
Synthetic Aperture Radar Image Formation

Via Sparse Decomposition

by

Nicholas Werth

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved February 2011 by the
Graduate Supervisory Committee:

Lina Karam, Chair
Antonia Papandreou-Suppappola

Andreas Spanias

ARIZONA STATE UNIVERSITY

May 2011



ABSTRACT

Spotlight mode synthetic aperture radar (SAR) imaging involves a tomo-

graphic reconstruction from projections, necessitating acquisition of large amounts

of data in order to form a moderately sized image. Since typical SAR sensors are

hosted on mobile platforms, it is common to have limitations on SAR data acquisi-

tion, storage and communication that can lead to data corruption and a resulting

degradation of image quality. It is convenient to consider corrupted samples as

missing, creating a sparsely sampled aperture. A sparse aperture would also result

from compressive sensing, which is a very attractive concept for data intensive sen-

sors such as SAR. Recent developments in sparse decomposition algorithms can be

applied to the problem of SAR image formation from a sparsely sampled aperture.

Two modified sparse decomposition algorithms are developed, based on well known

existing algorithms, modified to be practical in application on modest computa-

tional resources. The two algorithms are demonstrated on real-world SAR images.

Algorithm performance with respect to super-resolution, noise, coherent speckle

and target/clutter decomposition is explored. These algorithms yield more accu-

rate image reconstruction from sparsely sampled apertures than classical spectral

estimators. At the current state of development, sparse image reconstruction using

these two algorithms require about two orders of magnitude greater processing time

than classical SAR image formation.
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CHAPTER 1

Introduction

Image formation from synthetic aperture radar (SAR) data is a problem of

deconvolution. The received signal is representative of the convolution of the re-

flectivity of the area being imaged and the transmitted radar waveform. Some

of the most common SAR image formation algorithms reduce the deconvolution

problem to a 2D spectral estimation problem. Inherent constraints on the region of

support for SAR data lead to image artifacts due to resolution and spectral leak-

age of the spectral estimation method used. This work explains the relationship

between SAR image formation and spectral estimation, outlines some issues that

might preclude classical spectral estimation methods, and examines modern spec-

tral estimation techniques that may provide better performance. Many of these

modern spectral estimators are aimed at providing more accurate estimates of the

signal power spectral density (PSD). Their properties include high resolution, low

spectral leakage, and in some cases non-ideal sampling conditions.

To simplify the problem description, discussion of SAR image formation will

be limited to spotlight mode SAR, where the sensor antenna is kept centered on a

single point on the ground as the synthetic aperture is sampled over time. Strip

map and scan mode SAR follow slightly different image formation steps, but still

rely on spectral estimation to transform the 2D signal into an image.

Spectral estimation may be applied to SAR for the simple purpose of image

formation, or to enhance or restore image quality. Image enhancement and restora-

tion applications include, but are not limited to: interferometry [1], bandwidth

extrapolation (i.e., super-resolution) [2–4], reconstruction of corrupt or missing
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bandwidth [5, 6], impulse response sidelobe control [7, 8], sparse aperture combi-

nation [9], and image segmentation [10, 11].

A number of spectral estimators have been developed for the purpose of side-

lobe control and super-resolution. Classical estimators include the sample spec-

trum, the periodogram and the correlogram [12]. Modern estimators may be

grouped as either parametric or non-parametric. Parametric estimators include

MUSIC [3], ESPRIT [13–15], matrix pencil methods [16–20], and AR linear pre-

diction [1, 7, 21]. Non-parametric estimators include Capon methods [6, 22], Prony

methods [23] and many sparse decomposition [24–33] and compressive sensing es-

timators [34–37].

Compressive sampling reconstruction algorithms have been a popular topic

in the last decade. Much of the early work in compressive sensing was focused on

reconstruction from projections, as in tomography and MRI [38,39]. Application to

radar and SAR has been addressed, but usually for the purpose of super resolution

[35, 40, 41]. For example, the work in [42] is based on the assumption of specific

radar waveforms and only addresses reconstruction of point scattering returns, not

clutter or the effects speckle noise. In contrast, the focus of this work is to address

the applicability of sparse decomposition for reconstructing radar imagery that has

arbitrary irregular sampling, addressing point target returns versus diffuse clutter

returns, and testing with real-world SAR data. Instead of dealing with small-

scale simulations where computational efficiency and storage requirements are not

limited, this work is directed at algorithmic implementations that are feasible for

both large high-resolution images and modest computational requirements.
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Ultimately, all of the above applications reduce to the problem of image

restoration by deconvolution. The point spread function (PSF) to deconvolve is

highly ill-conditioned, in that its transfer function has many zeros (i.e., it is sparse).

Research in the last decade has shown that such image restoration may be accom-

plished if the image characteristics obey the criteria of compressive sensing, that

is, the image domain itself is sparse and the sampling transform matrix meets re-

stricted isometry principle (RIP) conditions [43, 44]. In general, most compressive

sensing algorithms attempt to solve an underdetermined optimization problem with

an image sparsity constraint. Much work on reconstruction algorithms in the last

couple of years centers around methods rooted in iterative deconvolution via alter-

nating projections, whether they attempt to solve the stabilized inverse problem

directly or indirectly.

This thesis contributes to the fields of SAR imaging and sparse decomposition.

Two algorithms, stagewise gradient pursuit (StGP) and iterative mean square ex-

trapolation (IMSE), are developed by combining techniques applied to stagewise

orthogonal matching pursuit (StOMP [29]), gradient pursuit (GP [45]), mean square

extrapolation (MSE [46]), the iterative adaptive algorithm (IAA [33]) and the focal

underdetermined system solver (FOCUSS [30]). The StGP and IMSE algorithms

leverage elements from these existing algorithms that reduce computational com-

plexity and improve the rate of convergence to a solution, which is a necessity for

near real-time processing of high resolution SAR. StOMP enhances convergence by

selecting multiple dictionary atoms per iteration, but requires an expensive calcu-

lation to orthogonalize the solution at each iteration, while GP approximates the
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orthogonalization step in basic OMP by leveraging conjugate gradient search direc-

tions, creating lower computational complexity, but with more iterations required

for convergence because only one atom is selected at a time. The StGP algorithm

goes one step further by combining multi-atom selection with conjugate gradient

search directions, yielding an even more efficient algorithm. The IMSE algorithm

draws from IAA and IMSE. The IAA algorithm achieves a sparse solution by it-

eratively updating the estimate signal covariance, but requires expensive matrix

inversions to estimate each possible spectral component. The MSE algorithm, a

special case of FOCUSS, provides estimates for all possible spectral components

with a single matrix inversion. The IMSE algorithm leverages MSE for calculating

spectral estimates and iteratively updates the covariance estimate before applying

MSE again, similar to IAA. The StGP and IMSE algorithms could enable improved

compression of complex valued imagery (i.e., both amplitude and phase informa-

tion) or sparse aperture collection, allowing for more imaging area at lower data

rates.

This thesis also contributes to the application of sparse decomposition in SAR

imaging by demonstrating the StGP and IMSE algorithms on real-world SAR data,

whereas existing literature is focused on simulated and laboratory data that is not

typical of true SAR imagery. Existing sparse decomposition algorithms have been

applied to ideal point scattering targets in the absence of natural clutter, where

the effects of speckle noise are pronounced. This work takes the additional step of

applying sparse decomposition to coherent diffraction limited images with speckle

noise, and investigates the appropriateness of sparsity constraints in the presence
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of speckle noise. This work also demonstrates that the StGP and IMSE algorithms

result in a decomposition of a real-world SAR image into target and clutter compo-

nents. A target/clutter decomposition can serve as inputs to target identification

and speckle reduction algorithms. Image decomposition, as a byproduct of sparse

decomposition in SAR, has not been addressed by the current literature.

This thesis is organized as follows. Chapter 2 is a detailed background on spot-

light SAR image formation, its relationship to spectral estimation, and a statement

of the missing data problem to which certain spectral estimators are later applied.

Chapter 3 is a review of several types of spectral estimators, their properties, and

how they have been applied to SAR. Chapter 4 presents the proposed StGP and

IMSE algorithms for SAR. The performance of the proposed reconstruction algo-

rithms is examined in relation to the missing data problem, in the context of both

uniformly downsampled data and a non-uniform compressive sampling framework.

Chapter 5 describes the performance of the two implemented algorithms through

simulations and application to real-world SAR data. Finally, a conclusion is pro-

vided in Chapter 6, along with areas for future work.
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CHAPTER 2

SAR Background

This chapter presents a background of synthetic aperture radar (SAR) and the

processing necessary to form an image from the collected data. It is necessary to

have a basic background in how SAR data is collected and the processing necessary

to form an image from SAR data in order to understand why SAR imaging is a

spectral estimation problem. The issues and limitations that apply to spectral es-

timation translate directly to SAR image quality. Discussion is limited to spotlight

mode SAR due to its popular use in high resolution applications. Spotlight mode

is also similar to tomographic imaging, for which much research and algorithm de-

velopment have been conducted for medical applications. This chapter begins with

a description of data acquisition for spotlight mode SAR. A tomographic model for

the data is then presented. The chapter continues by explaining the signal process-

ing required to obtain an image from spotlight mode SAR data. It will be shown

that the image formation process is a spectral estimation problem, and that SAR

data can be modeled as a sum of complex exponentials. The chapter concludes

with some of the spectral estimation issues that impact image quality.

2.1. Spotlight mode SAR

The goal of SAR is to determine some representation of an area of ground based

on the reflection of radio waves. The reflectivity of the ground may be described by

the continuous mathematical function g(x, y), where y is the range direction and x

is the cross-range direction (or azimuth). In radar applications, the range dimension

is the direction of radio wave propagation from a directional antenna, while azimuth

is orthogonal to the range dimension. The function g(x, y) is generally considered
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Fig. 2.1. Radar azimuth resolution limit.

to be complex, as the reflectivity of objects affect both the amplitude and phase of

the incident radio waves. Typically, the radar sensor provides its own illumination

of the ground with some radio frequency (RF) waveform.

Early radar imaging systems suffered from poor resolution in the estimate of

the ground reflectivity map g(x, y). Resolution in the range dimension y, given by

the equation δr =
c

2∗BWRF
, where c is the speed of light, could easily be improved by

increasing the RF bandwidth (BWRF ), especially when applying pulse compression

waveforms [47]. However, resolution in the azimuth direction is determined primar-

ily by the antenna beam width, θ3dB ∝ λ
L
, which is proportional to the wavelength

λ and inversely proportional to the antenna length L. Assuming a small angular

beam width, the azimuth resolution δa ≃ Rθ3dB is determined by the length of the

arc subtended by the beam width, and thus degrades with the stand-off range R

between the sensor and the area being imaged (see Figure 2.1).

Achieving high resolution in azimuth would require an unrealistically large
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Fig. 2.2. Mapping ground points via range/Doppler method with SAR.

antenna for a mobile platform, which is necessary for SAR data acquisition. One

solution to this problem is to sample a much larger synthetic antenna aperture

with one or more smaller real antennas. Combining the signals sampled at various

positions along the synthetic aperture allows for azimuth resolution that is more

consistent with the theoretical beam width of the synthetic aperture. Figure 2.2

shows that, by moving an antenna along a synthetic aperture path, ground points

to one side of the sensor platform may be uniquely resolved in two dimensions by

their range location or pulse echo time delay, and their Doppler offset relative to

the sensor, the determination of which requires pulse integration along the sensor

path (i.e., synthetic aperture).

There are two very common modes of collecting SAR data. One mode is

stripmap mode, where a fixed side-looking real antenna beam is dragged across a
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scene of interest while transmitting and receiving pulses. The other is spotlight

mode, where the aim point of the antenna is fixed at the center of the scene of

interest as the SAR platform traverses the synthetic aperture. The SAR platform

is simply the vehicle that carries the radar payload and support systems (i.e.,

an airplane). The azimuth resolution in SAR is dependent on the length of the

synthetic aperture over which the pulses are integrated, more commonly expressed

as the integration angle θI . The integration angle for stripmap SAR is limited

by the beamwidth of the real antenna as it is dragged over the scene; thus, for

a higher azimuth resolution, it is actually necessary to have a smaller antenna,

but also requires more transmit power to maintain the desired signal-to-noise ratio

(SNR). Power restrictions are very tight on mobile platforms, so spotlight mode

SAR is often employed when high resolution is desired. Spotlight mode SAR can

dwell on a scene to obtain a larger integration angle at the expense of imaging

less scene area, as restricted by the beam footprint. The azimuth resolution of

spotlight mode SAR is given by δa = λ
2∗θI

[48]. The difference between stripmap

and spotlight mode SAR is shown in Figure 2.3.

The complete SAR data is multi-dimensional in nature, as the SAR data con-

sist of one sampled pulse vector for each transmit/receive pulse that samples the

synthetic aperture. Let the index i = 0, 1, 2, . . . , N − 1 represent the pulse number

along the synthetic aperture. Then, the received SAR signal may be expressed as

ri(x(t2), t1), where t1 is the intra-pulse time index (fast-time), t2 is the inter-pulse

time index (slow-time). The position x(t2) represents the sample locations of the

synthetic aperture in space and is dependent on the inter-pulse time, as the real

9



(a) Stripmap (b) Spotlight

Fig. 2.3. Stripmap versus spotlight SAR modes.

antenna flies along the synthetic aperture. Assuming the sensor is flying a straight

path along the cross-range dimension at constant altitude, the received signal be-

comes ri(x(t2), t1). It may be noted that this setup resembles a sensor array, except

that sampling in space is accomplished with a single sensor, and the signal received

at each position in the array represents radar returns from separate transmit pulses

si(t1). Each transmit pulse is the same waveform and is a function of t1 only, but

the entire collection of pulses is acquired by a single sensor at different times in

t2, unlike an array of sensor that would record the same return pulse at different

positions. Processing of SAR data requires pulse-to-pulse coherence, or precise

time and phase delay knowledge associated with system hardware and propagation

effects, in order to properly integrate the received pulses as you would sensor ar-

ray data. By coherence we mean that the relative phase information between every

pulse collected is maintained over the entire aperture. Figure 2.4 depicts the signals

received along the synthetic aperture array.

It may now be clearer how high resolution in azimuth (x-axis) may be achieved,
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Fig. 2.4. Collection of spotlight mode SAR data.

in light of beamforming theory in array processing. Azimuth resolution can be

improved by increasing the length of the synthetic aperture, but the inter-pulse

sampling rate (or pulse repetition frequency PRF) must be high enough to avoid

aliasing in the array response. The array response may be viewed as the antenna

pattern of the synthetic aperture, which is periodic since it is sampled in space.

An antenna pattern is generally defined as the radiation pattern of a directional

antenna, or rather the gain in radiated power versus angular direction from the

antenna. The beamwidth is derived from the antenna pattern.

2.2. Tomographic model of spotlight mode SAR

At this point it, is instructive to introduce a mathematical model for each

received pulse. It shall be assumed that the scene is in the far field of the

real antenna and that the wave fronts are planar as opposed to spherical. The

transmit waveform is demodulated from each received pulse, and each demodu-

lated receive pulse may be represented as the projection of the scene reflectiv-

ity along lines perpendicular to the direction of wave propagation, u, and mod-

ulated by the transmit waveform. The resulting projection function is given by:
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Fig. 2.5. Projection-slice principle for a single SAR transmit/receive pulse.

pθ(u) =
∫ L

−L
g(ucos(θ) − vsin(θ), usin(θ) + vcos(θ))dv [49], where g(x, y) is the

ground reflectivity. The integration bounds −L to L is derived from the extent of

scene illumination due to the beam footprint width in the v direction. This projec-

tion observation bears a striking resemblance to tomographic imaging principles,

and indeed the projection-slice theorem does apply to SAR data. The reader may

refer to the text by Jakowatz for a comprehensive treatment of spotlight SAR from

a tomographic perspective [49]. Figure 2.5 depicts the projection-slice principle for

SAR data collection.

According to the projection-slice theorem, the projection of target reflectivities

on the same iso-range line is equivalent to sampling in the frequency domain. Figure

2.6 shows the Fourier domain of a SAR pulse return according to the projection-slice

theorem. Each pulse return is equivalent to a slice of the Fourier transform of the
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Fig. 2.6. Sampling in the Fourier domain according to the tomographic model of spotlight
SAR. U0 is the radial center frequency of the image Fourier domain collected in polar
coordinates.

image area. After collecting a number of pulse returns along the synthetic aperture,

we have sampled the Fourier domain via slices at various projection angles. The

collection of receive pulses obtained from the SAR sensor is commonly referred to

as phase history, in reference to the phase response of targets in the scene over

the synthetic aperture. It is important to note that the collected phase history

for spotlight mode SAR is equivalent to sampling of the image spatial frequency

spectrum, also referred to herein as the Fourier domain, as depicted in Figure 2.6.

Each received pulse is a slice of the ground reflectivity spectrum G(X,Y ). The

integration angle θI is the difference in projection angles between the first and last

pulse collected over the synthetic aperture. The accumulation of pulses over an

integration angle θI results in 2D phase history, which is a sampling of the ground

reflectivity spectral content. The SAR system samples the Fourier domain of the
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Fig. 2.7. Phase history sampled as a polar annulus in the Fourier domain. U0 is the radial
center frequency of the image Fourier domain collected in polar coordinates.

ground reflectivity G(X,Y ) in polar coordinates (U, V ). Figure 2.7 illustrates the

resulting polar annulus of data.

2.3. Processing spotlight mode SAR

First, we will examine the processing of individual pulses in the range di-

mension, along the direction of the pulse propagation. It is common to trans-

mit linear frequency modulated (LFM) waveforms, as depicted in the upper time-

frequency plot in Figure 2.8. The equation for the LFM waveform is given by:

si(t1) = e[j(ω0t1+αFM )], where ω0 is the transmit center frequency, αFM is the

FM chirp rate, and t1 is the fast-time index that spans the transmit pulse width.

Transmitting the LFM waveform allows for larger transmit RF bandwidth, and

thus finer range resolution, but with longer pulse durations and lower peak power

requirements. The receiver may either apply a matched filter to demodulate the
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Fig. 2.8. Time-Frequency plot of a transmit and receive pulse through deramp and deskew
processing.

received pulse return, or deramp processing may be used, whereby the received

pulse is modulated with a reference LFM pulse that has the same chirp rate as the

transmit LFM pulse [48]. Depending on the collection parameters, it is common

to deramp the received signal to an intermediate frequency (IF) signal that has a

smaller bandwidth than the RF bandwidth of the chirped pulse return echoes, as in

the middle plot in Figure 2.8. The deramped receive pulses may then be sampled

in quadrature, providing complex valued samples from which phase information

can be extracted. The range reflectivity projections may then be obtained from

the frequency content of the deramped IF signal. The bottom time-frequency plot

in Figure 2.8 shows that the reflectivity of target echoes in the range dimension

directly corresponds to frequencies in the deramped IF signal.

After deramp processing, the Fourier transform (FT) of each pulse represents

the projection pθ(u). Recall that this projection function is the integration of the
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scene reflectivity g(x, y) along iso-range lines (dimension v in Figure 2.5). We will

now examine how ground targets lying on a particular iso-range line are resolved

by SAR. For this, we must look at sampling of the synthetic aperture from pulse

to pulse. Let us consider two points in g(x, y) on the same iso-range line, one at

scene center and one at the scene edge. The phase of the chirp echo at the real

antenna for a point in g(x, y) is proportional to the round trip time delay. For

any single return pulse received, all points on the same iso-range line will share

the same propagation phase delay at the receiver. However, those same points will

have non-equal phase delays for subsequent pulse returns, because the iso-range

dimension v rotates as the collection angle θ rotates from pulse to pulse. Each

point on the ground may be uniquely distinguished by the change in its propagation

phase delay over the integration angle θI . Assuming a straight line sensor flight

path and small integration angle θI , the phase of a pulse echo from scene center

will vary as an approximate quadratic function over the synthetic aperture length.

Likewise, other points at the same azimuth coordinate x will have an approximate

quadratic phase response, but with an additional unique phase component as well.

This added phase component is due to the fact that the rate of change in range

from the sensor to targets offset in azimuth varies differently across the synthetic

aperture. We shall refer to the change in range from the sensor to a point in g(x, y)

as the range profile of that point. Figure 2.9 shows two points in g(x, 0) with

different range profiles versus the sensor position in x. Application of a matched

filter in the azimuth dimension can compress the pulse-to-pulse samples into ground

reflectivity reflectivity in azimuth. Usually, azimuth compression is done via the
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Fig. 2.9. Differing range rates (profiles) for targets offset in azimuth.

Fourier transform, due to intermediate processing that correlates frequency in slow-

time t2 to azimuth in g(x, y).

For a particular range resolution cell, the targets may be resolved in azimuth

by matching a filter to the expected phase history response for a desired azimuth

offset. The expected phase response is derived from the range profile of a point

in g(x, y) and the phase delay function φ = 2πR

λ
. Every point in the scene has a

unique range profile, with approximate linear and quadratic components, as seen

in Figure 2.10. The ensemble of pulse echoes collected along the synthetic aperture

is referred to as the phase history. A SAR system records the phase history, and

an image of the scene is formed via matched filtering, where the filter is matched

to the unique phase history expected of a target at a particular position in the

scene. Collecting more phase history (i.e., a larger integration angle) allows for a

finer resolution of targets in azimuth, as the synthetic aperture length is increased

and the beamformer resolution improves. Intuitively, collecting more phase history

over a larger range of projection angles θ allows for more variation between range
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Fig. 2.10. Differing phase history profiles for different points in the image.

profiles of points offset in azimuth, and thus they are easier to differentiate from

each other. A shorter wavelength will also yield better azimuth resolution, but

there tends to be more restriction on available operating frequencies.

The most direct option for determining the reflectivity response for a point

in the scene is to design a unique two-dimensional matched filter for each desired

coordinate in the scene being imaged. This method can be extremely inefficient,

especially for large images, so it is common to perform some intermediate processing

to condition the phase history data such that all points in the imaged scene may be

focused simultaneously with a single matched filter. The first step is called motion

compensation, which multiplies each pulse response with a different phase function
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Fig. 2.11. Effect of motion compensation processing on phase history targets. (a) Pulse
echo phase delay of points at varying positions in the scene versus sensor offset position
over a synthetic aperture; (b) Motion compensation applies a phase function to each
return pulse such that a point at the scene center has zero phase variance over the
synthetic aperture.

such that a point at the scene center has a zero phase response and corresponds

to the DC component of the resulting 2D phase history SAR signal. Figure 2.11

demonstrates the effect of motion compensation on the phase history at different

points in the scene.

After motion compensation, the target at scene center will have zero phase

response, and targets displaced from the center will have unique residual phase

responses, each representing a unique frequency. The residual phases have a linear

component, due to azimuth offset, and higher order phases due to migration of the

targets through resolution cells.
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Note that the received phase history has a natural rectangular window in the

azimuth dimension, thus the impulse response (IPR) in azimuth is given by the

sinc function. Likewise, the time sample support of each pulse return is finite, so

the IPR in range is also given by a sinc function. This is illustrated in Figure 2.12.

In fact, the image IPR (point spread function) is a 2D sinc function. After deramp

and motion compensation processing, the reflectivity response due to a target at

the center of the scene has a zero phase response and is represented by the DC term

in the 2D Fourier transform of the phase history. Higher frequency components are

due to target returns increasing in distance from the scene center.

2.4. Spectral estimation and SAR image formation

In the previous two sections of this chapter, it is shown that data obtained

from spotlight mode SAR provide samples in the Fourier domain of the scene being

imaged. The image is recovered from the frequency content of the sampled data,

where points in the reflectivity map are given by an estimate of the 2D phase history

signal spectrum. A popular image formation algorithm for obtaining the spatial

frequency estimates is the Polar Reformatting Algorithm (PFA) [49], which will

now be described.

Referring to Figure 2.7, it is evident that the phase history collected over

the synthetic aperture is not uniformly sampled in the Fourier domain G(X,Y ).

However, a resampling of the data to a uniform rectangular grid in G(X,Y ) will

allow for the image to be retrieved efficiently with an FFT. Once the phase history

is sampled to a uniform grid, the FFT is the matched filter for every output point

in the desired image space. Resampling from polar to Cartesian coordinates in the
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Fourier domain and then applying a single 2D FFT can be much more efficient

than applying a different 2D matched filter to obtain each image sample as an

estimated spectral component. The PFA algorithm does assume planar wavefronts

impacting the scene, which is only an approximation in reality, but does focus points

in the scene that migrate through range cells so that larger areas may be imaged.

The PFA algorithm also assumes that polar sampling of the image Fourier domain

meets Nyquist criteria. Regardless of the image formation processing used, PFA or

brute force matched filtering, the extent of the sampled Fourier domain is limited

in both range frequency and azimuth frequency, and thus spectral leakage is to be

expected in the image domain. Likewise, the maladies associated with inadequate

Nyquist sampling will impact the image domain, irrespective of the image formation

algorithm applied.

2.5. Problem statement

As mentioned previously, an image obtained from a SAR sensor is given by

the spectral content of the raw 2D data processed and formatted in the (X,Y )

spatial frequency domain. Several observations about the nature of the collected

SAR phase history data can be stated based on the previous discussion.

First, the signal being sampled is bandlimited. The frequency components in

the phase history are determined by the spatial extent of the scene being image,

which is limited by the area that can be illuminated by the SAR sensor. The beam

pattern of the real antenna and its footprint on the ground determine how much

area is illuminated by the transmit pulse and return echoes that contribute to the

received signal. To say that the phase history is bandlimited is equivalent to saying
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that we only receive echo energy from a finite swath of ground area. From Figure

2.8, we see that the reflectivity of targets spaced in the range dimension correspond

to particular frequencies in the IF bandwidth following deramp processing. Since

the receiver IF bandwidth is limited, only a limited swath in the range dimension

may be imaged unambiguously, or without aliasing between near range and far

range targets. The fast-time (t1) sample rate, i.e., intra-pulse period or A/D rate,

determines how much of the available IF bandwidth is sampled unambiguously.

Likewise, the greater the slow-time (t2) sample rate is, i.e., inter-pulse period or

PRF, the more azimuth swath may be imaged unambiguously.

The second important observation is that the sampled SAR signal is finite in

both slow-time (t2) and fast-time (t1). Since we are dealing with a pulsed radar

system, there is a finite receive window between transmit pulses. Also, we can only

transmit and receive a finite number of pulses. There is a point of diminishing

benefit from collecting more pulses returns, as the scene content is generally non-

stationary over time, and integrating over more than 180◦ provides no additional

resolution. To extend the synthetic aperture indefinitely along a straight line is not

possible, as the scene being imaged will disappear from view due to the curvature

of the Earth. The implication of finite signal support in the SAR phase history is

a limit on image resolution in both the range and azimuth dimensions.

One problem resulting from the spectral estimation step is a resolution limit

and spectral leakage. Due to the fact that the SAR 2D phase history has a limited

spatial frequency support, the IPR in the image domain will have a limited reso-

lution. The IPR will also exhibit sidelobe behavior due to spectral leakage. Less
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Fig. 2.12. Phase history support and resulting 2D sinc IPR.

resolution means closely spaced scatterers or reflectors in the scene will be indistin-

guishable in the image. The sidelobes from scatterers with large echo returns (i.e.,

large radar cross-section or RCS) may occlude the responses from nearby scatterers

with smaller RCS. Spectral leakage occurs when the scattering center of a target is

between resolution cells in the image, such that the target cannot be represented

by a single pixel. Assuming a classical spectral estimator and a rectangular region

of phase history support, Figure 2.12 shows the expected 2D sinc IPR response.

Notice the dependence of resolution, determined by the main lobe width, on the

amount of phase history support. Also, observe the sidelobes spread in a star

pattern about the main lobe.

Another problem arises if the phase history is irregularly sampled with respect

to Nyquist criteria. If the SAR sampling conditions do not meet Nyquist criteria
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for the extent of area being imaged, then artifacts will be introduced into the

spectral estimates. For a typical SAR image, these artifacts might cause aliases or

an increased multiplicative noise ratio (MNR).

One situation that might lead to irregular sampling is sparse aperture imaging.

The designer of a SAR system may want to increase the inter-pulse receive window

to collect more range swath. The trade-off is reducing the PRF, which would

normally mean less unambiguous azimuth swath for imaging. The PRF distance, or

periodicity in the sampled synthetic beam pattern, is reduced and increases the level

of aliased energy. With an active electronically scanned array (AESA) antenna,

the SAR designer may want to monitor multiple areas of interest simultaneously by

alternating dwell (integration) time between different ground scenes and to maintain

azimuth resolution by combining non-contiguous synthetic apertures. If operating

in a congested RF band, the sensor might need to operate in non-contiguous RF

bands. One can either choose a smaller RF bandwidth from which to form an image,

resulting in reduced range resolution, or combine non-contiguous RF bands at the

risk of introducing artifacts into the image. In general, sparse aperture imaging

would involve inadequate sampling at the time of data acquisition, impacting the

SAR image formation processing at the earliest stages.

Unexpected errors or noise in the system could result in situations where it

is beneficial to ignore some of the phase history samples during image formation

processing. Any real-world system is subject to failures of sensor hardware, data

transmission or data storage. The signal may deviate from receiver limits resulting

in nonlinearities in the sampled signal. Storage devices might fail or experience data
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Fig. 2.13. Effect of irregular sampling on IPR in image.

corruption. Data samples are subject to transmission errors imposed by restrictions

and limitations of the communication channel. Interference from other RF sources

can add unwanted noise to the SAR image. In general, corrupt data samples

will decrease the SNR of the system. Excluding the corrupt samples from image

formation will get rid of the added noise, but at the expense of introducing spectral

estimation artifacts.

Some of the effects of irregularly sampled phase history can be seen in Figure

2.13. In this example, we have twenty point targets spaced randomly in the image,

taken as the sample spectrum of the phase history. Periodically deleting samples

in range frequency and/or azimuth frequency results in aliases of the targets being

created in the associated dimension(s) of the image. Distinguishing between actual

targets and their aliases becomes a problem. If random samples of the phase history

are deleted, there is an increase of the noise floor, making it difficult to detect weaker
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targets in the image. The goal is to find a spectral estimator that can reconstruct

the image efficiently and without the artifacts observed in this example.

2.6. Summary

In this chapter, the collection and processing was described for a typical spot-

light mode SAR system. A tomographic model of spotlight mode SAR reveals

that the collected phase history is equivalent to sampling the spatial frequencies of

the ground reflectivity map g(x, y) being imaged. The image formation process is

shown to be a spectral estimation problem. Sampling conditions that affect resolu-

tion, accuracy and quality of spectral estimators translate into SAR image quality.

Conditions for insufficient or irregular sampling in SAR are postulated. The same

problems that are experienced by spectral estimators due to irregular sampling also

impact SAR image quality.

Recent work in modern spectral estimators and sparse sensing may provide

answers to some of these problems. Assuming the missing or corrupted samples

are known or can be identified, a number of proposed algorithms might be able to

reconstruct a SAR image from irregularly sampled phase history.
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CHAPTER 3

Spectral Estimators and SAR

This chapter presents a more detailed look at known spectral estimators and

their applicability to SAR imaging. As mentioned previously, an image obtained

from a SAR sensor is given by the spectral content of the raw 2D data processed

and formatted in the (X,Y ) spatial frequency domain. The simple sample spec-

trum given by the 2D DFT is by far the most common spectral estimator used

to retrieve an image representation of the reflectivity map g(x, y). Other classical

estimators, namely the periodogram and variants thereof, have also been utilized to

reduce noise at the expense of resolution. However, these classical estimators have

some inherent limitations on spectral resolution and susceptibility to side lobes and

spectral leakage. They also suffer undesirable artifacts when the data is not ideally

sampled according to Nyquist criteria. Modern parametric spectral estimators such

as auto-regressive methods, MUSIC, and ESPRIT have super-resolution properties,

but require some a priori knowledge of the number of spectral components. Refined

filter bank methods are non-parametric modern spectral estimators that also have

super-resolution properties, some variations of which can handle irregular sampling

conditions, but are very processing intensive. Recent years have seen the rapid

development of compressive sensing algorithms, some of which have been utilized

to demonstrate super-resolution with synthetic SAR data. The authors in [50] pro-

vide a concise overview of classical and modern parametric estimators, and present

an iterative hard thresholding based compressive sampling algorithm [51, 52], but

only address the 1D case of line spectrum estimation. Many compressive sensing

algorithms have good performance, but are processing intensive and are currently
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applicable only in a laboratory environment with high performance computers.

3.1. Classical estimators

The Fourier method has several advantages making it an attractive spectral

estimator, namely a computationally efficient implementation with the FFT and

being a separable unitary transform. Key disadvantages are side lobes and point

spread of the impulse response (IPR) due to band limiting, as well as speckle noise

due to the coherent nature of the collected data. Various windowing methods can

be applied with the FFT to reduce side lobes at the expense of spectral resolution.

Adaptive windowing techniques, referred to as apodization in the literature, have

also been developed with the aim of eliminating side lobes [7, 8]. The limitation

stands from the fact that no DFT method alone can provide resolution better than

(2πfs
N

), where fs is the sampling frequency and N is the signal support in samples

in any given dimension.

Yet another major limitation of Fourier spectral estimators is their suscepti-

bility to non-ideal sampling situations. Real-life SAR systems can suffer partial or

temporary hardware failures during data acquisition, corruption of data transfers,

signal distortion due to receiver limitations, and interference from other sources

operating in the same RF band. Or one might be interested in controlled sparse

sampling scenarios with the aim to improve imaging area rate or reduce resource

requirements without sacrificing resolution [9]. This is where spectral estimation

techniques with super-resolution properties can be useful, as they involve implicit

extrapolation or interpolation of the SAR signal region of support.
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3.2. Nonlinear windowing

The apodization technique introduced in [8] has been extended to achieve

some sense of super-resolution, and is called the Super-SVA algorithm. Here, a

nonlinear apodization technique is applied to the method of energy error reduction

[5] for super-resolution. The energy reduction method, or alternating projections,

is described by Jain [46]. Nonlinear apodization truncates the IPR side lobes in the

image, thus extrapolating the signal support in the frequency domain. This step

is followed by a pseudo-inverse filter matched to the truncated IPR response. We

may relate this to a deblurring filter, or deconvolving with the truncated IPR, and

the end result is sharpened main lobes sampled on a denser grid. The author in [1]

demonstrates application of this method, as well as linear prediction (LP), minimum

variance, MUSIC, and parametric maximum likelihood estimators to SAR data.

This work looks at several other modern spectral estimators not covered therein.

There have been much work on other modern spectral estimators with super-

resolution characteristics that may be more accurate and flexible than the Super-

SVA algorithm, especially in situations involving missing data in the signal region

of support. This will adversely impact the Fourier spectral estimates and cause

IPR distortion. This IPR distortion makes apodization techniques in the spatial

(image) domain ineffective. We will now look at two groups of modern spectral

estimators: parametric subspace methods and non-parametric methods.

3.3. Modern parametric estimators

A high-resolution SAR signal y(m,n) can be reasonably modeled as a sum of

complex sinusoids with additive noise [49]:
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y (m,n) =
K
∑

k=1

αke
j(ωk1m+ωk2n) + η (m,n) (3.1)

y(m,n) = x (m,n) + η (m,n) (3.2)

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1, (ωk1, ωk2) is the 2D frequency of the

kth complex sinusoid, αk is its complex amplitude, and η(m,n) is a white Gaussian

noise. The complex sinusoid signal model represents a sum of impulses in the image

domain. The noise term η(m,n) is dominated by returns from low back-scatter

reflectors on the ground (e.g., vegetation). The complex sinusoid assumption only

applies to returns from targets with a large radar cross-section (RCS) relative to

their surroundings.

There exist several parametric estimators that attempt to determine the fre-

quency and amplitude of the complex sinusoids in this model. The reader may refer

to [12] for a comprehensive treatment on these methods in the 1D case. Others

have proposed 2D extensions of these methods [15,17]. Parametric spectral estima-

tors based on subspace decomposition have become popular because of their high

resolution, accuracy and consistency. The ESPRIT estimator is a favored method,

and its 2D extension is described by [15]. The 2D ESPRIT estimator finds fre-

quency components in ωk1 and ωk2 independently of each other. However, there

remains ambiguity as to what combinations of ωk1 and ωk2 comprise true (ωk1, ωk2)

pairings.

Closely related to, but more general than the ESPRIT method, are matrix

pencil methods. The matrix enhancement and matrix pencil (MEMP) method
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for estimating 2D complex sinusoid parameters is described in [17]. The authors

in [16] develop a modified MEMP (MMEMP) method which they claim to perform

more robustly than 2D ESPRIT in the presence of noise. Just like the independent

ωk1 and ωk2 2D ESPRIT method, the matrix pencil methods need a frequency

pairing scheme to estimate the correct (ωk1, ωk2) pairs [15–17]. A joint (ωk1, ωk2)

2D ESPRIT method is given in [15].

If frequency estimates can be found for 2D complex sinusoidal components,

the corresponding complex amplitudes αk may be obtained with a least-squares

estimate, as described in the nonlinear least-squares estimator presented in [12].

The amplitude estimates α̂k are given by:

α̂ = (BHB)−1BHVec(Y ) (3.3)

where B = B1 ⊗B2, and

B1 =

















ejω11 · · · ejωK1

...
...

ejω11M · · · ejωK1M
















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

ejω12 · · · ejωK2

...
...

ejω12N · · · ejωK2N

















.

In (3.3), the matrix Y corresponds to the sampled 2D signal y(m,n) in (3.1).

The above estimate for α̂k minimizes the function f = (Vec(Y )−Bα)H(Vec(Y )−

Bα), where Vec(Y ) is the stacked column vectorization of the 2D data matrix Y . In

the case of missing samples in dimensionsM orN , a weighted least-squares estimate

form of (3.3) may be appropriate. For example, one optional weighting matrix

would give equal weights to observed samples and zero weights to missing samples
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when minimizing the error function. The problem with having zero weighting in

a least-squares problem is that it creates a very ill-conditioned system, forcing

singularities in (BHB) and thus complicating the calculation of its inverse. A

weighting matrix as just described is implemented in the mean square extrapolation

algorithm (Algorithm 3.2).

A parametric method for estimating the 2D complex sinusoidal frequencies is

nonlinear least-squares (NLS), the 1D description of which can be found in [12].

A multi-modal cost function must be minimized in order to determine the K fre-

quencies, which is a difficult problem. Solving a multi-modal cost function may

be avoided if some critical assumptions are made regarding spacing of frequency

components in relation to the sampling rate. In particular, if it is assumed that

individual sinusoidal components of y(m,n) are spaced no closer than 1
M

in dimen-

sion m, and no closer than 1
N

in dimension n (i.e., resolvable using the DFT), then

the 2D frequencies and their complex amplitudes may be estimated in the image

domain using peak detection. This offers super-resolution in some sense, as the

IPR response centered at a particular frequency is replaced with an ideal impulse

via the nonlinear argmax function. However, it is not expected to resolve point

scatterers that are not otherwise resolvable in the sample spectrum. The matching

pursuit algorithms for sparse decomposition, described later, rely on similar peak

detection schemes and rely on the above assumptions to avoid minimization of a

multi-modal cost function. However, the matching pursuit algorithms are differ-

ent from NLS as they depend on a regularization parameter instead of assuming a

predetermined number of frequency components. Both techniques should be appli-
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cable to interpolation of missing samples, though. Missing samples in the M ×N

region of support may be represented as a binary weighting, where a one represents

an observed sample and a zero represents a missing sample. This binary weighting

may impact the signal to noise ratio in the image domain, but should not impact the

location of IPR peaks, since binary weighting has no phase response. This suggests

that the peak finding method should be applicable for data interpolation. A binary

window in the time/space domain will increase spectral leakage and complicate the

peak finding process, but a sanity filtering step implemented in the proposed stage-

wise gradient pursuit algorithm (Algorithm 4.2) attempts to mitigate the effect of

spectral leakage on peak detection.

While parametric spectral estimators and subspace methods offer arbitrary

resolution and can be very accurate, they do require some prior knowledge of how

many sinusoidal components K there are in y(m,n). These methods also require

computationally expensive SVD calculations, which is currently problematic for

near real-time processing. For non-real-time applications, they may be particularly

suited for minimizing spectral leakage in the SAR image, target/clutter separation,

and signal reconstruction (e.g., extrapolation and interpolation). Section 3.4 de-

scribes non-parametric alternatives that do not require a priori knowledge of the

number of frequencies K, but still have super-resolution properties.

3.4. Modern non-parametric estimators

A modern non-parametric spectral estimator that has been recently developed

is called the amplitude and phase estimation (APES) method [6, 22]. It can be

summarized as an adaptive filter-bank approach, of which the periodogram and
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windowed sample spectrum can be considered special cases. It is adaptive in the

sense that, for any particular frequency, an individual filter is designed such that

the filtered sequence is a least-squares approximation to a sinusoid signal, yet does

not distort the complex spectrum α(ω1, ω2). For multiple frequencies, a bank of

filters is designed, where each filter is refined to each frequency component. Like

the parametric estimators discussed in Section 3.3, APES is based on the signal

model of Equation (3.1). The analysis behind 2D APES is rather extensive, so only

the final result will be presented here, however it is described in full detail in [22].

Let the observed sample sequence be given by {yn1,n2}
N1−1,N2−1
n1=0,n2=0 . Then, for

any particular frequency pair α(ω1, ω2), we have the following relationship:

yn1,n2(ω1, ω2) = α(ω1, ω2)e
j(ω1n1+ω2n2) + en1,n2(ω1, ω2) (3.4)

n1 = 0, . . . , N1 − 1

n2 = 0, . . . , N2 − 1

ω1, ω2 ∈ [0, 2π)

In (3.4), the amplitude and phase to be estimated are the complex amplitudes

α(ω1, ω2), while en1,n2(ω1, ω2) represents a residual due to noise and leakage from

frequencies other than (ω1, ω2). Let yn1,n2 be the sampled 2D signal, and Y l1,l2

represent non-overlapping 2D snapshots of yn1,n2 , such that l1 and l2 are the indices

corresponding to each snapshot, and M1 and M2 is the size of the 2D snapshot in

each dimension. The number of snapshots in each dimension is L1 and L2, and the

total number of snapshots is L1L2. Let yl1,l2 = V ec(Y l1,l2) be the vectorization of

Y l1,l2 , formed by stacking its columns. Also, define aM1,M2(ω1, ω2) to be a column
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from the 2D DFT matrix corresponding to the frequency pair (ω1, ω2). The 2D

APES estimates α̂(ω1, ω2) are given by the following equations:

aM1,M2(ω1, ω2) = aM2(ω2)⊗ aM1(ω1)

aMk
(ωk) =

[

1 ejωk · · · ej(Mk−1)ωk

]T

k = 1, 2

α̂(ω1, ω2) =
aHM1,M2

(ω1, ω2)Ŝ
−1(ω1, ω2)g(ω1, ω2)

aHM1,M2
(ω1, ω2)Ŝ−1(ω1, ω2)aM1,M2(ω1, ω2)

(3.5)

g(ω1, ω2) =
1

L1L2

L1−1
∑

l1=0

L2−1
∑

l2=0

yl1,l2e
−j(ω1l1+ω2l2)

yl1,l2 = V ec(Y l1,l2) = V ec

















































yl1,l2 yl1,l2+1 · · · yl1,l2+M2−1

yl1+1,l2 yl1+1,l2+1 · · · yl1+1,l2+M2−1

...
...

. . .
...

yl1+M1−1,l2 yl1+M1−1,l2+1 · · · yl1+M1−1,l2+M2−1

















































R̂ =
1

L1L2

L1−1
∑

l1=0

L2−1
∑

l2=0

yl1,l2y
H
l1,l2

(3.6)

Ŝ(ω1, ω2) = R̂− g(ω1, ω2)
Hg(ω1, ω2) (3.7)

The matrix R̂ is an estimate of the covariance of the full sequence y(m,n).

The vector g(ω1, ω2) is a filtered snapshot that is the coherent integration of the

yl1,l2 , each of which is phase adjusted to maintain phase coherency of a response
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due to the frequency pair (ω1, ω2) under consideration. However, phase coherency

for other (ω1, ω2) is not maintained and will tend to average out. The modified

covariance estimate Ŝ(ω1, ω2) is formed by coherently subtracting the covariance

of g(ω1, ω2) from R̂. It is an estimate of the frequency-dependent noise covariance,

where any frequency component of y(m,n) not equal to the pair (ω1, ω2) under

consideration is deemed as noise.

As can be seen in the APES Equation (3.5), spectral amplitude and phase

are estimated for each frequency pair (ω1, ω2), one at a time. The APES scheme

can be computationally expensive, requiring at least one matrix inversion per fre-

quency pair. However, the authors in [22] have demonstrated that APES has super-

resolution qualities, due to its adaptive filter-bank approach. They also develop an

extension called Gapped-APES (GAPES) that interpolates gaps of missing obser-

vation samples, and another method called Missing Data APES (MAPES) that

is able to provide frequency amplitude and phase estimates in cases of arbitrarily

spaced missing observation samples. Both GAPES and MAPES are even more

computationally intensive than regular APES. The APES methods might be more

practical for processing small regions of interest in a SAR image, as points in the

ground reflectivity g(x, y) are given by estimates of α(ω1, ω2), but is not practical

for forming complete images that may be thousands of samples in each dimension.

3.5. Compressive sensing

Work on compressive sensing has inspired work in recovery of sparsely sampled

signals [53]. Part of the original motivation was to recover images from highly un-

dersampled Fourier data in magnetic resonance imaging scenarios, but the authors
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in [53] claim that the techniques should apply to tomographic imaging systems as

well. As described in the Chapter 2, SAR data acquisition bears some similarities

to tomography and obeys the projection-slice theorem. Compressive sensing signal

reconstruction methods might be used for signal interpolation or extrapolation and

super-resolution if the SAR data meets certain requirements outlined in [53]. These

requirements include sparsity in the ground reflectivity function g(x, y) and mutual

incoherence of the sample space transform (i.e., the Fourier transform).

The premise behind compressive sensing is that a signal may be reconstructed

near perfectly from sparse samples in a dispersive data domain, if that signal has

sparse content (i.e., undergoes energy compression) in another transform domain.

It is stated in [53] that random frequency samples in the Fourier domain (e.g., SAR

signal) adhere to these criteria. Signal reconstruction is performed by searching for

a fully sampled signal with minimum l1 − norm subject to the constraint that the

estimated signal matches the observed sparse samples. Optimizing with respect

to the l1 − norm is effective if the compressed signal resembles a line spectrum,

or sum of sinusoids. Taking into account observation or measurement noise in

the dispersive domain sparse samples, signal reconstruction may be stated as the

following optimization problem [43]:

min
x

‖x‖1 subject to ‖Dx− y‖2 ≤ σe. (3.8)

where y is the observed sample sequence, x is the estimate of the sparse trans-

form domain, and D is a decompressing and sub-sampling transform matrix. This

implies that the reconstructed signal should have minimum l1 − norm subject to
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the constraint that the reconstruction error among the observed sparse samples

is less than the predicted noise level. It is assumed that dim(x) >> dim(y). A

condition for signal recovery relates the minimum number of observation samples

relative to the number of non-zero components (or impulses) in the compressed

signal domain. Let n be the number of observed samples in sequence y, and K be

the number of non-zero components in the compressed signal domain x ∈ C
N , then

for some constant C we may state the requirement n > CK logN [53].

Minimizing the l1 − norm is actually an approximation to the more ideal

solution of minimizing the l0−norm, whereby the smallest number of discrete signal

components is found such that the reconstruction residual (‖Dx− y‖2) is less than

the standard deviation of the noise (σe). The l1 − norm minimization method is

popular for its applicability to linear programming. Though much research have

been conducted in solutions to the l1 − norm minimization problem, this method

actually is a subset of the more general discipline of sparse decomposition. Sparse

signal decomposition is interested in representing the signal as the smallest possible

number of discrete components.

Sparse decomposition methods can be categorized under two main objectives:

minimizing the l0−norm (matching pursuit [24]) or minimizing the l1−norm (basis

pursuit [28]). Various methods have been developed in each category. The matching

pursuit methods are popular for their straightforward implementation via greedy

algorithms and include orthogonal matching pursuit (OMP) [24], stage-wise OMP

(StOMP) [29], and gradient pursuit (GP) [45], which will be explained in more

detail. The basis pursuit algorithms are generally based on linear programming,
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such as simplex or interior point methods. The Greedy Basis Pursuit (GBP) algo-

rithm [54] has been proposed for l1−norm minimization based on greedy methods.

The FOCUSS algorithm [30] minimizes an objective function somewhere between

the l0− and l1 − norms.

Matching pursuit algorithms are based on building an approximation to the

signal by iteratively combining scaled atoms from a basis dictionary. The atom

selected in each iteration is the one with the greatest correlation to the residual

signal. The OMP algorithm removes each atom selected from the dictionary, recal-

culates coefficients for the selected atoms such that the residual is orthogonal to the

span of the selected atoms. This orthogonalization step ensures that the sparse ap-

proximation to the original signal is optimal in the least-squares sense, with respect

to the atomic components selected at the current iteration of the algorithm. The

primary fault with matching pursuits is an inherent global sub-optimality, as the

greedy approach is only an approximation of the l0 −norm. Enforcing orthogonal-

ity of the residual reduces the sub-optimality of the solution, but adds significant

computational complexity. The StOMP algorithm was proposed to speed up con-

vergence to a solution by selecting multiple atoms from the dictionary with each

iteration, which reduces the computation time at the expense of yielding a solution

that is more sub-optimal. The GP algorithm attempts to approximate the OMP

solution by employing a conjugate gradients approach to maintain orthogonality

between the selected atoms and the residual, without the need for solving a least-

squares inverse problem at each iteration. One of the proposed algorithms used

for the simulations in this work combines StOMP and GP in a novel stage-wise

39



gradient pursuit (StGP) algorithm, which has not previously been demonstrated

in the literature. While the sparse decomposition solution resulting from such an

algorithm is expected to be more sub-optimal than the straight OMP result, the

computational efficiencies inherited from StOMP and GP make it feasible to work

with larger images of more than 64x64 on a typical modern PC. The proposed StGP

algorithm is described in more detail in Chapter 4.

While matching pursuit algorithms depend on the greedy method, most basis

pursuit algorithms are built upon linear programming methods. It has been shown

that, under certain conditions on the dictionary and sparsity of the signal being

analyzed, the solution to the l1−norm minimization problem will recover the signal

exactly, even if the sampling does not meet the Nyquist criteria [55]. The solution

to the l1 − norm minimization problem can be obtained via convex quadratic pro-

gramming. When noise is present in the signal and regularization is required, it

becomes a second-order cone programming (SOCP) problem [56]. When the signal

is complex-valued and the problem is large scaled (i.e., there are many free param-

eters to be estimated), as is the case for SAR images, then SOCP methods can

be burdensome. The truncated Newton interior point method (TNIPM) [57] has

been proposed for efficiently solving the l1 − norm minimization by employing a

conjugate gradient method for approximating the search direction for each step of

the algorithm. The authors of [57] state that the definition for the l1 − norm of a

complex variable x = xr + ixi is often taken as follows:
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‖x‖1 =
∑

k

(|xr(k)|+ |xi(k)|) (3.9)

which tends to result in a solution that is independently sparse in xr and xi. How-

ever, if both the dictionary and signal are complex, then defining the complex

l1 − norm as in Equation (3.10) tends to result in a solution that is jointly sparse

in xr and xi [57]:

‖x‖1 =
∑

k

[

(

x2r(k) + x2i (k)
)

1
2

]

(3.10)

The definition for the l1 − norm of a complex variable according to (3.10)

equates to minimizing on the sample amplitudes or, in the case of SAR, minimizing

on the amplitude image. Indeed, while pixels in a SAR image tend to be uniform

and independently distributed in phase, in magnitude they tend to be sparse with

a large dynamic range. SAR imagery tends to be highly compressible when mag-

nitude detected, but the uniform random phase of scatterers in the complex image

makes the real and imaginary image components relatively incompressible. In gen-

eral, magnitude detected SAR images tend to be a combination of large RCS point

scatters which are sparse, and clutter that has lower RCS and is more prone to

speckle and multiplicative noise, with approximate log-normal distributions. This

work assumes that targets in a complex SAR image are statistically independent

with uncorrelated phase. The l1−norm definition of (3.9) allows the most freedom,

however the definition in (3.10) enforces sparsity in the magnitude detected image,

where we know the SAR image is compressible. In comparison, we can express the
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l2 − norm as:

‖x‖2 =

[

∑

k

(

x2r(k) + x2i (k)
)

] 1
2

(3.11)

The l2 − norm is the cost function for mean square extrapolation.

More recent work in compressive sensing has centered on re-weighted norm

minimization algorithms for sparse decomposition. The statistical relationship be-

tween unweighted norm minimization and re-weighted norm minimization is pre-

sented with respect to l1 − norm minimization in [58]. It has also been shown

that re-weighted l2 − norm minimization can also yield sparse solutions [59]. A

popular re-weighted norm minimizer is the Focal Underdetermined System Solver

(FOCUSS) algorithm. While matching pursuits address the l0 − norm and basis

pursuits address the l1−norm, the FOCUSS algorithm addresses the lp−norm for

0 < p < 2. The objective for FOCUSS, as discussed in [30], is a weighted minimum

norm problem and is summarized as follows:

min
W−1x

∥

∥W−1x
∥

∥

2

subject to ‖Dx− y‖2 ≤ σe

(3.12)

The solution to the above optimization problem is given by:

x = W (DW )† y (3.13)

where A† denotes the Penrose-Moore pseudoinverse of A.

The authors in [30] assume that the weight array W = diag(xp) for integer p >

0, where diag(x) is an operator that creates a square diagonal matrix with vector x
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on the main diagonal. They propose an iterative approach, where the weight array

is updated with each iteration. This re-weighted minimum norm method tends to

yield a sparser solution after each iteration, and the authors show convergence to

a unique solution. The FOCUSS algorithm is summarized in Algorithm 3.1.

Algorithm 3.1 Focal Underdetermined System Solver (FOCUSS)

Let y be the vectorized 2D observation samples
Let D be the sparse sampling transform
Select integer p > 0
Set tolerance δ > 0
Initialize x0 := y

e0 := x0
error := eHe

k := 1
while error < δ do

Wk := diag(xpk)
qk := (DWk)

†y

xk := Wkqk
ek := xk − xk−1

error := eHk ek
k := k + 1

end while

The M-FOCUSS algorithm was introduced in [25] to take advantage of multiple

snapshots of the measured data. This method will work if each snapshot has the

same sparse sampling matrix, but that is not guaranteed if we are breaking a

sparsely sampled SAR aperture into independent subapertures. The authors in [39]

extend M-FOCUSS to large-scale problems by introducing a conjugate gradient

solver as part of the algorithm, which they term CG-M-FOCUSS. Similar to the

multi-look method of speckle reduction described in [49], the phase history data

for spotlight mode SAR may be sub-divided into several independent snapshots

due to the holographic nature of SAR data. As in optical holography, SAR directly
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measures the spatial Fourier content of the scene being imaged, and any sub-portion

of the Fourier bandwidth will form a reduced resolution image of the entire scene.

The problem with breaking SAR data into blocks to be used with M-FOCUSS

is that we are further limiting our window size (bandwidth) for each snapshot,

resulting in less inherent resolution. If our phase history is irregularly sampled,

then each snapshot may be subject to a different compressive sampling matrix and

the iterative formula for solving the M-FOCUSS problem is broken.

When p = 2, we may observe that the FOCUSS algorithm is quite similar to the

mean square extrapolation algorithm in [46]. Mean square extrapolation is a super-

resolution algorithm that exploits the complex sinusoidal model for the data yn1,n2,

but does not require prior knowledge of the number of scattering centers in the

image. It is a Wiener filtering approach, and as such requires some estimate of the

signal-to-noise ratio (SNR) between sinusoidal components, due to point scatterers,

and the background clutter in the scene that dominates the noise en1,n2 in the

model. We may rewrite the signal model in matrix-vector notation as y = Sx+e =

SAs+ e, where the observed signal is y = V ec(yn1,n2) ∈ C
N1N2 , the noise subspace

is e = V ec(en1,n2) ∈ C
N1N2 , the signal to be estimated is x = V ec(xn1,n2) ∈ C

N
′

1N
′

2 ,

the space limiting (pruning) matrix is S ∈ R
N1N2×N

′

1N
′

2 , the transform matrix is

A ∈ C
N

′

1N
′

2×N
′

1N
′

2 , and s ∈ C
N

′

1N
′

2 is the sparse signal in the transform domain. For

the underdetermined system N
′

1 > N1 and N
′

2 > N2. Let x̂n1,n2 be the estimate of

the extrapolated signal, then the least mean square 2D estimator is given by [46]:

x̂ = RxS
H
[

SRxS
H +Re

]−1
y (3.14)
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where

Rx = E
[

xxH
]

= E
[

(As)(As)H
]

= AE[ssH ]AH = APAH

and

Re = E[eeH ] = σ2
eI

Let matrix A = F1⊗F2 correspond to the 2D DFT, and let W = S(F1⊗F2) =

SA be the space limiting 2D DFT, or rather the compressive sampling matrix when

applied to SAR phase history. W is an operator that transforms a vector on C
N

′

1N
′

2

to C
N1N2 . We may also write:

ŝ = PWHT−1y (3.15)

where

T = W (P + σ2
eI)W

H (3.16)

The matrix T is block-Toeplitz, and ŝ is an estimate of the stacked vector rep-

resentation of the signal in the complex image domain. We must provide an initial

estimate for the signal covariance matrix Rx, often taken as Ry. This method also

requires an a priori estimate of the average noise power σ2
e . In practice, T is likely

to be ill-conditioned and a stabilized inverse must be found. It is suggested that this

may be accomplished via conjugate gradient algorithms or Kalman filtering [46].
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Algorithm 3.2 Mean Square Extrapolation (MSE)

Let L = N
′

1N
′

2 be the number of image domain pixels
Let y be the vectorized 2D observation samples
Let A be the 2D DFT matrix
Let S be the Fourier space limiting matrix
Let W = SA be the sparse sampling transform
P := 1

L2

∣

∣WHy
∣

∣

2

Σ := σ2
eIL

T := W (P +Σ)WH

ẑ := T †y

x̂ := APWH ẑ

ê := y − Sx

The mean square extrapolation method [46] is summarized in Algorithm 3.2.

It takes a sampled observation signal of dimension N1×N2 and extrapolates it to a

larger N
′

1×N
′

2 grid. If the space limiting matrix masks observation samples within

the N1×N2 region of support, then the least mean square optimum solution will not

take into account the missing samples. The author in [46] states that this super-

resolution technique is non-parametric because it does not require estimation of

frequency pair locations for complex sinusoids, nor their quantityK, but still results

in decomposition of the observed measurements into signal and noise subspaces.

Notice that only the signal is extrapolated, while the noise is not because it is

assumed to be an uncorrelated random stationary white process.

The weighted least-squares approach has been applied to SAR data in [33]

by what the authors call the iterative adaptive approach (IAA). Recall the sparse

signal representation for the phase history y = SAs + e. The authors in [33]

propose avoiding the necessity for polar resampling in SAR data by defining the

image transform matrix A such that each column (atom) will focus the 2D phase
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function for a desired output grid point in the scene, as given below:

bk1,k2(n) =

























ej4π
f1
c
cosθ[xk1

cosφn+yk2cosφn ]

ej4π
f2
c
cosθ[xk1

cosφn+yk2cosφn ]

...

ej4π
fM
c

cosθ[xk1
cosφn+yk2cosφn ]

























∈ C
M

ak1,k2 =

[

bTk1,k2(1) bTk1,k2(2) . . . bTk1,k2(N)

]

∈ C
MN

A =

[

a1,1 a1,2 . . . a1,k2 a2,1 . . . ak1,k2

]

∈ C
MN×K1K2 (3.17)

In the notation above, M is the number of frequency samples per pulse, N

is the number of pulses in the synthetic aperture, and ak1,k2 is a steering vector

that focuses the phase history data to a point (xk1 , yk2) in the scene. The spatial

dimension xk1 is in the direction of line of sight from the synthetic aperture center

to the scene center, projected into the focus plane. The spatial dimension yk2 is

the focus plane direction orthogonal to xk1 .

The IAA algorithm iteratively settles to a unique solution for a sparse set of

scattering centers in the scene. The solution is optimal in the weighted least square

sense. Each iteration updates the covariance matrix Rx = APAH , where the power

P = diag(ŝ) is successively sparser. Each iteration of IAA updates the estimated

power at each image pixel according to:

Pk1,k2 =

∣

∣

∣

∣

∣

aHk1,k2R
−1
x y

aHk1,k2R
−1
x ak1,k2

∣

∣

∣

∣

∣

2

(3.18)

where ak1,k2 is given by (3.17).
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Algorithm 3.3 Iterative Adaptive Approach (IAA)

Let the dimensions M = N = L

Let y be the vectorized 2D observation samples
Let A be the sparse sampling transform in Equation (3.17)

Initialize P := 1
L2

∣

∣AHy
∣

∣

2

Initialize Σ := σ2
eIL

for iter = 1, 2, ...,MAXITER do

R := APAH +Σ
for k1 := 1, 2, ...,K1 do

for k2 := 1, 2, ...,K2 do

Pk1,k2 =

∣

∣

∣

∣

aH
k1,k2

R−1y

aH
k1,k2

R−1ak1,k2

∣

∣

∣

∣

2

end for

end for

for l := 1, 2, ..., L do

σ2
l =

∣

∣

∣

iH
l
R−1y

iH
l
R−1il

∣

∣

∣

2

end for

Σ = diag(σ2
l )

end for

After a number of iterations, the algorithm will converge. The IAA algorithm

is summarized in Algorithm 3.3. Based on the image transform matrix A in (3.17),

the computational complexity per an IAA iteration is O(M2N2K1K2).

3.6. Analytic Comparison

It is possible to make some comparisons between the compressive sensing al-

gorithms discussed above. First, we note the similarity between the IAA estimates

and the APES estimates. Then it shall be shown that the IMSE algorithm is an ap-

proximation to IAA. The MSE estimate can be described as a linearly re-weighted

least-squares solution, while FOCUSS is a nonlinear re-weighted least-squares so-

lution. Application of certain nonlinear weights tend to result in sparser solutions.

While MSE weights enforce the l2−norm constraint, the FOCUSS weights enforce

the lp − norm, where 0 < p < 2. Binary weights in OMP and IHT enforce the
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l0−norm. For efficient solutions to large-scale problems, both MSE and OMP may

utilize the method of conjugate gradients to approximate the solutions.

The similarity between APES and IAA estimates differs in the covariance

matrices applied in the inverse filtering step. The IAA algorithm utilizes the co-

variance matrix R̂ as defined in Equation (3.6), and APES uses the covariance

matrix Ŝ(ω1, ω2) defined in Equation (3.7). Note that APES uses a noise covari-

ance estimate E
[

ηηH
]

, and that this estimate is different for each frequency pair.

While IAA needs to calculate the inverse R̂−1y only once per iteration, APES must

calculate Ŝ−1(ω1, ω2)y for each frequency pair at every iteration. Otherwise, the

frequency amplitude estimates in Equations (3.5) and (3.18) are the same.

It is possible to show that the MSE algorithm is a special case of FOCUSS. We

start by expanding the Penrose-Moore pseudo-inverse in the least-squares FOCUSS

solution, Equation (3.13), and setting the weight array W = diag(xp) with p = 1 as

in [30]. With the addition of a regularization term, σ2
eI, we see from the formulation

below that the FOCUSS and MSE solutions are the same:

ŝ = W (AW ))† y

= W
[

WHAH
(

AWWHAH
)−1

]

y

=
(

WWH
)

AH
[

A
(

WWH
)

AH
]−1

y

ŝ = PAH
(

APAH
)−1

y

This shows that the MSE algorithm solves a weighted minimum norm problem,

and when p = 1 FOCUSS optimizes against the l2−norm. When p > 1 even sparser

49



solutions are encouraged, as more weight is given to frequencies where the PSD is

more dense (i.e., there is less penalty for selecting frequencies where P is large). The

downside to selecting 1 < p < 2 is that the weight array W = diag(xp) becomes

a nonlinear function with an infinite autocorrelation sequence, thus limiting the

ability to efficiently perform 2D convolution with the FFT.

3.7. Summary

With the previous chapter showing that SAR image formation is a spectral es-

timation problem, this chapter presents a review of 2D spectral estimators and how

they have been or might be applied to SAR. The chapter starts with a summary

of classical Fourier base estimators. Classical estimators are susceptible to spectral

leakage and have resolution limits according to Nyquist sampling criteria. Nonlinear

and adaptive windowing techniques have been developed that attempt to minimize

sidelobe response in SAR imagery, but these techniques are limited by Fourier res-

olution limits and are not well suited for compressive sampling conditions. The

Fourier resolution limit is circumvented by modern line spectral estimators. Pop-

ular super-resolution estimators, such as MUSIC and ESPRIT, are not well suited

for SAR because their 2D formulations produce ambiguous frequency pairs, their

computational complexity make them impractical for large scale problems, and the

conditions of compressive sampling provide for a poor estimate of the covariance

matrix. However, if Nyquist sampling conditions are met, they would be useful for

target/clutter segmentation via subspace decomposition. Given that the problem

being addressed in this thesis is that of image formation from a sparsely sam-

pled aperture, recently developed sparse reconstruction algorithms from the field
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of compressive sensing are presented. Matching pursuit and basis pursuit methods

are described, as well as re-weighted minimum norm methods.
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CHAPTER 4

Proposed Sparse Reconstruction Algorithms for SAR Image

Formation

This chapter proposes two relatively efficient sparse reconstruction algorithms

that may be applied to SAR image formation, iterative mean square extrapola-

tion (IMSE) and stagewise gradient pursuit (StGP), both of which are based on

compressive sensing principles. The two proposed algorithms demonstrate super-

resolution and other desirable properties. The IMSE algorithm is a combination of

the MSE and IAA algorithms discussed in Chapter 3. The primary innovation of

the IMSE algorithm is the application of fast 2D transforms and alternating pro-

jections to efficiently solve a block Toeplitz matrix inversion problem via conjugate

gradients. The StGP algorithm is a combination of the StOMP and GP algorithms,

also discussed in Chapter 3. The StGP algorithm adopts the stagewise multiple

atom selection method of StOMP in order to speed up convergence, while apply-

ing conjugate gradient search directions introduced by GP in order to reduce the

computational burden of maintaining orthogonality of the solution. The primary

innovation of StGP is to apply a sanity filter step that culls the selected atoms at

each iteration, such that no two atoms being added to the solution set exceed a

given mutual coherence. The chapter concludes with a comparison of algorithms

discussed in Chapters 3 and 4.

4.1. Iterative Mean Square Extrapolation

The mean square extrapolation (MSE) algorithm [46] is a particularly at-

tractive method for image formation with missing or sparsely sampled data.

This algorithm lends itself to the use of fast separable transforms for large scale
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multi-dimensional data. While the algorithm was originally developed for super-

resolution, or signal extrapolation, the space limiting matrix S may be defined

such that it incorporates any missing samples in the phase history domain. The

algorithm may be utilized for signal extrapolation and interpolation, so long as the

signal may be modeled as a sparse linear combination of sinusoids in a transform

domain that adheres to the mutual incoherence property with the sampling matrix

and the restricted isometry property (RIP), as described in detail in [43] and [44].

The major technical difficulty with applying the mean square extrapolation algo-

rithm lies in solving the pseudoinverse problem ẑ := T †y due to the ill-conditioned

nature of matrix T . Initial estimates for the signal and noise covariance matrices,

Rx and Re respectively, may have dramatic effects on the final solution as well.

This work presents a practical method for calculating a stabilized solution for the

ẑ := T †y inverse problem, and also iteratively updating the estimates for Rx and

Re.

A powerful numerical tool for solving a stabilized inverse is the conjugate gra-

dient method, as suggested by Jain in [46]. Jain also mentions the use of discrete

prolate spheroidical sequences to obtain a solution, which is similar to the minimum

norm solution via SVD when the problem is rank deficient. Such an approach is

usually intractable for large scale problems however, in which case the conjugate

gradient method may be the only practical solution. The theory behind the con-

jugate gradient method is well documented, see [60] for example, and the method

implemented for this work is derived from a template given in [61]. It is worth

repeating that, for a convex solution space, an optimal solution is obtained in at
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most L2 =
(

M2N2
)

conjugate gradient iterations, and without the need to calcu-

late the pseudoinverse T † directly. It does require the matrix vector multiplication

T ẑ a number of times, so an efficient solution to this system is desirable. As we

shall see, T ẑ may be computed efficiently via the fast 2-D FFT when the signal is

composed of complex sinusoids. Substituting Equation (3.16) into the expression

ẑ := T †y we get

ŷ := W (P + σ2
eI)W

H ẑ (4.1)

Equation (4.1) can be rewritten as:

ŷ := W [(P + σ2
eI)Ẑ]

where Ẑ = WH ẑ is the image domain residual following inverse filtering.

The ẑ term is an estimate of the residual noise due to clutter after filtering of

the estimated complex sinusoid components, and W = S(F1⊗F2) = SA is the space

limiting 2D DFT. The matrix F1 is the 1D DFT matrix sized to match the first di-

mension of the 2D observation signal, and F2 is the 1D DFT matrix sized to match

the second dimension. Then Ẑ = WH ẑ is an estimate of the clutter image. The

term (P + σ2
eI) is an estimate of the target image, with the addition of a regular-

ization constant proportional to the clutter power. The multiplication (P + σ2
eI)Ẑ

is done at the pixel level in the image domain, and the signal ŷ is an estimate of the

observed clutter-plus-noise phase history. These operations can be done using the

2D FFT transform and simple pixel multiplication, as opposed to full matrix/vector
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multiplication on the vectorized phase history data. This is possible because of the

assumption that, although the covariance matrix Rx = WE[ssH ]WH may not be

sparse, it is very sparse (e.g., diagonal) in the amplitude image domain. The vector

s is simply the vectorized complex image pixels. It is assumed that the expected

covariance P = E[ssH ] between complex image pixels is zero due to the uniformly

distributed random phase of the radar returns, and is well represented by just the

main diagonal elements. It was mentioned previously that the matrix T defined in

Equation (3.16) is block-toeplitz, but it is also a block circulant convolution matrix

completely defined by the first row of blocks. Thus, the computation of T ẑ as just

described is in essence calculating the convolution via multiplication in the Fourier

domain. It would seem logical that a highly overcomplete (zero padded) DFT ma-

trix would give a more closely spaced grid in the spectral estimate and thus a higher

probability of compressing to the true scattering center frequency (i.e., higher spec-

tral resolution in the sparse estimate), but it can be shown that the RIP property

of the overcomplete DFT degrades as zero padding is increased [50].

The conjugate gradient method for solving ẑ := T †y requires an initial estimate

for the solution ẑ. It is typical to initialize this estimate to zero. Each iteration of

the conjugate gradient method refines the estimate of ẑ. The conjugate gradient

iterations may be halted when the residual (y − ŷ) drops below some tolerance,

where y is the original observed signal and ŷ is defined as in Equation 4.1, or when

stability of the solution is lost. After a stabilized solution of ẑ := T †y has been

found, an estimate of the extrapolated/interpolated target signal x̂ = APWH ẑ

may be computed. This calculation of x̂ from ẑ is again equivalent to performing
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a convolution via multiplication in the Fourier domain. The method is efficient

because the transform matrix A is a dictionary of complex sinusoids that can be

calculated using the 2D FFT. Other dictionaries with different atoms may not have

a fast transform computation that can be exploited.

The mean square extrapolation algorithm requires an initial estimate of the

signal covariance matrix Rx = WE[ssH ]WH , or rather an initial estimate of E[ssH ].

Jain suggests in [46] that initializing Rx = σ2I is appropriate if a better estimate

does not exist. For this work, the initial estimate is determined as Rx = APAH ,

where P = E[ssH ] = diag(
∣

∣WHy
∣

∣

2
, which is the upsampled power image given the

observed phase history samples y. For the iterative mean square extrapolation al-

gorithm, successive iterations of mean square extrapolation start with the previous

solution ŝ, so that Rx = WE[ŝŝH ]WH . As the extrapolated/interpolated signal

estimate is refined at each iteration of mean square extrapolation, the estimated

target image ŝ tends to become more sparse until it eventually settles to an optimal

solution of the regularized least-squares problem. The mean square extrapolation

algorithm is analogous to the IAA algorithm, except that the IAA algorithm uti-

lizes a pseudo-spectrum estimate for P at each iteration, which adds significant

complexity.

The last input necessary for the mean square extrapolation algorithm is an

estimate of the noise covariance matrix Re. For simplified notation, let us define

the total number of image domain pixels as L = N
′

1N
′

2. Assuming the noise to be

stationary and white, we may express the noise covariance as Re = σ2
eIL, where σ2

e

is an estimate of the average noise power. As mentioned previously, the noise in the
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Fig. 4.1. Distinct point targets versus diffuse scattering clutter in a SAR image.

signal model is dominated by diffuse scattering clutter where there is no dominant

point scatterer in the resolution cell. It is difficult to estimate the average noise

power in the phase history (Fourier) domain, where the noise and signal are not

well separated. However, point targets tend to be sparse in the image domain

and the average clutter power, which dominates σe, may be estimated from the

image. Figure 4.1 shows an actual SAR image, with highlighted regions of point

targets, that as well modeled by complex sinusiods, and clutter that does not fit

the sinusoid model. Since the point targets are sparse, most of the image is clutter,

and it has been determined experimentally that σ2
e = (2 ∗median (|s|))2, where

s are the complex image amplitudes, usually yields a stable solution. Setting the

noise level too low risks instability and noise in the solution, whereas setting it too

high risks not reconstructing lower magnitude point targets.
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The sparsity of the solution depends on the estimated noise power σ2
e . The

greater the noise regularization term, the more sparse the solution will be, since

greater reconstruction error will be allowed at the expense of reconstructing fewer

sinusoidal components. The trivial solution (all zeros) should result if σ2
e is greater

thanmaxk1,k2(P ), as all image pixels will be treated as noise. This is consistent with

the assertion that the trivial solution results for the TNIPM l1−normminimization

if the Lagrange multiplier λ is greater thanmaxk1,k2(P ) [57]. The proposed iterative

mean square extrapolation is summarized in Algorithm 4.1.

Algorithm 4.1 Iterative Mean Square Extrapolation (IMSE)

Let L = N
′

1N
′

2 be the number of image domain pixels
Let y be the vectorized 2D observation samples
Let A be the 2D DFT matrix
Let S be the Fourier space limiting matrix
Let W = SA be the sparse sampling transform in Equation (4.1)

Initialize P := 1
L2

∣

∣AHy
∣

∣

2

Initialize σ2
e := [2 ∗median(P )]2

Initialize Σ := σ2
eIL

for k = 1, 2, ...,MAXITER do

Given: y, A, and S

P := 1
L2

∣

∣WH x̂
∣

∣

2

T := W (P +Σ)WH

Solve ẑ := T †y := cg(P,Σ,W, x̂, y)
x̂ := APWH ẑ

ê := y − Sx̂

end for

4.2. Stagewise Gradient Pursuit

Another sparse decomposition algorithm developed as part of this work is

based on the StOMP and gradient pursuit algorithms [29, 45]. This algorithm will

be referred to as stagewise gradient pursuit (StGP). The StGP algorithm is a greedy

matching pursuit method that incorporates the simultaneous selection of multiple
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atoms, as with StOMP, but applies an approximation to the orthogonalization con-

straint in a manner similar to gradient pursuit. The primary benefit of this hybrid

approach is enhanced computational efficiency, by removing the orthogonalization

filter in StOMP and allowing the selection of multiple atoms at each gradient pur-

suit iteration. The order of the efficiency gain is dependent of how many atoms are

selected at each iteration, which is in turn dependent of the noise regularization

level and the sanity filtering threshold, but can be expected to be a couple orders

of magnitude more efficient. The trade-off for increased computational efficiency

is a less optimal solution than either StOMP or gradient pursuit, with respect

to sparsity, but this may be an acceptable trade when considering near real-time

imaging.

The dictionary of atoms to select from is the overcomplete DFT matrix, repre-

senting a set of complex sinusoids whose frequency spacing is less than the Fourier

resolution supported by the observed data. The goal is to select a sparse set of

these atoms that linearly combine to approximate the observed samples with min-

imal error. The matching pursuit method selects the atoms that correlate the best

with the observed samples at each iteration. The StGP algorithm computes these

correlations coefficients by zero padding the missing data samples and getting the

DFT coefficients on an upsampled grid, such that the frequency spacing of the DFT

coefficients is at least several times greater than the Fourier resolution obtainable

from the sparsely sampled signal. The atoms selected are ones with the largest DFT

coefficients that also correspond to a maximum in the expected IPR response, in

accordance with a sanity filter. Recall from Chapter 2 that the IPR is the point
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spread function in the image domain due to the shape of the 2D aperture in the

phase history domain. For the sanity filter, an atom under consideration is rejected

if it does not have the largest magnitude DFT coefficient among all other atoms

within its IPR response. This method of selecting atoms based on peak detection

in the image domain means that super-resolution properties will break down for

closely spaced point targets. Well isolated point targets with non-overlapping main

lobes should be super-resolved, in that their IPR responses are replaced by ideal

impulses, so that sidelobes should no longer occlude neighboring targets. The abil-

ity to accurately reconstruct an image from the sparsely sampled phase history is

determined by the ability to differentiate between a DFT sample at the center of an

IPR versus a DFT sample in an IPR sidelobe. An assumption required for StGP

to work is that the pattern of missing samples does not result in an IPR whose

maximum amplitude is not at the center of the IPR, a situation the sanity filter

attempt to prevent.

The sanity filtering step requires a mask that defines the IPR in the image

domain. The IPR may be obtained by applying the system transfer function to

an ideal impulse as input. Given the pattern of missing samples in the phase

history signal, we may generate an IPR mask in the following manner. First,

initialize an image of zeros such that the correlation coefficient associated with

each atom in the overcomplete DFT dictionary is zero. Then, set the center sample

in the image equal to one and apply the IDFT to obtain the full set of phase

history samples associated with the impulse at the center of the image. The phase

history samples should have constant amplitude and zero phase. Next force the
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phase history samples associated with the missing samples equal to zero and apply

the DFT to get the filtered image. The IPR can be considered as the spectral

leakage emanating from the ideal impulse input at the center of the image. Stated

simply, the IPR is given by the SAR system response to an ideal impulse input,

which is in turn determined by the region support in the sampled phase history.

With the expected IPR in hand, the condition of a DFT coefficient being the

maximum within an IPR centered on it may be checked. If the check fails, that is

an indication that a more dominant atom exists within its neighborhood, so it is

rejected from consideration until the next iteration. If the condition is met, that

is an indication that the atom under consideration is the most dominant in its

neighborhood and should be selected for the current iteration. The sanity filtering

step encourages selection of well isolated atomic components of the dictionary,

with respect to the residual image. This sanity filtering step can be compared to

enforcement of a structural sparsity model, as in the coherence-inhibiting structured

sparse approximation algorithm presented in [50].

One method of selecting candidate atoms is to choose those whose DFT coef-

ficients have a power that is greater than a certain dB above the average clutter

power. As long as there are atoms with correlation coefficients that exceed this

threshold, the iterative matching pursuit algorithm continues. The neighboring

atoms within the IPR mask centered on each candidate atom are checked to make

sure their DFT coefficients are smaller. Candidate atoms that do not pass the

sanity filter are rejects. Multiple candidate atoms may be selected during each

iteration. Only the DFT coefficients of the selected atoms are retained, while all
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others are set to zero, and the IDFT is applied to obtain the full phase history sig-

nal associated with the selected atoms. The window associated with the sparsely

sampled phase history is applied to force the sparsity pattern on the phase history

of the selected atoms. Then, the DFT is applied to get the image IPR responses

of the selected atoms after the sampling sparsity constraint has been applied. This

filtered image of the selected atoms is then subtracted from the original image,

leaving a residual image of the clutter minus the selected atoms. The subsequent

iteration of matching pursuit operates on the residual image of the previous itera-

tion. The next set of candidate atoms is selected from the residual image and the

process is repeated. The iterations continue until there are no more atoms whose

correlation coefficients exceed the threshold above the average clutter power. The

atom selection function is highly non-linear and may be compared to energy error

reduction methods, such as SVA and Super-SVA, for side lobe control and super-

resolution [46, 62, 63]. Whereas SVA applies a non-linear function that suppresses

side lobes and retains the sinc IPR main lobe, StGP replaces the entire IPR with

an ideal impulse. This means that Super-SVA must apply the pseudoinverse re-

sponse of a sinc main lobe in the phase history domain, which acts as a whitening

filter to sharpen the sinc main lobes in the image following SVA, resulting in super-

resolution properties. Since the StGP non-linear function replaces the entire IPR

with an ideal impulse, the whitening filter step is unnecessary, but at the expense

of not super-resolving closely spaced targets.

The classic OMP algorithm performs an orthogonalization step after selecting

new atoms for the sparse decomposition [24, 29]. The coefficients on the selected
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basis of atoms are determined by the following least-squares estimate:

ŝ = [ΦT
kΦk]

−1ΦT
k y (4.2)

In (4.2), the N × k matrix Φ is composed of the k basis atoms selected from

the overcomplete dictionary D through the current iteration. The k× 1 vector ŝ is

the estimate of the coefficients on the k atoms selected, based on the L×1 vector of

observed samples y. As mentioned above, for the case of SAR image reconstruction

from a sparsely sampled phase history, the dictionary is assumed to be the complex

sinusoids of an oversampled DFT. The orthogonalization step may be rewritten as

ŝ = [(ATST )(SA)Ik∈L]
−1(ATST y)

where S is the Fourier space limiting transform, A is the 2D DFT matrix, and

Ik∈L is the L× L matrix with ones on the diagonal elements corresponding to the

indices of the k selected atoms and zeros elsewhere, representing locations of targets

in the target image. Then [(ATST )(SA)Ik∈L] is the resulting amplitudes of k unit

impulses centered on the selected complex sinusoid atoms, after filtering through

the sparse sampling matrix. The term (ATST y) can be interpreted as the amplitude

of the original image pixels corresponding to the selected k complex sinusoid atoms.

Thus, ŝ is simply the original DFT coefficients associated with the k selected atoms,

weighted by the inverse of their IPR response due to sparse sampling. If it is

assumed that the selected atoms adhere to a random uniform phase distribution,

then the inverse weighting can be reasonably approximated as a constant gain factor
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due to signal loss from reduced region of support in the phase history. This inverse

weighting procedure is necessary so that the k sparse components of the observed

signal y may be properly removed to yield the residual r̂ = y − Φs. Weighting the

DFT coefficients of the residual search direction by a constant that is the inverse

of the compression gain loss due to sparse sampling is a decent approximation to

the orthogonalization step of OMP if the selected atoms are mutually incoherent.

However, if the cumulative coherence between selected atoms is large enough, this

approximation can break down. The sanity filtering step is intended to limit the

mutual coherence between atoms selected at each iteration. The compression gain

loss is given by the ratio of observed phase history samples to the total number of

phase history samples resulting from interpolation/extrapolation.

Algorithm 4.2 summarizes the proposed StGP algorithm. Notice that the

search direction d(k) is updated after selecting the sanity filtered atoms. The authors

in [45] propose a conjugate gradient search direction update in order to approximate

the orthogonalization procedure in Equation (4.2). Let Γ(k) be the set of all atoms

selected through iteration k = 1, 2, ..., then r̂Γ(k) is the residual r̂ = y−Wŝ for atoms

in Γ(k). Note that r̂ is the gradient of the linear equations y = Wŝ and its direction

would be the search direction in a steepest descent solver. In general, matching

pursuit solvers select a search direction d(k) = r̂Γ(k) that is a sparse subsets of r̂.

To approximate orthogonal matching pursuit, the GP algorithm iteratively updates

the search direction d(k) = r̂Γ(k)+b1d
(k−1), where d(k−1) is the search direction from

the previous iteration and the initial search direction is the direction of steepest

descent, or d(1) = r̂Γ(1) . The direction update coefficient b1 is given by [45]:

64



Algorithm 4.2 Stagewise Gradient Pursuit (StGP)

Let L = N
′

1N
′

2 be the number of image domain pixels
Let y be the vectorized 2D observation samples
Let A be the 2D DFT matrix
Let S be the Fourier space limiting matrix
Let W = SA be the sparse sampling matrix
Initialize P := 1

L2

∣

∣AHy
∣

∣

2

Initialize σ2
e := [2 ∗median(P )]2

Calculate system IPR H := 1
L2

∣

∣AHdiag(STS)
∣

∣

2

Define IPR mask (i, j) ∈ {Hi,j > α(max|i,j(Hi,j))}
Initialize ŝ(0) := 0

Initialize Γ(0) := ∅
Initialize d(0) := 0

Initialize b1 := 0
for k = 1, 2, ...,MAXITER do

Given: y, A, and S

r̂(k) := y −Wŝ(k)

P (k) := 1
L2

∣

∣WH r̂(k)
∣

∣

2

Hard threshold: (m,n) ∈ {P
(k)
m,n > σ2

e}

Sanity filter (m,n) ∈ {P
(k)
m,n > β(max|i,j(P

(k)

(m− i
2
),(n− j

2
)
))}

Stop if (m,n) = ∅
Γ(k) := Γ(k−1) ∪ (m,n)

If (k > 1) then b1 := − 〈c,r̂(k)〉
‖c‖22

Update direction: d(k) = WH r̂(k) + b1d
(k−1)

c := Wd(k)

µ := 〈r̂(k),c〉
‖c‖22

ŝ(k) = ŝ(k) + µd(k)

end for
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b1 := −
〈Wd(i−1), r̂〉

‖Wd(i−1)‖22
(4.3)

4.3. Analytic Comparison

We may deduce similarities between IAA and IMSE. In particular, we may

relate the per iteration frequency amplitude estimates given in Equations (3.18)

and (3.15). Let us rewrite Equation (3.18) as

Pk1,k2 =

∣

∣

∣

∣

∣

1

aHk1,k2R
−1ak1,k2

(

aHk1,k2R
−1y

)

∣

∣

∣

∣

∣

2

=
∣

∣

∣
P̂
(

aHk1,k2R
−1y

)

∣

∣

∣

2

or in matrix form as:

P =
∣

∣

∣
P̂
(

AHR−1y
)

∣

∣

∣

2
(4.4)

The term P̂ in Equation (4.4) is a pseudo-spectrum estimate derived as

P̂ = 1
AHR−1A

. Note that P̂ is the minimum variance distortionless response

(MVDR) solution in relation to beamforming. In the MSE algorithm, this pseudo-

spectrum term is replaced with P that is derived from the solution ŝ from the

previous iteration. Using the reduced rank spectrum, as in IAA, should provide for

faster convergence to a sparse solution, but requires additional inverse filtering per

iteration. As mentioned previously, calculating the stabilized inverse is the most

expensive step in the MSE algorithm, which is also true for the other least-squares

sparse decomposition methods discussed in this thesis.

Finally, we may compare the StGP and IMSE algorithms. Both solve an ap-

proximation problem y = Wŝ against sparsity constraints. Both are solved for
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large-scale systems by employing the method of conjugate gradients. The initial

search direction for both algorithms is that of steepest descent, and conjugate gra-

dient updates applied for subsequent search directions. The difference between

StGP and IMSE is in how the sparsity constraint is applied. In StGP, sparsity is

enforced by applying a nonlinear sparsifying function to the gradient search direc-

tions, so that the search direction itself is sparse. In IMSE, sparsity is enforced via

a reweighted least-squares objective, the effect of which is to sparsify the search di-

rection via linear weightings. Whereas the spectral resolution of StGP is restricted

by that of the used DFT dictionary, IMSE should have some super-resolution prop-

erties associated with iterative deconvolution.

4.4. Summary

Two modified sparse decomposition algorithms are proposed, IMSE in Section

4.1 and StGP in Section 4.2, developed for computational efficiency. The StGP

method is a matching pursuit type algorithm that has elements taken from stagewise

OMP, gradient pursuit and iterative hard thresholding. The IMSE method is a re-

weighted least-mean-square algorithm that has similarity to the FOCUSS and IAA

algorithms, which are close approximations of the APES refined filterbank methods.

Both StGP and IMSE are able to handle sparse sampling conditions. Given phase

history data that is formatted to a uniform rectangular grid in the spatial frequency

domain, these sparse decomposition algorithms may exploit the FFT so that the

overcomplete dictionary of atoms does not need to be stored and the transform

may be done efficiently.
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CHAPTER 5

Simulations and Results

The proposed IMSE and StGP algorithms, as described in Chapter 4, are

to be assessed quantitatively for their performance against simulated data, and

qualitative examples given for application to real-world SAR data. Monte-Carlo

simulations are conducted to study the detection performance for point scatterers at

various sparsity levels and signal-to-noise ratios (SNR). Another set of simulations

investigates the impact of diffraction limiting and coherent speckle when attempt-

ing sparse reconstruction of clutter like responses in SAR imagery. Qualitative

assessment demonstrates the performance of sparse decomposition algorithms as

applied to actual SAR data, with various sparse sampling constraints forced in the

phase history domain.

5.1. Analytic Assumptions

The purpose of this work is to improve computational efficiency of sparse recon-

struction by proposing the StGP and IMSE algorithms for application to large-scale

complex SAR imagery. As explained in Chapter 4, these proposed algorithms are

not expected to provide more accurate estimates than the sparse reconstruction al-

gorithms discussed in Chapter 3, but they are more efficient. The goal is to realize

computational efficiency for practical application to SAR imaging in a production

environment, while demonstrating that the proposed algorithms are still able re-

construct a faithful representation of the image given sparse sampling conditions.

As such, a direct comparison in performance between the algorithms of Chapters 3

and 4 is not necessary and is not pursued in this work.

Unless otherwise noted for the simulations in this chapter, the maximum iter-
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ations (MAXITER) for IMSE is four, and 300 for StGP. In general, four iterations

of IMSE involve many more image transformations than 300 iterations of StGP.

For clarity of the convergence plots in Section 5.4, the IMSE error is displayed only

for the number of transformations computed during the equivalent StGP run. The

IMSE algorithm, in its current state of development, does not have an error depen-

dent stopping criteria. The StGP algorithm terminates early if no more peaks are

found in the image for selection of atoms, where peaks must both exceed the noise

regularization level σ2
e and pass the sanity filter parameterized by β. The param-

eter β is set to 0.1 for all simulations in this work. The noise regularization level

σ2
e is calculated once, prior to the first iteration, and held constant thereafter. The

only exception is for the phantom image reconstructions in Section 5.4, where σ2
e

is recalculated from the residual image following each iteration, which is necessary

for a more complete image reconstruction in those simulations.

It should be noted that phase errors in the signal (phase history) domain are

not modeled in Equation (3.15). The simulations presented do not include phase

errors, and the provided image examples start with full aperture imagery that has

had phase gradient autofocus (PGA) applied prior to enforcing the sparse aper-

ture constraint in the phase history. Uncorrected phase errors would alter the IPR

response in the Fourier domain, and ,thus, the atoms in the overcomplete DFT dic-

tionary would be mismatched for point target returns and the sparse decomposition

performance would be degraded. Two possible solutions exist to handle a sparsely

sampled aperture with phase error. One approach is to decouple the autofocus

problem from the sparse decomposition problem and develop an autofocus algo-
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rithm that takes into account missing phase history samples. The sparse aperture

autofocus algorithm would be applied prior to sparse decomposition. The second

option would be to combine autofocus and sparse decomposition by incorporating

unknown phase error parameters into the model in equation (3.15) and reformu-

lating a solution that also estimates the phase error. Applying a spatially variant

sparse aperture autofocus could be quite difficult, but a global quadratic autofo-

cus might be sufficient under most conditions, except when scene terrain height is

widely varied. Most SAR phase error can be attributed to non-deterministic errors

in ephemeris data over the synthetic aperture, resulting in global phaser errors.

Development of a sparse aperture autofocus algorithm is beyond the scope of this

thesis.

The application of sparse decomposition in the simulations to follow assume

that in-scene content of the imaged area is stationary. That is, the algorithms

presented in the previous chapter do not model moving targets within the scene,

which would be manifest as wandering spatial frequency components in the col-

lected phase history data. Treating the entire phase history as a single snapshot

of data, a moving target will appear defocused in the image due to Doppler shift

and/or range migration. Treating sub-apertures of the phase history as indepen-

dent data snapshots could conceivably allow for tracking frequency migration of

distinct scatterers with simple motion, but defocus of vegetation due to wind mo-

tion is often very complex because of spatially variant aspects of wind and the many

moving parts of vegetation within a resolution cell. Motion-induced defocus can

make the image less sparse, but is a practical limitation that must be noted. As
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applied here, these sparse decomposition algorithms would treat a non-stationary

target as a collection of individual stationary targets distributed in the image.

5.2. Super-Resolution Properties

It was mentioned previously that both the StGP and IMSE algorithms are

capable of super-resolution, in that they result in an extrapolation or interpolation

of the signal domain. The StGP algorithm achieves this by applying a nonlinear

function in the image domain, in which a distinct time-windowed IPR is replaced

by an ideal impulse with infinite signal support. However, StGP should not be

expected to resolve scattering targets that are spaced more closely than the reso-

lution given by the DFT of the signal, as scattering centers are estimated at peaks

in the sample spectrum. The IMSE algorithm should be capable of resolving scat-

terers spaced more closely than resolvable via the DFT, since it performs a sort of

iterative deconvolution.

To test the resolution capability of the StGP and IMSE algorithms against

these expectations, a test is set up to demonstrate how well these algorithms can

correctly identify a group of targets as their spacing increases from below the DFT

resolution limit to above the resolution limit. The target pattern consists of four

scattering centers lying in the cardinal sidelobes of each other, at the corners of

a square in particular. The rectangular region of signal support is limited to one

fourth the size of the DFT of the complex image in each dimension. The area of the

test image is 32× 32 pixels, so the IPR resolution given the rectangular signal sup-

port is approximately the -3dB width of a sinc mainlobe, or (0.6)
(

2
8

)

(32pixels) ≈ 4

pixels. For normalized target spacings of δ = {1,2,...,6}
32 , Figure 5.1 shows the StGP
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Fig. 5.1. Resolvability of closely spaced scatterers.

and IMSE sparse reconstructions. In the spirit of compressive sensing, the signal

domain is limited not only in extent of support, but also every other signal sample

in both dimensions is zeroed as if it were missing. It should be stated that the

targets in the test pattern are complex with random phase.

The first, or leftmost, column of images in Figure 5.1 shows the original test

pattern. The second column is the DFT sample spectrum after limiting the signal

support. The original target impulses become sinc responses due to the limited sig-

nal extent, but are also aliased in both dimensions because of an effective sampling

rate reduction due to missing every other sample. This means that the side lobes

and aliases of the multiple targets will interfere with each other and cause a reduc-
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tion in resolution. The degraded DFT images in the second column demonstrate

how the resulting target responses become indistinct, especially as their spacing

decreases. The third column of images show the StGP sparse reconstruction, while

the fourth column shows the IMSE sparse reconstruction. Each row of plots repre-

sents an increased spacing between targets. The target spacing in the fourth row is

equal to the theoretical DFT resolution limit given the restricted signal extent. The

images in the first three rows have a target spacing smaller than the DFT resolu-

tion, while rows five and six have target spacings greater than the DFT resolution.

Notice that the IMSE algorithm reconstructs the true target patterns regardless

of their spacing, as long as they are centered on grid points in the output image.

The StGP algorithm on the other hand is just barely able to resolve the target

test pattern at the DFT resolution limit of δ = 4
32 . At a smaller target spacing,

StGP is unable to reconstruct the original target pattern. For δ ≥ 4
32 , StGP is

able to resolve the targets. These results are consistent with the aforementioned

expectations of super-resolution properties of StGP and IMSE.

5.3. Point Target Detection

An important measure of performance for any radar system, including SAR

imaging, is the ability to detect a target in the presence of noise. The performance

of a detector can be summarized by its detection and false alarm rates, pd and

pfa respectively. Let (k1, k2) be the set of 2D frequency pairs corresponding to

true point target locations, and (k̂1, k̂2) be the estimated target locations from the

sparse decomposition algorithms under review. Then pd is the probability that the

estimates (k̂1, k̂2) correspond to the true target locations (k1, k2), and pfa is the
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probability that the estimated locations (k̂1, k̂2) are in resolution cells that do not

contain a target. The probability of detection pd is calculated as the percent of

targets (k1, k2) that are found in the estimated locations (k̂1, k̂2). The probability

of false alarm pfa is calculated as the percent of estimates (k̂1, k̂2) that are not

found in the set (k1, k2).

The quantitative metrics are obtained via Monte-Carlo simulation, so that the

true target locations are known. Unit amplitude ideal impulse targets with uniform

random phase are placed randomly in an M×N output image grid, which are by

definition the true target locations (k1, k2). Random complex Gaussian noise is

added and the noisy image is back transformed to the phase history domain via 2D

DFT, where a reduced or sparse aperture function is imposed by selectively zeroing

samples according to the sparsity mask ST (SI). The transform S deletes rows from

matrix I, while ST expands (SI) by zero padding the deleted rows of I, where the

diagonal elements of I represented the vectorized 2D phase history. The degraded

simulated image is obtained by transforming back into the image/spatial domain

via 2D IDFT. The noise level is estimated based on the median amplitude in the

degraded image, and point target locations and reflectivity estimates (k̂1, k̂2) are

obtained by applying the StGP and IMSE algorithms, which result in a separation

of point targets and noise/clutter subspaces. The location of non-zero elements in

the sparse target subspace are taken to be the estimates (k̂1, k̂2), which are eval-

uated against the true (k1, k2) to obtain the aforementioned quantitative metrics.

For comparison, detection is performed on the classic sample spectrum (i.e., the

degraded simulated image) by labeling any image pixel with power greater than
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Fig. 5.2. Simulated pd and pfa for a rectangular aperture.

the estimated noise level σ2 as a target, and then calculating the same metrics.

Monte-Carlo simulations are performed at various levels of sparsity in the true

target locations, and at various sampling (phase history) domain noise levels. The

sparsity is defined here as the ratio of the number of image pixels populated by

targets to the total number of image pixels. The noise level is given as the signal

domain PSNR in dB.

The simulation results in Figure 5.2 show a series of plots of the detection

metrics. The left column plots show pd versus target density, the right column

shows the corresponding pfa versus target density, and each row of plots represents
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decreasing PSNR. The green data points in the plots represent IMSE results, the

red data point represent StGP results, and the blue data points represent target

detection via hard threshold detection of the sample spectrum.

The sample spectrum detection finds true target locations, but at the expense

of detecting many pixels not at true target locations. This can be attributed to

spectral leakage in the sample spectrum estimate, which results in detecting much

sidelobe energy as targets when applying a hard threshold. This is characteristic of

non-sparse solutions. Applying a similar detection to any of the classical spectral

estimators will tend to have many false alarms due to spectral leakage.

The primary advantage of Iterative Mean Square Extrapolation (IMSE) and

Stagewise Gradient Pursuit (StGP) over the classical estimators is a reduction in

false alarms. The sparse solutions obtained from these algorithms are less likely

to identify true target locations, but approach the sample spectrum detector pd

performance when the true target density is very sparse (less than 0.1%) and the

peak SNR is sufficiently large (greater than 20 dB). The sparse solutions yield a

much smaller false alarm rate (nearly an order magnitude less) because the sparse

decomposition estimators suffer less spectral leakage than the classical estimators.

In general, StGP performs better than IMSE in terms of pd, especially at high

SNR. Even in the case of a 25% sparse aperture, as in Figure 5.3 where every other

sample is missing in both k1 and k2, the relative detection performance stays the

same as when a full rectangular aperture is observed.
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Fig. 5.3. Simulated pd and pfa for a 25% sparse periodic aperture.

5.4. Sparse Reconstruction of Clutter in Coherent Diffraction Limited Imaging

Much of the literature on compressive sensing is focused on incoherent non-

diffraction limited systems. The literature that does address coherent diffraction

limited systems, such as SAR, are mostly concerned only with super-resolution of

distinct point target returns. Speckle noise reduction in clutter has been attempted

through the application of the K-SVD sparse decomposition method [64] with lim-

ited success, but there has been no literature to suggest that super-resolution of

clutter returns in SAR imagery is feasible. The reality is that clutter returns tend

to be severely impacted by constructive and destructive interference from neigh-
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boring clutter returns. This is the cause of speckle in a coherent system, when the

surface roughness within a resolution cell is on the order of a wavelength. With no

dominant scattering centers in a resolution cell, closely spaced clutter returns with

approximately the same RCS amplitude but slightly different phases can interfere

with each other. Similarly, a coherent diffraction limited system can experience

constructive and destructive interference from neighboring resolution cells. The

impulse response of a diffraction limited system, like SAR, is not restricted to a

single resolution cell. In a non-coherent system, this may result in constructive in-

terference, but a coherent system may also experience destructive interference. The

end result is that the problem of reconstructing the clutter from an overcomplete

dictionary is very ill-conditioned and the sparsest solution may not be the best, as

demonstrated in Figures 5.5 through 5.9.

Figure 5.4 demonstrates sparse reconstruction of the phantom image, com-

monly used to simulate image reconstruction from projections, as in tomography

or MRI, but is being used here to represent clutter and shadows. Figure 5.4(a)

is the original real-valued phantom image, while Figure 5.4(b) is degraded with a

random 25% of samples missing from its Fourier domain. This simulation is in-

tended to mimic a non-coherent system that is not diffraction limited. Notice the

significantly increased noise that obscures the definition of low amplitude areas of

the image and a general reduction in contrast, as evidenced by the loss of definition

between mid-level amplitude targets within the phantom image. Figures 5.4(c) and

5.4(d) show the sparse reconstructions with StGP and IMSE, respectively. Both

StGP and IMSE results are an improvement over the degraded image, restoring def-
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inition between objects of differing amplitudes; however the StGP algorithm results

in less residual noise. This may be expected according to [55], as matching pursuit

tends toward a sparser solutions than weighted least-squares. The error conver-

gence plot in Figure 5.5 shows that IMSE converges with fewer tranformations,

but StGP is capable of a much lower reconstruction error under these conditions.

The error is plotted against the number of transforms performed, as just a single

transform is required to construct the sample spectrum image for comparison, and

the fact the each iteration of IMSE requires numerous transform for the conjugate

gradients method, while StGP only requires a few transforms per iteration. This

simulation also demonstrates that the StGP and IMSE algorithms presented here

are capable of reconstructing the special case of a non-coherent image that is not

diffraction limited.

Figure 5.6 demonstrates the sparse reconstruction of the phantom image, where

Figure 5.6(b) is degraded with a random 25% of samples missing and half the fre-

quency support in either dimension of the Fourier domain (i.e., it has been low-pass

filtered). Real-valued amplitudes are retained in the image domain. The reduced

frequency support is typical of SAR imagery and yields an impulse response repre-

sentative of a diffraction-limited imaging system. The degraded image still suffers

increased noise and reduced contrast due to the randomly missing samples. Band-

ing artifacts are also introduced by spectral leakage of the IPR. Figures 5.6(c) and

5.6(d) show the StGP and IMSE reconstructions of the degraded, real-valued and

diffration-limited image simulation. Notice that the sparser StGP reconstruction

bears less resemblance to the original than the IMSE reconstruction, even though
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Fig. 5.4. Phantom image restoration: real-valued and non-diffraction limited. (a) Original.
(b) Degraded 75% random aperture. (c) StGP restoration. (d) IMSE restoration.

the StGP signal reconstruction in the Fourier domain has less error (see Figure 5.7).

This simulation clearly demonstrates that the sparsest decomposition is not neces-

sarily preferable for closely spaced scatterers in a diffraction-limited system. The

IMSE solution is more interpretable when compared to the original phantom image,

which appears mostly due to reduced noise from the random missing samples, yet

the banding artifacts remain.

The simulation in Figure 5.8 is similar to that in Figure 5.6, except that the

phantom image is given complex amplitudes by applying uniform random phase to

each pixel. The image in Figure 5.8(b) is degraded with a random 25% of samples

missing and half the frequency support in either dimension of the Fourier domain.
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Fig. 5.5. Phantom image restoration error convergence. Real-valued, non-diffraction lim-
ited, degraded 75% random aperture.

The reduced frequency support and complex-valued reflectivity map is typical of

SAR imagery, being both a diffraction-limited and coherent sensor system. The de-

graded image still suffers increased noise and reduced contrast due to the randomly

missing samples, and the same banding artifacts due to spectral leakage of the IPR.

In addition, there is speckle from constructive and destructive interference among

IPR responses centered at different locations in the image. Figures 5.6(c) and

5.6(d) show the StGP and IMSE reconstructions of the degraded, complex-valued

and diffration-limited image simulation. Notice that the IMSE reconstruction is

sparser than it was for the prior simulation without speckle degradation. Both

the StGP and IMSE solutions are unable to deal with speckle noise. While the
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Fig. 5.6. Phantom image restoration: real-valued and diffraction-limited. (a) Original.
(b) Degraded 75% random aperture. (c) StGP restoration. (d) IMSE restoration.

global noise induced by the randomly missing samples is improved, both the loss of

contrast and resolution among smaller objects and those with mid-level amplitudes

are not recovered. The reduced global noise does appear to help somewhat with

the definition of low amplitude areas, but not significantly. Figure 5.9 shows that

the StGP solution has less error than the IMSE solution. In this case, StGP yields

a result that is comparable, if not preferrable to IMSE, if for no other reason than

that the performance of IMSE degraded rapidly with the introduction of speckle

noise.
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Fig. 5.7. Phantom image restoration error convergence. Real-valued, diffraction-limited,
degraded 75% random aperture.

5.5. Sparse Decomposition of Actual Spotlight SAR Imagery

An actual SAR image is not usually represented by a random field of point

scatterers. Point target returns are likely to be clustered and are often related to

man-made structures with dihedral and trihedral cross section components, but are

typically sparse relative to the area being mapped, especially for high resolution

SAR imagery. With this in mind, it is important to demonstrate the IMSE and

StGP sparse decomposition algorithms as applied to actual SAR data.

The data used in this work was collected by Sandia National Laboratories’

Otter II platform and was provided by Charles V. Jackowatz as part of a presen-

tation package given to students attending his short course on SAR [65]. The data
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Fig. 5.8. Phantom image restoration: complex-valued and diffraction-limited. (a) Original.
(b) Degraded 75% random aperture. (c) StGP restoration. (d) IMSE restoration.

is spotlight-mode collection of three different scenes: a parking lot, an airport, and

the Capitol building in Washington, D.C. Each data set has been motion compen-

sated, range deskewed, and reformatted from a polar to a rectangular grid. The

phase gradient autofocus algorithm [49] is applied to yield a well focused complex

image with full Fourier support in the synthetic aperture. The well focused SAR

images is the starting point for each of the simulations to follow. Sparse sampling

of the apertures is enforced by decompressing the complex image via 2D FFT, and

then zeroing selected samples in the Fourier (phase history) domain. The IMSE and

StGP algorithms are applied to the sparse apertures in an attempt to reconstruct

the original complex image.
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Fig. 5.9. Phantom image restoration error convergence. Complex-valued, diffraction-
limited, degraded 75% random aperture.

The three images of the three different scenes is typical of real-world SAR im-

agery, with varying mixtures of point-like impulse responses and diffusely scattering

clutter. The parking lot scene has many point like returns from numerous vehicles

on top of uniformly scatting clutter from pavement in the background. The airport

scene has a few point like returns associated with several airplanes and support

equipment, with low backscatter clutter from the tarmac and higher backscatter

clutter from unpaved land around the tarmac. The Capitol scene has point like

returns from building features, varying levels of clutter from trees and vegetation,

and low return areas from specular reflectors such as water and paved walkways,

as seen in Figure 4.1.
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Both the IMSE and StGP algorithms are applied below to the three SAR im-

ages, where a 25% sparse periodic sampling is enforced in the phase history domain.

The sparse sampling matrix includes 2x zero padding around the original phase his-

tory for super-resolution in the sparse reconstruction, while every other sample in

range frequency k1 and azimuth frequency k2 is zeroed to represent missing sam-

ples. The resulting periodic sparse aperture pattern is similar to that seen in Figure

2.13(b). Imagery formed with classical spectral estimators are characterized by 2D

sinc impulse responses, due to the 2x zero padding in the Fourier domain, and alias-

ing with two-fold symmetry because of periodic missing Fourier samples in both

dimensions. For example, a point target in the upper left corner of the image will

have periodic replicas in both dimenions. Well known Fourier transform properties

tell us that the spacing between target aliases is inversely proportional to the period

of the missing samples in the phase history domain. The following demonstrations

show that target aliases imposed by periodic sparsely sampled aperture can greatly

confuse interpretation of the SAR image.

Figures 5.10, 5.13 and 5.16 demonstrate the application of the IMSE and StGP

sparse reconstruction algorithms to three scenes. The first scene is a parking lot

with vehicles surrounding a building. The second scene is of the area surrounding

the US Capitol building. The third scene is an airport. The subimage in the upper

left is the original SAR image formed via the sample spectrum (DFT) with 2x zero

padding enforced in the phase history domain. The subimage in the upper right

is the DFT image after enforcing the 25% sparse periodic sampling pattern. The

subimage in the lower left is the reconstruction from the sparse samples using the
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StGP algorithm, while the subimage in the lower right is the reconstruction using

the IMSE algorithm.

The StGP and IMSE algorithms result in a decomposition targets and clutter

in the image. Point scattering targets are modeled as complex sinusiodal compo-

nents in the phase history, which is the reconstructed signal. The clutter cannot

be modeled as complex sinusoids and factored into the error component, which is

not reconstructed. This decomposition of target and clutter components of the

image can be useful as inputs to target identification and classification algorithms,

or speckle reduction algorithms for the clutter. The reconstructed StGP and IMSE

images in Figures 5.10, 5.13 and 5.16 represent the coherent sum of the target and

clutter components because, even though the clutter is not reconstructed, clutter

can still add image context for the interpretation of reconstructed point targets.

Figures 5.11, 5.14 and 5.17 demonstrate the target and clutter decomposition

for the three image examples. Recall that the target image is the sparse signal

component of the model in equation (3.2), while the clutter image is the residual

noise in the model that cannot be interpolated nor extrapolated. The subimage in

the upper left is the target image generated from the StGP signal space solution.

The subimage in the upper right is the StGP residual clutter image. The subimage

in the lower left is the target image generated from the IMSE signal space solution,

while the subimage in the lower right is the associated residual clutter image.

In Figures 5.10, 5.13 and 5.16 we see that the sample spectrum image formed

from the sparse aperture is degraded in the form of periodic replicas of targets in

both dimensions. All return energy from the scene, both point targets and diffuse
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Fig. 5.10. Parking lot scene with a 25% sparse periodic aperture.

clutter, are replicated due to the periodic sparse aperture. The StGP and IMSE

reconstructions at the bottom of the figures are effectively able to distinguish be-

tween true point-like targets and their replicas, as compared to the original full

aperture images in the upper left of the figures. The parking lot scene is particu-

larly confused, as it is difficult the identify the buildings and distinguish between

empty or occupied space in the surrounding parking lot. The reconstructed im-

ages restore the ability to distinguish these targets. Notice that the noise levels in

the shadow areas of the reconstructed images is elevated in comparison to the full

aperture image. This is a result of the inability of the sparse decomposition algo-

rithms to extrapolate or interpolate clutter return energy, so the replicated clutter
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Fig. 5.11. Parking lot scene target/clutter segmentation with a 25% sparse periodic aper-
ture.

tends to raise the noise floor in the reconstructed image. The unrecoverable loss in

interpretability due to the elevated noise floor is evident in the airport image. The

shadows of the two airplanes in the original image clearly show the shape of their

wings, but these shadows are lost in the reconstructed images It is not expected

that compressive sensing algorithms would be able to resolve clutter, as clutter

tends not to be sparse in the spectral domain. Furthermore, diffuse clutter is more

severely impacted by speckle noise than point target returns, and we can see from

Figure 5.2 that the performance of the sparse decomposition algorithm degrades

quickly as the noise level approaches the signal level.

A close inspection of Figures 5.11, 5.14 and 5.17 reveals that the IMSE al-
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Fig. 5.12. Parking lot scene error convergence with a 25% sparse periodic aperture.

gorithm results in distinct nulls in the place of strong point targets in the clutter

subspace image. This behavior is not observed in the StGP clutter image. The

presence of nulls in the IMSE clutter image can be related to beamforming tech-

niques. Indeed, the IMSE solution in equation (3.15) is much like the minimum

mean square error (MMSE) solution to beamforming, in which beam pattern nulls

are steered toward interfering sources, while the main beam is steered toward the

desired source. Similarly, the IMSE algorithm steers weighted nulls in the spatial

dimension during the process of estimating the signal (target) subspace signal. In

contrast, the StGP clutter image tends to leave a residual resembling the surround-

ing clutter in locations where point target returns are removed. One can imagine
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Fig. 5.13. Capitol scene with a 25% sparse periodic aperture.

some post-processing being performed on the clutter image prior to reconstructing

the combined image. The preferred behavior of nulls in the clutter image would

depend on the goal of the post-processing. For example, nulls may be undesirable

for a smoothing speckle reduction filter. For the purpose of image interpretability,

the desired clutter image for reconstruction would have the least noise in the radar

shadows. Unfortunately, the residual noise in the shadows is most likely due to spec-

tral leakage from surrounding clutter, which neither IMSE or StGP can address.

In the three image examples, the IMSE and StGP clutter images both demonstrate

similar noise levels in the shadows, given the same noise power estimate for reg-

ularization. The IMSE algorithm might demonstrate better noise performance in
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Fig. 5.14. Capitol scene target/clutter segmentation with a 25% sparse periodic aperture.

the clutter image in cases where the clutter to speckle noise ratio is large and the

point target density is less sparse, as suggested in the simulation results of Figures

5.2 and 5.3, by lowering the noise power estimate σ2
e .

5.6. Summary

The simulations presented in this chapter demonstrate that, when the im-

age content is suitably sparse and the SNR is not too high, the StGP and IMSE

sparse decomposition algorithms are able to identify the location of 2D line spec-

tral components accurately with high probability, even when the phase history is

sampled suboptimally according to Nyquist criteria. Compared to classical esti-

mation, sparse reconstruction minimizes spectral leakage due to missing samples
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Fig. 5.15. Capitol scene error convergence with a 25% sparse periodic aperture.

in the phase history domain, making the resulting image less susceptible to false

targets or aliases that would otherwise degrade reliable exploitation.

It is shown that the StGP and IMSE algorithms are able to reconstruct an

accurate representation of the phantom image in Figure 5.4, even when samples

are missing from its discrete Fourier transform. However, the performance of these

algorithms is degraded when the bandwidth of the phantom image is limited by

a rectangular frequency aperture to simulate a sinc impulse response in the image

domain, which is characteristic of a diffraction-limited system such as high reso-

lution SAR. The algorithms are still capable of reducing noise that is induced by

randomly missing frequency samples, but they are unable to deal with point spread
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Fig. 5.16. Airport scene with a 25% sparse periodic aperture.

function interaction between neighboring targets of similar magnitude. This limi-

tation is caused by the ill-conditioned nature imposed by coherence between atoms

in an overcomplete or zero-padded DFT dictionary. When random phase is added

to the image pixels in combination with a sinc IPR, speckle like noise is added

to the image due to constructive and destructive interference between neighboring

targets. This leads to further ill-conditioning, and the StGP and IMSE algorithms

are unable to reconstruct information lost due to coherent interference between

frequency components. If fact, the simulated phantom image reconstructions in

Figure 5.8 suggest that the sparsest solution to the underdetermined system may

not be the most preferable given the presence of speckle noise in the background
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Fig. 5.17. Airport scene target/clutter segmentation with a 25% sparse periodic aperture.

image clutter.

Setting the noise regularization level above the clutter power level, as estimated

from image domain statistics, allows for reconstruction of distinct point scattering

targets via the StGP and IMSE sparse decomposition algorithms, while leaving the

background clutter untouched. This results in a subspace decomposition of point

targets from background clutter. Target responses are restored from the sparse

phase history aperture, whereas the clutter responses are not restored and still

suffer spectral leakage impacts of irregular aperture windowing. Examples are given

of target/clutter segmentation on actual high resolution SAR images, which could

be useful for target recognition applications or further filtering of image clutter,
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Fig. 5.18. Airport scene error convergence with a 25% sparse periodic aperture.

such as speckle filtering.
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CHAPTER 6

Conclusion

This chapter summarizes the contributions of this thesis to the field of sparse

decomposition in relation to spotlight-mode SAR image formation. Also discussed

in this chapter are ideas for continued work.

6.1. Contributions

The contributions of this work include: 1) The exploration of the relationship

between spotlight-mode SAR image formation and spectral estimation; 2) the re-

sulting impact of missing observation samples on SAR imagery for both uniformly

downsampled data and in a non-uniform compressive sampling framework; 3) the

implementation of two proposed sparse decomposition estimation algorithms, StGP

and IMSE, that could be applied in near real-time with modest compute hardware;

4) identifying the limitation of sparsity constraints when reconstructing image clut-

ter in the presence of coherent speckle; 5) demonstrating the application of sparse

reconstruction to real-world SAR data, and the resulting target/clutter image seg-

mentation.

6.2. Conclusions

It has been shown in this work that it is feasible to apply sparse decompo-

sition algorithms to sparse aperture spotlight-mode SAR data and reconstruct an

image that would otherwise be severely degraded if using classical spectral estima-

tion. The proposed StGP and IMSE algorithms have similar effectiveness, though

simulations suggest that StGP is more robust in the presence of AWGN, and as

target density in the image increases. However, IMSE is capable of super-resolving

closely spaced scattering centers, whereas StGP is unable to do the same. These
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algorithms can be adept at mitigating spectral leakage and aliasing of point target

impulse responses in SAR images but, as with any estimator of complex sinusoids,

reconstructing the clutter subspace is beyond their capability, as clutter in SAR

imagery is not well modeled by sinusoids. The lack of clutter reconstruction im-

plies that the definition of radar shadows will be difficult to recover. There is

no theory to suggest that clutter resolution can be enhanced; so these algorithms

are most useful for point target detection and identification, and less useful for

exploitation of the clutter map. However, these sparse decomposition algorithms

do work well for target/clutter segmentation and, when applied to fully sampled

phase history, could be useful for target recognition and other applications that

rely on the clutter map. For example, work on speckle noise filtering using K-SVD

has been attempted [64]. The application of K-SVD based speckle reduction looks

promising, but the results show a severe attenuation of clutter surrounding point

targets with strong reflectivity. Applying the K-SVD filter to the segmented clutter

image might mitigate such artifacts.

6.3. Future Work

There are opportunities to continue work in the area of sparse decomposition

and compressive sensing in SAR imaging. Algorithmic robustness to non-AWGN

noise, such as speckle, has not been studied in detail. The stopping criteria and

regularization levels presented in this work have been selected experimentally to

provide acceptable results, but have not been optimized. The StGP and IMSE

algorithms can also be extended to address missing phase history data prior to
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polar resampling, though this may preclude application of fast transforms for a

polar sampling grid.

Nondeterministic azimuthal (slow-time) phase errors are common in SAR

imaging. As mentioned in Chapter 5, phase errors distort the IPR in the image

domain, such that complex sinusoid atoms would yield a less sparse representation

of the image. Future work could look at adapting or implementing an autofocus

algorithm that takes into account missing phase history samples, then apply it prior

to sparse decomposition. Another option is to integrate phase error correction vec-

tors into the sparse decomposition problem. A logical starting point would be to

tackle global quadratic phase errors, given a sparsely sampled aperture.
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