA) has shown to be an accurate procedure for
determining the optimal number of factors (Fabrigar, et al., 1999; Horn, 1965;
Hubbard & Allen, 1987; Preacher & MacCallum, 2003; Zwick & Velicer, 1986).
The process of conducting PA begins with generation of a number of correlation
matrices of random variables based on the same sampl&semed number of
variables J) used in the real dataset. Factor analysis is then performed on the
random data and the average (or some percentile of; &'opr @5") eigenvalues
from the random data (i.e., random eigenvalues) are compared to the eigenvalues
from the real data (i.e., observed eigenvalues). The development and
implementation of the programs for conducting PA have been traditionally done
for the continuous data. This presents problems when dealing with categorical and
binary data often find in educational settings.

Recent limited literature on PA for binary data provides inconclusive

results and recommendations for conducting PA on binary data. For example,
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Cheng and Weng (2005) found that using large sample size and high loadings,
using 98' (or 99" percentile, closer proportions in the categories result in
adequate PA performance. The authors examined performance of phi and
tetrachoric correlation matrices and found that in the two-dimensional daBAs, i
erred it tended to incorrectly extract too many factors (especialiytetrachoric
matrices). Further, poor PA performance was noted in small samples2@8)(
and extreme distributional proportions, and when low loadings were present
regardless of the sample size.

Other research, however, suggests that PA should not be conducted on
binary data due to the problematic nature of the method originally developed for
continuous data (e.g., difficulty factors, Tran & Forman, 2009). Further, as noted
above, indefinite positive correlation matrices often occur in binary data, thus
present problems in conducting PA (e.g., Tran & Formann, 2009). Programs
currently available to conduct PA are based on the notion of continuous data, and
although the observed data can be in a form of phi, tetrachoric, or polychoric
matrix, the random datasets generated for comparison are not.

Multidimensional item response theory (MIRT) approach. MIRT has
received a lot of attention beginning in the 1970s and 1980s, when traditional IRT
models were expanded to realistically represent various educationanasses
experiences where any one person’s response to an item was assumed to be
influenced by multiple latent traits (Yeh, 2007). The link between the factor

analysis for dichotomous variables and the normal-ogive model helped further the
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development of MIRT. In 1972, Reckase first proposed an extension of the Rasch
model to the multidimensional case. A number of general Rasch models with the
growth of the logistic form of the MIRT model followed (McKinley & Reckase
1982), which further led to developments of two- and three-parameter MIRT
models. All of these models, both normal-ogive and logistic, could be
characterized asompensatorylinear) models.

Another set of models developed concurrently in the seventies and eighties
was known asoncompensatorgr (partially) conjunctiveMIRT models (e.g.,
Sympson, 1978; Whitely, 1980). The key difference between these two sets of
models resides in how the latent traits interact with each other to produce the item
responses.

Compensatory MIRT modéh compensatory MIRT, if an item on a test
requires two different proficiencies (i.e., can be modeled with a two-dioreisi
space), a person’s high proficiency on the first latent trait may contpehgsa
lack of proficiency on the second (or vice versa); thus making it still somewhat
probable that a person will respond correctly to the item. For example, two
dimensions may underlie a mathematics word problem. The first dimension might
reflect mathematics proficiency, while the second dimension could reflect the
reading proficiency. If a person has high reading proficiency, he or shbenay
able to compensate, to some extent, for his or her lower mathematics proficiency

The multidimensional compensatory 3-parameter logistic (MC3PL) moddiea
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represented by (Reckase, 1985, 1997; McDonald, 1997; Spray, Davey, Reckase,

Ackerman, & Carlson, 1990):

exp (aj101+a;202,..4ajmOm+d;)

P(Xi; = 1|0y, a;,d;,¢;) = ¢; + (1 — ;) 2.5

1+exp (aj101+a;202,..+AjmOm+d;)’
where the only difference between 1.1 and 2.5 is only in the metric of the model;
in Equation 1.1, a normal density function is used (i.e., normal-ogive model),
while in 2.5, a logistic function is applied to determine the scale; other terms are
defined above.

Wheng;is set to 0, the MC3PL becomes a multidimensional compensatory
2-parameter logistic (MC2PL) model. Further, when all of the discrimomat
parameters are set to 1, the model becomes a multidimensional 1-parameter
model. The interpretation of the item parameters is similar to interprettihe
unidimensional IRT models. The person parameters in the model are represented
as the elements of tl&g vector. The number of dimensions that adequately model
the data matrix is open to debate and the subject of this research.

Noncompensatory MIRT mod&l.noncompensatory MIRT, if an item on
a test requires two different proficiencies, knowledge or mastery of onaohay
be able to compensate for the lack of the other. In other words, all underlying
proficiencies need to be sufficiently high for an item to be solved correctly. For
example, on a verbal analogy item, mastery of two components (proficiencies),
rule construction and rule evaluation, may be required for a successful outcome
(i.e., correct answer to an item). If a person has high ability on rule construction,
but has low ability on rule evaluation, the probability of favorable outcome may
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not be high. This kind of relationship is the reason why often these models are
referred asmonadditiveor multiplicative

The noncompensatory multidimensional three-parameter logistic
(MNC3PL) model (Sympson, 1978; Whitely, 1980) can be represented by the

following function:

1

P(X; = 1|0, a,b;,¢;)) = ¢; + (1 — c,)]_[ 20
jm

1+ exp a]m(elm

where,b;, is the location for itemalong dimensiom, and other terms were
previously defined. The noncompensatory nature of this model is derived from the
fact that the probability of the correct response cannot be greater than the
minimum value of the product terms (Spray, et al., 1990). As the number of
dimensions increase, the probability of the correct response decreases.

The noncompensatory (conjunctive) multidimensional models are less
commonly used, possibly due to the increased number of estimated parameters
they require when compared to their compensatory counterparts (Knol & Berger,
1991). Furthermore, it may not be always clear which model should be used.
Often this is the case when the relationship between the abilities is unclear.

For example, some may suggest that math word problems should be
modeled using the compensatory MIRT, suggesting that even if an examinee is
not a good reader, his or her high ability level in mathematics could compensate
poor reading skills, resulting in a high likelihood of favorable outcome. On the

other hand, some might understand (and treat) the relationship between the
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abilities of reading comprehension and mathematics to be noncompensatory,
suggesting that if an examinee does not know how to read well, a favorable
outcome will be very unlikely. This low probability of a correct response may be
present despite having a high ability in mathematics, because without ba&ing abl

to read and understand what the question asks, knowledge of mathematics might
not be applied. Both of these scenarios are plausible, and it is up to the researcher
to decide which model represents the believed hypothesized relationship among
the multiple abilities.

Relationship between FA and MIRT. Several researchers have shown
formally the mathematical equivalence between the FA and compensatory MIRT
models (e.g., Knol & Berger, 1991; Takane & De Leeuw, 1987). A typical FA
model presented in Equation 2.6 assumes that the response variable foXjtem
is governed by a continuous, latent variatleand threshola;which
dichotomizes an item into a “1” for correct and “0” for incorrect response (i.e., if
the probability of a correct response is greater than the threXheld,).

Equation 2.4 can be thus rewritten as a normal distribution fundtifom a

correct response (McLoad, Swygert, & Thissen, 2001):

}\]'161 + }\]'292+, ey }\]mem - Y]

0j

P(X;=1/0) = , 2.10

where, 6,,, represents the" latent trait anab]-2 is unique variance. If we let

A ~yj f
Ajpm = ;_] andd; = G—]’ wheres; = [1-XA%, 2.11

then Equation 2.10 can be rewritten as a normal-ogive MIRT:
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P(X; = 1|0) = ®[a;10; + @205, ... @j O + d;]. 2.12
Note that Equations 1.1 and 2.12 are equivalent wheffixed to zero.
Due to equivalency of the Equations 2.10 and 2.12, MIRT parameters can be
derived from FA model (see Equation 2.11) and FA parameters can be derived

from MIRT parameters as following:

_ _ 4m _ T4
Ajm = === andy; =

/1+Z a]gm /1+Z a]gm . 2.13

It is then at no surprise that the model identification in multidimensional
item response model carries directly from the factor theory (e.g., Boiga);lat
a minimum, for any model to be estimated, the number of parameters estimated
cannot exceed the amount of information contained in the variance/covariance
matrix.

Parametric approachesMplus (Muthén & Muthén, 1998-2006) is one of
the most diverse and flexible software programs when it comes to modeling and
dimensionality assessment as it can handle both continuous and dichotomous data
and it supports both exploratory and confirmatory approaches to FA. Furthermore,
missing data can be handled withipMs. In exploratory FA, Nblusemploys the
least-squares based estimators.

Both orthogonal and oblique rotations are permitted and output produced
by the program relevant to dimensionality assessment includes eigerfealtines
polychoric correlation matrix, residual correlation matrix, the root meanedjuar

residual (RMSR)y?statistic, and the root mean square error of approximation
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(RMSEA). The inclusion of the lower asymptote, however, is not permitted in
either the computation of the correlation matrix or the parameter estimation.
Similar to exploratory FA, Mlusin the confirmatory FA may use least squares
estimation. Alternatively, it may use full-information maximum likelbd
techniques to marginalize over the latent variables.

TESTFACT (Bock, et al., 1999) has capabilities for both exploratory and
confirmatory modeling, although confirmatory modeling is limited to bifactor
structures, where a single common factor is modeled with one or more orthogonal
“group” factors (Version 3.0; Tate, 2003). TESTFACT is considered a full-
information based method as it uses full item response vectors in applying the
item factor analysis (the program can also apply tetrachoric cosredatnd use
them in a limited-information approach to conduct the analysis).

In TESTFACT, least square or marginal maximum likelihood procedures
can be used for parameter estimation. In situations where the tetrachoric
correlation matrix is not positive definite, a “smoothing” procedure is appjied b
using all positive roots of the original tetrachoric matrix in order to aatize
positive definite matrix (Tate, 2003). Though the program does not estimate the
lower asymptote parameters, it does allow for their input by the user (once
estimated outside the program using for example BILOG; Mislevy &Boc
1982). TESTFACT produces)& statistic for model fit, and in order to assess

dimensionality of exploratory solution in TESTFACT, Tate (2003) suggests

37



conducting the test of the difference of gefit statistic by sequential inclusion
of additional factors.

Normal Ogive Harmonic Analysis Robust Method (NOHARM; Fraser &
McDonald, 1988) is a parametric nonlinear factor analytic (NLFA) method which
can be used in either exploratory or confirmatory analysis. Iltem respeoases a
represented by a nonlinear factor analytic model (i.e., normal-ogive), Stich a
one represented in Equation 1.1. As a method, NOHARM allows for various
rotations (e.g., oblique, orthogonal) in exploratory analysis to provide
approximate independent clusters (McDonald, 2000). The estimation procedure
employed in NOHARM is unweighted least squares (ULS), which allows for
analysis of large number of items and high dimensionality (Fraser & NalBo
1988; McDonald, 2000; Reckase, Thompson, & Nering, 1997).

Like TESTFACT, NOHARM does not estimate the lower asymptotes;
however, it does allow for user input of these values. NOHARM provides
covariance residuals and root mean square residuals to summarize the lack of fit
As originally developed, NOHARM does not produce a formal statistic for the
model fit. Tate (2003) suggests evaluating model fit by a degree of inmpeowe
as dimensionality increases. Specifically, if the higher dimensional model
produces 10% or more decrease in RMSR over the preceding model, that
dimensional model should be retained.

As is the case with other factor analytic methods, NOHARM produces

various fit measures for a given factor model or solution. NOHARM produces a
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residual matrix of differences between observed and expected proportions and
RMSR (Stone & Yeh, 2006, p. 196). Additionally, factor loadings are provided

for each factor solution and they also can be used in evaluating the structure. A
formal test the goodness-of-fit of a particular dimensionality solution lmased
NOHARM output was introduced by Gessaroli and De Champlain (1996) as a

X? type statistic. This statistic is based on testing the null hypothesth¢hatf-
diagonal elements in the residual correlation matrix produced by the factor
analysis equal zero (Finch & Habing, 2005, 2007). If the null hypothesis is not
rejected, it can be concluded that the fitted model adequately approximates the
observed correlations among the items (Finch & Habing, 2005). The approximate

x? statistic can be computed as:

J j-1
Bp=W=3)) 2 2.14
j=2j"=1
whereN is the number of examineekis the total number of itemg,and;’ serve

to index the items to define the unique pairings of items, and
™ _ N _ ™
Zi = Slog(1+ T ) — Slog(1 T ) 2.15

is the Fisher'sz transformation of the residual correlation for a given item pairing,

and

™
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where p;” is the observed proportion of examinees gettingjitemect and

pfj’,’ is the residual covariance between itgrasdj’. The resulting statistic is

compared to the referengé distribution with degrees of freedoutf,= 0.5)(J —

1) —t, wheret is the number of independent parameters estimated in fitting the
model; in exploratory models= (1+m) x Jandm s the number of dimensions
(Finch & Habing, 2005, 2007).

An alternative to the 2 ,p statistic for model fit based on NOHARM

output is an approximate likelihood ratio (Gessaroli, De Champlain, & Folske,

1997):
J
ALR = Z G2, 2.17

where

5 L L p’\kjkjl
G]]I = —21(2 Z pkjkj’ In . ) 2.18

j=0 kjl=0
Wherepkjkj, and ﬁk].kj, are the observed and expected (model-implied)

proportions of examinees with scorestpindk; for itemsj andj’ (0 or 1),

respectively. Given the dichotomous scoring of itep:,g;s,qj, andﬁkjkj, yield four

combinations: proportion of both items being correctly answergd, (proportion
of both items being incorrectly answereg(), proportion where itemis
correctly answered but itejfis not (,,), and the proportion where itgns
incorrectly answered but itejfis correctly answeregb; ).
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NOHARM produces the expected proportions of examinees who receive
1s for both itemg andj’ (p;,); the remaining expected proportions need to be
determined outside the program using the formula for the expected marginal
proportion of examinee answering the item correctly as given by McDonald
(1997). McDonald (1997) originally provided formulas for calculations of the
expected proportions in unidimensional case, the extension to multidimensional
case is straightforward. The_R statistic is compared to the reference

distribution with the same degrees of freedorpgﬁayg.

In addition to evaluating dimensionality of item responses on a test level,
assessing dimensionality can be conducted at the item-pair level. Methbdssuc
the model-based covarianddBC; Reckase, 1997) and Yen’s (19&%) can be
used to assess the assumed dimensionality. To date, most applications and
software for assessing LD in item pairs (Chen, 1993) have been confined to
assessing the fit of unidimensional models. Research on the performance of many
of these indices in unidimensional conditions suggests that the assumed reference
distributions (e.g., normal distributions for Fisher’s r-to-Z transformatidspf
do not hold (Chen & Thissen, 1997). Thus, most applications employ cutoff
values; forQs, values greater than 0.20 can be interpreted as evidence of
sufficient positive LI to warrant concern for the adequacy of the model.

While the form of MBC o0Qs;does not prevent them from being applied to
multidimensional models, the problems in defining the appropriate reference

distributions are likely present if not exacerbated when fitting multidirorak

41



models. An alternative approach to constructing reference distributions invokes a
Bayesian approach to model-checking. These approaches to using LI indices have
been studied in unidimensional modeling contexts by Levy, Mislevy, and
Sinharay (2009) and in multidimensional modeling contexts by Levy and Svetina
(in press).

Nonparametric approach to dimensionality assessmernitinlike their
parametric counterparts, nonparametric approaches do not impose any
distributional assumptions. In this section, current commonly used methods and
procedures to assess dimensionality based on conditional covariance theory are
described.

DETECT (Dimensionality Evaluation to Enumerate Contributing
Traits). DETECT (Kim, 1994; Zhang & Stout, 1999a, 1999b) is an estimation
procedure typically used as an exploratory tool for dimensionality assessment
The goal of DETECT is to describe the structure of the multidimensional item
dispersion relative to the test compoghg. In other words, DETECT partitions
the items into clusters such that within a cluster, items are most homogeneous,
and clusters themselves are widely separated reflecting an assuofpti
approximate simple structure. For a given partition of items into cluBtettse

theoretical DETECT index is calculated as:

2
D(P,0p) = T z 87 (P) E[cov(B;, B |Opr)] , 2.20

1<j<j'<sJ

where,
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1,if B; and Bjare in the same cluter of P

8;;1(P) = { 2.21

—1, otherwise

Given a clusteP, the 5”-.(P) manipulates the expected conditional

covariance such that its value is added if it¢eusd)’ are in the same cluster, or
subtracted, if itempandj’ belong to different clusters. The nonparametric nature
of DETECT is expressed throu@h, which represents an estimate of the
composite ability best measured by the exam (Finch & Habing, 2005). The
advantage of using observed score as conditioning variable is that the composite
score does not need to be estimated (this advantage pertains to nonparametric
methods in general).

In DETECT, the direction of best measurement is approximated by using
the observed (raw) score. DETECT uses two estimators to approximate the
conditional covariance. The first estimator uses a total score to approXimate t
expected covariance among the item pairs. The second estimator uses@eest s
(total score minus the two items in question) to approximate the expected
covariance. Research has shown that using a total score, the estimator is
negatively biased, and that using a rest score, the estimator is positigely bia
(e.g., Zhang 2007; Zhang & Stout, 1999a). Thus, the final estimator of expected
conditional covariance is the average of the two estimators; this average wa
shown to be optimal in minimizing the bias (Yang & Zhang, 2001).

Thus, if approximate simple structure exists, the theoretical iDdet
be maximized at the correct dimensionality-based cluster paifitiqne. when

the partition matches approximate simple structure).
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The maximum possible value bf denoted ab*, indicates the amount of
multidimensionality the test displays (i.e. departure from being perfigittid by

an unidimensional model; Zhang & Stout, 1999b) and is given by:

2
D*(P,Or) =m z | E[cov(8, j’IGTT)“ - 2.22

1<j<j’<)
That means that when the partition matches approximate simple strheture t
maximum value of DETECT will be obtained because all of the within-cluster
conditional covariances will be positive and all between-cluster conditional
covariances will be negative (Zhang & Stout, 1999b). The space for all possible
partitioningP is large, thus in order to search the space intelligently, the DETECT
procedure employs a generic algorithm in addition to hierarchical clutbises
to limit the search (Roussos, et al., 1998; Zhang & Stout, 1999b).

Under the assumptions of unidimensionality, all conditional covariances
have an expected value of zero, which is why dimensionality assessment may be
thought of as searching for violations of LI in terms of local item dependence
(LID; Roussos & Ozbek, 2006). Because the DETECT index estimates the
average item-pair conditional covariances, the DETECT value can be thought of
as an estimate of the average size of the violation of pairwise LI given a
unidimensional model (i.e., an effect size for the amount of multidimensionality
or average size of LID).

Research provides some guidelines for the interpretation of the value of
DETECT index. Zhang and Stout (1999b) recommended interpreting the

DETECT index value of > 1.00 as strong evidence of multidimensionality, values
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.40 to 1.00 indicating moderate to large multidimensionality, values between .20
and .40 suggesting weak multidimensionality, and values less than .20 suggesting
unidimensionality. Other recommendations are slightly more liberal in
interpretation, such that such that values less than .20 indicate weak
multidimensionality or approximate unidimensionality, values from .20 to .40
indicate moderate multidimensionality, .41 to 1.00 indicates moderate to large
multidimensionality, and > 1.00 values indicate strong multidimensionality
(Roussos & Ozbek, 2006).

If the test exhibits the approximate simple structure, the rafibasfdD*
will equal 1. Values less than one indicate divergence from the approximate
simple structure.

. D(P,0rr)
D*(P,0rr) "

2.23

In practice values af (sometimes referred to gs,, ) greater than or
equal to 0.8 are interpreted as indicative of approximate simple structuges(Ja
Roussos, 2007; Stout et al., 1996). Additionally, if multidimensionality is present,
another index produced by DETECT may be considébad.is the index which
reports the percentage of the signs of the conditional covariances that aohieve t
goal of having all within-cluster conditional covariances be positive and all
between-cluster signs be negative. Similar ta ttegio, higher values dDN
constitute more support for the hypothesis of approximate simple structure.

If the hypothesis of approximate simple structure is supported, the solution

may be interpreted in terms of the number of homogeneous item clusters as the

45



number of dominant dimensions. This is possible because DETECT procedure
outputs the number of non-overlapping clusters and items associated with each of
the clusters. To the extent where there are clusters with few items or if
approximate simple structure does not hold, inferring the number of dominant
dimensions should be done with caution (Jang & Roussos, 2007; Zhang & Stout,
1999b).

Although DETECT can be used in a confirmatory mode, where the
DETECT index is calculated for a partition pre-specified by a relsegrio date
the primary use of DETECT in dimensionality assessment has been in exploratory
analyses. Thus exploratory DETECT is utilized in the current study.

Within the exploratory DETECT, bo#xploratoryandcross-validated
DETECT indices can be calculated. The exploratory DETECT index islatdd
based on the entire sample. The cross-validated DETECT index can be obtained
by partitioning the dataset into two subsets, running the DETECT procedure on
one (training) subset, obtaining the optimal partition, and reading in that optimal
partition to be imposed on the second subset. If the dataset is not previously
subsetted, DETECT can randomly split the data file for training and vahdat
samples (the user can specify the number of examinees for each of thesyamp

For example, in Monahan, et al. (2007), the cross-validated DETECT
index was calculated such that a 50%/50% split was indicated for each sample.
This choice dictates DETECT software to randomly select 50% of the exaamnine

to belong to the training sample, and the remaining 50% to serve as the validation
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subsample for each condition. Previous research suggests that cross-validated
DETECT index may be useful in overcoming the bias found in the exploratory
DETECT index when the number of items on the test is 20 or fewer (Jang &
Roussos, 2006).

DIMTEST. DIMTEST (Stout, 1987, 1990) is a nonparametric,
confirmatory procedure that detects departures from essential unidmaitgi
where the null hypothesis tested statgsdel=1. The first step in applying the
DIMTEST procedure is to select a subset of items for the assessment subtes
(AT). Items chosen for the AT should be selected based on their substantive
analysis of item content, expert opinions or exploratory statistical @salgg.,
factor analysis, cluster analysis, DETECT). To provide a meaningtubt¢he
null hypothesis assessing essential unidimensionality, AT subtest items should be
dimensionally maximally distinct from the direction of best measurement of the
remaining items. The remaining items on the test are referred to astttierpag
subtest (PT).For a detailed presentation of earlier and current versions of
DIMTEST, see Froelich and Habing (2008), Froelich and Stout (2003), and Stout
et al. (2001).

The strength of the DIMTEST procedure lies in its power to detect
departures from unidimensionality (Nandakumar & Yu, 1996; Stout et al., 2001).
Similarly, DIMTEST is successful in discriminating between essgntia
unidimensional and multidimensional tests. DIMTEST was found to be robust

with respect to minor secondary traits (Nandakumar, 1993), especially in studies
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that fitted a compensatory MIRT (Hattie el al., 1996; Nandakumar, 1991;
Nandakumar & Stout, 1993; Stout, 1987), where primary and secondary abilities
followed standard normal distributions. As with DETECT, the DIMTEST
procedure uses raw scores as the conditioning variable, and thus it does not
support missing data. Unlike DETECT, however, DIMTEST does allow for the
inputting of a single estimate of a guessing parameter applied to all
dichotomously scored items.

Although DIMTEST is framed for assessing essential unidimensionality, i
can be used to provide dimensionality assessment information in confirmatory
multidimensional models with approximate simple structure. Stout et al. (1996)
suggested assessing the multidimensional simple structure by usassgtimeed
groupings of items to correspond to hypothesized structure. For example, if we
are fitting a two-dimensional model with simple structure, the set o§iteat are
associated with one factor serves as AT while the rest of the itenesaseR1T.

As discussed above, there are many methods and procedures currently
available to assess a set of item responses on an exam. A reseahdieg ©f
some or any of these methods may depend on accessibility, familiarity with the
method(s), and the type of data at hand. For this project, DETECT and NOHARM
procedures are selected because they are both current and popular methods used
in dimensionality assessment. As discussed next, both procedures have been
shown to work well at counting the number of dimensions when the underlying

model is a compensatory with approximate simple structure.
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More importantly, these methods are built on two different building
blocks: the DETECT procedure is rooted in conditional covariance theory and the
NOHARM method uses a factor analytical approach in assessing dimeitgional
The inclusion of both methods will thus enable a comparative investigation of the
procedures.

In their study, Finch and Habing (2005) undertook a quest in addressing
the challenge set by McDonald (2000), who stated:

These procedures [including DETECT] might result in useful

applications, although a considerable amount of critical

theoretical work, simulation, and empirical studies are needed to

determine how they compare with the application of the well-

known classical strategies [NOHARM)] for dealing with these

problems, and to establish their suitability for applications. (p. 99)
The current study seeks to extend this quest by paying particular attention to the
data structure (exact simple versus complex) and the underlying MIRT model
(compensatory versus noncompensatory). Prior to description of the design of the
current study, the existing research on DETECT and NOHARM is summarized
next.
Research Related to DETECT and NOHARM

Several researchers have investigated the performance of dimensionality
assessment procedures. As argued above, many of the methods currently

developed for dimensionality assessment perform well under certain conditions.
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Research on the performance of DETECT, including addressing the issue of bias
in the DETECT index, and NOHARM-based statistics, sughas andALR

have shed light into the workings of these procedures. Studies relevant to the
current project are discussed next.

Research on DETECT Zhang and Stout (1999b) provided the theoretical
foundation for DETECT. In addition to the theoretical underpinnings of the
procedure and building on previous work of Kim (1994), the authors
demonstrated DETECT’s performance via two simulation studies. In the first
simulation study, Zhang and Stout (1999b) manipulated the number of
dimensions (2, 3, or 4), the number of items (20 or 40), and the number of
examinees (400 or 800) to generate the item-response data. Each of the conditions
was replicated 100 times. Using a multidimensional compensatory model, data
exhibiting approximate simple structure was generated. The authors found that as
the number of examinees increased, the performance of DETECT improved.
Holding the number of examinees and item constant and increasing the number of
dimensions resulted in poorer performance of DETECT, especially with 2Q items
400 examinees, and 4 dimensions.

The second simulation study concerned unidimensional cases, with
manipulated factors of test length (20 or 40), sample size (400 or 800), and the
value of guessing parameter (.00 or .20). Zhang and Stout (1999b) found
DETECT to be successful in verifying that the simulated tests were

unidimensional in all cases. In summary, the authors found that, when
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approximate simple structure held, DETECT performed well in identifying the
dominant latent dimensions and estimating the amount of multidimensionality
present in the test. Even when the approximate simple structure failed to hold,

they argued that DETECT could still be informative, because it still coulcelocat
relatively dimensionally homogenous clusters. There would be no “bestigrartit
among the clusters though, because there would be little separation between some
clusters (i.e., an item pair from two clusters that are close to each othethewal

similar directions of best measurement and hence should be similar sublstantive
Zhang & Stout, 1999b, p. 215).

Van Abswoude, van der Ark, and Sijtsma (2004) investigated the
effectiveness of Mokken Scaling procedure (MSP; Mokken, 1971), DETECT, and
HCA/CCPROX (Roussos, et al., 1998) for dimensionality assessment in
multidimensional data exhibiting simple structure. In their simulation sthdy, t
manipulated the MIRT model (extension of 2-PL model like the one in Equation
2.5 whereg; is fixed to 0, or a five parameter acceleration model), the number of
dimensions (2 or 4), the correlations among the traits (.00, .20, .40, .60, .80, or
1.00), the number of items per trait (7, 21, or a combination), and the
discrimination levels of the items (high or low). General findings suggdsaed t
DETECT and HCA/CCPROX outperformed MSP in retrieving the simulated
dimensional structure. This was the case even when the correlation between the

traits was high (.80). DETECT performed poorer in situations with low
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discriminating items and longer tests, and in conditions where the number of
items per trait was unequal.

The efficacy of DETECT depends greatly on the minimally biased
estimation of conditional covariances for all item pairs (Roussos & Ozbek, 2006);
thus understanding the extent to which the DETECT index is biased, is important.
Specifically, bias has implications in describing magnitudes of
multidimensionality present in data, as the theoretical DETECT index under
unidimensionality equals zero. Thus, empirical bias, defined as the mean of the
DETECT index over replications (Monahan, et al., 2007), can have an effect
wherein researchers potentially (falsely) conclude the data are métidional
when in truth they are unidimensional. The effect of bias might not directly
impact the number of clusters DETECT finds, however, it certainly playg a@rol
evaluation of the magnitude of multidimensionality present in the data. Monahan
and his colleagues (2007) caution that:

Bias could lead one to conclude that item responses come from
multiple dimensions, when in fact this result is simply due to statistical
bias. Likewise, inflated standard error implies instability in the estirofat
the DETECT indices. Such instability could lead one to conclude
unidimensionality with one sample and multidimensionality with another
sample. (p. 496)

The existing research, summarized next, has shed some light on the

presence of bias in DETECT. While most research primarily focused on
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unidimensional cases, Roussos and Ozbek (2006) generalized further to
address multidimensional simulated item response data (see below).

Monahan, et al. (2007) examined the issue of bias in DETECT index with
respect to the type of index (exploratory versus cross-validated) under the
conditions of unidimensionality. In the simulation study, the authors manipulated
the test length (5, 10, 15, 20, 40, and 80 items), the sample size (100, 500, 1000,
and 5,000), and the IRT model used (1-PL, 2-PL, and 3-PL). For each of the 500
replications per condition, the authors calculated the exploratory and cross-
validated DETECT index. Monahan et al. (2007) found the only significant
interaction to be sample size by type of index, resulting in running separate
analysis for each of the indices.

The authors found that bias was strongly related to the number of items for
both indices. As the number of items decreased, the bias increased, especially in
the exploratory index. Similarly, as the sample size decreased, the biaséacre
Furthermore, at every combination of the test length and sample size, the
exploratory index showed more bias than the cross-validated index. In terms of
the IRT model underlying the item responses, the authors found little difference
between bias found in the exploratory and cross-validated DETECT indices.

In addition to examining bias of the indices, the authors examined the
standard errors and root mean squared errors for both exploratory and cross-
validated DETECT indices. With respect to the standard errors, the cross-

validated index showed greater amount of errors for all levels; differences in the
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standard errors from exploratory and cross-validated approaches incredsed as t
sample size and the number of items decreased. For example, for a sample size of
1000, the standard error of the DETECT index became problematic for 5 or fewer
items for the exploratory index, and 10 or fewer items for the cross-validated

index. The larger standard errors for the cross-validated index across these
conditions are the result of fewer data (items or people). Little differenihe

average standard error was found across the IRT models for either index. The
results of the RMSE were opposite of those found for the standard errors. The
RMSEs were greater for the exploratory than the cross-validated OEirteex

for all levels of all factors, particularly in conditions with fewer exaees.

In summary, Monahan et al. (2007) found that bias in exploratory
DETECT index appeared to be strongly related to both the sample size and the
test length, while bias in the cross-validated index appeared to be influenced
largely by the test length. Standard errors in cross-validated DETECKH weate
affected by both the sample size and the test length, while in exploratory
DETECT index, only the test length seemed significant. Overall, Monahan and
his colleagues (2007) agreed with previous research by Zhang and Stout (1999b)
when suggested that cross-validated index should always be preferred over the
exploratory index when DETECT is utilized.

Roussos and Ozbek (2006) evaluated the amount of statistical bias present
in the DETECT index using very large sample size (120,000). The authors

simulated data to follow a variety of dimensionality structures. The authors
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manipulated the following factors: the number of dimensions (1, 2, or 3),
correlations among dimensions (.50, .70, or a combination), the number of items
per dimension (ranged from 5 to 40 in unidimensional, and 20 or 40 in
multidimensional case), and the data structure (simple or approximate simple)

The authors found that the DETECT estimator had some statistical bias in
unidimensional cases, particularly in conditions with 10 or fewer items. Based on
these results, the authors suggested not to use DETECT with fewer than 20 items
In multidimensional cases, the authors found that the large-sample DETECT
index showed “remarkably small bias for all simulated conditions (Roussos &
Ozbek, 2006, p. 237). Furthermore, the authors found that DETECT had a high
accuracy rate in forming clusters. Only three out of 45 multidimensioned cas
had less than perfect accuracy rate (i.e., 100%), with the lowest classificde
being 91% for the two-dimensional condition with test length of 20 items,
approximate simple structure, and .7 correlations between the traits. Adtitional
Roussos and Ozbek (2006) found some bias in the estimator of the conditional
covariancelDN). Similar to bias in the DETECT index, bias in the estimator of
the conditional covariance decreased as the test length increased.

In an extensive simulation study, Finch and Habing (2005) compared the

performance of exploratory DETECT and NOHARM-based stati%ﬁ;g,

(Equation 2.14) anALR (Equation 2.17) where two- and six-dimensional
datasets were generated. The authors manipulated the following fdutarygd

of the MIRT model (2PL or 3PL), the number of items (15, 30, or 60) and
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subjects (1000 or 2000), the skewness of the latent traits (-1.5, -.5, 0, .5, 1.5), and
correlations among the traits (.00, .30, .80, or .95). It is noteworthy that the
authors also included two different sets of item parameters; one seimgfiect

rather easy test (basic skill), while the other set of item paramefkssting a

more difficult exam. Each condition was replicated 500 times.

The authors used four criteria to evaluate the performance of the two
methods: a) the ability to perfectly recreate the dimensional strubjuitee
proportion of items falsely separated; c) the proportion of items that weedyfa
grouped into the same cluster; and d) the number of dimensions found. While
DETECT outputs the number of clusters it finds, making the identification of the
number of dimensions straight forward process, NOHARM does not. Finch and
Habing (2005) recommend using a sequential procedure in determining the
number of factors.

First, for eaclK-dimensionafitted model,)(é/Dor ALRis calculated. The
sequential testing begins by subtracting the calculated statisti¢Hedfta
dimensional model from the statistic from teX)-dimensional model. The
difference is treated as/avariate with degrees of freedom equal to the difference
in the number of estimated parameters. If this difference is larger thantite
value based on the approprigfalistribution, it is inferred that thé-dimensional
model is favored and selection stops. Alternatively if this difference ishass t
the critical value based on the approprjétdistribution, then it is inferred that

the models fit equally well and the procedure is repeated, comparing-ie (
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dimensional model to th&{2)-dimensional model. Once the preferred model is
selected, NOHARM output for that model (i.e., the estimated factor loadings) is
used in reporting of the results.

Finch and Habing (2005) found that in two-dimensional case, the two
procedures performed similarly well. In the case where the parameflecded a
basic skills test, the DETECT procedure was more likely to achieve perfect
matches (i.e., perfectly recreate dimensionality structure) whertredation
among dimensions was low, and the two procedures performed equally when the
correlation was .80 or higher. This difference at lower correlations was less
pronounced in the conditions with parameters that reflected the more difficult test,
where DETECT an@LR performed similarly in selecting the number of
dimensions. The number of subjects did not seem to have a great impact on the
ability for either approach to identify the number of underlying dimensions and to
group the items correctly. The number of items and the skewness, however,
seemed to result in the shift of the rates of the perfect ma#thBsand DETECT
performed similarly under 15 and 60 item conditions, but not for conditions with
30 items. For 30 items, performance of both declined with respect to the perfect
match rates in both sets of item parameters and for models with and without
guessing.

The results for the six-dimensional conditions suggested that tRéype
statistic outperformed the DETECT in the perfect match rates, most ndtably

to the deterioration of performance of DETECT (as compared to the two-
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dimensional cases$)As in the two-dimensional conditions, the number of subjects
did not seem to have an impact for eitAéR or DETECT; however, in terms of

the items, opposite effects were found. BaR an increase in the number of

items resulted in higher rates of the perfect matches. In DETECT, iadret®
number of items resulted in worse performance.

In addition, when errors occurrefll.Rappeared to group items that
should have been kept separate, while DETECT separated items that should have
been grouped together. This pattern generally held for both two- and six-
dimensional conditions, regardless of the number of items and the number of
examinees.

Finch and Habing (2005) suggested that the relative performance of the
two methods was dependent on the number of dimensions; where DETECT
outperformedALR for two-dimensional case, while the opposite was true for the
higher, six-dimensional conditions. Furthermore, regardless of the number of
dimensions, when the methods erred, DETECT tended to overestimate the
number of clusters and falsely separate the items, whiRtended to falsely
combine the items into clusters. Unlike Finch and Habing (2003), Finch and
Habing (2005) found that guessing had little effect on either of the methods.

Perhaps the most relevant study involving DETECT for the current project

is the Gierl, et al.’s (2006) study. They evaluated the performance of DETECT i

! Due to superior performance AER over)(?,-/D, the authors only reported results

for ALRin comparison to DETECT.
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terms of its classification accuracy and consistency in situation®hedata
displayed various degrees of complex structure (i.e., item pattern structures
differed). In their simulation study, Gierl and his colleagues examinegadsta

with 40 items that followed two-dimensional structures and manipulated three
variables: degree of complexity (0%, 10%, 30%, or 50% of items display complex
structure where items have angular direction between 35° and 55° relative to
dimension 1), correlations between dimensions (.00, .30, .60, .75, or .90), and the
sample size (500, 1000, or 1500). Each condition was replicated 100 times.

The authors were interested in examining the classification accuracy
(defined as the number of times that an item was correctly assigned sbea biu
DETECT when compared to its true cluster membership) and the classificati
consistency (defined as the number of times that an item was classified in the
same cluster for two randomly equivalent samples). They considered
classification rates to be acceptable when the agreement betwedimiension
and DETECT classification met or exceeded .90 (90%).

Overall results for classification suggested that DETECT was very
successful in accurately recovering the dimensional structures in coneltiens
the correlation between traits was .60 or lower for all sample sizes and altros
structures. An exception was found in a condition with small sample siz&l(i.e.,
= 500), correlation of .60 between dimensions, and highly complex data structure

(i.e., 50%), where the accuracy rate was .84. As the correlation increased and the
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degree of items exhibiting complex structure increased, the performance of
DETECT was diminished.

Classification results for the complex structure items alone showed that
DETECT was able to successfully classify complex items in conditicths wi
uncorrelated latent traits regardless of the sample size. In thennegnai
conditions, the correlations between the latent traits and sample size beaame m
noteworthy. For complex structures where the correlation between the dimgensi
was .30, DETECT obtained high classification rates for both 1000 and 1500
examinees. However, accuracy rates fell below 90% when the sample size
dropped to 500. At correlations of .60, a sample size of at least 15000 was
required to yield satisfactory classification rates. DETECT daiberecover
satisfactory the dimensional structure for any sample size when tiomela
between the traits was .75 or .90.

With respect to the consistency of the DETECT's performance, the authors
found that in conditions of all sample sizes and correlations between the latent
traits of .60 or below, high consistency rates were obtained. In only four
conditions, the consistency rate was below the desired .90, including the .60
correlation, 30% complex, amdl= 500; .30 correlation, 50% complex, add
500; and .60 correlation, 50% complex with= 500 and\ = 1000. The
consistency rates exceeded .90 for all sample sizes when correlation wad .75 a

simple structure was present. However, as the amount of complexity increased,
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larger sample sizes were required for satisfactory performanc@0 Abrrelation,
none of the conditions produced high consistency rates.

In summary, Gierl et al. (2006) found that DETECT produced high
classification and consistency rates for most conditions where the correlati
between latent traits was .60 or lower. Further, the authors concluded that
DETECT can adequately classify items in two-dimensional space for some
complex structures, particularly when 30% or less items are complex, tiorrela
between the traits s .75, and\ > 1000. The authors recommend that in cases
when large numbers of items are expected to display complex structureCDETE
should be used for dimensionality analysis with large sampleNsizd,500 and
in situations where latent traits are correlated up to .60.

Research on NOHARM-based statisticsResearchers have suggested
that NOHARM “model provides a sound theoretical framework on which indices
as well as statistics could be developed to determine the number of dimensions
which are adequate for item response modeling” (Gessaroli & De Champlai
1996, p. 157). To that extent, Gessaroli and De Champlain (1996) investigated
usefulness of the NOHARM-bas%@/D and Stout’sT statistic (implemented in
DIMTEST, here after referred to as DIMTEST) in identifying unidnsienal and
two-dimensional structures.

In generating unidimensional simulated data, the authors manipulated the
sample size (500 or 1000), the test length (15, 30, or 45 items), and test reliability

expressed by using varying means and standard deviations for discrimination
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parameter (weak, moderate, or strong). For two-dimensional cases, théyaadde
additional factor: dimension dominance. While each of the multidimensional
structures displayed simple structure (i.e., each item only relates to one
dimension), the balance of items belonging to a dimension varied (equal or
unequal number of items associated with each dimension). Both the empirical
Type | error rateso(= .05) based on unidimensional dataset and the rejection rates
based on the multidimensional datasets were obtained; each condition was
replicated 100 times.

The)(é/D statistic correctly identified unidimensional model in most of the
unidimensional conditions, with a maximum number of rejections being four (out
of 100) in any one condition. Furtthf,/D correctly rejected unidimensionality in
two-dimensional datasets 95 out of 100 times in any one condition. The authors

concluded that for the studied conditions, 1@% statistic had both good control

of the Type | error and good power. Gessaroli and De Champlain (1996) further
suggested that the performance of the statistic improves as the testdanyile
size, and test reliability increase. Test structures with unequal numbemsfper
dimension resulted in poorer performance, although that performance was still
largely satisfactory.

In terms of the DIMTEST, when unidimensional data were simulated, the
Type | error rates came very close to the nominal levels in all conditiongo4n t
dimensional cases, DIMTEST performed well for conditions with larger gsampl

size (N = 1000) and test lengths of at least 30 items.
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Comparing the performance of the two statistics, the authors concluded
that the major differences in performance were found in conditions with fewer
items (i.e., 15) and a sample size of 500, wbtépg clearly outperformed
DIMTEST. With respect to the Type | error ratgé/D was more conservative
than DIMTEST. The performance gﬁ/D in rejecting the false null hypothesis
was very comparable to DIMTEST in conditions where DIMTEST was known to
perform well, and much higher in other conditions (i.e., smaller sample size and
fewer items). Overall, the authors concluded J:{Q’-,%performed well under the
studied conditions, although the authors recognized that the set of conditions was
limited (e.g., uncorrelated factors, no lower asymptote parameter).

In a different study, De Champlain and Gessaroli (1998) examined the
usefulness of thgz ,p Statistic by comparing it to the performance of two other
statistics: likelihood-ratig?® statistic provided in TESTFACT and thegoodness-
of-fit statistic provided in LISRELS. In this simulation study, both unidimensional
and two-dimensional structures were examined. In unidimensional cases, the
authors generated data employing a 3PL model, by manipulating the number of
examinees (250, 500, or 1000) and the number of items (20 or 40). Two-
dimensional datasets were generated via compensatory model using the same
factors as in unidimensional case, with two added factors; correlationdmetwe
traits (.00 or .70), and item pattern structure (simple versus complex), where

complex datasets included 50% of items to load on both dimensions equally
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strong (i.e., same loadings on both dimensions). Each condition was replicated
100 times.
In examining the statistics, De Champlain and Gessaroli (1998) found that

in comparison to other indice,{s?,;/D had desirable characteristics: near the

nominal Type | error rates & .05) in unidimensional cases (largest error rate of
.07 was found in condition of 40 items and 1000 examinees) and high power rates
to reject the multidimensional models. Furth@’,r/D was successful in identifying

true multidimensional nature of the simulated datasets, for both correlated and
uncorrelated conditions.

Most importantly, initial results from this study suggested ,’g@% was
relatively unaffected by the sample size, the number of items, the item parame
structure, and correlations between the traits considered in the study. The authors
cautioned that the results while encouraging pertained to only the restettdd s
conditions as outlined in the study design and called for further investigations to
include more complex, multidimensional, models.

Finch and Habing (2007) further examined the performance of the
goodness-of-fit statistics based on NOHARM by comparing them to DIMTEST in
detecting the violations of unidimensionality. The three NOHARM-based

statistics included in the study We(ré/D , ALR andTs, a goodness-of-fit statistic

proposed by Maydeu-Olivares (2001).
Via a simulation study, the authors examined both the Type | error rates
and the power of the procedures. The manipulated factors included: the
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underlying model (2-PL or 3-PL), the number of items (15, 30, or 60), the sample
size (1000 or 2000), skewness (-1.5, -.5, 0, .5, or 1.5), the value of ¢ parameter
(constant for all items versus varying), and for two-dimensional sets, the
correlation between the traits (.00, .30, .80, or .95). Two-dimensional data were
generated following the compensatory MIRT described by Reckase (1997, see
Equation 2.5).

In addition, the authors used two sets of item parameters. The first set
represented a basic skill test, with the mean (standard deviation) of distrami
and difficulty +.97 (.32) and -.92 (.76), respectively. The second set approximated
parameters on a test representing non-basic skills, such that the meandstandar
deviation) of discrimination and difficulty were 0.00 (.35) and 0.00 (1.00),
respectively. Each of the conditions was replicated 500 times, and Type | error
rates and power rates were calculated for each of the procedures.

In models with no guessingé/D seemed to display Type | error rates that
were lower than those of other statistics for both sets of item parante&only
exception was found in the 15-item condition whereAhBRandTs had lower
Type | error rates based arr .05).ALRhad lower Type | error rates than
DIMTEST for most of the conditions, and also lower Type | error ratesTihim
conditions with 30 and 60 items. In shorter exams and larger sample sizes, both
ALRand DIMTEST displayed increased Type | error rate, whikended to have
elevated rates for larger sample size and more items. Skewness seaffexd to

ALRmore than eithe;(cz;/D or DIMTEST, patrticularly when negative skew
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existed in either set of parameters. Skewness also impacted Typeratgsoof
theTs, although here both the positive and the negative skew made an impact.

In models with guessing, the NOHARM-based statistics best performed
when the actual (varying)parameters were provided, as opposed to situations in
which thec parameters were constrained to be at a constant value for all items or
were not provided at all. The difference in performance, however, was not large
(differences in Type | error rates were never > .02). Unlike the conditi®hs 2-
conditions, in 3-PL conditions, DIMTEST had lower Type | error rates than the
NOHARM-based statistics across all other manipulated factors. Cug tifitee
NOHARM-based statistic§,s, had Type | error rates closest to the nominal value
and was most comparable to the DIMTEST results. TElstatistic had elevated
Type | error rates for larger sample sizes and more items than DIMTE&heNe
ALR nor)(é/D maintained the error rate at the nominal levels for the 3-PL, with
one exceptionALRin the condition with 15 items, no skew, and basic skill item
parameters).

ALR and)(é/D had slightly higher power rates than DIMTEST across all
levels for both sets of parameters in conditions where no guessing was introduced;
except when the correlation between the dimensions was;.0&d generally
lower power rates than the other statistics, although the pattern was not uniform.

In conditions with present pseudo-guessing parameter, due to high Type | error

66



rates, the empirical power for all four statistics was calcufafedR statistic had
the highest empirical power in the 3PL conditions using the non-basic item
parameters than the other statistics for the most situations. In conditiorstindner
data were generated using the basic skills parameters, in most studpnsndit
X?,-/D had comparable power &L.Rand DIMTEST, whereas thi again showed
slightly lower power. Overall, the power for all four statistics was hifpre

longer tests, especially for DIMTEST with basic skills set of paras\ed@d no
skew in the latent abilities. Further, as the correlation between thdricagased,
the power rates decreased in the statistics.

Finch and Habing (2007) concluded that the relative performance of the
DIMTEST and NOHARM-based statistics depended on the model underlying the
item responses. If the guessing is known not to be present in the data, one of the
NOHARM-based statistics should be used; however, if guessing is present,
DIMTEST might be more appropriate as it maintains the nominal Type | error
rate (and has comparable power to the NOHARM-based statistics). Furthermore
the authors warn that if the data are skewed, power of any of the studied statistics
will decrease and the Type | error rate will likely increase.

The recent literature outlined above suggests that performance of

DETECT and NOHARM-based procedures show promise in dimensionality

2 Empirical power was calculated such that first the empirical .05 critadaé\for
all four statistics was determined. Then, based on those values, the power rates
were recalculated using the new values of the statistics.
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assessment. In particular, the NOHARM-based and DETECT methods generall
perform well under conditions with larger sample sizes and lower correlations
between dimensions, with simple and approximate simple structures, and when
the underlying multidimensional model is compensatory. However, NOHARM-
based statistics did not perform well in situations with nonnormal data and higher
correlations between dimensions, and DETECT was found to perform poorly with
large number of dimensions, low discriminating items, and smaller sampse size

Broadly stated, more is to be learned about the efficacy of the procedures,
particularly in situations that depart from foundations upon which the procedures
(or associated statistics) are built upon, as the performance of either nsethod i
limited to the conditions examined in the current studies. Aspects of inclusion of
thec parameter or complex structure have been investigated in only a few studies,
and under a limited set of conditions. To date, compensatory models have been
used almost exclusively to generate data that are then used in methodological
research on dimensionality assessment. Thus, the performance of these methods
when data are generated using noncompensatory model is largely unknown.

In order to provide additional utility and generalizability to the stasistic
and procedures, conditions that include different models (e.g., noncompensatory),
data structures (e.g., complex), or estimation procedures are needed. This work
attempts to contribute to the literature on the performance of the procedures from

an exploratory perspective, primarily focusing on the issue of complex data
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structure in a multidimensional space (> 2 dimensions) using two different

underlying models (compensatory and nhoncompensatory), described next.
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Chapter 3
METHODOLOGY
This study is primarily motivated by the general lack of research in the

area of dimensionality assessment in complex data structures. The purfise of t
study is to investigate the effect of complex structure in dimensionality
assessment by using current, easily accessible tools; spegif@HARM and
DETECT procedures are used in this study. Five methods are considered in the
study: DETECT-based exploratory (DETECTe), DETECT-based crdstaieul

(DETECTcv), NOHARM-baseq'é/D, NOHARM-basedALR, and NOHARM-

based RMSR.In the simulation study, manipulated factors are selected such that
they address previously established hypotheses that reflect a numbegrehdiff
yet plausible, testing situations, and build off existing research, includimpeGie
al. (2006).
Study Design

The following factors are manipulated in the study: a) number of
dimensions, b) structure type of data, c) correlations between dimensions, d)
MIRT model type, e) sample size, and f) number of items per dimension. In Table

1, the study design is presented in a tabulated form for a quick review.

% Here and throughout the study, when discussing performar)ég[pfALR, and

RMSR methods, it is implied that these methods are obtained using NOHARM
output and are being evaluated as such. Thus, it is the methods based on the
output that are being evaluated, as opposed to the NOHARM procedure itself.
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Table 1.

Manipulated Factors For Data Generation

Factors Levels Total # Levels
Dimensions 20r3 2
Data Structure 0%, 10%, 30%, or 50% 4
Correlations .00, .30, .60, .75, or .90 5
MIRT Model Compensatory or noncompensatory 2
Sample Size 500, 1000, or 2000 3
Items/dimension 10 or 20 per dimension 2

Total # of Conditions 480

Number of dimensions Two different multidimensional data structures
are examined: 2- (2D) and 3-dimensional (3D) structures are considered in the
study. Gierl et al. (2006) considered 2D structures; the current includes the 2D
structure, and also includes 3D structures. Typically, research in dimertgional
assessment includes two to three levels of dimensional space (e.g.,dvsd¢-an
dimensional spaces were simulated in Finch & Habing, 2005; one- and two-
dimensional data were simulated in De Champlain & Gessaroli, 1998).

Structure type of data. In order to investigate the effect of complex data,
the percent of items in the data that are factorially complex is maragulat
Following Gierl et al. (2006), the percent of items in the data modeled as complex
included: 0%, 10%, 30%, or 50%. The amount of complexity is held constant
with respect to dimensionality that is modeled. For example, in a condition with

2D, 10 items per dimension, and 10% of complex items, one item associated with
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each dimension is modeled as complex, for a total of 2 complex items on the test.

Correlations between dimensionsCorrelations among dimensions in the
population include the values of .00, .30, .60, .75, and .90. Within 3D conditions,
the three correlations were constant. The aim is to cover a range of possible
correlations for generalizability purposes. Similar values of coroasitivere
examined in previous studies (see Literature Review section). Further,
correlations such as these are often found in empirical studies of educational tests
(Jang & Roussos, 2007).

Model type. Multidimensional data are simulated from either a 2-
parameter compensatory or noncompensatory MIRT model (see equations 2.5 and
2.9, respectively). To date, little work has been done utilizing noncompensatory
models. Further, both NOHARM and DETECT are grounded on the
compensatory models, making the inclusion of noncompensatory important for
evaluating the generalizability of these approaches to analyziagh@atfollow
noncompensatory models.

Sample sizeRecent studies examining the performance of either
DETECT or NOHARM typically investigated a range of sample sizekjdimy
500 and 1000 (e.g., Finch & Habing, 2005, 2007; Gessaroli & De Champlain,
1996). This study examines sample sizes of 500, 1000, and 2000.

Number of items per dimension In order to investigate the effect of the
number of items on the performance of the two methods, the number of items per

dimension is manipulated. The number of items associated with each dimension is
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set to be either 10 or 20. The choice of 10 or 20 items per dimension yields
different test lengths to be examined: for 2D tests, the test length is 20 or 40
items, and for 3D tests, the test length is 30 or 60 items. The choice of examining
these test lengths comes from surveying the current literature, winglee sest
lengths were employed (e.g., Gierl, et al., 2006; van Abswoude, et al., 2004).
Data Generation

All item responses are generated using R (R Development Core Team,
2010) such that each item response conforms to the conditions outlined above.
The above presented study design yields a total of 480 conditions, and each
condition is replicated 500 times (Finch & Habing, 2007; Harwell, et al., 1996).

Item parameters used to generate the data are presented in Tables 2
through 7. For both compensatory and noncompensatory models, the literature
was surveyed to determine typical parameter values found in realigtig test
scenarios (e.g., Bolt & Lall, 2003; Embretson, 1983; Gierl, et al., 2006). The
selected item parameters &ired across all conditions and they range in values to
approximate a typical educational assessment. For conditions with 20 items per
dimension, the item parameters presented in the tables are doubled (tripled) for
the 2D (3D) conditions. In order to avoid confounding of difficulty and
dimensionality (as shown in Reckase, et al., 1986), item parametersaarecioal
across dimensions for all conditions. The lower asymptote parameter for all

conditions is fixed to 0.
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Little is known about the performance of dimensionality assessment
methods in cases of complex structure, and therefore other factors that optimize
the performance are preserved as much as possible. Person parameters are
generated from multivariate normal distributions with an appropriately sized
mean vector o and covariance matri&, where the diagonal elementsibére
all 1 and the off-diagonal elements are given by the correlation for theadsdoc
condition.

Estimation Methods

For the purpose of examining (and comparing) their performance in
conducting dimensionality assessment, exploratory DETECT and NOHARM
methods are utilized with their default options. For DETECT, this means that the
MINCELL option is set at its default value of 2, where the value indicates the
minimum number of examines required to be present in any one cell when
calculating the conditional covariances. The MUTATIONS option allows for
specification of the number of vectors that are mutated in the genetidtaigori
and per Monahan, et al. (2007), it is set to equal the recommended value that
ranges between one fifth to one tenth of the total number of items (e.g., 2 for 20
item test, 4 for 40 item test). Additionally, the maximum number of extracted
clusters is set to 5.

Further, as indicated above, DETECT can be run in exploratory or cross-
validated modes. Research showed that bias in the exploratory DETECT index

can be substantial in conditions with fewer items and smaller sample size
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(Monahan, et al., 2007; Zhang, et al., 2003), thus both exploratory and cross-
validated DETECT index are included in this study. For cross-validated DETECT
index, the training sample calculation is obtained by setting a 50%/50% split in
each sample, dictating DETECT software to randomly select 50% of the
examinees to belong to the training sample, and the remaining 50% to serve as the

validation subsample for each condition (Monahan, et al., 2007).

75



9.

Table 2.

Item Parameters for 2D Compensatory MIRT Model for 10 Items per Dimension fopedl dfyStructures

Exact Simple

10% Complex

30% Complex

50% Complex

Structure Structure Structure Structure

ltem d & A a a =0 a & A

1 -1.50 0.60 0.00 0.60 0.00 0.60 0.00 0.60 0.80

2 -0.75 0.60 0.00 0.60 0.00 0.60 0.00 0.60 0.00
3 0.00 0.90 0.00 0.90 1.10 0.90 1.10 0.90 1.10
4 0.75 0.90 0.00 0.90 0.00 0.90 0.00 0.90 0.00
5 1.50 1.20 0.00 1.20 0.00 1.20 1.00 1.20 1.00
6 -1.50 1.20 0.00 1.20 0.00 1.20 0.00 1.20 0.00
7 -0.75 1.50 0.00 1.50 0.00 1.50 0.00 1.50 1.30
8 0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00
9 0.75 1.80 0.00 1.80 0.00 1.80 1.60 1.80 1.60
10 1.50 1.80 0.00 1.80 0.00 1.80 0.00 1.80 0.00
11 1.50 0.00 0.60 0.00 0.60 0.00 0.60 0.00 0.60
12 0.75 0.00 0.60 0.00 0.60 0.80 0.60 0.80 0.60
13 0.00 0.00 0.90 0.00 0.90 0.00 0.90 0.00 0.90
14 -0.75 0.00 0.90 0.00 0.90 0.00 0.90 1.10 0.90
15 -1.50 0.00 1.20 0.00 1.20 0.00 1.20 0.00 1.20
16 1.50 0.00 1.20 1.00 1.20 1.00 1.20 1.00 1.20
17 0.75 0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50
18 0.00 0.00 1.50 0.00 1.50 1.30 1.50 1.30 1.50
19 -0.75 0.00 1.80 0.00 1.80 0.00 1.80 0.00 1.80
20 -1.50 0.00 1.80 0.00 1.80 0.00 1.80 1.60 1.80
M 0.00 0.60 0.60 0.65 0.66 0.76 0.79 0.89 0.89
SD 1.09 0.69 0.69 0.68 0.68 0.65 0.67 0.63 0.63




Table 3.

Item Parameters for 3D Compensatory MIRT Model for 10 Items per
Dimension for Exact Simple and 10% Complex Structures

Exact Simple 10% Complex
Structure Structure
ltem d & a as =0 a a
1 -1.50 0.60 0.00 0.00 0.60 0.00 0.00
2 -0.75 0.60 0.00 0.00 0.60 0.00 0.00
3 0.00 0.90 0.00 0.00 0.90 1.10 1.30
4 0.75 0.90 0.00 0.00 0.90 0.00 0.00
5 1.50 1.20 0.00 0.00 1.20 0.00 0.00
6 -1.50 1.20 0.00 0.00 1.20 0.00 0.00
7 -0.75 150 0.00 0.00 1.50 0.00 0.00
8 0.00 150 0.00 0.00 1.50 0.00 0.00
9 0.75 1.80 0.00 0.00 1.80 0.00 0.00
10 1.50 1.80 0.00 0.00 1.80 0.00 0.00
11 1.50 0.00 0.60 0.00 0.00 0.60 0.00
12 0.75 0.00 0.60 0.00 0.00 0.60 0.00
13 0.00 0.00 0.90 0.00 0.00 0.90 0.00
14 -0.75 0.00 0.90 0.00 0.00 0.90 0.00
15 -1.50 0.00 1.20 0.00 0.00 1.20 0.00
16 1.50 0.00 1.20 0.00 1.00 1.20 1.40
17 0.75 0.00 1.50 0.00 0.00 1.50 0.00
18 0.00 0.00 1.50 0.00 0.00 1.50 0.00
19 -0.75 0.00 1.80 0.00 0.00 1.80 0.00
20 -1.50 0.00 1.80 0.00 0.00 1.80 0.00
21 -1.50 0.00 0.00 0.60 0.00 0.00 0.60
22 -0.75 0.00 0.00 0.60 0.00 0.00 0.60
23 0.00 0.00 0.00 0.90 0.00 0.00 0.90
24 0.75 0.00 0.00 0.90 0.00 0.00 0.90
25 1.50 0.00 0.00 1.20 0.00 0.00 1.20
26 -1.50 0.00 0.00 1.20 0.00 0.00 1.20
27 -0.75 0.00 0.00 1.50 1.10 1.30 1.50
28 0.00 0.00 0.00 150 0.00 0.00 1.50
29 0.75 0.00 0.00 1.80 0.00 0.00 1.80
30 1.50 0.00 0.00 1.80 0.00 0.00 1.80
M 0.00 40 40 40 A7 .48 .49
SD 1.08 .63 .63 .63 .64 .65 .66
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Table 4.

Item Parameters for 3D Compensatory MIRT Model for 10 Items
per Dimension for 30% and 50% Complex Structures

30% Complex 50% Complex
Structure Structure

ltem d & A A a a as
1 -1.50 0.60 0.00 0.00 0.60 0.80 1.00
2 -0.75 0.60 0.00 0.00 0.60 0.00 0.00
3 0.00 090 110 1.30 0.90 1.10 1.30
4 0.75 090 0.00 0.00 0.90 0.00 0.00
5 1.50 1.20 1.00 0.80 1.20 1.00 0.80
6 -1.50 1.20 0.00 0.00 1.20 0.00 0.00
7 -0.75 150 0.00 0.00 1.50 1.30 1.10
8 0.00 150 0.00 0.00 1.50 0.00 0.00
9 0.75 180 160 1.40 1.80 1.60 1.40
10 1.50 180 0.00 0.00 1.80 0.00 0.00
11 1.50 0.00 0.60 0.00 0.00 0.60 0.00
12 0.75 1.00 0.60 0.80 1.00 0.60 0.80
13 0.00 0.00 0.90 0.00 0.00 0.90 0.00
14 -0.75 0.00 0.90 0.00 0.70 090 1.10
15 -1.50 0.00 1.20 0.00 0.00 1.20 0.00
16 1.50 100 1.20 1.40 1.00 1.20 1.40
17 0.75 0.00 150 0.00 0.00 1.50 0.00
18 0.00 130 150 1.10 1.30 150 1.10
19 -0.75 0.00 1.80 0.00 0.00 1.80 0.00
20 -1.50 0.00 1.80 0.00 1.60 1.80 1.40
21 -1.50 1.00 0.80 0.60 1.00 0.80 0.60
22 -0.75 0.00 0.00 0.60 0.00 0.00 0.60
23 0.00 110 1.30 0.90 1.10 1.30 0.90
24 0.75 0.00 0.00 0.90 0.00 0.00 0.90
25 1.50 0.00 0.00 1.20 1.00 0.80 1.20
26 -1.50 0.00 0.00 1.20 0.00 0.00 1.20
27 -0.75 110 1.30 1.50 1.10 1.30 1.50
28 0.00 0.00 0.00 1.50 0.00 0.00 1.50
29 0.75 0.00 0.00 1.80 1.40 1.60 1.80
30 1.50 0.00 0.00 1.80 0.00 0.00 1.80
M 0.00 0.67 0.64 0.63 0.77 0.79 0.78
SD 1.08 0.65 0.67 0.66 0.63 0.64 0.63
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Table 5.

Item Parameters for 2D Noncompensatory MIRT Model for 10 Items per Dimension fgpedl df Structures

Exact Simple

10% Complex

30% Complex

50% Complex

Structure Structure Structure Structure

ltem b, b, = ) & & & & = =

1 -1.50 -1.00 0.60 0.00 0.60 0.00 0.60 0.00 0.60 0.80
2 -1.00 -1.00 0.60 0.00 0.60 0.00 0.60 0.00 0.60 0.00
3 0.00 -0.50 0.90 0.00 0.90 1.10 0.90 1.10 0.90 1.10
4 1.00 -0.50 0.90 0.00 0.90 0.00 0.90 0.00 0.90 0.00
5 1.50 0.00 1.20 0.00 1.20 0.00 1.20 1.00 1.20 1.00
6 -1.50 0.00 1.20 0.00 1.20 0.00 1.20 0.00 1.20 0.00
7 -1.00 0.50 1.50 0.00 1.50 0.00 1.50 0.00 1.50 1.30
8 0.00 0.50 1.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00
9 1.00 1.00 1.80 0.00 1.80 0.00 1.80 1.60 1.80 1.60
10 1.50 1.00 1.80 0.00 1.80 0.00 1.80 0.00 1.80 0.00
11 -1.50 -1.00 0.00 0.60 0.00 0.60 0.00 0.60 0.00 0.60
12 -1.00 -1.00 0.00 0.60 0.00 0.60 0.80 0.60 0.80 0.60
13 0.00 -0.50 0.00 0.90 0.00 0.90 0.00 0.90 0.00 0.90
14 1.00 -0.50 0.00 0.90 0.00 0.90 0.00 0.90 1.10 0.90
15 1.50 0.00 0.00 1.20 0.00 1.20 0.00 1.20 0.00 1.20
16 -1.50 0.00 0.00 1.20 1.00 1.20 1.00 1.20 1.00 1.20
17 -1.00 0.50 0.00 1.50 0.00 1.50 0.00 1.50 0.00 1.50
18 0.00 0.50 0.00 1.50 0.00 1.50 1.30 1.50 1.30 1.50
19 1.00 1.00 0.00 1.80 0.00 1.80 0.00 1.80 0.00 1.80
20 1.50 1.00 0.00 1.80 0.00 1.80 0.00 1.80 1.60 1.80
M 0.00 0.00 .60 .60 .65 .66 0.76 0.79 0.89 0.89
SD 1.17 0.73 .69 .69 .68 .68 0.65 0.67 0.63 0.63




Table 6.

Item Parameters for 3D Noncompensatory MIRT Model for 10 Items per
Dimension for Exact Simple and 10% Complex Structures

Exact Simple 10% Complex
Structure Structure

ltem b, b, b; & a as & a A

1 -1.50 -1.00 1.20 0.60 0.00 0.00 0.60 0.00 0.00
2 -1.00 -1.00 0.70 0.60 0.00 0.00 0.60 0.00 0.00
3 0.00 -0.50 0.00 0.90 0.00 0.00 0.90 1.10 1.30
4 1.00 -0.50 -0.70 0.90 0.00 0.00 0.90 0.00 0.00
5 1.50 0.00 -1.20 1.20 0.00 0.00 1.20 0.00 0.00
6 -1.50 0.00 -1.20 1.20 0.00 0.00 1.20 0.00 0.00
7 -1.00 050 -0.70 1.50 0.00 0.00 1.50 0.00 0.00
8 0.00 0.50 o0.00 1.50 0.00 0.00 1.50 0.00 0.00
9 1.00 1.00 0.70 1.80 0.00 0.00 1.80 0.00 0.00
10 1.50 1.00 1.20 1.80 0.00 0.00 1.80 0.00 0.00
11 -1.50 -1.00 1.20 0.00 0.60 0.00 0.00 0.60 0.00
12 -1.00 -1.00 0.70 0.00 0.60 0.00 0.00 0.60 0.00
13 0.00 -0.50 0.00 0.00 0.90 0.00 0.00 0.90 0.00
14 1.00 -0.50 -0.70 0.00 0.90 0.00 0.00 0.90 0.00
15 1.50 0.00 -1.20 0.00 1.20 0.00 0.00 1.20 0.00
16 -1.50 0.00 -1.20 0.00 1.20 0.00 1.00 1.20 1.40
17 -1.00 050 -0.70 0.00 1.50 0.00 0.00 1.50 0.00
18 0.00 050 0.00 0.00 1.50 0.00 0.00 1.50 0.00
19 1.00 1.00 0.70 0.00 1.80 0.00 0.00 1.80 0.00
20 1.50 100 1.20 0.00 1.80 0.00 0.00 1.80 0.00
21 -1.50 -1.00 1.20 0.00 0.00 0.60 0.00 0.00 0.60
22 -1.00 -1.00 0.70 0.00 0.00 0.60 0.00 0.00 0.60
23 0.00 -0.50 0.00 0.00 0.00 0.90 0.00 0.00 0.90
24 1.00 -0.50 -0.70 0.00 0.00 0.90 0.00 0.00 0.90
25 1.50 0.00 -1.20 0.00 0.00 1.20 0.00 0.00 1.20
26 -1.50 0.00 -1.20 0.00 0.00 1.20 0.00 0.00 1.20
27 -1.00 050 -0.70 0.00 0.00 1.50 1.10 1.30 1.50
28 0.00 050 0.00 0.00 0.00 1.50 0.00 0.00 1.50
29 1.00 1.00 0.70 0.00 0.00 1.80 0.00 0.00 1.80
30 1.50 1.00 1.20 0.00 0.00 1.80 0.00 0.00 1.80
M 0.37 0.27 -0.10 .40 .40 .40 A7 .48 .49
SD 1.04 056 0.85 .63 .63 .63 .64 .65 .66
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Table 7.

Item Parameters for 3D Noncompensatory MIRT Model for 10 Items per
Dimension for 30% and 50% Complex Structures

30% Complex 50% Complex
Structure Structure
ltem b, b, b; = a as a a A

1 -1.50 -1.00 1.20 0.60 0.00 0.00 0.60 0.80 1.00
2 -1.00 -1.00 0.70 0.60 0.00 0.00 0.60 0.00 0.00
3 0.00 -0.50 0.00 0.90 1.10 1.30 090 1.10 1.30
4 1.00 -0.50 -0.70 0.90 0.00 0.00 0.90 0.00 0.00
5 150 0.00 -1.20 1.20 1.00 0.80 1.20 1.00 0.80
6 -1.50 0.00 -1.20 1.20 0.00 0.00 1.20 0.00 0.00
7 -1.00 0.50 -0.70 1.50 0.00 0.00 150 130 1.10
8 0.00 0.50 0.00 1.50 0.00 0.00 150 0.00 0.00
9 1.00 1.00 0.70 1.80 1.60 1.40 1.80 1.60 1.40

10 150 1.00 1.20 1.80 0.00 0.00 1.80 0.00 0.00
11 -1.50 -1.00 1.20 0.00 0.60 0.00 0.00 0.60 0.00
12 -1.00 -1.00 0.70 1.00 0.60 0.80 1.00 0.60 0.80
13 0.00 -0.50 0.00 0.00 0.90 0.00 0.00 0.90 0.00
14 1.00 -0.50 -0.70 0.00 0.90 0.00 0.70 0.90 1.10
15 150 0.00 -1.20 0.00 1.20 0.00 0.00 1.20 0.00
16 -1.50 0.00 -1.20 1.00 1.20 1.40 1.00 1.20 1.40
17 -1.00 050 -0.70 0.00 1.50 0.00 0.00 1.50 0.00
18 0.00 0.50 0.00 1.30 1.50 1.10 1.30 150 1.10
19 1.00 1.00 0.70 0.00 1.80 0.00 0.00 1.80 0.00
20 150 1.00 1.20 0.00 1.80 0.00 1.60 1.80 1.40
21 -1.50 -1.00 1.20 1.00 0.80 0.60 1.00 0.80 0.60
22 -1.00 -1.00 0.70 0.00 0.00 0.60 0.00 0.00 0.60
23 0.00 -0.50 0.00 1.10 1.30 0.90 1.10 1.30 0.90
24 1.00 -0.50 -0.70 0.00 0.00 0.90 0.00 0.00 0.90
25 150 0.00 -1.20 0.00 0.00 1.20 1.00 0.80 1.20
26 -1.50 0.00 -1.20 0.00 0.00 1.20 0.00 0.00 1.20
27 -1.00 050 -0.70 1.10 1.30 1.50 1.10 130 1.50
28 0.00 0.50 0.00 0.00 0.00 1.50 0.00 0.00 1.50
29 1.00 1.00 0.70 0.00 0.00 1.80 140 1.60 1.80
30 150 1.00 1.20 0.00 0.00 1.80 0.00 0.00 1.80
M 037 0.27 -0.10 0.62 0.64 0.63 0.77 0.79 0.78
SD 1.04 056 0.85 0.64 0.67 0.66 0.63 0.64 0.63
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For NOHARM, default options are utilized for model identification, i.e.,
factor variances are fixed to 1, and exploratory solutions are examined for 1-, 2-,
3-, 4-, and 5-factors. The choice to model the 5-factor solution as the highest in
exploratory NOHARM is such that it corresponds to DETECT’s allowance of
maximum of 5 clusters extraction. Additionally Promax methods are used to
obtain oblique transformations that are used in analysis.
Outcome Variables

Following the literature on DETECT and NOHARM, several variables are
included in the current study to evaluate the performance of these methqds (e.g
Finch & Habing, 2005, 2007; Gierl, et al., 2006; Monahan, et al., 2007; Tate,
2003). Three main outcome variables reported in this study include: a) the
proportion of correct selection of true dimensional structure, b) the ability to labe
sets of items as representing the true dimensions (dimension-like), and c) the
classification consistency of items. As discussed next, these outcomes are
operationalized somewhat differently for the different procedures.iiale f
reported values for a condition are averaged across 500 successfully run

replications

* Possible convergence issues may be encountered while fitting models in
NOHARM. In conditions with nonconvergence of replications, additional
replications are run to arrive to a total of 500 successfully estimated tigpigca
per condition.
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The proportion of correct selection of true dimensionality.The first
outcome variable is operationalized as the proportion of times within each
condition that a true dimensional space is found (i.e., 2 factors in conditions
where data are generated using a 2D MIRT, and 3 factors in conditions where
data follow a 3D MIRT). In DETECT, this is a straight forward procedure
because DETECT outputs non-overlapping clusters, hence the number of
dimensions found equals the number of clusters DETECT outputs. For purposes
of this study, clusters that contain 3 items or less are still considered ghlthou
they might be considered nuisance dimensions (e.g., Zhang & Stout, 1999b).
Furthermore, in reporting results, for consistency in the language used, when
referring to a group of items that are associated together in a cthstégrm
‘factor’ is used (although typically in DETECT we often refer to thesegs of
items as clusters).

In NOHARM, three procedures are used to determine the optimal number
of factors. Each of these procedures is performed and reported sepataely. T
first procedure is based on the NOHARM output that yields the root mean square
residual (RMSR). Here, based on Tate (2003), a sequential model fitting approach
to determining the number of factors is adopted. This approach suggests that
models are fitted with additional factors until the change in RMSR does not
exceed 10%. For example, if RMSR for a model with a single (2-, 3-, and 4-)
factor(s) is .00631 (.00512, .00457, and .00422), the resulting decreases in
RMSRs from a single factor solution to the second, third, and fourth dimensional
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solutions are 19%, 11%, and 8%, respectively. Following the recommended rule
of 10% decrease, the result of adding the fourth factor (from 3 to 4) results in
decrease of 8% in the RMSR, thus the conclusion is to retain a 3D solution.

The second and third procedures used to determine the formal fit of the

model and retain the optimal number of factors are basgg /BrandALR

respectively. Here, similar to a traditional factor analytic apprestd

determining the number of dimensions using test for the difference in test
statistics. This means that a researcher starts with the fewarsiiomal model

and asks whether a higher dimensional model is needed based on the difference
test. If the higher dimensional model provides a better fit (i.€.,05 of the

difference test), the procedure continues. The optimal factor solution is found
when the higher dimensional model does not improve the fit significantlyp(i.e.,

> .05).

The ability to label sets of items as “dimension-like”. This outcome
variable puts emphasis on answering the question of how many of sets of items
could be labeled as dimension-like. In other words, once either of the methods
groups a set of items together in a set, the question remains as to how often could
that set of items be labeled as a dimension-like, meaning that they could be
interpreted as adequately representing one of the true underlying dimensions.
Prior to answering this question, items have to be grouped in some way. In
DETECT, sets of items are determined and grouped automatically, as the

procedure outputs non-overlapping clusters. Therefore, sets of items (Slasters
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determined by the procedure, and those sets of items that are then submitted to
criteria for labeling sets of items as dimension-like.

In NOHARM, prior to investigating how often a group of items be labeled
as dimension-like, items have to be grouped. In order to group items together, the
following criteria are applied to the rotated factor solution from NOHARM. For
an item to be grouped with a factor, the item must have an estimated loading > .40
on that particular factor and the difference between that loading and all other
loadings must be > .20. If the item has an estimated loading that is > .40 and the
difference between its largest loading and at least one other loadingdsthe
item is grouped separately in a group that is interpreted as complexhigote t
complexity is with respect to the fitted factor model, which will not necigsa
correspond to whether the item is truly a factorially complex item)ridtesely,
if an item does not meet either criteria (i.e., its loadings are < .40 on alisfact
the item is considered to be unexplained.

For example, let us assume we have a condition that is originally
generated as a true 2D condition with 10 items associated with each dimension.
This condition therefore has 20 items in total. If a method based on NOHARM
output determines an optimal factor solution to be 4 factors, a rotated factor
loadings matrix from NOHARM output is obtained. This loading matrix is 20
(items) by 4 (factor-solution) in size. Each items for each factor is thmmiged
to criteria in order to determine with which factor an item is mostly assaktiln
order for an item to be put in a set associated with factor one, for example, the
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item's estimated loading has to be > .40 on factor one, and it has to be larger than
its loading on factors two, three, and four (where those loadings are4él. The
difference of estimated loading between factor one and each of thairggnai
factors has to be larger than .20. If an item meets these two criteridgtinad i
then put in a group that belongs to factor one. Alternatively, if the item meets the
criterion of having an estimated loading > .40 on multiple factors or the difkeren
between its loading on that factor and at least one other factor is < .20, the item i
grouped in a complex set. Alternatively, if the item does not meet eitherecriter
(i.e., its loadings are < .20 on all factors), the item is considered to be
unexplained.

After all items are grouped, the labeling of these “item groups” or “item
sets” as dimension-like begin. A set of items can be labeled as dimernigien-1-
set of items, dimension-2-like set of items, or dimension-3-like set of items,
depending on what is the true dimensionality of the data. Additionally, each item
is generated originally as factorially simple or factorially campkee Tables 2
through 7 for item parameters used in data generation). In order for a setof ite
to be called dimension-1-like set, it ought to meet the following criterist, it
least 50% of items in the set must be items that were generated aslfgctor
simple and reflecting (the true) dimension-1. Second, dimension-1 factorially
simple items ought to occupy more than half of the set of items. If both of these
criteria are met, then that set of items is labeled as dimension-1Hike]latems
that belong to the set in question are considered as dimension-1-like items.
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Classification consistency rates of itemgn order to examine
consistency of the methoddassification consistendg computed by taking each
item’s classification (across 500 replications in each condition) and taking the
proportion of times that the true classification is obtained.

For example, each item is given a classification assignment. Firseithe it
is tracked to see which set of items it is grouped with (based on the labeling
criteria discussed above). If the item is grouped in a set of items thabaled
as dimension-1-like (e.g., items in that group are mostly designated assiime
1 items), all of the items in that set are assigned a classification of D1.
Classification rates are computed for each item by taking the mean ofteetc
classification assignment over the 500 replications. In reporting ctadiifi
rates, items of the same type (e.g., all factorially simple oaetibfially complex)

are pooled.
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Chapter 4
DATA ANALYSIS AND RESULTS

In Chapter 4, results of the current study are reported. Nonconvergence
issues are discussed at the beginning. Then, results are presented for conditions
when methods selected a one-factor solution as being optimal. Results concerning
the three main outcome variables are discussed next. Results for the number of
factors extracted by each method are presented, followed by the marginal
proportions of the methods’ ability to label a set of items associated wittoa fac
or cluster as a dimension-like, given the pre-specified criteria. ¥inlad
consistency of the methods in classifying factorially simple and faltyoria
complex items is examined via classification rates. Given the symofetrg
study’s design, in order to compute consistency rates for different types sf item
items of the same type are pooled. Also, for the purposes of this study, when
referring to a factor solution or a factor model, it is in reference to what the
particular method yielded as an optimal or favorable solution.

For clarity of presentation, the results are presented separately for
compensatory and noncompensatory MIRT data, for different tests lengths of 10
and 20 items per dimension, and for two- dimensional, 2D, and three-
dimensional, 3D, structures. Useful comparisons are made when appropriate
throughout the results. Lastly, the effects of the number of items per dimension,

used to organize most of the presentation were summarized.
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Nonconvergence in NOHARM

As stated in Chapter 3, NOHARM uses least squares estimation to arrive
to the optimal estimates of item parameters. Recall that for each condtiem, w
fitting exploratory models in NOHARM, a total of 2,500 replications were
submitted to NOHARM for parameter estimation (i.e., 500 replications fiorgfitt
one-, two-, three-, four-, and five-factors). Additionally, two different levels of
test lengths were considered. This resulted in a total of 480 conditions, 240 of
which included 10 items per dimension and 240 of which included 20 items per
dimension.

In this study, 21%onditions encountered some degree of nonconvergence.
The number of nonconvergent replications within a condition ranged from one to
461. Over 90% of the conditions with failed convergence included cases with 20
items per dimension.

Nonconvergence issues were observed in several different ways. First,
nonconvergent issues were found in cases with 10 items per dimension. Here,
within a condition, replications that failed to converge appeared to be tied to the
specific dataset. That is, if a particular replication did not converge fogfét
one-factor solution, then that same replication failed to converge for fitting
subsequent two-, three-, four-, and five-factor models. If only one such instance
occurred in a condition, a total of five nonconvergent runs would be counted (i.e.,

one for each of the five fitted models for that replication).
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Second, for conditions with 20 items per dimension, nonconvergent
replications occurred mostly when fitting four- or five-factor modelshough
for a few replications, fitting one-, two, and three-factor models also appeared
problematic. Third, problems occurred in estimation where there was a “perfect”
response vector for an item in a dataset (e.g., an item was answered ilydoyrec
all simulees); this occurred only in conditions with 20 items per dimension and
noncompensatory data-generating structures. The next sections describe the
degree of nonconvergence problems as well as how each issue was resolved.

Nonconvergence of datasets with ten items per dimension.
Nonconvergence that occurred for all factor models fit to a particular dafaset
appeared in 21out of 240 conditions, where the number of nonconvergent
replications varied in size from one dataset (5 total replications equalingo®.2%
total replications in that condition) up to 19 datasets (95 total replications equaling
3.8% of total replications in that condition). Nineteen out of 21 nonconvergent
conditions were conditions with = 500 and 3D structures, with various
correlation levels and complexity.

In Figure 4, the total numbers of attempts needed to achieve 500
convergent replications for 15 out of these 21 conditions are plotted. These
conditions are alN = 500 and included three levels of complexity (0%, 10%, and
30%) and five levels of correlations between dimensions (.00 through .90). Note
that similar number of attempts to achieve successful 500 runs was required for
any one of these conditions.
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Six additional conditions (not plotted) with convergence issues included
two conditions of 50% complexity with .30 and .90 correlation; two conditions
with N = 1000 and correlation of .60, with 0% and 10% complexity levels, and
two conditions of 10% complexity with .30 and .75 correlation for 2D structures.
For any of these six conditions, only one extra replication was needeldi¢ve

500 successful replications.

520

519

516

512

508

Number of replications

504
|

500

0 5 10 15 20 25 30

Complexity levels

Figure 4 Summary of nonconvergent conditions with various complexity level and
correlations among dimensions. Test length (10 items per dimension), small sample
size (N = 500), and dimensional structure (3D) were held constant in the plotted
conditions. Numbers associated with each data point represent the total number of
attempts to achieve successful 500 replications. Colored lines represent vagtus le
of correlations among dimensions.

91



For each nonconvergent replication, a new dataset with the same
characteristics (as defined by the condition) was generated. As Figw@alysd)
the reruns using the additional replications were largely successful, sughghat
majority of nonconvergent conditions required only a single additional
replication. One exception to that was a condition With500, 0% complexity,
correlations of .90, and 3D structure, where in order to achieve 500 successful
replications, two additional replications were required. Note that these newly
created datasets used for reanalysis in NOHARM were then used in reamalysi
DETECT.

Nonconvergence related to the fitted model with twenty items per
dimension.NOHARM failed to successfully converge in 194 out of 240
conditions in conditions with 20 items per dimension. The number of
nonconvergent replications varied within conditions. Nonconvergence occurred
primarily in replications when fitting a four- or a five-factor solution. Thus, in
some cases, replications that converged while fitting a one- or two-factol, mode
failed to converge in fitting higher-dimension models. However, there were
instances when fitting a one-, two-, or three-factor model that also esulte
nonconvergence.

The number of nonconverging replications in those 194 conditions is
plotted as a histogram in Figure 5. Out of 194 conditions, many conditions had
fewer than 50 nonconvergent replications (interquartile range equaled 3.00 to
40.75). There were, however, several conditions that had large numbers of
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unsuccessful replications. The range of nonconvergent replications across these
194 conditions was 1 to 461, with a mean (standard deviation) of 44.05 (83.92),

and a median of 11.50.

100 150
| J

50
|

Frequency

[ — e

I T T T T 1
0 100 200 300 400 500

Number of nonconvergent replications
Figure 5Histogram of the nonconvergent replications in 194 conditions with
longer test lengths (note that these are out of 2,500 runs due to fitting 500
replications to five exploratory NOHARM models).
The convergence issues in these conditions were dealt in the following
manner. First, the nonconvergent replications within a condition for any of the

five models were identified. Second, default options in NOHARM were changed

such that maximum function cell was increased and the convergence critasion w
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decreased Lastly, the nonconvergent replications were rerun in NOHARM such
that a successful 500 runs for any one model within a condition were achieved.

Nonconvergence related to presence of perfect itenis.addition to the
nonconvergent replications discussed above, a total of 355 datasets across 30
different conditions had one or more replications that contained at least one
perfect item. All of these instances occurred in conditions with 20 items per
dimension where data followed a noncompensatory MIRT model. Five of 30
conditions were 2D conditions; the remaining 25 were 3D conditions. All 2D and
most of the 3D (20 out of 25) conditions with perfect items were conditions with
N = 500. The remaining five 3D conditions Hsd 1000.

Conditions in which problems with estimation due to perfect item(s)
varied across complexity and correlation levels. In any one of the 30 conditions,
the number of replications with perfect items varied from one to 33 replications
(mean number of replications with perfect item equaled 11.83, with standard

deviation of 11.46). This type of convergence issue was corrected by removing

® The NOHARM user’s guide (Fraser & McDonald, 2003) recommends that in
cases where nonconvergence is an issue, a user should change the default options
for the maximum function cell and/or the criterion value. In this study, the

number of maximum function cells was increased from default 2000 to 4000 and
criterion was decreased from .000001 to .0001. This solved the convergence
issues encountered in this study.
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the perfect item(s) from the dataset, and refitting the exploratory siwdel
NOHARM.®
Unidimensional Solution in NOHARM

The current study focused on examining the performance of methods in
the presence of factorial complexity in multidimensional data. Heuristic a

statistical methods based on the NOHARM output (RM&R,, and theALR)

resulted in favoring a single-factor solution in some replications for several
conditions. DETECT analyses in exploratory or cross-validated modes never
resulted in a single factor solution. Therefore, results and discussion of single-
factor solutions concern only the methods based on NOHARM. In the text below,
only general trends in selected conditions are highlighted. In particulaitioos
where the methods tended to favor unidimensional solution frequently are
discussed. Tables 8 through 15 report proportions of replications (out of 500) that
selected unidimensional solution for each method across the studied conditions.

Compensatory multidimensional data.

Tests with ten items per dimension. The proportions that the methods
yielded unidimensional solutions for conditions with ten items associated per
dimension were investigated for 2D and 3D. For each dimensional structure, there

were a total of 60 conditions.

® Conditions in which a perfect item was removed were not then rerun in
DETECT.
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2D structuresA complete tabulation of proportions for 2D compensatory
conditions with 10 items per dimension is shown in Table 8. RMSR only selected
a unidimensional solution in two conditions, where the complexity levels were

30% and correlations of .90, fbk= 500 and\ = 1000 X?;/D andALR performed

similarly to each other, yielding unidimensional solutions to one or more
replications in 11 conditions and 17 conditions (respectively). Most of these
replications appeared in conditions where complexity levels were 30% or 50%,
and the correlation between dimensions was 90. Additionally, most of the one-
factor solution appeared in conditions Wil 500 and\ = 1000. The highest
proportions of replications within a condition that favored one-factor solution by
xé/pandALRwere .89 (444 out of 500) and .49 (245 out of 500), respectively.
Both of these high proportions were found in a condition with 30% complexity

andN = 500.
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Table 8.

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Compensatory MIRT and 10 Items per Dimension

Method

ALR Xé/p RMSR

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50

N p
00 - - - - - - ; - ] ) ] ]
30 - - - - - - ; - ] . ]
500 .60 - S e . . ] ] ] ] ) .
75 - - .02 05 - - 09 - - - -

90 11 21 49 20 .27 47 .89 .55 - -k -

.00 - - - - - - - - - - - -

30 - - - - - - - - - - - -
1000 .60 - - - - - - - - - - - -

75 - - - ** - - - - - - - -

90 * .01 .23 .06 ** .05 .59 .01 - - -

.00 - - - - - - - - - - - -
30 - - - - - - - - - - - -
2000 .60 - - - - - - - - - - - -
75 - - - - - - - - - - - -

90 - 02 e - - 03 - - - -

Note Each condition has a total of 500 replicatior$sfgn indicates that zero replications in a
condition selected unidimensional solution. “*1ga indicates that less than 1% of replications in

a condition selected unidimensional solution.
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3D structuresA complete tabulation of proportions for 3D compensatory
conditions with 10 items per dimension is shown in Tabkl®R favored a one-
factor solution in at least one replication for 36 out of 60 conditions. The
unidimensional solutions were particularly favored as optimal in conditions with
30% or 50% of complexity, for different sample sizes and correlation values. The
other two methodsgé/Dand RMSR, favored one-factor solutions to a lesser
extent. For both methods, a one-factor solution was selected for at least one
replication in 9 conditions, only. These 9 conditions came primarily in cases when
correlations were at .90, for a variety of the sample sizes and complexity. le

For)(é/D, the largest number of replication within a condition that favored
a one-factor solution occurred in the condition with 30% compleXity 500,
and .90 correlations (385 out of 500 replications). The maximum number of
replications within a condition for RMSR was 268 (out of 500), in the condition

with 50% complexityN = 500, and correlations of .90.
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Table 9.

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Compensatory MIRT and 10 Items per Dimension

Method

ALR Xé/p RMSR

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50

N p
00 .02 S w e . ) ] . ] ) )
30 - - .10 09 - - - - - ; - )
500 .60 - - 29 37 - - e - S e
75 - - 28 14 - - - - ; oo )

.90 .05 A5 22 10 12 33 77 .03 .03 .05 .54*

.00 .02 - - o - - - - - - - -
.30 - - .06 .03 - - - - - - - -
1000 .60 - - 34 .36 - - - - - - - -
75 - - 29 .13 - - - - - - - -
.90 *x .02 09 .05 - X .50 - - - .50 -
00 *x - *x R - - - - - - - -
.30 - - 01 - - - - - - - -
2000 .60 - - 42 42 - - - - - - - -
75 - - 30 .15 - - - - - - *x
.90 *x - .06 .03 - - .10 - - - .34 -

Note Each condition has a total of 500 replicationssfgn indicates that zero replications in a
condition selected unidimensional solution. “*is indicates that less than 1% of replications

in a condition selected unidimensional solution.
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Tests with twenty items per dimension. The frequencies that the methods
yielded unidimensional solutions for conditions with twenty items associated per
dimension were investigated for 2D and 3D. For each dimensional structure, there
were a total of 60 conditions.

2D structuresA complete tabulation of proportions for 2D compensatory
conditions with 20 items per dimension is presented in TablallRyielded a
unidimensional solution as preferred in 19 out of 60 conditions. Most of these 19
conditions had a correlation of .90 and various complexity levels. Three of the 19
conditions yielded a nontrivial proportion of replications that favored a
unidimensional solution when the dimensions were uncorrelated and no
complexity was present in the data. These conditions reported a one-factor
solution in proportions of .18, .19, and .20 for 500,N = 1000, andN = 2000,
respectively,xé/D and RMSR yielded a unidimensional solution in only one and

five conditions, respectively.

100



Table 10.

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Compensatory MIRT and 20 Items per Dimension

Complex

Method

ALR

X(Z;/D

RMSR

0%

10%

30%

50%

0% 10%

30%

0% 10%

30%% 50

N

500

p

.00
.30
.60
.75
.90

.18

21

*%

.02

.78

13

.34

1000

.00
.30

.60
75
.90

19

.01

*%

43

.01

.05

2000

.00

.30

.60
75
.90

.20

*%

.10

*%

Note Each condition has a total of 500 replicationr$sfgn indicates that zero replications in a

condition selected unidimensional solution. “**gsi indicates that less than 1% of replications in

a condition selected unidimensional solution.
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3D structuresA complete tabulation of proportions for 3D compensatory
conditions with 20 items per dimension is presented in TablalRyielded a
unidimensional solution as preferred in 58 out of 60 conditions with 3D
compensatory models with 20 items per dimension. The highest proportions of
replications were found in conditions with highly correlated dimensions or in
conditions where data exhibited higher complexi(@/ﬂ) and RMSR vyielded a

unidimensional solution in only two and six conditions, respectively.
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Table 11.

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Compensatory MIRT and 20 Items per Dimension

Method

ALR Xé/p RMSR

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50

N p
00 .13 .13 .08 .06 - - - - ; ; ] )
30 .03 .03 .15 .16 - - - - ; - ] )
500 .60 .01 .02 .38 .38 - - - - - - ] )
75 .03 05 .28 .12 @ - - - - ; - ] )

90 35 42 A1 .06 - - .06 - 25 46 94 -

.00 .14 .12 .06 .05 - - - - - - - -
30 .01 .03 .12 .08 - - - - - - - -
1000 .60 ** .01 41 .39 - - - - - - - -
75 .01 .02 27 .09 - - - - - - - -

90 .21 .32 .09 .04 - - .02 - - .01 79 -

.00 .12 .10 .05 .03 - - - - - - - -

30 .01 .01 .06 .03 - - - - - - - -
2000 .60 ** 45 .48 - - - - - - - -

a5 - - 34 12 - - - - - - - -

90 20 .17 .06 .02 - - - - - - .45 -
Note Each condition has a total of 500 replications.si§n indicates that zero replications in a

condition selected unidimensional solutidit” sign indicates that less than 1% of replicat®in

a condition selected unidimensional solution.
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Noncompensatory multidimensional data.

Tests with ten items per dimension. The frequencies that the methods
yielded unidimensional solutions for conditions with ten items associated per
dimension were investigated for 2D and 3D. For each dimensional structure, there
were a total of 60 conditions.

2D structuresA complete tabulation of proportions for 2D
noncompensatory conditions with 10 items per dimension is presented in Table
12. RMSR selected one-factor solution in at least one replication in only 9 out of
total of 60 conditions. Within any condition, no more than six replications
selected one factoALRand)(é/D methods tended to favor unidimensional
structures more often than RMSRLR selected one factor in at least one
replication in 35 conditions; 32 of which were conditions with correlation of .60
or larger, and 25 of which were in conditions whigre 500 andN = 1000 (12
and 13, respectively). Whei= 500, one-factor solutions were selected across all
levels of complexity, although larger number of such replications within a
condition increased as complexity levels reached 30%. For examplé\ wif00

and correlations of .60 or Iargqﬁ/D had a considerable number of replications

that favored one-factor solution.
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Table 12.

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Noncompensatory MIRT and 10 Items per Dimension

Method

ALR Xé/p RMSR

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50

N p
00 - - - - - - - - - - - -
30 - ) 04 i ) o oxk ] ) ] ]
500 .60 .02 .05 .32 26 * % 29 27 - S -
75 23 26 45 46 21 21 .48 50 - - -

90 47 42 40 40 .46 36 .40 .43 Q1% Rk

.00 - - - - - - - - - - - -
30 - - - - - - - - - - - -
1000 .60 - * .07 .03 - - .05 .02 - - - -
75 03 .04 19 17 01 01 .16 .16 - - - w
90 32 14 .17 A2 .32 .09 .07 .07 ** - - *
.00 - - - - - - - - - - - -
30 - - o - - - - - - - - -
2000 .60 - - .01 - - - - - - - - -
A5 ** .01 .05 .02 - -k ** - - - -
90 .11 .01 .04 .01 .08 - x - - - - -

Note Each condition has a total of 500 replicatior$sfgn indicates that zero replications in a
condition selected unidimensional solution. “**gsi indicates that less than 1% of replications in

a condition selected unidimensional solution.
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A similar pattern was found whéxh= 1000. Fewer conditions and
replications within a condition yielded a one-factor solution as the preferred
solution.)(?,-/D chose one factor in at least one replication in 28 out of 60
conditions. The types of conditions as well as the number of replications within
those conditions were very similar to thatAdfR Conditions with largest number
of replications with one-factor solutions tended to be thoseNvitt500.

3D structuresA complete tabulation of proportions for 3D
noncompensatory conditions with 10 items per dimension is presented in Table
13. The RMSR method found one-factor solution in conditions across all levels of
complexity, particularly whei = 500. The condition with largest proportion of
replications (50 out of 500 replications) with preferred unidimensional solutions

had a complexity level of 509% = 500, and correlations of .6ALR and)(cz;/D

selected the one-factor model as optimal more frequently than RM3R.

selected the unidimensional solution for at least one replication in 56 out of 60
total conditions. In many of these conditions, however, the number of replications
was much higher than one (median of 75). Conditions with 0% of complexity and
correlations of .75 and .90 across all three sample sizes contained the highest

numbers of replications thal_R chose the one-factor solution.
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Table 13.

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Noncompensatory MIRT and 10 Items per Dimension

Method
ALR Xé/p RMSR
Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50
N p
00 .09 .06 .39 .35 * s 25 (09 - - .01
30 .18 17 52 39 .06 .08 .44 .16 - - .03 .07
500 .60 .47 .47 56 .40 .34 .30 .38 .13* = 04 .10
75 57 47 45 27 52 29 30 .09 .02 .01 .02 .03
9 68 41 32 14 53 17 .14 .01 .05% = -
00 .01 = 18 .14 - - .06 .02 - - S
30 04 05 37 25 - = 33 09 - - 03
1000 60 .27 32 39 20 21 19 23 .05 -* .01 .03
75 48 33 25 08 .50 .17 .09 * o o ek
90 62 .16 .08 * 63 .02 * - .04 - - -
00 - - .04 02 - - - - - - -
30 = = 19 10 - - 07 e - T T
2000 60 .07 .11 .13 .05 .02 .02 .04 .01 - - E
75 37 10 .04 *» 36 .02 @ - - S - -
90 .60 .01 - - 69 - - - 04 - - -

Note Each condition has a total of 500 replicationr$sfgn indicates that zero replications in a

condition selected unidimensional solution. “**gsi indicates that less than 1% of replications in

a condition selected unidimensional solution.
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The results fop(?;/D method followed a similar pattern to thatAdfR
although to a slightly lesser degrq%/(,) had fewer replications within conditions
that selected one-factor). In conditions with 0% of complexity when the
correlation was .60 or larger, the number of replications within conditions that
favored a one-factor solution increased. In a condition with 0% of complexity and
sample size of 2000, almost 70% of replications favored one-factor solution.

Tests with twenty items per dimension. The frequencies that the methods
yielded unidimensional solutions for conditions with twenty items associated per
dimension were investigated for 2D and 3D. For each dimensional structure, there
were a total of 60 conditions.

2D structuresA complete tabulation of proportions for 2D
noncompensatory conditions with 20 items per dimension is presented in Table
14. ALR chose a one-factor solution in at least one replication in 44 out of 60
conditions. Large numbers of replications that favored unidimensional solution
were found in conditions witN = 500 andN = 1000 and correlation levels of .60
across all levels of complexity. On average, in these condikRselected a
one-factor solution almost 300 times (median number of replications across these

conditions was 186.5)5(2;/1) and RMSR selected one-factor solution in fewer

conditions thamALR
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Table 14.

Proportion of Replications Across Complexity Levels for Conditions with Two-
dimensional Noncompensatory MIRT and 20 Items per Dimension

Method
ALR Xé/p RMSR
Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50
N p
00 .39 .13 *= 03 - - - ; ] - ]
30 = - 11 .16 - - - . ; ; -
500 .60 .11 .13 .74 .81 - - - - - - 02w
75 71 74 89 .93 - - % w01 02 .17 .10
90 95 92 .88 .85 .02 * = - .70 22 .05 .05
00 .41 .04 - - - - - - - ; ; ]
30 - - - - - ; - ; ; ]
1000 .60 - - .40 49 - - - - . - ; ]
75 27 35 69 72 - - - - - - 0 -
9 .90 .71 63 53 - - - - 34w - -
00 .41 - - - - - - ; ; )
30 - - - - - . - ; - ; ]
2000 .60 - - .02 .06 - - - - . - ; ]
75 * 02 .35 .32 - - - - - - ]
9 73 21 14 05 - - - S ; ]

Note Each condition has a total of 500 replicationr$sfgn indicates that zero replications in a

condition selected unidimensional solution. “**gsi indicates that less than 1% of replications in

a condition selected unidimensional solution.
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The)(é/Dmethod identified at least one replication with a preferred

unidimensional solution in only 5 out of 60 conditions, with a maximum of 9
replications within any of the five conditions. These conditions allNacb00,
correlation of .75 or .90, across the levels of complexity. The RMSR method
resulted in selection of 14 out of 60 conditions that yielded preferred one-factor
solutions to at least one replication. Large numbers of replications thatdavore
one-factor solutions were found in conditions with .90 correlation and complexity
levels of 0% and 10%, witN = 500 andN = 1000 (mean and median number of
replications in those conditions were 158 and 140, respectively).

3D structuresA complete tabulation of proportions for 3D
noncompensatory conditions with 20 items per dimension is presented in Table
15.ALRyielded at least one replication that favored a unidimensional solution in
all of 60 conditions. A large number of replications within conditions that favored
one-factor solution were found across sample sizes and complexity levéls. Wit
only a few exceptions, the same trend was observed across all levels of
correlation; as correlation among dimensions increased, the number of
replications also increased. RMSR method selected one-factor model in 27 out of
60 conditions; most of which were with= 500 and\ = 1000.

The largest proportions of unidimensional selection within a condition
were found in conditions with .90 correlations and no complexity, although large
proportions were also found in conditions witl= 500 and complexity level of

50%.)((2;/1) favored a one-factor model in 15 out of 60 conditions; the fewest out
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of the three NOHARM-based methods. Additionally, many of these 15 conditions

contained few replications that favored unidimensional solution.
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Table 15.

Proportion of Replications Across Complexity Levels for Conditions with Three-
dimensional Noncompensatory MIRT and 20 Items per Dimension

Method

ALR Xé/p RMSR

Complex 0% 10% 30% 50% 0% 10% 30% 50% 0% 10% 30%% 50

N P
00 40 35 71 .70 - - - - - w03
30 .47 54 92 83 = = 01 - - - 36 .57
500 60 .85 .8 .95 .8 - * 01 - .10 .23 .58 .54
75 .96 .92 .93 .81 .06 * - - 65 50 .14 .14
90 .98 .92 .84 54 12 *x - 94 12 - %

.00 .27 .24 A7 .39 - - - - - - - -

30 .36 .32 75 .65 - - - - - - .04 A3

1000 .60 .65 .68 .85 .67 - - - - .01 A7 15
.75 .89 .80 73 38 .02 - - - 22 .07 - -
90 .98 .73 42 A1 .21 - - - .95 ** - -

.00 .19 .16 31 .20 - - - - - - - -

30 25 .24 48 .39 - - - - - - - -

2000 .60 .39 .41 55 24 - - ] L m ]
75 78 61 24 .02 - - - S ] ]
90 96 27 .04 ** 25 - - - 92 - - -

Note Each condition has a total of 500 replicatior$sfgn indicates that zero replications in a
condition selected unidimensional solution. “**gsi indicates that less than 1% of replications in

a condition selected unidimensional solution.
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Synthesis.Generally, the investigation of unidimensional solutions
revealed thaALR andxé/D tended to favor one-factor solution more often than
RMSR. It was also generally found that an increase in either the camebati
complexity resulted in a more frequent selection of one-factor model, partycul
for x%;/D andALR and in conditions where the generating 3D MIRT model was
noncompensatory (one exception was in conditions with 3D nhoncompensatory
MIRT and 20 items per dimension conditions ustrigl,, where fewer conditions

and lower proportions within a condition were observed).
Multidimensional Solutions to Multidimensional Data

The following section discusses in depth results with a focus on the three
main outcome variables: a) the proportions of selection of the correct dimensional
solution, b) the ability to label sets of items as dimension-like, and c) the
consistency of the methods in classifying items according to their gegerat
assignment (see Chapter 3 for details on criteria used to label setsage
dimension-like and classify items). Most of the results are presenteaipihicgil
form for easier identification of the main patterns. Results presented in artabul
form for proportions correct across conditions can be found in Appendix A.

Compensatory multidimensional data.

Tests with ten items per dimension in 2D structures.

The proportion of correct dimensional selectibigure 6 plots the
proportions of times within a condition that a method selected the correct 2D

solution across complexity levels. The figure contains 15 graphs, which mprese
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various combinations of the sample size and correlations between dimensions. In
each graph, five lines represent the five methods: DETECTe, DETECTSRRM
)(é/D, andALR Rows represent five levels of correlations, while columns

represent three different sample sizes. Within each graph, the eprasents the
proportion correct and ranges from 0 to 1 and the x-axis represents the complexity
levels, and includes 0%, 10%, 30%, and 50% complexity.

As observed in Figure 6, the methods had different rates of success in
recovering the correct 2D solutions. The RMSR method performed very poorly; it
maximally selected the correct solution less than four percent of time; in all
conditions, 70% or more of replications yielded a five-factor solution. The
performance of other methods depended on the complexity levels, sample size,
correlation levels, or some combination thereof.

)(é/D performed quite well, particularly with wheé\h= 500 andN = 1000
with 30% or less complexity in the data and correlation of .75 or less. Its
performance tended to diminish at 50% of complexity, with more extreme drop
off whenN = 2000 and increased correlation. An extreme result was obtained in
the condition witiN = 2000 and correlation of .75 when data exhibited 50%
complexity. Herey ,p Selected incorrectly a three-factor solution 100% of the
time. Another interesting observation was made for conditions with .90
correlation where across all levels of sample s&é% tended to be more

accurate at lower (0% and 10%) and higher (50%) levels of complexity than at the
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middle 30% ALR performed worse thax@/Dmethod in most occasions; however,

its pattern of performance was very similar to that ob@g}% method.

N =500 N =1000 N =2000
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Figure 6. Proportion correct across complexity levels when the data follow a

compensatory 2D MIRT model with 10 items per dimension.
DETECTe accurately selected the two-factor solution almost every time
for all complexity levels and sample sizes when correlation was .60 or less.
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DETECTe was less accurate at correlation of .75Nandb00; particularly when
data exhibited 50% complexity. This was true to a lesser exteNtfdr000 and

N = 2000. At correlation levels of .90, DETECTe was performing above .90 in a
condition withN = 2000 and at 0% of complexity. In all other cases, as
complexity in the data increased, DETECTSs ability to identify the 2D soluti
diminished. Similar patterns were found for DETECTcv, with noticeable
differences in deterioration for DETECTcv with= 500 and when the correlation
was .75. Generally, DETECTe was more accurate than DETECTcv.

The proportion of dimensional labelinp order to examine the
performance of the methods further, marginal proportions of the methods’ ability
to label a set of items as dimension-like were computed. This variable does not
condition on correct selection of the true dimensionality. Results for the
dimensional recognition address the question of how often a particular method
yields a group of items that facilitate an interpretation of the groups as regsonabl
representing a true underlying dimension (see Chapter 3 for more details
regarding the criteria used to define a set of items as dimension-like).

In 2D conditions, a method could label two (both), (any) one, or none of
the sets of items as dimension-like, regardless if the selection of opdictha f
solution was correct (i.e., 2), or incorrect (3, 4, or 5). The marginal proportions
were calculated across different factor solutions and plotted for easier
identification of patterns. Note that in some conditions and for some methods,
marginal proportions do not add up to 1. This occurs when a method selected a
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unidimensional factor solution as optimal (see sectiobmidimensional
solutionsat the beginning of the chapter).

Figures 7 and 8 present the marginal proportions that each method
identified sets of items as dimension-like for 30% and 50% complexity levels
across the sample sizes and correlations. The results for 0% and 10% complexities
were quite similar to the results for 30% complexity, thus only a graph for80% i
shown (see Appendix B for 0% and 10% complexity graphs). As seen from
Figure 7, when data exhibited 30% complexity or less, the methods were highly
successful at labeling two sets of items as dimension-like across sangplath
correlation levels of .75 or less (note the “L” shaped lines for most of the
conditions). An exception was found with RMSR &he 500 at .75 correlation,
where the method had fewer instances of selecting two sets as dimension-like.

At a correlation of .90, the methods' abilities to group items in terms of
sets that can be labeled as the underlying dimensions diminished, partidutarly a
=500. WherN = 500, the methods had more success labeling one or none of the
sets of items as dimension-like than two. As the sample size increasethamarg
proportions for two and none sets of items as dimension-like increased, while

labeling only one set as dimension-like decreased.
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Figure 7. Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 30% complexity and follow a compensatory 2D MIRT model

with 10 items per dimension.

At 50% of complexity, the patterns of performance varied for DETECT-

based and NOHARM-based methods (see Figurg:@), ALR and RMSR were

generally more likely to label either two or none sets of items as dimediison-
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when correlations were .75 or less (note the “V” shapes for orange, black, and red
lines). An exception to this occurredMit= 500 forALRand RMSR. At a

correlation of .90, however, the NOHARM-based methods were more likely to
label one set of items as being like one of the dimensions. The DETECT-based
methods generally failed to label two sets of items as dimension-likesacros
correlation levels and sample size. In only a few conditions did the DETECT
methods, particularly DETECTe, have success in labeling any one set as
dimension-like. This most often occurred in conditions Wwith 2000 and a

correlation of .30 or less.
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Figure 8. Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 50% complexity and follow a compensatory 2D MIRT model
with 10 items per dimension.

The consistency of item classificatiéiigure 9 plots the classification

consistencies for factorially simple items across complexity léxedsis) when

the data follow a compensatory 2D MIRT model with 10 items per dimension.
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Figure 9. Consistency of factorially simple items across complexity levbisn

the data follow a compensatory 2D MIRT model with 10 items per dimension.
In Figure 9, it was observed that the consistency for factorially simple

items generally improved for all methods, as the sample size increasadeAll

methods were consistent in classifying factorially simple itemates of .82 or

higher (most at or around 1) for complexity levels of 30% or less, except when
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correlation was .90. At a correlation of .90, omﬁ,yD, DETECTe, andALR had

rates of above .80 fod = 1000 andN = 2000.

Although higher rates were found at lower levels of complexity, when data
exhibited 50% of complexity, the methods varied in how consistently they
classified factorially simple items. At 50% complexity and lower level of

correlation (0 or .30), the most successful methods w@ie ALR and RMSR.

DETECTe was the least consistent, particularly With 2000 when its rates were
.05 and .16, respectively. Though DETECTcv performed slightly better than
DETECTe withN = 500 and a correlation of .60, as the correlation increased to
.75 or .90, DETECTe became more consistent than DETECTcv for all sample
sizes.

Figure 10 plots the classification consistencies for factorially comple
items across complexity levels (x-axis) when the data follow a compen&aior
MIRT model with 10 items per dimension. Note that on these graphs, only
conditions with complexity were plotted, hence, the x-axis included only levels of

10%, 30%, and 50%.
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Figure 10. Consistency of factorially complex items across complexity levels

when the data follow a compensatory 2D MIRT model with 10 items per
dimension.
In Figure 10, two interesting patterns were noted. First, the classificati

rates of factorially complex items for the NOHARM methods were quitdasimi

as indicated by close proximity of these lines on most of the graphs. Thst large
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differences were noted at correlation levels of .60 and .75, wlé%eandALR

outperformed the RMSR at 30% complexity (on average by 10% to 12%). A
second interesting pattern was observed at 50% complexity. Although NOHARM
based methods were more successful than DETECT-based methods in
classification at complexity levels of 10% and 30%, the opposite was found for
50% complexity levels across all correlation levels and sample sizes.

When data exhibited 50% complexity, DETECTe and DETECTcv had
higher classification rates, ranging from .72 to .96 for various sampleasides
correlation levels. At a correlation level of .90, this type of switch was noted even
earlier; forN = 500, The DETECT-based methods at correlation level of .90 had
comparable or higher classification rates than NOHARM-based methols= At
1000 andN = 2000, notable differences occurred at 30% complexity.

Testswith ten items per dimension in 3D structures.

The proportion of correct dimensional selectiigure 11 plots the
proportions of times within a condition that a method selected the correct 3D

solution across different complexity levels (x-axis).
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Figure 11. Proportion correct across complexity levels when the data follow a

compensatory 3D MIRT model with 10 items per dimension.

RMSR tended to perform poorly across conditions when the data followed
a compensatory 3D MIRT model with 10 per dimension (Figure 11). A slight
improvement was noted in conditions with correlation of .00NwrdL000 andN

= 2000, and in conditions with 0% or 10% complexity. DETECTe tended to
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perform the best out of the methods examined across all levels of complexity and
sample sizes when correlation levels were .75 or less. Similar behavior was
observed for DETECTcv, with larger discrepancies noted in smaller saimple

and correlation of .75.

Xé ,p tended to select the correct factor solutiorNer 500 andN = 1000,

correlations of .75 or less, for complexity levels of 30% or loweR also

performed well for complexity levels of 30% or less but only for corabi

.30 or lower. An increase in the correlation resultedliR performing less

accurately (selecting the correct solution only half of the time) even \beatata
exhibited 30% of complexity. When correlation was at .90, all methods performed
less accurately especially as the complexity levels increased.

The proportion of dimensional labelinig. 3D conditions, a method could
label three, any two (both), (any) one, or none of the sets of items as idimens
like, regardless whether the optimal factor solution was a two-, three-, dour-
five-factors. As in 2D conditions, marginal proportions were calculated across
different factor solutions and were plotted. Figures 12 and 13 present the
proportions of times that each method identified sets of items as dimension-like
for 30% and 50% complexity level across sample size and correlation (note that
0% and10% complexity conditions had similar patterns to 30% conditions; see
Appendix B for 0% and 10% complexity graphs).

Beginning with Figure 12, it was observed that the methods were highly

successful in labeling three sets of items as dimension-like whelatie
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exhibited 30% complexity or less, and the correlations were .30 or smalér for
sample sizes. As complexity or the correlations increased, the methoeltess
successful in identifying three sets of items as dimension-like, but i@enaifiy
one set as dimension-like more often.

As illustrated in Figure 12, when data exhibited 30% of complexity, the
methods tended to identify three sets of items as dimension-like more often when
correlations were lower and sample sizes were larger. At correlatior af .6
larger, the NOHARM-based methods were more likely to identify threeaset
dimension-like, but were less likely to label any two or one set. The DETECT-
based methods on the other hand tended to successfully label any one set as
dimension-like most often. The DETECT-based methods' ability to label &y on
set of items as dimension-like particularly increased as the samgplansiz
correlations increased; more so for DETECTe than DETECTcv (note the inverted

“V” shapes of blue and green lines).
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Figure 12. Marginal proportions across 500 replications that a method identified

(all) three, (any) two, (any) one, or none of the sets of items as dimdiksidr-
axis) when the data exhibit 30% complexity and follow a compensatory 3D MIRT
model with 10 items per dimension.

In Figure 13, a somewhat opposite pattern was observed for lower values

of the correlations compared to conditions with 30% of complexity. The

DETECT-based methods were more successful in labeling any two setssf it
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as dimension-like, while the NOHARM-based methods labeled three setg or a
one set as dimension-like more often. As the correlation increased to .60 and
particularly withN = 2000, the methods behaved more similarly, increasing the
relative frequency of labeling any one of the sets of items as dimdik&on-

When correlation was at .90, the methods were most likely not to label any of the
sets as dimension-like, and only the DETECT-based methods were likelylto labe
three, any two, or any one set.

Note that DETECTe labeled any one set as dimension-like more often
than any other method when the correlations were .90 across sample size, while
DETECTcv labeled any two sets more often than any other methodNvhen
1000 orN = 2000. In conditions with .90 correlation, the NOHARM-based
methods did not successfully label any of the sets as dimension-lie (ge., lar

marginal proportions in the last category “none” on x-axis in the figure).
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Figure 13. Marginal proportions across 500 replications that a method identified

(all) three, (any) two, (any) one, or none of the sets of items as dondika (x-
axis) when the data exhibit 50% complexity and follow a compensatory 3D MIRT
model with 10 items per dimension.

The consistency of item classificatiéiigure 14 plots the classification

consistencies for factorially simple items across complexity l¢xedsis) when

the data follow a compensatory 3D MIRT model with 10 items per dimension.
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DETECTe and DETECTcv generally were more successful in classficati
factorially simple items in 3D structures than their NOHARM counterpahis
was particularly true wheN = 500 across correlation levels and complexity

levels of 30% or less.
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Figure 14. Consistency of factorially simple items across complexity lewéksn
the data follow a compensatory 3D MIRT model with 10 items per dimension.
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Similar patterns were observed in conditions Wth 1000 andN = 2000;
with an exception of RMSR, for which classification rates improved as the
complexity levels increased for correlations of .60 or smaleR classification
rates were around .67 for correlation of .00 and all sample sizes; however, rates
decreased with the increase of complexity. At correlations of .90, only DETECTe
had acceptable classification rates (particularly With 2000). Its rates were
close to 1 at 0% and 10% of complexity; however, the rates dropped down to
around .65 as complexity increased to 30% and 50%. Similar observations were
noted in cases wheh= 500 andN = 1000 for DETECTe at correlation of .90.

The classification of factorially complex items in 3D structures whém da
follow a 3D compensatory MIRT with 10 items per dimension is plotted across
complexity levels in Figure 15. It was noted that the NOHARM-based methods
tended to classify complex items better for complexity levels of 30% ordess f
correlation levels of .00 and .30. However, at 50% complexity, DETECT-based
methods strictly outperformedlLR RMSR, angyZ /D

The largest differences were found at correlation levels of .60 or higher for
all sample sizes. When the correlations were.90, differences in iclaissif rates
were notable even &t = 500, and at lower levels of complexity. For example, at
30% complexity andN = 500 andN = 1000, DETECTe reported .93 and .95
classification rates, while NOHARM methods were all at around zero.e@etw
the two DETECT methods, most notable differences in classification rates w

observed in following conditions. DETECTe performed better at 30% complexity
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and correlation of .60 and .75 whire 1000 andN = 2000; the difference was of
.28. DETECTcv however outperformed DETECTe in 10% compleXity,500

when correlation was .90, where its classification rate was at .58 and DETECTe

was at .09.
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Figure 15. Consistency of factorially complex items when the data follow a
compensatory 3D MIRT model with 10 items per dimension.
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Tests with twenty items per dimension in 2D structures.

The proportion of correct dimensional selectiéigure 16 plots the
proportions that the methods correctly selected a two-factor model whertdhe da
follow a compensatory 2D MIRT model with 20 items per dimension. DETECTe
outperformed the other four methods in most of the cases. Good performance was
noted across various levels of complexity. DETECTe selected the correct
dimensional structure virtually always whir= 2000, and correlation was .75 or
smaller. WherN = 500 orN = 1000, DETECTe performed somewhat well;
however, alN = 500 and correlation of .90, the DETECT-based methods suffered.
In all of the conditions, DETECTe selected the correct solution in larger
proportions that DETECTcv across all levels of complexity. Both methods
seemed to improve with the increase in sample size, but suffer as thetiomsela

increased.
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Figure 16. Proportion correct across complexity levels when the data follow a
compensatory 2D MIRT model with 20 items per dimension.

ALR performed equally well or better than its NOHARM counterparts
across all levels of complexity and sample sizes, expect in the conditioN wit
500 and .90 correlations, whe(é/D outperformedALR across all levels of

complexity. Generally speaking, whiin= 500, the methods based on NOHARM
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output performed well for complexity levels of 30% or less when the correlations
between dimensions did not exceed .60. As the correlations increased to .75 or
.90,RMSRperformed somewhat satisfactory only for 0% and 10% complexity
levels.ALRdid not perform well in conditions with larger correlation levels; at

.75 the degradation in performance occurred at 50% complexity, while at .90,
ALR seemed to have performed better at the extreme ends of complexity (0% and
50%).

The proportion of dimensional labelingigure 17 illustrates the marginal
proportions of labeling sets of items as dimension-like for conditions where the
data exhibit 30% of complexity, following a true 2D compensatory structuhe wit
20 items per dimension (note that figures for 0% and 10% look very similar to

30% complexity and are included in Appendix B).
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Figure 17.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 30% complexity and follow a compensatory 2D MIRT model
with 20 items per dimension.

When data exhibited 30% complexity or less, all the methods were highly

successful in labeling two sets of items as dimension-like across sargpéndi

correlation levels, except in conditions with a correlation of .90Nanb00,
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where the methods tended to label two dimensions less often (note the “L” shaped
lines in the graphs).When correlations were .90, an increase in sample size
resulted in the DETECT-based methods (particularly DETECTe) to labekt®o s

of items as dimension-like more frequently, while NOHARM methods resulted in
increases in labeling none of the sets as dimension-like. Generally in cosditi

with high correlation, the methods were either identifying two sets or none as
dimension-like (marginal proportions for labeling any one set as dimenken-|

were low or zero throughout the conditions with up to 30% complexity).

Figure 18 illustrates the marginal proportions of labeling sets of items a
dimension-like for conditions where the data exhibit 50% of complexity,
following a true 2D structure with 20 items per dimension. As seen in Figure 18,
when complexity was at 50%, the NOHARM-based methods were much more
likely to label either two or none of sets of items as dimension-like when the
correlation was zero. As the correlation levels increased to .60, the marginal
proportions for labeling two sets of items as dimension-like for the NOHARM-
based methods increased, while at the same time the marginal proportions for
labeling none of the sets as dimension-like decreased. A similar effefbuvel
for increases in sample size.

In all of these conditions, the DETECT-based methods were rather
unlikely to label two sets of items as dimension-like. As the correlation imcteas
the DETECT-based methods yielded higher marginal proportions for identifying
both sets of items as dimension-like; however, those never rose above .27. At a
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correlation of .90 antll = 500, all the methods tended to label one set of items as

dimension-like.
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Figure 18. Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 50% complexity and follow a compensatory 2D MIRT model

with 20 items per dimension.
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The consistency of item classificatiGigure 19 plots the classification
consistencies for factorially simple items across complexity léxedsis) when
the data follow a compensatory 2D MIRT model with 20 items per dimension.
The methods were successful in classifying factorially simple itenoss
different sample sizes and correlation levels of .75 or less, when 30% of less
complexity existed. Additionally, the NOHARM-based methods yielded high
classification rates even for 50% of complexity and correlations of .60 and .75.
DETECTe vyielded high classification rates whié¢r 2000 and correlation of .90

for complexity levels of 0%, 10%, and 30% of .99, .97, and .89, respectively.
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Figure 19. Consistency of factorially simple items when the data follow a
compensatory 2D MIRT model with 20 items per dimension.

Figure 20 plots the classification consistencies for factorially comple
items across complexity levels (x-axis) when the data follow a compengator

MIRT model with 20 items per dimension. For the NOHARM-based methods, the
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classification rates never exceeded .62 (note mostly horizontal orangenaed,

black lines), and were largely at .45 or below.
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Figure 20. Consistency of factorially complex items when the data follow a

compensatory 2D MIRT model with 20 items per dimension.
The methods in DETECT were most consistent in their classifications of

complex items when data exhibited a large degree of complexity (50%gsacr
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the levels of sample size and correlations. For example, when the correlasion w
.90 andN = 1000, DETECTcyv classification rates increased as the level of
complexity increased from .40 to .92 in conditions Witk 500, and from .22 to

.84 in conditions wittN = 1000. Similar classification rates of factorially complex
items and associated increases were noted in other conditions for DETECT-based
methods.

Tests with twenty items per dimension in 3D structures.

The proportion of correct dimensional selectiigure 21 plots the
proportions of correct dimensional selection across complexity levels thie
data follow a compensatory 3D MIRT model with 20 items per dimension.
Overall, the DETECT-based methods outperformed the NOHARM-based
counterparts in correctly identifying the number of dimensions acroevel$ of
complexity, sample size, and correlation. DETECTe was patrticularly rabust i
conditions with the high correlations among the dimensions, where it only
suffered to larger extent at 50% complexity with any sample size.

ALR suffered in accuracy of selection as early as .60 correlation and 30%
of complexity for all sample size;gé/D tended to correctly identify the true
dimensional structure only in conditions with correlation of .30 or lower and 30%
or lower complexity levels. As the sample size increased, within the atoorel|

Ievel,)(é/D generally yielded lower proportions correct.
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Figure 21. Proportion correct when the data follow a compensatory 3D MIRT

model with 20 items per dimension.

The proportion of dimensional labelingigure 22 plots the marginal
proportions across 500 replications that a method labeled three, two, one, or none
of the sets of items as dimension-like (x-axis) when the data exhibit 30%

complexity and follow a compensatory 3D MIRT model with 20 items per
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dimension (conditions with 0% and 10% complexity yielded similar results to
30% complexity; for the remaining with 0% and 10%, see Appendix B).

In conditions across sample size and with correlation of .75 or smaller, the
NOHARM-based methods were most likely to label three sets of items as
dimension-like, while the DETECT-based methods tended to have somewhat
lower rates for labeling three sets of items as dimension-like. The DE-bESed
methods had higher proportions of labeling one set of items as dimension-like
than the NOHARM-based methods. Generally, all methods were succassful i
identifying three sets of items as dimension-like when the data sedi®0% or
less complexity across sample size and correlation levels of .75 or lesgt(exc
ALR whose performance diminished at .75 correlationNirdb00). With
correlations of .90, the methods had some success in labeling mostlyvedioer t

one set of items as dimension-like.
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Figure 22. Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimensioa-like (
axis) when the data exhibit 30% complexity and follow a compensatory 3D MIRT
model with 20 items per dimension.

Figure 23 plots the marginal proportions across 500 replications that a

method identified three, any two (both), (any) one, or none of the sets of items as
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dimension-like (x-axis) when the data exhibit 50% complexity and follow a

compensatory 3D MIRT model with 20 items per dimension.
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Figure 23. Marginal proportions across 500 replications that a method identified
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% complexity and follow a compensatory 3D MIRT
model with 20 items per dimension.
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In conditions withN = 500 and correlation of .75 or lower, the NOHARM-
based methods tended to successfully label one set of items as dimension-like and
the DETECT-based methods tended to label any two sets of items as dimension-
like. Within a correlation level, as the sample size increaq’ggand RMSR (and
to some extenALR) yielded higher marginal proportions for labeling of three sets
of items as dimension-like. DETECT methods failed to label three sets as
dimension-like across all correlation and sample size levels.

The consistency of item classificatiGigure 24 plots the classification
consistencies for factorially simple items across complexity léxedis) when
the data follow a compensatory 3D MIRT model with 20 items per dimension.
From Figure 24, it was observed that classification of factorially sirtgates
with 20 items per dimension resulted in DETECT-based methods obtaining high
classification rates (above .95) for complexity levels of 30% or less. Hoyatve
50% complexity in the data, DETECTe and DETECTcv reported lower
classification rates. This was observed consistently across both thie s&re

and correlation levels of .75 or lower.
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Figure 24. Consistency of factorially simple items when the data follow a
compensatory 3D MIRT model with 20 items per dimension.

Of the three NOHARM-based methocté,/Dand RMSR reported higher
rates tharALR for most of the conditions. Interestingly, the level of complexity in
the data or the sample size had little effect on the methods’ classificatitheya

remained between .74 and .89 for different levels of correlations (up tAALFS).
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however, was notably affected by the correlation level and complexity, as its
classification rates decreased greatly at correlations of .60 arlectiy levels
beyond 10%.

Figure 25 plots the classification consistencies for factorially comple
items across complexity levels (x-axis) when the data follow a compen8ator
MIRT model with 20 items per dimension. The DETECT-based methods had
higher consistency rates for complex items than methods based on NOHARM
output only at complexity levels of 50% for all sample sizes and correlatieis|
of .75 or lower. They also more consistently classified items at .90 canslati
across sample size levels at 30% and 50% complexity. DETECTcv had notably
higher classification rates in at 50% complexity &hd 500 at .96, while

DETECTe performed similarly whed = 2000 with classification rate of .89.
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Figure 25. Consistency of factorially complex items when the data follow a

compensatory 3D MIRT model with 20 items per dimension.

Overall, it can be concluded that methods’ classification rateewhat
depended on the correlation level along with the complexity level. hiter
complexity levels, and with correlation of no larger than .75, NOHABdged

methods reported higher classification rates than DETECT-basstiods,
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although those rates were never higher than .60, As complexity ohdetased
to 50%, the NOHARM-based methods were unable to consistentlyfgldesis
across conditions, and their rates dropped to essentially zero.

Effects due to the number of items on determining correct
dimensionality. The preceding presentation has displayed results separately by
the number of items associated with each dimension. Additional plots were
conducted to illustrate the effects of the number of items on the method'ssabilitie
to obtain the correct number of dimensions. Figures 26 through 31 correspond to
analyses of the effects for varying the number of items for all sanzgldesiels
and dimensional structures. The figures plot the proportion of times within a
condition (i.e., out of 500 replications) that each method accurately selected the
correct dimensional structure in compensatory models.

In the graphs, the y-axis ranges from 0 to 1 and represents the proportion
of replications that the method correctly identified the true number of dimensions.
The x-axis denotes having 10 and 20 items per dimension. Connected lines on the
graphs (from 10 to 20 items per dimension) are drawn only for illustration
purposes, not to imply any function between the two categories. Within a graph,
different colors represent the five methods of interest.

Conditions that follow a 2D compensatory MIRT model were plotted for
all sample sizes. Figure 26 plots the proportion correct when the data follow a
compensatory, 2D MIRT model for 10 and 20 items per dimensidd f0500. It
was observed that the differences in methods' performance to identify thet corre
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dimensional structure when items per dimension increased from 10 to 20 were
found in NOHARM-based methods, particularly for RMSR. RMSR reported very
low proportions in all conditions with 10 items per dimension. Increasing the
number of items resulted in RMSR to perform better, as proportions of correct
selection increased greatly. This improvement was found in almost all conditions
across all complexity and correlation levels. RMSR did not improve as much or at
all in conditions with 50% complexity and correlation ranging between .30 and
75.

An increase in the number of items wher 500 had the opposite effect
on )(é/D in some conditions. When complexity was at 30% or less and correlation
was .60 or smallepgé/D seemed not to be affected by the increase in the number
of items. However, at complexity levels of 50%, with correlations beEtw@O to
.75, an increase in the number of items resulted in worse performawfg,}or
When the correlation was -9@2;/13 showed improvement from 10 to 20 items
across all levels of complexity, although the largest differences irowaprent
were found at higher levels of complexity.

ALR showed only slight improvement as the number of items increased for
conditions with correlations of .75 or less, with most notable improvement in
conditions with 50% complexity. When the correlation was AMR did not seem
to benefit from the increase in items (in fact, with 30% complexity, an iremeas

items resulted in a decrease in proportion correct). The DETECT-based methods
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seemed not to be affected much by the increase in the number of itemi when

500.
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Figure 26. Proportion correct when the data follow a compensatory 2D MIRT
model for 10 and 20 items per dimensionNor 500.

Figure 27 plots the proportion correct when the data follow a

compensatory, 2D MIRT model for 10 and 20 items per dimensidd f01000.
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In Figure 27, RMSR had patterns similar to those for the previously discussed
conditions wherN = 500. Within a complexity level, RMSR vyielded better
performance with 20 items per dimension than with 10 items. This was noted

across all correlation levels in conditions with 0%, 10%, and 30% of complexity.
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Figure 27.Proportion correct when the data follow a compensatory 2D MIRT
model for 10 and 20 items per dimensionNor 1000.
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When complexity was at 50%, RMSR performance was poor for both 10
and 20 items per dimension. Whdr= 1000, an increase in items per dimension

resulted in poorer performance)gﬁ/D, particularly when complexity or

correlation levels increasedLRas well as the DETECT methods seemed to be
only slightly affected by the increase in the number of items.

Figure 28 plots the proportion correct when the data follow a
compensatory, 2D MIRT model for 10 and 20 items per dimensidd f02000.
Here, RMSR generally improved in selecting the correct 2D factor solutitwe as t
number of items increased; this was particularly found at complexity leief%
or 10%. As the complexity level increased to 30%, an increase in the number of

items seemed to affect RMSR performance only at low levels of theat@rel
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Figure 28. Proportion correct when the data follow a compensatory 2D MIRT
model for 10 and 20 items per dimensionNor 2000.

XE/D never benefited from the increase in items when data followed a
compensatory 2D MIRT and = 2000. It actually performed worse or equally
poor across the complexity and correlation levels when the number of items
increased. The remaining three meth@lsR DETECTe and DETECTcv, were

less affected by the increase in the number of items. Among the three methods,
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most notable improvements were found AR with 30% complexity when
correlations were .60 or larger. DETECTcv also showed some improvement when
complexity was 30% or larger, and correlation was at .90. RMSR for conditions
with low complexity tended to benefit most from the increase in the number of
items.

Similar analyses were conducted for conditions in which the data follow a
3D MIRT. Figures 29 through 31 illustrate the effects of increase in the nurhber
items across all levels of complexity and correlation for all sampds &iz3D
cases.

Figure 29 plots the proportion correct when the data follow a
compensatory, 3D MIRT model for 10 and 20 items per dimensidd f0500.

RMSR seemed to be positively affected by the increase in items in 3D conditions
as it was in 2D conditions previously discussed. The increase in proportion
correct for RMSR was mostly observed when complexity levels were 308$sor
When correlations were at .90, RMSR performed slightly worse when the number

of items increased and complexity was at 30% or 50%.
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Figure 29. Proportion correct when the data follow a compensatory 3D MIRT
model for 10 and 20 items per dimensionNor 500.

ALR and)(é/D were affected less by the increase in items vitherb00.

The effect was also not uniform in one directiBhR showed the largest effect in
condition where data exhibited 50% complexity and correlation was .75; in this

condition, an increase in the number of items had a positive effédtRs
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performance. However, when complexity was low (e.g., 0% or 10%) and the
correlations were .90, an increase in items led to decrease in proportion fosrrect

ALR )(é/Dperformed slightly worse in conditions with more items when

correlations were at .75 or smaller. The degree of degradation in performance
increased as the complexity levels increased. Increase in the number of items
when correlation was .90 however resultegﬁ,yb obtaining higher proportion

correct (the opposite effect than in conditions with .75 or smaller correlations).

The DETECT-based methods were mostly unaffected by the increase in
items wherN = 500 in the 3D compensatory conditions; DETECTe reported
somewhat higher proportion correct in conditions with 20 items when complexity
was at 30% and 50% and correlations were .90.

Figure 30 plots the proportion correct when the data follow a
compensatory, 3D MIRT model for 10 and 20 items per dimensidd f01000.
Similar effects of increase in the number of items were observed in conditions
with N = 1000 as were noted for the conditions Witk 500. For example,
DETECT-based methods aAd.Rtended to be only slightly impacted by the
increase in the number of items. RMSR tended to be positively impacted by the
increase in the number of items for conditions with correlations of .75 or less and
complexity levels of 30% or less.

Most notable effects of increased number of items were noted for

)(é/Dmethod. WhemN = 1000, an increase in items from 10 to 20 per dimension

did not result irp(é/D to improve in conditions with low complexity and high
160



correlations (as it did whed = 500). Similarly, withN = 1000, at 50%
complexity and correlation of .OQ?;/D did not perform worse with the increase

in the number of items (as it was the case wWken500).
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Figure 30. Proportion correct when the data follow a compensatory 3D MIRT
model for 10 and 20 items per dimensionNor 1000.
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Figure 31 plots the proportion correct when the data follow a
compensatory, 3D MIRT model for 10 and 20 items per dimensidd f02000.
The effects of the number of items in 3D compensatory conditions were again
similar to those in the previously discussed smaller sample sizes. Generally
increases in the number of items per dimension led to increases in proportion
correct for RMSR. This was observed for complexity levels of 30% or less. Just
the opposite was found fqé/D; an increase in the number of items led to worse
performance across the levels of the correlations and for complexity &%

or less.
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Figure 31. Proportion correct when the data follow a compensatory 3D MIRT

model for 10 and 20 items per dimensionNor 2000.

Overall, the DETECT-based methods as welABRwere minimally
affected by the number of items whidr= 2000. A couple exceptions to that were
found. One exception was fAiLRin the condition with 50% complexity and

correlations of .75, where the increase in the number of items led to higher
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proportion correct. The other exception involved DETECTe in condition with
50% complexity and .90 correlations, where again, the increase of number of
items positively impacted DETECTe performance. Both of these trends however,
were previously noted in conditions whidr= 1000.

Effects due to the number of items on methods’ ability to labedets of
items as dimension-like A comparison of results for 2D conditions where data
follow compensatory MIRT model suggests that the number of items per
dimension did not meaningfully affect the methods proportions of labeling sets of
items as dimension-like across all levels of complexity and sample size (e
Figure 7 and Figure 17 were compared, as were remaining matching figures f
10 and 20 items per dimension for each complexity level).

A comparison of results for 3D conditions where data follow
compensatory MIRT model suggested that the number of items per dimension did
not meaningfully affect the proportions of labeling sets of items as dimeriséon-|
for the NOHARM-based methods. However, the DETECT-based methods
seemed to be positively affected by the increase in items when complegity le
was at 30%. In conditions where data exhibited 30% complexity, as correlations
and sample size increased, DETECT-based methods increased in proportions of
labeling three sets of items as dimension-like in conditions with 20 items per
dimension compared to conditions with 10 items per dimension. These effects,

again, were only noted in conditions with 30% complexity.
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Effects due to the number of items on methods’ ability to consisitly
classify items.A comparison of results for conditions where data follow a 2D
compensatory MIRT model suggests that the number of items per dimension did
not meaningfully affect the methods constancy rates for factorially sitepis.
Only two slight effects were noted; RMSR and DETECTe increased their
consistency rates for factorially simple items when items per dimemsiceased
from 10 to 20, in conditions with correlation of .90 ahe 500 and\ = 1000
(see Figures 9 and 19). Effects of the increase in number of items on cmysiste
rates for factorially complex items in 2D conditions were veghsl{only at .90
correlation andN = 2000) and not meaningful. In other words, the methods were
not meaningfully affected by the increase in number of items per dimension in
conditions with a 2D compensatory MIRT model, across levels of complexity,
sample size, and correlations (see Figures 10 and 20).

A comparison of results for conditions where data follow a 3D
compensatory MIRT model suggest that increase in number of items did not
meaningfully affect methods in their ability to classify factorialiyple items.

An exception waé&\LR which yielded lower classification rates of factorially
complex items with 20 items per dimension in conditions with correlation levels
of .75 or .90 (see Figures 14 and 24). A comparison of classification results for
factorially complex items suggested that increase in the number of items had a
negative effect on classification rates of DETECT-based methods. Namely, i
conditions with a 3D compensatory MIRT model, the DETECT-based methods
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yielded higher classification rates when 10 items were associatedacih
dimension than when there were 20 items per dimension. NOHARM-based
methods tended not to be affected by the number of items per dimension when it
came to classification of factorially complex items (as seen by aomgp@igures
15 and 25).

Noncompensatory multidimensional data.

Tests with ten items per dimension with 2D structures.

The proportion of correct dimensional selectiéigure 32 plots the
proportions of times within a condition that a method selected the correct 2D
solution across complexity levels. In Figure 32, a strong pattern of performance

for the methods emerged. In all but one condit}'@)D andALR outperformed
the other three methods. Large discrepancies in performance were pdyticular
noted wherN = 500 andN = 1000 across all levels of complexity and
correlations. While maintaining larger proportions of correct selection of the
dimensional structure, iIN = 2000, the performance ALR and)(é/D shifted
downward across all levels of correlation, except when correlation was .90.

In conditions with a correlation of .90, increases in complexity resulted in
better performance of the NOHARM-based methods, particw@yw Within a
sample size)(é/D andALRhad somewhat uniform performanggé;/D yielded

slightly higher proportions correct in some of the conditions With500 andN =

1000.
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Figure 32. Proportion correct across complexity level when the data follow a
noncompensatory 2D MIRT model with 10 items per dimension.

DETECTe yielded the highest proportion correct in conditions with 0% of
complexity, correlation of .00, arid = 2000 (84% of time it correctly identified
the number of factors); however, in the remainder of conditions, DETECTe

largely erred. DETECTcv had similar pattern of performance to DETECTe,
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except it erred even more often. The two DETECT-based methods and the RMSR
method failed to correctly select 2D factor solution in most conditions (note the
flatness of the green, blue, and red lines when correlation levels were .Bfeor la
across complexity and sample size).

The proportion of dimensional labelinp order to examine performance
of the methods further, we computed the marginal proportions of the methods’
rates of labeling a set of items as dimension-like. Here again, in 2D coisdlidi
method could label two, one, or none of the sets of items as dimension-like,
regardless of the selection of optimal factor solution. The marginal proportions
are calculated across different factor solutions and are plotted fer easi
identification of patterns. Figures 33 through 36 plot the marginal proportions of
the methods' ability to label two (both), (any) one, or none of the sets of items as
dimension-like for various levels of complexity when data follow a 2D
noncompensatory MIRT with 10 items associated with a dimension.

Figure 33 plots the marginal proportions that each method labeled sets of
items as dimension-like for 0% complexity across the sample sizes and
correlations. It was observed that when correlation levels were .60 or lower, al
the methods except RMSR yielded high marginal proportions for identifyimg tw
sets of items as dimension-like, across different sample sizes. Addjtiaviaén
N = 2000,ALRand)(§/D reported somewhat lower marginal proportions than the
DETECT-based methods for these correlation levels. Note that the conditions of

correlation of .60 or lower (across sample sizes), are marked by the “L” shaped
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lines in the graphs suggesting high proportion for labeling the two sets of items as
dimension-like.

At a correlation of .75, the DETECT-based methods, particularly When
= 2000, also yielded high marginal proportions for labeling two sets of items as
dimension-like (DETECTe yielded higher means that DETECTcv across m
conditions). However, the DETECT-based methods had less success in labeling
any one of the sets of items as dimension-like in conditions with correlations of
.90. As the sample size increased, DETECTcv and DETECTe reported higher
marginal proportions for labeling none of the sets of items as dimenk&n-li

When the correlation was at .75 or .90, RMSR method yielded the highest
marginal proportions for identification of one set of items as dimension-like; a

pattern that was noted with the other two NOHARM-based metbé% and

ALR) at .90 correlation and = 1000 andN = 2000.
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Figure 33. Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 0% complexity and follow a noncompensatory 2D MIRT model
with 10 items per dimension.

Figure 34 plots the marginal proportions that each method identified sets

of items as dimension-like for 10% complexity across the sample size and

correlations.
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Figure 34. Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 10% percent complexity and follow a noncompensatory 2D
MIRT model with 10 items per dimension.
From Figure 34, it was observed thIRand)(é/D recorded large
marginal proportions for identifying two sets of items as dimensionilke

conditions with .30 correlation or less across all three sample sizes (naté the "
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shaped lines represented in the graphs). However as the correlation levels
increased, the proportions tb@’,{/DandALRidentified two sets of items as

dimension-like decreased; more so when 2000 than wheN = 500.

Generally, the DETECT-based methods (especially DETECTe) igehtif
the two sets of items as dimension-like most often in conditions across sample
size and correlation of .75 or smaller. RMSR tended to identify two sets of items
as dimension-like seldom; it was most successful in labeling any one set as
dimension-like in conditions with .60 correlation or higher.

The overall effect of an increase in correlation was observed as well; for
all methods, increases in the correlation (up to .75) led to an increase in marginal
proportions for none of the sets of items to be labeled as dimension-like. At a
correlation of .90, all methods tended to successfully label any one set as
dimension-like; marginal proportions increased as the sample size ett(ease
higher inverted “V” shapes for the conditiondNr= 2000).

Figure 35 plots the marginal proportions of labeling sets of items as
dimension-like for 30% complexity across the sample sizes and correlations. In
these conditions, RMSR tended to be the most successful in labeling any one set
as dimension-like across all correlation and sample size levels. THEOIE
based methods reported high marginal proportions for identifying two or none of
the sets of items as dimension-like in conditions with .00 or .30 correlation across
all sample sizes. At correlation of .60, however, the DETECT-based methods

decreased in their ability to identify two or any one sets as dimenkeAk the
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correlation increased (for all sample sizes, but more so in the conditions with
2000), the methods tended to yield higher marginal proportions for identifying
only one set as dimension-like (note the inverted "V" shapes particularly in

conditions with high correlation).
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Figure 35. Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 30% percent complexity and follow a noncompensatory 2D

MIRT model with 10 items per dimension.
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Figure 36 plots the marginal proportions that each method identified sets
of items as dimension-like for 50% complexity across the sample sizes and
correlations. All methods, yielded low marginal proportions for labeling tig se
of items as dimension-like. The highest marginal proportions were observed for
labeling any one set of items as dimension-like. A couple of exceptions were
found for the DETECT-based methods, which did not report as high of marginal
proportions as the other methods in conditions with high correlationd and
1000 andN = 2000. Lastly, it was observed that as correlations increased,
methods typically reported lower marginal proportions for identifying nonleeof t

sets of items as dimension-like.
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Figure 36. Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 50% percent complexity and follow a noncompensatory 2D
MIRT model with 10 items per dimension.

The consistency of item classificatiéiigure 37 plots the classification

consistencies for factorially simple items across complexity l¢xedsis) when

the data follow a noncompensatory 2D MIRT model with 10 items per dimension.
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Figure 37.Consistency of factorially simple items across complexity lewéksn

the data follow a noncompensatory 2D MIRT model with 10 items per dimension.
Overall, the DETECT-based methods tended to report higher classification

rates when compared to the NOHARM-based methods. In particular, the highest

rates were observed for DETECTe in conditions of 0% and 10% of complexity

when correlation equaled .00 and .30. DETECTcv followed a similar pattern of
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classification to DETECTe, however, larger differences were found in conditions
with N = 500 between the two methods.

Figure 38 plots the classification consistencies for factorially complex
items across complexity levels (x-axis) when the data follow a noncompegnsator
2D MIRT model with 10 items per dimension. DETECT-based methods yielded
higher classification rates of factorially complex items acrosgpkasize
correlation levels in conditions with 30% and 50% complexity. At 10%
complexity, NOHARM-based methods tended to yield higher classificaties rat
when correlations were .60 or lower. However, as correlations increased, the
DETECT-based methods tended to be as or more consistent than the NOHARM-

based methods.
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Figure 38. Consistency of factorially complex items across complexity levelsiwhe

the data follow a noncompensatory 2D MIRT model with 10 items per dimension.
Tests with ten items per dimension in 3D structures.
The proportion of correct dimensional selectibigure 39 plots

proportions of times within a condition that a method selected the correct solution

across different levels of complexity (x-axis) when the data follow a
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noncompensatory 3D MIRT with 10 items per dimension. It was observed that
ALR and)(é/D tended to perform better than other methods. In 3D
noncompensatory conditions, the methods generally performed better ifNwhen
2000 across different levels complexities and correlations. Generally, low
proportions correct were noted for all the methods across different complaxity a
correlation levels, excemé/D andALRat 0% and 10% complexity in conditions

with N = 1000 andN = 2000 when correlations were .30 or smaller.
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Figure 39. Proportioncorrect across complexity levels when the data follow a

noncompensatory 3D MIRT model with 10 items per dimension.
The proportion of dimensional labelinbp conditions where data follow a
3D noncompensatory MIRT model with 10 items per dimension, complexity
levels had a somewhat small effect on how the methods performed with regards to

labeling sets of items as dimension-like. To illustrate the main fisdmthese
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conditions, Figure 40 plots the marginal proportions that each method identified
sets of items as dimension-like for 50% complexity levels acrossith@esaizes

and correlations (plots for 0%, 10%, and 30% of complexity look very similar and
with only a few minor deviations; thus plots for 0%, 10%, and 30% are included
in Appendix B).

From Figure 40, it was observed that methods generally reported low
marginal proportions for labeling three sets of items as dimension-like. &kis w
noted across the sample sizes, although conditiondNwitB00 generally
reported lower marginal proportions. Wher= 1000 andN = 2000, the highest
reported marginal proportions for labeling three sets of items as dimeik&ion-|

was .49 (DETECTe in a condition with correlation of .00 BireR 000).

181



N =500 N = 1000 N = 2000

8
2
g

8

cor=.60

0
~
1l
o}
o
8 o
i o
I
S =
" 8
8 -
T T T T T T T T T T T T
Al 3 Any 2 Any 1 None Al 3 Any 2 Any 1 None AIl3 Any 2 Any 1 None
- ALR Chi-square == DETcv = DETexp = RMSR

Figure 40. Marginal proportions across 500 replications that a method identified
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% percent complexity and follow a
noncompensatory 3D MIRT model with 10 items per dimension.

Typically, the methods tended to report higher marginal proportions for

not being able to label any set of items as dimension-like. Some exceptions were
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found for DETECTe, in conditions with correlations of .60 or lower and wWhen
= 2000.

In conditions withN = 500, DETECTe reported higher marginal
proportions (compared to other four methods) for labeling any two set of items as
dimension-like across all correlation levels. In conditions With 1000 andN =
2000, DETECTe was able to label any one set as dimension-like, while other
methods were most successful in identifying any two sets of items as dimensi
like (up to .75 correlation). Overall, it was observed that methods generally did
not report high marginal proportions for labeling sets of items as dimeiston-|
for any level of complexity.

The consistency of item classificatiiigure 41 plots the classification
consistencies for factorially simple items across complexity léxedsis) when
the data follow a noncompensatory 3D MIRT model with 10 items per dimension.
For all methods, the classification rates at any level of complexity s@newhat
low, particularly as the correlations increased. The two highestfidasen rates
obtained were DETECTe rates in conditions with 0% and 10% complibdty,

2000 with correlation of .00 (.73 and .76, respectively). Also, that the lines within
each graph are nearly horizontal, suggests that complexity levels did not have
much impact.

The DETECT-based methods reported higher classification rates than the
NOHARM-based methods across all conditions, with DETECTe yielding higher
rates than DETECTcv. The difference between the DETECT-based methods
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decreased as the correlation increased. To some extent, the rates eészedthas

the sample size increased; particularly for DETECTcuv.
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Figure 41. Consistency of factorially simple items across complexity lewéksn
the data follow a noncompensatory 3D MIRT model with 10 items per dimension.
Figure 42 plots the classification consistencies for factorially comple

items across complexity levels (x-axis) when the data follow a noncompgnsator
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3D MIRT model with 10 items per dimension. A distinct behavior for both types
of methods was found when it came to classification of the factorially complex
items. The DETECT-based methods obtained higher classification rateti¢ha

NOHARM-based methods across all sample sizes and correlation levels.
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Figure 42. Consistency of factorially complex items across complexity levels
when the data follow a noncompensatory 3D MIRT model with 10 items per
dimension.
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With a few minor exceptions at 0% complexity and lower levels of
correlation (i.e., .00 and .30) for the DETECT-based methods, classification rates
were stable across the levels of complexity (note the mainly horizoralih the

graphs)ALR Xé/D, and RMSR reported similar classification rates to each other;

across all levels of complexity, these rates never rose above .19.

Tests with twenty items per dimension with 2D structures.

The proportion of correct dimensional selectibigure 43 plots the
proportion of times within a condition that a method selected the correct 2D
solution across different complexity levels (x-axis) when the data follow a
noncompensatory 2D MIRT model with 20 items per dimension.

As illustrated in Figure 43ALRand RSMR had larger proportions of
correct selection than either of DETECT-based methods in most conditions.
Exceptions were found in conditions with correlation of .00/drd1000 andN =
2000, where DETECTe performed equally well or better than other methods
across 0% and 10% complexity. DETECTe also had higher proportions correct
than DETECTcv although in many of the conditions, both methods performed
poorly. Particular poor performance was noted in conditions with increased

correlation levels or when more complexity was modeled into the data.
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Figure 43. Proportion correct across complexity levels when the data follow a
noncompensatory 2D MIRT model with 20 items per dimension.

Within a correlation level, RMSR performed better in conditions iNith
500 than in conditions witN = 1000 andN = 2000. SimilarlyALRtended to
perform better in conditions with = 500 when correlations were medium to low.

However, the opposite was found when correlations reached .75 or higher; there
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ALRs performance improved as the sample size incre;aéggperformed poorly
across all complexity levels and the three sample size when correlagonsily

or lower. Only in the conditions with .90 correlatidial )(é/D show some
improvement; the highest proportion correct observe;ﬁ% was in a condition

with N = 500 and 50% complexity (72% correct).

The proportion of dimensional labelingigure 44 plots the marginal
proportions of labeling sets of items as dimension-like for conditions where the
data exhibit 30% complexity, following a true 2D noncompensatory structure
with 20 items per dimension (note that figures for 0% and 10% look very similar
to 30% complexity, thus only one figure is included in the text; figures asstcia
with 0% and 10% can be found in Appendix B).

When the correlation was .00 or .30, RM$®RR and the DETECT-based
methods were generally successful in labeling two set of items as dimdiksl
However, as the correlation increased, marginal proportions for labelingete/o
of items as dimension-like tended to decrease for all methods across saeple s
Further, it was noted thagé/Dwas most successful in labeling any one set as
dimension-like; particularly in conditions witth= 2000 (across all correlation
levels) or across all sample size conditions when correlation was .60 or larger.
Interestingly, at a correlation of .60, both DETECT-based methods temtiesd
higher marginal proportions for labeling two or none of the sets as dimension-

like. At a correlation .75 or above, the NOHARM-based methods tended to have
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higher marginal proportions for labeling any one set of items as dimensigmli
pattern noted particularly in cases WNh= 2000 (note the inverse "V" shaped
lines).

Conditions whose lines created the inverse "V" shapeNi=.1000 and
N = 2000 conditions with .90 correlation), suggested that high marginal
proportions for labeling any one set of items as dimension-like for all methods
were obtained. These types of patterns were largely observed acrossliibiasn
with 50% complexity (see Appendix B), suggesting that at 50% complexity, all
methods tended to label only one set of items as dimension-like more often than

either two or none of the sets as dimension-like.
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Figure 44. Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) when
the data exhibit 30% percent complexity and follow a noncompensatory 2D
MIRT model with 20 items per dimension.

The consistency of item classificatiéingure 45 plots the classification

consistencies for factorially simple items across complexity léxedsis) when

the data follow a noncompensatory 2D MIRT model with 20 items per dimension.
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Classification rates of factorially simple items in these conditions wer
highest for conditions with lower levels of correlations. The DETECT methods
reported higher classification rates than their NOHARM counterparts, avghrl
differences found in conditions with smaller correlations and larger sainpte s
Classification consistency rates for all methods tended to drop as the citynplex
levels increased; particularly in conditions of .60 or less correlation for
complexity levels of 30% and 50%.

As correlations increased to .90, none of the methods reported rates higher
than .55 (DETECTe classification rate in condition with 0% complexityNard
2000). Generally, at 50% complexity, none of the methods yielded high

classification rates for any correlation level or sample size.
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Figure 45. Consistency of factorially simple items across complexity lewéksn

the data follow a noncompensatory 2D MIRT model with 20 items per dimension
Figure 46 plots the classification consistencies for factorially comple

items across complexity levels (x-axis) when the data follow a noncompegnsator

2D MIRT model with 20 items per dimension. In conditions with 10% and 30%

of complexity and correlations of .00 and .30, the NOHARM-based methods were
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more consistent in classifying factorially complex items than their BEXET -

based counterparts.
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Figure 46. Consistency of factorially complex items across complexity levelsiwhe
the data follow a noncompensatory 2D MIRT model with 20 items per dimension.
The opposite was found for complexity levels of 30% and 50% when the

correlations increased to .75 or higher. At that point, a clear differentiation was
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observed between the classification rates of the two groups of methods. DETECT
methods yielded higher classification rates across all three sazgdewhile
NOHARM-based methods reported rates of .25 or less.

Tests with twenty items per dimension with 3D structures.

The proportion of correct dimensional selectiigure 47 plots
proportion correct across complexity levels when the data follow a
noncompensatory 3D MIRT model with 20 items per dimension. From the figure,
it was observed that both NOHARM- and DETECT-based methods performed
generally poorly across sample size and correlation levels at corgpésats of
10% or greater. One notable exception was the performance of RMSR, which
yielded high proportion correct in a condition of correlation of .00, across all

levels of complexity and sample sizes.
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Figure 47.Proportion correct across complexity levels when the data follow a

noncompensatory 3D MIRT model with 20 items per dimension.

Further, RMSR obtained high proportions correct in conditions with 0%
complexity when the correlation equaled .30 across the sample sizebl =ar in
1000 and\N = 2000 when the correlation was .60 and .75 respectively.

X2 ,p mostly performed poorly across all conditions when correlations were .75 or
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lower. Its highest proportions correct were found in condition With2000 and
0% complexity across correlation levels.

ALRand the two DETECT-based methods also tended to yield low
proportions correct. Their respective proportions correct ranged between .38 and
.46 across various sample size and correlation levels. Although neither of the
DETECT-based methods performed well, it was observed that DETECTcv
outperformed DETECTe.

The proportion of dimensional labelinigh conditions where data follow a
3D noncompensatory MIRT with 20 items per dimension, complexity levels had a
somewhat small effect on how well the methods labeled sets of items as
dimension-like. To illustrate the main findings in these conditions, Figureods pl
the marginal proportions that each method identified sets of items as dimens
like for 50% complexity levels across the sample sizes and correlatiorsf@glot
0%, 10%, and 30% of complexity looked very similar and with only a few minor
deviations and are included in Appendix B). From Figure 48, it was observed that
the methods generally reported low marginal proportions for labeling thireé s

items as dimension-like. This was noted across sample size and correlatlsn le
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Figure 48. Marginal proportions across 500 replications that a method identified
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 50% percent complexity and follow a
noncompensatory 3D MIRT model with 20 items per dimension.

DETECTe vyielded higher marginal proportions for labeling any two set of

items as dimension-like in conditions with= 500 andN = 1000:; it also recorded
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the lowest marginal proportions for labeling none of the set of items as
dimension-like inN = 1000 andN = 2000 across all levels of correlation.

RMSR ancb(é/D yielded marginal proportions across conditions that were
similar in magnitude to each other; the highest marginal proportions obtained
from both methods were those that labeled none of the set of items as dimension-
like. ALRwas similar to other NOHARM methods, however, out of the three
NOHARM-based methods, it tended to have the smallest marginal proportions for
labeling of any one set of items as dimension-like.

The consistency of item classificatiéigure 49 plots the classification
consistencies for factorially simple items across complexity lé€xedsis) when
the data follow a nhoncompensatory 3D model with 20 items per dimension. From
the figure, it was observed that the DETECT-based methods reported higher
classification rates than the NOHARM-based methods across aH [&vel
correlation and sample size. These differences were noted particularly in
conditions with smaller correlation levels across different sample sizes
NOHARM-based methods obtained low classification rates across conditions.

Additionally, within a correlation level (except for .90 correlation), as the
sample size increased, methods reported higher classification rates. ioosndi
with .90 correlation, however, none of the methods yielded high classification

rates, regardless of sample size.
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Figure 49. Consistency of factorially simple items across complexity lewéksn
the data follow a noncompensatory 3D MIRT model with 20 items per dimension

Figure 50 plots the classification consistencies for factorially comple
items across complexity levels (x-axis) when the data follow a noncompegnsator

3D model with 20 items per dimension. The DETECT-based methods were much
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more consistent in classification of the factorially complex items theae w
NOHARM-based methods.

The classification rates for DETECTe and DETECTcv were high for
conditions with 30% and 50% complexity across all sample size and correlation
levels. At 10% complexity, the DETECT-based methods performed better a

higher levels of the correlations. Complex item classification rateSLR )(é/D,

and RMSR were very low and similar to each other (never rising above .25.)
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Figure 50. Consistency of factorially complex items across complexity levels

when the data follow a noncompensatory 3D MIRT model with 20 items per
dimension.
Effects due to the number of items on determining correct

dimensionality. The preceding presentation has displayed results separately by

the number of items associated with each dimension. Additional analyses were
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conducted to examine the effects of the number of items associated with each
dimension and sample size in conditions with noncompensatory data. Figures 51
through 56 correspond to analyses of the effects for varying the number of items
for all sample size levels and dimensional structures. The figures plot the
proportion of times within a condition (i.e., out of 500 replications) that each
method accurately selected the correct dimensional structure in noncompensatory
models. In the graphs, the y-axis ranges from 0 to 1 and represents the proportion
of replications for which the method yielded the correct number of dimensions.
Connected lines on the graphs (from 10 to 20 items per dimension) are drawn
only for illustration purposes, not to imply any function between the two
categories. Within a graph, different colors represent the five methodsmsint
Figure 51 plots the proportion correct when the data follow a
noncompensatory, 2D MIRT model for 10 and 20 items per dimensidnh=for
500. RMSR showed improvement in proportion correct when the number of items
increased in all conditions where data followed a 2D noncompensatory MIRT.
For)(é/D, however, an increase in the number of items resulted in worse
performance in most conditions in terms of lower proportions of correctly
identifying the true number of dimensions. The decrease in performance was
noted across various levels of complexity and correlation, with most notable
decreases occurring at lower levels of complexity and correlationsdin t

conditions, both at correlation of .%/Dshowed no improvement when
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complexity was 30%, and showed improvement of .17 when complexity was
50%).

ALRtended not to be affected by the increase in the number of items when
correlations were .00 or .30 across all levels of complexity, or at a ¢umnedd
.60 and 0% and 10% of complexity. HowewkL,Rs performance decreased as
the number of items increased when the correlation was .60 and complexity was
30% and 50%, as well as at all complexity levels for correlations of .75 and .90.
This suggested that across the complexity and correlation levels, increlase i
number of items affecte@lLRs performance negatively (i.e., smaller proportion

correct) for only some conditions.
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Figure 51. Proportion correct when the data follow a noncompensatory, 2D

MIRT model for 10 and 20 items per dimensionNor 500.

The DETECT-based methods seemed to be less affected by the increase in
the number of items for these conditions than NOHARM-based methods. A few
slight increases in performance were noted for DETECTcv in lower complexit

conditions with correlation of .00. However, it should be also noted that the
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overall performance of the DETECT-based methods was very poor across
complexity and correlation levels in the conditions vtk 500 where data
followed noncompensatory 2D MIRT model.

Figure 52 plots the proportion correct when the data follow a
noncompensatory, 2D MIRT model for 10 and 20 items per dimensidnh=for

1000. From Figure 52, it was observed that four out of five methods (aJE}qgt

yielded higher proportions correct when the number of items increased. Degrees
of upward shifts however varied across the methods. The most notable upward

shift in proportion correct going from 10 to 20 items per dimension was recorded
by DETECTe in conditions with correlation of .00 and all levels of complexity, as
well as 0% and 10% complexity with correlation of .30. It is also noteworthy that

in those same conditions, DETECTe had somewhat large proportions correct.
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Figure 52. Proportion correct when the data follow a noncompensatory, 2D
MIRT model for 10 and 20 items per dimensionNor 1000.

In the remaining conditions, an increase in the number of items did not
affect DETECTe's performance, which was very poor regardless of the naibe
items. DETECTcv and RMSR followed the same pattern as DETECTe (same

conditions yielded some improvement, although the magnitude of improvement
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was smaller than in DETECTe). FALR only slight shifts upward or downward
were noted as the number of items increased; most notable shifts occurred in
higher complexity conditions with correlations of .75.

Figure 53 plots the proportion correct when the data follow a
noncompensatory, 2D MIRT model for 10 and 20 items per dimensidnh=for
2000. It can be noted that the methods tended to maintain the same relationship
between the increase of items and their performance WkeR000 as they did
when sample size was 1000.

Four out of five methods (all by ,p) tended to be positively affected by

the increase in the number of items when correlations were at .30 or lower. At
correlations of .60 or higher, generally the methods’ performances stayed the
same or decreased in moving from 10 to 20 items per dimension. Exceptions were
found inALR which tended to benefit from the increase in the number of items at
high correlations across complexity levels, and RMSR, which showed some
improvement for complexity levels of 30% and 50% when correlation was .90.

The DETECT-based methods once again showed an upward shift in moving from
10 to 20 items per dimension only in conditions with lower correlation levels.
Although, as noted earlier, at .60 or higher correlation, the DETECT methods
performed suboptimal across any complexity level regardless of the number of

items.
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Figure 53. Proportion correct when the data follow a noncompensatory, 2DMIRT

model for 10 and 20 items per dimensionNor 2000.

The impact of an increase in the number of items per dimension for each
sample size was also investigated for conditions where data follow a 3D
noncompensatory MIRT. Figure 54 plots the proportion correct when the data

follow a noncompensatory, 3D MIRT model for 10 and 20 items per dimension
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for N =500. As suggested by Figure 54, RMSR was the only method that largely
improved as the number of items increased; and that was not the case for all

conditions.
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Figure 54. Proportion correct when the data follow a noncompensatory, 3D
MIRT model for 10 and 20 items per dimensionNor 500.
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The improvement in RMSR was only noted in conditions with correlation
of .00 (across the levels of complexity) and in conditions with .30 or .60
correlation and 0% or 10% complexingé/D andALRgenerally performed worse
as the number of items increased for conditions of low correlation. The DETECT-
based methods showed a slight upward shift in proportion correct in some
conditions, however, as noted in the previous discussion of noncompensatory
MIRT models, the DETECT-based methods yielded low proportions correct
across conditions.

Figure 55 plots the proportion correct when the data follow a
noncompensatory, 3D MIRT model for 10 and 20 items per dimensidnh=for
1000. It was observed that RMSR performed better when the number of items
increased for conditions with correlation of .30 or less, across all levels of
complexity. While the DETECT-based methods also yielded an upward shift fr
10 to 20 items per dimension for the same set of conditions (correlations of .30 or
less and all complexity levels), the increase in proportion correct was sssch |

pronounced compared to the RMSR.
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Figure 55. Proportion correct when the data follow a noncompensatory, 3D
MIRT model for 10 and 20 items per dimensionNox 1000.

)(E;/D andALRtended to decrease in performance as the number of items

increased, particularly when correlation levels were .30 or less. Oveeall, t
methods seemed to perform similarly for conditions when correlations were .75 or
larger across the complexity levels. In those cases, the proportion correct f

either 10 or 20 items per dimension was not very high.
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The proportions of correct identification of dimensionality when the data
follow a noncompensatory 3D MIRT model for 10 and 20 items per dimension
for N = 2000 are plotted in Figure 56. General conclusions made about the impact
of increase of the number of items echoed those previously disdussBd0 and
N = 1000. Most often, the increase in the number of items helped the RMSR
method to obtain higher proportions correct in conditions with small correlations
across complexity levels, and in conditions with 0% of complexity and

correlations of .75 or smaller.
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Figure 56. Proportion correct when the data follow a noncompensatory, 3D
MIRT model for 10 and 20 items per dimensionNor 2000.

The other four methods performed equally well or better with 10 items per
dimension than with 20 items per dimension, although there were a few

exceptions. In the conditions with 3D noncompensatory MIRT, regardless of the
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sample size or the number of items, it was observed that as complexity and
correlation levels increased, performances for the methods generalgnedrs

Effects due to the number of items on methods’ ability to labelets of
items as dimension-like A comparison of results for 2D conditions where data
follow noncompensatory MIRT model suggests that the number of items per
dimension meaningfully affected RMSR proportions of labeling two sets of items
as dimension-like when complexity was at 0% (Figure 33 and Figure B12 in
Appendix B). In those conditions, RMSR increased in proportion of labeling two
sets of items as dimension-like across the levels of correlation and saraple siz
The other methods remained somewhat unaffected by the increase in items in
conditions with .60 or smaller correlation across sample sizes. Most n&taRy,
decreased in proportion of labeling two or any one sets of items as dimension-like
when the number of items increased, but the DETECT-based methods tended to
improve in labeling sets of items as dimension-like as the number of items
increased.

As complexity increased to 10% (comparing Figure 34 and Figure B13 in
Appendix B), an increase in number of items negatively affegg%ito label
two sets of items as dimension like in conditions with correlation of .60 or lower
(i.e., smaller proportions of labeling two sets of dimensions were observed).

However, at correlations of > .62 ,p Seemed to be positively affected by the

increase in number of items, yielding larger proportions of labeling two or any

one sets of items as dimension-like. Other methods tended to be only slightly
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affected by the increase in number of items; when affected, methods did dot yiel
always positive or negative shifts in proportions of labeling of sets of itenmen Oft
it was dependent on correlation level.

Generally, in conditions with 2D and complexity of 30% when data follow
a noncompensatory MIRT model, an increase in number of items positively
affected methods in labeling sets of items as dimension-like when correlations
were< .60. However, opposite effect was found when correlations were > .60
(comparing Figures 35 and 44). Comparison of results for 50% complexity when
data follow a 2D noncompensatory MIRT model suggested that the number of
items per dimension did not meaningfully affect the proportion of labeling sets of
items as dimension-like for any of the methods (comparison of Figure 36 and
Figure B14 in Appendix B).

In conditions where data follow a 3D nhoncompensatory MIRT model, an
increase in number of items per dimension meaningfully affected only the
DETECT-based methods across sample sizes and correlation levels of .60 or
lower. NOHARM-based methods did not seem to be meaningfully affected by the
increase in number of items per dimension. These behaviors were noted across all
complexity levels, however, as complexity increased, the positive efiect (i
higher proportions of labeling sets of items as dimension-like) diminished. These
comparisons were made based on Figures B9 and B15 in Appendix B for 0%,
Figures B10 and B16 in Appendix B for 10%, Figures B11 and B17 in Appendix
B for 30%, and Figures 40 and 48 for 50% complexity.
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Effects due to the number of items on methods’ ability to congently
classify items.Comparison of results for conditions where data follow a 2D
noncompensatory MIRT model suggests that the number of items per dimension
somewhat affected the DETECT-based methods. Consistency raftestdoially
simple items of in the DETECT-based methods were higher in conditions with 20
items per dimension. These comparisons were based on a visual comparison of
Figures 37 and 45. Effects of the increase in number of items on consistescy rat
for factorially complex items in 2D conditions were again somewhat meaningful
for DETECT-based methods; however, the effects for factorially conijeles
were in downward direction. In other words, the increase in number of items per
dimension in conditions with 2D noncompensatory MIRT model yielded lower
classification rates of factorially complex items in the DETH§2Eed methods.

As with factorially simple items, the NOHARM-based methods tended tesise |
affected by the increase in number of items in classification of facyociathplex
items (these comparisons were based on visual inspection of Figures 38 and 46).

A comparison of results for conditions where data follow a 3D
noncompensatory MIRT model suggest that an increase in number of items only
affected the DETECT-based methods in their ability to classify fattjosianple
items. An increase in the number of items per dimension led to higher
classification rates of factorially simple items from the DETH§2i8ed methods
across sample sizes and correlation levels of .75 or lower. The NOHARM-based
methods’ classification rates were not meaningfully affected by theaserof
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items per dimension (these conclusions were based on comparisons of Figures 41
and 49). Comparison of classification results for factorially complex sugigeste

that an increase in the number of items had no meaningful effect on classificati
rates of any of the methods. Only a slight decrease in consistency rates of
factorially complex items was noted in conditions with 10% complexity and low
correlations for DETECT-based methods (these comparisons were based on

visual inspection of Figures 42 and 50).
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Chapter 5
DISCUSSION
The primary purpose of this study was to investigate the performance of
current, popular methods in determining test dimensionality when the data exhibit
complex structure. Specifically, this study examined the performance lobdset
rooted in conditional covariance theory implemented in DETECT (exploratory

and cross-validated), and methods based on the output from NOHABM (

ALR and RMSR), a nonlinear factor analytic procedure. The data were generated
such that varying degrees of complexity were introduced.
General Discussion of Methods’ Performances

This research sought to answer the question of how well the methods
perform in assessing dimensionality of the tests when the data exhibit caynplex
The performance of five methods under consideration was evaluated using three
main outcomes. A number of design factors were manipulated, including data-
generating model, sample size, true number of dimensions, correlation(sgfetwe
the dimensions, number of items per dimension, and the amount of complex
items. The effects of these, broadly speaking, were as follows.

A main effect for data-generating model was observed in this study. In
compensatory conditions, the DETECT-based methods tended to outperform the
NOHARM-based methods in correctly identifying the true dimensionatity. |

compensatory cases, the DETECT-based methods also tended to be more
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consistent (than the NOHARM-based methods) in classifying the fabtorial
simple items for lower levels of complexity and in classifying théofaaly
complex items for the highest level of complexity.

In noncompensatory conditions, however, the NOHARM-based methods

of Xé/DandALRwere more successful in correct identification of dimensional

structure than DETECT-based methods. Classification of factorially semnple
factorially complex items suffered greatly for the NOHARM-basedhwods in
noncompensatory conditions.

As complexity levels increased, the NOHARM-based methods decreased
in their accuracy to select correct dimensionality structure more schihan t
DETECT-based methods. An increase in complexity also affected the methods’
ability to label sets as dimension-like and item classifications. Methndedédo
label more sets of items as dimension-like when complexity levels were 30% or
lower, particularly in compensatory conditions.

Sample size had somewhat divergent effect for the two types of methods.
For the DETECT-based methods, generally, an increase in sample size eithe
improved the performance of the methods, or did not affect it much. For the

NOHARM-based methopzcz;/D, increases in sample size tended to hinder its

performance more often than to improve it. For NOHARM-badeld increase
in sample size contributed to better performance in conditions with higher
dimensionality and 10 items per dimension (i.e., when the number of items per

dimension was smaller and true dimensionality larger, increase in sample size
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positively affectedALR’s performance). However, increase in sample size in other
conditions tended to result in poorer performancaLd® (similar to what was
observed withy¢ ).

The magnitude of the correlation(s) between dimensions particularly
affected the performance of the methods in noncompensatory conditions, where
increases in correlation generally yielded lower proportions correct and
classification rates of the methods. It noteworthy that, as was thevithsother
design factors, the effects of manipulating the correlation effect on tiedne
were not equal or consistent.

Lastly, x&/p, ALR and DETECTe methods tended to perform about the

same under 3D as they did under 2D structures, while RMSR and DETECTcv
performed better as the true dimensionality increased (particularly when
complexity and correlations increased).

While the above summaries concern broad summaries of main effects, the
following subsections provide syntheses and recommendations for the
compensatory and noncompensatory contexts.

Data Following Compensatory Structures

The DETECT-based methods typically outperformed the NOHARM-
based methods in terms of identifying the correct number of dimensions,
especially when the correlations were .60 or smaller, and the sample size was

larger. These findings are consistent with previous research on DETECT (e.qg.,
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Girl et al., 2006, Zhang & Stout, 1999b). Particularly good performance of
the DETECT-based methods was noted in conditions with complexity levels of
30% or less. As the complexity levels increased and the sample size eégcreas
the performance typically diminished. Between the two DETECT methods,
DETECTe often outperformed DETECTcv, mostly wier 500 andN = 1000
and in conditions with longer tests (i.e., 20 items per dimension).

The latter result was, however, not surprising. When conducting
exploratory DETECT using a cross-validated mode (i.e., DETECTcv), a
researcher decides how much of the whole sample is to be used as the training
sample. In the current study, 50% of the sample was dedicated to the training
sample. The amount of information for any one analysis of DETECT in the cross-
validated mode was less than in the exploratory mode. Therefore, it comes as no
surprise that the largest differences in performance between DETEGTe a
DETECTcv were found in conditions with smaller sample sizes and longer tests
(i.e., conditions with 20 items per dimension). Nonetheless, DETECT methods
tended to perform better than their NOHARM-based counterparts in correctly
identifying a true dimensionality in conditions with the compensatory MIRT
across all complexity levels for various sample sizes and correlatios.level

Of the three NOHARM-based methodé,/D andALRgenerally
outperformed RMSR)(CZ;/D was generally found to be most accurate in conditions

with shorter tests, particularly when the sample size and/or complexity we
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small. The performance o,fé/D diminished as the correlation levels increased to
.75 and the sample size was large, a finding consistent with the reseag@lg on
when 0% complexity conditions were considered (e.g., De Champlain &
Gessaroli, 1998).

The performance dALRimproved in conditions with the correlation of
.60 and 30% or less complexity as the number of items increased; an opposite
effect was found foy(f;/D, particularly wherN = 2000. This finding was
consistent with the previous researchAiR which suggested that an increase in
the number of items improved the accuracbR (Finch & Habing, 2005}.
However, this finding was somewhat inconsistent with the researygﬁl/gr(De
Champlain & Gessaroli, 1998), which suggested that the effects of the number of
items as well as the correlation level had little or no eﬁeq(cggg. As in the
current study, the performance was negatively affected by the increasedstthe
length. It should be noted, however, that De Champlain and Gessaroli (1998)
acknowledged limitations of their findings, particularly with respect to
considering more complex multidimensional models, such as those investigated in

the current study.

"It is noteworthy that in the same study, Finch and Habing (2005) found
DETECT to perform worse with an increase in items. In the current stusgs it
observed that, typically, an increase in items did not affect DETECTe, but it did
slightly affect DETECTcv.
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In conditions where the data followed a compensatory MIRT model, all
methods seemed to successfully label two sets of items as dimension-like for tr
2D structures when the data exhibited 30% or less complexity and the correlation
was .75 or smaller. When the complexity increased to 50%, the DETECT-based
methods tended to have success labeling only one dimension-like set in conditions
with a small correlation and typically had high marginal proportions for not being
able to label any sets of items as dimension-like. The NOHARM-based methods
tended to label either two or none sets of items as dimension-like when
correlation was .75.

In true 3D conditions, the methods tended to label two sets as dimension-
like well up to 30% complexity as well; however, the effect of the correlation
level was more notable in 3D than in 2D compensatory conditions. As the
correlations rose above .30 in 3D conditions, larger sample sizes were needed to
successfully label three dimension-like sets.

All methods yielded high consistency rates of factorially simple items
when the complexity levels were 30% or less and the correlation levels were .75

or Iower.)(é/D, ALR and DETECTe tended to have higher rates than the

DETECTcv and RMSR; however, in the low correlations and viher2000,
those differences were only slight. An increase in true dimensionabiy @D to
3D) resulted in minor differences in classification rates for individuahauss;

the DETECT-based methods were most notable in improving classification rates
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for factorially simple items when true dimensionality increased. For
compensatory conditions in either 2D or 3D cases, an increase in the number of
associated items per dimension did not seem to affect any of the methods’
classification rates.

For factorially complex items from 2D compensatory conditions, the
NOHARM-based methods yielded classification consistency rates afe@ind
across all levels of complexity, sample sizes, and correlation. The DEDb&SED
methods were less consistent in situations with complexity levels below 50%, but
more consistent with complexity levels of at 50%. An increase to 3D structures
did not affect the NOHARM-based methods and their classification rates. The
DETECT-based methods, however, yielded higher classification rates of
factorially complex items at 30% complexity (compared to 50% in 2D). These
DETECT results are somewhat similar to those found in Gierl et al. (2006) study
However, an exact comparison cannot be made due to different strategies for
computing classification rates.

Synthesizing the preceding discussion, the following recommendations
can be drawn in compensatory MIRT situations. The DETECT-based methods,
particularly DETECTe, performed the best in terms of identifying the nuofbe
dimensions. This was true even for high levels of complexity, a somewhat
surprising result given that DETECT assumes simple structure. Howevtee, as

complexity increases, it becomes more difficult to label the resultisgptéems
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from DETECT in terms of the dimensions. Moreover, DETECT is fairly
inconsistent in its classification of complex items. These difficultiearocc
because DETECT assigns all the items to non-overlapping clusters, and so in
situations where the correct number of clusters is supported, the complex items
wind up being inconsistently assigned to the clusters, complicating the
interpretations of the clusters.

Thus, DETECTe can be recommended for determining the number of
dimensions, when the MIRT models are compensatory in nature. There appears to
be little difference between the exploratory and cross-validated DETECT
methods. Where differences exist, the exploratory approach generally performe
better. However, researchers should have caution when interpreting thescluster
when simple structure does not hold. DETECT provides indices meant to indicate
when approximate simple structure does not hold (ergtio or IDN index;

Roussos & Ozbek, 2006, Zhang & Stout, 1999b). More research on DETECT's
utility for identifying the presence of complex structure—and thereflemting

the researcher to have caution in interpreting the resulting clusters—isineede
Data Following Noncompensatory Structures

The NOHARM-based methogg ,p andALRmost often correctly
identified the true dimensional structure in 2D conditions with 10 items per
dimension across all complexity levels. In 2D conditions where the number of

items increased to 20 per dimensidhRremained to be one of the most accurate
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methods buké/D performance diminished. Increase in the number of items

helped RMSR and DETECTe methods to improve in accuracy, although
DETECTe method was only accurateNi= 1000 andN = 2000 conditions with
0% or 10% complexity and small correlations (.00 and .30).

An increase in true underlying dimensionality (from 2D to 3D) resulted in
ALRand Xé/n performing best, in particular witk = 2000 and lower
correlations. An increase in the number of items in 3D conditions led to decreased
accuracy in all methods except RMSR across all complexity levels. RMSR
performed well in conditions with correlation of .00, as well as conditions with
0% of complexity and .60 correlation (especially whin 2000).

Thus, recommendations for determining the number of dimensions in
noncompensatory situations are somewhat dependent on the number of
dimensions as well as number of items associated with dimensioRsnd

Xé/D tended to be the most accurate methods in conditions that had 10 items per

dimension and where true dimensionality was 2D rather than 3D. RMSR tended
to benefit from the increase in both items and dimensions; however, given that
RMSR method generally performed suboptimally, it is not recommended to use
for most situations examined in this study. RMSR outperformed other methods
only in a small number of conditions — conditions in which the data followed a
noncompensatory 3D MIRT model with 20 items per dimension, 0% of

complexity with low to moderate correlations, and across complexity leteda
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correlations were .30 or less. The DETECT-based methods did not perform as
well in noncompensatory condition, and therefore might also not be optimal
methods to determine dimensionality.

The marginal proportions for labeling sets of items as dimension-like were
typically low, suggesting that the methods generally failed to labeltiwees)
sets of items as dimension-like in 2D (3D) noncompensatory situations. In 2D
conditions with 10 items per dimension, an increase in complexity resulted in the
methods labeling two sets of items as dimension-like less often, and labeling one
or none of the sets as dimension-like more often. Similar observation was made
when the number of items increased to 20 per dimension, where RMS(%/gnd
had the most success in labeling one set of items as dimension-like (compared to
the rest of the methods which yielded low marginal proportions for labeling any
set of items as dimension-like). When true dimensionality increased to 3D, all
methods failed to label three sets of items as dimension-like across thle sam
size and correlations.

The DETECT-based methods were more consistent in classifying
factorially simple items across complexity levels, sample sizes,arglations.
However, as complexity and correlation levels increased the claseificates
for all methods decreased. An increase in the number of items did not affect the
classification rates too much and patterns of behaviors of the methods remained

consistent (i.e., the DETECT-based methods yielded higher consistendprates
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factorially simple items than NOHARM-based methods).

In most conditions, the DETECT-based methods classified factorially
complex items equally or more consistent than the NOHARM-based methods. In
particular, as complexity, the number of items, and the true dimensionality
increased, the DETECT-based methods were notably more consistent than any
NOHARM-based method.

Given the results of the noncompensatory conditions, if the researcher
hypothesizes that the nature of the relationship between the constructs is indeed
conjunctive, the methods of DETECT may not be appropriate. In those cases, the
researcher should adopt other methods. As these results suggest, for
noncompensatory situations, the NOHARM-based methmﬂeorxé/,)should
almost always be employed. For the most part they were comparable, shight
edge toALRiIn some cases. However, it should be noted that ne\MRenor
Xé/D yielded high proportions of labeling the sets of items as dimension-like, and
classification rates for both factorially simple and factorially ptax items were
low across conditions. Therefore, despite the recommendation to use the
NOHARM-based methods of eithALR or Xé/D! the results of the current study
should be taken as initial understanding of noncompensatory MIRT in
dimensionality assessment.

Where do we go from here”An exploratory approach to understanding

the test dimensionality can be particularly useful in applications of newly
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developed instruments, or in tests that measure a construct that invokes complex
relationships between the examinees and the items where little is known about
that complexity. Assumptions related to the nature of the relationship between the
constructs also need to be determined by the researcher, because they may be
important in the choice of the dimensionality method to assess the number of
dimensions.

The current study has shed some light onto the performance of the
methods in assessing multidimensional item responses. It is suggesthd that t
selection of tools by the researcher may have an impact on what optimal solution
is obtained given a variety of factors. For example, RMSR is not recodeten
for assessing dimensionality in general. For other methods, given that tiedmet
examined showed to be stronger in some conditions and weaker in others, the
selection of the dimensionality assessment method is not simple. Rathightit m
depend on a number of factors or characteristics of the data.

Given the differences in the results for the compensatory and
noncompensatory conditions, perhaps the most consideration should be given to
understanding how the constructs combine in the item response process. If the
researcher believes compensatory relationships hold, DETECTe should be used
for assessing the number of dimensions, but should be used cautiously in
interpreting the clusters of items if simple structure does not hold. If the
researcher believes noncompensatory relationshipsAloRishould be used for
assessing the number of dimensions. However, nedibienor any other method
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is likely to yield groupings of items that can be accurately interpretedns tef

their true dimensional structure. Furth&t,R resulted in selecting a

unidimensional solution most often of the three NOHARM-based methods (recall
that DETECT yielded no solutions that favored one factor). These resudistspe
ALRSs tendency to under-factor more often, particularly in situations where the
correlation levels increaséd.

Thus, a general recommendation is that multiple sources be used in
evaluating dimensionality of an assessment, particularly when the cotyjte
the item responses is present. Using multiple sources and triangulation &f result
might provide a firmer support for appropriate score interpretation.

Although this work builds on the existing literature in dimensionality
assessment for compensatory MIRT, it also presents first insights into
performances of the studied methods in dimensionality assessment of
noncompensatory data. As suggested in many of the conditions with a
noncompensatory model, the investigated methods may have limits in their
suitability. This may have larger implications, particularly with anaase in
cognitive diagnostic assessments. These types of testing scenarioszaléed

in better understanding of the procedures for noncompensatory data. Specifically,

8 As noted in the final section &fture directionsfurther examination about
performances of all methods when erring is warranted.
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we need better tools to evaluate internal structures of instruments which we
observe and measure that may assume relationships that are not compensatory.
Impact and Contributions

The results of this study contribute to a better understanding of how the
exploratory approaches of methods based on DETECT and NOHARM perform in
the evaluation of test dimensionality, specifically when the data exhibits
complexity. The current study brings both methodological and practical
contributions to the area of dimensionality assessment. Methodologically, there
are two main contributions. One, the impact of complexity in dimensionality
assessment is a relatively unexplored area. Two, there is a general lesgantin
on the NOHARM and The DETECT-based methods when the underlying MIRT
model is noncompensatory, an issue addressed to some extent in the current study.

In practice, this study’s results are meaningful in several ways. The topic
of dimensionality assessment has explicit connections to the issues in practica
assessment, such as design, scoring, and interpretation. In test design¢chearesear
may be concerned with specifications of the content domain, item format, as well
as the process of item construction (Tate, 2002). In all of these processes, being
aware of test dimensionality is important because potential consequenbés mig
arise if wrongful assumptions about test dimensionality are made.

For example, let us assume that a new science test is developed where the

assessment is viewed as multidimensional and complexities in the data response
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are expected (see Leighton, Gokiert, & Cui, 2007 for a detailed example of
science assessment and multidimensional complexities within). Durintgitine
design process for a science reasoning assessment, an item writzeatay
science item such that it taps into multiple aspects of proficiency inificient
reasoning (e.g., selective encoding and comparison processes in inductive
reasoning and selective combination processes in deductive reasoning).

For such an item, evidence supporting its complexity could be gathered by
utilizing factor analytic techniques to dimensionality assessment. dsing
nonlinear factor analytic procedure, such as NOHARM, may indeed be
appropriate to investigate the (intended) item’s relationship with lateot$act
However, before a technique is used to examine the item’s relationship to the
constructs of interest (and thus providing evidence or lack thereof in the
validation process), the method itself ought to be shown to perform well.

This study’s results alert us to some circumstances where the methods
performed suboptimally in selecting the correct dimensional structure. This, in
turn, may implicate how the item’s relationship to the constructs is intedoié
the methods err in identifying the true underlying number of constructs, the
associations of items to those constructs may be questionable.

The results of the current study relate to scoring and interpretation
processes of the test in a more straightforward way. Scoring and etatiqor of

the scores of an assessment are both tied to the process of comprehensive
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validation. According to the AERA, APA, and NCME standards, if a test provides
more than one score (e.g., subscores), “the interrelationships of those scores
should be shown to be consistent with the construct(s) being assessed” (p. 20).
This calls for providing evidence for the internal structure of the test, and the
dimensionality assessment is precisely tasked to do so. In other words, as
researchers and test developers, we seek to find evidence and support for a
particular score interpretation of an assessment.

One aspect of that is to examine and evaluate whether the internal
structure of the test reflects the intended construct(s), which in turn informs how
the test scores are reported. If a test is scored and reported using sulbecales, t
interpretation of the multiple scores implies that multiple constructs easumed
by the test. These interpretations are only meaningful if the internalse wdt
the assessment and intended construct(s) align (i.e., support for
multidimensionality is gathered).

The current study evaluated five popular methods currently used in
dimensionality assessment that can provide support for this alignment. More
specifically, the evaluation of the methods was conducted for situations that
involve possibly factorially complex multidimensional assessments, teeofyp
assessments that are becoming more popular in current educational settings.

The results suggest that the methods of NOHARM and DETECT indeed

may be useful and appropriate tools for dimensionality assessment in some of
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these complex testing scenarios. In particular, the conditions that yielditata
simple structure and have assumed compensatory relationships among the
constructs and items are well suited for the application of the procedures studied
here. However, the results of the current study also suggest that these mathods (a
they currently operate) may not serve well in dimensionality assasaseur
assessments become more complex and multi-layered.

Limitations of the Study

The current study has several limitations, some of which are related to the
procedures themselves, while others are reflective of the design of the study

The limitation of the procedures mainly points to the estimation and
nonconvergence issues related to NOHARM. As the number of items and/or
examinees increased, the estimation time for NOHARM became ratigénye
and it resulted in more occurrences of failure to obtain the reliable esgifnat,
nonconvergence).

Nonconvergence was also observed in particular datasets. As discussed in
detail in the previous chapter, the estimator implemented in NOHARM cannot
handle perfect item response vectors. This can be problematic in severgl testi
scenarios, particularly, when the tests are short or the sample sizdlig=som
instance, if a measure is short (e.g., as a screen test or in a pilot settiogjtend/
population of interest is particular (e.g., a special population of severelsdefr

individuals), an endorsement of all (or none) of the items may be a plausible
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event. For those cases, the NOHARM procedure cannot be used to assess
dimensionality as the model estimates cannot be obtained. The DETECT-based
methods do not suffer from the presence of perfect response vectors

As with other factor analytical approaches and procedures, the application
of NOHARM requires a researcher to determine the optimal number of factors to
be extracted. Although three methods based on NOHARM output were

investigated in the current stuch;/éQD, ALR and RMSR), more research is

needed to arrive to a consensus which of the three, if any, is most suitable. While
the current results are consistent with previous research to some exiedirgy
support forALRor)(é/D, both of these methods performed suboptimally in some
scenarios (e.g;g?;/D tended to identify the true number of dimensions less often

in conditions with a correlation between dimension of .75 and W=2000).

The data characteristics contribute to the limitations of the procedures on
two other fronts: completeness of the data and binary scoring of the item
responses. Both DETECT and NOHARM, as standalone procedures applied in the
current study, can only accommodate complete data. In other words, cases with
missing item responses cannot be used in estimation. The effects of missing data
techniques on the performance for either method are largely unknown.

A more general limitation of the study pertains to the choice of item
response scoring. Only dichotomously data were considered in the study, as is

assumed in both NOHARM and DETECT. (An extension of DETECT for
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polytomous data exists, but is currently not commercially available.) Current
assessments, however, more frequently utilize different item formats, sngport
dichotomous and polytomous scoring.
Several other limitations pertain to the current study. In the current study,
only the 2PL MIRT models for data generation were considered. Although a
rationale to model data without the pseudo-guessing parameter present may be
justified, omitting it limits the generalizability of the results.

Similarly, only one set of item parameters was chosen for all conditions;
previous literature found differences in DETECT and NOHARM'’s performanc
when different sets of item parameters were used (Finch & Habing, 2005). This
implies that the generalizability of the results to other tests that poseedifitem
parameter characteristics may be limited.

Furthermore, in the current study, simple and complex structures were
considered. One could argue that the approximate simple structure would be a
more realistic choice, thus suggesting a limitation of the baseline useexfatie

simple structure. In addition, only 2D and 3D structures were considered.

® One justification is that not much is known about noncompensatory MIRT and
dimensionality assessment of complex data. Thus, it was vital to first tamerst
the performance of the methods in conditions that were “more” ideal, before
introducing additional sources of complexity such as a pseudo-guessing
parameter.
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Although results for these dimensionality structures allow for some comparison
with previous research, performance of the methods under in higher conditions
when complexity in the data is present remains unknown (e.g., Finch & Habing,
2005, study compared two- and six-dimensional structures when evaluating
DETECT and the NOHARM-based methods).

The choices for sample sizes and test lengths were largely based on the
previous literature; however, they limit the generalizability of the teskbr
example, the situations with tests shorter than 20 total items or sample sizes of
less than 500 were not considered, and thus, the conclusions for such testing
scenarios cannot be provided, although such testing scenarios are very plausible in
some settings (e.g., pilot studies, attitude measures, etc.).
Future Directions and Conclusion

Given the limitations of this study (and general constraints of the methods
themselves), future research in dimensionality assessment is warhanted.
addition to understanding how the methods performed, it will be important to
further understand their performance through an investigation of errors they
made. Thus, future directions of this line of research would involve examining
over- and under-factoring of the methods when they erred.

Additionally, future work may involve inclusion of the pseudo-guessing
parameter often modeled in multiple-choice items. Furthermore, diffetsrifse

item parameters may influence the performance of the methods, thus for
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generalizability purposes, it would be beneficial to compare the curretisresu
with the results based on a different set of item parameters.

Future research should also focus on how to deal with different data,
including polytomously scored and missing data, which are often found in
educational assessments. A better understanding of how the current methods are
impacted by various applications of missing data techniques may allow for more
inclusion of data that are not complete when assessing multidimensionality.

Although the scenarios considered in this study included only those when
the researcher has agriori hypotheses of test dimensionality, a confirmatory
approach to examine the methods performance should also be considered, as both
NOHARM and DETECT have confirmatory capabilities.

The final and perhaps most important step forward is to continue research
on how NOHARM, DETECT, and other methods used in dimensionality
assessment perform under noncompensatory conditions. Given that most if not all
methods are aligned with a compensatory nature of the relationship, it might be
important to continue to investigate better options for dimensionality asggssme
in those conditions. Further developments in current and newly developed
procedures that better align with the principles of noncompensatory relationships
may be imperative as new complex assessments that assume such rgdationshi
get implemented. This issue needs to be addressed further, as we utilize
dimensionality assessment as part of the comprehensive validation protess tha
leads to appropriate score interpretations.
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Table A1

Tabulated Results of Proportion Correct for Cormtis where Data Follow 2D Compensatory MIRT witHtgéfhs per Dimension

0% Complexity

10% Complexity

30% Complexity

50%rplexity

N p AR xip R De Dcv AR xZ,, R De Dev AR xg,, R De Dev ALR x4, R De Dcv
00 .93 100 .04 100 1.0 .93 100 .03 1.00 1.00 .93 100 .04 100 .9¢ .71 100 .02 100 .91
30 .89 100 .02 100 10 91 100 .03 100 .98 .90 100 .02 100 .94 .41 .99 * 99 .78
500 60 .87 100 .03 100 .9z .90 100 .03 100 .87 .84 100 .03 .98 .68 22 .94 - .85 .50
75 .8 100 .03 .97 .71 8 100 .02 93 59 .8 100 .01 .84 37 28 .84 ** 53 .23
9 8 .73 02 50 .14 .70 53 .01 42 .18 .44 11 .01 12 .13 63 45 = 08 .12
00 91 100 .03 100 1.0 91 100 .02 100 100 .95 100 .04 100 1.0 .25 .97 * 100 .99
30 .89 1.00 .04 100 10 92 100 .04 100 100 .93 100 .03 100 1.0 .04 .75 - 100 .95
1000 .60 .89 1.00 .03 1.00 .9¢ .91 1.00 .03 1.00 .98 .83 100 .01 100 .9z .03 .26 - .96 .70
75 .89 100 .02 100 .9 .89 100 .02 .99 .84 .75 99 - 96 59 05 11 - .70 .36
9 8 99 01 67 .33 .8 9 .01 59 .29 .49 40 - 23 12 58 97 = 06 .11
00 .83 1.00 .04 100 10 .85 .99 .04 1.00 100 .94 100 .03 1.00 1.0 * 59 - 100 1.00
30 .82 100 .04 100 10 .82 1.00 .03 1.00 1.00 .81 100 .01 100 10 - .03 - 100 1.00
2000 .60 .82 .99 .02 100 1.0 .83 .99 .03 100 1.00 48 .96 - 100 .99 - - - 100 .91
75 .78 99 .04 100 .9¢ .79 99 .01 100 .96 23 .91 - 100 .89 ** - - 8 55
9 56 95 = 8 57 64 93 .01 .77 .47 14 68 - 30 .14 24 75 - .02 .08

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. . “-” indicates actual zero correct; “ftilicates < .01 proportion correct.
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Table A2

Tabulated Results of Proportion Correct for Cormtits where Data Follow 3D Compensatory MIRT witHtgéénhs per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xip R De Dev AR ), R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 94 99 64 100 1.0 .96 100 .69 1.00 1.00 .96 1.00 .56 1.00 .9¢ .58 .73 .02 1.00 .98
30 .96 1.00 .68 100 1.0 .96 100 .64 100 1.00 .74 100 .47 1.00 .9t 60 .16 - .99 .95
500 60 .99 100 .59 1.00 .9¢ .98 1.00 .61 100 .97 .47 100 48 .99 .8 .24 .12 * 94 73
75 .97 1.00 .58 100 .9 .97 100 .56 .99 .90 43 89 46 97 67 40 54 25 .78 .55
90 60 21 47 80 5¢ 44 07 37 .73 59 24 = 12 43 54 .18 02 .17 34 51
00 95 .99 .75 1.00 1.0 .98 .99 .70 1.00 1.00 .97 100 46 1.00 1.0 62 .05 - 1.00 1.00
30 .99 1.00 .70 100 1.0 .97 100 .72 100 1.00 .85 100 .26 1.00 10 .65 - - 1.00 .99
1000 .60 .99 100 .69 100 1.0 .99 100 .65 1.00 1.00 .39 .97 .29 1.00 .9¢ .23 - - 97 .89
75 .99 .99 61 1.00 .9¢ 98 .99 52 100 .98 45 89 .30 .98 .87 .28 .26 .09 .80 .69
9 87 87 46 93 66 .78 .64 29 87 .61 45 09 .16 45 44 33 14 24 23 .45
00 .95 1.00 .72 100 10 .98 .99 .74 100 100 .95 100 .19 1.00 1.0 .71 - - 1.00 1.00
30 97 99 .71 1.00 1.0 .98 100 .71 100 1.00 .88 .98 .02 100 1.0 59 - - 1.00 1.00
2000 .60 .99 100 .71 100 1.0 .98 1.00 .56 100 1.00 .31 .71 .07 1.00 1.0 .22 - - 98 .95
75 .99 97 58 100 1.0 .99 .95 .32 100 100 .43 .38 .18 100 .9 .20 .02 .03 .83 .78
9 84 80 .18 .99 8 85 .66 .05 .95 .78 .58 43 .26 .67 .4z 48 .32 .23 .09 .37

Note R stands for RMSR; a method based on NOHARM dufpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®©€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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Table A3

Tabulated Results of Proportion Correct for Cormtits where Data Follow 2D Compensatory MIRT witHt2éhs per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 81 91 .98 1.00 1.0 .99 .91 .97 100 .98 .99 .97 .98 100 .9z .96 .61 .54 1.00 .71
30 .99 .93 .98 1.00 .9¢ .99 .93 .97 100 .96 100 .97 .93 100 .8 .85 .14 .08 .99 .61
500 60 .99 .96 .98 100 .9C .99 .9 .98 100 .81 .98 91 .81 .99 .65 55 .01 - .91 .39
75 .98 94 97 99 6% .99 .96 .97 .97 57 .97 .82 .63 .90 .38 42 = = 64 .19
9 .79 91 95 52 1F 64 .87 91 .46 .13 .22 .73 46 22 .06 63 .80 .40 .11 .05
00 .80 .88 .98 1.00 1.0 .98 .87 .95 100 1.00 1.00 .95 .94 1.00 .9¢ .75 .05 .06 1.00 .96
30 .99 .89 .98 1.00 1.0 .97 .90 .97 100 1.00 .99 .89 .76 1.00 .97 .13 - - 1.00 .88
1000 .60 .98 .91 .97 100 .9¢ .98 .90 .97 1.00 .98 .98 .66 .44 100 .91 .02 - - 99 .72
75 99 85 .95 1.00 .9« 98 .82 .92 100 .88 .95 .36 .16 .99 .7 .03 - - 01 a4
9 97 59 8 79 34 93 55 69 .73 30 .52 .09 .02 45 .1C .75 20 .05 .15 .05
00 65 54 .87 1.00 1.0 .83 .60 .87 1.00 1.00 1.00 .82 .71 1.00 1.0 .06 - - 1.00 1.00
30 81 60 .92 1.00 1.0 .84 .64 .90 1.00 1.00 .98 .46 .22 1.00 1.0 ** - - 1.00 1.00
2000 60 .85 .66 .90 100 1.0 .88 .60 .84 100 1.00 .81 .03 * 100 1.0C - - - 1.00 .95
75 82 48 77 100 1.0 .81 .34 .61 100 .99 57 * - 100 .95 ** - - .99 .77
9 77 07 29 98 6t .80 .06 .14 95 .53 .36 - - 69 31 37 - - 26 .12

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.



14514

Table A4

Tabulated Results of Proportion Correct for Cormtits where Data Follow 3D Compensatory MIRT witHt2éhs per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 .79 83 100 1.00 1.0 8 .87 1.00 1.00 .99 .91 .92 1.00 1.00 .97 .80 - .06 1.00 .88
30 9% .85 1.00 1.00 1.0 96 .87 100 1.00 .99 .74 8 1.00 1.00 .9t .47 - - 1.00 .83
500 .60 98 8 100 1.00 .97 .96 .87 100 1.00 .96 .41 .79 .99 1.00 .8/ .35 - * 98 .70
75 83 84 100 1.00 .8 .76 .79 100 100 .81 .35 47 93 98 .6z .55 .11 .44 88 .49
90 08 63 42 88 4€ .07 58 .17 .82 47 .16 .44 - 64 43 10 13 42 39
00 80 .77 100 100 1.0 87 .79 100 1.00 1.00 93 .80 .99 1.00 1.0 .70 - - 1.00 1.00
30 98 .79 100 1.00 1.0 97 .81 1.00 1.00 1.00 .8 .70 .95 1.00 .9¢ .34 - - 1.00 .96
1000 .60 1.00 .81 1.00 100 10 .99 .75 100 1.00 1.00 .45 61 .91 1.00 .97 .33 - - 1.00 .92
75 97 72 100 100 .9¢ 95 53 100 100 .99 51 35 91 100 .91 65 .01 .08 .97 .75
9 31 .18 99 98 74 22 10 .87 .96 67 44 51 02 .8 5 34 28 * 53 39
00 80 .48 100 1.00 1.0 89 .51 100 1.00 1.00 95 .11 .60 1.00 1.0 .76 - - 1.00 1.00
30 99 54 100 1.00 1.0 99 53 1.00 1.00 1.00 92 .06 .20 1.00 1.0 .26 - - 1.00 1.00
2000 60 99 53 1.00 1.00 1.0 99 45 100 1.00 1.00 .45 49 .81 1.00 1.0 .28 - - 1.00 .99
75 99 21 100 1.00 1.0 1.00 .10 .95 1.00 1.00 .49 .04 .49 100 1.0 .70 - 01 .96 .91
90 45 00 .71 1.00 .9: .44 - 24 100 89 .64 15 .08 92 6¢ 62 .18 .02 .43 .46

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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Table A5

Tabulated Results of Proportion Correct for Corwtits where Data Follow 2D Noncompensatory MIRT diliHtems per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 71 8 » 32 16 .72 .80 * 28 14 76 81 * 06 .05 .77 .88 * .13 .11
30 .72 8 02 11 07 69 .78 * 08 .06 .72 81 * 01 .04 .82 .88 * .06 .08
500 60 67 .76 = 01 .02 67 .70 * *» 02 55 58 * = 01 59 62 * 05
75 58 61 % » w54 B9 * . 01 49 47 Y - 03 44 44 = = 07
9 43 46 02 - 01 48 57 * - 02 53 56 * *»* 03 55 55 .01 .01 .05
00 72 80 * 61 22 67 .74 ** 49 18 67 .74 .01 .07 .0¢ .71 .81 * 11 .14
3 71 .76 *» 16 .08 65 .71 * 11 .08 .67 .74 * 01 .02 .70 .81 * .03 .09
1000 .60 .64 .72 .01 ** * 54 50 - *® & 5 58 . & 53 58 » 0] 02
75 85 .65 .01 - % 40 .37 * ™ = Bp gl * x w49 57 - - 03
9 53 56 .02 - * 64 .78 * - 68 88 01 - * 75 90 .01 * .03
00 56 56 * 84 .43 59 58 ** 68 .35 55 53 .01 .06 .06 .53 .61 * 09 .12
30 59 58 - 25 .13 48 44 7 14 07 46 44 - 01 50 52 - 01 .05
2000 60 .50 .45 - % 01 22 15 * - 01 .21 .14 - - » 17 15 - - 01
75 36 28 % - - .08 02 - o . 27 25 ™ . » 15 13 - . *
90 .48 55 % . - 59 68 = - - 75 91 ™ . - 8 9 = - 01

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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Table A6

Tabulated Results of Proportion Correct for Corutits where Data Follow 3D Noncompensatory MIRT dAiHtems per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 65 71 .03 .07 .1C .70 66 .02 .10 .15 .17 23 .06 .04 1€ 26 33 .11 .11 .23
30 42 49 03 03 .11 41 36 .03 .07 .17 .08 15 08 .03 .22 .19 32 .16 .11 .34
500 .60 13 17 06 .03 1 12 24 03 .06 .19 .07 13 11 .04 28 14 33 .18 .15 .39
75 07 09 .07 01 .12 .10 .20 .04 .04 19 11 16 .13 .03 .3z .18 34 25 .12 .39
9 05 10 .08 .04 1€ 11 22 05 .05 .26 .13 .18 .14 05 .32 .19 31 23 .15 .43
00 87 86 .02 .04 .06 .8 .79 03 .02 11 49 50 .04 * 05 59 41 .11 .05 .16
30 79 79 .02 *»* 06 .72 .62 .01 .04 11 21 23 06 * 09 .32 35 .16 .04 .20
1000 60 32 30 .05 .00 .04 .28 .33 00 .02 .12 19 20 .10 .00 .11 .30 .36 .24 .02 .27
75 12 08 .08 * 06 .24 27 03 * 09 19 18 14 * 10 .32 30 .27 .03 .25
9 10 08 .09 .00 .07 24 19 08 * 09 21 .16 .15 .00 .1t 32 25 26 .02 .30
00 8 89 02 .02 .08 .81 .04 .02 .05 .81 .78 .08 .00 .01 .87 .46 .13 .00 .07
30 8 .8 .05 * 02 80 47 *»* 09 44 43 04 .00 .02 60 .27 .07 .00 .08
2000 60 62 64 03 .00 .0z 51 .24 .00 * 04 41 35 05 .00 .0z .56 .43 .11 .00 .09
75 25 14 07 .00 .01 48 39 *»* 00 .03 .32 .17 .13 .00 .01 40 34 25 .00 .11
9 09 05 12 .00 * 34 17 07 * 03 25 10 .18 .00 .01 29 24 30 .00 .09

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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Table A7

Tabulated Results of Proportion Correct for Corwtits where Data Follow 2D Noncompensatory MIRT @iiHtems per Dimension

0% Complexity

10% Complexity

30% Complexity

50%raplexity

N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 58 21 .87 .65 .21 8 .18 .87 .58 .20 .97 .23 .83 .26 .14 95 .24 .84 25 .17
3 .94 19 8 .29 .11 .97 .16 .83 .25 .13 .87 .20 .76 .10 .06 .81 .23 .74 .13 .15
500 60 .87 .16 .86 .02 .04 .85 .05 .62 .04 .06 .26 .09 .40 01 .0z.19 .08 .40 .06 .06
75 29 13 .83 *» 03 25 .02 42 .01 .02 .11 .16 .41 * 02 .07 .15 .27 .03 .04
9 .05 22 26 - .01 .08 .28 .64 * 03 .12 56 .87 * 02 .15 .72 .83 * .03
00 54 12 81 .92 .44 8 11 8 .92 .39 92 .08 .78 53 .1& 95 .09 .67 52 .22
30 .89 08 .83 .64 .1t 91 .04 67 .50 .15 94 11 .56 .14 0S¢ .90 .04 53 .17 .17
1000 .60 .92 .08 .76 .05 .0t .89 * .18 .04 .04 56 * .06 * .02 43 - .06 .03 .09
75 .67 .02 55 *» 01 59 - .02 * 02 .30 - .04 - * 27 - = = 02
9 10 13 45 - - 29 20 .61 - * 37 58 90 - * 47 63 .79 - *
00 41 01 55 1- .81 .67 * 47 99 73 77 * 46 81 .38 .73 - .19 .73 .37
3 70 *» 54 92 42 75 - 22 8 .32 66 - 07 22 .11 61 - .06 .28 .14
2000 .60 .64 * 29 10 .02 52 - - .07 05 41 - - e 29 . - .01 .05
75 64 - 06 - o 37 - - - ™ 55 - - - - 48 - - -0
9 27 = 12 - - 77 01 11 *»* *» 8 37 79 - - 95 .32 47 - *

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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Table A8

Tabulated Results of Proportion Correct for Corutits where Data Follow 3D Noncompensatory MIRT @iiHtems per Dimension

0% Complexity 10% Complexity 30% Complexity 50%raplexity
N p AR xZp R De Dov AR xZ, R De Dev AR xZ,, R De Dev AR xZ,, R De Dcv
00 16 .39 93 20 .34 .16 .30 .95 .31 .34 *» 27 92 .18 .25 01 .08 .87 .34 .30
3 .04 33 9 19 28 .01 .15 .94 27 31 - 21 26 .12 24 * 04 11 27 .34
500 .60 - 27 63 10 19 - 09 35 19 24 - 28 .04 08 27 - 10 = 16 .29
75 - 23 07 07 15 - 24 12 08 .28 - .38 .02 .09 .30 * 14 * 18 .29
9 - 22 - 05 20 * 27 03 .07 26 - 34 * 11 31 *» 25 - 20 .35
00 36 60 97 .16 .3C .37 .49 .98 .20 .36 .05 .34 .98 .05 .21 .10 .09 .99 .31 .32
30 17 52 97 07 2¢ .16 .15 90 .12 .33 - .12 .70 .03 .17 .01 = 54 22 .27
1000 .60 * .47 98 .08 .15 *» = 25 09 21 - .32 .18 * 20 * 09 .10 .10 .28
75 ™ 38 43 03 .13 = 20 .33 .04 .17 *» 37 07 * 19 *» 23 = 07 .30
9 - 23 = 0 12 - .36 .04 01 .13 *» 40 - * 21 *» 33 - 07 .27
.00 44 76 99 17 1¢ 50 54 .98 .18 29 .26 .33 .98 * 07 .39 .06 .99 .16 .32
30 44 71 99 .04 1 42 03 .70 07 20 06 01 29 - 07 .15 * 26 .11 .25
2000 60 .09 .58 .99 * 11 .06 - - 03 .18 .02 12 20 - .04 09 .01 .28 .01 .13
75 ™ 51 .95 ** 05 04 .05 .05 .01 .08 * 43 14 - 05 .02 .19 .02 * .14
9 - 23 - - 03 .01 39 .07 * 04 01 29 *» - 05 .01 .33 - = 17

Note R stands for RMSR; a method based on NOHARM dutpe stands for DETECT exploratory; a method base®ETECT procedure. Dcv stands for

DETECT cross-validated; a method based on DETE®€quture. “-” indicates actual zero correct; “**'dicates < .01 proportion correct.
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GRAPHICAL RESULTS FOR LABELING SETS OF ITEMS AS DIMENSION

LIKE
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Figure B1.Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 0% complexity and follow a compensatory 2D MIRT model with

10 items per dimension.
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Figure B2.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-doag) w
the data exhibit 10% complexity and follow a compensatory 2D MIRT model

with 10 items per dimension.
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Figure B3.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 0% complexity and follow a compensatory 3D MIRT

model with 10 items per dimension.
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Figure B4.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 10% complexity and follow a compensatory 3D MIRT

model with 10 items per dimension.
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Figure B5.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 0% complexity and follow a compensatory 2D MIRT model with

20 items per dimension.
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Figure B6.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 10% complexity and follow a compensatory 2D MIRT model with

20 items per dimension.
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Figure B7.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 0% complexity and follow a compensatory 3D MIRT

model with 20 items per dimension.
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Figure B8.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 10% complexity and follow a compensatory 3D MIRT

model with 20 items per dimension.
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Figure B9.Marginal proportions across 500 replications that a method identified
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 0% complexity and follow a noncompensatory 3D

MIRT model with 10 items per dimension.
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Figure B10.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 10% complexity and follow a noncompensatory 3D

MIRT model with 10 items per dimension.
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Figure B11.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 30% complexity and follow a noncompensatory 3D

MIRT model with 10 items per dimension.
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Figure B12.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 0% complexity and follow a noncompensatory 2D MIRT model

with 20 items per dimension.
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Figure B13.Marginal proportions across 500 replications that a method identified

two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 10% complexity and follow a noncompensatory 2D MIRT model

with 20 items per dimension.
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Figure B14.Marginal proportions across 500 replications that a method identified
two (both), (any) one, or none of the sets of items as dimension-like (x-axis) whe
the data exhibit 50% complexity and follow a noncompensatory 2D MIRT model

with 20 items per dimension.
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Figure B15.Marginal proportions across 500 replications that a method identified
three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 0% complexity and follow a noncompensatory 3D

MIRT model with 20 items per dimension.
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Figure B16.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 10% complexity and follow a noncompensatory 3D

MIRT model with 20 items per dimension.
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Figure B17.Marginal proportions across 500 replications that a method identified

three, any two (both), (any) one, or none of the sets of items as dimension-like (x-
axis) when the data exhibit 30% complexity and follow a noncompensatory 3D

MIRT model with 20 items per dimension.
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