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ABSTRACT  
   

Neurostimulation methods currently include deep brain stimulation 

(DBS), optogenetic, transcranial direct-current stimulation (tDCS), and 

transcranial magnetic stimulation (TMS). TMS and tDCS are noninvasive 

techniques whereas DBS and optogenetic require surgical implantation of 

electrodes or light emitting devices. All approaches, except for 

optogenetic, have been implemented in clinical settings because they 

have demonstrated therapeutic utility and clinical efficacy for neurological 

and psychiatric disorders. When applied for therapeutic applications, these 

techniques suffer from limitations that hinder the progression of its 

intended use to treat compromised brain function. DBS requires an 

invasive surgical procedure that surfaces complications from infection, 

longevity of electrical components, and immune responses to foreign 

materials. Both TMS and tDCS circumvent the problems seen with DBS 

as they are noninvasive procedures, but they fail to produce the spatial 

resolution required to target specific brain structures. Realizing these 

restrictions, we sought out to use ultrasound as a neurostimulation 

modality. Ultrasound is capable of achieving greater resolution than TMS 

and tDCS, as we have demonstrated a ~2mm lateral resolution, which can 

be delivered noninvasively. These characteristics place ultrasound 

superior to current neurostimulation methods. For these reasons, this 

dissertation provides a developed protocol to use transcranial pulsed 

ultrasound (TPU) as a neurostimulation technique. These investigations 
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implement electrophysiological, optophysiological, immunohistological, 

and behavioral methods to elucidate the effects of ultrasound on the 

central nervous system and raise questions about the functional 

consequences. Intriguingly, we showed that TPU was also capable of 

stimulating intact sub-cortical circuits in the anesthetized mouse. These 

data reveal that TPU can evoke synchronous oscillations in the 

hippocampus in addition to increasing expression of brain-derived 

neurotrophic factor (BDNF). Considering these observations, and the 

ability to noninvasively stimulate neuronal activity on a mesoscale 

resolution, reveals a potential avenue to be effective in clinical settings 

where current brain stimulation techniques have shown to be beneficial. 

Thus, the results explained by this dissertation help to pronounce the 

significance for these protocols to gain translational recognition. 
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Chapter 1 

INTRODUCTION 

The search for answers to questions about our biology has inspired 

and challenged fields of science to produce technology that can meet 

such demands. Neuroscience, a fast-paced emerging field has done just 

that. Neuroscience has brought molecular, physiological, and imaging 

techniques to the leading edge of research. Congruently, neurostimulation 

techniques have helped to unveil the adaptive and dynamic nature of the 

nervous system, formally known as neuronal plasticity. 

A hallmark of neuronal plasticity was discovered in 1973, when Tim 

Bliss, Terje Lømo, and Tony Gardner-Medwin discovered that high 

frequency stimulation could produce lasting changes of synaptic weights 

to the dentate gyrus of the hippocampus (Bliss and Gardner-Medwin 

1973; Bliss and Lomo 1973). This was achieved using electrolyticaly 

sharpened tungsten wire to stimulate the axons of the perforant pathway 

while recording with NaCl filled glass electrodes.  

It was their deciphering protocols that elucidated a fundamental 

neuronal property which grew into a dogma that has become a lasting 

basis for learning and memory. 

The technique became a conventional means to stimulate nervous 

tissue. Since then, neurostimulation techniques have developed into more 

manipulative yet elegant means, and have continued to unveil intriguing 

properties of the nervous system.  
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Advances in molecular and genetic techniques have developed a 

superb means to stimulate nervous tissue using photons of particular 

wavelengths. From the unicellular green alga Chlamydomonas reinhardtii, 

a rhodopsin deemed Channelrhodopsin-2 (ChR2) had been isolated. The 

nature of this light-gated cation channel permits its incorporation into 

specific populations of neurons through the customizing of plasmids and 

viral vectors providing unrivaled spatial and genetic isolation. It has 

provided investigators with millisecond temporal precision of neuronal 

depolarization and synaptic events (Boyden, Zhang et al. 2005; Zhang, 

Wang et al. 2007).   

This technology has birthed revolutionizing techniques that have 

provided mechanisms to answer and reaffirm some of neuroscience‟s 

intriguing questions, a field now known as optogenetics. Such examples 

include the use of ChR2 to more effectively and precisely map motor 

cortex in vivo (Ayling, Harrison et al. 2009). It has even demonstrated 

potential clinical efficacy for neurological and psychiatric disorders such as 

Parkinson‟s, major depression, and epilepsy (Gradinaru, Thompson et al. 

2007; Tonnesen, Sorensen et al. 2009). The light induced excitation of 

ChR2 pyramidal cells of M1 layer V has given new insight into the 

therapeutic effects observed with deep brain stimulation (DBS) for patients 

with refractory Parkinson‟s disease (Gradinaru, Thompson et al. 2007). 

Through a series of trials designed to dissect the physiology and circuitry 

involved with rodents observing Parkinsonian-like motor behaviors, it was 
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found that discrete high-frequency stimulation (HFS) of afferents to the 

subthalamic nucleus (STN) from M1 produced robust ameliorating effects 

on rodent motor behavior (Gradinaru, Thompson et al. 2007).  

The robust symptoms of motor-related neurological disorders 

provide a model that can be sufficiently manipulated and studied, another 

such model is epilepsy. Epileptic activity can be described as the 

excessive and uncontrollable discharging of neuronal populations. It was 

hypothesized that control could be regained over such pathologic 

conditions through optical means (Tonnesen, Sorensen et al. 2009). By 

transducing the halorhodopsin isolated from the archaebacterium 

Natronomonas pharaonis (NpHR) into the hippocampal formation, this 

light-gated chloride ion pump would bias the membrane polarization and 

quell the overactivation of neurons. Using protocols to induce epileptic 

activity, Tønnesen et al. demonstrated just that. Electrically induced 

epileptiform activity using stimulation train-induced bursting (STIB) was 

suppressed while slices were simultaneously exposed to light activating 

the halorhodopsin (573-613 nm) (Tonnesen, Sorensen et al. 2009).  

In addition to providing novel insight into the functional circuitry of 

normal and compromised neural tissue, optogenetics has provided 

evidence to assist in controversial neurophysiological phenomena. One 

such issue is the interpretation of the blood-oxygen level dependent 

(BOLD) signal acquired through functional magnetic resonance imaging 

(fMRI). fMRI is a noninvasive imaging tool used to observe and quantify 
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brain activity through the magnetic detection of hemoglobin in its 

oxygenated and deoxygenated states, otherwise known as the BOLD 

signal. The BOLD signal has been loosely used to interpret changes in 

neuronal activity, minding the assumption that general activity elicits a 

metabolic demand that is satiated by increased delivery of oxygen through 

the vascular system. Combining the noninvasive imaging power of fMRI 

with the optogenetic control of specific neuronal populations, Lee et al. 

were able to soundly demonstrate that the photonic stimulation of 

excitatory neurons could elicit BOLD signals with classical kinetics (Lee, 

Durand et al.).  

Despite the immense advantages optogenetic approaches may 

provide, the requirement of introducing foreign genes into a human brain 

has remained an obstacle for the expansion of this technology to clinical 

practice. One approach that has gained extensive clinical utility is deep 

brain stimulation (DBS). Used for the treatment of chronic pain since the 

1960‟s (Hosobuchi, Rossier et al. 1979), DBS is a procedure that uses 

surgically implanted electrodes to focally stimulate specific brain regions. 

Despite the vague understanding of the mechanisms behind its 

therapeutic utility, DBS was approved by the Food and Drug 

Administration (FDA) for tremor in 1997, followed by approval in 2002 for 

the targeted stimulation of the subthalamic nucleus (STN) and the globus 

pallidus interna for other movement disorders (Andrews 2003). Moreover, 

the investigations into psychiatric illnesses that are thought to be 
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manifested by the dysfunction of specific brain region(s) have implicated 

such regions as the subcallosal cingulate (SCC) gyrus as a DBS target for 

treatment resistant depression (TRD) (Lozano and Snyder 2008; 

Holtzheimer and Mayberg 2011).  

One of the many concerns that arise from using DBS as a 

neurologic or psychiatric intervention is that most cases have provided 

evidence for only acute remission, lacking permanence for the intended 

treatment. This is partly because we lack the understanding of how DBS 

specifically works and what it means to electrically stimulate isolated 

regions of the brain. While these concerns are currently under tremendous 

investigation, other means for stimulating the central nervous system have 

been developed. 

More efficacious procedures that may obtain a broader clinical 

impact because of its noninvasive nature include both transcranial 

magnetic stimulation (TMS) and transcranial direct current stimulation 

(tDCS). TMS manipulates the principles of electromagnetic induction to 

evoke current densities in the brain (Wagner, Valero-Cabre et al. 2007). In 

1985, A.T. Barker et al. successfully demonstrated that magnetic 

stimulation of the motor cortex in humans could produce muscle action 

potentials (Barker, Jalinous et al. 1985). This report stressed that the pain-

free, lack of contact with the scalp, noninvasive, and straightforward 

application of magnetic stimulation rendered this procedure superior to 

electrical stimulation. Since then, this technique has been applied to 
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investigating cognitive tasks in search of functional networks using a 

combination of TMS and fMRI (Driver, Blankenburg et al. 2009). 

Additionally, TMS has been used to investigate brain regions involved with 

mental state reasoning, reward choice, treatment of schizophrenia, brain 

injury and stroke (Bashir, Mizrahi et al. 2010; Figner, Knoch et al. 2010; 

Poulet, Haesebaert et al. 2010; Young, Camprodon et al. 2010).      

Recently gaining prominence and greater clinical attention, tDCS is 

another noninvasive technique that has shared similar utility as TMS. 

tDCS consists of attaching electrodes of different polarity to the surface of 

the scalp in various locations in order to excite neural tissue (Utz, Dimova 

et al. 2010). Used as a neuromodulation tool, tDCS can generate both 

immediate and long lasting changes in neuronal excitability (Wagner, 

Valero-Cabre et al. 2007). It is hypothesized that anodal stimulation 

(surface-positive) increases spontaneous firing rate and the excitability of 

cortical neurons, whereas cathodal (surface-negative) stimulation induces 

hyperpolarization of cortical neurons and thus produces the opposite, a 

decrease in firing rate and excitability (Utz, Dimova et al. 2010). Other 

factors that have been considered to affect the delivery and design of 

tDCS are the spatial inhomogeneities of the brain and the differential 

sensitivity of neuronal and non-neuronal components (Creutzfeldt, Fromm 

et al. 1962; Purpura and McMurtry 1965; Utz, Dimova et al. 2010). During 

early investigations of topically manipulating electrical brain activity, I. B. 

Gartside conducted a clever set of experiments that produced strong 
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evidence for an “after effect” that allured the involvement of synaptic 

modifications (Gartside 1968; Gartside 1968) and perhaps arousing 

suspicion for cortical plasticity. Again, because of its noninvasive 

approach, the usage of tDCS in scientific and clinical applications has 

significantly preceded its fundamental research stages, an unconventional 

process that has resulted with concerns about fidelity and mechanisms 

behind the clinical benefits. As investigations continue, proposed 

mechanisms arise, and controversies persist, efforts towards 

implementing other modes of brain stimulation could diversify the 

interventional toolbox and create new avenues for neurostimulation, unveil 

neurophysiological properties, and spur innovative technologies.  

It is the purpose of this dissertation to report the development of a 

novel neurostimulation method using pulsed ultrasound. Considering the 

extensive development and applications for current brain stimulation 

approaches, we have proposed a technique that demonstrates an ability 

to circumvent the limitations observed with the stimulation methods 

mentioned by using pulsed ultrasound.   

The literature detailing the biological interactions with ultrasound is 

extensive, but mirroring the progression of other stimulation interventions, 

the research on ultrasound has mostly focused on the resulting 

phenomena and much less attention has been devoted to the underlying 

mechanisms. By maintaining a goal to advance the translation of our work, 

we aimed to elucidate some of the fundamental properties in efforts to 
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discover suitable applications. Specifically, my dissertation research 

addresses the following questions: 

1) Can pulsed ultrasound alter the membrane polarization and ionic 

conductance in neurons? (Chapter 2) 

2) Is pulsed ultrasound capable of noninvasively stimulating brain 

activity in vivo? (Chapter 3) 

3) What are the neuromodulation capabilities of pulsed ultrasound 

with regards to neurological impairments such as epilepsy? 

(Chapter 4) 

Using electrophysiology and optical techniques, chapter 2 employs 

a hippocampal slice culture model to investigate the effects of ultrasound 

on sodium and calcium ion conductance, and synaptic transmission. 

 Chapter 3 transcends observations collected in the previous 

chapter in order to apply them to an in vivo mouse model. This chapter 

explores the acoustic parameters that influence neuronal activity by direct 

cortical and subcortical electrical recordings. Additionally, we explored the 

functional output of acoustically stimulating cortico-spinal circuits and 

assessed safety qualities observed from using our waveforms. 

 Finally, chapter 4 provides a detailed protocol to achieve 

neurostimulation using our transcranial pulsed ultrasound (TPU) methods. 

In completion, we provide preliminary data that suggests the efficacious 

use of TPU for acute treatment during kainic acid induced (KA) epileptic 

episodes. The study of the effects of ultrasound on brain circuit 
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dysfunction has permitted us with the creation of ultrasonic 

neuromodulation (UNMOD) and a starting point for future applications 

using US for brain stimulation.     
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Chapter 2 

REMOTE EXCITATION OF NEURONAL CIRCUITS USING LOW-

INTENSITY, LOW-FREQUENCY ULTRASOUND 

Possessing the ability to noninvasively elicit brain circuit activity 

yields immense experimental and therapeutic power. Most currently 

employed neurostimulation methods rely on the somewhat invasive use of 

stimulating electrodes or photonemitting devices. Due to its ability to 

noninvasively propagate through bone and other tissues in a focused 

manner, the implementation of ultrasound (US) represents a compelling 

alternative approach to current neuromodulation strategies. Here, we 

investigated the influence of low-intensity, low-frequency ultrasound 

(LILFU) on neuronal activity. By transmitting US waveforms through 

hippocampal slice cultures and ex vivo mouse brains, we determined 

LILFU is capable of remotely and noninvasively exciting neurons and 

network activity. Our results illustrate that LILFU can stimulate electrical 

activity in neurons by activating voltage-gated sodium channels, as well as 

voltage-gated calcium channels. The LILFU-induced changes in neuronal 

activity were sufficient to trigger SNARE-mediated exocytosis and synaptic 

transmission in hippocampal circuits. Because LILFU can stimulate 

electrical activity and calcium signaling in neurons as well as central 

synaptic transmission we conclude US provides a powerful tool for 

remotely modulating brain circuit activity. 
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Introduction 

Neuromodulation techniques such as deep brain stimulation (DBS) 

and repetitive transcranial magnetic stimulation (rTMS) have gained 

widespread attention due to their therapeutic utility in managing numerous 

neurological/psychiatric diseases (Wagner, Valero-Cabre et al. 2007). The 

field of neural control has recently made significant advances by 

demonstrations of millisecond optical control of individual neurons and 

synapses in intact brain circuits (Zhang, Wang et al. 2007). Ultrasound 

(US) as a means of exciting (Gavrilov, Gersuni et al. 1976) and reversibly 

suppressing (Fry, Ades et al. 1958) neuronal activity was shown to be 

effective on a gross level several decades ago. Since then however, 

explorations into the use of US as a neurostimulation tool have been 

relatively sparse. The focus has instead been on employing more 

traditional approaches such as pharmacological, electrical, magnetic, and 

photonic stimulation of neuronal circuits. Coupling its ability to interact with 

biological tissues (ter Haar 2007) and its noninvasive transmission through 

skull bone and other biological tissues in a focused manner (Hynynen and 

Jolesz 1998; Clement and Hynynen 2002; Clement 2004), US holds 

promise as a potentially powerful neurostimulation tool (Fry 1968; 

Gavrilov, Tsirulnikov et al. 1996), which may be capable of replacing 

currently invasive DBS strategies. Ultrasound can produce bioeffects by 

acting through thermal and/or nonthermal mechanisms as it propagates 

through tissues in pulsed or continuous waveforms (Dinno, Crum et al. 
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1989; Dalecki 2004; O'Brien 2007; ter Haar 2007). Therapeutic US can be 

broadly characterized as low-power/low-intensity or high-power/high-

intensity (Dinno, Crum et al. 1989; Dalecki 2004; O'Brien 2007; ter Haar 

2007). High-intensity focused ultrasound (HIFU) used in the thermal 

ablation of tissue implements peak power levels often exceeding 1000 

W/cm2, whereas non-thermal therapeutic effects of US have been well 

described at power levels ranging from 30–500 mW/cm2 (Dalecki 2004; 

ter Haar 2007). Modulation of ionic conductance produced by adiabatic 

processes as US propagates rapidly and transiently through cellular 

membranes may alter the activity of individual neurons due to the elastic 

nature of lipid bilayers and the spring-like mechanics of many 

transmembrane protein channels. In partial support of this hypothesis, 

low-power US has been shown to influence the membrane conductance of 

frog skin epidermis (Dinno, Crum et al. 1989). In addition, US exposure 

can induce a reversible increase in the internal Ca2+ concentration of 

fibroblasts (Mortimer and Dyson 1988). In rat thymocytes, stimulation with 

US can modulate K+ influx and efflux (Chapman, MacNally et al. 1980). 

Interestingly, many voltage-gated ion channels, as well as 

neurotransmitter receptors possess mechanosensitive properties that 

render their gating kinetics sensitive to transient changes in lipid bilayer 

tension (Sukharev and Corey 2004; Morris and Juranka 2007). Whether or 

not ion channels can be modulated by US in neurons has remained 

unknown. Several investigations have demonstrated however that US 
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modulates neuronal activity by enhancing and/or suppressing the 

amplitudes and/or conduction velocities of evoked nerve potentials (Fry, 

Wulff et al. 1950; Fry, Ades et al. 1958; Young and Henneman 1961; 

Gavrilov, Gersuni et al. 1976; Foster and Wiederhold 1978; Mihran, 

Barnes et al. 1990; Rinaldi, Jones et al. 1991; Bachtold, Rinaldi et al. 

1998; Tsui, Wang et al. 2005). In a pioneering study, Fry and colleagues 

(1950) first demonstrated US is capable of modulating neuronal activity by 

reporting the temporary suppression of spontaneous activity following US 

transmission through crayfish ventral nerve cords (Fry, Wulff et al. 1950). 

Transmitting US through the lateral geniculate nucleus of intact cats, Fry 

and colleagues (1958) demonstrated that high-power US reversibly 

suppressed light-evoked potentials recorded in the visual cortex (Fry, 

Ades et al. 1958). Rinaldi and colleagues (1991) demonstrated that 2.5 to 

15 min irradiation of hippocampal slices with0.75 MHz US (temporal 

average intensity; ITA: 80 W/cm2), significantly reduces the amplitude of 

evoked potentials in CA1 pyramidal neurons. In the dentate gyrus of 

hippocampal slices, focused US pulses have been shown to both enhance 

and suppress electrically evoked field potentials (Bachtold, Rinaldi et al. 

1998). In cat saphenous nerve bundles it has been demonstrated that 

focused US is capable of differentially effecting Ad- and C-fibers 

depending on the intensity and duration of US irradiation (Young and 

Henneman 1961). In excised frog sciatic nerve bundles, Tsui and 

colleagues (2005) reported that a temporal average intensity of 1 W/cm2 
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continuous wave (5 min) US (3.5 MHz) increased the amplitude of 

compound action potentials (CAP), while both 2 and 3 W/cm2 intensities 

decreased CAP amplitudes. Mihran and colleagues (1990) also reported 

differential excitatory and inhibitory effects of US on frog sciatic CAPs 

using relatively short irradiation times by delivering 500 ms US pulses 

(2.0–7.0 MHz) with peak intensities ranging from 100–800 W/cm2. Direct 

activation of the cat auditory nerve has been achieved in vivo using 5-MHz 

US pulses (68 msec; ,30 W/cm2) (Foster and Wiederhold 1978). In human 

subjects, focused US pulses have been shown to activate deep nerve 

structures in the hand by differentially producing tactile, thermal, and pain 

sensations (Gavrilov, Gersuni et al. 1976). Although numerous intriguing 

studies examining the influence of US on neuronal activity have been 

conducted, these previous investigations have implemented high-intensity 

US, which can destroy nervous tissue. Thus, we decided to investigate the 

influence of low-intensity ultrasound on neuronal activity. Most of the prior 

investigations examining the effect of US on neuronal activity also used 

high-frequency US (.1 MHz; for exceptions see (Gavrilov, Gersuni et al. 

1976; Rinaldi, Jones et al. 1991; Bachtold, Rinaldi et al. 1998), which has 

larger attenuation coefficients compared to lower frequency ultrasound. 

Medical diagnostic US typically operates from 1 to 15 MHz while 

therapeutic US is usually conducted using acoustic frequencies around 1 

MHz (O'Brien 2007). We chose to pursue our investigations here using 

low-frequency US (0.44–0.67 MHz) since both mathematical models and 
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experimental data indicate the optimal gain between transcranial 

transmission and brain absorption for US is ,0.60–0.70 MHz (Hayner and 

Hynynen 2001; White, Clement et al. 2006). Detailed cellular 

investigations into the influence of US on neuronal activity are lacking and 

the mechanisms underlying US modulation of neuronal activity remain 

unknown. By optically monitoring changes in ionic conductance in 

individual neurons and synaptic transmission from individual release sites 

we investigated the influence of low-intensity, low-frequency ultrasound 

(LILFU) on central nervous system activity. 

 

Materials and Methods 

Preparation of slice cultures and ex vivo brains 

 All procedures involving mice were conducted in accordance with 

federal guidelines and protocols approved by the Institutional Animal Care 

and Use Committee at Arizona State University. Hippocampal slice 

cultures were prepared from postnatal day 7–8 thy-1-spH, thy-1-YFP, or 

wild-type mice similar to previously described methods (Stoppini, Buchs et 

al. 1991). Briefly, transverse hippocampal slices (,400 mm thick) were 

made using a wire slicer (MX-TS, Siskiyou, Inc., Grants Pass, Oregon, 

USA) and maintained in vitro on Millicell CM filter inserts (PICMORG50, 

Millipore, Bedford, MA) in a 36uC, 5% CO2, humidified (99%) incubator. 

Slices were used for experiments between 7 and 12 days in vitro. In some 

experiments to cleave SNARE-proteins, BoNT/A (250 ng/mL) was added 
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to the slice culture media 24–36 h prior to use. We prepared ex vivo brains 

using the following approach. Following CO2 inhalation, wild-type mice 

were rapidly decapitated and their brains were removed. The dura was 

carefully removed and the brains were then placed in ice-cold artificial 

CSF (aCSF) containing (in mM) 83 NaCl, 2.5 KCl, 3.3 MgSO4, 1 

NaH2PO4, 26.2 NaHCO3, 22 glucose, 72 sucrose, and 0.5 CaCl2, and 

equilibrated with 95% O2/5% CO2. Brains were allowed to recover for 5 

min in the ice-cold aCSF before recovering for, 20 min at 37°C. Following 

this recovery period, ex vivo brains were bulk loaded with OGB-1 AM 

(Invitrogen, Carlsbad, 

California, USA). 

 

Loading of slice cultures and ex vivo brains with fluorescent ion indicators 

 In order to load slice cultures prepared from wild-type mice with 

CoroNa Green AM (Invitrogen, Carlsbad, California, USA), 5 mL 20% 

Pluronic F-127 in DMSO (Invitrogen) was added to a 50 mg vial of CoroNa 

Green AM. The dye solution was then vortexed for 15 min before adding 

100 mL culture medium. We then added 5 mL of the dye containing 

solution to 1 mL culture medium underneath culture inserts, as well as 

adding 5 mL to the surface of slices. Following a 10 min incubation time at 

36°C, slices were washed three times with slice culture medium, allowed 

to recover an additional 10 min, and then used for experiments. To load 

slice cultures with OGB-1 AM, we added 2 mL 20% Pluronic F-127 in 
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DMSO and 8 mL DMSO to a 50 mg vial of OGB-1 AM. The dye-containing 

solution was then vortexed for 30 M before adding 90 mL culture media. 

We next added 20 mL of this dye-containing solution to 3 mL culture 

medium and incubated slices in this solution for 30–40 min at 37uC. Slices 

were washed three times with slice culture medium, then loaded with 

sulforhodamine 101 (Invitrogen; 10 mM in slice culture medium for 15 min) 

or allowed to recover for 30 min prior to an experiment. To load ex vivo 

brains with OGB-1 AM we used a procedure similar to above, but 

substituted the slice culture medium for dissection aCSF (see above)–we 

added 60 mL of the dye-containing solution to 9 mL dissection aCSF. 

Brains were loaded for 30 min at room temperature then rinsed three 

times and allowed to recover for an additional 30 min in dissection aCSF 

at room temperature before use. 

 

Confocal imaging and whole-cell patch-clamp recordings 

 Slice cultures or whole ex vivo brains were transferred to recording 

chambers containing recording aCSF (in mM) 136 NaCl, 2.5 KCl, 1.3 

MgSO4, 10 HEPES, 10 glucose, and 2.5 CaCl2, pH 7.4 at room 

temperature. Recording chambers were affixed above US transducers on 

a custom built-stage on an Olympus Fluoview FV-300 laser-scanning 

confocal microscope (Olympus America, Inc., Center Valley, 

Pennsylvania, USA). Excitation of spH, OGB-1 AM, and CoroNa Green 

AM was performed using the 488 nm laser-line of an argon laser and in 
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some experiments DiI was excited using a 546 nm HeNe laser. Time-

series images were acquired using 20x (0.5 NA) or 40x (0.8 NA) Olympus 

UMPlanFL water-immersion lens. Slice recording chambers consisted of 

culture inserts placed inside an aCSF reservoir held in place with either 

vacuum grease on the silicon face of the transducer. This approach 

produced a 4.5 mm standoff distance between the face of the transducer 

and the imaging plane on the surface of slices. In a subset of experiments, 

slice cultures (n=5) were mounted near the top of an aCSF column in a 

500 mL beaker containing immersed US transducers, which were affixed 

to the bottom beakers to provide a 45 mm standoff distance. To image ex 

vivo brains, the ventral surface of whole ex vivo brains were glued to the 

bottom of polystyrene 6-well plates using superglue, which were filled with 

aCSF and mounted above US transducers using ultrasonic coupling gel. 

Confocal imaging of OGB-1 fluorescence was conducted on the superficial 

dorsal surface of ex vivo brains during transmission of LILFU waveforms 

from the ventral surface of the brain. In a subset of experiments we 

performed whole-cell current clamp recordings from visually identified CA1 

pyramidal neurons using standard approaches. Briefly, patch electrode 

pipettes filled with an intracellular solution containing (in mM) 130 KCl, 10 

Na-HEPES, 10 Di-Tris-P-creatine, 0.2 EGTA, 3 Mg-ATP, and 0.5 Na-GTP, 

280–290 mOsm, pH 7.2; the final resistance of these unpolished patch 

electrodes was 5–7 MΩ. Current clamp recordings were performed using 

a MultiClamp 700B patchclamp amplifier with pCLAMP 10 software 
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(Molecular Devices, Sunnyvale, California, USA). Following 5–10 min of 

whole-cell access, changes in membrane voltage were recorded in 

response to stimulation with LILFU waveforms. 

 

Generation and characterization of LILFU waveforms 

 In our studies we used custom built PZT ultrasound transducers (d 

= 35 mm) having a single quarter-wave matching layer, a center frequency 

of 0.53 MHz, and a 26 dB fractional bandwidth of 65% with two peaks 

(0.44 MHz, 0.66 MHz). LILFU waveforms used as stimuli were generated 

by repeating pulse trains of US tone bursts at a pulse repetition frequency 

until a desired number of tone bursts had been generated (Figure 1B). 

Ultrasound tone bursts were generated by trains of square waves (0.2 

msec) with variable amplitudes using an Agilent 33220A function 

generator. To produce final plate voltages delivered to transducers, 

square waves were further amplified (50 dB gain) using an ENI 240L RF 

amplifier. Square waves were delivered between 0.44– 

0.67 MHz depending on the acoustic frequency desired, while the number 

of square waves driving each US tone burst equaled the number of 

acoustic cycles desired for a given US tone burst. Each US tone burst 

(pulse) contained between 1 and 50,000 acoustic cycles depending on the 

LILFU waveform generated. US tone bursts (Figure 1B) were repeated at 

a pulse repetition frequency by triggering the above referenced function 

generator with a second Agilent 33220A function generator. Pulse 
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repetition frequencies were either a constant frequency or a swept 

waveform. Our primary LILFU waveform (LILFU-1) had the following 

properties: f= 0.44 MHz, TBD= 22.7 ms, c/tb = 10, PRF = 5 sec sweep 0–

100 Hz, and Ntb= 250. To characterize LILFU power levels, we recorded 

voltage waveforms produced by US pressure waves using a hydrophone 

(HNR 500, Onda Corporation, Sunnyvale, California, USA) and an Agilent 

DSO6012A 100 MHz digital oscilloscope (Agilent Technologies, Inc., 

Santa Clara, California, USA). To confirm transducers were operating at 

the intended acoustic frequency, we performed an FFT on hydrophone 

voltage traces recorded in response to US tone bursts. All pressure waves 

produced by LILFU waveforms were measured at points corresponding to 

tissue positions in the actual recording chambers by positioning the 

hydrophone face using a xyz micromanipulator (MP-225, Novato, CA, 

USA) mounted on the vibration isolation table attached to the microscope 

stage. The position of slices in recording chambers was held consistent 

across experiments. We measured acoustic intensities with and without 

slices in the recording chamber and found no effect of the presence of a 

slice on the acoustic waveform. The acoustic pressure and ultrasonic 

intensities (IPA and ITA) were calculated using published equations and 

technical standards established by the American Institute of Ultrasound in 

Medicine and the National Electrical Manufacturers Association (NEMA 

2004). 
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Data analysis 

 Confocal images were analyzed offline using ImageJ 

(http://rsb.info.nih.gov/ij/) or the Olympus Fluoview 5.0 software. We 

express changes in spH fluorescence as a percent change from baseline 

fluorescence levels. For OGB-1 and CoroNa Green signals, we calculated 

DF/F0 using standard approaches where DF=F2F0. LILFU waveforms and 

electrophysiological analyses were performed offline using Igor Pro 

(WaveMetrics, Lake Oswego, Oregon, USA). Data shown are mean ± 

S.E.M. 

 

Results 

LILFU activates voltage-gated sodium channels in neurons 

 We transmitted LILFU waveforms through hippocampal slice 

cultures from remotely positioned tissue-matched piezoelectric (PZT) 

transducers (Figure 1A). We constructed LILFU waveforms by repeating 

US tone bursts at variable pulse repetition frequencies (Figure 1B). 

Measured using a needle hydrophone a points in the recording chamber, 

which corresponded to slice positions, the predominant LILFU waveform 

used in our studies (LILFU-1) had a pulse average intensity (IPA) of 2.9 

W/cm2 and a temporal average intensity (ITA) of 23 mW/cm2. Figure 

1C illustrates a typical pressure wave obtained for a single US tone burst 

used in the construction of LILFU-1. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g001
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g001
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 By imaging organotypic hippocampal slice cultures bath-loaded 

with the Na+ indicator CoroNa Green AM [27], we found LILFU-1 triggered 

Na+ transients in hippocampal CA1 pyramidal neurons (ΔF/F0 = 

0.05±0.006, n = 24, 6 slices; Figure 2A). Addition of the voltage-gated Na+ 

channel pore blocker tetrodotoxin (TTX; 1 µm), blocked Na+ transients 

evoked by LILFU-1 (Figure 2A). These observations indicate that LILFU-1 

increased the Na+ conductance in hippocampal neurons by stimulating 

the opening of voltage-gated Na+ channels. We next aimed to determine if 

LILFU waveforms were also capable of triggering action potentials in CA1 

pyramidal neurons. Indeed, we observed single action potentials in 

response to the delivery of individual LILFU tone bursts during whole-cell 

current clamp recordings of CA1 pyramidal neurons (n = 4, 4 slices; Figure 

2B). We determined however, whole-cell electrophysiological approaches 

were not very useful in studying the influence of US on neuronal activity 

since electrode resonances typically cause the loss of whole-cell seals 

during stimulation with LILFU. Thus, we continued our investigations using 

standard optophysiological approaches. 

Cavitation is one of the best studied non-thermal effects of US on 

biological tissue (Miller, Pislaru et al. 2002; Dalecki 2004). Acoustic 

cavitation can occur when the intensity of US is sufficient to induce the 

resonation, expansion, and collapse of gas bodies present in some 

biological tissue. These microexplosions can influence membrane 

porosity (Dinno, Dyson et al. 1989; Dalecki 2004). Monitored using optical 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone.0003511-Meier1
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g002
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g002
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microscopy during LILFU stimulation, we did not observe cavitation in our 

studies. Additionally, at the acoustic intensities used in our studies, we did 

not observe other evidence of membrane damage produced by LILFU 

stimulation. To examine the effect of LILFU on membrane integrity, we 

chronically stimulated slice cultures prepared from thy-1-YFP mice (Feng, 

Mellor et al. 2000) with LILFU-1 every 8 min for 36–48 hours. We 

observed no difference in the membrane structures of YFP+ neurons 

undergoing chronic stimulation compared to unstimulated controls (n = 9 

slices each; Figure 2C, 2D). 

 

 

 

 

 

 

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g002
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Figure 1. Generation and propagation of LILFU waveforms through 
neuronal tissue. (A) General experimental configuration implemented to 
transmit LILFU waveforms through slice cultures while optically monitoring 
neuronal activity. (B) Graphical illustration of some of the variables 
involved in constructing LILFU waveforms. These variables include 
acoustic frequency (f), the number of acoustic cycles per tone burst (c/tb), 
tone burst duration (TBD), pulse repetition frequency (PRF), and number 
of tone bursts per stimulus (Ntb). (C) Acoustic pressure wave (left) 
produced by a typical US tone burst consisting of 10 acoustic cycles at f = 
0.44 MHz and FFT of this US tone burst (right). For the construction of our 
primary US stimulus waveform (LILFU-1), we used a linearly sweeping 
PRF by repeating the illustrated tone burst from 0–100 Hz over a 5 sec 
period. 
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Figure 2. LILFU stimulates sodium transients mediated by voltage-gated 
sodium channels in hippocampal neurons. (A) Confocal image (left) of a 
slice culture loaded with CoroNa Green AM. Hippocampal regions 
CA1 stratum pyramidale (SP) and stratum radiatum (SR) are illustrated. 
Individual (black) and averaged (color) Na+ transients (right) triggered in 
CA1 pyramidal neuron somas by LILFU-1 under control conditions and in 
the presence of TTX. (B) Voltage trace of membrane voltage in response 
to five US tone bursts delivered at a PRF of 10 Hz during whole-cell 
current clamp recordings of a CA1 pyramidal neuron. (C) Neuronal 
membrane integrity is preserved following chronic in vitro stimulation with 
LILFU. Confocal images of CA1 pyramidal neurons from hippocampal 
slice cultures prepared from thy-1-YFP mice. The images shown are from 
a control slice culture (left) and a slice culture following chronic stimulation 
(right) with LILFU-1 every 8 min for 48 h (360 LILFU-1 stimuli). (D) Similar 
to (C), but higher magnification images of regions in CA1 SR, which more 
clearly illustrate the presence of fine membrane structures such as 
dendritic spines for control (top) and chronic LILFU stimulation conditions 
(bottom). 
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LILFU stimulates voltage-dependent calcium transients in neurons 

To determine if LILFU waveforms were capable of activating Ca2+ 

transients, we bath-loaded slice cultures prepared from wild-type mice 

with the Ca2+ indicator Oregon Green 488 BAPTA-1 AM )OGB-1 AM) and 

Sulforhodamine 101 (to differentiate between neurons and glial cells) as 

previously described (Nimmerjahn, Kirchhoff et al. 2004). We found that 

LILFU-1 activated Ca2+ transients in both hippocampal pyramidal neurons 

(ΔF/F0 = 1.14±0.10, n = 61, 10 slices) and glial cells (ΔF/F0 = 1.40±0.12, n 

= 55, 10 slices; Figure 3A). Highlighting temporal specificity, stimulation 

with more brief LILFU waveforms (f = 0.44 MHz, TBD = 0.18 msec, c/tb = 

80, PRF = 10Hz, and Ntb = 3), elicitied neuronal Ca2+ transients (ΔF/F0 = 

0.38±0.02, n = 24, 5 slices) with faster kinetics as expected (Figure 3B). In 

response to LILFU stimulation, we observed that Ca2+ transients could be 

repeatedly obtained from neurons across multiple LILFU stimulation trials 

(Figure 3B). While we primarily focused on small regions of interest during 

stimulation, when we imaged large fields of view we observed that 

approximately 30% of the neurons respond to LILFU-1. Stimulation with 

LILFU-1 also induced presynaptic Ca2+ transients in en passant boutons 

located in CA1 SR (ΔF/F0 = 0.76±0.07, n =31 from 4 slices; Figure 3C). 

Addition of Cd2+ (500µM) nearly abolished OGB-1 signals in response to 

LILFU-1, indicating Ca2+ transients triggered by LILFU are primarily 

mediated by voltage-gated Ca2+ channels (Figure 3D). Likewise, the 

addition of TTX blocked ~85% of the OGB-1 signal produced by LILFU-1 
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(Figure 3D). Residual Ca2+transients not blocked by Cd2+ or TTX are 

likely to involve other hippocampal neuron Ca2+ sources such as NMDA 

or TRPC1 receptors, which is consistent with both channels possessing 

mechanosensitive properties (Paoletti and Ascher 1994; Maroto, Raso et 

al. 2005) and being expressed in hippocampal neurons. 

 We were able to observe Ca2+ transients in response to pulsed US 

even when transducers were placed as far as 45 mm away from slices (n 

= 5; data not shown). Similar to water and aqueous buffers, soft biological 

tissues (including brain) have relatively low acoustic absorption 

coefficients. Therefore, we sought to determine if LILFU propagated 

through whole brain tissue was also capable of stimulating neuronal 

activity. We imaged OGB-1 signals on the dorsal superficial surface of ex 

vivo brains (n = 3) obtained from wild-type adult mice while transmitting 

LILFU waveforms through their ventral surfaces (Figure 4A). In these ex 

vivo brain preparations, we observed Ca2+ transients similar to those 

observed in thinner and less intact slice culture preparations in response 

to stimulation with LILFU (Figure 4B, 4C). 

 

 

 

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g004
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g004
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Figure 3. LILFU triggers voltage-dependent somatic and presynaptic 
Ca2+transients in neurons. (A) Confocal image (left) of a slice culture 
loaded with OGB-1 AM (green) to monitor Ca2+ activity and 
Sulforhodamine 101 (red) to identify glial cells (yellow). Representative 
LILFU-triggered Ca2+ transients observed in the somas of neurons and 
glial cells are illustrated (right). (B) Individual (black) and averaged (green) 
Ca2+transients observed in the somas of neurons in response to a brief 
LILFU waveform. The histogram (inset) illustrates trial 1 normalized mean 
Ca2+ transient amplitudes in response to repeated trials of LILFU 
stimulation (n = 19 cells from 3 slices). (C) Confocal image (left) of a slice 
culture loaded with OGB-1 AM illustrating en passant boutons located in 
CA1 SR. Individual (black) and averaged (green) presynaptic 
Ca2+ transients (right) produced by stimulation with LILFU-1. (D) 
Averaged somatic Ca2+ transients obtained from neurons under control 
conditions or in the presence of either TTX (n = 36 from 4 slices) or 
Cd2+ (n = 30 from 4 slices) in response to stimulation with LILFU-1. 
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Figure 4. LILFU waveforms transmitted through whole brains are capable 
of stimulating Ca2+transients. (A) Illustration of basic experimental 
procedure we developed to transmit LILFU waveforms through whole ex 
vivo brains prepared from adult wild-type mice and bath-loaded with OGB-
1 AM. As depicted, LILFU waveforms were transmitted from the ventral 
surface of the brain through the tissue to the dorsal surface where we 
performed confocal imaging. (B) Individual (black) and averaged (green) 
Ca2+transients observed in the somas of cells on the dorsal surface of 
an ex vivo brain in response to stimulation with LILFU-1, which was 
transmitted through the brain from the ventral surface. (C) Confocal 
images illustrating OGB-1 loaded cells on the dorsal surface of the brain. 
The image on left illustrates cells during baseline, while the image on 
the right illustrates cells two-seconds after stimulation with LILFU-1 
ensued. 
 
 

 

 

 



  30 

LILFU triggers SNARE-mediated synaptic vesicle exocytosis and synaptic 

transmission 

 To investigate the influence of LILFU on synaptic transmission we 

focused on studying a well-characterized synapse in the mammalian 

central nervous system, the hippocampal CA3-CA1 synapse. We 

transmitted LILFU waveforms through hippocampal slice cultures 

prepared from thy-1-synaptopHluorin (spH) mice (Li, Burrone et al. 2005). 

The pH-dependent optical probe of synaptic vesicle exocytosis spH 

reflects neurotransmitter release through an increase in fluorescence 

when protons are released from synaptic vesicles during 

fusion (Miesenbock, De Angelis et al. 1998). Transmission of LILFU-1 

through slices triggered synaptic vesicle exocytosis producing a ΔFspH of 

18.52±2.2% at individual release sites (n = 148 from 15 slices) in 

CA1stratum radiatum, which primarily represent CA3-CA1 synapses 

(Figures 5A, 5B). We identified several other LILFU waveforms, which 

were also effective at triggering synaptic vesicle release. For example, a 

LILFU waveform composed of different US tone bursts (f = 0.67 MHz, TBD 

= 74.5 msec, c/tb = 50,000; Figure 5C) delivered at PRF = 10 Hz with Ntb 

= 5 also stimulated synaptic vesicle release (ΔFspH = 12.86±2.6%, n = 74 

from 6 slices; Figure 5D). Figure 5E illustrates spH responses obtained as 

a function of acoustic intensity across several different LILFU waveforms 

used in this study. To more specifically examine excitatory CA3-CA1 

hippocampal synapses, we implemented a DiOlistic labeling 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
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approach (Gan, Grutzendler et al. 2000) to visualize dendritic spines on 

CA1 apical dendrites inthy-1-spH slices cultures. Indeed, LILFU-1 

stimulated synaptic vesicle release in this population of spine synapses 

(Figure 6). 

 Hyperosmotic shock produced by application of sucrose to 

hippocampal synapses is capable of stimulating the release of a small 

pool of primed synaptic vesicles (~10 vesicles) in a Ca2+-independent 

manner and is thought to occur from mechanical processes (Rosenmund 

and Stevens 1996). Due to the nature of mechanical energy conferred by 

acoustic waves, we questioned whether some part of the synaptic vesicle 

release we observed in response to LILFU might be due to mechanical 

interactions on vesicle release machinery or between the lipid bilayers of 

active zones and synaptic vesicles. Since hypertonic sucrose application 

is still capable of triggering neurotransmitter release at hippocampal 

synapses lacking the SNARE-protein SNAP-25 (Bronk, Deak et al. 2007), 

we aimed to determine if LILFU-1 was capable of stimulating 

neurotransmitter release after cleaving SNAP-25 by treating slice cultures 

with botulinum neurotoxin type-A (BoNT/A; 24–36 h). Indicating that 

pulsed US-induced exocytosis is SNARE-mediated and not likely due to 

mechanisms similar to those produced by hyperosmotic shock, treatment 

of slice cultures with BoNT/A nearly abolished spH responses produced 

by LILFU-1 stimulation (Figure 5F). 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g006
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
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 Addition of TTX almost completely blocked vesicular release in 

response to LILFU-1 highlighting the importance of Na+ conductance and 

action potentials in LILFU-triggered synaptic vesicle release (Figure 5F). 

Blocking excitatory network activity with CNQX (20 µM) and APV (100 µM) 

reduced the ΔFspH by ~50% compared to controls indicating that LILFU 

stimulates synaptic transmission (network activity) and not merely 

exocytosis (Figure 5F). Interestingly, the kinetics and amplitudes of LILFU-

triggered spH signals were nearly identical to those obtained in response 

to electrical stimulation of CA3 Schaffer collaterals using monopolar 

electrodes (Figure 5G), as well as those spH responses previously 

reported (Sankaranarayanan, De Angelis et al. 2000; Li, Burrone et al. 

2005). Since spH typically produces a ΔF of ~1–2% per released 

vesicle (Sankaranarayanan, De Angelis et al. 2000; Burrone, Li et al. 

2006), we estimated LILFU-1 to stimulate the release of ~15 vesicles per 

release site. 

 

 

 

 

 

 

 

 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003511#pone-0003511-g005
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Figure 5. LILFU stimulates SNARE-mediated synaptic vesicle exocytosis 
and central synaptic transmission. (A) Confocal images illustrating spH 
signals obtained before (left) and during (right) stimulation with LILFU-1. 
(B) Individual (black) and averaged (green) spH signals typically obtained 
in response to stimulation with LILFU-1. (C) Acoustic pressure wave (left) 
produced by a single LILFU tone burst consisting of 50,000 acoustic 
cycles at f = 0.67 MHz and FFT of LILFU tone burst (right). (D) Individual 
(black) and averaged (green) spH signals obtained in response to 
stimulation with the LILFU tone burst shown in (C) delivered at a PRF = 10 
Hz for 0.5 s to produce Np = 5. (E) Histogram of spH responses obtained 
as a function of acoustic intensity. Responses from individual experiments 
are indicated by black crosses while the average response is indicated by 
the green line. (F) Averaged spH signals illustrating the effect of 
CNQX+APV (n = 84 from 4 slices), TTX (n = 108 from 4 slices), or BoNT/A 
(n = 60 from 4 slices) on synaptic vesicle exocytosis induced by LILFU-1. 
(G) Averaged spH signals obtained from buttons in response to field 
stimulation of Schaffer collaterals with 250 AP, 50 Hz (n = 48), 100 AP, 20 
Hz (n = 63), 40 AP, 20 Hz (n = 51), or by LILFU-1 (n = 148). 
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Figure 6. Influence of LILFU on putative excitatory hippocampal CA3-CA1 
synapses. (A) Confocal images illustrating spH expression in CA1 SR 
(left) and an apical dendritic branch of a CA1 pyramidal neuron, which was 
labeled with DiI using a DiOlistic labeling technique (middle). The two-
channel confocal image (right) illustrates putative excitatory synapses 
indicated by apposition of spH+ puncta and dendritic spines. (B) Individual 
(black), mean spH (green), and mean DiI (red) signals obtained from 
terminals impinging on dendritic spines in response to stimulation with 
LILFU-1. 
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Discussion 

 In this study we tested whether LILFU was capable of directly 

stimulating the activity of neurons in the central nervous system. We made 

several novel observations in our study. From a mechanistic view, we 

observed that US stimulates neuronal activity at least partially by 

triggering voltage-gated Na+transients and voltage-dependent 

Ca2+ transients. We further observed the US-induced changes in 

neuronal activity were sufficient to trigger SNARE-mediated synaptic 

vesicle exocytosis and synaptic transmission at central synapses thereby 

driving network activity. The mechanisms underlying US activation of 

voltage-sensitive channels in neurons are presently unknown. We 

postulate however the mechanical nature of US and its interactions with 

neuronal membranes leads to the opening of mechanically sensitive 

voltage-gated channels. Supporting this hypothesis, we observed that TTX 

a voltage-gated Na+ channel pore-blocker attenuated LILFU-triggered 

Na+ transients. Further, many voltage-gated Na+ channels (i.e. NaV 1.2, 

1.4, 1.5, and 1.6) are known to possess varying degrees of mechanical 

sensitivity (Sukharev and Corey 2004; Morris and Juranka 2007). The 

addition of TTX also blocked a large portion of LILFU-induced 

Ca2+ transients indicating the primary action of LILFU may be on voltage-

gated Na+ channels. However, the addition of Cd2+ further reduced 

LILFU-activated Ca2+transients, which suggests at least some voltage-

gated Ca2+ channels may be sensitive to LILFU. Indeed, L-type, N-type, 
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T-type, and P-type Ca2+ channels have been shown to be mechanically 

sensitive under various conditions (Sukharev and Corey 2004; Morris and 

Juranka 2007). 

 Further studies are required to identify which ion channels are 

sensitive to US, as well as to characterize how these channels respond to 

US as a function of acoustic intensity. By imaging large fields of view and 

monitoring the responses from large populations of neurons, we observed 

that LILFU-1 stimulated activity in ~30% of the neurons in a given field. 

These observations raise several interesting issues. We question for 

instance whether neurons, which have been recently active, are less 

susceptible to US stimulation. In other words, the kinetic states of a 

neuron's ion channels may shape how responsive a given cell is to US 

stimulation. It could also be the case that recently active neurons are more 

responsive to US stimulation. We are currently in the process of 

investigating these issues. The individual properties of US waveforms 

(peak and temporal average intensity, tone burst/pulse duration, pulse 

repetition frequency, etc.) will also likely determine how effective a given 

waveform is at stimulating neuronal activity. With respect to acoustic 

intensity for example, we observed that US waveforms having moderate 

intensities were more robust in triggering synaptic transmission compared 

to US waveforms possessing lower or higher intensities. Future studies 

investigating the influence of US on neuronal activity should consider 

interactions among waveform parameters such as tone-burst duration 
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(pulse length), pulse repetition frequency, exposure time, acoustic 

frequency, and acoustic intensity. Understanding how waveform 

characteristics contribute to the actions of US on neuronal activity will be 

an important issue to resolve. One particularly interesting question is can 

LILFU be used in a molecularly specific manner–perhaps by inducing 

protein specific resonances using an optimal acoustic frequency or 

particular LILFU waveform? 

 

Potential Biohazard effects of US 
 

Having a long and proven safety record, US is widely used for 

diagnostic medical imaging, as well as in an array of noninvasive 

therapies (Dalecki 2004). Ultrasound is however quite capable of 

destroying biological tissues, so when employing US to stimulate neuronal 

activity the potential for biohazardous effects must be carefully 

considered. Many of the hazards associated with US stem from its ability 

to induce large thermal fluctuations and/or cavitational damage in soft 

tissues. Although many groups have previously demonstrated an effect of 

US on neuronal activity (Fry, Wulff et al. 1950; Fry, Ades et al. 1958; 

Young and Henneman 1961; Gavrilov, Gersuni et al. 1976; Foster and 

Wiederhold 1978; Mihran, Barnes et al. 1990; Rinaldi, Jones et al. 1991; 

Bachtold, Rinaldi et al. 1998; Tsui, Wang et al. 2005), these results are 

unique in that we found US is capable of stimulating neuronal activity at 

lower acoustic intensities than those previously reported. Some groups 
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have utilized acoustic intensities as low as 1 W/cm2 to modulate neuronal 

activity in hippocampal brain slices (Tsui, Wang et al. 2005), whereas 

other groups have used intensities exceeding 1000 W/cm2 to trigger 

peripheral pain sensations in humans (Gavrilov, Gersuni et al. 1976). In 

this study we implemented a range of acoustic intensities where the 

nonthermal effects of US have been well documented in other tissues 

(30–500 mW/cm2) (Dinno, Crum et al. 1989; Dalecki 2004; O'Brien 2007; 

ter Haar 2007). Further, the US intensities we found sufficient for 

stimulating neuronal activity are below the output power limits set by the 

United States Food and Drug Administration for diagnostic imaging. 

 Due to the lack of gas bodies in most soft tissues including 

brain (Dalecki 2004), we do not expect cavitation to pose significant 

problems when using LILFU to stimulate brain activity in vivo. In most soft 

tissues, cavitation rarely induces damage at pressures <40 MPa (except 

for lung, intestinal, and cardiac tissues in which cavitational damage can 

occur at pressures ~2 MPa due to the presence of naturally occurring gas 

bodies) (Dalecki 2004). The peak rarefaction pressure used in our studies 

was <1 MPa. At the US power levels we studied, cavitational damage was 

not induced in hippocampal slice cultures. Besides the potential 

biohazards of acute US transmission into brain tissue, the possibility for 

damage arising from repeated, long-term US exposure needs to be 

evaluated. Few studies have examined the effects of chronic US 

administration on brain function. We found that chronic LILFU stimulation 
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(36–48 h) did not alter the fine structure of neuronal membranes. 

Demonstrating the need for caution however, a recent study reported that 

repeated US exposure is capable of producing some disruption of 

neuronal migration in the cortex of developing mouse embryos (Ang, 

Gluncic et al. 2006). 

 

The effects of ultrasound on molecular signal transduction pathways 

 While we have studied the actions of US on neuronal activity by 

monitoring ionic conductance and synaptic vesicle exocytosis, we 

recognize US may influence signaling molecules capable of influencing 

neuronal function. In other tissues, the activity of several signaling 

molecules also present in neuronal tissues are known to be influenced by 

US. For example, low-intensity pulsed US stimulates TGF-β signaling, 

which triggers the differentiation of human mesynchymal stem cells into 

chondrocytes (Ebisawa, Hata et al. 2004). Low-intensity pulsed US has 

also been shown to stimulate the production of bFGF, TGF-β, BMP-7, 

VEGF, and IGF-1 (Reher, Doan et al. 1999; Naruse, Miyauchi et al. 2003; 

Mukai, Ito et al. 2005; Sant'Anna, Leven et al. 2005). Certainly bFGF, 

TGF-β, BMP-7, VEGF, and IGF-1 have differential yet significant effects 

on the nervous system by affecting processes involved in synaptic 

transmission, neuronal growth/survival (Abe and Saito 2001; Molteni, 

Fumagalli et al. 2001), cell fate specification, tissue patterning, axon 

guidance in the nervous system (Charron and Tessier-Lavigne 2007), and 
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angiogenesis in the brain (Gora-Kupilas and Josko 2005). Moreover, 

VEGF (Jin, Mao et al. 2000; Gora-Kupilas and Josko 2005), TGF-

β (Flanders, Ren et al. 1998; Tesseur and Wyss-Coray 2006), and 

bFGF (Abe and Saito 2001) are neuroprotective against hypoxic-ischemic 

injury and neurodegeneration. These observations prompt the intriguing 

question of whether it is possible for US to trigger these pathways in the 

brain or the production and secretion of growth factors such as brain-

derived neurotrophic factor, neurotrophin-3, or nerve growth factor. 

 Additional actions on conserved cell signaling pathways further 

support explorations into the use of US as a neuromodulation tool. NF-κB 

is known to regulate neuronal survival and plasticity (Mattson 2005). 

Integrin-linked kinase (ILK) and Akt are known to be important signals in 

establishing neuronal polarity (Guo, Jiang et al. 2007). The PI3K-Akt 

signaling pathway is capable of blocking cell death and promoting cell 

survival of many neuronal cell types (Brunet, Datta et al. 2001). 

Ultrasound induces cyclooxegynase-2 expression in human chondrocytes 

by activating the integrin/ILK/Akt/NF-κB/ and p300 signaling 

pathway (Hsu, Fong et al. 2007), while in murine osteoblasts US 

stimulates COX-2 expression via the integrin/FAK/PI3K/Akt and ERK 

signaling pathway (Tang, Yang et al. 2006). It should be determined if US 

is also capable of stimulating ILK, PI3K, Akt, and or NF-κB signaling in 

neurons as these signaling molecules may become important targets for 

future ultrasonic neuromodulation strategies. 
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Feasibility for delivering LILFU to intact nervous systems and brains for 

neuromodulation 

 As a tool for modulating neuronal function, US has been studied 

and considered across a range of uses from thermal ablation of nervous 

tissues to its ability to produce sensory perceptions (Fry 1968; Gavrilov, 

Tsirulnikov et al. 1996; Hynynen and Jolesz 1998). Gavrilov and 

colleagues (1976) were the first to show that US is capable of activating 

both superficial and deep peripheral nerve structures in humans, which 

lead to different thermal, tactile, and pain sensations. In these studies 

however, US was only transmitted through soft tissues such as the skin to 

stimulate neuronal activity. Whether US will be effective in the noninvasive 

transcranial regulation of neuronal circuits in the intact nervous system 

remains to be determined. 

 Transcranial ultrasonography of the basilar artery has been shown 

to trigger auditory sensations in human subjects (Magee and Davies 

1993). Other studies have reported similar observations in animals during 

delivery of transcranial US and at least one underlying mechanism is 

thought to involve the direct stimulation of auditory nerve fibers by 

US (Gavrilov, Tsirulnikov et al. 1996). Collectively, these observations 

demonstrate transcranial US is capable of evoking sensory stimuli even in 

humans. Despite these exciting observations, the skull is a major obstacle 

when considering the transmission of US into intact brains for 

neurostimulation purposes. The skull reflects, refracts, absorbs, and 
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diffracts US fields. Acoustic impedance mismatches between the skin, 

skull, and skull-brain interfaces also present a challenge for transmitting 

US through the skull into the intact brain. The frequency of US we chose 

for the construction of LILFU waveforms (0.44–0.67 MHz) represents a 

range where optimal gains have been previously reported between 

transcranial US transmission and brain absorption. Based on modeling 

data of transmission and attenuation coefficients, as well as experimental 

data examining the transmission of US through ex vivo human skulls, the 

optimal gain for the transcranial US transmission and brain absorption is 

between 0.60 and 0.70 MHz (Hayner and Hynynen 2001; White, Clement 

et al. 2006). Based on our observations and the findings of others, it is 

likely that LILFU fields can be transmitted through skulls into the intact 

brain for gross neurostimulation purposes similar to methods using rTMS. 

In order to achieve targeted neurostimulation however, it will be necessary 

to focus LILFU fields. 

 It is possible to focus US fields using a variety of approaches. 

Pulsed US (<1 MHz) can be focused through human skulls to points within 

1 mm of intended loci using phased US transducer arrays (Hynynen and 

Jolesz 1998; Clement and Hynynen 2002; Hynynen, Clement et al. 2004). 

Based on observations reported in studies designed to investigate US field 

focusing through human skulls (Hynynen and Jolesz 1998; Clement and 

Hynynen 2002; Hynynen, Clement et al. 2004), US may be able to confer 

a spatial resolution similar to those achieved by currently implemented 
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neuromodulation strategies such as vagal nerve stimulation and DBS, 

which have been shown to possess high therapeutic value (Andrews 

2003; Wagner, Valero-Cabre et al. 2007). Before the feasibility of using 

focused LILFU for targeted neurostimulation purposes can be properly 

determined, future studies must directly address how focused US fields 

influence the activity of neuronal populations in vivo. 

 

Conclusion 

 Our observations demonstrate that LILFU can be used to remotely 

stimulate the activity of central nervous system neurons and circuits in 

vitro. We have provided the first direct evidence that US modulates the 

ionic conductance of neurons and astrocytes to increase cellular activity 

and synaptic transmission in a manner sufficient to stimulate neuronal 

circuits. Several issues need to be resolved before the full potential of US 

in controlling neuronal activity can be realized. Since US is capable of 

being focused through the human skull however, one tantalizing possibility 

is that LILFU may permit deep-brain stimulation without the need for 

surgically implanted devices or other invasive procedures. 
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Chapter 3 

TRANSCRANIAL PULSED ULTRASOUND STIMULATES INTACT BRAIN 

CIRCUITS 

Electromagnetic-based methods of stimulating brain activity require 

invasive procedures or have other limitations. Deep-brain stimulation 

requires surgically implanted electrodes. Transcranial magnetic 

stimulation does not require surgery, but suffers from low spatial 

resolution. Optogenetic-based approaches have unrivaled spatial 

precision, but require genetic manipulation. In search of a potential 

solution to these limitations, we began investigating the influence of 

transcranial pulsed ultrasound neuronal activity in the intact mouse brain. 

In motor cortex, ultrasound-stimulated neuronal activity was sufficient to 

evoke motor behaviors. Deeper in subcortical circuits, we used targeted 

transcranial ultrasound to stimulate neuronal activity and synchronous 

oscillations in the intact hippocampus. We found that ultrasound triggers 

TTX-sensitive neuronal activity in the absence of a rise in brain 

temperature (<0.01°C). Here, we also report that transcranial pulsed 

ultrasound for intact brain circuit stimulation has a lateral spatial resolution 

of approximately 2 mm and does not require exogenous factors or surgical 

invasion. 
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Introduction 

All currently implemented approaches to the stimulation of brain 

circuits suffer from a limitation or weakness. Pharmacological and 

chemical methods lack brain target specificity and have numerous 

metabolic requirements. Electrical methods, such as deep-brain 

stimulation offer a higher targeting specificity, but require surgery and 

brain impalement with electrodes (Ressler and Mayberg 2007). 

Optogenetic-based methods using light-activated ion channels or 

transporters offer unrivaled spatial resolution, but require genetic alteration 

(Szobota, Gorostiza et al. 2007; Zhang, Aravanis et al. 2007). Transcranial 

magnetic stimulation (TMS) and transcranial direct current stimulation do 

not require invasive procedures, but suffer from poor spatial resolutions of 

≈ 1 cm (Barker 1999; Wagner, Valero-Cabre et al. 2007). Considering the 

above limitations, a remaining challenge for neuroscience is to develop 

improved stimulation methods for use in intact brains. To address this 

need, we began studying the influence of pulsed ultrasound (US) on 

neuronal activity in mice. 

Ultrasound is a mechanical pressure wave (sound wave) having a 

frequency above the range of human hearing (> 20 kHz). Due to its 

physical properties, specifically its ability to be transmitted long distances 

through solid structures including bone and soft tissues, US is used in a 

wide range of medical and industrial applications. Diagnostic imaging US 

has a frequency range from 1 to 15 MHz, while therapeutic US tends to 
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employ a frequency of about 1 MHz (O'Brien 2007). Ultrasound can be 

transmitted into tissues in either pulsed or continuous waveforms and can 

influence physiological activity through thermal and/or nonthermal 

(mechanical) mechanisms (Dinno, Dyson et al. 1989; Dalecki 2004; 

O'Brien 2007; ter Haar 2007). The potential of using US for brain 

stimulation has been largely overlooked in comparison to chemical, 

electrical, magnetic, or photonic methods. Surprisingly, this is in lieu of the 

fact that US was shown capable of exciting nerve and muscle more than 

eight decades ago (Harvey 1929). 

Edmund Newton Harvey first published a set of ground-breaking 

observations, which clearly described that US can stimulate nerve and 

muscle fibers in neuromuscular preparations (Harvey 1929). Since then, 

US has been shown to stimulate and inhibit neuronal activity under 

various conditions. For example, US has been reported to reversibly 

suppress sensory-evoked potentials in the cat primary visual cortex 

following treatment of the lateral geniculate nucleus with US transmitted 

through a cranial window (Fry, Ades et al. 1958). Conversely, US has 

been shown to stimulate auditory nerve responses in the craniotomized 

cat brain (Foster and Wiederhold 1978). In cat saphenous nerve 

preparations, US was shown to differentially modulate the activity of Aδ- 

and C-fibers depending on the fiber diameter, US intensity, and US 

exposure time (Young and Henneman 1961).  
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Ultrasound can be defined as low-intensity or high-intensity (ter 

Haar 2007). High-intensity US (> 1 W/cm2) influences neuronal excitability 

by producing thermal effects (Tsui, Wang et al. 2005). In addition to the 

initial studies cited above, high-intensity US has been reported to 

modulate neuronal activity in peripheral nerves (Lele 1963; Mihran, 

Barnes et al. 1990; Tsui, Wang et al. 2005), craniotomized cat and 

craniotomized rabbit cortex (Velling and Shklyaruk 1988), peripheral 

somatosensory receptors in humans (Gavrilov, Gersuni et al. 1976), cat 

spinal cord (Shealy and Henneman 1962), and rodent hippocampal slices 

(Rinaldi, Jones et al. 1991; Bachtold, Rinaldi et al. 1998). While these prior 

studies support the general potential of US for neurostimulation, high-

intensity US can readily produce mechanical and/or thermal tissue 

damage (Dalecki 2004; Hynynen and Clement 2007; O'Brien 2007; ter 

Haar 2007) precluding it from use in noninvasive brain circuit stimulation. 

At acoustic intensities < 500 mW/cm2 pulsed US can produce mechanical 

bioeffects without producing thermal effects or tissue damage (Dinno, 

Dyson et al. 1989; Dalecki 2004; O'Brien 2007; ter Haar 2007). In 

hippocampal slices, we previously reported low-intensity US (< 300 

mW/cm2), low-frequency US (< 0.65 MHz) is capable of stimulating action 

potentials and synaptic transmission (Tyler, Tufail et al. 2008). Since low-

frequency US can be reliably transmitted through skull bone (Hynynen, 

Clement et al. 2004; Hynynen and Clement 2007), the motivation for the 

present study was to investigate the influence of low-frequency, low-
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intensity transcranial pulsed US on intact brain circuits in pursuit of a novel 

brain stimulation method. We report that transcranial US is capable of 

safely and reliably stimulating in vivo brain circuits, such as the motor 

cortex and intact hippocampus of mice. 

 

Experimental Procedures 

Generation and Characterization of Pulsed US Waveforms 

We used immersion-type US transducers having a center 

frequency of 0.5 MHz (V301-SU, Olympus NDT, Waltham, MA) or 0.3 

MHz (GS-300-D19, Ultran, State College, PA) to produce US waveforms. 

US pulses were generated by brief bursts of square waves (0.2 μsec; 0.5 

mV peak-to-peak) using an Agilent 33220A function generator (Agilent 

Technologies, Inc., Santa Clara, California, USA). Square waves were 

further amplified (50 dB gain) using a 40 W ENI 240L RF amplifier. Square 

waves were delivered between 0.25 – 0.50 MHz depending on the 

acoustic frequency desired. US pulses were repeated at a pulse repetition 

frequency by triggering the above referenced function generator with 

square waves produced using a second Agilent 33220A function 

generator (Figure S1).  

 To characterize the intensity characteristics of pulsed US stimulus 

waveforms, we recorded voltage traces produced by US pressure waves 

using a calibrated needle hydrophone (HNR 500, Onda Corporation, 

Sunnyvale, California, USA) and an Agilent DSO6012A 100 MHz digital 
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oscilloscope connected to a PC. Intensity measurements were made from 

targeted points inside fresh ex vivo mouse heads corresponding to the 

brain region targeted. The transcranial US waveforms were transmitted to 

intact brain circuits from US transducers using custom-designed acoustic 

collimators consisting of 3.0 or 4.7 mm (1 mL syringe) diameter 

polyethylene tubing or 5.0 mm diameter tubing tapered to a 2.0 mm 

diameter output aperture (Figure S2C). Collimating guides were 

constructed so stimulated regions of the brain were in the far-field of US 

transmission paths and filled with ultrasound coupling gel.  

 Using measurements recorded from calibrated hydrophones 

(described above), we calculated several acoustic intensity characteristics 

of pulsed US stimulus waveforms based on published and industry 

accepted standards (NEMA 2004).   

The pulse intensity integral (PII) was defined as: 

dt
Z

tp
PII 

0

2 )(
 

where p is the instantaneous peak pressure, Z0 is the characteristic 

acoustic impedance in Pa∙s/m defined as ρc where ρ is the density of the 

medium, and c is the speed of sound in the medium. We estimated ρ to be 

1028 kg/m3 and c to be 1515 m/s for brain tissue based on previous 

reports (Ludwig 1950). The spatial-peak, pulse-average intensity (ISPPA) 

was defined as: 

  
PD

SPPA

PII
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where PD is the pulse duration defined as (t)(0.9PII – 0.1PII) ∙1.25 as 

outlined by technical standards established by AIUM and NEMA (NEMA 

2004).  

The spatial-peak temporal-average intensity (ISPTA) was defined as: 

  )PRF(PIII SPTA  

where PRF is equal to the pulse repetition frequency in hertz. 

 

The mechanical index (MI; see Table S1) was defined as: 

  
f

p rMI  

 

In Vivo US Stimulation 

In this study we used wild-type mice in accordance with animal use 

protocols approved by the Institutional Animal Care and Use Committee at 

Arizona State University. To conduct transcranial US stimulation of intact 

motor cortex, mice were anesthetized using a ketamine-xylazine cocktail 

(70 mg/kg ketamine, 7 mg/kg xylazine) administered intraperitoneally. The 

hair on the dorsal surface of the head over regions corresponding to 

targeted brain regions was trimmed. Mice were then placed in a custom-

designed or Cunningham mouse stereotax. US transducers with affixed 

collimators were lowered to points above the skin corresponding to brain 

regions using standard stereotactic coordinates. Collimators or 

transducers were then placed on the surface of the skin above the 
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targeted brain region and coupled to the skin using ultrasound gel. 

Transcranial pulsed US stimulus waveforms were delivered to the targeted 

motor cortex or hippocampus using standard TTL triggering protocols 

(Figure S1). Digital signal markers indicated the onset and length of US 

stimulus waveforms. During some experiments, simultaneous 

electrophysiological data were acquired were acquired (see below). Only 

in experiments where we conducted in vivo extracellular recordings of 

brain activity or brain temperature was a craniotomy performed. Since 

cranial windows and electrode insertions were made at sites adjacent to 

angled US projection lines targeting specific brain regions, in these cases 

the US was still transmitted through skull bone although not covered by 

overlying skin. All other experiments were conducted in wholly intact mice 

except for some mapping experiments which required retraction of the 

skin to identify landmarks on the mouse skull.  Following stimulation, 

animals were either allowed to recover from anesthesia or processed as 

described below.  

 

In Vivo US Stimulation 

In this study we used wild-type mice in accordance with animal use 

protocols approved by the Institutional Animal Care and Use Committee at 

Arizona State University. To conduct transcranial US stimulation of intact 

motor cortex, mice were anesthetized using a ketamine-xylazine cocktail 

(70 mg/kg ketamine, 7 mg/kg xylazine) administered intraperitoneally. The 
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hair on the dorsal surface of the head over regions corresponding to 

targeted brain regions was trimmed. Mice were then placed in a custom-

designed or Cunningham mouse stereotax. US transducers with affixed 

collimators were lowered to points above the skin corresponding to brain 

regions using standard stereotactic coordinates. Collimators or 

transducers were then placed on the surface of the skin above the 

targeted brain region and coupled to the skin using ultrasound gel. 

Transcranial pulsed US stimulus waveforms were delivered to the targeted 

motor cortex or hippocampus using standard TTL triggering protocols 

(Figure S1). Digital signal markers indicated the onset and length of US 

stimulus waveforms. During some experiments, simultaneous 

electrophysiological data were acquired were acquired (see below). Only 

in experiments where we conducted in vivo extracellular recordings of 

brain activity or brain temperature was a craniotomy performed. Since 

cranial windows and electrode insertions were made at sites adjacent to 

angled US projection lines targeting specific brain regions, in these cases 

the US was still transmitted through skull bone although not covered by 

overlying skin. All other experiments were conducted in wholly intact mice 

except for some mapping experiments which required retraction of the 

skin to identify landmarks on the mouse skull.  Following stimulation, 

animals were either allowed to recover from anesthesia or processed as 

described below.  
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EMG Recordings 

Fine-wire EMG recordings were made using standard approaches 

and a four-channel differential AC amplifier (model 1700, A-M Systems, 

Inc., Sequim, WA, USA) with 10-1000 Hz band-pass filter and a 100 X 

gain applied. Electrical interference was rejected using a 60 Hz notch 

filter. EMG signals were acquired at 2 kHz using a Digidata 1440A and 

pClamp or a 16-channel DataWave Experimenter and SciWorks. Briefly, 

small barbs were made in a 2 mm uncoated end of teflon coated steel wire 

(California Fine Wire, Co., Grover Beach, CA, USA). Single recording 

wires were then inserted into the appropriate muscles using a 30 gauge 

hypodermic syringe before being connected to the amplifier. Ground wires 

were similarly constructed and subcutaneously inserted into the dorsal 

surface of the neck.   

 

Brain Temperature Recordings and Estimated Changes 

Prior to US stimulation in some experiments we performed a small 

craniotomy (d ≈ 2 mm) on mouse temporal bone. Following removal of 

dura, we inserted a 0.87 mm diameter thermocouple (TA-29, Warner 

Instruments, LLC, Hamden, CT, USA) into motor cortex through the 

cranial window. The thermocouple was connected to a monitoring device 

(TC-324B, Warner Instruments) and to a Digidata 1440A to record 

temperature (calibrated voltage signal = 100 mV/°C) using pClamp.  
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 We also estimated the influence of US stimulus waveforms on brain 

temperature change using a set of previously described equations valid for 

short exposure times (O'Brien 2007). Briefly, we estimated the maximum 

temperature change (ΔTmax) to be: 
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where Δt is the pulse exposure time, where Cv is the specific heat capacity 

for brain tissue ≈ 3.6 J/g/K (Cooper and Trezek 1972) and where 


Q  is the 

rate at which heat is produced defined by (Nyborg 1981): 
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where ρ is the density of the medium, c is the speed of sound in the 

medium as described above, where α is the absorption coefficient of brain 

(≈ 0.03 Np/cm for 0.5 MHz US (Goss, Johnston et al. 1978)), and p
0
is the 

pressure amplitude of US stimulus waveforms.  

 

Transmission Electron Microscopy 

Following stimulation, animals were transcardially perfused with 2% 

glutaraldehyde, 2.5% formaldehyde in sodium cacodylate buffer. Brains 

were subsequently removed and post-fixed in 2% glutaraldehyde, 2.5% 

formaldehyde in sodium cacodylate buffer overnight in 4°C. Following 

post-fixation, and sodium cacodylate buffer rinsing secondary fixation was 

performed with 0.2% osmium textroxide in sodium cacodylate for 1 hr. 
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Sections were then block-stained overnight at 4°C with 0.25% uranyl 

acetate before being dehydrated in a graded ethanol series followed by 

100% acetone. Samples were infiltrated Spur‟s resin during the next 3 d 

and flat embedded on Teflon coated glass slides before being polymerized 

overnight at 60°C. Motor cortex regions of interest were then identified and 

trimmed prior to block mounting. Trimmed sections were then ultra-thin 

sectioned at 70 nm on an ultramicrotome (Leica Ultra Cut R, Leica 

Microsystems, Inc., Bannockburn, IL, USA). Samples were collected on 

formvar coated copper slot grids and post-stained with 1% uranyl acetate 

in ethanol and Sato‟s lead citrate. Samples were imaged at 80 kV on a 

Phillips CM12 transmission electron microscope and images acquired with 

a Gatan CCD camera (model 791, Gatan, Inc., Warrendale, PA, USA). 

Images were acquired at 8,000x for analysis of overall ultrastructure, 

19,500x for analysis of synaptic density and 40,000x quantitative analysis 

of synapse specific parameters.   

 

Histological Evaluation 

In some experiments we performed histological investigations of 

stimulated and unstimulated brain regions of mice receiving transcranial 

US stimulation of motor cortex. To prepare tissue for histology, mice were 

transcardially perfused using 4% paraformaldehyde in PBS. Mouse brains 

were removed and post-fixed in 4% paraformaldehyde at 4°C overnight. 

Coronal slices of stimulated and adjacent unstimulated motor cortex were 
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then made using a vibratome or a cryotome. For mapping studies, coronal 

cryosections were immunolabeled using antibodies against c-fos (1:250; 

SC-253, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and 

standard processing techniques with Vectastain Elite ABC kits (Vector 

Laboratories, Burlingame, CA) before being imaged using transmitted light 

microscopy. In other histological analyses, brain sections (50 µm) were 

double-labeled using standard immunocytochemistry techniques with 

antibodies against cleaved Caspase-3 (1:250; Asp 175-9661, Cell 

Signaling Technology, Beverly, MA, USA), BDNF (1:1000, AB1534SP, 

Millipore, Billerica, MA), and/or NeuN (1:1000, MAB377, Millipore). 

Following overnight primary antibody incubation, sections were washed 

and incubated in appropriate Alexa Fluor 488, Alexa Fluor 568, or Alexa 

Fluor 633 secondary antibodies (1:500; Invitrogen, Carlsbad, CA, USA) for 

two hours at room temperature. One- or two-channel fluorescence images 

were acquired on an Olympus Fluoview FV-300 laser-scanning confocal 

microscope (Olympus America, Inc., Center Valley, Pennsylvania, USA).  

 Prior to US stimulation trials, some animals received an intravenous 

infusion of 5% fluorescein isothiocyanate-dextran (10 kDa; Sigma, St. 

Louis, MO, USA) in a 0.9% sodium chloride solution (0.35 mL). Coronal 

sections (75 µm) of these brains were prepared using a vibratome. 

Floating sections were then labeled with TO-PRO-3 (1:1000; Invitrogen) to 

identify cell bodies. Following washing and mounting, the 

cerebrovasculature was then examined using confocal microscopy. In 
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additional positive control experiments, prior to US stimulation mice 

received an intravenous infusion of 5% fluorescein isothiocyanate-dextran 

in conjunction with an ultrasound contrast agent (Optison®; GE 

Healthcare, Piscataway, NJ, USA) known to elicit BBB disruption during 

US administration (Raymond, Treat et al. 2008). These brains were 

processed and examined as described above. 

 

Behavioral Assays 

US stimulated and sham-treated control mice were subjected to 

behavioral testing using a rotorod task and a wire-hanging task. On US 

stimulation treatment day, sham-treated controls and US stimulated 

animals were anesthetized with ketamine/xylazine and their hair was 

trimmed. Following US stimulation or sham-treatment, motor skill testing 

was administered on rotorod and wire-hanging tasks again at 24 h and 7 

days later and compared against 24-h pre-stimulation control 

performance. On behavioral testing days, mice ran on the rotorod (25.4 

cm circumference, 10.8 cm wide rod) until failure (time in seconds before 

falling from rotorod) for 5 trials each at two speeds (17 and 26 RPM).  

Following rotorod trials, animals performed wire-hanging tests until failure 

time (time in seconds before falling from suspended wire) for 5 trials.  
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Data Analyses 

All electrophysiological data (MUA, LFP, and EMG) were 

processed and analyzed using custom-written routines in Matlab (The 

Mathworks, Natick, MA, USA) or Clampfit (Molecular Devices). Single 

spikes were isolated using a standard thresholding window. Ultrasound 

waveform characteristics were analyzed using hydrophone voltage traces 

and custom written routines in Matlab and Origin (OriginLab Corp., 

Northampton, MA, USA). All histological confocal and transmitted light 

images were processed and analyzed using ImageJ 

(http://rsb.info.nih.gov/ij/). Electron microscopy data were also quantified 

using ImageJ. All statistical analyses were performed using SPSS (SPSS, 

Inc., Chicago, IL, USA). Data shown are mean ± S.E.M unless indicated 

otherwise. 

 

Results 

Construction and Transmission of Pulsed Ultrasound Stimulus Waveforms 

into Intact Brain Circuits 

We constructed US stimulus waveforms and transmitted them into 

the intact brains of anesthetized mice (n = 192; Figure 7A). The optimal 

gains between transcranial transmission and brain absorption occurs for 

US at acoustic frequencies (f) ≤ 0.65 MHz (Hayner and Hynynen 2001; 

White, Clement et al. 2006). Thus, we constructed transcranial stimulus 

waveforms with US having f = 0.25 to 0.50 MHz. Intensity characteristics 
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of US stimulus waveforms were calculated based on industry standards 

and published equations developed by the American Institute of 

Ultrasound Medicine, the National Electronics Manufacturers Association, 

and the United Stated Food and Drug Administration (NEMA 2004); see 

Experimental Procedures).   

 Single US pulses contained between 80 and 225 acoustic cycles 

per pulse (c/p) for pulse durations (PD) lasting 0.16 to 0.57 msec. Single 

US Pulses were repeated at pulse repetition frequencies (PRF) ranging 

from 1.2 to 3.0 kHz to produce spatial-peak temporal-average intensities 

(ISPTA) of 21 to 163 mW/cm2 for total stimulus duration ranging between 26 

and 333 msec. Pulsed US waveforms had peak rarefactional pressures 

(pr) of 0.070 to 0.097 MPa, pulse intensity integrals (PII) of 0.017 to 0.095 

mJ/cm2, and spatial-peak pulse-average intensities (ISPPA) of 0.075 to 

0.229 W/cm2. Figures 7A, 7B, illustrate the strategy developed for 

stimulating intact brain circuits with transcranial pulsed US. The 

attenuation of US due to propagation through the hair, skin, skull, and 

dura of mice was < 10% (Figure 7C) and all intensity values reported were 

calculated from US pressure measurements acquired using a calibrated 

hydrophone positioned with a micromanipulator inside fresh ex vivo 

mouse heads at locations corresponding to the brain circuit being 

targeted.   
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Figure 7.  Construction and characterization of low-intensity ultrasound 
stimulus waveforms for the transcranial stimulation of intact brain circuits. 
(A) Illustration of the method used to construct and transmit pulsed US 
waveforms into the intact mouse brain. Two function generators were 
connected in series and used to construct stimulus waveforms. An RF 
amplifier was then used to provide final voltages to US transducers (see 
Figures S2.1-S2.2 and Experimental Procedures). (B) An example low-
intensity US stimulus waveform is illustrated to highlight the parameters 
used in their construction. The acoustic intensities generated by the 
illustrated stimulus waveform are shown in the yellow-box. (C) Projected 
from a transducer surface to the face of a calibrated hydrophone, the 
acoustic pressure generated by a 100 cycle pulse of 0.5 MHz ultrasound 
is shown (left). The pressure generated by the same US pulse when 
transmitted from the face of the transducer through a fresh ex vivo mouse 
head to regions corresponding to motor cortex (0.8 mm deep) is shown 
(right).  
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Functional Stimulation of Intact Brain Circuits using Pulsed Ultrasound 

We first studied the influence of pulsed US on intact motor cortex 

since it enables electrophysiological and behavioral measures of brain 

activation. We recorded local field potentials (LFP) and multi-unit activity 

(MUA) in primary motor cortex (M1) while transmitting pulsed US (0.35 

MHz, 80 c/p, 1.5 kHz PRF, 100 pulses) having an ISPTA = 36.20 mW/cm2 

through acoustic collimators (d = 4.7 mm) to the recording locations in 

anesthetized mice (n = 8; Figures 8A and 8B). Pulsed US triggered an 

LFP in M1 with a mean amplitude of -350.59 ± 43.34 µV (Figure 8B, 25 

trials each). The LFP was associated with an increase in the frequency of 

cortical spikes (Figures 8C and 8D). This increase in spiking evoked by 

pulsed US was temporally precise and apparent within 50 msec of 

stimulus onset (Figure 8D). We found a broad range of pulsed US 

waveforms were equally capable of stimulating intact brain circuits as 

discussed below. Application of TTX (100 µM) to M1 (n = 4 mice) 

attenuated US-evoked increases in cortical activity, indicating transcranial 

US stimulates neuronal activity mediated by action potentials (Figure 8B). 

These data provide the first evidence that pulsed US can be used to 

directly stimulate neuronal activity and action potentials in intact brain 

circuits.  

We next acquired fine-wire electromyograms (EMG) and videos of 

muscle contractions in response to US stimulation of motor cortex in skin- 

and skull-intact, anesthetized mice. Using transcranial US to stimulate 
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motor cortex, we evoked muscle contraction and movements in 92% of 

the mice tested. The muscle activity triggered by US stimulation of motor 

cortex produced EMG responses similar to those acquired during 

spontaneous muscle twitches (Figure 9A).  

When using transducers directly coupled to the skin of mice, 

bilateral stimulation with transcranial US produced the near simultaneous 

activation of several muscle groups indicated by tail, forepaw, and whisker 

movements. By using acoustic collimators having an output aperture of d 

= 2.0, 3.0, or 4.7 mm and by making small (≈ 2 mm) adjustments to the 

positioning of transducers or collimators over motor cortex within a 

subject, we could differentially evoke the activity of isolated muscle 

groups. Despite these intriguing observations, we found it difficult to 

reliably generate fine maps of mouse motor cortex using US for brain 

stimulation. The likeliest explanation for this difficulty is that the 

topographical/spatial segregation of different motor areas represented on 

the mouse cortex are below the resolution limits of US (see Spatial 

Resolution of Brain Circuit Activation with Transcranial Pulsed Ultrasound 

below).  
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Figure 8. Low-intensity pulsed US stimulates neuronal activity in the intact 
mouse motor cortex. (A) The coronal brain section shows an electrolytic 
lesion illustrating a recording site from which US-evoked neuronal activity 
was acquired in M1. (B) Top, raw (black) and average (grey; 25 trials) US-
evoked MUA recorded from M1 cortex in response to the delivery of 
pulsed US waveforms. Middle, addition of TTX to the cortex reduced 
synaptic noise and attenuated US-evoked MUA. Bottom, raw control 
(black), average control (green), and average TTX (red) LFP recorded 
from M1 cortex in response to 25 US stimulus waveforms delivered every 
10 sec. (C) The spike raster plot illustrates the increase of cortical spiking 
as a function of time in response to 25 consecutive US stimulation trials. 
(D) A post-stimulus time histogram illustrates the average MUA spike 
count recorded 500 msec prior to and 500 msec following the delivery of 
US stimulus waveforms to motor cortex. 
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Figure 9. Transcranial stimulation of motor cortex with pulsed US 
functionally activates descending corticospinal motor circuits in intact 
mice. (A) Raw (left) and full-wave rectified (FWR; right) EMG traces 
obtained for a spontaneous muscle twitch (top) and average (10 trials) 
increase in muscle activity produced by transcranial US stimulation of 
motor cortex. The duration of the US stimulus waveform (black), average 
US-evoked EMG trace (grey), and EMG integral (grey dashed-line) are 
shown superimposed at lower-right. (B) EMG response latencies (top) and 
amplitudes (bottom) recorded from the left triceps brachii in response to 
right motor cortex stimulation are plotted as a function of trial number 
repeated at 0.1 Hz. Individual US-evoked raw EMG traces are shown for 
different trials (right). (C) EMG failure probability histograms are shown for 
four progressively increasing stimulus repetition frequencies. Raw US-
evoked EMG traces are shown for two different stimulus repetition 
frequencies (right). (D) Raw EMG traces illustrating application of TTX to 
the motor cortex blocks US-evoked descending corticospinal circuit 
activity. (E) Raw (black) and averaged (grey; 10 trials) temperature 
recordings obtained from motor cortex in response to transmission of US 
waveforms with short pulse durations (PD) used in stimulus waveforms 
(top). Similarly, temperature recordings of cortex in response to 
waveforms having a PD approximately 100 times longer than those used 
in stimulus waveforms (middle and bottom).  
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The Influence of US Brain Stimulation Parameters on Motor Circuits 

Response Properties 

When bilaterally targeted to motor cortex, pulsed US (0.50 MHz, 

100 cycles per pulse, 1.5 kHz PRF, 80 pulses) having an ISPTA = 64.53 

mW/cm2 triggered tail twitches and EMG activity in the 

lumbosacrocaudalis dorsalis lateralis muscle with a mean response 

latency of 22.65 ± 1.70 msec (n = 26 mice). When unilaterally transmitted 

to targeted regions of motor cortex using a collimator (d = 3 mm), pulsed 

US (0.35 MHz, 80 c/p, 2.5 kHz PRF, 150 pulses) having an ISPTA = 42.90 

mW/cm2 triggered an EMG response in the contralateral triceps brachii 

muscle with a mean response with latency of 20.88 ± 1.46 msec (n = 17 

mice). With nearly identical response latencies (21.29 ± 1.58 msec), 

activation of the ipsilateral triceps brachii was also observed in ~ 70% of 

these unilateral stimulation cases. Although consistent from trial-to-trial 

(Figure 9B), the EMG response latencies produced by US brain 

stimulation were ≈ 10 msec slower than those obtained using optogenetic 

methods and intracranial electrodes to stimulate motor cortex (Ayling, 

Harrison et al. 2009). Several reports show that TMS also produces 

response latencies slower than those obtained with intracranial electrodes 

(Barker 1999). Discrepancies among the response latencies observed 

between electrical and US methods of brain stimulation are possibly due 

to differences in the time-varying energy profiles that these methods 

impart on brain circuits. The underlying core mechanisms of action 
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responsible for mediating each brain stimulation method are additional 

factors likely to influence the different response times. 

 The baseline failure rate in obtaining US-evoked motor responses 

was < 5% when multiple stimulus trials were repeated once every four to 

ten seconds for time periods up to 50 min (Figure 9B). As observed for 

response latencies in acute experiments, the peak amplitudes of EMG 

responses evoked by transcranial pulsed US were stable across trial 

number (Figure 9B). In more chronic situations, we performed repeated 

US stimulation experiments within individual subjects (n = 5 mice) on days 

0, 7, and 14 using a trial repetition frequency of 0.1 Hz for 12-15 min each 

day. In these experiments there were no differences in the peak 

amplitudes of the US-evoked EMG responses across days (day 0 mean 

peak EMG amplitude = 40.26 ± 0.99 µV, day 7 = 43.06 ± 1.52 µV, day 14 

= 42.50 ± 1.42 µV; ANOVA F2, 1303 = 1.47, P = 0.23). These data 

demonstrate the ability of transcranial US to successfully stimulate brain 

circuit activity across multiple time periods spanning minutes (Figure 11A) 

to weeks.  

 By examining EMG failure rates in eight mice, we next studied how 

the success of achieving motor activation was affected when stimulus 

trials were repeated in more rapid succession. The mean EMG failure 

probability significantly increased (P < 0.001) as the rate of US stimulus 

delivery increased from 0.25 to 5 Hz (Figure 9C). This data suggest that 

brain stimulation with US may not be useful at stimulation frequencies 
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above 5 Hz. To confirm these observations and further explore this 

potential limitation, future investigations of an expanded US stimulus 

waveform space are required since it is not known how other US 

waveform profiles will influence the generation of sustained activity 

patterns.  

 We observed application of TTX to motor cortex blocked EMG 

activity, which indicates pulsed US triggers cortical action potentials to 

drive peripheral muscle contractions (n = 4 mice; Figure 3D). The 

intensities of US stimuli we studied were < 500 mW/cm2, where 

mechanical bioeffects have been well documented in the absence of 

thermal effects (Dinno, Dyson et al. 1989; Dalecki 2004; O'Brien 2007; ter 

Haar 2007). To confirm these observations in brain tissue, we monitored 

the temperature of motor cortex in response to US waveforms having 

different pulse duration (PD) times. Equations for estimating thermal 

absorption of US in biological tissues indicate PD times are a critical factor 

for heat generation (O'Brien 2007) and predict 0.5 MHz US pulses 

exerting a pr of 0.097 MPa for a PD of 0.57 msec should produce a 

temperature increase of 2.8 x 10-6 °C in brain (see Experimental 

Procedures). All US stimulus waveforms used in this study had pr values < 

0.097 MPa and PD times ≤ 0.57 msec. None of the US waveforms used to 

stimulate cortex elicited a significant change in cortical temperature within 

our 0.01 °C resolution limits (Figure 3E). We found US pulses with pr 
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values of 0.1 MPa and PD times > 50 msec were required to produce a 

nominal temperature change (ΔT) of 0.02°C (Figure 9E).  

 We next examined how acoustic frequencies and intensities across 

the ranges studied here influenced US-evoked EMG responses from the 

triceps brachii of mice (n = 20). We stimulated motor cortex using 20 

distinct pulsed US waveforms composed with different US frequencies 

(0.25, 0.35, 0.425, and 0.5 MHz) and having varied intensities. We 

randomized the sequence of which different waveforms were used in 

individual stimulus trials to avoid order effects. Relative comparisons of 

EMG amplitudes across animals can be influenced by many factors 

including electrode placement, number of fibers recorded from, variation in 

noise levels, and differential fiber recruitment, which can be handled using  

normalization techniques to reduce inter-subject variability (Yang and 

Winter 1984; Kamen and Caldwell 1996). To examine US-evoked EMG 

responses having the same dynamic range across animals, we 

normalized the peak amplitude of individual EMG responses to the 

maximum-peak amplitude EMG obtained for an animal and forced its 

minimum-peak amplitude EMG response through zero. A two-way ANOVA 

revealed a significant main effect of US frequency on EMG amplitude, 

where lower frequencies produced more robust EMG responses (F3, 1085 = 

3.95, P < 0.01; Figure 4A). The two-way ANOVA also revealed a 

significant main effect of intensity (ISPTA) on EMG amplitudes (F19, 1085 = 

9.78, P < 0.001; Figure 4B), indicating lower intensities triggered more 



  75 

robust EMG responses. The two-way ANOVA also revealed a significant 

frequency x intensity interaction (F3, 1085 = 7.25, P < 0.01; Figure 10C) 

indicating differential effects of US waveforms on neuronal activity as a 

function of frequency and intensity. Across the stimulus waveforms 

studied, we found the EMG response latencies were not affected by either 

frequency or intensity (data not shown).  
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Figure 10. Interactions of the acoustic frequency and acoustic intensity of 
stimulus waveforms on descending corticospinal circuit activation. (A) 
Maximum-peak normalized (Norm) US-evoked EMG amplitude histograms 
are plotted for the four US frequencies used in the construction of stimulus 
waveforms. (B) Mean maximum-peak normalized US-evoked EMG 
amplitudes are plotted as a function of US intensities (ISPTA) produced by 
20 distinct stimulus waveforms (see Table S1). (C) The interaction 
between US intensity (ISPTA) and US frequency is plotted as a function of 
maximum-peak normalized EMG amplitudes (pseudocolor LUT).   
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Spatial Distribution of Brain Circuit Activation with Transcranial Pulsed 

Ultrasound 

To characterize the spatial distribution of US-evoked activity, we 

constructed functional activity maps using antibodies against c-fos (n = 4 

mice). To facilitate data interpretation, we chose to stimulate intact brain 

tissue having a relatively planar surface and prominent subcortical 

structures. We centered the output of acoustic collimators (d = 2 mm) over 

the skull covering the right hemisphere from -1.2 mm to -3.2 mm of 

Bregma and 0.5 mm to 2.5 mm lateral of the midline using stereotactic 

coordinates (Figure 11A; (Franklin and Paxinos 2007). We used our 

smallest diameter collimator to characterize the minimal resolution of our 

brain stimulation method since it is expected larger collimators will 

produce larger areas of brain activation. Pulsed US (0.35 MHz, 50 c/p, 1.5 

kHz PRF, 500 pulses) having an ISPTA = 36.20 mW/cm2 was transmitted 

along a vertical axis parallel to the sagittal plane through underlying brain 

regions once every 2 sec for 30 minutes. Following a 45-minute recovery 

period, mice were sacrificed and their brains were harvested for histology. 

 We prepared coronal sections from brain regions spanning +0.25 

mm to -4.20 mm of Bregma (Figure 11A). Individual sections spaced every 

125 µm were then immunolabeled using antibodies against c-fos and 

imaged using transmitted light microscopy. We quantified c-fos+ cell 

densities in 250 x 250 µm squares for entire coronal sections, corrected 

for tissue shrinkage, and developed brain activity maps by plotting c-fos+ 
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cell densities in 250 x 250 µm pixels onto their corresponding anatomical 

locations using mouse brain atlas plates (Franklin and Paxinos 2007). 

Representative raw data and functional activity maps coding c-fos+ cell 

density using a psuedo-color lookup table for visualization purposes are 

shown in Figure 11B-D. We estimated the lateral resolution of pulsed US 

along the rostral-caudal brain axis by analyzing regions of dorsal cortex 

(0.25 to 1.0 mm deep; 0.75 mm to 1.50 mm lateral of the midline) for each 

coronal section (Figures 11A-D). An ANOVA comparing the mean c-fos+ 

cell densities for each 250 x 250 µm square region collapsed across 

animals revealed that pulsed US produced a significant increase in the 

density of c-fos+ cells (ANOVA, F1, 646 = 73.39, P < 0.001; contralateral 

control hemisphere mean c-fos+ cell density = 16.29 ± 0.20 cells/6.25 x 10-

2 mm2 compared to US stim = 19.82 ± 0.36 cells/6.25 x 10-2 mm2). 

Subsequent pairwise comparisons of stimulated versus contralateral 

control cortex revealed US stimulation produced a significant increase in 

c-fos+ cell densities for a 1.5 mm region along the rostral-caudal axis (-

1.38 mm to -2.88 mm of Bregma) under the 2.0 mm diameter stimulation 

zone (Figure 11E). Similar analyses along the medial-lateral axis of dorsal 

cortex, revealed a significant increase (P < 0.05) in c-fos+ cell densities for 

a 2.0 mm wide region of brain tissue under the stimulation zone. We 

observed a smearing of elevated c-fos+ cell densities lateral to the 

stimulation zone, which could be attributed to nonlinearities in our acoustic 
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collimators, the corticocortical lateral spread of activity, and/or slight lateral 

variations in the positioning of our collimators.  

 By examining the effects of pulsed US along the dorsal-ventral axis 

within the stimulation zone (0.5 to 2.5 mm medial to lateral; -1.2 to -3.2 

mm of Bregma), we found the density of c-fos+ cells was significantly 

higher (P < 0.05) compared to contralateral controls in the superficial 1.0 

mm of tissue. While there were trends of higher c-fos+ cell densities in 

some deeper nuclei of stimulated hemispheres, we only observed one 

significant difference in a deep-brain region . The elevated c-fos here may 

have been produced by standing waves or reflections since higher c-fos+ 

cell densities were generally observed near the skull base. Otherwise, we 

would have expected to observe elevated c-fos+ levels uniformly along the 

dorsal-ventral axis of stimulated regions due to the 

transmission/absorption properties of US in brain tissue. For > 1.5 mm of 

the 2.0 mm diameter cortical area we targeted with US in these mapping 

studies, regions deeper than ≈ 1 mm were ventral to dense white matter 

tracts (corpus callosum) in the brain. Interestingly, unmyelinated C-fibers 

have been shown to be more sensitive to US than myelinated Aδ fibers 

(Young and Henneman 1961). Effectively blocking US-evoked activity in 

subcortical regions, we suspect low-intensity US fields may have been 

absorbed/scattered by dense white matter tracts in these mapping studies 

as a function of the US transmission path implemented. Despite these 

observations, we show below that it is indeed possible to stimulate 
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subcortical brain regions with transcranial US by employing different 

targeting approaches (see Remote Stimulation of the Intact Hippocampus 

using Transcranial Pulsed US).  

 

Brain Stimulation with Low-Intensity Transcranial Pulsed Ultrasound is 

Safe in Mice 

To assess the safety of transcranial US brain stimulation in mice, 

we first examined how pulsed US influenced blood-brain barrier (BBB) 

integrity. Prior to stimulation, mice received an intravenous administration 

of fluorescein isothiocyanate-dextran (10 kDa), which does not cross the 

BBB under normal conditions (Kleinfeld, Mitra et al. 1998). The motor 

cortex of mice (n = 5) was then unilaterally stimulated every 10 seconds 

for 30 minutes with pulsed US (0.50 MHz, 225 cycles per pulse, 1.5 kHz 

PRF, 100 pulses) having an ISPTA = 142.20 mW/cm2 using a collimator (d = 

4.7 mm). We observed no evidence that US produced damage to the BBB 

as indicated by a complete lack fluorescein leakage (contralateral control 

= 179.6 mm vasculature length examined versus US Stim = 183.4 mm 

vasculature length examined; Figure 6A). In separate positive control 

experiments, we co-administered intravenous fluorescein-dextran with an 

US contrast agent (Optison®) shown to mediate in vivo BBB disruption in 

response to US (Raymond, Treat et al. 2008). Results from these positive 

control experiments (n = 3 mice) confirmed our ability to detect BBB 

damage had it occurred in response to pulsed US alone (Figure 12B). 
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 We next probed the cellular-level consequences of pulsed US on 

brain tissues using antibodies against cleaved-caspase-3 to monitor cell 

death (Figure 12C). Using the same US waveform described above (ISPTA 

= 142.2 mW/cm2), we unilaterally stimulated the motor cortex of mice (n = 

8) every 10 seconds for 30 minutes. Following a 24-hour recovery period 

to allow for peak caspase-3 activation, mice were sacrificed and their 

brains examined using confocal microscopy. In comparing stimulated 

cortex regions with their contralateral controls (2.81 mm2 total 

area/hemisphere/mouse), we found pulsed US did not induce a change in 

the density of apoptotic glial cells (control = 0.40 ± 0.04 caspase-3+ 

cells/0.56 mm2 versus US Stim = 0.43 ± 0.06 caspase-3+ cells/0.56 mm2; 

P > 0.30) or apoptotic neurons (control = 0.08 ± 0.03 caspase-3+ 

cells/0.56 mm2 versus US stim = 0.07 ± 0.03 caspase-3+ cells/0.56 mm2; P 

> 0.50; Figure 12D). To further confirm this lack of an effect on cell death, 

we repeated the above experiment in mice (n = 4) using a higher intensity 

US waveform (ISPTA = 300 mW/cm2), which is 137 mW/cm2 higher intensity 

than we used to evoke brain activity with any waveform in this study. We 

again observed no significant effects (2.81 mm2 total 

area/hemisphere/mouse) of pulsed US on the density of apoptotic glial 

cells (control = 0.44 ± 0.16 caspase-3+ cells/0.56 mm2 versus US stim = 

0.38 ± 0.13 caspase-3+ cells/0.56 mm2; P > 0.30) or apoptotic neurons 

(control = 0.06 ± 0.05 caspase-3+ cells/0.56 mm2 versus US stim = 0.07 ± 

0.05 caspase-3+ cells/0.56 mm2; P > 0.50; Figure 12D). 
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 To determine the effects of pulsed US on brain ultrastructure, we 

used quantitative transmission electron microscopy to examine stimulated 

and control brains. We compared excitatory synapses in the motor cortex 

from control unstimulated mice (n = 5 mice) with synapses in the 

stimulated regions of motor cortex from mice (n = 6), which underwent a 

US stimulus trial as described above (ISPTA = 142.2 mW/cm2) every 10 

seconds for 30 minutes (Figure 12E). An independent samples T-test 

revealed no significant difference in the density of synapses between 

groups (control = 16.59 ± 0.81 synapses/100 µm2 from 2.3 mm2 versus 

US stim = 22.99 ± 4.07 synapses/100 µm2 from 4.2 mm2; P > 0.10; Figure 

12F). There were also no significant differences in the postsynaptic 

density (PSD) length (control = 0.225 ± 0.009 µm from 99 synapses 

versus US stim = 0.234 ± 0.009 µm from 130 synapses; P > 0.10), the 

area of presynaptic terminals (control = 0.279 ± 0.02 µm2 versus US stim 

= 0.297 ± 0.02 µm2; P > 0.10), the density of vesicles in presynaptic 

boutons (control = 206.89 ± 9.52 vesicles/µm2 versus US stim = 209.85 ± 

8.14 vesicles/µm2; P > 0.10), or the number of docked vesicles (DV) 

occupying active zones (control = 21.71 ± 0.91 DV/µm versus US stim = 

20.26 ± 0.61 DV/µm; P > 0.10) between treatment groups (Figure 12F). 

There were no qualitative differences in the ultrastructure of cortical 

neuropil between treatment groups.  

 To determine if transcranial US stimulation of motor cortex 

produced any gross impairments in motor behavior, we assessed EMG 
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integrity the day before stimulation with pulsed US waveforms (ISPTA = 

142.2 mW/cm2; every 10 seconds for 30 minutes), 24 hours post-

stimulation, and again 7 days post-stimulation. Compared to sham-treated 

controls (n = 9 mice), a repeated measures ANOVA revealed no 

significant effect of US stimulation (n = 9 mice) on a rotorod running task 

(F1,8 = 0.211, P > 0.1). We also measured motor function and grip strength 

by subjecting mice to wire-hanging task. Again, repeated measures 

ANOVA revealed no significant group effect on hang time (F1,8 = 0.05; P > 

0.1). During daily behavioral monitoring, we observed no differences in 

feeding behavior, grooming behavior, or startle reflexes between US 

stimulated mice and sham controls.  

 Through our development of the US brain stimulation method 

described above, we have stimulated the intact brains of more than 190 

mice through > 92,000 US stimulus trails. We allowed > 50% of the mice 

to recover from anesthesia following stimulation procedures and never 

observed any neurological abnormalities such as paralysis, ataxia, or 

tremor in these mice. Even mice undergoing multiple repeated stimulation 

protocols spanning a two-week time period exhibited no visible behavioral 

impairments or signs of diminishing responsiveness to transcranial pulsed 

US. In our studies, fewer than 6% of the animals died during or 

immediately following a US stimulation experiment. This mortality rate was 

likely due to respiratory or cardiac complications associated with 

maintaining mice under ketamine/xylazine anesthesia for extended 
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periods of time (> 2 hrs). Based on the collective observations described 

above, we conclude that low-intensity transcranial pulsed US provides a 

safe and noninvasive method of stimulating intact brain circuit activity in 

mice. Whether similar safety margins hold true for other animal species 

must be directly evaluated and remains undetermined. 
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Figure 11. Spatial distribution of neuronal activation triggered by 
transcranial pulsed US. (A) Diagrams showing the anatomical locations 
where transcranial pulsed US was delivered through an acoustic 
collimator (green; d = 2 mm; Figure S2C) and the brain volume 
subsequently reconstructed (blue) to develop functional activity maps 
using antibodies against c-fos (Figure S3). (B) Light micrographs showing 
c-fos activity in a coronal brain section at different locations inside (i) and 
outside (ii and iii) the US transmission path. (C) A psuedo-colored map of 
c-fos+ cell densities in 250 x 250 µm regions is shown for a reconstructed 
coronal section obtained from within the stimulus zone. Small regions 
inside (i) and outside (ii and iii) the US brain transmission path are 
highlighted and contain c-fos density data obtained from the 
corresponding images shown in B. (D) Similar psuedo-colored c-fos 
activity maps are shown for coronal brain sections rostral (left) and caudal 
(right) of the stimulated brain regions. (E) The line plots illustrate the mean 
c-fos+ cell densities observed along the rostral-caudal axis of 
reconstructed brain volumes for stimulated (black) and contralateral 
control hemispheres (grey). Regions of cortex within the stimulation zone 
are indicated by red. 
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Figure 12. Transcranial stimulation of mouse cortex with low-intensity 
pulsed US is safe. (A) Confocal images of TO-PRO-3 labeled cells (red) 
and fluorescein-dextran filled cerebrovasculature (green) obtained from 
the motor cortex of a contralateral control hemisphere (left) and from the 
stimulated region of the US-treated hemisphere (right). (B) A similar 
confocal image is shown, but was obtained from a positive control 
treatment group where US-stimulation was performed in the presence of 
Optison® an ultrasound-microbubble contrast agent known to elicit 
cavitationally-mediated vasculature damage. (C) Confocal images of 
NeuN+ (green) and cleaved-Caspase 3+ (magenta) cells obtained from a 
US stimulated region show positive glial cells (top) and a neuron (bottom) 
at low-(left) and high-magnification (right). (D) Histograms illustrate the 
mean density of cleaved-Caspase 3+ glial cells (G) and neurons (N) 
observed in the motor cortex of contralateral control and US-stimulated 
hemispheres for two different stimulus intensity waveforms. (E) 
Transmission electron microscopic images (left) of excitatory synapses 
from control (top) and US stimulated M1 cortex (bottom). (F) Histograms 
are shown for mean synaptic density (top-left), mean axonal bouton 
synaptic vesicle density (top-right), mean PSD length (bottom-left), and 
mean number of DV occupying active zones (bottom-right). Also see 
Figure S4. 
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Remote Stimulation of the Intact Mouse Hippocampus Using Transcranial 

Pulsed US 

 We finally aimed to determine if transcranial pulsed US can be 

used to stimulate subcortical brain circuits in intact mice. To address this 

issue, we focused our attention on the intact mouse hippocampus since 

pulsed US waveforms have been shown to elicit action potentials and 

synaptic transmission in hippocampal slices (Tyler, Tufail et al. 2008). We 

performed extracellular recordings of US-evoked activity in the CA1 

stratum pyramidale (s.p.) cell body layer of dorsal hippocampus (n = 7 

mice). Prompted by our observations regarding the potential disruption of 

US fields by dense white matter tracts, we implemented a targeting 

approach bypassing the dense white matter of the corpus callosum when 

transmitting pulsed US to the hippocampus.  

 We used an angled line of US transmission through the brain by 

positioning acoustic collimators 50° from a vertical axis along the sagittal 

plane. The output aperture of collimators (d = 2 mm) were unilaterally 

centered over -4.5 mm of Bregma and 1.5 mm lateral of the midline 

(Figure 13A). We used a 30° approach angle to drive tungsten 

microelectrodes to the CA1 s.p. region of hippocampus through cranial 

windows (d = 1.5 mm) centered approximately -1.0 mm of Bregma (Figure 

13A). Pulsed US (0.25 MHz, 40 cycles per pulse, 2.0 kHz PRF, 650 

pulses) having an ISPTA = 84.32 mW/cm2 reliably triggered an initial LFP 

with a mean amplitude of -168.94 ± 0.04 µV (50 trials each) and a mean 
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response latency of 123.24 ± 4.44 msec following stimulus onset (Figure 

13B). This initial LFP was followed by a period of after-discharge activity 

lasting < 3 sec (Figure 13B). These short lived after-discharges did not 

appear to reflect abnormal circuit activity as observed during 

epileptogenesis (Racine 1972; McNamara 1994; Bragin, Penttonen et al. 

1997). In fact, hippocampal after-discharges lasting more than ten 

seconds are indicative of seizure activity (Racine 1972).   

 Pulsed US produced a significant (P < 0.01) increase in spike 

frequency lasting 1.73 ± 0.12 seconds (Figure 13B). Natural activity 

patterns in the CA1 region of hippocampus exhibit gamma (40 - 100 Hz), 

sharp-wave (SPW) "ripple" (160 - 200 Hz), and other frequency-band 

oscillations reflecting specific behavioral states of an animal (Buzsaki 

1989; Buzsaki, Horvath et al. 1992; Bragin, Jando et al. 1995; Buzsaki 

1996). Sharp-wave ripples (≈ 20 msec oscillations at ≈ 200 Hz) in CA1 

result from the synchronized bursting of small populations of CA1 

pyramidal neurons (Buzsaki, Horvath et al. 1992; Ylinen, Bragin et al. 

1995) and have recently been shown to underlie memory storage in 

behaving rodents (Girardeau, Benchenane et al. 2009; Nakashiba, Buhl et 

al. 2009). On the other hand, the consequences of gamma oscillations in 

the CA1 region of the hippocampus are not as well understood, but are 

believed to stem from the intrinsic oscillatory properties of inhibitory 

interneurons (Bragin, Jando et al. 1995; Buzsaki 1996). By decomposing 

the frequency components of wideband (1 to 10,000 Hz) activity patterns 



  89 

evoked by pulsed US, we found all after-discharges contained both 

gamma oscillations and SWP ripple oscillations lasting < 3 sec (Figure 

13C). These data demonstrate that pulsed US can stimulate intact mouse 

hippocampus while evoking synchronous activity patterns and network 

oscillations; hallmark features of intrinsic hippocampal circuitry.  

 We naturally questioned whether these effects were accompanied 

by the regulation of activity-mediated cellular molecular signaling 

cascades in the hippocampus. Brain-derived neurotrophic factor (BDNF) is 

one of the most potent neuromodulators of hippocampal plasticity and its 

expression/secretion is known to be regulated by neuronal activity (Poo 

2001; Lessmann, Gottmann et al. 2003). We thus examined BDNF protein 

expression levels in the hippocampus following transcranscranial 

stimulation with pulsed US. Unilateral hippocampi of mice (n = 7) were 

targeted and stimulated with pulsed US (0.35 MHz, 50 cycles per pulse, 

1.5 kHz PRF, 500 pulses) having an ISPTA = 36.20 mW/cm2 every two 

seconds for 30 minutes. Following a 45 minute recovery period, mice were 

sacrificed and their brains removed, sectioned, and immunolabeled with 

antibodies against BDNF. We observed pulsed US induced a significant 

increase in the density of BDNF+ puncta in CA1 s.p. (contralateral control 

= 149.64 ± 11.49 BDNF+ puncta/7.5 x 10-2 mm2 from 0.61 mm2 CA1 

region/mouse versus US stim = 221.50 ± 8.75 BDNF+ puncta/7.5 x 10-2 

mm2 from 0.61 mm2 CA1region/mouse; T-test, P < 0.001; Figure 13D). 

Similar significant increases were observed in the CA3 s.p. region 
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(contralateral control = 206.20 ± 19.68 BDNF+ puncta/7.5 x 10-2 mm2 from 

0.61 mm2 CA3 region/mouse versus US stim = 324.82 ± 27.94 BDNF+ 

puncta/7.5 x 10-2 mm2 from 0.61 mm2 CA3 region/mouse; T-test, P < 

0.005; Figure 13D). These data demonstrate that pulsed US can be used 

to remotely stimulate neuronal activity in the intact mouse hippocampus. 

Posing captivating potential for broad applications in neuroscience, the 

increased synchronous activity and elevated BDNF expression patterns 

produced by pulsed US lend support to our hypothesis that transcranial 

US can be used to promote endogenous brain plasticity. 
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Figure 13. Transcranial stimulation of the intact mouse hippocampus with 
pulsed ultrasound. (A) Shown is an illustration of the geometrical 
configuration used for targeting the dorsolateral hippocampus with 
transcranial pulsed US while recording evoked electrophysiological 
responses in the dorsal hippocampus (left). A lesion illustrates the site of 
an electrophysiological recording location in the hippocampal CA1 s.p. 
region (right). (B) Raw (black) and average (cyan) hippocampal CA1 LFP 
recorded in response to 50 consecutive US stimulation trials (left). A 
psuedo-colored spike density plot illustrates the increase in CA1 s.p. 
spiking as a function of time in response to 50 consecutive pulsed US 
stimuli delivered at 0.1 Hz (right). (C) An individual recording trace of CA1 
s.p. extracellular activity in response to a pulsed US waveform is shown in 
its wideband (top), gamma (middle), and SWP (bottom) frequency bands. 
An expanded 250 msec region of the SWP trace (red) illustrates SWP 
"ripples" (also see Figure S5). (D) Confocal images illustrating BDNF 
(green) expression in the CA1 s.p. (top) and CA3 s.p. (bottom) regions of 
hippocampus from contralateral control (left) and stimulated hemispheres 
(right). Histograms (far-right) illustrate the significant increase in the 
density of BDNF+ puncta triggered by transcranial US stimulation for the 
CA1 s.p. (top) and CA3 s.p. (bottom) regions of hippocampus.   
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Discussion 

To date, previous studies detailing the effects of US on neuronal 

activity have fallen short of providing methods for its practical 

implementation in stimulating intact brain function. Prior studies examined 

the effects of US on neuronal activity by pre-sonicating nervous tissues 

with US before examining its consequence on electrically-evoked activity. 

These studies indeed revealed how US differentially affects the amplitude 

and duration of compound action potentials/field potentials evoked with 

traditional stimulating electrodes (Mihran, Barnes et al. 1990; Rinaldi, 

Jones et al. 1991; Bachtold, Rinaldi et al. 1998; Tsui, Wang et al. 2005). In 

other words, previous studies showed US is capable of modulating 

electrically evoked activity, but not that it alone could stimulate neuronal 

activity. We have provided the first clear evidence that transcranial pulsed 

US can stimulate intact brain circuits without requiring exogenous factors 

or surgery.  

 Due to temperature increases < 0.01 °C in response to US stimulus 

waveforms (Figure 11D), we propose a predominantly nonthermal 

(mechanical) mechanism(s) of action. The nonthermal actions of US are 

best understood in terms of cavitation – for example radiation force, 

acoustic streaming, shock waves, and strain (Dalecki 2004; Leighton 

2007; O'Brien 2007). Accordingly, we have proposed a continuum 

mechanics hypothesis of ultrasonic neuromodulation, where US produces 

fluid-mechanical effects on the cellular environments of neurons to 
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modulate their resting membrane potentials (Tyler 2010). The direct 

activation of ion channels by US may also represent a mechanism of 

action since many of the voltage-gated sodium, potassium, and calcium 

channels influencing neuronal excitability possess mechanically sensitive 

gating kinetics (Morris and Juranka 2007). Pulsed US could also produce 

ephaptic effects or generate spatially inhomogeneous electric fields, 

proposed to underlie aspects of synchronous activity (Jefferys and Haas 

1982; Anastassiou, Montgomery et al.). Clearly, further studies are 

required to dissect mechanisms underlying the ability of US to stimulate 

intact brain circuits. 

 Our observations also serve as preliminary evidence that pulsed 

US can be used to probe intrinsic characteristics of brain circuits. For 

example, US stimulation of motor cortex produced short bursts of activity 

(< 100 msec) and peripheral muscle contractions, whereas stimulation of 

the hippocampus with similar waveforms triggered characteristic rhythmic 

bursting (recurrent activity), which lasted 2 - 3 seconds. These 

observations lead us to question whether stimulation of a given brain 

region with US can mediate even broader circuit activation based on 

functional connectivity. Such abilities have been shown and discussed for 

other transcranial brain stimulation approaches like TMS (Huerta and 

Volpe 2009). Future studies should be designed to study the influence of 

US on activity in corticothalamic, corticocortical, and thalamocorctial 

pathways as we have done here for corticospinal circuits. Similar to widely 
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recognized observations using other cortical stimulation methods (Angel 

and Gratton 1982; Goss-Sampson and Kriss 1991), we found the success 

of brain activation with transcranial pulsed US was dependent on the 

plane of anesthesia. When mice were in moderate to light anesthesia 

planes (mild responsiveness to tail pinch), we found US-evoked activity 

was highly consistent across multiple repeated trials as described above.  

 Although our observations indicate pulsed US provides a safe 

mode of brain stimulation in mice (Figure 12), it should not be inferred the 

same is true for other animal species. Safety studies in other animals are 

required for any such conclusions to be drawn. Since we suspect standing 

waves may inadvertently influence the activity of some brain regions under 

certain conditions, future studies should attend to the influence of such 

reflections on brain tissue regardless of the focusing method implemented. 

This is particularly true for cases where high-intensity ultrasound may be 

used to treat brain tissues as discussed below. The less direct safety 

implications of our study also need to be considered. Diagnostic fetal US 

has been shown to disrupt neuronal migration in developing rat fetal 

brains (Ang, Gluncic et al. 2006). Those effects could be due to the 

influence of US on neuronal activity or growth factor expression patterns in 

developing fetal brains. Having dire ramifications on the global use of 

diagnostic fetal ultrasound, investigations into such possibilities are 

warranted.    
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 Using a method of transcranial US brain stimulation with an 

acoustic collimating tube (d = 2 mm), we estimated the volume of cortical 

activation to be ~ 3 mm3 as indicated by c-fos activity (Figures 11). As 

previously discussed however, this activated brain volume may have been 

restricted by anatomical features along the dorsal-ventral US transmission 

path we implemented (for example the corpus callosum restricting the 

depth of activation to the cortex) and needs to be further explored before 

more accurate conclusions regarding the axial resolution can be drawn. 

The 1.5 - 2.0 mm lateral area of activation we observed represents a more 

reliable measure and is approximately five times better than the ≈ 1 cm 

lateral spatial resolution offered by TMS (Barker 1999). Due to the 

millimeter spatial resolutions conferred by US, it may be possible to use 

structured US fields to drive patterned activation in sparsely distributed 

brain circuits. Similarly, focusing with acoustic metamaterials (having a 

negative refractive index) enables sub-diffraction spatial resolutions to be 

achieved for US (Zhang, Yin et al. 2009). Based on those findings, it is not 

unreasonable to expect that brain regions < 1.0 mm may be accurately 

targeted for neurostimulation using 0.5 MHz US. Such spatial scales 

would indeed make transcranial US for brain stimulation amenable to a 

variety of research and clinical applications. With respect to the spatial 

resolutions of brain stimulation approaches however, optogenetic 

approaches still reign superior when micron scale resolutions are required 

- for example in the fine functional mapping of intact mouse brain circuits 
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(Ayling, Harrison et al. 2009; Hira, Honkura et al. 2009) or in the study of 

single-cell/single-synapse physiology (Zhang, Aravanis et al. 2007; Zhang, 

Holbro et al. 2008). 

 Focusing of US through skull bones, including those of humans, 

can be achieved using transducers arranged in phased arrays (Hynynen, 

Clement et al. 2004; Hynynen, McDannold et al. 2006; Martin, Jeanmonod 

et al. 2009). A recent clinical study reported using transcranial MRI-guided 

high-intensity focused ultrasound (0.65 MHz, > 1000 W/cm2) to perform 

noninvasive thalamotomies (d = 4.0 mm) for the treatment of chronic 

neuropathic pain by focusing US through the intact human skull to deep 

thalamic nuclei using phased arrays (Martin, Jeanmonod et al. 2009). 

These abilities to focus US through the intact skull into the deep-brain 

regions certainly raise the possibility of using pulsed US in the noninvasive 

stimulation of human brain circuits. However, cautiously conducted 

preclinical safety and efficacy studies are required across independent 

groups before it can be determined if pulsed US might be useful in such 

an application. 

 We recognize several issues need further investigation before the 

potential of transcranial US for brain stimulation can be realized. However, 

it has not escaped our attention that transcranial pulsed US might serve 

as a foundation for radical new approaches to the study of brain 

function/dysfunction. For instance, since US is readily compatible with 

magnetic resonance imaging (MRI) it is feasible that pulsed US could be 
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used for brain circuit stimulation during simultaneous MRI imaging in the 

functional brain mapping of intact, normal or diseased brains. It is 

conceivable that pulsed US could be used to induce forms of endogenous 

brain plasticity as shown with TMS (Pascual-Leone, Valls-Sole et al. 

1994). In such an embodiment, pulsed US might drive specific brain 

activity patterns shown to underlie certain cognitive processes like 

memory trace formation (Girardeau, Benchenane et al. 2009; Nakashiba, 

Buhl et al. 2009). This particularly intriguing possibility is supported by our 

observations in mice that transcranial US can promote sharp-wave ripple 

oscillations (Figure 13C) and stimulate the activity of endogenous BDNF 

(Figure 13D), an important regulator of brain plasticity and hippocampal-

dependent memory consolidation (Tyler, Alonso et al. 2002). Based on 

this study demonstrating that trancranial pulsed US is capable of 

stimulating intact brain circuits, one can begin to imagine a vast number of 

applications where this method might enable us to better understand and 

manipulate brain function. 
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Chapter 4 

ULTRASONIC NEUROMODULATION: BRAIN STIMULATION WITH 

TRANSCRANIAL ULTRASOUND 

 

 Brain stimulation methods are indispensable to the study of brain 

function. They have also proven effective for treating some neurological 

disorders. Historically used for medical imaging, ultrasound has recently 

been shown capable of noninvasively stimulating brain activity. Here we 

first provide some general protocols for the stimulation of intact mouse 

brain circuits using transcranial ultrasound. Using a traditional mouse 

model of epilepsy, we then describe protocols for using transcranial 

ultrasound to disrupt electrographic seizure activity associated with 

epilepsy. The advantages of ultrasound for brain stimulation are that it 

does not require surgery or genetic alteration while conferring spatial 

resolutions superior to other noninvasive methods such as transcranial 

magnetic stimulation. Following an initial setup, ultrasonic 

neuromodulation can be implemented in less than one hour. Using the 

general protocols we describe, ultrasonic neuromodulation can be readily 

adapted to support a broad range of studies on brain circuit function and 

dysfunction.   
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Introduction 

 The first description of intact brain circuit stimulation dates back to 

the late 19th century (Newall and Bliss 1973). Since then, methods and 

applications of brain stimulation have been undergoing a continuous 

evolution. Today, state-of-the-art clinical approaches such as deep-brain 

stimulation (DBS) are effective for treating numerous neurological and 

psychiatric disorders, but they require surgically invasive procedures  

(Bliss 1973; Newall, Bliss et al. 1973; Randhawa, Staib et al. 1973). 

Transcranial direct current stimulation (tDCS) and transcranial magnetic 

stimulation (TMS) represent noninvasive brain stimulation approaches, 

which have also demonstrated therapeutic efficacy (Barker 1999; Thuault, 

Brown et al. 2005; Wagner, Valero-Cabre et al. 2007). Due to the spatial 

resolutions (≥ 1 cm) they presently confer however, applications for tDCS 

and TMS remain somewhat limited(Barker 1999; Wagner, Valero-Cabre et 

al. 2007). Recent advances in molecular biology have enabled the use of 

genetically-encoded light-activated sensor and actuator proteins in the 

study and control of brain circuits ("optogenetics "(Staib, Randhawa et al. 

1973). Optogenetic probes such as channelrhodopsin-2 (ChR2) offer an 

unmatched spatial resolution and are proving themselves most valuable 

tools in the functional dissection and characterization of brain function and 

dysfunction (Zhang, Gradinaru et al. ; Purpura and McMurtry ; Gartside ; 

Gartside ; Adamantidis, Zhang et al. 2007; Zhang, Aravanis et al. 2007).   
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 Ultrasound (US) is widely recognized as a medical imaging tool. 

More than eighty years ago however, US was first shown to be capable of 

influencing neural activity in frog and turtle neuromuscular preparations 

(Harvey 1929). Since then, US has been shown capable of enhancing and 

suppressing both electrically-evoked and sensory-driven activity in a 

variety of experimental preparations (Fry, Ades et al. 1958; Young and 

Henneman 1961; Gavrilov, Gersuni et al. 1976; Mihran, Barnes et al. 

1990; Rinaldi, Jones et al. 1991; Bachtold, Rinaldi et al. 1998). We 

recently reported that US can directly stimulate action potentials, voltage-

gated Ca2+ transients, and synaptic transmission in hippocampal slice 

cultures (Tyler, Tufail et al. 2008). Subsequently we have shown that 

transcranial pulsed ultrasound (TPU) can noninvasively and directly 

stimulate brain circuit activity in intact mice (Tufail, Matyushov et al. 2010). 

Below we provide protocols using TPU for intact mouse brain stimulation. 

The major advantages of TPU for brain stimulation are that it offers a 

mesoscopic spatial resolution of a few millimeters while remaining 

completely noninvasive.  

 To convey the utility of ultrasonic neuromodulation (UNMOD), we 

first illustrate a protocol for using TPU in the stimulation of intact mouse 

cortex (Fig. 16). We then provide a protocol using UNMOD to attenuate 

pharmacologically-induced seizure activity in a mouse model of epilepsy 

(Fig. 17d). These specific UNMOD protocols have been provided such 
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that others may more easily implement and expand upon potential 

applications of US for brain stimulation. 

 

Development of the Protocol 

What is ultrasound? 

 Ultrasound (US) is an acoustic wave (mechanical pressure wave) 

occurring at frequencies exceeding the range of human hearing (> 20 kHz) 

(Leighton 2007). US is broadly utilized in applications such as medical 

imaging, nondestructive materials testing (NDT), ultrasonic cleaning, 

chemical manufacturing, food processing, physiotherapy, personal 

hygiene, sonar, and communications (Leighton 2007). For diagnostic 

medical imaging, US has a frequency range from about 1 to 15 MHz, while 

therapeutic applications typically employ a frequency of about 1 MHz 

(O'Brien 2007). US can be transmitted as pulsed or continuous waves and 

can produce thermal and/or non-thermal (mechanical) effects on biological 

tissues (Dinno, Dyson et al. 1989; Dalecki 2004; O'Brien 2007; ter Haar 

2007). Therapeutic US can be classified as low-power or high-power 

depending on its acoustic intensity level (ter Haar 2007). The thermal 

ablation of tissue is conducted with high-intensity US at power levels 

usually exceeding 1000 W/cm2, while therapeutic effects mediated by non-

thermal actions of US can occur at power levels < 500 mW/cm2  (Dinno, Dyson 

et al. 1989; Dalecki 2004; O'Brien 2007; ter Haar 2007). To gain additional insight into the 
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biophysics of US, the reader is referred to recent reviews on the topic 

(Dalecki 2004; O'Brien 2007; ter Haar 2007). 

 

Ultrasound for the modulation of brain activity 

 Neuroscience relies almost exclusively on electrical-, magnetic-, 

and photonic-based approaches for modulating neural activity. In other 

words, brain stimulation methods are grossly dominated by methods 

employing electromagnetic radiation. Since all presently employed 

electromagnetic methods have some limitation, in particular their 

invasiveness or low spatial resolution, mechanical energy sources such as 

US should be more actively investigated for their ability to modulate brain 

circuit function. Further encouraging this idea, US has already shown 

promise across a range of applications in neuroscience. Such applications 

include the production of brain lesions, the treatment of movement 

disorders and pain in humans, differentially evoking peripheral 

somatosensations in humans, and stimulating intact brain circuits in mice 

(Fry 1958; Fry 1968; Bliss and Bates 1973; Gavrilov, Tsirulnikov et al. 

1996; Hynynen and Jolesz 1998; Hynynen and Clement 2007; Martin, 

Jeanmonod et al. 2009; Tufail, Matyushov et al. 2010).  

In 1929, Edmund Newton Harvey first reported US was capable of 

exciting nerve and muscle isolated from turtles and frogs (Harvey 1929). 

Approximately thirty years later, William Fry and colleagues showed that 

US transmitted to the lateral geniculate nucleus of craniotomized cats 
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could reversibly suppress light-evoked potentials recorded in visual cortex 

(Fry, Ades et al. 1958). Since those initial studies, US has been shown 

capable of differentially enhancing or suppressing neuronal activity in a 

variety of experimental preparations across a wide range of acoustic 

frequencies, intensities, and modes of transmission (Table 1) (Tyler 2010). 

Until recently however, US had only been shown to modulate the 

amplitude, duration, and/or conduction velocity of electrically-evoked or 

sensory-driven neuronal activity. Further opening the potential utility of 

using US for neuromodulation, we recently reported US itself can directly 

trigger action potentials and synaptic transmission in brain slices (Tyler, 

Tufail et al. 2008), as well as in cranium-intact mice (Tufail, Matyushov et 

al. 2010). Based on our previous in vivo studies designed to investigate 

the influence of US on mouse brain circuits (Tufail, Matyushov et al. 

2010), the protocols provided below describe how to directly stimulate 

brain activity using transcranial US.  

 

Comparison with other methods 

 In terms of spatial resolution, genetically-mediated neurostimulation 

methods reign superior to all other brain stimulation methods. By 

transducing the expression of exogenous light-activated ion channels or 

transporters in neurons, optogenetic methods confer the ability to 

stimulate and/or inhibit individual cells in brain circuits (Staib, Randhawa 

et al. 1973; Zhang, Aravanis et al. 2007; Zhang, Wang et al. 2007). For 
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optogenetic brain stimulation approaches, the functional resolution limits 

are determined by the location and density of protein expression rather 

than the diffraction limits of electromagnetic radiation or light. Using an 

analogous convention to overcome the diffraction limits of magnetic-field 

stimulation, temperature-sensitive transient receptor potential (TRP) V1 

ion channels and magnetic-field heating have been recently employed in 

the development of "magnetogenetics" for neurostimulation (Bliss 1973; 

Bliss, Milam et al. 1973). Magnetic-field heating of manganese ferrite 

nanoparticles targeted to neuronal membranes expressing TRPV1 

channels can be used to stimulate individual neurons (Bliss 1973). Thus, 

the targeted expression of electromagnetic-responsive actuator proteins 

enables genetic-based neurostimulation approaches to confer single-cell 

spatial resolutions. The major weakness of neurostimulation methods 

relying on exogenous actuator proteins is that they inherently require 

genetic modification, which can present its own set of obstacles and 

complicate implementation.  

 Evoking neuronal activity using conventional electrodes represents, 

by far, the most widely implemented brain stimulation approach (Newall, 

Bliss et al. 1973; El Bahh, Cao et al. 2002). Several notable studies have 

addressed the spatial resolution characteristics of stimulating brain circuits 

with microelectrodes. The general consensus is that a sparse population 

of nonspecific cells and cellular processes are activated within a current 

density volume generated by an electrode. The diameter of a current 
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density volume generated (the effective spatial resolution) varies from 

several microns to several millimeters depending on the electrode size, 

electrode placement, and stimulus amplitude, duration, and frequency 

(Bliss 1973; Bliss and Johnson 1973; Holgate, Wheeler et al. 1973; Reed 

and Bliss 1973). Similarly, there is a high degree of variability regarding 

the numbers and types of cells stimulated within any given current volume. 

In the study and treatment of brain circuits, basic scientists and clinicians 

have successfully accommodated any lack of spatial specificity conferred 

by stimulating electrodes for more than a century however. The primary 

disadvantage of using electrodes for intact brain circuit stimulation is that 

they require direct contact with neural tissue and necessitate surgical 

procedures, which can trigger deleterious processes such as 

inflammation, bleeding, cell-death, and gliosis (Bliss 1973). Thus, less 

invasive brain stimulation procedures are often desirable.  

 Although declining in popularity for various reasons, 

electroconvulsive therapy (ECT) is a classic brain stimulation method, 

which does not require surgery and has a long history of use in treating 

psychiatric disorders (Ho, Beck-Sickinger et al. 2000). Today, the most 

recognizable and broadly accepted noninvasive brain stimulation methods 

are transcranial direct current stimulation (tDCS) and transcranial 

magnetic stimulation (TMS) (Barker 1999; El Bahh, Balosso et al. 2005; 

Thuault, Brown et al. 2005; Wagner, Valero-Cabre et al. 2007). These 

noninvasive brain stimulation methods can be used to nonspecifically 
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activate cells in tissue volumes having diameters of 1 cm or more by 

transmitting electrical currents (tDCS) or magnetic energy (TMS) through 

the skull into the brain (Barker 1999; Wagner, Valero-Cabre et al. 2007). 

While the spatial resolutions for TMS and tDCS are considerably worse 

than those for microelectrodes, TMS and tDCS do possess a major 

advantage - they do not require surgery. Using acoustic pressure rather 

than light, electrical currents, or magnetic radiation, we recently showed 

transcranial pulsed ultrasound (TPU) can functionally stimulate mouse 

brain circuits without requiring surgery or genetic modification (Tufail, 

Matyushov et al. 2010). We found TPU has a spatial resolution for brain 

stimulation of ≈ 3 mm (Tufail, Matyushov et al. 2010). Thus, the resolution 

limits of TPU for brain stimulation presently reside somewhere between 

those achievable with microelectrodes and TMS. Using hyperlenses or 

acoustic metamaterials it should however be possible to improve upon the 

diffraction limited spatial resolution of US(Creutzfeldt, Fromm et al. 1962; 

Li, Fok et al. 2009; Zhang, Yin et al. 2009). 

 With respect to the spatiotemporal patterns of brain activity evoked 

by US, we have shown UNMOD can be used to stimulate action potentials 

and synaptic transmission in a manner similar to conventional electrodes 

(Tyler, Tufail et al. 2008; Tufail, Matyushov et al. 2010). By performing 

whole-cell current clamp recordings of CA1 pyramidal neurons in 

hippocampal slice cultures, we first showed US tone bursts can stimulate 

action potentials (Tyler, Tufail et al. 2008). Using optical recording 
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methods, we found US can trigger voltage-gated sodium and calcium 

transients in neurons, as well as evoke synaptic transmission in 

hippocampal slice cultures (Tyler, Tufail et al. 2008). Interestingly, the 

kinetics of US-triggered synaptic vesicle exo- and endocytosis reported by 

synaptopHluorin in hippocampal slices were similar to those obtained 

using electrical stimulation (Tyler, Tufail et al. 2008). We also noticed 

sparse populations of neurons and astrocytes within an US pressure field 

are activated (Tyler, Tufail et al. 2008). These data suggest US activates a 

nonspecific population of cells within an acoustic pressure field. Such 

nonspecific activation is a property shared by brain stimulation 

approaches using electrodes, TMS, or tDCS. In vivo, we have observed 

transcranial pulsed US can be used to stimulate TTX-sensitive brain circuit 

activity in the motor cortex and hippocampus of intact mice (Tufail, 

Matyushov et al. 2010). Compared to evoked responses obtained using 

ChR2 and electrical stimulation, the response latencies of US-evoked 

activity tend to be slightly slower (Ayling, Harrison et al. 2009; Tufail, 

Matyushov et al. 2010). We presume these kinetic differences in reaching 

activation thresholds most likely stem from the different energy modalities 

and mechanism(s) of action underlying each method. In fact, the time 

course for neuronal activation by US (tens of milliseconds) may provide 

clues to potential mechanisms of action since they are similar to the 

kinetics described for pore formation triggered by lipid phase transitions 
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thought to underlie excitatory sound wave propagation in membranes 

including neuronal ones (Heimburg 2010).            

 While the exact mechanisms of action underlying the ability of US 

to stimulate brain activity remain obscure, some testable hypotheses are 

beginning to emerge. Due to the physical make-up of brain tissue 

including non-Newtonian (viscoelastic lipid bilayers) and Newtonian fluids 

(cerebrospinal fluid), acoustic pressures generated by US and transmitted 

through the skull will impart fluid-mechanical consequences on the 

biophysical processes underlying physiological excitability. Thus, we have 

proposed a continuum mechanics hypothesis of ultrasonic 

neuromodulation, where US produces such fluid-mechanical actions 

converging, in part, upon the resting membrane potential of neurons (Tyler 

2010). In related conventions, the time varying mechanical pressures 

exerted by US on the neuronal membrane may directly activate 

mechanosensitive voltage-gated ion channels or may exert even more 

direct consequences on lipid bilayer permeability. For instance, many 

voltage-gated sodium, potassium, and calcium channels influencing 

neuronal excitability are known to possess mechanically sensitive gating 

kinetics (Morris and Juranka 2007). Here, one might suspect pressures 

exerted by US on the neuronal membrane can lead to the activation of 

mechanically sensitive voltage-gated ion channels without requiring 

macroscopic thermal fluctuations. In partial support of such a hypothesis, 

we have observed that short duration US pulses transmitted into brain 
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only produce temperature increases of about 0.01° C, but are capable of 

triggering TTX-sensitive neuronal activity (Tufail, Matyushov et al. 2010). 

To further evaluate such a direct mechanical gating hypothesis, we are 

presently developing an approach for stimulating cells using bacterial 

mechanosensitive channels and mammalian TRP channels (unpublished 

observations). Perhaps conferring molecular scale control of endogenous 

proteins, these studies may also reveal if individual channel types can be 

targeted using differential US waveforms, which possess distinct acoustic 

frequencies and pressure amplitudes as we have posited (Tyler 2010).   

 Thermodynamic investigations of lipid phase transitions have 

shown that mechanical waves can be adiabatically propagated through 

lipid monolayers and bilayers, as well as neuronal membranes to influence 

fluidity and excitability (Heimburg and Jackson 2005; Griesbauer, Wixforth 

et al. 2009; Heimburg 2010). Interestingly, such sound wave propagation 

in pure lipid membranes has been estimated to produce depolarizing 

potentials ranging from 1 to 50 mV with negligible (≈ 0.01° K) heat 

generation due to differences in the viscous and thermal penetration depth 

length scales of monolayers and their surrounding aqueous 

environments(Griesbauer, Wixforth et al. 2009). Without producing 

significant heating as described above and elsewhere (Tufail, Matyushov 

et al. 2010), US may initiate mechanical (sound) waves in neuronal 

membranes thereby depolarizing them sufficiently to activate voltage-

gated ion channels and trigger action potentials. This idea at least 
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represents another testable hypothesis for how US may mechanically 

(nonthermally) stimulate neuronal activity. With respect to thermal effects, 

it should be noted that high-intensity US can indeed heat the intact brain 

to produce desirable effects, such as tissue ablation(Hynynen, McDannold 

et al. 2006; Martin, Jeanmonod et al. 2009). Such US-mediated thermal 

effects have also been shown effective for modulating neuronal 

activity(Tsui, Wang et al. 2005). Here, we are merely proposing that it is 

not necessary to generate macroscopic heating to achieve a stimulatory 

effect on intact brain circuits with US(Tufail, Matyushov et al. 2010; Tyler 

2010). Further studies will be required to fully explore the many potential 

mechanisms underlying the ability of US to stimulate neuronal activity in 

the intact brain. Even without knowing the exact mechanisms of action 

however, US for brain stimulation represents a powerful new tool for 

neuroscience. 

By no means is ultrasonic stimulation of brain circuits without 

limitation. One of the major concerns regarding the use of US for 

neuromodulation is safety. US is capable of destroying biological tissues, 

so the potential for biohazardous effects must be taken into careful 

consideration. Many of the biohazards associated with US stem from its 

ability to induce cavitational damage in tissues. In soft tissues including 

brain, inertial cavitation rarely induces damage at pressures < 40 MPa 

(except for in lung, intestinal, and cardiac tissues in which damage from 

inertial cavitation can occur at pressures ~ 2 MPa due to the presence 
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large gas bodies)(Dalecki 2004). At peak rarefactional pressures < 1 MPa, 

US has been found effective for acutely (tens of hours up to spaced trials 

repeated across weeks) stimulating brain circuits without producing 

damage in mice as assessed with cellular, histological, ultrastructural, and 

behavioral methods(Tyler, Tufail et al. 2008; Tufail, Matyushov et al. 

2010). Further, the low-intensities of US which have been shown effective 

for stimulating neuronal activity in vitro(Tyler, Tufail et al. 2008) and in 

vivo(Velling and Shklyaruk 1988; Tufail, Matyushov et al. 2010) are below 

the US output limits established by the United States Food and Drug 

Administration for diagnostic imaging applications. Several other issues 

need to be addressed before the safety of UNMOD can be fully 

ascertained however. For example, appropriate safety studies should be 

carried out in animal models other than mice. In addition, the potential for 

damage arising from repeated, long-term US exposure across various 

stages of brain development (neonatal to mature adult) should too be 

examined. Repeated US exposure has indeed been shown to disrupt 

neuronal migration in developing mouse embryos(Ang, Gluncic et al. 

2006). Despite our safety observations of use in adult mice(Tufail, 

Matyushov et al. 2010), the present lack of knowledge regarding the 

safety of US for brain stimulation represents one of its primary 

weaknesses. Thus, carefully designed safety studies are required before 

the possibility of using UNMOD for various purposes can be fully declared.  
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Experimental Design and Considerations 

Choice of UNMOD stimulus waveform parameters 

 The acoustic frequency and intensity characteristics of an UNMOD 

stimulus waveform underlie its core effect on brain activity. A broad range 

of acoustic frequencies, intensities, and transmission modes have been 

used to variably mediate neuronal excitation and inhibition (Table 1). The 

acoustic frequencies used to manipulate neuronal activity range from 0.25 

MHz(Tufail, Matyushov et al. 2010) to 7.0 MHz(Mihran, Barnes et al. 

1990). While lower frequencies of US have longer wavelengths and thus 

lower spatial resolutions compared to higher frequencies, we recommend 

the use of acoustic frequencies < 1 MHz for stimulating intact brain circuits 

with US. This is primarily because US frequencies < 0.7 MHz represent 

the range where optimal gains between transcranial transmission and 

brain absorption of US have been observed(Hayner and Hynynen 2001; 

White, Clement et al. 2006; White, Clement et al. 2006). In mice, we have 

found the optimal waveforms for evoking intact brain circuit activity are 

composed of acoustic frequencies ranging between 0.25 and 0.50 

MHz(Tufail, Matyushov et al. 2010). Thus, we recommend implementing 

transducers having a center frequency between 0.2 and 0.7 MHz for 

UNMOD. It is also important to use immersion-type (water-matched) 

transducers coupled to the skin with US gel to minimize acoustic 

impedance mismatches when transmitting acoustic pressure waveforms 

from a transducer into the brain.  
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 In addition to acoustic frequency and transducer variables, several 

waveform characteristics such as mode of transmission (continuous wave 

versus pulsed wave) and pulse profile (cycles per pulse, c/p; pulse 

repetition frequency, PRF; and number of pulses, np) affect the intensity 

characteristics and outcome on brain activity of an UNMOD stimulus. 

Therefore, choosing an appropriate stimulus waveform is more complex 

than simply choosing a US frequency as described above. In our previous 

in vitro studies(Tyler, Tufail et al. 2008), we implemented stimulus 

waveforms composed of US pulses having a high pulse intensity integral 

(PII; ≈ 4.0 J/cm2), which were repeated at slow PRFs (≈ 50 Hz) for long 

durations (≈ 5 sec). When attempting to stimulate brain activity in vivo, we 

first tried those US waveforms we found to be effective for in vitro 

stimulation, but found they were not very effective. Through further 

explorations, we discovered stimulus waveforms constructed of US pulses 

having a low PII (< 0.1 mJ/cm2), which are repeated at high PRFs (1.0 – 

3.0 kHz) for short durations (< 0.4 sec) were most effective for stimulating 

normal brain circuit activity in vivo(Tufail, Matyushov et al. 2010). Despite 

the two different US pulsing strategies (high PII with a low PRF for in vitro 

stimulation versus a low PII with a high PRF for in vivo), both approaches 

indicate the optimal US waveforms for triggering brain activity have 

temporal-average intensity values between 30 and 300 mW/cm2.  

 In addition to the pulsing strategies described above, US 

transmitted in a continuous wave (CW) mode is also capable of 
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influencing brain activity. The effects of CW US on neuronal activity are 

radically different than those produced by pulsed US. At least some of 

these differences may be attributed to additional thermal effects, which 

long duration US pulses or CW US will produce on brain tissue compared 

to brief pulses of US. As illustrated, short bursts of pulsed US can 

stimulate brief (tens of milliseconds) periods of neuronal activity (Fig. 

16a,d), whereas US stimuli delivered in CW-mode for 5 seconds to normal 

mice can induce seizure activity lasting > 20 seconds (Fig. 16a), but can 

disrupt kainic acid-induced electrographic seizure activity in epileptic mice 

(Fig. 16d). Interestingly, repeated stimulation with pulsed US can also 

attenuate seizure activity in epileptic mice indicating UNMOD may be 

capable of providing a general interference source for disrupting aberrant 

brain activity. Collectively, these observations for UNMOD are similar to 

those made using electromagnetic-based brain stimulation approaches 

where the influence of stimuli on brain activity patterns depend on stimulus 

amplitude, duration, and temporal frequency, as well as the baseline state 

of the brain activity when stimulation occurs. The implementation of any 

particular UNMOD stimulus waveform or transmission approach will 

largely depend on the outcome sought by the operator. Below, we 

describe protocols for implementing both pulsed and CW US in stimulating 

brain activity such that individual investigators may make more informed 

decisions regarding the use of UNMOD in their specific applications. 

US focusing strategies and brain circuit targeting 
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 In the late 1950's, William Fry and colleagues first began showing 

that humans suffering from Parkinson's disease and other movement 

disorders could be treated by either transiently or permanently lesioning 

deep-brain circuits with high-intensity US(Fry 1958; Bliss and Bates 1973). 

Although these early studies showed promise for the use of US in treating 

some neurological diseases, they were discounted by the medical 

community because they required major craniotomies - until recently. The 

skull indeed represents a major obstacle when considering the 

transmission of US into the intact brain. The skull reflects, diffracts, and 

absorbs acoustic energy fields during transcranial US transmission. The 

acoustic impedance mismatches between the skin-skull and skull-brain 

interfaces present additional challenges for transmitting and focusing US 

through the skull into the intact brain. One of the most important variables 

for delivering transcranial US to the intact brain is the acoustic frequency. 

Based both on modeling data and empirical measurements using human 

skulls, the optimal gains for transcranial transmission and brain absorption 

of US occur at frequencies < 0.70 MHz(Hayner and Hynynen 2001; White, 

Clement et al. 2006; White, Clement et al. 2006). Although we have 

primarily implemented rodent models in our studies, we have developed 

ultrasonic methods of stimulating brain activity using the above range such 

that frequency-dependent effects may not be such a concern when scaling 

UNMOD to larger organisms with thicker skulls.  
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 There are several methods for delivering US across the skin and 

skull in order to achieve brain stimulation. The most easily implemented 

method described in the protocols below is to use unfocused US for 

stimulating broad, nonspecific brain regions (Fig. 14r, 17b). This 

nonspecific brain stimulation approach with single element planar US 

transducers can be useful depending on the desired outcome. For 

example, we have found unfocused US transmitted from planar 

transducers is quite valuable for rapidly terminating seizure activity in mice 

suffering from SE. When using water-matched transducers, the 

transmission of US from the transducer into the brain will only occur at 

points where acoustic gel couples the transducer to the head. Thus, 

coupling the transducer to the head through small gel contact points can 

represent one physical method for transmitting US into restricted brain 

regions. One should be cautioned that the entire face of the transducer 

should be covered with acoustic gel (Fig. 15p) to prevent transducer face 

heating and damage. The area of gel coupling the transducer to the head 

can then be sculpted to restrict the area of transmission into the brain. 

While calculating acoustic intensities transmitted into the brain with this 

method can be difficult due to nonlinear variations in the acoustic pressure 

fields generated, it does provide an effective approach for stimulating 

targeted brain regions. We most routinely restrict the lateral extent of the 

spatial envelope of US transmitted into the brain by using acoustic 

collimators (Fig. 15s, 15t, 16c). The use of acoustic collimators can easily 
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facilitate the targeted stimulation of brain regions with US as previously 

described (Tufail, Matyushov et al. 2010), as well as outlined in the 

protocols below. Single element focused transducers (Fig. 14c, fourth 

transducer from left) can also be used for delivering focused acoustic 

pressure fields to brains. Such single element focused transducers can be 

manufactured having various focal lengths depending on the physical size 

and center frequency of the transducer.    

 The most accurate yet complicated US focusing method involves 

the use of multiple transducers operating in a phased array. US can be 

focused through the skulls of  

rats, monkeys, pigs, rabbits, and humans to targeted brain regions using 

phased arrays. Focusing with phased arrays can be further combined with 

magnetic resonance imaging (MRI) to enhance the spatial precision of US 

localization in a technique known as MRI-guided focused ultrasound 

(MRgFUS)(Hynynen and Jolesz 1998; Clement and Hynynen 2002; 

Hynynen, Clement et al. 2004; Jolesz, Hynynen et al. 2005; Hynynen, 

McDannold et al. 2006). The MRgFUS technique typically employs high-

intensity focused US (HIFU) since it relies on tissue heating. In MRgFUS 

procedures, wave equations are applied to predict the scattering, 

reflection, diffraction, and diffraction of US based on skull bone density 

and other acoustic impedance mismatch layers. The timing and phase of 

US emitted from multiple transducers is then modulated to control the 

location of US beams in intact brain tissue. To maximize targeting 
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accuracy, MRI-thermometry provides the operator with an anatomical 

readout of US-induced brain heating while continuously providing 

feedback of US beam location and focusing accuracy through a closed-

loop system. This MRgFUS procedure was recently used in a phase I 

clinical trial to perform noninvasive thalamotomies ≈ 4 mm in patients 

suffering from chronic neuropathic pain(Martin, Jeanmonod et al. 2009).  

 While it is not yet known if MRgFUS can be used for 

neuromodulation, we posit that modifications of the HIFU waveforms used 

for ablation procedures will permit the use of MRgFUS for brain 

stimulation. This seems particularly feasible since the acoustic frequencies 

used for ablation and transcranial brain stimulation both reside between 

0.35 and 0.65 MHz. Further, although the spatial resolution for focusing 

US is currently limited by the wavelength employed in US waveforms (a 

function of acoustic frequency), recent advances in focusing US with 

acoustic metamaterials and hyperlenses should permit US to gain spatial 

resolutions below the diffraction limits and possibly down into the 

submillimeter range(Creutzfeldt, Fromm et al. 1962; Li, Fok et al. 2009; 

Zhang, Yin et al. 2009). Multifocusing approaches have also recently been 

described for conducting ultrasonic stimulation of distributed brain 

circuits(Hertzberg, Naor et al.). Thus, the simple protocols we describe 

below for stimulating brain circuits with US should only be recognized as 

starting point for this new neuromodulation tool. We suspect globally 
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increased research into the use of US for brain stimulation will begin to 

reveal more specific focusing and targeting approaches in the near future.   

 

Choice of experimental models for implementing UNMOD protocols 

 Observed initially in dogs(Newall and Bliss 1973) then in a 

human(Holtzheimer and Mayberg 2011), the first demonstrations of 

electrical brain stimulation showed stimuli delivered to the cortex evoked 

body movements. In the first human case, it was further reported that 

electrical brain stimulation could elicit seizure activity(Holtzheimer and 

Mayberg 2011). TMS was also first shown to stimulate intact brain circuit 

activity by triggering body movements during its application over human 

motor cortex(Klapstein and Colmers 1997). Likewise, one of the most 

common optogenetic probes was first shown capable of stimulating intact 

mammalian brain circuits by evoking locomotive behaviors in rodents 

while light was delivered to pyramidal neurons expressing ChR2 in the 

motor cortex(Aravanis, Wang et al. 2007). Following tradition, we first 

showed TPU can stimulate intact brain circuit activity and movement 

behaviors using mouse motor cortex as an experimental platform(Tufail, 

Matyushov et al. 2010). We extended these primary observations by 

showing TPU can also drive spiking and synchronous oscillations in the 

intact mouse hippocampus(Tufail, Matyushov et al. 2010). Based on those 

observations, we believe the UNMOD protocols provided below will be 

useful to studies of brain circuit function and plasticity.  
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 In diseased circuits, brain stimulation has been used to study, map, 

and treat epileptic seizure activity since the late 19th century(El Bahh, Cao 

et al. 2002). Penfield and Jasper (1954) provided the earliest accounts of 

electrically stimulating the cortex in response to spontaneously occurring 

epileptiform activity in humans(Utz, Dimova et al. 2010). Since then, a 

large number of research studies and clinical trials have convincingly 

shown that various brain stimulation methods are effective for treating 

medically refractory epilepsy in human patients, as well as in animal 

models thereof(Thuault, Brown et al. 2005; Boon, Vonck et al. 2007; 

Driver, Blankenburg et al. 2009; Hamani, Andrade et al. 2009; Figner, 

Knoch et al. 2010; Young, Camprodon et al. 2010). Thus we chose to 

implement a common model of status epilepticus (SE) in order to highlight 

a translational application of UNMOD. Below we describe how to 

implement UNMOD for attenuating kainic acid-induced seizure activity in 

mice (Fig. 17d). The added advantage of UNMOD interventions in 

neurocritical emergencies like SE, are that it can be rapidly applied with 

little preparation.  

 The protocols described below should further encourage studies 

exploring UNMOD use in neurological disease models where brain 

stimulation has demonstrated therapeutic promise. As similar to choosing 

models for using UNMOD in studies of normal brain function and plasticity, 

the choices for which disease model(s) to use and how to implement 

UNMOD procedures remain with the investigator. The noninvasive nature 
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of transcranial US for brain stimulation indeed make it amenable to a 

variety of experimental demands in systems and translational 

neuroscience so there are many options to explore. 

 

Materials and Methods 

Equipment 

Transcranial ultrasonic neuromodulation  

 Cunningham mouse stereotax (myNeuroLab, Product: #39462950) 

 Depilator lotion (Nair™) or small scissors  

 Heating pad (Mastek Industries, Inc., Model 500/6000) 

 0.35 MHz Immersion-type ultrasonic transducer (Ultran Inc., Model 

GS 350-D19) 

 Two arbitrary function generators (Agilent Technologies Inc., Model 

33220A) 

 RF amplifier (ENI 240L /or/ Electronics & Innovation, Ltd., Model 

240L) 

 Two channel high-speed oscilloscope (Agilent Technologies Inc., 

Model DSO6012A) 

 Eight BNC cables (50 Ω) 

 Two BNC T-type connectors 

 BNC-to-UHF adaptor for transducer 

 Positioning arm with magnetic base (Flexbar®, Model 18059) 

Electromyography acquisition 

 A/D board (DataWave Technologies) 

 Differential AC amplifier (A-M Systems, Inc., Model 1700) 

 Teflon coated stainless steel wire (California Fine Wire Co., 

316LVK, size 0.0018) 

Electromyography acquisition 
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 A/D board (DataWave Technologies) 

 Differential AC amplifier (A-M Systems, Inc., Model 1700) 

 Teflon coated stainless steel wire (California Fine Wire Co., 

316LVK, size 0.0018) 

Ultrasound waveform intensity measures 

Calibrated hydrophone (Onda Corp., Model HNR 500) 

 ▲ CRITICAL STEP When ordering the calibrated hydrophone, be 

sure that it has its calibration curve extending into the low MHz 

range (≥0.2 MHz). Calibration of the hydrophone is important since 

it has different response characteristics across a range of US 

frequencies. Thus, you will need to know the voltage response for 

US frequencies used in constructing UNMOD waveforms. The 

calibrated hydrophone will be provided with a look-up table of 

voltage responses at different frequencies. Based on the data in 

this table, you will be able to convert hydrophone voltage traces to 

pressure.  

REAGENTS 

 C57BL/6 mice (Male or Female; postnatal day > 21; The Jackson 

Laboratory) 

▲ CRITICAL STEP The use of animals for these experiments 

requires the approval of the Institutional Animal Care and Use 

Committee (IACUC) or equivalent regulatory organization. Be sure 

to use juvenile mice (postnatal day 35 - 50) for experiments 
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implementing kainic acid (KA) models of status epilepticus since 

different aged mice have different sensitivities to KA. 

Kainic acid monohydrate (Sigma-Aldrich, cat. no. K0250-10MG) 

Ultrasound gel (Aquasonic Clear® ultrasound gel, Parker Labs)  

Sodium chloride (Sigma-Aldrich, cat. no. S3014-1kg) 

 D(+) Glucose monohydrate (EMD Chemicals Inc, cat. no. 

1.08342.1000) 

 Diazepam (5mg/mL, Hospira, NDC 0409-3213-12) 

! CAUTION Diazepam is a controlled substance and should be 

handled properly according to institutional guidelines. 

 Ketamine HCl (100 mg/mL, Bioniche Pharma USA LLC, NDC 

67457-034-10) 

! CAUTION Ketamine is a controlled substance and should be 

handled properly according to institutional guidelines. 

 Xylazine sterile solution (20 mg/mL, Akorn Inc, NADA#139-236) 

 Phosphate buffered saline (pH 7.4, Sigma-Aldrich, cat. no. P3813-

10PAK) 

 Sterile sodium chloride solution (0.9%, Sigma-Aldrich, cat. no. 

S8776-10mL) 

 

REAGENT SETUP 

Preparation of anesthetic cocktail: Add 1 mL ketamine HCL 

stock (100 mg/mL) and 0.5 mL xylazine stock (20 mg/mL) to 2.5 mL 
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sterile 0.9% NaCl solution. To anesthetize mice with this 

ketamine/xylazine cocktail, i.p. inject 3.5 μL/g body weight and wait 

10-15 min before assessing anesthesia level. If subsequent 

injections are needed to induce deeper planes of anesthesia or to 

maintain mice under anesthesia for longer periods of time then 

supplemental injections can be given at a dose of 2.0 μL/g body 

weight.  

Preparation of kainic acid (KA) solution: Dissolve 10 mg KA in 5 

mL of sterile 0.9% NaCl solution to make a 2 mg/mL stock solution. 

Aliquot the solution into 0.5 mL aliquots in microcentrifuge tubes. 

Store unused aliquots at -20° C. The concentration of KA used to 

induce seizure activity in mice is between 15-20 mg/kg (7-10 μL/g 

body weight of the 2 mg/mL stock KA solution). 

 

Procedure 

Setup of the UNMOD rig  

1| The first steps involve connecting the function generators, oscilloscope, 

and RF amplifier. One function generator (FG1) will act as a pulse trigger 

to establish the US pulse repetition frequency (PRF) and number of US 

pulses (np) for a given UNMOD stimulus waveform. The other function 

generator (FG2) will be used to generate the acoustic frequency (Af) and 

the number of acoustic cycles per pulse (c/p) for the individual US pulses 

making up an UNMOD stimulus waveform. Establish which function 
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generator will be used as the pulse trigger (FG1) and set the other as the 

pulse generator (FG2). 

2| Using a BNC cable, connect the output from the front of FG1 to a BNC 

T-type connector. Using another BNC cable, connect one output from the 

"T" to the input of channel (CH) 1 on the oscilloscope. With another BNC 

cable, connect the other "T" output to the external trigger input located on 

the back of FG2.  

▲ CRITICAL STEP Electrical impedance matching should be maintained 

by connecting equipment using 50Ω BNC cables and connectors. The 

digital oscilloscope used in this protocol enables voltage traces to be 

downloaded to a PC for later offline analysis. This will be important for 

measuring ultrasound waveform intensities and for capturing FG outputs if 

desired.  

3| Using another BNC cable, connect the output from the front of FG2 to a 

BNC T-type connector. Using another BNC cable, connect one output 

from the "T" to the input of CH2 on the oscilloscope. With another BNC 

cable, connect the other "T" output to the input of the RF amplifier.  

4| Using another BNC cable, connect the output of the RF amplifier to the 

Ultran GS-350 D-19 transducer using a BNC to UHF adaptor. 

OPTION As discussed above in Experimental Design Considerations 

there are many transducer options, which can be substituted here. Since 

we describe the standard UNMOD protocol below using 0.35 MHz US 

stimulus waveforms, we describe the use of a 0.35 MHz center frequency 
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Ultran transducer referenced above. We have achieved success to 

varying degrees using several different immersion-type (water-matched) 

transducers, so it should be recognized there is flexibility in terms of the 

transducers used for UNMOD (Fig. 1c). We most typically use transducers 

manufactured by Ultran in our studies due to their broad bandwidth, 

response sensitivity, and output characteristics.  

! CAUTION Extreme care should be used not to overload transducers with 

high amplitude drive voltages (> 1 Vpp) or they can be permanently 

damaged.  

 

Configure function generators for UNMOD waveform construction 

5| The following steps explain how to construct pulsed waveform with 

references to acoustic frequency (Af), cycles per pulse (c/p), pulse 

repetition frequency (PRF), and number of pulses (np) described above. 

The waveform we describe below is as illustrated in Fig. 14d-g. The 

corresponding parameters for this waveform are Af = 0.35 MHz, c/p = 75, 

np = 200, and PRF = 2.0 kHz. As further detailed below, these parameters 

can be varied to develop different pulsed US stimulus waveforms. First, 

turn on the power for FG1 and FG2.  

▲ CRITICAL STEP Do not power on the RF amplifier at this point.  

! CAUTION If the RF amplifier were on and the FG's accidently triggered 

with the wrong settings this could cause permanent damage to the 

connected transducer and/or amplifier. We ourselves have blown several 
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costly US transducers and an RF amplifier by accidently tripping the FG's 

when not intended. Thus, we advise the experimenter to keep the RF 

amplifier off when not actively transmitting US waveforms. 

6| On FG1, select and press the “Square” wave panel key. The button will 

illuminate green when the "Square" option is active. For pulsed 

waveforms, next select and press the “burst” option. When the burst menu 

is displayed, enter "200" and press “Cyc” on the sub-parameter menu to 

accept this value. If the value is accepted the “burst” menu with the value 

"200" should be displayed (this value represents np). 

7| Press the “Trigger Setup” button on the sub-menu, then press the 

“Source” option, then press “Manual”, and finally press “DONE”. This 

configuration allows the user to manually trigger ultrasound waveforms by 

depressing the "Trigger". Every time the "Trigger" button is pressed a US 

waveform will be transmitted from the transducer in this manual triggering 

mode.  

OPTION It is often desirable to trigger FG1 such that stimulus waveforms 

can be delivered at some predetermined rate. To perform such external 

triggering, select "Ext" as the trigger mode rather than "Manual" mode as 

described above in step 8. Here, we often use a TTL signal connected to 

the external trigger input on the back of FG1 in order to deliver constant 

spaced US stimulus waveforms at some given frequency (0.5 or 0.1 Hz for 

example to deliver a US stimulus waveform every 2 or 10 seconds 



  134 

respectively). The choice for which trigger mode (manual or external) to 

use will be left up to the experimenter.   

8| Continuing to setup FG1, press “Square” on the FG1 control panel. 

Using the number key pad on FG1, enter "2", and then select “kHz” for the 

frequency unit. This value represents the PRF.  

9| On the sub-menu, press the “Ampl/HiLevel” option once. Enter "5" and 

select “Vpp” as the unit. This value is the amplitude of the square wave 

generated, which is used to trigger FG2, which in turn will generate a 

voltage waveform used to produce individual US pulses. At this point, FG1 

is now set to drive a pulsed US waveform having 200 US pulses at a PRF 

of 2.0 kHz. 

10| Next, push the “Sine” wave button on FG2. Then press “Freq” under 

the “Freq/Period” sub-menu and type in "0.35" and choose “MHz” as the 

unit. The 0.35 MHz value represents the Af of the US pulse.  

11| On FG2, enter "75" as the number of cycles under the “Cyc” sub-menu 

similar to conducted for step 7 above on FG1 to establish np. On FG2, the 

value will represent the c/p of a US pulse. Thus, FG2 is set to produce 

individual US pulses having 75 acoustic cycles per pulse (c/p) at an 

acoustic frequency of 0.35 MHz. 

12| On FG2, next choose the “trigger setup” menu and set the trigger 

“source” as “Ext”. Be sure to choose the rising phase option for the input 

trigger. 
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13| On FG2, choose the “Sine” sub-menu and change the voltage to 1.0 

“Vpp” in a similar manner for setting the voltage amplitude as explained for 

FG1 in step 10 above. 

! CAUTION It is advisable not to exceed 1.0 Vpp on FG2 to generate US 

pulses as this is the maximum input voltage rating for the RF amplifier. 

There is a great risk of damaging the amplifier or transducers if too much 

power is delivered to them. Depending on the acoustic power desired, we 

most typically use between 0.2 and 1.0 Vpp voltage sine waves produced 

by FG2 for driving the RF amplifier, which is in turn amplified to provide 

final plate voltages to the transducer. At this point, ensure that the RF 

amplifier is powered "off" before proceeding. 

14| Turn "on" the outputs for FG1 and FG2 - a green button backlight will 

illuminate when the outputs are active. 

15| At this point, one may begin examining the voltage waveforms 

generated by FG1 and FG2 on the oscilloscope to gain a better 

understanding of UNMOD waveform parameters. Turn on the 

oscilloscope. Once the oscilloscope has been powered on, you should 

setup the oscilloscope mode such that it captures voltage traces for both 

CH1 and CH2 using standard practices. The oscilloscope should be set to 

threshold trigger in response to the input from CH1, which corresponds to 

the output of FG1. When the oscilloscope is ready to acquire using 

appropriate amplitude and time scales, depressing the "trigger" on FG1 

will enable one to observe two voltage traces on the scope. Variably 
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adjust the amplitude and time scales while scrolling through the voltage 

traces captured. As illustrated in Fig. 14, one should be able to observe 

how each 5 Vpp square wave generated by FG1 (oscilloscope CH1) 

triggers a 1 Vpp sine wave containing 75 cycles (c/p) at 0.35 MHz (Af). The 

square waves from FG1 that trigger the sine wave pulses on FG2 occur at 

a frequency of 2 kHz (PRF) until 200 square waves have been produced 

(np).   

■ PAUSE POINT You may wish to spend some time familiarizing yourself 

with the function generators and their role in producing UNMOD 

waveforms before proceeding. We recommend starting from step 6 above, 

but begin to replace individual parameter values and observe differences 

in the voltage traces produced. For example, see if you can construct 

voltage waveforms to drive a UNMOD waveform having the following 

characteristics: Af = 0.5 MHz, c/p = 10, PRF = 1 kHz, and 10 np. While this 

particular example is not representative of an UNMOD waveform capable 

of stimulating neuronal activity based on our observations, it serves to 

further familiarize the user with waveform parameters and the construction 

of UNMOD stimuli. If you have setup the aforementioned waveform 

correctly then you should be able to observe voltage traces on the 

oscilloscope showing 10 square waves (np) on CH1 occurring at 1 kHz 

(PRF), which will each trigger a 0.5 MHz (Af) pulse of 10 sine waves (c/p). 

Again you will need to make appropriate amplitude and time scale 

adjustments on the oscilloscope to see these voltage traces appropriately.     
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▲ CRITICAL STEP Be certain to reconfigure FG1 and FG2 such that you 

are generating the original waveform described: Af = 0.35 MHz, c/p = 75, 

PRF = 2.0 kHz, and np = 200. Refer to steps 6-13 for guidance if needed.  

 

Monitoring the acoustic pressure variation of US waveforms  

16| There are several approaches to estimating, measuring, and 

calculating the acoustic intensity of UNMOD stimulus waveforms. In the 

steps below, we describe a general method for measuring US intensity 

using a scanning hydrophone approach. To begin, position the transducer 

in an upright position using a Flexbar and place a liberal amount of US gel 

over the active surface of the transducer.  

17| Carefully affix a calibrated hydrophone in a micromanipulator such that 

its aperture and face are positioned parallel to and vertically over the 

center of the transducer. Slowly lower the hydrophone into the US 

coupling gel so that its face tip resides approximately 1 - 2 cm from the 

face of the transducer (Fig. 14e). 

! CAUTION The face of the hydrophone is a very sensitive surface with a 

small aperture and it can be damaged easily. Extreme care should be 

used to avoid touching or bumping this face as it could impact the 

hydrophone sensitivity and response characteristics. 

18| Disconnect the input from FG2 going to CH2 on the oscilloscope and 

plug the BNC terminal of the hydrophone cable into the CH2 input on the 

oscilloscope. 
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19| Power on the RF amplifier and ensure that FG1 and FG2 are 

configured as described in steps 6-13 above. Be sure the oscilloscope is 

set to threshold trigger in response to input from CH1 (the output signal 

from FG1).  

20| Push the “Trigger” button on FG1 to evoke a stimulus waveform. On 

CH1 of the oscilloscope, you should be able to observe a voltage trace 

from FG1 corresponding to the pulse trigger. On CH2 of the oscilloscope, 

you will need to increase the amplitude gain to resolve the voltage trace 

produced by the hydrophone. Once the gain has been appropriately 

adjusted, you will be able to observe the voltage trace generated by the 

hydrophone in response to the acoustic pressure (Pascals; Pa) emitted 

from the US transducer. Using the appropriate conversion factor listed 

under the "Pa/V" (Pa per volt) column on the look-up table, which 

accompanied the calibrated hydrophone you will be able to convert the 

hydrophone voltage trace waveform to an acoustic pressure waveform 

using simple arithmetic (Fig. 14e, 14f bottom, 14g).   

21| Once you are able to record US pressure profiles in one location, use 

the micromanipulator to begin scanning the hydrophone across different 

XYZ locations of the transducer surface while monitoring the variable 

pressure profiles emitted as a function of space. At this point, you can 

simply monitor such variation by measuring the peak-to-peak amplitude of 

the voltage trace on CH2 of the oscilloscope. The major point of this 

exercise is to recognize that there is variation in the pressure amplitude 
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across the emitted acoustic field. Not only is there natural variation of 

pressure amplitude within an acoustic field, other influences stem from the 

presence of standing waves or reflections spawned by gel/air or water/air 

interfaces, which lead to constructive and deconstructive interference 

patterns.  

▲ CRITICAL STEP Due to the nature of pressure variation in an acoustic 

field, measuring US intensities can be a difficult and complex process. 

Based on the extensive use of US in medicine, there are many 

established technical standards and guidelines for measuring US 

intensity(NEMA 2004). Additionally consulting information provided by the 

US Food and Drug Administration may be useful for understanding some 

of these procedures, as well as the terms associated with them: (a) 

Information for Manufacturers Seeking Marketing Clearance of Diagnostic 

Ultrasound Systems and Transducers; (b) 21CFR1050 Performance 

Standards for Sonic, Infrasonic and Ultrasonic Radiation-emitting 

Products. 

 

Calculation of US waveform intensity characteristics 

22| The next several steps describe a basic procedure for calculating 

some common acoustic intensity measurements useful for characterizing 

UNMOD stimulus waveforms. 

23| Return the hydrophone to a location over the XY center of the 

transducer.  

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM070911.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM070911.pdf
http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM070911.pdf
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=1050&showFR=1
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=1050&showFR=1
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=1050&showFR=1
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24| Download the recorded voltage traces data onto a PC or USB drive for 

later offline analysis while noting the position of the hydrophone in relation 

to the transducer for each trace.  

25| Record several more positions away from the center of the 

hydrophone where you observe the maximum voltage (pressure) 

amplitude.  

26| To calculate acoustic intensity characteristics such as pulse intensity 

integral, spatial-peak pulse-average intensity (ISPPA), the spatial-peak 

temporal-average intensity (ISPTA), and mechanical index use the 

equations below as outlined by technical standards established by the 

American Institute for Ultrasound in Medicine (AIUM) and the National 

Electronics Manufacturers Administration (NEMA)(NEMA 2004). 

▲ CRITICAL STEP For using the equations below, it is assumed that 

measurements of are made at spatial positions in the acoustic field where 

the peak acoustic pressures are recorded. This is most often in the far-

field of a transducer emission profile, which is a typically a few centimeters 

away from the transducer face for the types of transducers we have 

recommended using. Where you record the intensity from however will be 

dependent on where you are stimulating in the brain. To estimate the 

acoustic intensity in the brain, we routinely place hydrophones inside ex 

vivo mouse heads with the brain excised and the cranial cavity filled with 

acoustic gel, which is a reasonable approximation for brain tissue due to 

similar acoustic impedances. If measures of UNMOD waveforms are not 
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made in the acoustic field where spatial-peak occurs, then the calculations 

below can still be used for estimating intensity, but they then represent the 

pulse-average intensity (IPA) as opposed to ISPPA and temporal-average 

intensity (ITA) as opposed to ISPTA. 

The pulse intensity integral (PII) is defined as: 

 

dt
Z

tp
PII 

0

2 )(
 

 

where p is the instantaneous peak pressure, Z0 is the characteristic 

acoustic impedance in Pa∙s/m defined as ρc where ρ is the density of the 

medium, and c is the speed of sound in the medium. We estimate ρ to be 

1028 kg/m3 and c to be 1515 m/s for brain tissue based on previous 

reports(Ludwig 1950).  

The spatial-peak, pulse-average intensity (ISPPA) is defined as: 

 

  
PD

SPPA

PII
I   

 

where PD is the pulse duration is defined as (t)(0.9PII – 0.1PII) ∙1.25 as 

outlined by technical standards established by the AIUM and NEMA 

(NEMA 2004).  

The spatial-peak temporal-average intensity (ISPTA) is defined as: 
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)PRF(PIII SPTA  

 

where PRF is equal to the pulse repetition frequency in hertz. 

The mechanical index was defined as: 

 

  
f

p rMI  

 

where pr is the peak rarefactional pressure and f is the acoustic frequency. 

 

EMG monitoring of US brain stimulation of motor cortex 

▲ CRITICAL STEP While the next portion of the protocol is not necessary 

for stimulating brain circuits with transcranial US, we describe these 

procedures in order for one to obtain a quantifiable measure of activity 

evoked in the motor cortex of brain. 

 

Recording wire preparation 

27| Cut teflon coated stainless steel wire into a length of approximately 

four inches. Each EMG recording channel requires three leads. Thus, if 

two EMG recording channels are to be used then you would need to cut 

six lengths of wire (Fig. 15a, b). 
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28| Using fine grit sandpaper or a razor blade, gently scrape the wire to 

remove an ≈ 6 mm length of teflon coating from one end of each wire (Fig. 

15c). 

! CAUTION Handle all sharps including needles and razor blades with 

extreme care. You should also practice good laboratory techniques by 

immediately disposing of used sharps in appropriate sharps receptacles.  

29| Thread the stripped end of the wire through a 30 gauge hypodermic 

needle so that the bare wire lead is exposed through the sharp end of the 

hypodermic needle. Repeat this step such that there are two wires inside 

threaded through one hypodermic needle per channel. Perform the same 

so that there is only one wire threaded through a different hypodermic 

needle. Each EMG channel will require three leads. One needle will carry 

two recording wires (+/-) and a second needle will only carry one wire to 

be used for the reference lead.  

30| Pull the wires through the hypodermic while leaving ≈ 1-2 mm of bare 

wire exposed from the bevel end of the needle. Use a razor blade, gently 

fold the wires over the bevel to create a small barb (Fig. 15e).  

 

Animal preparation 

31| Anesthetize a mouse with an i.p injection (3.5 μL/g) of the 

ketamine/xylazine cocktail prepared above. If needed, i.p. administer 

supplemental doses of the ketamine/xylazine anesthetic cocktail at a dose 

of 2.0 μL/g.  
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▲ CRITICAL STEP Be sure mouse is at a stable plane of anesthesia by 

monitoring whisker movement and digit/tail pinch reflex. Lighter planes of 

anesthesia tend to work the best for obtaining motor responses evoked by 

motor cortex stimulation with US. Thus, it is desirable to obtain a plane of 

anesthesia where mild responsiveness to tail/digit pinch is observed.  

32| Once the animal reaches the proper level of anesthesia, use a pair of 

small scissors or Nair™ to remove hair from the scalp. 

33| Insert a hypodermic needle containing two wire leads into one of the 

triceps brachii muscles. After insertion into the muscle, gently retract the 

needle and slide it off the wires (Fig. 15g,h). The small bards should hold 

the wires in the muscle. This same procedure can also be performed for 

tail, hind limb, or back muscles if desired (Fig. 15i). For the second needle 

containing a single wire (reference lead), pinch the skin on the dorsal 

surface of the animal's back or neck and gently pull up while 

subcutaneously inserting the reference lead so that it sits just under the 

skin. Remove the hypodermic needle so the wire remains under the skin.  

34| Place the mouse in stereotax (Fig. 15m). 

35| Connect EMG wires to amplifier leads (Fig. 15k).  

36| Electromyography setup Appropriately connect the three leads 

(positive, negative, and reference) to a differential amplifier (e.g.  AM 

Systems), which is connected to an ADC board (e.g. Datawave 

Technologies) and computer to amplify, filter, and acquire EMG signals. 
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Typical on-board amplifier gain and filter settings used are 1000X and 10-

1000 Hz respectively (Fig. 15j-l). 

▲ CRITICAL STEP Many different a/d data acquisition interfaces and 

electrophysiology software packages can be used for data acquisition. A 

working knowledge of data acquisition techniques used in 

electrophysiology will be beneficial to your experimental success. Again, 

you will be able to monitor evoked motor responses in mice being 

stimulated without using an electrophysiological technique. The purpose 

for applying such techniques is to provide the experimenter a simple 

means of quantitatively assessing neurostimulation produced by US.  

 

Ultrasonic stimulation 

37| With the mouse in the stereotax, gently place a liberal amount of 

ultrasound gel over the scalp and the face of the transducer (Fig. 15n-p).  

▲ CRITICAL STEP The ultrasound gel acts as a coupling medium 

between the transducer and the mouse head. If air bubbles are present in 

the gel, this could interfere with the transmission of US. Thus, carefully 

examine the applied gel to ensure no air bubbles are present in the gel on 

the head or the transducer. 

38| Fix the transducer over the head of the mouse so that there is good 

coupling between the gel on the transducer and the gel on the head of the 

mouse. Start with a working distance of ≈ 2 - 8 mm between the head and 

the surface of the transducer (Fig. 15q,r).  
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▲ CRITICAL STEP In addition to mounting the entire transducer over the 

head of the mouse, simple acoustic collimators (Fig. 15s, 16c) can be 

used to direct the US beams into specific brain regions. Acoustic 

collimators can be easily constructed by filling tubes with US gel and 

affixing them to the gel on the face of the transducer. One of the simplest 

embodiments of an acoustic collimator is a 1 mL Luer lock syringe, which 

has had the Leur lock portion of the syringe cut off and filled US gel. A 

collimator can provide lateral restriction of the US beam in order to restrict 

the area of brain activation based on the requirements or geometrical 

constraints of an experiment. In addition, collimators can be used for 

stimulation by delivering US to brain regions in the far-field of a transducer 

output. 

39| Once the transducer or acoustic collimator has been coupled to the 

mouse head, trigger the function generator by pushing the “Trigger” button 

on FG1 and monitor for behavioral motor responses, as well as EMG 

responses if recording electrophysiological motor activity. 

▲ CRITICAL STEP The level of anesthesia will greatly affect the outcome 

of stimulus success. Lightly anesthetized animals will tend to respond 

immediately while heavily sedated animals will require more time to reach 

a lighter plane of anesthesia before responding. These notes arise from 

observations during experiments only under conditions using a 

ketamine/xylazine anesthetic cocktail. If other anesthetics will be 

implemented then it is highly suggested that a thorough exploration of 
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stimulus parameters and anesthetic planes be carried out to achieve 

greater success and reliability. You will need to define the appropriate 

levels of anesthesia for your particular application. For example, in some 

applications we use restraining tubes to facilitate UNMOD in fully 

conscious animals.  

40| We recommend beginning UNMOD protocols with the pulse sequence 

described in steps 6-13, but this can be expanded to explore US 

waveform parameter space as many different waveforms can be used to 

stimulate activity with varied degrees of effectiveness. Typical ranges for 

US stimulus parameters are: Af from 0.25 to 0.50 MHz, c/p from 50 to 490, 

PRF from 1 to 3 kHz, and np from 250 to 1000. We refer the reader to 

Table S1 of Tufail et. al. (2010)(Tufail, Matyushov et al. 2010) for 

additional pulse parameters serving as good starting points. You may also 

choose to use continuous wave (CW) stimuli rather than pulsed waves 

which can produce radically different patterns of motor activation such as 

seizure activity (Fig. 17a) in normal mice or as a stimulus for inhibiting 

seizure activity in epileptic mice (Fig. 17c). To deliver CW stimulus 

waveforms, simply use the "Burst" button of FG2 as an on/off switch for 

CW waveforms the outputs are active on FG2. The triggering and 

operation modes for FG2 can also be easily modified for generating CW 

waveforms according to manufacturer instructions.   

! CAUTION If you do use CW stimulus waveforms then do so with great 

care. Operating transducers in CW for long periods can cause permanent 
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damage to them. We do not recommend using a sine wave with an 

amplitude > 0.5 Vpp for more than 10 seconds to drive transducers. Many 

transducers are not designed to tolerate CW excitation for long periods 

while other can handle it. We advise you to check with manufacturers 

regarding further specifics of transducer load capacities. 
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TABLE 1 Potential problems and solutions to achieving UNMOD success. 

 
Problem 

 
Potential 
Reasons 

 
Potential Solution 

Voltage 
traces do not 
appear on 
oscilloscope 

Faulty 
connections 
 

Check cables and 
connections. 

 FG's are not 
in correct 
trigger mode 

Check FG trigger 
mode status as 
described in steps 7 
and 12 above. 

 Oscilloscope 
trigger level 
not set to an 
appropriate 
threshold 

Check trigger levels 
for both channels, 
depending on which 
channel is being 
used as a trigger. It 
is best to trigger off 
of CH1 on the 
oscilloscope, which 
corresponds to the 
FG1 output. Also 
check the X-axis 
(time) scale on the 
oscilloscope. If 
scale is not 
appropriate the 
oscilloscope may 
not trigger. Also 
check the mode of 
the oscilloscope. 
The oscilloscope 
should be in the 
“Run” mode. 
 

Mouse does 
not exhibit a 
motor 
response to 
US stimulus 

Anesthesia Wait an additional 
15-30 min for the 
mouse to further 
metabolize the 
anesthetic. It can 
also be useful to 
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trigger US stimulus 
waveforms using an 
external trigger 
(TTL) to drive FG1 
at 0.1 Hz during this 
time. If this is done, 
be sure to set the 
trigger mode of FG1 
to the external 
trigger mode. 
Robust US 
waveforms can also 
be delivered 
periodically (once 
every 45-60 sec) to 
monitor for 
responses. This can 
be achieved by 
delivering US in a 
CW mode by 
touching the "Burst" 
button on FG1 then 
push it again after 
2-3 sec to terminate 
the CW waveform. 
Use care not to 
drive the transdcuer 
in CW mode for 
more than a few 
seconds as it you 
can damage the 
transducer. 
 

 Poor 
transducer or 
collimator 
placement 

Reposition the 
transducer or 
collimator angle in 
relation to the head. 
You may also 
change the distance 
between the 
transducer and the 
head. 
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Faulty 
connections 
or no power 
 

 
Ensure all cables 
are properly 
connected. Be sure 
power is on for all 
FG's and RF 
amplifier. Be sure 
FG's are in 
appropriate trigger 
modes. 

  
Bad 
transducer 

 
Check US 
transducer output 
with hydrophone 
according to steps 
16-21 above. 

  
Mouse 
placement 

 
Allow limbs to hang 
freely (e.g. raise 
animal by placing 
gauze squares or 
other padding 
underneath the 
thoracic and 
abdominal cavities 
of the mouse or by 
incrementally raising 
the head using the 
adjustable towers 
on the stereotactic 
frame). 
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In vivo monitoring of ultrasound induced cortical activity 

 As with EMG above, the next steps describe an optional procedure 

for recording extracellular cortical activity in response to pulsed US 

waveforms. In order to achieve success, you should have knowledge of 

general electrophysiology before undertaking these procedures.  

41| Follow procedure for placing animal under anesthesia. 

42| Turn on the microelectrode amplifier (e.g. A-M Systems, Inc., Model 

1800) and computer with software compatible for acquiring extracellular 

recordings (e.g. DataWave SciWorks). Sampling rate for these recordings 

should be 24.4 kHz and notch filtered at 60 Hz. Additionally on- or off-line 

filtering can be applied depending on the signal you are attempting to 

record. 

43| Affix head in stereotactic frame outfitted with mountable XYZ 

translators for electrode placement. 

▲ CRITICAL STEP Take extra caution when positioning the mouse in the 

stereotactic frame. Maintaining stability of the mouse head is critical for 

these experiments as the quality of electrophysiological recordings 

depend on it. 

44| Apply ophthalmic ointment to the eyes to prevent dehydration. 

45| Use a heating pad to keep mouse body temperature at 35-37°C.  

46| Using surgical scissors cut and remove scalp to expose the skull. 

▲ CRITICAL STEP These procedures are not designed for survival or 

chronic experiments. However, we recommend practicing good aseptic 
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techniques as it will greatly enhance the quality of recordings especially in 

longer term recordings lasting two hours or more.  

47| Clean and remove any blood or membranes with PBS and gentle 

suction. 

48| Using a mouse brain atlas, Franklin and Watson (Franklin and Paxinos 

2007) for example, locate and mark the cortical area of interest.  

49| Using a dental drill (e.g. Foredom MH-170) outfitted with a 1/32” 

engraving cutter, gently perform a craniotomy over the area of interest. 

▲ CRITICAL STEP Intermittently cool the skull using cold PBS and clean 

the area of debris. Also, do not drill into the dura as this can cause 

physical damage and bleeding which may lead to dead tissue and 

compromised recordings.  

50| Perform another small craniotomy at another region on the opposite 

hemisphere. This will be used to insert a reference wire. 

51| Mount the head-stage on the stereotactic manipulator arm. Connect a 

1MΩ tungsten electrode and the reference wire into the head-stage of the 

amplifier. 

52| Align the microelectrode over the site of the craniotomy. 

53| Insert reference wire into brain through second craniotomy site. 

54| Slowly lower the electrode down to the surface of the brain using the 

stereotactic manipulator arm. 

▲ CRITICAL STEP Make sure that there is enough travel in the Z-axis 

arm to reach desired depth. Also, to obtain best estimate of electrode 
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depth, observe lowering the electrode with a stereomicroscope (e.g. 

Olympus SZ61) so that the starting point on the brain surface (depth = 0 

mm) can be easily monitored. 

55| Fill an acoustic collimator (Fig. 15s) with ultrasound gel while using 

extreme caution not to introduce bubbles into the collimating tube. 

■ PAUSE POINT You will want to use an acoustic collimator (sound 

guide) in order to transmit US waveforms to restricted brain regions, as 

well as due to geometrical space constraints imposed by the transducer 

and recording electrodes. There are many different ways to construct an 

acoustic collimator. The acoustic collimator is essentially a tube filled with 

US gel. We have found one of the easiest ways to construct a collimator is 

by using a 1 mL syringe, which has had the tip cutoff as described in step 

38 above (Fig. 15s right). The tip can be cut at an angle to permit a flush 

contact on the mouse skull (Fig. 15t, 16c).   

56| Affix the collimator at an angle so the US transmission line is targeted 

to the recording area using a gooseneck positioning arm on a magnetic 

base Flexbar. 

57| Set up function generators and RF amplifier as previously described in 

steps 6-13. 

58| With US gel completely covering the face of the transducer, couple the 

transducer to the acoustic collimator and obtain proper coupling. Fix the 

transducer in pace with another flexible positioning arm. 
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! CAUTION When using a collimator, do not leave any portion of the US 

transducer surface uncovered with US gel as this can cause damage to 

the transducer face.   

59| Begin acquiring data while lowering the electrode to monitor 

electrophysiological activity. It is recommended to lower the electrode into 

the brain using an approach angle of about 45°. Such an approach will 

allow one to target the region of interest by positioning the transducer and 

collimator at an angle approximately equal and opposite to that of the 

electrode as illustrated in Fig. 15t, 16c.  

60| Once electrode placement in the appropriate cortical location is 

achieved, begin stimulating with US and record UNMOD evoked 

responses.   

▲ CRITICAL STEP It is important to mark when UNMOD stimuli are 

delivered in relation to the electrophysiological data being acquired. This 

can be easily achieved by sending a TTL trigger out from the acquisition 

software and ADC board via a BNC to FG1, which should then be set to 

an external trigger mode as described in the option for step 7 above. 

 

Ultrasonic neuromodulation for translational studies 

 Previous experiments in this protocol should have enabled you to 

implement a variety of approaches to using US to achieve brain circuit 

stimulation. Exemplifying a translational example of UNMOD, the final 
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protocols described below illustrate how to use transcranial US for 

disrupting bouts of epileptic seizure activity. 

61| Induction of seizure activity with kainic acid injections Weigh 

each mouse and calculate the volume of KA solution to be injected to 

achieve a 15-20 mg/kg dose. KA injection is given systemically (i.p.) every 

30 min or until desired level of seizure activity is observed. In conscious 

animals, we employ a modified Racine scale to assess seizure activity and 

typically perform UNMOD experiments when an animal has reached stage 

3 or higher where: stage 1 = behavioral arrest with muse/facial movement; 

stage 2 = head nodding; stage 3 = forelimb clonus; stage 4 = rearing; 

stage 5 = rearing and falling, and stage 6 = loss of posture and 

generalized convulsive activity(Racine 1972).  

▲ CRITICAL STEP The number of KA injections and the time it takes for 

a particular animal to reach any given Racine stage is highly variable. This 

variability will depend on the age and strain of the mice used in your 

experiments and will need to be adjusted accordingly. Regardless of the 

strain, we typically use juvenile mice (postnatal day 35-50) for experiments 

involving the KA-induction of seizure activity. You may decide whether or 

not to anesthetize mice depending on your experimental situation. 

Anesthetizing mice will facilitate the placement and maintenance of 

animals in a stereotax (Fig. 17b). We have found that animals 

anesthetized with ketamine/xylazine proceed through the development of 

seizure activity albeit slower than conscious animals. It should be further 
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noted that the Racine scale assessment of seizure activity is not valid for 

anesthetized animals. Thus, we often use EMG recordings in combination 

with observations of forepaw activity to gauge seizure severity in 

anesthetized animals (Fig. 17b).      

! CAUTION Due to the variability in the onset of seizure activity across 

animals when using KA, mice need to be under constant surveillance after 

they are first injected. 

 62| Applying responsive UNMOD to attenuate seizure activity Once 

mice reach the desired level of seizure activity following KA injection, 

apply US coupling gel to the head and begin delivering UNMOD 

waveforms to the brain using either of the optional modes described 

below. There are two basic options for disrupting seizure activity with 

UNMOD, option A involves delivering CW US to the intact brain, while 

option B implements the repeated delivery of pulsed US waveforms to the 

brain. Either of these options are to be used for terminating seizure activity 

following systemic KA administration and can be applied to anesthetized 

head fixed mice or to conscious mice restrained manually for coupling the 

US transducers to the head.  

! CAUTION If manually restraining mice is chosen for applying 

transcranial US to conscious epileptic mice then be sure to implement 

proper safety precautions to avoid bite related injuries as always when 

handling laboratory rodents. Additionally, it should be noted that the US 



  158 

transducers and brain stimulation parameters used including the duration 

of stimulation will affect the outcome of experiments. 

A. There are several methods for generating CW US stimuli. The 

easiest method as described in step 40 is to use the "Burst" key on FG2 

as an on/off switch for generating CW US waveforms. Alternatively, FG2 

can be set to deliver CW waveforms by changing the trigger functions and 

operation of mode. The acoustic frequency range of CW UNMOD 

waveforms to use for attenuating seizure activity is the same as described 

above for evoking brain activity with US. After the CW waveforms have 

been set and confirmed, one may choose to apply UNMOD to a KA-

injected mouse at any time before or after seizure emerges to examine 

how US affects seizure activity/severity. We recommend visually 

observing motor seizures or monitoring EMG activity in order to time the 

delivery of CW UNMOD waveforms to the intact brain at a point when 

prominent seizures are present and have lasted for more than a few 

seconds. In this convention, UNMOD should be applied to the brain in a 

responsive manner to sustained seizure activity. If applied correctly, you 

should be able to observe a brief increase in motor and/or EMG activity in 

response to CW UNMOD followed by a lasting decrease in seizure activity 

(Fig. 17c). You may repeat as necessary or modify the general approach 

of using CW UNMOD to study differential effects on KA-induced seizure 

activity. 
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! CAUTION As described for step 40 above, if you do use CW stimulus 

waveforms then do so with great care. Operating transducers in CW for 

long periods or with high amplitude drive voltages can cause permanent 

damage to the transducers or RF  amplifier. 

B. An alternative option for delivering UNMOD to epileptic brain 

circuits involves the use of pulsed US. Here, TPU can be used in a 

manner as similar to CW US described above for attenuating seizure 

activity. The parameter ranges for constructing TPU waveforms designed 

to disrupt seizures are as described in step 40 for normal conducting 

normal brain stimulation with US. The major difference is that to disrupt 

seizure activity with  TPU, we recommend delivering TPU stimuli at a rate 

of 0.5 to 2 Hz by delivering a US  stimulus waveform to the brain once 

every 0.5 to 2 seconds. This can most easily be achieved by changing the 

trigger mode of FG1 such that it can be controlled using an external TTL 

trigger similar to described in the option for step 7. As with option A above, 

TPU should be applied in response to sustained periods of seizure 

activity. If applied correctly following seizure emergence, you should be 

able to observe TPU begin to attenuate prolonged bouts of epileptic 

activity. You may repeat as necessary or modify the general pulsing 

strategy/parameters study differential effects of TPU on KA-induced 

seizure activity.  

63| Terminating seizure activity with diazepam If KA-induced seizure 

activity is not pharmacologically terminated at some point then mice may 
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expire. In some investigations it may be desirable to recover mice 

following bouts of seizure activity and UNMOD treatment for a variety of 

experimental design considerations. To eliminate recurrent seizure activity 

in KA-injected mice, we often give mice an i.p. injection of the GABAA 

receptor agonist diazepam (10 mg/kg). If mice do not respond to the initial 

dose within 10 min, a second supplemental i.p. injection of diazepam (5 

mg/kg) should be administered.  

▲ CRITICAL STEP Recovering animals should be closely monitored 

since seizure may reemerge after the initial injection of diazepam. 

Additionally, mice should be recovered on an isothermal heating pad and 

hydrated with 0.3 mL subcutaneous injections of 4% glucose in 0.18% 

saline solution administered every 30 min to one hour during the recovery 

period of a few hours. 

 

● TIMING 

Basic Stimulation of Brain Circuits with US 

Steps 1-4, Connecting basic UNMOD equipment: ≈ 10 min 

Steps 6-15, Configuring UNMOD rig for US waveform generation: 5-10 

min 

Steps 16-26, Characterizing acoustic pressure fields and measuring US 

intensity: ≈ 20 min (deeper analyses of US waveforms and intensities may 

require additional time offline) 

Steps 27-30, Fine-wire EMG electrode preparation: 10-20 min 



  161 

Steps 31-35, Animal preparation for UNMOD and EMG recordings: ≈ 20 

min 

Step 36, Initial setup of amplifier for EMG recording: ≈ 15 min  

Steps 37-40, Stimulation of intact brain circuits with UNMOD: minutes to 

hours depending on design and purpose of an experiment. 

Steps 41-60, Extracellular monitoring of US-evoked neuronal activity: 2-3 

h for setup and then as long as needed per experimental design. 

 

Translational application of UNMOD for attenuating seizure activity 

Step 61, Induction of seizure activity with systemic kainic acid 

administration: 20 min - 1 h 

Step 62, Disruption of seizure activity with UNMOD: < 1min; immediate 

results can be observed upon application of US to the brain. Depending 

on the experimental paradigm longer stimulus/treatments times up to an 

hour or more may be implemented.  
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Figure 14 | Basic ultrasonic brain stimulation rig and UNMOD waveform 
generation. (a) Function generator 1 (FG1) used to trigger US pulses, 
establish the pulse repetition frequency (PRF) and define the number of 
pulses (np) in an UNMOD stimulus waveform is shown (top). Function 
generator 2 (FG2) used to establish the acoustic frequency (Af) and the 
number of cycles per pulse (c/p) in an UNMOD stimulus waveform is 
shown (bottom). (b) Shown is an RF amplifier, which receives an input 
voltage waveform from FG2 to provide the output power to an US 
transducer for producing the acoustic pressure profile of an UNMOD 
stimulus waveform. (c) Various immersion-type US transducers employed 
for UNMOD are shown. Transducer models shown from left to right are: 
Ultran GS500-D13, NDT Systems IBMF0.53, Ultran GS350-D19, Olympus 
Panametrics V318 focused transducer 0.5 MHz/0.75" F = 0.85", Ultran 
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GS200-D25, and Olympus Panametrics V301S 0.5 MHz/1.0". An arrow 
distinguishes an Ultran GS350-D19 transducer used in the present 
protocol. (d) Illustrated are example voltage traces generated to drive the 
emission of a single US stimulus pulse. The pulse trigger (green) is a 5 Vpp 
square wave generated by FG1, which triggers FG2. In response to the 
trigger, FG2 produced a 1 Vpp sine wave pulse (blue) consisting of 75 
cycles per pulse (c/p) at a frequency of 0.35 MHz (used to establish the 
acoustic frequency; Af) as shown. The voltage waveform from FG2 is used 
to drive the RF amplifier, which provides the final plate voltage delivered to 
the US transducer. (e) Driven by the pulse generator waveform shown in 
(d), a hydrophone voltage trace, which has been converted into acoustic 
pressure (MPa) is shown. An FFT of the acoustic pressure profile 
illustrates the major frequency component of the acoustic pressure 
waveform is 0.35 MHz. (f) Similar to (d) except FG1 was set to deliver 10 
square wave pulses (number of pulses; np) at a pulse repetition frequency 
(PRF) of 2 kHz as shown (green). In response to each one of the square 
waves produced by FG1, a 75 cycle 0.35 MHz sine wave was produced 
by FG2 to generate the pressure profile emitted from the US transducer 
and recorded by the hydrophone (black). (g) Example of a typical UNMOD 
stimulus waveform generated as described above is shown as an acoustic 
pressure wave with the following properties: Af = 0.35 MHz, c/p = 75, PRF 
= 2 kHz, np = 200.  
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Figure 15 | Preparation of electromyographic recordings to monitor US-
evoked stimulation of intact motor cortex. (a) Materials used for making 
fine-wire EMG electrodes; shown are a spool of teflon coated stainless 
steel wire, a 30 gauge hypodermic needle, and a razor blade. (b,c) The 
razor is used to cut length of steel wire and strip the teflon coating off of 
one end of the wire. (d) Hypodermic needle threaded with stainless steel 
wire by inserting the teflon stripped side through the beveled end of the 
hypodermic needle. (e,f) With the wire minimally exposed from the 
beveled end, the razor is used to gently fold the bare wire over to create a 
small barb. (g-i) Placement of EMG leads into desired arm and/or tail 
muscles. (j-l) Positive, negative, and reference steel wires are shown 
being connected to the EMG amplifier leads using small steel springs. (m) 
A mouse is shown placed into a stereotactic device with its hair removed 
from the scalp. (n-p) Ultrasound gel is shown being placed on top of the 
scalp and the face of the transducer while minimizing the introduction of 
air bubbles. (q,r) The transducer is shown being positioned and affixed 
over the head of the mouse using an adjustable magnetic base Flexbar. 
(s) Custom fabricated acoustic collimators are shown, which are useful for 
laterally restricting the size of acoustic pressure fields transmitted into the 
brain (t). 
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Figure 16 | Electrophysiological recordings in response to brain stimulation 
with transcranial pulsed ultrasound. (a) EMG traces (black) illustrated at a 
high temporal gain show forepaw (top) and tail (bottom) motor responses 
produced by two consecutive trials of brain stimulation with the TPU 
waveform indicated (red). (b) Six consecutive EMG responses are 
illustrated at a lower temporal gain compared to (a) show the repeatability 
of brain stimulation evoked with TPU delivered at a 0.5 Hz stimulus 
frequency. (c) Photographs illustrate an extracellular recording 
configuration used for monitoring in vivo neuronal activity in response to 
TPU stimulus waveforms delivered to the brain. Note that for in vivo brain 
recording experiments it is highly recommended that an acoustic 
collimator is used for transmitting TPU through the skull to the extracellular 
recording site as illustrated. (d) Fifty representative individual traces (gray) 
and average traces (black) of multi-unit activity (MUA; left) and local field 
potentials (LFP; right) recorded in response to brain stimulation with the 
TPU waveform indicated (red). 



  166 

 

Figure 17 | Induction and disruption of electrographic seizure activity using 
UNMOD. (a) EMG recording traces of forepaw and tail motor responses 
produced by a the transcranial delivery of a 5 second continuous wave 
(CW) US (0.35 MHz) stimulus waveform to an intact mouse brain. Note 
brain circuit activity evoked with CW waveforms last tens of seconds 
compared to those evoked with pulsed US waveforms, which last tens of 
milliseconds as illustrated in Fig. 3a,d.  (b) Photograph (left) shows a 
mouse immediately following an i.p. injection with kainic acid (KA) to 
induce seizure activity. Example EMG recording traces (right) illustrate 
typical spontaneous activity patterns as a mouse develops 
pharmacologically-induced seizures. The top EMG trace shows forepaw 
limb activity 10 min after KA injection while the bottom trace clearly depicts 
electromyographic seizure activity 30 min following systemic KA 
administration. (c) KA-induced seizure activity can be disrupted using 
responsive UNMOD as illustrated by the EMG recording traces from four 
representative trials of brain stimulation with US in epileptic mice (also see 
Video 2). The EMG recordings obtained from a forepaw limb clearly show 
the attenuation of seizure activity in response to a 5 sec CW US stimulus 
waveform transmitted to the brain. In addition to CW US, seizure activity 
can also be attenuated using TPU. 
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Anticipated Results 

Brain stimulation using transcranial ultrasound 

In its history US has been shown capable of modulating electrically- 

or sensory-evoked neuronal activity in a variety of experimental 

preparations (Table 1). Recent progress is expanding the use of US for 

neuromodulation based on observations that it can be used to directly 

stimulate action potentials, synaptic transmission, and synchronous 

oscillations in intact brain circuits (Tufail, Matyushov et al. 2010). The 

above protocols provide the details needed to visually observe, 

electrophysiologically record, and functionally translate US-mediated 

stimulation of intact mouse brain circuits. We have described how to apply 

US for brain stimulation using both pulsed and continuous wave (CW) 

stimuli. The specific protocols we provided should enable one to study 

how different types of UNMOD stimulus waveforms influence brain circuit 

activity. Further, one should be able to construct and implement a broad 

set of pulsed US waveforms for brain stimulation by varying key 

parameters including: acoustic frequency (Af), cycles per pulse (c/p), 

pulse-repetition frequency (PRF), and number of pulses (np; Fig. 14d-g). 

General guidelines for UNMOD waveform parameter ranges include: Af 

from 0.25 to 0.50 MHz, c/p from 50 to 490, PRF from 1 to 3 kHz, and np 

from 250 to 1000.  

 When the entire motor cortex is subjected to pulsed UNMOD 

waveforms, robust motor responses should be observable and/or 
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electrophysiologically recordable using EMG electrodes (Fig 16a,b). 

Additionally, the fabrication of acoustic collimators allows for the acoustic 

beams to be laterally restricted such that brain regions can be more 

spatially isolated. The use of acoustic collimators also readily supports 

extracellular recordings of US-evoked brain activity in vivo (Fig. 16c,d). 

Using the protocols described above, we have previously shown that 

UNMOD is capable of stimulating intact subcortical circuits, such as the 

mouse hippocampus (Tufail, Matyushov et al. 2010). Stimulation of the 

motor cortex with transcranial pulsed US (TPU) can evoke EMG activity 

with response kinetics (Fig. 16a,b) similar to those reported using ChR2 

and microelectrodes (Ayling, Harrison et al. 2009). In stark contrast to 

TPU-evoked activity lasting tens-of-milliseconds, stimulation of motor 

cortex using transcranial CW US waveforms for several seconds can 

induce prolonged seizure activity often lasting tens-of-seconds (Fig. 17a). 

Interestingly, seizure activity produced by CW US does not temporally 

coincide with the stimulus onset as observed for evoked responses 

produced by TPU (≈ 20 response latency; Fig 16a,b). Robust seizure 

activity triggered by CW US rather emerges with a second or more lag 

following stimulus onset (Fig. 17a). Such differences in the activation 

kinetics and cellular response profiles triggered by different UNMOD 

waveforms should be a focus of future investigations. This is especially 

true since the variable actions of UNMOD will likely enable different 

applications of US for brain stimulation.  
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Applications for disease models 

In general, brain stimulation has been shown effective for treating a 

host of neurological and psychiatric diseases (Bliss 1973; Newall, Bliss et 

al. 1973; Randhawa, Staib et al. 1973; Thuault, Brown et al. 2005; 

Wagner, Valero-Cabre et al. 2007). Since US is capable of noninvasively 

stimulating intact brain circuits in a manner similar to conventional 

electromagnetic approaches (Tufail, Matyushov et al. 2010), we have 

previously proposed that US may represent a new tool for clinical 

neuromodulation (Tyler 2010; Tyler, Tufail et al. 2010). The protocols 

described above serve to highlight several advantages of UNMOD, which 

broaden its potential for developing novel therapeutic brain stimulation 

approaches. As demonstrated, such an application could be for disrupting 

runaway neuronal activity observed in epileptic seizure episodes (Fig. 

17c). Conversely, one might use CW US for evoking seizures as 

illustrated (Fig. 17a). Stimulation of seizure activity by CW US may prove 

useful in applications designed to screen how potential pharmacological or 

molecular and genetic interventions influence seizure susceptibility in 

rodents.  

 The major advantages of UNMOD are that it is flexible in being able 

to influence a variety of brain activity patterns, it is noninvasive by not 

requiring surgical or genetic manipulation, it can be rapidly applied, and it 

confers a spatial resolution several millimeters better than other currently 

available noninvasive brain stimulation methods. In addition, there is a 
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strong potential for using UNMOD in the noninvasive functional mapping 

of both normal and diseased brain circuits since US is compatible with 

MRI. Thus, with further development we anticipate UNMOD will be able to 

readily support studies of normal brain function, the development of novel 

therapeutic interventions, and noninvasive neurodiagnostics. The 

protocols provided above represent necessary starting points for driving 

such exciting new tools and possibilities forward to fruition in modern 

neuroscience.   
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Chapter 5 

DISCUSSION 

Prior investigations into the effects of ultrasound on neural tissue 

have produced significant findings, but until now there have been no 

reports of explicit data on the direct stimulation of intact neural circuits. 

The methods and observations detailed in this dissertation provide novel 

insight into the interactions of mechanical energy and the central nervous 

system. 

Our initial investigations discovered that pulsed ultrasound of 

specific frequencies and intensities could activate, whether indirectly or 

directly, sodium channels, calcium channels, and synaptic transmission in 

hippocampal slice cultures (Tyler, Tufail et al. 2008). This was followed up 

by translating our approach to an in vivo mouse model where cortical and 

subcortical neuronal activation was achieved (Tufail, Matyushov et al. 

2010). After establishing that ultrasound can readily be used to stimulate 

the intact brain, we asked whether this method could join the ranks of 

other current noninvasive neurostimulation interventions. Just as rTMS 

and tDCS studies have reported ameliorating effects in the diseased brain, 

the implementing of ultrasound for such neurological and psychiatric 

applications may provide exceeding results, as TPU is not limited to 

cortical regions and offers greater spatial resolution. This dissertation work 

is the first to report the direct stimulation of intact nervous tissue and 
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provides a detailed protocol to replicate such observations while 

suggesting its utility in brain disease models.  

 

Mechanisms behind ultrasound induced neuronal activity 

 Despite the significant though sparse data on the influence of 

ultrasound on the central nervous system, the exploration into the 

underlying mechanisms is only recently forthcoming and has remained 

elusive. Since ultrasound has become profoundly known for its clinical 

imaging and physiotherapy, much of the work into the discoveries has 

been limited to these active fields of study. This has produced a general 

classification scheme for ultrasound based therapies. High power 

ultrasound is employed by methods such as high-intensity focused 

ultrasound (HIFU) and lithotripsy, whereas low intensity ultrasound 

employs sonophoresis, sonoporation, gene therapy and bone healing (ter 

Haar 2007). In this regard, the nature of ultrasound, or mechanical energy, 

can physically interact with a medium in a thermal and non-thermal 

manner (Dalecki 2004). Under current standards, the intensity values used 

in our studies fall under the low-intensity, non-thermal effects. Additionally, 

the lack of gas bodies in the brain support this assertion. 

The non-thermal bioeffects include acoustic radiation force and 

cavitation. Acoustic radiation force results from the transfer of momentum 

from the acoustic field to the object, or medium (Dalecki 2004). Radiation 

force is responsible for producing radiation torque and acoustic streaming 
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(Dalecki 2004). This force is capable of displacing small ions, molecules, 

and even organelles. The mechanical pressure produced from the 

radiation force can also induce movement of the fluid along and around 

cell membranes (Johns 2002). These mechanical actions on biological 

tissues have led to a hypothesis that attributes the physical properties of 

fluids and membranes as major components to the underlying 

mechanisms. This hypothesis perceives the environment of the brain as a 

set of dynamic boundary conditions that give rise to acoustic impedance 

mismatches (Tyler 2010). The presence of these mismatches give rise to 

stable cavitation, fluid micro-jets, eddying, turbulence, shear stress and 

Bernoulli effects as the propagation of the acoustic fields come in to 

contact with lipid bilayers, intracellular/extracellular fluids, and 

cerebrovascular networks (Tyler 2010). It is probably these phenomena 

that manifest the ability of US to modulate neuronal excitability in two 

ways. The simplest form of the mechanisms that encompass multiple 

hypotheses and observations in the brain demonstrate that 1) the 

viscoelastic properties of lipid bilayers under mechanical stress may 

induce enough strain and turbulence to locally permeabilize the bilayer 

allowing flux of ions and thus small changes in membrane polarization and 

2) the direct energy absorption or stretch induced changes on 

mechanosensitive transmembrane proteins may result with modulation of 

receptor/channel gating kinetics (Johns 2002; Morris and Juranka 2007; 

Tyler 2010). 
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Keeping the proposed mechanisms of action in mind, it is important 

to mention the correlation observed between the measured output of 

stimulating the intact motor cortex, and the characteristics of the applied 

acoustic waveform. As illustrated in Chapter 3, figure 10, there is an 

inverse relationship between both acoustic frequency and intensity with 

the normalized EMG response. What biophysical interactions are 

responsible for producing a greater EMG event in response to lower 

relative acoustic frequencies and intensities? One could hypothesize that 

the shorter pulse durations may effectively act as a shock pulse to the 

exposed neural tissue. This may act to displace ions across membranes 

and alter membrane induced tension on ion channels, resulting with 

modulation of gating kinetics. Additionally, we reported that greater EMG 

responses were observed under the influence of lower acoustic 

frequencies. These observations allude to a complex relationship between 

the induction of neurostimulation and the effective acoustic parameters, as 

the limits to the parameter space seem obscure and largely unknown. 

During in vivo experiments, we initially set out to mechanistically test a 

spectrum of acoustic intensities, but not only did this prove to be hugely 

time consuming, it was very ineffective in producing reliable results. This 

led to a more undirected search of acoustic parameters. Likewise, this 

approach did not immediately yield any positive result, instead we 

discovered that the animal‟s plane of anesthesia was another highly 

influencing variable. 
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As an accepted and often dismissed limitation to studying aspects 

of neurophysiology, the use of anesthetics imposes restrictions on the 

ability to interpret data and its applicability to normal behavior. Our 

observations during the application of ultrasound initially varied within 

each subject over the course of time. We began to notice that depending 

on the responsiveness of the animal within the first ~20 minutes of 

anesthetic injection, the probability for obtaining an immediate ultrasound 

induced motor response was variable. Increased reliability was obtained 

when the animal was mildly responsive to the toe or tail-pinch reflex. What 

are the interactions of anesthetics on the effectiveness of using ultrasound 

for brain stimulation? Owing to the fact that our experiments solely utilized 

a ketamine/xylazine cocktail, what observations can be made when a 

different anesthetic is used? Will specific anesthetics yield dissimilar 

effects when seeking ultrasound induced neuromodulatory effects? 

In order to substantiate our claims for implementing ultrasound as a 

potential neurological therapeutic, further investigations into the 

responsible mechanisms underlying neurostimulation need to be carried 

out. Additionally, issues such as the influence of anesthetic type and level 

need to be resolved. Although a difficult set of tasks, much benefit will be 

gained through these experiments as their undertaking will support the 

benefit in the growth and translation of this method. 

             

Biosafety of ultrasound 
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The latest wave of ultrasound technology has emerged from its 

applications in diagnostic imaging and tissue healing to non-invasive 

surgery. The techniques and parameters used to manipulate US for its 

particular application vary substantially, thus suggesting the need for 

detailed analysis. Fetal ultrasonic scanning has become routine practice 

for clinicians as it has maintained a positive safety record for many 

decades. This type of diagnostic imaging employs frequencies in the 

range of ~1-10MHz while being regulated by the U.S. Food and Drug 

Administration (FDA) for safety measures. A method to quantify the output 

levels of such diagnostic tools calculates what is known as the thermal 

index and mechanical index. The thermal index describes the energy 

required to raise tissue temperature 1°C (Mitragotri 2005). The Mechanical 

index is more precisely defined as the peak negative pressure, at its max 

pulsed intensity integral, divided by the center frequency of the transducer 

(Dalecki 2004). In addition to these measures, reporting such intensities 

as spatial peak temporal average intensity (Ispta), spatial average 

temporal average intensity (Isata), and spatial peak pulse average 

intensity (Isppa) are also significant and accepted parameters used to 

define exposure and dosimetry (ter Haar 2007). The motivation for 

determining such measures resides in the ability of US to inflict damage 

upon tissues through mechanisms described by thermal and non-thermal 

interactions. The better known major biohazards to appreciate are 

manifested by the thermal effects. It is important to know how ultrasound 



  183 

can elicit thermal effects on the biological application of interest within a 

given acoustic field and its environment, such as the uterus of a pregnant 

female or the intact brain of a human patient. Manipulating the thermal 

effects, HIFU is capable of raising the temperature in live tissue above 

56°C in less than 3 seconds (ter Haar 2007). When live tissue reaches 

temperatures between 57-60°C, the threshold for protein denaturation is 

obtained and coagulation necrosis occurs (Jolesz 2009). To achieve 

temperature levels of this magnitude, it has been reported that a peak 

power of 63 watts can produce a peak temperature rise of 64.1°C at a 

depth of 29 mm using a single element transducer on the head and 

through the tissue of a primate (McDannold, Moss et al. 2003). In addition, 

it was recently reported that a dose of 17.5 equivalent minutes of US that 

raises tissue to a temperature of 43°C can induce thermal coagulation  as 

the probability for tissue coagulation using the stated parameters is 

roughly 50% (Jolesz, Hynynen et al. 2005; Hynynen, McDannold et al. 

2006). For reasons implicated by the results obtained from groups 

implementing various parameters, it is clear why all scenarios of US 

acoustic parameters and biological environments must be well 

characterized or predicted to ensure the absence of undesired biological 

effects.  

The non-thermal effects of ultrasound can be more subtle and 

therefore must be carefully considered when determining biosafety. As 

mentioned, the many modes of physical interactions US may elicit on 
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tissue invoke a need for extensive study. It has been reported that 

prenatal exposure to ultrasound parameters similar to those used in 

obstetrical clinical practice can affect neuronal migration in the cerebral 

cortex (Ang, Gluncic et al. 2006), but follow up studies supporting a 

functional significance for these observations lacks exploration. There is 

an opposing general school of thought that stresses the observations that 

bubbles or gas bodies are obligatory for producing non-thermal damage to 

living tissue (Church and Carstensen 2001; Church, Carstensen et al. 

2008). The well established organs that readily maintain US sensitive gas 

bodies are the lungs and gastrointestinal system (Dalecki 2004). In order 

to study the non-thermal cavitational effects of US in the brain, contrast 

agents such as AlbunexTM are introduced to the vasculature of the 

specimen under study. Contrast agents such as these contain gas bodies 

that are cavitationaly responsive to acoustic fields. When a lithotripter field 

of 2 MPa is delivered to a specimen containing US contrast agents, 

microvascular damage can be observed in most soft tissues including 

muscle, mesentery, kidney, stomach, bladder, and fat (Dalecki 2004). It 

should be stressed that a great understanding of the acoustic interactions 

with biological tissues and their natural environments should be uncovered 

and detailed knowledge of the mechanisms is crucial for properly 

evaluating safety measures. The report that acoustic pressure fields with 

amplitudes up to 40 MPa display only minimal damage to soft tissues 

(Dalecki 2004) makes this point evident. Although requiring further 



  185 

investigations, our methods for TPU produce energy profiles with peak 

rarefactional pressures (pr) on the order of 0.085 MPa (Tufail, Matyushov 

et al. 2010).      

The horizon for US bio-applications has recently broadened and 

innervated new clinical significance, therefore the efficacy must be re-

evaluated and again carefully studied to maintain its safety record. 

Problems may arise when instruments carefully designed, for example, 

fetal diagnostic scanning become used for other in-vivo or in-vitro 

applications, and maintaining the same methods that measure output 

levels are interpreted to have the equivalent safety rating (Leighton 2007). 

As a trend with many citations, great effort is focused on the behavior that 

is elicited by the specimen being exposed to ultrasound. Subsequently, 

details describing the US waveform(s) can be overlooked and imprecisely 

reported, including considerations of the acoustic environment. Tim 

Leighton provides an example by explaining that reports like these can be 

misleading. Mechanical index is widely used when US is applied with 

contrast agents even though their presence reduces the validity of the MI 

in representing the conditions (Leighton 2007). In addition, Leighton also 

states that albeit hydrophones are used to detect pressure fields, one 

must appreciate the ability of the acoustic environment, especially the 

dynamic properties of biological systems, that changes may occur non-

linearly or through reflection and diffraction (Leighton 2007).  
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The challenges must be surfaced when attempting to establish a 

standard level of safety. The importance of considering such details as 

interaction between hydrophone, ultrasonic field, bio and non-bio species 

need to be considered because these can be sources of large scattering 

or diffracting targets, and the measurement can be complicated by 

directionality and spatial averaging (Leighton 2007).  

 

Innovative technology 

The studies reported here employed sources of ultrasound from 

single element planar ultrasonic transducers. Despite the resolution 

obtained for neuronal activation using methods developed here, we lack 

the technical access to implement and manipulate the complete 

capabilities ultrasound has to offer. Our data suggests a competitive trait 

compared to the resolution limits reported for TMS (1.5-2.0 mm versus ~1 

cm) (Barker 1999; Tufail, Matyushov et al. 2010). With these numbers in 

mind, the implementing of current ultrasonic focusing technologies with 

our TPU methods could observe a superior succession of ultrasound for a 

noninvasive neurostimulation device. One such current method uses 

multiple transducers arranged in phased arrays to spatially control the 

acoustic focal point. Although this method has been developed for the 

application of HIFU used for noninvasively ablating brain tissue, the lesion 

diameters were between 3 and 5 mm (Hynynen, Clement et al. 2004; 

Martin, Jeanmonod et al. 2009). Aside from the 500 element or 1024 
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element design used in HIFU studies, the ability to achieve such resolution 

is fundamentally dependent on the frequencies utilized. This notion has 

been recently surpassed by the employment of acoustic meta-materials 

(having a negative refractive index) enabling subdiffraction acoustic spatial 

resolutions (Zhang, Yin et al. 2009; Tufail, Matyushov et al. 2010). Based 

on these currently proven technologies, it is reasonable to hypothesize 

that the marriage of the mentioned techniques along with our TPU 

protocols may produce a tool that could noninvasively penetrate tissue 

and skull, access subcortical structures, and accurately stimulate 

submillimeter brain regions. Future technologies could conceivably 

stimulate multiple and patterned brain areas simultaneously or even in 

succession to replicate normal circuit activation in the compromised brain.      

 

Applications for clinical models 

Collectively, can TPU be realized as a useful tool for specialized 

clinical practice? 

The year 1928 marked the time where ultrasound was reported to 

have an observable effect in a biological application (Harvey, Harvey et al. 

1928). As progression has persisted in the field of ultrasound, the year 

2009 had demonstrated that with the marriage of technologies from 

multiple disciplines, ultrasound can be successfully used in clinical 

applications for non-invasive brain surgery. A prime example was 

conducted by researchers at the University Children‟s Hospital in 
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Switzerland where nine patients with neuropathic pain underwent selective 

thalamotomies (Martin, Jeanmonod et al. 2009). The success for 

demonstrating a complete non-invasive surgery into deep structures within 

the human brain where patients reported 30-100% in pain reduction within 

2 days post-treatment (Martin, Jeanmonod et al.) is well recognized. 

One of the significant achievements that had occurred throughout 

this time period was overcoming the boundary of the skull. Many biological 

preparations have been used to observe and measure the induced effects 

of US, but when the application for delivering US to the living brain 

through the intact skull arose, it meant that superior methods for directing 

US to a target through an acoustic scattering barrier had to be developed. 

The skull acts as a penetrable obstacle to US because of impedance 

mismatches as the compression and rarefaction of molecules translate 

through different mediums. These mismatches arise from the intrinsic 

fluidity and compressibility of the tissue as it must pass through skin, 

bone, brain and all the interfaces in between (Tyler 2010). Through 

experimental and modeling data (White, Clement et al. 2006) 

demonstrated that lower frequency US achieves better bone transmission 

in relationship to both density and skull thickness. As ultrasound passes 

through these boundaries, the mechanical energy is deflected, scattered, 

absorbed, and transmitted, thus drastically changing the initial waveform 

characteristics it may have had in the near or far field of the transducer. 
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The nature of such surgical applications requires that the 

performance of the transducer(s) used to be superior. The performance of 

transducers depends on the design, material, and apparatus. The purpose 

for such high demands stems from the need to maintain the efficiency of 

energy transfer through the skin and skull, as well as to maintain high 

focusing tolerances, and the ability to steer the ultrasound focal point with 

reliability. The fight to overcome the distortion that bone inflicts on 

ultrasound has proven to be short lived. It was the use of a propagation 

model that takes into account the thickness, orientation, and density 

obtained from CT images of the head to activate sections of transducer 

elements positioned in a hemi-spherical array that ultimately allows 

focusing capabilities (Clement and Hynynen 2002). 

Part of the motivation for exploring the use of TPU as a clinical 

intervention originates from the idea that ultrasound may be a viable 

avenue to supercede DBS and vagus nerve stimulation with regards to 

their observed clinical benefits. It has been shown that electrical 

stimulation can increase the expression of neurotrophic factors (Andrews 

2003) and it is part of a suspicion as to how DBS and vagus nerve 

stimulation have been observed to benefit a spectrum of neurologic 

disorders (Wagner, Valero-Cabre et al. 2007). Fortunately, we were able 

to reproduce these findings (Tufail, Matyushov et al. 2010), implicating the 

translation of our technique and possibly the replacement of current 

methods. 
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Unlike the currently implemented neurostimulation techniques, 

ultrasound in theory could be used to stimulate different areas of a 

patient‟s intact brain without the invasiveness, without running the risks of 

surgery, and incurring less costs. This approach could prove effective for a 

greater population of patients as the origination of their neurological 

deficits may prove to be variable across individuals. 

Collectively, the observations in the numerous reports that use 

ultrasound to manipulate particular functions of the nervous system, and 

the technology used to safely and reliably target particular areas within the 

brain opens a path for potentially limitless applications. One such 

application, as demonstrated in this dissertation is the treatment for acute 

epileptic seizure management. One may envision an apparatus in a 

clinical setting that would be able to detect the onset of seizures through 

surface EEG, and then simultaneously use magnetic resonance guided 

ultrasound stimulation protocols to locate the brain region and abolish the 

manifestation of a seizure. This can be a foreseeable intervention owing to 

the fact that the tools mentioned are already in existence and currently 

used in clinical settings. The major obstacles remaining include the 

integration of all EEG, MRI, and focused ultrasound equipment. More 

importantly, what remains is the understanding of the ultrasound 

interaction with a diseased brain circuit. As mentioned, the mechanisms 

behind ultrasound induced neurostimulation are still vague, therefore 
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unveiling the properties to how UNMOD is effective for treating epilepsy 

will require greater investigation. 

In particular, an interesting question deals with the region specific 

sensitivity to ultrasound. In other words, are different regions of the brain 

more or less sensitive to particular parameters of ultrasound stimulation? 

To address this question, and to surpass some of the limitations in our 

prior experiments, the use of multi-electrode arrays for observing 

extracellular neuronal activity may prove to be helpful in understanding the 

propagation of the acoustic wave as it penetrates, absorbs, and scatters 

throughout the brain. Another experiment would be to use MRI compatible 

ultrasound transducers and equipment in order to map brain responses 

using fMRI. Secondly, the direction and orientation of the applied acoustic 

fields need to be investigated. For reasons that we can only speculate, the 

orientation may be a significant factor because we observed orientation 

specific activation of the hippocampus. We assumed that this was due to 

the layered and structured organization of the brain, in addition to the 

acoustic direction. With a roughly 50 degree change in angle approach, 

we were able to successfully stimulate the hippocampus (fig. 13). These 

aspects raise issues that call for scrutinizing investigations in order to see 

this technology deliver its full potential as a clinical intervention. 

As a foundation for prospective medical applications, TPU 

possesses the characteristics and integrative capabilities to produce a 

reliable and effective tool in the near future. Now is the time to stress such 
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technology and explore the complete capacity it may have on nervous 

system pathologies and further discoveries of normal brain function. 
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