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ABSTRACT 

Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. 

Since its introduction in 1972, CT technology has been improved dramatically, especially in 

terms of its acquisition speed.  However, the main principle of CT which consists in 

acquiring only density information has not changed at all until recently. Different materials 

may have the same CT number, which may lead to uncertainty or misdiagnosis. Dual-energy 

CT (DECT) was reintroduced recently to solve this problem by using the additional spectral 

information of X-ray attenuation and aims for accurate density measurement and material 

differentiation. However, the spectral information lies in the difference between two low and 

high energy images or measurements, so that it is difficult to acquire the accurate spectral 

information due to amplification of high pixel noise in the resulting difference image. In this 

work, a new model and an image enhancement technique for DECT are proposed, based on 

the fact that the attenuation of a high density material decreases more rapidly as X-ray energy 

increases. This fact has been previously ignored in most of DECT image enhancement 

techniques. The proposed technique consists of offset correction, spectral error correction, 

and adaptive noise suppression. It reduced noise, improved contrast effectively and showed 

better material differentiation in real patient images as well as phantom studies.   
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CHAPTER 1 

INTRODUCTION 

Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. 

Since its introduction by Godfrey Hounsfield in 1972 [1], CT technology has been innovated 

dramatically, especially in its acquisition speed. A current commercial CT machine has 

achieved 75ms temporal resolution and can acquire the entire heart which beats even at 120 

bpm with minimum cardiac motion artifacts [2].  However, the main principle of CT 

consists of acquiring only density information, which has not changed at all until recently. It 

is the problem of the conventional CT imaging that different materials of similar density can 

have the similar CT number, and it may lead to misdiagnosis or uncertainty. Dual-energy CT 

(DECT) was reintroduced recently to solve the problem by using the additional information 

of energy dependency of X-ray attenuation of body tissues. 

 

DECT has a history as long as CT. Soon after CT became available for clinical purposes, 

beam hardening or spectral artifact was observed in a material of high X-ray attenuation and 

caused nonlinear and unexpected distortion in the resulting images [3]. At first, several 

research groups began to use the dual-spectral information of X-ray to correct the spectral 

artifacts [4-7] and also suggested a possibility to use DECT for direct tissue characterization 

of fatty liver, kidney stone and bone densitometry [8-17].  In the late 80’s, the first 

commercial DECT (SOMATO DR) using fast-voltage-switching was introduced by Siemens, 

(Forchheim, Germany), but it was not further developed. No clinical advantage was proved 

except for bone densitometry. It was mainly due to the practical limitation at that time such 

as poor CT machine performance, cost and radiation dose, while several research groups did 

research on DECT to develop techniques or presented theoretical background for the 
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clinical application of DECT using simulation and phantom studies.  In the 80’s, most 

current theory of DECT such as material decomposition was already established. The 

theoretical background of DECT is reviewed in the next chapter. 

 

In 2006, Siemens introduced a revolutionary dual-source CT (DSCT). It has two X-ray 

source-detector pairs operating orthogonally and simultaneously at 90-degree offset in one 

gantry. It can operate at the single-energy or dual-energy modes by setting two X-ray sources 

operating at the same or different energy levels. Its temporal resolution was remarkable 

83ms at the single-energy mode and 165ms at the dual-energy mode. Its high temporal 

resolution of the single-energy mode has made possible cardiac imaging even up-to 120-bpm 

heart beats with minimum cardiac motion artifacts [18].  Soon after the introduction of 

DSCT, most researches have been paying attention to its cardiac imaging application using 

the fast single-energy mode [18-28]. Relatively few clinical evaluations of dual-energy cardiac 

imaging using its dual-scan mode were reported. It did not take long time for clinical 

evaluations of dual-energy mode of DSCT to be reported and to show feasible clinical 

applications of DECT: 

 

Kidney stone characterization [29-31],  

Fat or iron composition in the liver  [32] [33],  

Discrimination of cyst and malignant tumors of liver [34] 

Lung cancer detection [35] 

Lung perfusion imaging and pulmonary embolism [36-39] 

Coronary artery stenosis [40] 

Image segmentation like bone or plaque removal and ligaments or tendons 

identification [41] 

Myocardial ischemia perfusion imaging [42] 
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Application for postmortem CT [43] 

Urinary Stone characterization [44, 45]. 

 

Currently, the most widely-used DECT technique for clinical application is three-material 

decomposition presented by Johnson et al. [30]. In their initial evaluation of DSCT, they 

introduced a new tissue characterization method using the dual-energy mode of DSCT. The 

three-material decomposition is based on the tissue signature plot, in which one-pair of CT 

values of low (80kVp) and high energy (140kVp) images defines tissue attenuation. The 

relative position of tissue in the tissue signature plot represents how much the tissues are 

close to fat, soft tissue and iodine, and it is processed for material differentiation. After the 

three-material decomposition, the color-coded tissue types are overlaid for easy recognition 

of each tissue properties on the virtual 120kVp image, the weighted sum of low and high 

energy images (30% of 80kVp and 70% of 140kVp). Using DSCT, Johnson et al. also 

demonstrated several promising applications of DECT such as virtual non-enhanced (VNE) 

CT imaging by removing the iodine content of the contrast-enhanced CT images and 

automatic bone removal.  However, they did not presented clearly how the three-material 

decomposition was implemented it and how they solved the noise problem of DECT.   

 

Since the introduction of DSCT, radiologists confirmed the usefulness of virtual 120kVp 

image and virtual non-contrast images of DECT. The virtual 120kVp image of DECT has 

similar quantification ability to the standard 120kVp CT imaging [18, 46] and so helps 

radiologist to compare the new DECT results with the criteria of standard 120kVp CT 

imaging which has been established over 30 years of CT imaging. Radiologists also 

confirmed that the virtual non-enhanced images can replace pre-contrast CT imaging and so 

it reduces the total radiation dose by skipping the pre-contrast CT imaging which is included 
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in typical contrast-enhanced CT protocols [47], even though DECT intrinsically requires the 

additional dose.  

 

The work of Ruzsics et al. [42] is a good example of application of the three material 

decomposition and shows the potential of DECT. In their initial work, they found that 

myocardial ischemia diagnosed by iodine maps of DECT is highly correlated with single-

photon emission computed tomography (SPECT). In addition, they also evaluated coronary 

stenosis and myocardial ischemia of thirty-five patient study using DECT and reported that 

the results were well-correlated with SPECT, coronary catheterization and coronary CT 

angiography. More specifically, coronary CT angiography had 98% sensitivity, 88% 

specificity and 92% accuracy for detection of >50% stenosis while DECT detected 

myocardial ischemia with 84% sensitivity, 94% specificity and 92% accuracy. It is important 

to notice that a single cardiac imaging with iodine contrast agent was performed for the 

comprehensive diagnosis of coronary stenosis and myocardial ischemia. For coronary 

stenosis detection, they used the virtual 120kVp images and investigated the coronary artery 

morphology as normal coronary angiography does. Myocardial ischemia was investigated 

using the color-coded iodine maps which were obtained by the three-material decomposition. 

They concluded that DECT can be an alternative of SPECT in near future.  

 

Responding to Siemens' advance in CT, GE introduced Discovery CT750 HD (GE 

Healthcare, Milwaukee, WI, USA). It has a feature of fast voltage-switching dual energy 

mode [34, 48, 49] and acquires dual-energy scans with a single X-ray tube by alternating low 

and high kVps within several 0.3-0.5 milliseconds [2, 48]. In addition, GE approached 

DECT by using projection data. The raw projection data of low and high energy CT scans 

are decomposed into two-basis density maps before the image reconstruction and pseudo-

monochromatic images are reconstructed by linear combination of the mass attenuation 
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coefficients of the two basis materials weighted by their equivalent density maps on the 

workstation in real-time by user's control of energy level. Tkaczky et al. showed the 

feasibility of using the resulting density maps of material decomposition for discrimination 

of malignant tumor and cyst in liver and also suggested linear discrimination analysis to find 

optimal distinguishable energy level of the monochromatic images [34].   

 

Recently, Karçaaltıncaba and Aktaş compared DSCT of Siemens Definitions including their 

new generation DSCT system (Definition flash) and GE Discovery 750HD for clinical 

applications in their review paper [2].  They even concluded that DECT can be an alternative 

to PET-CT. At this time, the clinical application of DECT is a very active topic in radiology. 

Over 700 papers can be found online database of U.S. National Library of Medicine in 

December, 2010. 

 

From engineers’ point of view, DECT is a problem of how effectively to use the X-ray 

spectral information for better diagnosis of various diseases. However, the spectral 

information lies in the difference between two low and high energy images, so that it is 

difficult to acquire the accurate spectral information due to amplification of error or noise in 

the resulting difference images. In this work, a new model and a new technique for DECT 

image enhancement are proposed to overcome this problem. The proposed technique is 

based on the fact that the X-ray attenuation of a high density material decreases relatively 

faster than that of a low density material as X-ray energy increases. This fact has been 

ignored in most of the DECT techniques. In the following chapters, the basic theory of 

DECT is reviewed, and the new model and technique for DECT are presented after the 

discussion of noise characteristics of DECT. Finally, the proposed method is verified with 

the phantom and real patient studies. And some DECT issues which are related to this work 

are also discussed.  
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CHAPTER 2 

THEORY OF DUAL-ENERGY CT 

2.1 CT as Density Imaging 

X-ray imaging measures the attenuation of incident x-ray after passing through a material. 

The attenuation is quantified as a linear attenuation coefficient  , which is defined as 

 0 exp( ),I I l   (1) 

where 0I is the X-ray source intensity and I  is the intensity at the detector after passing 

through a homogenous material of a length l . The linear attenuation coefficient is obtained 

directly by taking the minus log to Eq. (1) as 

 
0

1
log( / ).I I

l
    (2) 

Computed tomography (CT) is a tomographic representation of X-ray attenuation of body 

tissues. For the ideal monochromatic X-ray source and an inhomogeneous object, the 

attenuation model becomes  

  0 exp ( ) ,I I dl  r  (3) 

where  , ,x y zr is the spatial position vector and ( )dl r is the line integral over the X-ray 

path. The projection measurement p  is defined as the minus log ratio of source and 

measurement intensity as  

  0log( / ) .p I I dl    r  (4) 

In CT imaging, the spatial distribution of ( , , )x y z is recovered from the projection 

measurements p of Eq. (4) acquired over 360 scanning, and a typical CT machine 

reconstructs one slice image of a 512×512 matrix size from over one million projection data. 

There are several CT reconstruction methods such as the filtered back-projection, algebraic 
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reconstruction, and iterative reconstruction. All the methods try to uncover the spatial 

distribution of ( , , )x y z from the projection measurements p . The filtered back-projection 

is a standard CT reconstruction method for its speed and accuracy [50]. Developing CT 

reconstruction method requires intense mathematical formulation and rigorous efforts and is 

one of major research topics in CT imaging. This work aims to enhance and take advantage 

of the reconstructed dual-energy CT (DECT) images and so only the reconstructed   is 

considered. 

 

Generally, the linear attenuation coefficient  depends on X-ray energy, the density 

(g/cm3), effective atomic number Ẑ  of the material as 

  ˆ, ,u E Z    (5) 

where u  is the mass attenuation coefficient (cm2/g). Normally, the X-ray attenuation of a 

material is measured for its homogeneous medium and is normalized by material density, 

and it is called the mass attenuation coefficient of the material. National Institute of 

Standards and Technology (NIST), USA provides the tabulated standard data of mass 

attenuation coefficients of various elementary media and compound mixtures. 

 

In a typical X-ray energy ranges of CT imaging, the density is the dominant factor of 

contrast [50] and so   becomes simplified as 

   .u E   (6) 

In CT imaging, this linear attenuation coefficient  of a material is presented relative to that 

of water water , and so-called CT number P is defined as 
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1000

1 1000 (HU).

water

water

water

P
 






 

 
   
 

 (7) 

It is specified in Hounsfield units (HU) in honor of the inventor of CT, and water has 0 HU 

and air has around -1000 HU [50] by definition.   

 

The physical meaning of CT number becomes clear with the relation of Eq. (6). Since 

( )u E   and water wateru   ( water =1g/cm3) and if wateru u , the equation (7) becomes  

 

 

1 1000.

1 1000 .

w

water

u
P

u

if u u





 
   
 

   

 (8) 

Most body tissues except bone and lung tissue have attenuation similar to water attenuation 

and so the CT value directly represents material density (1 HU  1 g/cm3).  Therefore, CT 

can be considered as density imaging, which is an advantage of CT over MRI (Magnetic 

Resonance Imaging). MRI has several imaging parameters such as echo time, repetition time 

and inversion time. The different combination of these MR imaging parameters produces 

images different in physical sense, which ironically makes it difficult for radiologists to 

interpret the physical meaning of MRI images without careful consideration of the applied 

parameters. Contrary to this, the interpretation of CT images is straight-forward, density 

imaging, which is one of advantage of CT imaging over MRI. 

 

2.2 The Limitation of Conventional CT imaging 

In CT imaging, X-ray source is polychromatic and the target material is inhomogeneous, so 

that the simple polychromatic X-ray attenuation model of Eq. (3) is not valid in real situation. 
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The general model for the polychromatic X-ray source and an inhomogeneous object is 

given as, 

 0 ( ) exp ( , ) ,I I E E dl dE     r  (9) 

where the linear attenuation coefficient   is expressed as a function of the spatial position 

( , , )x y zr and X-ray energy E , and  ; E dl r is the line integral over the X-ray path. And 

the projection measurement p  becomes as   

  0 0log ( )exp ( , ) / ( ) .p I E E dl dE I E dE      r  (10) 

However, due to the polychromatic nature of X-ray source, taking log directly as Eq. (10) 

causes nonlinearity of the line integral, which is known as beam hardening or spectral 

artifacts of CT imaging and causes cupping, shading, or streaking artifacts in the 

reconstructed images [50]. This spectral artifact limits the accuracy of attenuation 

measurement in CT imaging, especially near high-attenuation materials such as bone and 

metal implants. How to correct this nonlinearity is a typical calibration problem in CT 

imaging. Using a uniform phantom of known density and geometry, the typical calibration 

procedure approximates the nonlinear relationship between the projection measurement p

and the measured intensity I using power series as 

  20 1 2log( ) log( ) .p a a I a I     (11) 

Stonestrom et al. summarized theories of spectral artifact corrections [4].  They also pointed 

out that such nonlinearity can be resolved by taking logs first and summing the projection 

measurement p , the logs over the energy spectrum nE  as 

 
 

 
1 0

1 1
log ;

,

N N
n

n
n nn

I
p E dl

N I N

dl







 
   

 



 



r

r

 (12) 

where  
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  
1

1
; .

N

n
n

E
N

 


  r  (13) 

Current X-ray technology cannot obtain the energy spectrum information nE yet and so this 

formulation is not feasible in reality. However, one important consequence of this 

formulation is that the linear attenuation coefficient obtained in CT imaging is actually the 

average value   of attenuation over broad spectrum of X-ray energies.  

 

In addition to such artifacts as beam hardening, the major intrinsic limitation of CT imaging 

is low contrast. The CT number of major body tissues ranges -100 to 100 HU (about 0.9 ~ 

1.1 g/cm3) except bone (> 150 HU) and lung tissue (< -500HU). The density differences of 

body tissues are too small to differentiate them clearly from each other if it is within 10 HU 

differences due to the system limitation such detector efficiency, noise, and X-ray radiation 

safety issue etc. Noise can be reduced by increasing X-ray exposure. However, increasing X-

ray radiation is limited due to the patient safety issue for X-ray radiation dose. So, contrast 

agents are used in routine CT imaging to enhance the contrast difference between abnormal 

tissues and surrounding tissues. Various organic iodine solutions such Omnipaque, Ultravist 

and Visipaque are widely used for the contrast agents. Iodine is five times denser (4.93g/cm3) 

than water and shows over 20-50 times attenuation in the typical CT X-ray energy range, and 

so iodine-enhanced and unenhanced tissues become better differentiable through their 

relative contrast difference. 

 

Besides the noise and low-contrast problem, conventional CT imaging is limited by the fact 

that different materials can have the similar CT value, which may lead to misdiagnosis or 

uncertainty. DECT has been reintroduced to solve this problem by using the additional 

spectral information of tissue attenuations.  
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Figure 1. Mass attenuation coefficients over CT x-ray energy range. These plots were 
calculated using the tabulated data of mass attenuation coefficients of National Institute of 
Standards and Technology (NIST), USA. The dashed lines are the effective energy of typical 
80, 120 and 140kVp CT imaging, which are about 53, 67 and 72keV respectively.  

2.3 Dual-Energy CT  

Different materials attenuate differently as the incident X-ray energy changes. DECT targets 

to utilize the energy-dependency of tissue attenuation. The energy dependency of body tissue 

attenuation was given in Figure 1 over the typical X-ray energy range of CT imaging. Note 

that the X-ray attenuation of bone is higher and decreases more rapidly than soft tissue 

attenuation as X-ray energy changes in Figure 1. This different energy dependency can be 

utilized for tissue characterization.   

 

It is important to note that each X-ray tube voltage produces X-ray of unique effective 

energy, even though X-ray is polychromatic, so that different X-ray attenuations are acquired 
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for the different X-ray tube voltages. The standard low and high X-ray tube voltages of 

DECT are 80kVp and 140kVp, of which effective energies are about 53keV and 72eV, 

respectively (the dash lines in Figure 1), while the effective energy of the standard 

conventional 120kVp CT imaging is about 67keV. These plots of Figure 1 were calculated 

using the tabulated data of mass attenuation coefficients of National Institute of Standards 

and Technology (NIST), USA.  

 

DECT is the problem how to extract the unique information from two X-ray spectral 

measurements and how to use it for CT image enhancement, accurate density measurement 

and material characterization.  The most straightforward method for CT image enhancement 

using dual-energy information is weighted average of low and high energy images. In other 

words, it is a typical image processing problem to combine two images of different 

information for best signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR) as 

 0 ,L HP P P    (14) 

where LP and HP  are the reconstructed CT images of low and high X-ray energies, and and 

 are the weighting factors ( 1   ). This weighted average of two images was adapted as 

to Siemens DSCT in 2007 [30], in which the so-call virtual 120kVp image is generated as one 

of default images by weighted averaging of 30% 80kVp and 70% 140kVp images. Note 0.3×80 

+ 0.7×140=122kVp. The virtual 120kVp is the best SNR in linear combinations of low and 

high energy images. Although it is not optimal in CNR, the value of the virtual 120kVp image 

is in that it has similar image characteristics to the standard 120kVp CT images, especially in 

quantification of tissue [46, 51]. Therefore, DECT results can be compared to those of the 

standard 120kVp CT imaging with the virtual 120kVp image. With the introduction of DSCT, 

the blending of low and high energy images in order to produce the best CNR images becomes 

the one of active topics of DECT. Recently, rather than using linear weighting of two images, 
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Holms et al. reported that non-linear blending using a modified sigmoid function significantly 

improved CNR over the virtual 120kVp images and the resulting images are preferred by 

radiologists for visual perception [52].  

Depending on how to extract the two X-ray spectral information, DECT approaches for 

material characterization can be classified broadly into projection-based methods and image-

based methods. Projection-based methods preprocess the projection data to extract energy-

independent information before the reconstruction, while image-based methods utilize the 

separately-reconstructed low and high images for the spectral application.  

 

The spectral information lies in the difference between the low and high energy images. So 

the most direct method to acquire the spectral information is the weighted subtraction of 

two images. This method is mainly used in dual-energy subtraction digital radiography [53-55] 

and dual-energy X-ray absorptiometry [56] 

 

The projection-based method is preferred for two-material decomposition, which is mainly 

attributed to the rigorous formulation of Alvarez and Macovski [7]. They originally proposed 

decomposition of the linear attenuation coefficient  of an unknown material into the 

components of photoelectric absorption pf and Compton scatter cf , which are the major 

two X-ray interactions in diagnostic energy region. The photoelectric effect and Compton 

scatter are the mutually exclusive X-ray interaction. In other words, they can be expressed by 

mathematical functions independent to each other. Therefore, the decomposition is 

mathematically modeled as 

       ,p p c cE c f E c f E    (15) 

where pc and cc are the coefficients for photoelectric effect and Compton scattering, 
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respectively. Through this decomposition, the X-ray energy dependency of linear attenuation 

coefficient of a material is transferred into the tow basis functions of energy, ( )cf E and

( )pf E . It is their idea that the pc and cc are independent to X-ray energy. They become 

dependent only to the physical properties of the unknown material such as mass density, the 

atomic weight and atomic number. Therefore, the coefficients pc and cc  may be used for 

material characterization without the beam hardening artifact, which is caused by energy 

dependency of   in CT imaging.  

 

Compton-scatter component is estimated by the Klein-Nishina function which is well-

known for its accurate representation of Compton scatter. The Klein-Nishina function is 

given as  

          
 22

2 1 1 31 1 1
ln 1 2 ln 1 2

1 2 2 1 2
cf

   
    

  
        

 (16) 

with / 510.975E  keV. On the other hand, no accurate analytical function representing 

the photoelectric effect is known. So the photoelectric basis is estimated empirically as 

 
3

1
.pf

E
  (17)  

With Compton scatter and photoelectric decomposition model, the system equations for 

DECT become as 
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
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 (18) 

The projection-based method targets to obtain the two transmission line integrals of 1A  and

2A . For a monochromatic X-ray source, the system equations of Eqs (18) can be simplified as  
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 (19) 

However, this monochromatic X-ray source is infeasible in practice. Therefore, for a typical 

polychromatic X-ray source, it becomes a non-linear problem to solve the following system 

equations for 1A and 2A   
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 

 
 (20) 

The system equations (20) are approximated by the power series or polynomial functions. In 

practice, the mapping functions from the projection measurements Lp and Lp to the 

transmission line integral 1A and 2A are predefined for various ranges of 1A and 2A  values by 

experimental calibration as 

 
2 2

1 0 1 2 3 4 5

2 2
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      

      




 (21) 

Once the line integral sets of 1A and 2A are obtained, the spatial distributions of Compton 

scattering coefficient cc and photoelectric effect coefficient pc are reconstructed using a CT 

reconstruction method and are used for material characterization.  

 

This Compton scatter and photoelectric decomposition was generalized later into two-material 

decomposition by Lehmann et al. [57]. They showed that the Compton scatter and 

photoelectric absorption components can be integrated into the mass attenuation coefficients 

u  of two known materials which have very different X-ray energy dependency. The 

combination of mass attenuation coefficients of two distinct materials is mathematically 

equivalent to the linear combination of Compton scatter and photoelectric effect. Therefore, 
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the linear attenuation coefficient of any material can be expressed directly by mass attenuations 

two basis materials as 

      1 1 2 2 ,E u E m u E m      (22) 

where the subscript indicates the basis material and im has a dimension of density (g/cm3).  

Physically, the densities 1m and 2m are the equivalent amounts of the two basis materials to 

produce the same X-ray attenuation of the unknown material. In this two-material 

decomposition, the pair of two-equivalent densities of the basis materials is the unique 

information which characterizes the unknown material as Compton-scatter and photoelectric 

decomposition does.  

 

The projection-based procedure of Eq. (22) for the two-material decomposition is the same 

as the Compton-photoelectric decomposition. Only the definitions of line integrals of 1A

and 2A are changed and the basis sets are replaced with 1u and 2u  as 

    1 1 2 2, and , ,A m x y dl A m x y dl    (23) 

and the system equations become as 
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        

 

 
 (24) 

And the mapping functions of Eqs. (21) are prepared for the various density values of the 

two basis materials. One of the advantages of this two-material decomposition over 

Compton-photoelectric decomposition is the easiness of calibration. The attenuation 

functions of two basis materials are readily obtainable through NIST or experiments, and the 

resulting equivalent densities are easily understandable and used for the tissue 

characterization than Compton scattering and photoelectric components. So, two-material 

decomposition model of Eq. (22) is practically preferred to Compton-scatter and 
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photoelectric decomposition in the recent projection-based DECT applications. Compton 

scatter and photoelectric decomposition is mainly used to provide the theoretical 

backgrounds of DECT nowadays. 

 

Once the equivalent material densities 1m  and 2m  of basis materials are acquired, the 

attenuation function  E of the unknown material can be approximated over broad X-ray 

energy ranges, and so pseudo-monochromatic image can be generated at a chosen X-ray 

energy level E from the relation of Eq. (22). The pseudo-monochromatic imaging has been 

implemented as Gemstone spectral imaging of Discovery CT750HD, GE in 2009. In the 

Gemstone spectral imaging, the attenuation plots of target regions of interest (ROI) are 

displayed and compared over broad X-ray energy ranges [2]. The pseudo-monochromatic 

image was expected to produce the image free of beam hardening artifacts. However, any 

successful result of beam hardening correction for clinical images using pseudo-

monochromatic image has not been shown yet. 

 

Although the projection-based method is mainly used for material decomposition, it can be 

done directly using reconstructed images. Hawkes et al. [58] proposed in 1986 that the X-ray 

attenuation of tissue can be expressed in the mixture of two basis materials directly using the 

reconstructed low and high energy images. They formulated the direct relationship between 

CT value of the reconstructed image and equivalent densities of Eq. (22) as 

 1000( 1) ,w I IP m m     (25) 

where wm  and Im are the dimensionless coefficients of basis materials such as water and 

iodine, and /I I wu u  . They formulated Eq. (25) from the definition of CT number P of 

Eq. (7). Note that the equation (25) is obtained by normalizing equation of (26) by one of 

basis material. They also characterized various materials including body tissue such as liver, 
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muscle, spine and etc. with the coefficient Im . One of advantages of this approach over the 

projection-based material decomposition is the easiness of calibration.  

 

Although the projection-based and image-based two-material decomposition appear 

different, either the projection-based method or the image-based method is basically the 

same problem to solve the system equations,  

 1 1 2 2

1 1 2 2 ,
L L L

H H H

u m u m

u m u m




 
 

 (26) 

for the equivalent density values 1m  and 2m . Only calibration or the treatment for the 

nonlinearity of Eq. (10) or (24) to recover  from the projection measurements makes the 

difference.   

 

The meaning of material decomposition becomes clear in vector representation. Two 

measurements of linear attenuation coefficients of low and high X-ray energy constitute a 

vector ( , ).L H x  In the vector representation of Figure 2, 1 1 1( , )L H u is the water 

basis and 2 2 2( , )L H u is the iodine basis. A material whose attenuation decreases faster 

than water as X-ray energy increases locates within the two basis vector like A, and a material 

whose attenuation decreases slower than water locates outside like B in Figure 2. For 

examples of clinical imaging, contrast enhanced liver tissues are the former A, and fatty 

tissues are B, in Figure 2. It is important to notice that the equivalent density of the iodine 

basis for fatty tissue B is negative ( 2 0b   in Figure 2), which appears physically non-sense. 

However, the material decomposition is a mathematical representation of the equivalent 

amounts of the two basis materials, which produce the same X-ray attenuation of the 

unknown material, so that the equivalent density can be a negative value. Although it is 
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straightforward to engineers, radiologists need to be aware of it in interpretation of the 

resulting density maps.  

 

With DSCT, Siemens introduced a new image-based technique, so-called three-material 

decomposition [30], in which the CT number pairs of low and high energy images are 

 

Figure 2. Material decomposition of DECT. 1u is the water basis and 2u is the iodine basis. A 
material which attenuates faster as x-ray energy changes than water will locate within the 
positive direction (gray region) of the two basis vectors like A, and a material which attenuates 
slower than water will locate outside like A.  It is important to notice that the equivalent 
density 2b of iodine for B is negative ( 2 0b  ). In clinical imaging, contrast enhanced liver 

tissues are the former A, and fatty tissues are the later B.   
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mapped onto the two-dimensional scatter plot of the CT number diagram of low vs. high 

energy images. The material or its composition is characterized by the relative position to the 

pre-defined CT value pairs of fat, soft tissue and iodine in the plot, and the virtual-non 

contrast image or iodine-content-overlaid image is generated from the decomposition. 

Basically, it is the same as the vector approach of Figure 2, in which the relative position in 

the water and iodine space characterizes the material. Only the reference is different.  

 

Another one of interesting methods is the so-called dual-energy index, which is defined as  

 .L H

L H

U
 
 





 (27) 

Using the CT numbers LP  and HP of reconstructed images and with the CT number definition 

of Eq. (7), the dual-energy index is expressed equivalently as 

 .
2000

L H

L H

P P
U

P P




 
 (28) 

In simulation, this dual-energy index is in the unique and monotonic relation to the effective 

atomic number of material up to ˆ 55Z  , and so it may be used for material characterization 

[59, 60].  However, the dual-energy index method has not shown its effectiveness in clinical 

DECT application yet except the detection of the urinary [2].  

In summary, several methods have been proposed for DECT processing and application. The 

DECT applications of all the methods discussed previously are practically limited by 

amplifying noise issue, because the spectral information lies in the difference between the two 

spectral measurements or the two reconstructed CT images of low and high X-ray energies. 

Any subtraction of two measurements statistically amplifies the noise or errors [61, 62]. To 

overcome this problem, a new model and a new technique for DECT image enhancement are 

proposed after the discussion of noise characteristics of DECT in the next chapter.  
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CHAPTER 3 

DUAL-ENERGY CT IMAGE ENHANCEMENT 

Dual-energy computed tomography (DECT) utilizes two X-ray spectral information of body 

tissue attenuation and aims for accurate density estimation and material differentiation.  By 

combining low and high energy images of DECT, we can estimate density values more 

accurately because the noise tends to be canceled out in summation. The so-called virtual 

120kVp of DSCT is the case that the image quality is improved by blending of 80kVp and 

140kVp images. More importantly, the virtual 120kVp image is comparable to the standard 

120kVp CT image in the aspect of quantification of regions of interest (ROI) [63]. However, 

the improvement of image quality can be achieved even in the conventional CT imaging just 

by increasing the radiation dose.  

The real value of DECT is to utilize the spectral information of tissue attenuation, which lies in 

the difference between low and high energy images LP and HP  or measurements as 

 .L HP P P    (29) 

Any image subtraction statistically elevates the noise level in the resulting difference image and 

also tends to magnify measurement errors. So, we have to extract the spectral information 

among this difference deteriorated by noise or error.  Therefore, any DECT processing to 

utilize the spectral information requires an efficient noise suppression technique. All the noise 

suppression techniques for DECT target to reduce noise without loss of edge details and 

diagnostic information. 

The correlated noise reduction is one of the popular methods for dual-energy X-ray imaging. It 

was originally proposed by Kalender et al. [62]. It is based on the finding that the noises of 
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density maps 1m  and 2m  of two-material decomposition are negatively correlated and can be 

balanced on the reference attenuation. Its effectiveness on noise suppression without much 

loss of quantitative information and detail has been shown [61]. In addition to the 

anticorrelated relationship of density maps, DECT processing can further exploit the expected 

trend that the attenuation of high-density materials decreases relatively faster than low-density 

materials as X-ray energy increases, which has been ignored in most of DECT processing.  

Recently, I proposed a simple noisy detection scheme by identifying the spectral error, which is 

a pixel pair of low and high energy images that deviates far from the expected attenuation 

trends of body tissues in DECT. After discussing the tissue attenuation trends and analyzing 

the spectral-error sources of DECT images, a new technique for DECT to improve material 

differentiation as well as image quality of SNR and CNR is proposed. It consists of three steps: 

water-reference offset correction, spectral-error correction, and KCNR. Next, the tissue 

attenuation trend over X-ray energy change is discussed.   

3.1. Dual-Energy CT Model and Spectral Error 

Typical patterns of DECT measurements are shown schematically in Figure 3. All the CT 

value pairs of 80kVp and 140kVp images have the same value at the virtual 120kVp but show 

different energy dependency of attenuations in Figure 3. This is exactly the problem of 

conventional CT imaging that different materials can have the similar CT number.  

The conventional standard CT imaging acquires only the attenuation at 120kVp and so all the 

attenuations A-E of Figure 3 represent the same material in the conventional 120kVp CT 

imaging. In Figure 3, DE acquisition of the attenuation information at both 80kVp and 

140kVp reveals that they are different materials. However, the attenuations A-E can be the 

compromised measurements of the same material due to noise or error, then it is questioned 

which one is the true attenuation of the material. Without any priori-knowledge of material 
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attenuation, it is impossible to determine which one is the true attenuation of the material over 

energy. This work provides a priory-knowledge for the material attenuations in DECT imaging. 

Figure 4 shows the mass attenuation coefficients u of major body tissues and their 

corresponding CT-number changes over the typical X-ray energy range of CT imaging. 

Generally speaking, the attenuation of high density materials decreases more rapidly than low 

density materials, as X-ray energy increases. For example, the attenuation of fatty tissue 

decreases slower, but those of other heavy tissues such as blood and soft tissue decrease 

faster relative to that of water as X-ray energy increases. These trends become more obvious 

in the contrast-enhanced CT imaging. The iodine has high density and its X-ray attenuation 

decreases more rapidly than that of water, whereas fatty tissue attenuation decreases more 

slowly than that of water as X-ray energy increases. This relationships is mathematically 

expressed as  

 

Figure 3. Typical patterns of DECT images. All the pixel pairs of 80kVp and 140kVp have the 
same CT number at the 120kVp but show different energy dependencies of attenuations. 
Without any priori-knowledge of the material, it is difficult to determine which one is true 
attenuation or error over X-ray energy change. 
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Given the attenuation of a reference material 0 , DECT attenuation trends are expected as, 
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and then, the expected relationships of Eqs. (31) become simplified to 
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 
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 (32) 

In CT imaging, water is the reference material. Since the CT number P is the attenuation 

normalized by water attenuation, ( / 1) 1000.waterP       

 
Figure 4. Mass attenuation coefficients u and CT numbers of major body tissues. The u of fatty 
tissue decrease slower but u of other heavy tissues such as blood and soft tissue decrease 
faster relative to that of water as X-ray energy increases, and so the CT number of fatty tissue 
increases ( L HP P ), but that of the heavy tissue deceases L HP P . 
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 Therefore, with the reconstructed images LP and HP , the relationships of Eqs,  (31) and (32) 

can be directly expressed as 
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 (33) 

and  

  0 0.L HP P P    (34) 

Note that the virtual 120kVp image 0P  was used in Eq. (34) for the density reference since 

 1 1000P     for wateru u  [see Eq. (8)]. The virtual 120kVp image has low noise and the 

similar quantification ability to the true 120kVp image, of which accuracy of density 

estimation is well established in CT community. Therefore, the virtual 120kVp is a 

reasonable choice for the density reference of Eq. (32). It is expected that the CT number of 

fatty tissue increases, but those of heavy tissues decease as X-ray energy increases, and such 

trends are already shown in the right plot of Figure 4. The DECT attenuation model of Eq.  

 

Figure 5. The expected trend of pixel pairs of DECT images in tissue signature plot. The 
attenuation of high density materials such as iodine and bone decreases faster than that of 
water as x-ray energy increases, but those of low density materials such as fatty tissues decrease 
slower so that we can set up a model for the expected trend like Eq. (32) or Eq. (34). 
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 (34) predicts 80kVp and 140kVp CT-value pairs to be distributed like tissue signature plot 

of Figure 5.   

 
In order to verify the model of Eq. (34), phantom imaging of whole chicken meat was 

performed at 80kVp (300mAs) and 140kVp (193mAs) separately with 0.675mm slice 

thickness using GE LightSpeed VCT. Note that this phantom imaging was performed in 

ideal DECT imaging condition; no misregistration and good X-ray exposure because of the 

small size of the phantom and high tube currents. The average CT values of 15 samples of 

soft tissue and adipose tissue were measured over 5×5 pixel regions which are pointed as 

squares in Figure 6a. Note that CT values of soft tissue decrease and those of adipose tissues 

increase at 140kVp (Figure 6b). Some soft tissues attenuated like water and showed little 

change in their CT values (arrow in Figure 6b).  

 

Figure 6. Phantom study for CT value change over x-ray energy. (a) Chicken meat phantom 
image. (b) CT values over x-ray tube voltage changes. Two images of 80kVp (300mAs) and 
140kVp (193mAs) were acquired separately, and the average CT values of soft tissue and 
adipose tissue were measured in 15 regions over 5x5 pixels, which were indicated as squares in 
figure (a). Their CT values were plotted over x-ray tube voltage changes. As expected, the CT 
values of soft tissues decreased and those of adipose tissues increased at 140kVp. Note that 
some soft tissues changed little (arrow). However, it is due to the calibration error (see text for 
discussion). 
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It was questioned whether the water-like attenuations (arrow in Figure 6b) are the property 

of the tissues or due to a calibration error. In most of the phantom studies, CT values of the 

water reference were biased negatively at 80kVp sometime over -10 HU and somewhat less 

at 140kVp, even though system calibrations were performed before each imaging.  

 

The decreasing trend of heavy density materials became more obvious with the correction of 

such a bias using the water reference included in phantom imaging. However, the water 

reference was not included in this chicken meat phantom imaging of Figure 6. DECT 

utilizes the energy dependency of tissue attenuation so that any bias in low and high energy 

 

Figure 7. Tissue Signature Plot (80kVp vs. 140kVp) of the Chicken meat phantom. The solid 
line is for the pixel pairs, where CT values are the same at 80kVp and 140kVp ( L HP P ). Note 
that the most of fatty tissues positioned in lower and soft tissue in higher than the solid line as 
the model of Eq. (34). 
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images will cause severe problems in DECT applications. The water-like attenuation of soft 

tissues in the chicken meat phantom imaging was mainly due to the calibration error. How 

the attenuations of this chicken-meat phantom change after the post-calibration algorithm is 

applied is shown in Figure 17b.   

 

The tissue signature plot (80kVp vs. 140kVp) of chicken-meat phantom images shows the 

expected trends in Figure 7, where the solid line represents the pixel pairs which have the 

same CT number at 80kVp and 140kVp, ( L HP P ). The iso-line represents any attenuation 

parallel to that of water in vector space representation of Figure 2. Most of fatty tissues 

positioned in lower, but soft tissue positioned in higher than the solid line as the model of 

Eq. (34) predicted.   

 

 
Therefore, any pixel-pair of low and high energy CT that deviates far from this expected 

trend of Eq. (34) can be considered as noise or error, and so the condition of an error pixel 

is 

  0 0.L HP P P    (35) 

 

Figure 8. DECT spectral error 
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This error is called the spectral error of DECT [64] and is represented schematically in 

Figure 8. Figure 9 shows the pixels of spectral errors in the patient DECT images which 

were detected through the proposed model of Eq. (35). The images (a) and (b) are the 

original 80kVp and 140kVp images. The image (c) shows the pixels which satisfy the 

expected trend of Eq. (34), but the image (b) is the pixels of spectral error of Eq. (35). Most 

 

Figure 9. The pixels of spectral error in DECT patient images. The images (a) and (b) are the 
original 80kVp and 140kVp images, respectively. The image (c) shows the pixels which satisfy 

the expected trend,  0 0.L HP P P    but (b) is the pixels of spectral error,  0 0.L HP P P    
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of spectral errors are in the adipose tissue, soft tissue or liver lesions. All the pixels of the 

spectral error in Figure 9c clearly show most of anatomical and morphological features of 

the abdomen. In Figure 9, even the pixels of the homogenous patient-supporting bed show 

up in both (c) and (d). Statistically, it is because of uncertainty in representation of the 

feature.  

 

The tissue signature plot of the patient images of Figure 10a and 10b were presented in 

 

Figure 10. Tissue signature plot (80kVp vs. 140kVp) of the DECT patient image. This is the 
scatter plot of Figure 8a and b. This scattering plot is far deviated from the expected trend of 
Figure 6 which was acquired in ideal imaging condition of no misregistration and good X-ray 
exposure.  The solid line is for the pixel pairs, where CT values are the same at 80kVp and 
140kVp ( L HP P ).  
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Figure 9 for the comparison to that of the whole chicken meat in Figure 6 which was 

obtained in the ideal imaging condition, no misregistration and good X-ray exposure.   

 

With this priori-knowledge of tissue attenuation, the uncertainty can be reduced. The model 

of Eq. (34) or (35) informs that the attenuations of D and E are errors, if the tissue is iodine-

enhanced tissue. If the tissue is adipose tissue, then all the attenuations of A-D are errors. It 

is the virtual 120kVp 0P  that reliably determines whether the tissue is adipose or iodine-

enhanced one. The amount of difference between low and high energy images helps to 

differentiate the tissue type or tissue composite further.  

 

The spectral error causes severe noise or artifacts especially in results of material 

decomposition or material differentiation. By correcting the spectral error, material 

differentiation as well as image quality can be improved because the uncertainty due to noise 

or error is reduced. In the previous work, I showed that even a simple linear-selective 

filtering on the pixels of spectral error improved signal-to-noise ratio (SNR) and contrast-to-

noise ratio (CNR) of liver lesions without much smearing of image details [64]. In this work, 

more advanced technique is proposed. It consists of three steps: water-reference offset 

correction, spectral-error correction, and adaptive correlated noise reduction. Each step is 

based on the property of spectral-error sources of DECT, which is discussed next. 

 
 
3.2 The Sources of Spectral Error in Dual-Energy CT Imaging 

All the error sources of conventional CT imaging such as the beam hardening and partial 

volume artifacts are still valid to DECT, but the spectral errors are unique to DECT imaging in 

that all the errors of each low or high energy image show up as the combined effect as spectral 

error in DECT.  
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There are three major sources of spectral errors: misregistration, calibration error, and random 

noise.  The misregistration between low and high energy images was the most severe problem 

in the old DECT systems due to their slow acquisition speed. A typical example of 

misregistration of patient abdominal DECT images is shown in Figure 9, where the images (c) 

and (d) are the magnified images of (a) and (b), respectively.  The abdominal patient images 

show misregistration, especially in vessels and lesions. These images were acquired using GE 

LightSpeed VCT. It was introduced in 2006 and has the features of fast spiral acquisition of 

64-detector rows and dual-energy acquisition. Its dual-energy acquisition is performed in two 

 

Figure 11. Misregistration of DECT images. Two images of 80kvp (a) and 140kVp (b) show 
severe misregistration. The images (c) and (d) are the magnified images of (a) and (b). These 
images were taken using GE LightSpeed VCT, which is an old generation DECT system and 
acquires two low and high energy images during the two consecutive 0.5-second gantry 
rotations separated by 0.2 seconds for switching the tube settings. 
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consecutive 0.5-second gantry rotations separated by 0.2 seconds for switching the tube 

settings. Obviously, this misregistration will causes errors or artifact in any DECT processing. 

Recent DECT systems minimized the misregistration problem by fast acquisition using two X-

ray sources, a fast voltage-switching tube, or a multilayer detector [2].  

Calibration is inherently more important in DECT imaging than conventional CT imaging. 

In CT imaging, the water is used as a reference material and its CT value must be near 0 HU. 

Any bias at 80kVp or 140kVp in DECT imaging will distort the energy dependency 

information of a material. It is presented schematically in Figure 10a.  With two low and high 

energy images which are biased in the same direction, the energy dependency does not 

change and only the density measurements at 120kVp are affected. However, the different 

biasing of low and high images causes a large error in the measurement of spectral 

information. American College of Radiology (ACR) requires the CT value of water reference 

be within 7 HU [65]. In the worst case, for an example, if the 80kVp image is biased by 7 

HU and the 140kVp image is biased by -7 HU or vice versa, the measured difference will be 

deviated by 14 HU from the true value of water attenuation. Such attenuations cannot 

represent water, even though the water reference at virtual 120kVp is the reasonable value of 

-3.1 HU, and they will show up as contrast-enhanced or fatty tissue in material 

decomposition. This error can cause severe misdiagnosis in clinical application of DECT. In 

the DECT analysis of adrenal nodule and metastatic lesions, Gupta et al. [66] reported that 

the mean attenuation changes from 80kVp to 140kVp were -0.4±7.1 HU for adenomas and 

-9.2±4.3 HU for metastatic lesions, which means even 10 HU bias in DECT images could 

lead misdiagnosis of malignant tumors, even though such difference is within acceptable 

range of conventional CT imaging. Therefore, the accurate calibration of both low and high 

energy imaging is more important in DECT than the conventional CT imaging, and the 

accurate measurement of energy dependency using DECT is more challenging. 
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The noise which distributes over true attenuation randomly but does not change the true 

attenuation direction like Figure 10b is called the random noise in this work. Most of DECT 

noise suppressing techniques targets to reduce this random noise without smearing the edge 

details.  

 

The well-known artifact such as beam hardening and partial volume artifacts can also cause 

the spectral errors of DECT, but it is difficult to model them and to analyze their effect on 

DECT imaging. It can be said that all the above error sources together cause the spectral 

error which results severe noise or artifacts in DECT processing. Next, one technique is 

proposed to correct the spectral errors.  

 

3.3 Dual-Energy CT Image Enhancement 

Various approaches for DECT image enhancement is possible with the suggested model of 

Eq. (34). One simple approach may be to apply filters selectively to only the pixels of 

spectral error. Park et al reported that a simple linear selective filtering on the pixels of 

 

Figure 12. Calibration error and random noise. (a) The calibration error of either 80kVp or 
140kVp compromises the measurements of attenuation by biasing CT values indicated by 
arrows. (b) The randome noise distributes over the true attenuation A. In DECT, noise is 
smaller at high energy than at low energy. 
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spectral error improved SNR and CNR of liver lesions without much smearing of image 

details [64]. In this work, a new technique for DECT image enhancement is proposed, which 

consists of three steps: water-reference offset correction, spectral-error correction, and 

adaptive anti-correlated noise reduction.  

 

The first part of the proposed technique is to correct the water-reference offset. The CT values 

of water-reference must maintain at near 0 HU over X-ray energy change. The virtual 120kVp 

is used for the reference point because it is the most reliable in CT value estimation. First, the 

CT value of water is expected to be close to 0 HU on the virtual 120kVp, even though 80kVp 

or 140kVp image is biased. Second, the water attenuation must be unchanged over X-ray 

energy change. The criteria can be set up mathematically as ' ' '
0 1 2| 0.3 0.7 |P P P tol   and 

' ' '| 0.3 0.7 |L HP P P dtol    , where '
LP and '

HP are the low-pass filtered LP and HP , and tol

and dtol are tolerances.  '
0P  is the offset at the virtual 120kVp and  

The proposed algorithm for offset correction is summarized as 

 Get '
LP and '

HP after low pass filtering LP and HP  

 ' ' '
0 1 20.3 0.7P P P  and ' ' '0.3 0.7L HP P P    

 Get the average 1m and 2m of pixel values of LP and HP  only if they satisfy  

' 'dP dtol dP dtol     

 0 1 20.3 0.7m m m   

 1 0L LP P m m   and 2 0H HP P m m    

, where tol and dtol are the tolerances. Note, 0m is the offset of water reference at the virtual 

120kVp, and 1m  and 2m are the deviations of LP and HP from 0m  
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The second part of the proposed technique is to correct the spectral errors of two low and 

high images. In words, if they do not satisfy the expected model of Eq. (34), the CT values 

of 80kVp and 140kVp images are swapped and then replaced with their virtual 120kVp 

values as 

 
'

'

0.3 0.7

0.7 0.3 .

L L H

H L H

P P P

P P P

 

 
 (36) 

Such weighting factors came from the fact that the virtual 120kVp are the best in SNR [18], 

which was also verified in my analysis of DECT images. This spectral averaging ensures that 

high density materials attenuate more and their attenuations decrease more rapidly than 

lower density materials as the model of Eq. (34) predicts.  

It is much probable that high density materials have much higher CT values and low density 

materials have lower CT values at 80kVp than at 140kVp. For example, if the pixel belongs 

to the contrast enhanced tissue, it cannot be true that 50LP   HU at 80kVp and 100HP 

HU at 140kVp because iodine has much higher attenuation at 80kVp. It is much probable 

that 100 HU is close to the true CT value of 80kVp image. On the other hand, if the pixel 

belongs to fatty tissue, it is not expected that its CT value is -50HU at 80kVp and -100HU at 

140kVp. .  

 

Whether the pixel pair satisfies DE attenuation model of Eq. (34) or not affects dramatically 

to the resulting density maps of material decomposition. Its effect on two-material 

decomposition is presented in Figure 13. The mean values of 5x5 pixels were measured for 

two adipose-tissue regions of one-patient DECT images. The plots (a) and (c) are CT values 

over x-ray tube voltages, and the plots (b) and (d) are the corresponding density map values. 

Note that the density maps were obtained by solving Eqs. (26) with the assumption of 

effective energy 53keV and 72keV for 80kVp and 140kVp images, respectively, and the  
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Figure 13. Effect of DECT spectral errors on density maps. These are the mean values of 5×5 
pixels (3.13mm×3.13mm) which were measured in two adipose tissue regions, next to each 
other, of one-patient DECT images. The plot (a) is for the CT values over x-ray tube voltages 
and (b) is for density map values. They have the same mean value of -80 HU at 120kVp in plot 
(a), but show totally different attenuations over x-ray energy change, and their density map 
values are so different that they must be obviously classified as different tissues. The plot (c) 
and (d) are the results after replacing the pixel values by their weighted averages. Note the 
attenuation and density map values were also changed in (c) and (d), for they were balanced 
with neighboring pixel values, but the virtual 120kVp changed little (about 1HU). Note the 
standard deviations of density maps were represented by the radius of circle were reduced 
significantly by the spectral-error correction. 
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density-map values were converted to Hounsfield units as ( 1) 1000P    so that 0 HU is 

1 mg/ cm3 and -1000 HU is 0 mg/cm3.  In plot (a), the two regions of interest (ROI) of the 

original images have the very similar mean value of -80 HU at the virtual 120kVp but show 

totally different attenuations over x-ray tube energy change. As a result, they must be 

classified as different tissues by the two-material decomposition. The two-material 

decomposition result suggests in plot (b) that the region 1 is iodine-enhanced adipose tissue 

and the region 2 is adipose tissue. However, the regions are expected to be a similar adipose-

tissue type because they are just next to each other, and any contrast enhancement and 

anatomical feature difference between two ROIs was hardly noticeable. In addition, their CT 

values at virtual 120kVp are that of adipose tissue.  

 

A typical adipose tissue increases its CT values at 140kVp as the region 2 does in Figure 13a 

and has negative values in iodine map (P<-1000 HU, region 2 in Figure 13b). If it decreases 

at 140kVp due to error or noise as the region 1 does in Figure 13a, its iodine map value 

becomes positive (P>-1000HU, region 1 in Figure 13b). The change of the water-density 

value becomes more dramatic in Figure 13b, even though the two ROIs have very similar 

CT numbers at 120kVp. The plots (c) and (d) of Figure 13 are the results after processed by 

the proposed spectral-error correction algorithm. After processed by the proposed spectral-

error correction, the water-density value of region 1 changed from -110 HU to -65 HU so 

that they can are classified the similar tissue type in Figure 13d. Note the attenuation and 

density map values were also changed in (c) and (d), for the mean values were changed after 

the spectral-correction, but the virtual 120kVp changed little (about 1HU), and the standard 

deviation of density maps reduced significantly. The opposite situation of soft tissue will 

cause severe distortion in the resulting density maps, which explains why high pixel noise is 

observed and problematic especially in the density maps of two-material decomposition.  
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In the actual implementation of the spectral-error correction of Eq. (36), several aspects 

have to be considered. Noise analysis on DECT images showed that zero-crossing pixel 

pairs ( 0L HP P  ) must be treated separately. Such zero-crossing pixel pairs were expected 

to be cancelled out or be close to 0 HU, but many pixels were too deviated and appeared like 

spikes. For an example in abnormal patient DE images, one pixel pair showed that 

17LP    HU and 178HP  HU, and so 0 120P  HU. Its low-energy value 17 HU 

suggests that it belongs to fatty tissue, but its high-energy value indicates that it is the 

contrast-enhanced soft tissue, which is contradictory, and its virtual 120kVp value of 

0 120P  HU judges it to a contrast-enhance tissue. However, Eq. (35) suggests it is an error. 

I found that there are many such pixel-pairs in dual-energy images that cause spike-like noise 

in the final images, especially in density maps. One possible solution is to apply the 

smoothing filter or the median filter to such pixel pairs. Median filter is the standard choice 

to remove such spike-like errors while preserving edge details [67]. 

 

Another important consideration is that the model of Eq. (34) cannot be generalized. Fatty 

liver tissue increases CT value at 140kVp up to 15 HU depending on the contribution of 

fatty component [33]. In addition, ten Hounsfield-unit difference is hardly discernible in CT 

imaging due to the system noise and limitation. The CT accreditation program of American 

College of Radiology (ACR) requires that the water reference value be within 7 HU for 

abdominal imaging [65]. Therefore, correcting such errors of Eq. (35) by replacing them with 

weighted averages should be performed only if the difference of pixel pair exceeds certain 

tolerance.   

 

The third step of the proposed method is to suppress the random noise using the correlated 

noise reduction method. It has been originally proposed by Kalender et al. [62].  Kalender's 
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correlated noise reduction (CNR) is based on the finding that the noises of two density maps

1m  and 2m  in Eq. (26) are negatively correlated and can be balanced on the reference 

attenuation. In CNR, the new density maps '
1m and '

2m  after filtering have to satisfy the 

constraint to preserve the local mean values of 1m and 2m as, 

 
2 2' '

1 1 1 2 2 2( ) ( ) min.u m m u m m           (37) 

Its effectiveness on noise suppression without much loss of image detail has been proved [61]. 

However, I found that the CNR does not correct the spectral error of Eq. (35), even though it 

suppresses random noise effectively and preserves the local mean values. By combining the 

proposed offset correction and spectral-error correction, CNR can improve its performance.  

In words, it is the main idea of the proposed technique to make spectral errors distributed like 

random noise over true attenuation, mixed and balanced with neighborhood pixel values by 

CNR. 

In this work, the adaptive correlated noise reduction with the gradient constraint (algorithm 

A2b in the paper [62] ) is used because it appears to preserve details of real patient images 

better than any other algorithms suggested in their paper. From now on, the adaptive 

correlated noise reduction with a gradient constraint is denoted as KCNR. 

In the KCNR algorithm, differentiating the constraint of Eq. (37) leads the new density map 

values which minimize the constraint as 

 
 
 

2
1 1 1

2
2 2 2

1 /

1 / ,

m m C u

m m C u





  

  
 (38) 

where the correction term C and the control parameter  are defined with a gradient 

threshold g as 

  1 1 2 2 / 2,C u m u m     (39) 
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1
gP 




 


 (40) 

These correction terms are obtained from the constraint of Eq. (37), and more detailed 

formulation should be referred to the original paper [62]. In summary, the proposed 

algorithm is as  

 Offset correction 

 New '
LP  and '

HP after median filtering if 0L HP P   

 New ' ' '
0 0.3 0.7L HP P P   

 Replacing pixel '
LP and '

HP  with Lp and Hp , 

 

0.3 0.7

0.7 0.3 ,

L L H

H L H

p P P

p P P

 

 
 only if  ' ' ' ' '

0 0L H L HP P P P P dtol       

 Median filtering if  ' ' '
0 0,L HP P P    

 KCNR (adaptive correlated noise reduction with a gradient constraint) 

, where tol and dtol are tolerances. The final median filtering prevents spreading of any high 

peak noises to the resulting images. Finally, the KCNR balanced the spectral-error corrected 

pixels with neighboring pixel values, of which effect is discussed later.  
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3.4 Phantom and Patient Studies 

In order to verify the model of Eq. (34) and the proposed technique, phantom studies were 

performed with milk products of different fat and calcium contents and whole chicken meat 

using a dual-energy software package of a 64-detector CT system (LightSpeed VCT, GE 

Healthcare). In the dual-energy mode of this system, two consecutive scans of 80kVp and 

 

Figure 14. Milk phantom (see  Table 1 for the type of materials) 

 
Material Density (g/m3) Fat (g/ m3) Ca (g/m3) 

1 Fat free milk (calcium enhance) 1.033 0.000 0.0025 

2 Whipped cream 0.981 0.330 0.0013 

3 Butter 0.913 0.714 N/A 

4 Regular milk 1.024 0.037 0.0013 

5 Water 1.000 0.000 0.0000 

6 2% milk 1.030 0.020 0.0013 

7 Half & Half 1.021 0.117 0.0013 

8 Heavy whipping 0.985 0.400 0.0013 

 
Table 1: Milk phantom descriptions. The density and the amount of fat and calcium were 
calculated from the product nutrition information on labels. 
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140kVp imaging are performed for a single acquisition in total 1.8-seconds including two 

0.8-second gantry rotations and 0.2 seconds for switching tube settings.  

 

First, eight different materials of milk, water and butter were prepared as shown in Figure 14. 

DECT imaging was performed with a modified adult abdomen protocol (helical, medium 

body filter, and 0.625mm slice thickness, 600mA for 80kVp and 342 mA for 140kVp). The 

images were reconstructed by filtered backprojection using the standard kernel and 32cm 

diameter field of view. CT values and density map values of materials were measured over 

20×20 pixels (1.25cm×1.25cm), and they were compared before and after processed by the 

proposed technique. KCNR-only processed ones were also compared.  

In addition, dual-energy imaging of whole chicken meat were also acquired (medium filter, 

28cm field of view, 0.625mm slice thickness, 600mA for 80kVp and 342mA for 140kVp, 

standard kernel). The purpose of this chicken meat phantom imaging was to verify the 

model of Eq. (34) and offset correction algorithm for the real tissue imaging without water 

reference.  

 

This technique was also applied to HIPAA (Health Insurance Portability and Accountability 

Act)-compliant patient abdomen DE images. The patient scans were performed in contrast-

enhanced CT (CECT) imaging, and the CECT protocol was 338mAs for 80kVp and 

193mAs for 140kVp scans, 0.675m slice thickness, and large body filter and liver portal 

venous phase (70s-delay scan after the initiation of contrast agent). 

  

All the scans were performed after daily automatic system calibrations at Mayo Clinic, 

Scottsdale, AZ, in order to minimize calibration error. The post-processing was coded and 

performed using Matlab (Mathworks Inc., MA, USA). The tabulated data of mass 

attenuation coefficients of water and iodine were obtained through NIST, USA, and their  
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mass attenuation functions  Eu  were estimated using polynomial regression above k-edge 

absorption lines.  

 

Assumed 53keV and 72keV effective X-ray energy for 80kVp and 140kVp images 

respectively, two-material decomposition was performed using Eq. (26) for water and iodine 

 

No Material Density 
(HU) 

Original (HU) Proposed Method (HU) 

80kVp 140kVp P0 80kVp 140kVp P0 

1 Fat free milk  33 39.5±8.1 39.5±6.3 39.6±5.3 51.2±5.9 44.1±4.1 45.8±4.6

2 Whipped cream  -19 -21.4±10.0 -8.3±6.3 -11.4±5.6 -14.1±5.2 -4.0±3.6 -6.3±5.6

3 Butter -87 -137.5±18.2 -109±16.8 -116.0±16.6 -130.1±18.6 -103.4±16.2 -109.6±16.9

4 Regular milk  24 32.2±10.3 29.3±6.2 29.5±5.6 42.1±2.8 34.8±4.8 36.5±5.3

5 Water 0 -10.3±16.8 -7.9±9.8 -8.6±9.1 -2.8±11.2 -2.5±6.4 -2.6±7.4

6 2% milk 30 34.1±11.7 31.9±7.0 32.4±6.2 44.6±44.6 35.3±5.6 37.4±6.0

7 Half & Half 21 22.5±13.4 24.3±8.7 23.9±7.8 35.5±8.6 28.2±6.0 29.9±6.5

8 Heavy whipping -15 -18.3±12.3 -7.0±7.9 -9.6±7.2 -9.8±6.2 -4.4±2.2 -3.9±4.7

 
Table 2: CT values of the milk phantom.  All the values were measured on 20x20 pixels 
(1.25cm 1.25cm). The CT values of the propose method are offset-corrected and are similar 
to the values of original image except the offset correction.  The water reference values of the 
original images are biased -10.3 HU at 80kVp and -7.9 HU at 140HU and the both 0P values 
are within 1% accuracy to the expected density values of the materials except the butter, which 
has air spaces inside and so shows relatively a large deviation. And the density values were 
converted to Hounsfield units by  1 1000.  

 

 

No Material 
Density 
(HU) 

Original (HU) Proposed Method (HU) 

Water Iodine Density Water Iodine Density 

1 Fat free milk  33 39±14.8 -1000.0±0.4 38.6±14.1 37.3±4.3 -999.7±0.1 38.7±4.0

2 Whipped cream  -19 4.8±15.6 -1000.6±0.5 4.3±13.3 5.7±3.1 -1000.4±0.1 3.7±3.5

3 Butter -87 -79.6±21.0 -1001.2±0.4 -76.3±19.7 -77.8±16.6 -1001.1±0.3 -83.1±16.9

4 Regular milk  24 22.8±14.7 -1000.0±0.5 28.3±14.3 27.8±3.6 -999.7±0.1 29.2±4.4

5 Water 0 -4.1±22.7 -1000.1±0.7 -4.6±19.8 -2.1±4.9 -1000.0±0.2 -2.2±5.7

6 2% milk 30 28.0±18.5 -999.9±0.6 28.8±17.5 26.2±5.3 -999.6±0.2 28.1±6.0

7 Half & Half 21 25.6±19.4 -1000.1±0.6 28.9±21.2 21.3±4.5 -999.7±0.2 22.7±5.5

8 Heavy whipping -15 4.7±17.5 -1000.5±0.5 5.9±18.5 5.4±4.0 -1000.3±0.1 3.9±4.6

 
Table 3: Material decomposition of the milk phantom. All the values were measured on 20x20 
pixels (1.25cm  1.25cm). The accuracy of the original and the proposed are within 0.3% 
except whipped cream and heavy whipping cream. They showed 2% errors. Note that the 
proposed method improved SNR over 300~500% in both water and iodine maps except the  
butter, which has air spaces inside, and produced high quality density map. It made better 
material differentiation (see Figure 13). 
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basis materials. For the correlation noise reduction (KCNR), a 5×5 pixel mask and the 

gradient threshold 10g  were used.  SNR and CNR between two regions of interest a and 

b  were defined as  

 
 
 

( ) 1000 / ( )

( ) ( ) / ( ),a b a

SNR mean P std P

CNR mean P mean P std P

 

 
 (41) 

respectively. Note that the CT value of air 1000 HU was used as the signal reference in Eq. 

(41).  

 

3.5 Results 

The measurements of CT values and density maps were presented in Table 2 and Table 3, 

respectively. Note that the density values were represented in Hounsfield units by using the 

relation,  1 1000   , and so 1 HU is 1mg/cm3. In the original images, the high density milk 

materials showed little decrease or few changes in their CT numbers at 140kVp, but the low 

density milk materials of heavy fat content increased their CT number about 10HU as 

expected (see Table 2). The attenuations of the half-and-half milk and the calcium-enhanced 

fat-free milk were somewhat contrary to what was expected. The half-and-half milk 

increased about 2HU at 140kVp, and the calcium-enhanced fat-free milk did not change its 

CT values. However, the water reference shows offset errors (-10.3 HU at 80kVp and -7.9 

HU at 140kV), even though the automatic system calibration was performed before the scan. 

So, the offset correction was applied to the original images using the proposed offset-

correction algorithm, which produced -2.8 HU offset at 80kVp and -2.5 HU offset at 

140kVp for the water reference (Figure 15b). Note that Figure 14b is the result that only 

offset-correction technique was applied without the spectral-error correction to the original 

images. The result images still have small offset errors (3HU) but it is reasonable value for 

water reference. Most of all, the water offset values became well balanced at both 80kVp and 
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140kVp after the offset correction so that all the materials followed the expected attenuation 

trends in Figure 15b - heavy density material deceases and low density material increases CT 

number at 140kVp.  For the water reference, the proposed method improved SNR by 46% 

and by 53% for 80kVp image and 140kVp image respectively, and the virtual 120kVp also 

showed 30% SNR improvement. Although not so impressive, it should be considered that 

this phantom was small and well-exposed so that the original images itself are of high quality. 

On the other hand, the proposed method improved the resulting density maps dramatically 

of 300~500% noise suppression, except for the butter. Butter has air space inside and so it is 

not homogenous.  

 

  

 

Figure 15. Offset correction for the milk phantom. In the original image (a), the CT value of 
water (number 5) is biased about -10HU at 80kVp and -8.3HU at 140kVp, which was 
corrected to -2.8 HU at -80kVp and -2.5 HU at 140kVp by the proposed offset-correction 
method (b). Note that the attenuation changes of other materials after the correction, which 
allows the better differentiation in two-material decomposition. Note the materials are labeled 
by the numbers, and see Table 1 for their detailed descriptions. 
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In order to verify its effectiveness on material differentiation, I compared the resulting 

density maps of the proposed technique with the original density maps and the KCNR-only 

ones and presented the results as the plots of iodine-density value versus water-density 

values in Figure 16, where the dotted circles are the standard deviations and materials are 

labeled with numbers (see Table 1 for the material description). The comparison clearly 

shows that the density maps of proposed technique improved material differentiation over 

the original and the KCNR-only.  In the original density maps (Figure 16a), the materials are 

heavily overlapped and hardly differentiable due to the  

 

Figure 16. Material differentiation of the milk phantom using two-material decomposition. See 
Table 1 for the material description. All the values were measured on 20x20 pixels (1.25cm
1.25cm), and the dotted circles are the area within the standard deviations. In the original 
density maps (a), the materials are heavily overlapped and hardly differentiable due to the 
noise,  and KCNR-only (b) suppressed noise effectively. The propose method (c) are superior 
in both correcting bias and material differentiation. Note that water (number five) is expected 
to be positioned at 0 HU (1g/cm3) on the water density map and -1000HU (0g/cm3) on the 
iodine map, but water is biased in the original maps while it is corrected by the proposed 
method (c). The anti-correlation-only technique failed to correct the bias. The butter is not 
included in these plots because of its obvious separation. 
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Figure 17. Offset correction for the chicken meat phantom. The original images (a) were 
biased by -4.6 HU at 80kVp and -0.03 HU at 140kVp. Although 140kVp was not biased, the 
bias of 80kVp affects the measurements of energy dependency of x-ray attenuation of the 
materials. After correcting the bias by the proposed technique, the tissue in arrow showed the 
typical attenuation trends of soft tissue as a result. 

noise, and the KCNR-only (Figure 16b) suppressed noise effectively but failed to correct the 

offset and spectral errors.  

 

The water reference (material five in Figure 16) is expected to be positioned at 0 HU 

(1g/cm3) on the water density map and -1000 HU (0g/cm3) on the iodine map, but water 

was biased in the original map and the KCNR-only map, while the proposed method 

corrected the bias error. In addition, the standard deviation of water was 10.0 HU for 

KCNR-only while 6.3 HU for the proposed method. The proposed method improved 

KCNR by correcting bias and spectral error and resulted in better material differentiation 
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(Figure 16c). Note that regular milk, 2% milk and half-and-half milk, which are labeled 4, 6, 

and 7 respectively in Figure 16, have very similar density and small differences of fatty 

content so that they are overlapped severely even by KCNR, but the proposed technique 

differentiated them in a better way (Figure 16c). The butter is not included in these plots 

because it is easily differentiable due to its low density.  

 

The milk phantom included water reference, but such reference is not available in routine 

clinical CT imaging. The imaging of whole chicken meat was performed in order to check 

how the attenuation changes in real tissue and how the bias affects to real tissue. The original 

DECT images of the chicken phantom were biased -4.6 HU at 80kVp and -0.03 HU at 

140kVp (Figure 17a). These bias values were detected by the proposed technique. Although 

140kVp was not biased, the bias of 80kVp affected the measurements of energy dependency 

of X-ray attenuation of the materials. It resulted in the attenuation change of the tissue in 

arrow and was corrected by the proposed technique and shows the typical attenuation trends 

of soft tissue after the correction (Figure 17b). 

 

The proposed techniques are applied to the real patient abdominal images (Figure 18). For 

the noise reduction for these patient images, the gradient threshold 10g  HU was used. It 

is very conservative approach to preserve the detail. Only the gradient difference of less than 

10 HU trigger noise reduction [see Eq. (40)]. The proposed technique suppressed noise of 

the original images without any noticeable loss of detail and improved the contrast between 

liver lesion (number 1) and contrast-enhanced liver parenchyma (number 2). For the 80kVp 

image, the proposed method improved SNR and CNR over the original by 165% and 150%, 

respectively, but it showed similar SNR and CNR performance to those of KCNR-only. For  
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Figure 18. Abdominal image results. The proposed improved both 80kVp and 140kVp images 
without smearing edges, compared to the original and the KCR-only images.  Note SNR of 
live metastasis lesions and CNR between lesion and enhanced live parenchyma. (WW=400, 
WL=130 for all the images). 
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Figure 19. Material decomposition of abdominal images. The hypodense liver metastases are 
noticeably visible in the water density map of the proposed method, but those of the original 
and the KCNR-only density maps are hardly differentiable. 
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the 140kVp image, the proposed method improved SNR and CNR by 174% and 183% over 

the original and 150% and 155% over KCNR-only.  The improvement on density maps was  

more noticeable.   

 

Such small differences between the images of KCNR-only and the proposed method made a 

big difference in the resulting density map values. The SNR improvements on the water 

density map (Figure 19e) were 181% over the original (Figure 19a) and 160% over KCNR-

only  (Figure 19c) and in the iodine density map 280% over the original and 227% over 

KCNR-only. CNR is also improved.  The proposed method improved SNR and CNR for 

both images and density maps. However, there were noticeable changes of 10 HU at 80kVp 

especially in liver metastases lesions for either KCNR-only or the proposed method. The 

average mean values of KCNR-only and the proposed method had 2 HU differences in both 

80kVp and 140kVp images and the difference between CT values of 80kVp and 140kVp 

were maintained as 36HU. For the KCNR-only, the water-density map value was 30±56.7 

HU and the 18.8±33.8 HU and -998.6±1.1 HU, respectively.  
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CHAPTER 4 

DISCUSSION 

4.1 Comparison to Correlated Noise Reduction 

The proposed method improved SNR, CNR and material differentiation.  The improvement 

was mainly attributed to the spectral-error correction. Its effect is dramatic in that the 

spectral-error correction algorithm alone without KCNR made 170% SNR improvement for 

water density maps and 300% for iodine density maps over the original density maps for the 

abdominal images. The KCNR did not contribute much to the SNR improvement of ROI 

due to the low threshold of the gradient constraint applied. In this work, the threshold of the 

gradient constraint 10g 
 
was used for KCNR. Only less than 10 HU difference triggered 

adaptive noise reduction and the amount of noise reduction was controlled further by the 

amount of gradient to the neighborhood pixel values [see Eqs. (38)~(40)]. The high 

threshold of gradient constraint improves SNR but causes the degradation of edge details. 

Originally, the non-adaptive KCNR was tried but smearing edge detail was too noticeable. 

When compared with all the KCNR methods proposed by Kalender et al.[62], the adaptive 

KCNR with the gradient constraint of a reasonable threshold was the most effective in 

preserving the edge details as well as in suppressing the noise, but it was my subject 

evaluation.  

 

It appeared that the original KCNR suppresses only the random noise with respect to the 

reference attenuation and failed to correct the spectral error. The proposed method corrects 

the spectral errors by replacing them with the weighted average values of low and high 

energy images. For example, all the pixel pairs of Figure 3 have the same CT value at 

120kVp. Without any priori information, it is impossible to judge which one is the true 
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attenuation or error. The proposed model of Eq. (34) or (35) provides such a priori-

knowledge on tissue attenuation that E is an error for the contrast-enhance soft tissue, but 

C  and D  are more likely unenhanced tissues. Therefore, uncertainty is reduced, and so 

image quality and material differentiation can be improved. 

 
4.2 Spectral Error Correction 

The proposed algorithm is schematically explained for a contrast-enhance tissue in Figure 20. 

The random noise over a true attenuation A  of a contrast-enhance tissue will be like the 

dotted lines and distributes over Awithin a certain deviation as the gray region in the left 

plot. It is the spectral error that is too far deviated and in the opposite direction from the 

true attenuation A  as the attenuations of B and C do. The spectral error of B does not satisfy 

the condition of Eq. (34), so that the proposed algorithm replaces LP and HP of the 

attenuation B  with Lb and Hb , which are the weighted sum of 80kVp and 140kVp as  

 

Figure 20. Spectral errors and random noise. For a typical contrast-enhanced tissue, the 
random noise distributes like the dotted lines within a certain range (gray regions) over the true 
attenuation of A , but the spectral errors are far deviated and in the opposite direction like B

and C in the left plot. The proposed algorithm for the spectral-error correction replaces LP  
and HP of the attenuation B with Lb and Hb , which are the weighted sum of 80kVp and 
140kVp, respectively so that B becomes 'B  like random noise over A in the left plot. Finally, 
the random noise is balanced with neighbor pixel values by KCNR. 
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respectively in a way that the attenuation at 80kVp is higher than at 140kVp. 

 

So, B becomes 'B like random noise over A . Finally, the random noise is mixed and 

becomes balanced with neighboring pixel values by KCNR at the third step of the proposed 

algorithm. It is the main idea of the proposed method to make the spectral errors distributed 

like random noise over the true attenuation, mixed, and balanced with the neighborhood 

pixels values.  

 

4.3 The Effect of Spectral-Error Correction. 

The effect of the proposed spectral-error correction is demonstrated in Figure 21. The mean 

values of two adipose tissue regions, adjacent to each other, were measured over 5×5 pixels 

after one-patient DECT images were processed by KCNR-only and the proposed spectral-

error correction. The plots (a-c) are for the CT values over X-ray tube voltage change and 

(d-f) are their corresponding density map values.  In the original images (Figure 21a), the 

tissues have the same mean value of -80 HU at the virtual 120kVp but show totally different 

attenuation over X-ray energy change. Apparently, tissue 2 is an adipose tissue, but tissue 1 is 

less likely adipose tissue due to its attenuation trend. For both ROIs, KCNR-only decreased 

CT values about 10 HU at 80kVp and increased about 5 HU at 140kVp, which implies most 

of CT values of the ROIs are lower at 80kVp and higher at 140kVp than the CT values of 

the original images, but the spectral trend is still unrealistic for adipose tissue. In the density 

maps, KCNR-only just reduced the deviation little by balancing 80kVp and 140kVp values 

on the virtual 120kVp values (Figure 21b) and classified them as different types (Figure 21e).  
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Figure 21.  Spectral-error correction. These are the mean values of two adipose tissue regions 
(5x5 pixels) adjacent to each other in one patient DECT images. The plots (a-c) are for the CT 
values over x-ray tube voltages and (d-f) are their corresponding density map values. In the 
original images (a), the tissues have the same mean value of -80 HU at the virtual 120kVp but 
show totally different attenuation over x-ray energy change. (b) KCNR-only just reduced the 
deviation by balancing 80kVp and 140kVp values on the virtual 120kVp values. The tissue 1 
does not satisfy Eq. (c) The proposed method corrected the spectral error of tissue 1 and 
characterized them as a similar tissue type (f) but KCNR-only judged them as different types. 
Note that only spectral-error correction was applied for the result (f) but it reduced noise 
effectively, which was reflected in the small circles of standard deviation, compared to KCNR-
only. 
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On the other hand, the proposed method judged the tissue 1 as adipose tissue according to 

its CT value at 120kVp and corrected the attenuation as a typical adipose tissue. It 

characterized them as a similar tissue type in the resulting density maps (Figure 21f). Note 

that only the spectral-error correction was applied to the original images for this result, but it 

reduced noise effectively even without KCNR, which was reflected in the small circles of 

standard deviation in Figure 21f and shows the effectiveness of the proposed model.  

 

However, it must be arguable that the attenuation of tissue 1 in Figure 21a was changed a lot 

by the proposed method. The virtual 120kVp value were changed about 5 HU, so its 

quantitation varied. It is still unclear whether the attenuation like tissue 1 of Figure 21a is an 

error or the true attenuation of the tissue. It is also possible that the tissue might be contrast-

enhanced adipose tissue. The contrast-enhancement of adipose tissue was not discussed in 

literature. One possible explanation may be the partial volume effect. 

 

There were several differences between the resulting density maps of the original and the 

proposed methods. In Figure 22, the density maps were presented with the original 80kVp 

and 140kVp images for reference. The two original 80kVp and 140kVp images are 

apparently misregistered, and the original density maps (Figure 22c  and d) show unexpected 

structures on both density maps. First, unexpected contrast-enhanced structures were shown 

in the original water density map (thin arrow in Figure 22c) and second, artificial structure is 

shown in the original iodine density map (the thick arrow Figure 22d).   They are the effect 

of spectral errors caused by misregistration. On the other hand, the density maps of the 

proposed method (Figure 22e and f) do not show such ghost-like structures. Compared to 

the original 80kVp and 140kVp images, iodine content was separated well. Both water and 

iodine density maps of the proposed method carry all the anatomical and morphological 
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structures of the original 80kVp and 140kVp without such artifacts. Therefore, the proposed 

method corrected misregistration in some way.  

 
Figure 22. The density map comparison 80kVp (a) and 140kVp (c) are presented for the 
reference. Original water map (d) original iodine map (e) proposed water map (f) proposed 
iodine map. Note the misregistration of the original 80kVp and 140kVp images and the 
resulting differences between density map results in arrows. 
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For this reason, tolerances were set in the proposed algorithm. In this work, the pixel pairs 

were not considered as spectral errors if their difference is within 20HU even though they do 

not satisfy the condition of Eq. (34).  

 

4.4 Dual-Energy CT for Material Differentiation 

The primary goal of DECT is the material differentiation. In the dual-energy mode of 

Siemens DSCT system, the tissue signature plot is used for the three-material decomposition, 

in which a CT-value pair of 80kVp and 140kVp images is compared to the predefined 

positions of the three basis materials; fat, soft tissue, and iodine. Its relative position 

represents the amount of composite materials and so is used for material differentiation.  

 

In three-material decomposition, it is assumed that the tissue consists of three materials of 

fat, soft tissue, and iodine. Similarly to the tissue signature plot, the density maps of two-

material decomposition for the milk phantom were presented in Figure 18, in which the 

propose method showed the improvement in material differentiation. Here, the relation 

between tissue signature plot and two-material decomposition is discussed. 

 

Tissue signature plots of the milk phantom before and after processed by the proposed were 

compared in Figure 24. The fatty milk products were expected to be positioned lower than 

the iso-line ( L HP P , solid line), but most of CT-value pairs appeared to be distributed 

equally over the iso-line in the original images of Figure 23a. The KCNR-only result was not 

so different from the original one. On the other hand, the proposed method corrected the  
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Figure 23. Tissue signature plot comparison of the milk phantom. (a) the tissue signature plot 
of the original images (b) the tissue signature plot after processed by the proposed method. 
The fatty milk products are expected to be positioned lower than the iso-line ( L HP P , solid 
line), but most of pixel pairs appeared randoriginal The histogram of water density map is a 
view to the distribution which is projected on the iso-line, and the histogram of iodine density 
map is a view to the distribution which is projected on the iodine attenuation line, which is 
about 69 degree off from the horizontal axis;  , ,/ 2.35.L iodine H iodineu u    

spectral errors of the fatty milk in Figure 23b so that most of fatty milk is positioned in the 

lower part than the iso-line as the model of Eq. (34) predicted. 

 

In Figure 24, the histograms of virtual 120kVp images and the density maps are displayed 

and compared before and after processed by the proposed technique. The histogram of the 

original virtual 120kVp image in Figure 24a already separated butter, low and high density 

milk products. The histogram of the virtual 120kVp image of the proposed method in Figure 

24b shows the image quality improvement over the original one by high peaks with narrow 

widths. Moreover, the histograms of the proposed method (Figure 24d and e) clearly show 

the superiority of the proposed method in the material differentiation.   
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Figure 24. Histograms comparison of the milk phantom. (a) and (b) are the histograms of the 
virtual 120kVp images. (c-f) are the histograms of water and iodine density maps. The left 
columns are before and the right columns are after processed by the proposed method, 
respectively. 
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Figure 25. Histogram comparison of patient images. The histogram of patient images shows 
the proposed method made better material differentiation, especially in the iodine map (f). 
Note the virtual 120kVp of the proposed method shows better distinction in soft tissue 
ranges. The KCNR-only result was not presented, but it did not improve separation even with 
higher masks and just smoothed the histogram of the original images. 
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Smoothing such as with KCNR may narrow the random distribution and produce better 

density estimation.  However, such smoothing cannot recover the lost spectral information 

of fat and calcium.  

 

On the other hand, the proposed method redistributed their attenuations based on the 

material spectral property; the attenuation of higher density material decreases relatively 

faster over X-ray energy changes. Most of milk contents are water, fat and calcium. Calcium 

attenuates faster and fat attenuates slower than water, which is reflected in the histogram of 

the resulting density maps of the proposed method. The proposed method can be 

considered as a kind of post-calibration for tissue attenuation over X-ray energy change, not 

for density estimation.   

 

In addition, the histogram of patient images shows the proposed method made better 

material differentiation, especially in the iodine map (Figure 25f). Note the virtual 120kVp of 

the proposed method shows better distinction in soft tissue ranges. The KCNR-only did not 

improve separation even with higher masks and just smoothed the histogram of the original 

images, and so it was not presented. 

 

The histogram of water density map in Figure 24 is a kind of view to the distribution of the 

tissue signature plot in Figure 23 from the direction orthogonal to the iso-line, on which the 

tissue attenuations are parallel to the water attenuation in the vector space representation of 

Figure 2. On the other hand, the histogram of iodine map is a kind of view to the 

distribution deviated from the iso-line as indicated by arrows of Figure 23.  In Figure 24e 

and Figure 25e, the histograms of the original iodine density map shows a typical normal 

distribution.  
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4.5 Dual-Energy CT Calibration 

All the analysis of DECT images leaded to a question, how DECT is calibrated. A typical 

calibration procedure of conventional CT imaging targets to set up a linear relationship 

between air (-1000HU), water (0HU) and bone (950HU), especially for major body tissue 

regions of -200 ~200HU. It appeared that both 80kVp and 140kVp images were calibrated 

for the same linear relationship for accurate density measurement and lost some spectral 

information. The tissue signature plot of the milk phantom (Figure 23a) shows a linear trend 

of attenuation in low density materials. It may show that both 80kVp and 140kVp images 

were calibrated for the iso-line (solid line), where the attenuation is parallel to water 

attenuation. The normal distribution of the iodine-map histogram may imply that they are 

calibrated for the same reference because the histogram shows the deviation from the iso-

line. 

 

Conventional CT imaging targets accurate density measurement so that the known density is 

the calibration reference. However, the main problem of CT imaging is that different material 

can have a similar CT value. DECT was developed in order to solve the problem. In DECT, 

the linear density reference should not be used for DECT calibration. It is the paradigm of 

single-energy CT imaging to measure density. In DECT, each low or high energy imaging 

should be calibrated separately at each energy level with its own reference. Fatty tissue and soft 

tissue attenuation references should be set differently for low and high energy.  

To my knowledge, there is no standard calibration reference for DECT yet. The calibration 

standard for DECT should be established as soon as possible. For the conventional CT 

imaging, American College of Radiology (ACR) provides the CT accreditation program using 

the so-called ACR phantom which is used for CT system calibration and evaluation: CT value 

accuracy, low contrast and high contrast resolution, uniformity, and alignment test.  In the 
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ACR phantom, there are four materials representing body tissues for CT value accuracy test: 

polyethylene for fatty tissues, water reference, acrylic for soft tissues, bone equivalent plastic 

for bone. It was observed that the CT value of acrylic increases over 20 HU at 140kVp from 

the value of 120HU at 80kVp (see Figure 26 and Table 5). The increasing trend is the own 

property of acrylic due to its high contents of hydrogen and carbon. It is very contradictory to 

the typical attenuation of human soft tissues. Normally, soft tissue decreases about 10HU at 

140kVp. Therefore, the acrylic in ACR phantom cannot be used for the reference of soft tissue 

in DECT. Only in some abnormal patient cases, the CT value of fatty liver changes little or 

increases slightly at 140kVp, depending on their composition. 

 

Figure 26. ACR phantom CT value 
accuracy test module 

ACR Material Target Tissue Criteria (HU) 

Bone equivalent 
plastic Bone 850~970 

Polyethylene Fat -107~87 

Water Water -7~7 

Acrylic Soft Tissue +110~135 

 
Table 4: CT value calibration criteria of 
American College of Radiology (ACR). 

Material 
(Expected CT value) 

80kVp
(600mA) 

140kVp
(345mA) Virtual 120kVp 

Bone (950 HU) 1214.9±21.8 837.5±13.0 924.3±11.4 

Polyethylene (-95HU) -118.5±12.9 -80.9±8.3 -89.5±6.8 

Water (0HU) 5.0±14.2 5.5±9.8 5.4±8.4 

Acrylic (120HU) 111.9±17.8 135.1±10.1 129.7±9.8 

 
Table 5: DECT measurements of CT value accuracy test module. Note that the CT value of 
acrylic increases at 140kVp, which cannot represent the energy-dependency of soft tissue X-
ray attenuation, and notice that the virtual 120kVp has the best accuracy with less noise. 
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The validity of the proposed model of Eq. (34) was the primary concern in this work. I have 

not found any significant exception at least in human body tissue. Raptopoulous et al. [33] 

reported that fatty liver increase CT values up to 15HU at 140kVp, which is within the 

tolerance of the proposed algorithm. It appears that carbon-rich compounds such as Lucite 

and acrylic are one of the exceptions. They are heavier than water but increase their CT 

values at 140kVp. It is due to high contents of hydrogen [58] . Since the materials are not 

related to body tissues, it was not considered in this technique, but the property of carbon 

polymers may be utilized for other industrial applications of DECT. 

 

4.6 Image-based and Projection-based Material Decomposition 

There are two approaches to material decomposition in DECT. Siemens DSCT uses image-

based three-material decomposition, and GE Discovery 750HD uses the projection-based 

two-material decomposition. Some recent works insist that the projection-based material 

decomposition is superior to image-based decomposition [34, 68].  In their works, the results 

of the projection-based method are after the spectral-error correction using the spectral 

information, but those of the image-base method had beam-hardening correction individually 

for each X-ray level. The each image of 80kVp and 140kVp was calibrated for the density 

estimation, not for the spectral information. By its nature, the projection-based method is 

calibrated using two mixtures of water and iodine.  

It is the conventional CT imaging that is inferior to DECT with the aspect of material 

differentiation. In any DECT application, the result of image-based method should be similar 

to those of the projection method for material differentiation, as long as the same 

measurement data and the same reconstruction method were used, because the system 

equations of Eqs. (26) are the common for both methods.  Without any additional assumption 

or information, only the calibration or noise treatment makes the difference.  
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The projection-based method has an advantage that the noise can be balanced between low 

and high energy projection data before the reconstruction, and so projection-based image may 

be better. However, such noise reduction can be done even in an image-based method. This 

work shows that two reconstructed images can be improved further by correcting the spectral 

errors and can produce high quality density maps. Material differentiation is improved with the 

improved high quality density map. With the density maps improved, pseudo-monochromatic 

images can be generated for the optimal contrast as done in the reference [69].  

4.7 Low-kVp-High-Current CT imaging 

It is interesting to note that the similarity of the proposed method to sigmoid blending 

technique [52], in which CT values of low attenuation are extracted from the 140kVp image 

while CT values of high attenuation are obtained from the 80kVp image and so improve 

contrast and conspicuity especially for hypervasular tumor. However, their approach is to find 

the optimal contrast imaging, which is not different from the conventional imaging. This 

technique is to improve the quality of the spectral information. It is the spectral information 

that DECT targets to acquire. With the spectral information improved, various application of 

DECT can be performed like virtual non-contrast imaging, direct differentiation of liver 

metastases and cysts [34, 69].  

Recently, radiologists realized the potential of low-kVp-high-current CT imaging. Low energy 

CT imaging improves conspicuity especially for hyper-vascular tumors by enhancing contrast 

between contrast-enhanced tumors and unenhanced surrounding tissues [70, 71]. However, the 

current x-ray tube technology does not provide enough power to resolve noise problem of the 

low energy CT imaging. With the advance of x-ray tube technology, the single low energy 

imaging with high x-ray tube current might be preferred to DECT by radiologist.  In a practical 

point of view, it is the problem of DECT that it provides too much information such as low 
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and high energy images, virtual non-contrast image, and density maps. So, if a single image of 

low energy CT can provide enough information for malignant tumor detection, it will be 

preferred by radiologists. Clinicians do active researches to establish new DECT criteria for 

each target disease. Once DECT imaging criteria are established, all the confusion will be 

removed. It is no doubt that DECT will become a new standard for detection of abnormality 

in the human body. 
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CHAPTER 5 

CONCLUSION 

In this work, a new model and an image enhancement technique for DECT has been 

proposed, based on the fact that the attenuation of high density materials decreases relatively 

faster as X-ray energy increases. Any CT-value pair of low and high energy images which 

deviates far from the expected trend is considered as noise or error and was called the 

spectral error of DECT. So, selective processing on spectral errors, the noisy or error pixels, 

was applied. The proposed technique consists of water-offset correction, spectral error 

correction, and adaptive noise suppression. It is the main idea of the propose technique to 

make the spectral errors distributed like random noise over the expected attenuation, mixed 

and balanced with their neighboring pixels.  

 

The propose technique reduced noise, improved contrast without degrading edge detail 

because it selectively corrected the spectral errors of DECT images, and it provided better 

material differentiation in real patient images as well as phantom studies. The improved 

density maps can be used for the material differentiation and the generation of pseudo-

monochromatic images for optimal contrast for each target disease. In addition, the water 

density map can be used for virtual non-contrast imaging so that it helps to reduce radiation 

dose by avoiding pre-contrast imaging in the typical contrast-enhanced CT imaging 

protocols. However, this work is limited to the old DECT system. This work should be 

validated further for the recent advanced DECT systems which minimized the 

misregistration problem by the fast acquisition. 

 

CT imaging has been established over 30 years. CT Imaging criteria for various diseases have 

been established based on the standard 120kVp imaging.  However, DECT has just become 
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available for routine clinical imaging. A new standard for DECT calibration and criteria should 

be established as soon as possible, and then the results of different DECT systems can be 

compared to each other, and imaging criteria for target diseases can be established. Until such 

DECT criteria are established, virtual 120kVp image should be used for quantifiable 

comparison to the standard 120kVp CT criteria.  

Radiologists do active research to establish the DECT criteria of various diseases and tissue 

types, and they already predicted carefully that DECT can be an alternative to PET-CT and 

SPECT. It is no doubt that DECT will be one of standard CT imaging procedure for routine 

diagnosis in near future. 
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